
Altova GmbH l Rudolfsplatz 13a/9 l A-1010 Wien, Austria/EU l Tel: 545 5155 - 0 l Fax: 545 5155 - 9 l Web: www.altova.com

WhitePaper
Enterprise Data Modeling Using XML Schema

Investigating an emerging paradigm using components
of Altova's MissionKit™ for Software Architects

http://www.altova.com
http://www.altova.com/products/missionkit/software_architect_tools.html


Enterprise Data Modeling Using XML Schema

Investigating an emerging paradigm using components 

of Altova's MissionKit™ for Software Architects

Nick Nagel, Ph.D.

Altova Inc.

1. Introduction 4

2. What Exactly is a Formal Specification Anyway? 5

2.1 Data Modeling with XSD 6

2.2 Specifying the Model 6

2.2 A Short List of XSD Benefits 11

2.3 Composition vs. Aggregation 11

3. Generating Distributed System Components from an XSD 14

3.1 Generating a Persistent Store 14

3.2 Front-end Generation 16

3.3 Information Asset Management 18

3.3.1 Creating the User Interface 20

3.3.2 Mapping XML to RDBMS 24

4. Charting the Model with UML 25

5. Conclusion 28

References 30

2

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://www.altova.com/products/missionkit/software_architect_tools.html


Executive Summary

With its rich support for associating programmatic data types
with information items, and its complete implementation of the
object oriented data modeling framework, XSD stands poised
to pave the way for a paradigm shift in enterprise application
development. In recent years, there has been an ever increasing
demand for the definition of business entities placed on XML
across multiple platforms. This reflects a natural division along
which to achieve a separation of concerns in enterprise develop-
ment – between the declarative data model and the associated
business rules and business process logic that encapsulate
operations performed on instances of the model. The declarative
nature of data modeling readily lends itself to expression using
XSD.

A new paradigm will emerge in coming years where the XSD-
specified data model will become the focal point in enterprise
development. XSD is sufficiently formalized to enable the auto-
generation of a myriad of components from end-to-end along
distributed systems, ranging from relational entities optimized for
storage and retrieval on the back end, to language-independent
RAM-resident object representations (generated by XML binding)
in middleware, to document-style, form-based user-interfaces on
the client side. All along the way the constraints inherent to a
schema-specified architectural model enforce business require-
ments, contributing at every stage to the robustness of the
overarching distributed system.

This whitepaper is intended to explicitly articulate this insight and
demonstrate by way of example how the XSD provides just the
right level of abstraction, and just the right degree of precision,
to generate a highly constrained and formal data model that
can be used to propagate business rules end-to-end in the
enterprise system.

Components of Altova’s MissionKit for Software Architects
(XMLSpy®, MapForce®, StyleVision®, UModel®, DatabaseSpy™,
and SchemaAgent®), are uniquely situated to provide compre-
hensive support for the enterprise data modeling process from
start to finish.

3

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://www.altova.com/products/missionkit/software_architect_tools.html
http://www.altova.com/products/xmlspy/xml_editor.html
http://www.altova.com/products/mapforce/data_mapping.html
http://www.altova.com/products/stylevision/xslt_stylesheet_designer.html
http://www.altova.com/products/umodel/uml_tool.html
http://www.altova.com/products/databasespy/database_tool.html
http://www.altova.com/products/schemaagent/xml_schema_management.html


1. Introduction

This whitepaper is an exploration of the possibilities engendered by

rethinking the role of the XML Schema Definition (XSD) language in

the development of enterprise information systems. In particular, it

might be argued that current trends in system development reflect a

paradigm shift toward XML-centric data processing with XSD playing

an increasingly critical role in the specification of the data model.

The purpose of this paper is to explicitly state the potential role of

XSD as a data modeling language, and then to show some of the

benefits that a formal XSD specification can bring.

4

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.



2. What Exactly is a Formal Specification Anyway?

Not too long ago, much ado was made in the world of data modeling

about formalism, notational schemes, and the “correct” means of

achieving a formal description of a domain model. But when it comes

right down to it, much of the effort toward formalizing a model amounts

to devising a system to specify the language of some specific domain(s)

of interest. In other words, data modeling is largely comprised of the

identification of the vocabulary used to describe domain-specific

entities (the objects that will be acting or acted upon in a system)

and identifying the relationships between these entities. How you go

about specifying the model is – in the end – largely irrelevant. What

matters is that you make the time to do so and do it in a formal and

explicit way. Creating a specification and documenting your efforts

may cost a bit up front, but in the end the benefits of doing so can be

well worth it.

Data modeling today is a brave new world with a varied and colorful

palette to choose from for sketching out your system. Certainly a wide

range of more or less formal systems has been proposed, with the

most notable culmination of approaches leading to the development of

UML (the Unified Modeling Language) [Booch et. al., 2005]. But UML

is not the only formal system available for describing a model (compare,

e.g., UML vis-à-vis Entity Relational Diagrams (ERD)). Indeed, at the

finest level of analysis, the implementation of an information processing

system is a formal description of the data model (or, more precisely,

contains the model). But working toward the implementation of a

complex system it is often useful (many would argue necessary) to

derive formal abstractions of aspects of the system to serve as

“roadmaps”, or guides to development.

XSD is an excellent way to achieve precisely such a formal system

description. I hope to show that XSD can be used together with other

languages and technologies in the developer's toolkit to guide and

facilitate the development of complex information processing systems.

5

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.



2.1 Data Modeling with XSD

Arguably the greatest benefit of using XSD to specify your data model

is that it provides a formal description that can contribute at every step

of the way toward the development of an end-to-end solution to a broad

class of problems. XSD provides a method to create a description

that is precise and follows a prescribed set of rules to generate an

unambiguous declaration of the set of entities and associated features

of the model. Such a description vastly benefits distributed information

processing development by serving as a standard against which

members of disparate teams can develop compatible processing

components. Also, XSD affords a high degree of precision in creating

the model, which ultimately contributes to the robustness of overarch-

ing processing systems through its inherent ability to validate infosets.

2.2 Specifying the Model

Let's consider a hypothetical scenario in which we have to represent

information associated with educational resources – books, articles,

Web pages and such – that might be used in the creation of literary

works. At some point between this loose conceptualization of a

requirement and the implementation of our hypothetical processing

system, we'll have to develop a vocabulary to refer to the entities in

the targeted domain. Of course, there are several different approaches

we can take to create this vocabulary, but for our purposes let's take

as our starting point the specification of the data model using XSD.

An inherent issue that we come across when using XSD is that XSD

is XML, and therefore it is verbose by design. Consequently, it's easy

to get bogged down in the syntactical details of the modeling language

and overlook the big picture. This problem can be readily solved,

however, by the adoption of visual guides to schema development

and the autogeneration of the underlying XSD code. The visual XML

Schema editor in Altova XMLSpy facilitates precisely this approach,

allowing us to take a “top-down” view of schema development and

begin creating the data model from the blank page.

6

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://www.altova.com/products/xmlspy/xml_editor.html


We can start our modeling project by breaking the top level compo-

nent of our example scenario, Resource, into composite parts. Here,

Resource comprises a Title, perhaps a URL (for Web pages), an

associated Author or Organization, and perhaps a brief Description

(which we might like to include in a resource database). Another

component, Articles, might include an associated Journal, and Books

might be associated with Publishers, ISBNs, etc. This preliminary

analysis might lead us to construct an object oriented data model with

definition reuse by inheritance. The good news is that a tremendous

benefit of working with XSD is that it provides full support for object

oriented data modeling. Indeed the Datatypes section (Part 2) of the

XML Schema 1.0 specification (2005) defines a complete object orient-

ed framework for built-in and user-defined types, allowing developers

to construct a data model that is robust and compatible across a wide

range of programming languages and platforms.

For the purposes of this discussion, let's keep things simple and limit

the model to describing a Web resource (Resource). The screenshot

below shows a first-pass sketch of a Resource element created using

the XMLSpy schema design view.

7

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 1. A schema diagram developed using the XMLSpy visual 
XML Schema editor

http://www.altova.com/products/xmlspy/xml_editor.html


8

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

This diagram shows the Resource component modeled as a composite

containing many of the elements identified above. The diagram also

shows that a Resource might be associated with a multiplicity of

authors (many authors might contribute to the development of a

Resource), and that each Author breaks down into FirstName,

LastName, Middle and Suffix fields. (Of course, the Organization and

other elements might also be further decomposed in a more complex

example.)

The raw XSD code autogenerated from the graphical representation

is provided below.

---------------------------------------
<xs:schema ...>

<xs:element name="Resource">
<xs:annotation>

<xs:documentation>
A web resource used in 
literary works

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="Title" type="xs:string"/>
<xs:element name="URL" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="Author" 

minOccurs="0" 
maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="FirstName" type="xs:string"/>
<xs:element name="LastName" type="xs:string"/>
<xs:element name="Middle" type="xs:string"/>
<xs:element name="Suffix" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Organization" 

type="xs:string" 
minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>
---------------------------------------

Note: This example shows the raw code generated up to this point.

Code fragments not relevant to the discussion have been removed for

clarity.

Figure 2. The Resource schema code



A cursory examination of the code reveals a “Russian doll” pattern in

which the entire model definition is nested locally under the Resource

element. The next step in fleshing out the model might be to abstract

some of the components into global, named type definitions. The prime

candidates for this sort of abstraction are the Author component and

the Resource component itself. Below is a diagram of the revised

schema after abstraction of the Author and Resource type definitions.

This example shows how XSD definitions can be developed incremen-

tally – an approach with which it's possible to massage a model into

shape over a successive number of developmental iterations.

Let's take a closer look at the Author type definition. Notice that at

this point it's defined using simple fields typed as generic strings.

Under some systems this might be about the finest level of precision

we might achieve in constraining our data model (although Java now

supports enumerated types and some relational databases provide

non-standard mechanisms to make use of, e.g., regular expressions,

9

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 3. The Resource schema diagram revised to define the 
Resource and Author components as named global types



to constrain data fields). But with XSD we have built-in support for

the use of facets – features specifically designed to constrain the

value/lexical space of any simple information item.

For example, we might constrain the maximum length of the FirstName

and LastName fields to 80 characters using the max-length facet. We

might further constrain our Middle field to hold only a middle initial

(we can impose such constraints using regular expressions). And we

might permit only a small set of values for the suffix using the enumer-

ation facet. These constraints would render instance data, such as

the following, valid:

<Author>
<FirstName>Ronald</FirstName>
<LastName>Hornblatt</LastName>
<Middle>R.</Middle>
<Suffix>Ph.D.</Suffix>

</Author>

While the following would not be valid:

<Author>
<FirstName>Ronald</FirstName>
<LastName>Hornblatt</LastName>
<Middle>Rondolet</Middle>
<Suffix>Jr.</Suffix>

</Author>

This exposes yet another benefit of data modeling using XSD: its

inherent support for validating the infoset. The formal definition of the

model using XSD allows developers to take advantage of validation

functionality abstracted into schema-aware XML parsers. Most informa-

tion processing frameworks in use today now have schema-aware

XML parsers built in and readily available for access by application

developers.

10

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.



2.3 A Short List of XSD Benefits

A few of the benefits of using XSD revealed by our simple example

include the following:

1. XSD offers a platform agnostic approach to data modeling with 

many features that support a wide range of programming languages

and platforms

2. XSD is object oriented and provides a well-specified framework for 

object oriented development

3. A wide range of pre-defined, built-in simple types (attributes and 

elements with text only content) provide rich support for constraining

the data model to conform to multiple platform requirements

4. The highest levels of precision can be achieved using facets which 

are supported by XSD

5. Visual XSD development fosters an incremental and iterative 

approach to modeling in keeping with many of the methodologies 

applied toward software development today

Of course, there are numerous other benefits offered by XSD in addition

to those listed above.

Next, we'll see how we can bridge the gap between XSD and schemas

developed for relational database management systems (RDBMS).

2.4 Composition vs. Aggregation

The data model described in our example is compositional in nature.

The Resource is a composite entity defined as the sum of its parts

where each part belongs to a whole and the parts live and die with

the whole. Indeed, the XSD approach to defining elements in terms

of content models fosters the establishment of compositional relation-

ships. However, this doesn't necessarily have to be the case. Figure 4

shows an alternative model for our Resource entity that establishes an

aggregate relationship between the Resource and Author components.

11

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.



To relate Author instances to Resources instances in this aggregate

schema, we simply add id attributes to the Author and Resource types.

This allows us to set up an association element (analogous to an

association class or a join table in object oriented programming).

The association element (Resource-Author_Association in this

example) has two attributes, AuthorREF and ResourceREF, which

point to a unique Author id and Resource id respectively. The explicit

ids and references can be used to associate instances of the

Resource and Author entities. We can take this a step further and

enforce these referential dependencies in XSD using key and keyref

constraints. Figure 5 shows a set of constraints specified to enforce

uniqueness and referential integrity in the model.

12

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 4. The Resource/Author aggregate model in XSD



Among the many implications that follow from this is that we can

represent many-to-many relationships in XSD and define constraints

over these relationships that would be difficult or impossible to repre-

sent using hierarchical XML. These features allow us to create XML

structures that readily map into relational back-ends. Indeed, that's

exactly what we'll demonstrate next with our model.

13

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 5. Enforcing uniqueness and referential integrity in XSD



3. Generating Distributed System Components from an XSD

The beauty of data modeling with XSD is that the XML Schema can be

made sufficiently precise to enable the autogeneration of distributed

information processing components on all the tiers of a distributed sys-

tem. The data model can be specified once, and used to generate model

components system-wide to meet a wide range of needs, rather than

having to manually map components on all the tiers of an application.

3.1 Generating a Persistent Store

To illustrate model component generation, I'll now discuss how to create

a data entry system for the Resource component. Armed with our XSD

data model, we can start by generating a persistent store for collec-

tions of Resource instance data. The constraints we've built into the

model currently provide sufficient information to autogenerate the DDL

(Database Definition Language) necessary to create a database back-

end. Figure 6 shows the DDL for the Resource component, which

has been generated for this example using XMLSpy. We can use this

DDL to create a relational database which will be built on a Microsoft®

Access database.

14

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://www.altova.com/products/xmlspy/xml_editor.html


This listing shows the SQL generated to create an MS Access data-

base for the Resource example.

Note: I modified the alter statements slightly to establish out-of-scope

relationships.

15

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 6. Autogenerated Data Definition Language DDL for
Microsoft Access (from ResourceSchema.xsd)



Figure 7 shows the generated tables illustrating the many-to-many

relationship between the Author and Resource elements established

from the XSD data model as seen in the database design view of

Altova DatabaseSpy.

This example highlights the relative ease with which we can generate

a database from the XSD-specified model. Next, we'll explore how

the XSD can help generate a front-end for editing the database.

3.2 Front-end Generation

We will now generate a user interface that will enable data entry and

editing. Again, we'll drive the workflow using our XSD model. To facili-

tate the development of the user interface, we'll specify a hierarchical

XML format using the components defined in our existing data model.

We'll start by creating a new schema which includes the Resource

component model. Including the model allows us to re-use our type

definitions to create a new structure for data entry. Figure 8 shows

the hierarchical structure we'll use to define the data entry format.

16

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 7. The newly generated database schema as viewed from the
Altova DatabaseSpy database design editor

http://www.altova.com/products/databasespy/database_tool.html


To create the new structure we simply add a global element to serve

as the structural root for a resource (the ResourceEntryRoot element)

and type it using our user-specified ResourceType. Next we add a

sequence permitting the occurrence of one-to-many Author elements.

The process we've just walked through is actually a form of object

oriented type-derivation. To define the ResourceEntryRoot element we

extend the ResourceType to permit the Author elements as content.

The Author element is already defined in our model and available as

a global named type. So we're done. It's that easy.

17

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 8. The Resource data entry structure



3.3 Information Asset Management

The preceding discussion exemplifies another huge benefit of data

modeling with XSD: namely information asset management. It is a

truism that here in the information age, information assets – information

processing components that can be defined, scoped, and managed

for reuse – are of enormous value to any organization. But in order

for the potential value of such assets to be maximized and efficiently

utilized, proper management is essential. XSD readily lends itself to

component integration and reuse and, consequently, has unlimited

potential to facilitate information asset management.

To illustrate the use of XSD for information asset management, con-

sider the Resource data entry schema we just created. To generate

that schema we included existing components, i.e., existing assets,

into a new schema defining a data entry component structure. These

sorts of relationships, inclusions and importations, can be readily

visualized and managed through Altova SchemaAgent, a visual XML

file management tool with a graphical interface designed to overcome

the complexity inherent in managing large-scale XML component

design and integration. Figure 9 clearly illustrates the ease with which

we can view and manage heterogeneous schema relationships using

SchemaAgent.

18

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://www.altova.com/products/schemaagent/xml_schema_management.html
http://www.altova.com/products/schemaagent/xml_schema_management.html


Using the drag-and-drop functionality in SchemaAgent, I've imported

the XSD that defines the XHTML 1.0 vocabulary, the XML markup

language that underlies virtually all WWW document creation today

(see the XHTML Standard, 2002). This import renders all of the globally-

scoped XHTML components available for use in our user-defined

Resource specification. A cursory examination of the figure reveals

the key relationships involved in the development and management

of these resources and some of the globally available elements (e.g.,

the html root, the img element, etc.) now available for reuse.

19

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 9. The Altova SchemaAgent view of our Resource data entry
schema showing the inclusion of our pre-existing Resource schema
and the importation of the W3C defined XHTML XML language

http://www.altova.com/products/schemaagent/xml_schema_management.html


This example highlights the power of XSD for enabling resource

reuse and information asset management. With its document-centric

approach to resource integration and management, XSD provides an

optimal tailor-made system for defining and scoping components for

reuse and integration. Embracing XSD for model specification provides

a platform agnostic, universally adopted system for creating model

components that can be readily integrated and managed throughout

systems of any degree of complexity.

3.3.1 Creating the User Interface 

Armed with our data format, we're now ready to create the user

interface (UI). We'll use Altova StyleVision to create a stylesheet that

can be used to create an electronic form in Authentic, Altova's freeform

data entry/editor application (a free tool). StyleVision uses an XSD-

defined data model along with a sample XML instance document to

enable developers to rapidly and easily create electronic forms, which,

in turn, enable end users to view and edit subsequent XML instances

without being exposed to the underlying XML technology. Figure 10

shows the design of a user interface based on the Resource data

entry model of our example.

20

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://www.altova.com/products/stylevision/xslt_stylesheet_designer.html


The model structure is visible as a tree in the Schema Sources helper

window to the left of the graphical user interface (GUI), while the main

display area shows the electronic form design achieved by dragging

and dropping elements from the data model onto the page.

21

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 10. The Resource data entry page design



Figure 11 shows XML content being edited in the Authentic electronic

form.

22

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 11. The Resource data entry electronic form in action



Once the Resource data has been entered into the Authentic electronic

form, it is automatically formatted into an XML instance document

according to its associated Resource data entry model. We now have

a sample listing of the XML autogenerated from the data entered in the

Authentic electronic form.

---------------------------------------
<ResourceList ...>

<ResourceEntryRoot id="BLANK">
<Title>3D Application Development 

with J2ME</Title>
<URL>

http://www.mobilizedsoftware.com/
</URL>
<Description>

Article describing the 
framework for 3D application 
development using J2ME.

</Description>
<Author id="BLANK">

<FirstName>Aaron</FirstName>
<LastName>Walsh</LastName>
<Middle>A.</Middle>

</Author>
<Author id="BLANK">

<FirstName>Harold</FirstName>
<LastName>Nagel</LastName>
<Middle>N.</Middle>

</Author>
</ResourceEntryRoot>
<ResourceEntryRoot id="">

<Title>Cheeses of the World</Title>
---------------------------------------

This example shows a sample of the XML data autogenerated during

a test run of the Resource data entry page.

23

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 12. An XML fragment from a sample Resource instance

http://www.mobilizedsoftware.com


3.3.2 Mapping XML to RDBMS 

Up to this point we've gotten quite a bit of mileage out of our XSD data

model. We've generated a database schema from the model, and also

used it to create a user interface to facilitate data entry. All that remains

in generating an end-to-end solution is to map the XML output from

our entry page to the database. We can easily accomplish this using

Altova MapForce. MapForce provides a two-dimensional visual interface

that, among other things, permits the use of XSD-specified models to

quickly and intuitively create solutions enabling the mapping and/or

migration of data from any number of different source objects to any

number of targets. Figure 13 illustrates the mapping between our

Resource XML and the database we created earlier.

In this example we have mapped the data entry fields from the hier-

archical XML onto the relational tables defined by our aggregate

schema. In order to preserve the relationships implicit in the hierarchical

structure of the XML, we map the id fields from Resource instances

and their corresponding Authors onto the references defined on the

Resource_Author join table. Notice that not just one but two connections

to the database appear in the mapping. This is because I've altered

the database to use autogenerated primary keys for all table entities.

Consequently, in order to map the Author primary key field onto the

24

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 13. Mapping the Resource XML to the database

http://www.altova.com/products/mapforce/data_mapping.html


join table as a foreign key, we need to retrieve the value from the

database after it's been generated. We can do this by including a

second connection to the database as a data source in our mapping.

This completes the mapping from the XML obtained from the entry

page to the RDBMS on the back-end. In walking through this example,

we've seen how the XSD data model provides necessary and sufficient

information to achieve a considerable degree of autogenerated code

on multiple tiers of a distributed system, which both cuts development

time and allows non-technical users access to points within the work-

flow.

4. Charting the Model with UML 

The preceding examples have shown the power of leveraging XSD as

a data modeling language, and how visual development systems such

as that available in Altova XMLSpy, MapForce, and StyleVision can

dramatically facilitate the formal specification of entities comprising

virtually any domain. That said, project requirements may demand

additional clarification and/or documentation. The good news is that

your XSD model is fully compatible with – and in fact complements

– a Unified Modeling Language (UML) analysis.

To illustrate, let's look at another view of our current example using

Altova UModel, a graphical tool that facilitates and enhances the

architectural analysis of complex information processing systems.

Using UModel, we can easily obtain multiple diagrams of our XSD-

defined data model simply by importing the schema documents.

Figure 14 shows a UML diagram rendered from our Resource Data

Entry structure.

25

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://www.altova.com/products/mapforce/data_mapping.html
http://www.altova.com/products/xmlspy/xml_editor.html
http://www.altova.com/products/stylevision/xslt_stylesheet_designer.html
http://www.altova.com/products/umodel/uml_tool.html


This UML diagram highlights the composite nature of the schema.

Here we see that the ResourceList element contains an anonymous

type definition (it is defined as an XSD complexType), which, in turn,

comprises a sequence of one-to-many ResourceEntryRoot elements.

The ResourceEntryRoot itself is a composite the structure of which

is revealed in the ResourceEntryRoot diagram (Figure 15).

26

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 14. A UML diagram of the Resource Data Entry structure



These UML diagrams highlight relationships that might not be imme-

diately obvious from cursory analysis of the XSD. For example, here

we see that the ResourceEntryRoot is also an anonymous type. Beyond

that, the UML diagram goes on to show that the ResourceEntryRoot

type definition is also an extension of the global ResourceType

(Recall that we noted this object oriented relationship earlier when

we derived the type). The extension (an added sequence of one-to-

many Authors) is also readily apparent in the UML representation.

27

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Figure 15. The ResourceEntryRoot structure as shown in a UML
diagram



5. Conclusion 

Having walked through these exercises in data modeling and applica-

tion development using XSD, we've examined the potential role that

this system might play in guiding and facilitating complex information

processing system development. The approach illustrated here may

be regarded as a “top-down” or “design-first” approach to distributed

application development wherein we specify our model components

using XSD and use the model to drive development across the various

tiers of a distributed application.

The examples we've seen here serve to reveal and highlight the many

benefits associated with this approach to development and implied

separation of concerns. In particular we've seen that an XSD-centric

approach to data modeling fully supports data-centric application

development, object oriented modeling, and object-relational mapping.

Most importantly, XSD does all this in a completely platform agnostic

manner. In addition to these benefits, we've seen that XSD provides an

excellent system for information asset management. With document-

focused development and the judicious application of well-established

development patterns, XSD meets all the requirements necessary for

cataloguing and managing an organization's information resources.

This, coupled with the industry-wide adoption and support XSD has

gained in the years since its inception, enable virtually universal inter-

operability. The list of benefits goes on, but, at this point it should be

easy to see that an initial investment in an XSD-centric approach to

development can have huge payoffs in the end.

It should be apparent from this discussion that far from being static

and cascade-like, XSD development is highly dynamic and amenable

to changing and evolving requirements. While modularity cannot be

guaranteed by any system of development per se, we've seen that

many of the features built in to XSD foster modular component develop-

ment. Furthermore, the XSD-centric approach illustrated here renders it

far easier to propagate changes throughout a system should conditions

dictate that the model must change, than an approach lacking a formal

model specification.

28

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.



The approach to development illustrated here is consistent with a

paradigm shift that has emerged in enterprise application development

in recent years: that of operating on XML-defined data models with

business logic encapsulated in modular, object oriented processing

components. We've seen this in the evolution of the J2EE specification

(see the EJB 3.0 specification, 2006) where model components are

defined as “entity beans”, the properties of which are specified in XML

deployment descriptors (enabling the auto generation of the model

logic at deploy time) and in the emergence of the Service Oriented

Architecture (SOA) where XSD is used explicitly to specify data struc-

tures suitable for exchange among processing components defined

using course-grained APIs (see the Web Services Interoperability

Basic Profile, 2004). The .NET architecture is completely retooled for

an XML-centric approach to development along these lines. In the

future, the role of the XSD-specified data model will only become

more critical as XML-based data-processing specifications such as

XPath 2.0 and XQuery achieve widespread adoption. Though we've

really just barely scratched the surface here in terms of the potential

for XSD development, from this vantage point, it appears that this

technology stands poised to drive development efforts for years to

come.

29

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

Please note: the Altova tools mentioned in this whitepaper

are all available individually or as part of the Altova MissionKit

product bundle. Free 30-day trials of all products mentioned in

this paper are available for download from the Altova Web site:

www.altova.com/download

http://www.altova.com/download


References 

1. Booch, Grady; Rumbaugh, James; and Jacobson, Ivar.

The Unified Modeling Language User Guide.

Addison Wesley Professional, 2005.

2. Sun Microsystems. The Java Language Specification.

http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.9

1996-2005 (Last visited 2007).

3. Sun Microsystems. The EJB 3.0 Specification (JSR-000220).

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

2006.

4. Web Services Interoperability Organization. Basic Profile Version 1.0.

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html 2004

(Last visited 2007).

5. World Wide Web Consortium.The XSD Specification.

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

2004 (Last visited 2007).

6. World Wide Web Consortium. The XHTML Standard.

http://www.w3.org/TR/xhtml1/

2002 (Last visited 2007).

7. Altova, XML, data management, UML, and Web services tools:

http://www.altova.com

The information contained in this document represents the current view of Altova with respect to the subject
matter herein contained as of the date of the publication. Altova makes no commitment to keep the information
contained herein up to date and the information contained in this document is subject to change without notice.
As Altova GMBH must respond to the changing market conditions, Altova GMBH cannot guarantee the accu-
racy of any information presented after the date of publication. The document is presented for informational
purposes only.

ALTOVA PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OF IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Altova®, XMLSpy®, MapForce®, StyleVision®, UModel®, DatabaseSpy™, DiffDog®, SchemaAgent®, SemanticWorks®,
ACXE, AltovaXML™, and Authentic® are trademarks and/or registered trademarks of Altova GmbH in the United
States of America, the European Union, and numerous other countries. Other brands may be trademarks or
registered trademarks of others.

30

Altova® WhitePaper

© Copyright 2007 Altova® GmbH. All rights reserved.

http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.9
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/TR/xhtml1
http://www.altova.com

