

© InfoTrends/CAP Ventures, October 22, 2004 www.capv.com

Dynamic Content Software Strategies Consulting
Service
October 22, 2004

A Focus on XSLT 2.0: Understanding the
Development and Business Benefits

Introduction

There is little doubt that XML (Extensible Markup Language) usage is
prevalent throughout a myriad of data and document-driven business
processes. Everything from sales reporting and purchasing applications to
content management and inventory controls systems are now often based
on XML. As XML usage continues to expand, the importance of the World
Wide Web Consortium's (W3C) entire family of XML standards will become
more and more evident.

The evolution of XSLT (Extensible Stylesheet Language Transformations) in
particular demonstrates the tangible benefits of the corporate investment in
XML. Specifically, these benefits include developer productivity, data
reusability and interoperability, and application versatility. As a component of
XSL (Extensible Stylesheet Language), XSLT provides developers and
applications with the ability to transform XML into other formats such as
HTML, xHTML, and other XML vocabularies.

XSLT is a critical piece of the original premise of XML: to separate content
from structure and presentation to provide data independence, flexibility, and
interoperability. Together with XSL-FO (Extensible Stylesheet Language
Formatting Objects) and XPath (XML Path Language), XSLT provides a
powerful trio of languages that enable the transformation, navigation, and
presentation of XML content.

Figure 1: The Components of XSL

XSL

Presentation
XSL-FO

Transformation
XSLT

Navigation
XPath

Extensible Stylesheet
 Language

Headquarters
97 Libbey Industrial Parkway
Suite 300
Weymouth, MA 02189
Phone: 781-616-2100
Fax: 781-616-2121
Email: info@capv.com
www.capv.com

Europe
3rd Floor, Sceptre House
7-9 Castle Street
Luton, Bedfordshire,
United Kingdom LU1 3AJ
Phone: +44 1582 400120
Fax: +44 1582 411001
Email: euro.info@capv.com

Japan
Hiroo Office Building
1-3-18 Hiroo Shibuya-ku
Tokyo 150-0012 Japan
Phone: +81 3 5475 2663
Fax: +81 3 5475 2710
E-mail: yoshida@gsm.to
www.gsm.to

This Material is prepared specifically
for clients of InfoTrends/CAP
Ventures. The opinions expressed
represent our interpretation and
analysis of information generally
available to the public or released by
responsible individuals in the subject
companies. We believe that the
sources of information on which our
material is based are reliable and we
have applied our best professional
judgment to the data obtained.

Analysis Dynamic Content Software Strategies Consulting Service

Page 2 www.capv.com © InfoTrends/CAP Ventures, October 22, 2004

This analysis discusses the power of XML transformation and navigation as it relates to benefits for
developers and corporations. As such, it focuses on the most recent additions to XSLT as outlined in the
W3C's XSLT 2.0 working draft (http://www.w3.org/TR/xslt20/) and the relationship of XSLT 2.0 with its sub-
language, XPath 2.0 (http://www.w3.org/TR/xpath20/). As inter-dependent transformation and navigation
languages, XSLT 2.0 and XPath 2.0 are the key components of functional programming for XML content.

XSLT 2.0 Fundamentals

XSLT is a tag-based scripting language that is designed specifically for XML-based transformations. An
XSLT transformation describes the rules for transforming one or more instances of XML content into
another format, or as described by the W3C, "the rules for transforming one or more source trees into one
or more result trees." Created as an XSL stylesheet using XML syntax, the instructions define how an
XSLT processor should read incoming XML content to output the desired results.

XSLT is inherently a declarative programming language. XSLT 2.0 does not change this foundation, nor
does it attempt to make XSLT a general-purpose programming language. What it does bring to the table
is the ability to use XSLT as a fully functional programming language via the application of higher-order
functions such as string and number manipulation, strong data typing, and XPath 2.0 expressions. This is
a pivotal evolution from its 1.0 predecessor, enabling developers to substantially reduce code complexity
and streamline development while simultaneously increasing the capabilities of XML transformations.

XSLT 2.0 delivers a quantum increase in functionality through its intrinsic relationship with the W3C's
XML Schema specification as well as the power of the XPath 2.0 sub-language. For example, full
compatibility with XML Schema brings validation processing to XSLT 2.0 transformations, enabled
through XSLT processors. Validation processes can apply to temporary and result trees during real-time
processing as well as testing and debugging stages. XML Schema-awareness is an optional feature of
the specification, enabling developers to take advantage of this capability when appropriate to the
application.

XPath 2.0 is used by XSLT 2.0 to locate and process content within an XML document’s logical hierarchy.
The W3C’s XSL and XQuery Working Groups jointly created XPath 2.0. It is important to understand that
XQuery 1.0 is an extension of XPath 2.0, and the specifications are generated from a common source.
Although XPath 2.0 is related to XSLT 2.0 and XQuery 1.0, XSLT is optimized for transforming and
formatting XML content, while XQuery 1.0 is designed for extracting information from XML documents
and databases.

XQuery’s market adoption depends upon an investment from commercial database vendors, which is not
yet complete. Oracle and IBM, for example, have announced intentions to support XQuery in their
respective database products, but currently do not have production-ready implementations. Many other
vendors are in the early stages of discussing XQuery as a replacement for or adjunct to established query
languages, such as SQL.

XSLT 2.0 utilizes the powerful functionality of XPath 2.0 without requiring support from back-end
technologies. In addition, the XSLT 2.0 Working Draft has remained fairly stable since late 2003,
indicating that it has reached maturity and most likely will not change appreciably before becoming a final
W3C recommendation. Hence, it can be put into practice today. The ability to locate and process content
within an XML document is an essential component in designing and implementing XML-driven
transformations. Together, XSLT 2.0 and XPath 2.0 are a fundamental part of the W3C vision for data
independence, flexibility, and interoperability.

Understanding the Impact of XSLT 2.0

Due to the proliferation of XML data, documents, and vocabularies, the use of XSLT 1.0 is already
widespread within XML-driven business processes such as electronic data exchange, transaction
management, document and content management, and publishing. As developers tested the power of
XSLT 1.0, however, they reported a number of shortfalls as well as capabilities that were tedious and
unproductive as a result. Complaints about string handling, processing groups of related elements, and

Dynamic Content Software Strategies Consulting Service Analysis

© InfoTrends/CAP Ventures, October 22, 2004 www.capv.com Page 3

single input and output documents were continuous in Web forums such as XSL-List, which is managed
by Mulberry Technologies (http://www.mulberrytech.com/xsl/xsl-list/index.html).

Consequently, the development of XSLT 2.0 focused on known 1.0 shortcomings and on increasing the
power of its XPath sub-language. As a result, the goals for XSLT 2.0 and XPath 2.0 were equivalent in a
number of ways. Both languages would implement interoperability with related XML specifications such
as XML Schema. Both languages would place identical emphasis on ease of use, internationalization,
and backward compatibility. The 2.0 versions of both languages are expected to become W3C
Recommendations by early 2005. Since they are both stable Last Call Working Drafts, however, vendors
have announced 2.0-level support and developers have begun working with the specifications in earnest.

XSLT 2.0 and XPath 2.0 provide developers and corporations with a number of tangible benefits, ranging
from improved productivity and quality during development to enhanced versatility upon implementation.
The following subsections describe these business benefits.

Productivity and Quality
Achieving productivity in programming environments often focuses on writing fewer lines of code. When
complex coding can be reduced substantially through the use of higher order functions to replace custom
workarounds, the timesaving advantages can affect an entire application development lifecycle. The
productivity that is realized during development also has substantial benefits for internal processes such
as code re-use (i.e. designing common use cases) and new hire training (i.e. producing maintainable
code that is concise and easily understood).

Achieving productivity in terms of development speed is obviously commendable, but certainly does not
guarantee quality. Quality code is often characterized by its modularity, portability, maintainability, ability
to support high-performance applications, and perhaps most importantly, its ability to produce few errors
during testing and debugging.

XSLT 2.0 brings significant benefits for those striving toward productivity and quality. For example, XSLT
2.0 provides a therapeutic solution for those who have written complex coding workarounds for grouping
(i.e. the "Muenchian method") or string and number manipulation. 2.0 extensions such as <xsl:for-each-
group>, <xsl:group-by>, and <xsl:group-adjacent> work hand in hand with functions such as current-
group() and current-grouping-key() that are accessible from within XPath 2.0 expressions.

XSLT 2.0's support for strong data typing is another example of its ability to increase developer
productivity and code quality. Historically, the advantages and disadvantages of strong data typing have
been heatedly discussed in forums dedicated to best practices in development environments. Some extol
its virtues, while others are concerned with the performance impact of strictly enforcing type rules.

In the case of XSLT 2.0, strong data typing support can increase the stability of transformations focused
on electronic data exchange and remove the need to develop error-checking code. By reducing the
number of bugs in these transformations, strong data typing support should also increase the quality and
reliability of the exchange. It is worth noting, however, that one should choose an XSLT processor with
care, as the power and design of the processor drives the level of performance associated with electronic
data exchange.

XSLT 2.0's productivity and quality benefits also include:

• The ability to remove and avoid proprietary vendor extensions that addressed 1.0 shortcomings.

• Backward-compatibility with XSLT 1.0.

• String and number manipulation with XPath functions such as compare(), replace(), string-join(),
tokenize (), and translate().

• Regular expression support, bringing familiar programming constructs to XSLT development as well as
providing more powerful validity-checking opportunities.

Analysis Dynamic Content Software Strategies Consulting Service

Page 4 www.capv.com © InfoTrends/CAP Ventures, October 22, 2004

Reusability
Reusability is often described as the Holy Grail for data and document-driven applications. In fact, the
ability to implement and efficiently use a single-sourcing strategy is perhaps one of the best indicators of
a high-performance workgroup. XSLT 2.0's support for user-defined functions is a strong example of
reusability opportunities.

The ability of <xsl:function> to receive parameters, return values, and be called from XPath expressions
makes this support even more powerful. The impact spans data and document-driven transformations by
enabling the use of practices such as common code libraries and single-sourcing content strategies that
isolate repeatable content such as company logos, header and footer information, and disclaimer text.
XSLT processors that are compliant with 2.0 should alleviate a dependence on vendor-driven extensions
by supporting user-driven functions that are portable across multiple products.

XSLT 2.0 support for the concept of transclusion is another example of its reusability advantages. The
ability to dynamically include data from another source through functions such as doc() is bolstered by
the 2.0 support for XML data as well as unparsed text. XSLT 2.0 also enables data extracts to be stored
in variables and parameters, allowing for the reuse of the extract as needed. Efficient use of this feature
can support single-source strategies for data and document applications.

XSLT 2.0's reusability benefits also include:

• Support for multiple output processing from a single XSLT transformation, enabling the production of
multiple instances of XML, HTML, xHTML, or text outputs. This is a huge advantage over the one
output per process capabilities of XSLT 1.0.

• Support for grouping, allowing the collection and manipulation of related data.

• Support for aggregation, allowing mathematical functions such as sum(), avg(), and count() to be
applied to grouped data. The combination of grouping and aggregation support is extremely beneficial
for applications such as report generation and table generation for structured documents.

Interoperability and Compatibility
As described in the section on productivity and quality, the advantages of strong data typing can be
profound. This capability is directly related to XSLT 2.0's support for XML Schema, which exposes 44
data types to the XSLT 2.0 development environment. Beyond productivity, however, lie the advantages
of interoperability available to XML-driven electronic data exchange projects as a direct result of XSLT
2.0's support for XML Schema. In fact, InfoTrends/CAP Ventures believes that XSLT will play a larger role
in enterprise application integration strategies due to the applicability of 2.0 extensions, the processing
power of XPath expressions, and XML Schema interoperability.

A prime example of increasing XML Schema usage comes from the financial services and accounting
industries. XBRL (Extensible Business Reporting Language), an open standard for the electronic
communication of business and financial data, is becoming the model for electronic data exchange and
reporting in these industries.

XBRL has had a global impact. In fact, the European Commission mandates the use of XBRL for
corporate tax reporting beginning in 2006. It has also invested 1 million EURO in efforts to promote
awareness of XBRL and speed adoption (http://xbrl.edgar-online.com/x/newsletter/091504.asp). The U.S. SEC
(Securities Exchange Commission) is evaluating XBRL in calendar year 2004 for voluntary supplemental
reporting (http://www.sec.gov/news/press/2004-97.htm).

The use of XML Schema vocabularies like XBRL is increasing across a wide range of vertical industries.
Examples include MODA-ML from the manufacturing industry, MathML from the scientific community, and
ACORD XML from the insurance industry. Consequently, the interoperability benefits of XSLT 2.0 and
XPath 2.0 have the potential to encourage and enable the use of vocabularies across industries as well
as within them. A feasible example would be the availability of industry-specific stylesheets for rendering
and transformation that developers reuse "as is" or assemble into larger processing tasks according to
business process requirements.

Dynamic Content Software Strategies Consulting Service Analysis

© InfoTrends/CAP Ventures, October 22, 2004 www.capv.com Page 5

XSLT 2.0's interoperability benefits also include:

• Support for multiple input processing, including non-XML formats such as HTML, xHTML, and
delimited files.

• Improved internationalization support, including support for string sorting and comparison. The use of
XPath 2.0 expressions also enables localized formatting of numbers and dates.

Versatility
As discussed previously, XSLT 2.0's introduction of user-defined functions can have a profound effect on
reusability. This feature also demonstrates XSLT 2.0's versatility. Another indicator of versatility is the
introduction of "temporary trees," which are already garnering a positive response from developers.

This concept replaces XSLT 1.0's use of result tree fragments, whose benefits were often contested. For
example, information contained within XSLT 1.0 variables could not be fully accessed or utilized with
XPath expressions in every case, severely limiting any manipulation of variable data. According to Jeni
Tennison, an invited expert in the W3C XSL Working Group, the ability to create a temporary tree that is
available for further processing is useful to:

• Break up a complex transformation into several steps, usually by filtering, sorting, or annotating nodes
during an initial pass so that the latter transformation is easier to complete.

• Create lookup tables to translate from codes or numbers to labels or vice versa, as you would create
an array or matrix in another programming language.

• Iteratively process a document until a certain constraint is true.

XSLT 2.0's versatility is also demonstrated by:

• Independent processing capabilities, removing the need for back-end database support.

• Support for conditional processing, enabled by strong data typing, regular expressions, and filtering
support.

• Support for complex text and data manipulation, enabled by XPath functions such as tokenize() and
XPath 2.0’s support for FOR loops and IF statements.

InfoTrends/CAP Ventures Perspective

InfoTrends/CAP Ventures believes that the 2.0 versions of XSLT and XPath will increase developer and
corporate usage due to their unified efforts to balance the requirements of structured data and document
environments.

For example, XSLT introduces support for strong data typing, string and number manipulation, and XML
Schema validation. These capabilities should increase the power and reliability of data-centric business
processes such as electronic data exchange and application integration. In addition, XSLT 2.0 introduces
support for multiple output and input processing, grouping, and improved internationalization functionality.
These capabilities should increase the versatility and interoperability of document-centric business
processes such as multi-channel publishing, compound document assembly, and reporting.

Equally important is XSLT and XPath 2.0's focus on improving well-known 1.0 deficiencies, some of
which were overcome through customizations in commercial XSLT processors. The effect of
customization, however, was often a subservience to a specific vendor’s processor, regardless of the
availability of competing products. Therefore, XSLT 1.0 developers experienced frustration in being
unable to re-use transformations across multiple XSLT processors. InfoTrends/CAP Ventures believes
that the 2.0 versions of XSLT and XPath may "level the playing field" by removing the incentive for

Analysis Dynamic Content Software Strategies Consulting Service

Page 6 www.capv.com © InfoTrends/CAP Ventures, October 22, 2004

incompatible functionality differences, causing market differentiation to focus more on performance,
portability, and interoperability.

MarketWatch: Altova XML Suite Version 2005

With 1.5 million users, Altova is a preeminent player in the XML development space. A long-standing
member of the W3C, Altova has deep roots in serving the requirements of XML developers and has been
internationally recognized for award-winning software (most notably its XSLT processor). The company's
product portfolio addresses the full spectrum of developers’ needs.

The products within version 2005 of the Altova XML Suite cover every aspect of XSLT 2.0 and XPath 2.0
work, including editing and debugging/testing in Altova XMLSpy 2005, visual stylesheet design in Altova
StyleVision 2005, and data mapping in Altova MapForce 2005. According to Altova executives, the
company is demonstrating its leadership as the first to announce a native, production-quality
implementation of XSLT 2.0 and XPath 2.0 throughout its entire product line.

The company's portfolio includes four products that enable rapid developer productivity:

• XMLSpy 2005: XML development environment for modeling, editing, debugging, and transforming
XML-related technologies such as XML Schema, XSLT, XQuery, and Web services. Generates
runtime code in multiple programming languages, including Java, C#, and C++.

• MapForce 2005: Graphical data mapping tool that can map any combination of XML, database, flat
file, and EDI to XML, databases and/or flat files for data integration projects. Automatically generates
transformations and programming code in multiple output languages including XSLT 1.0/2.0, XQuery,
Java, C++, and C#.

• StyleVision 2005: Visual design interface for creating electronic forms, database reports, and
stylesheets for transforming XML and database data into multiple output formats. Simultaneously
produces XSLT 1.0/2.0 and XSL:FO stylesheets, as well as output in HTML, PDF, Word/RTF, and
Authentic Forms, a business format for Web-based data entry.

• Authentic 2005: A free content editor for business users to input data directly into XML documents
and databases. Provides templates for industry standard XML vocabularies such as DocBook, News
Industry Text Format (NITF), and News Markup Language (NewsML). It is well suited for use as the
data entry element of advanced XML-based document frameworks and business management-
oriented database.

