
User and Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any means
- graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered
trademarks of the respective owners. The publisher and the author make no claim to
these trademarks.

While every precaution has been taken in the preparation of this document, the publisher
and the author assume no responsibility for errors or omissions, or for damages resulting
from the use of information contained in this document or from the use of programs and
source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Published: 2007

© 2007 Altova GmbH

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are
either registered trademarks or trademarks of Object Management Group, Inc. in the
United States and/or other countries.

Altova UModel 2007 User & Reference Manual

1Altova UModel 2007

Table of Contents

1 UModel 3

2 Introducing UModel 6

3 UModel tutorial 8

... 93.1 Starting UModel

... 123.2 Use cases

... 193.3 Class Diagrams

... 253.3.1 Creating derived classes

... 303.4 Object Diagrams

... 353.5 Component Diagrams

... 403.6 Deployment Diagrams

... 443.7 Round-trip engineering (model - code - model)

... 503.8 Round-trip engineering (code - model - code)

4 UModel User Interface 58

... 594.1 Model Tree pane

... 634.1.1 Diagram Tree tab

... 654.1.2 Favorites tab

... 664.2 Properties pane

... 694.3 Hierarchy tab

... 724.4 Overview pane

... 734.5 Messages window

... 744.6 Diagram pane

... 774.6.1 Cut, copy and paste in UModel Diagrams

... 804.7 Adding/Inserting model elements

... 824.8 Hyperlinking modeling elements

... 864.9 UModel Command line interface

... 894.10 Bank samples

Altova UModel 20072

5 Projects and code engineering 92

... 945.1 Importing source code into projects

... 985.2 Importing C# and Java binaries

... 1035.3 Synchronizing Model and source code

... 1055.4 Forward engineering prerequisites

... 1075.5 Java code to/from UModel elements

... 1125.6 C# code to/from UModel elements

... 1255.7 XML Schema to/from UModel elements

... 1345.8 Including other UModel projects

... 1365.9 Sharing Packages and Diagrams

... 1395.10 UML templates

... 1415.10.1 Template signatures

... 1425.10.2 Template binding

... 1435.10.3 Template usage in operations and properties

... 1445.11 Project Settings

... 1455.12 Enhancing performance

6 Creating model relationships 148

... 1506.1 Associations, realizations and dependencies

... 1526.2 Showing model relationships

7 Profiles and stereotypes 154

... 1567.1 Adding Stereotypes and defining tagged values

8 Generating UML documentation 162

9 UML Diagrams 168

... 1699.1 Behavioral Diagrams

... 1709.1.1 Activity Diagram

... 171Inserting Activity Diagram elements

... 173Creating branches and merges

... 175Diagram elements

... 1849.1.2 State Machine Diagram

... 184Inserting state machine diagram elements

3Altova UModel 2007

... 185Creating states, activities and transitions

... 189Composite states

... 192Diagram elements

... 1949.1.3 Use Case Diagram

... 1959.1.4 Communication Diagram

... 195Inserting Communication Diagam elements

... 1989.1.5 Interaction Overview Diagram

... 198Inserting Interaction Overview elements

... 2039.1.6 Sequence Diagram

... 203Inserting sequence diagram elements
... 204Lifeline
... 205Combined Fragment
... 208Interaction Use
... 209Gate
... 210State Invariant
... 210Messages

... 2149.1.7 Timing Diagram

... 214Inserting Timing Diagram elements

... 215Lifeline

... 217Tick Mark

... 218Event/Stimulus

... 218DurationConstraint

... 219TimeConstraint

... 219Message

... 2219.2 Structural Diagrams

... 2229.2.1 Class Diagram

... 2329.2.2 Composite Structure Diagram

... 232Inserting Composite Structure Diagram elements

... 2349.2.3 Component Diagram

... 2359.2.4 Deployment Diagram

... 2369.2.5 Object Diagram

... 2379.2.6 Package Diagram

... 238Inserting Package Diagram elements

... 2409.3 Additional Diagrams

... 2419.3.1 XML Schema Diagrams

... 242Importing an XML Schema

... 246Inserting XML Schema elements

... 250Creating and generating an XML Schema

10 XMI - XML Metadata Interchange 254

Altova UModel 20074

11 UModel Diagram icons 258

... 25911.1 Activity Diagram

... 26011.2 Class Diagram

... 26111.3 Communication diagram

... 26211.4 Composite Structure Diagram

... 26311.5 Component Diagram

... 26411.6 Deployment Diagram

... 26511.7 Interaction Overview diagram

... 26611.8 Object Diagram

... 26711.9 Package diagram

... 26811.10 Sequence Diagram

... 26911.11 State Machine Diagram

... 27011.12 Timing Diagram

... 27111.13 Use Case diagram

... 27211.14 XML Schema diagram

12 UModel Reference 274

... 27512.1 File

... 27712.2 Edit

... 27912.3 Project

... 28712.4 Layout

... 28812.5 View

... 28912.6 Tools

... 29012.6.1 Customize...

... 290Commands

... 290Toolbars

... 291Tools

... 291Keyboard

... 292Menu

... 293Options

... 29412.6.2 Options

... 29812.7 Window

... 29912.8 Help

13 Code Generator 302

5Altova UModel 2007

... 30313.1 The way to SPL (Spy Programming Language)

... 30413.1.1 Basic SPL structure

... 30513.1.2 Variables

... 31013.1.3 Operators

... 31113.1.4 Conditions

... 31213.1.5 foreach

... 31313.1.6 Subroutines

... 313Subroutine declaration

... 314Subroutine invocation

... 31513.2 Error Codes

14 Appendices 318

... 31914.1 License Information

... 32014.1.1 Electronic Software Distribution

... 32114.1.2 License Metering

... 32214.1.3 Copyright

... 32314.1.4 Altova End User License Agreement

Index

Chapter 1

UModel

© 2007 Altova GmbH

 3UModel

Altova UModel 2007

1 UModel

UModel™ 2007 is an affordable UML modeling application with a rich visual interface and
superior usability features to help level the UML learning curve, and includes many high-end
functions to empower users with the most practical aspects of the UML 2.1.1 specification.

UModel™ 2007 supports:

 all 13 UML 2.1.1 modeling diagrams
 XML Schema diagrams
 import of Java and C# binaries
 hyperlinking of diagrams and modeling elements
 context sensitive entry helpers
 syntax coloring in diagrams
 cascading styles
 customizable design elements
 unlimited Undo and Redo
 sophisticated Java and C# code generation from models
 reverse engineering of existing Java, C# source code
 complete round-trip processing allowing code and model merging
 XMI version 2.1 for UML 2.0 & 2.1 - model import and export
 generation of UModel project documentation

These capabilities allow developers, including those new to software modeling, to quickly
leverage UML to enhance productivity and maximize their results.

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are either
registered trademarks or trademarks of Object Management Group, Inc. in the United States
and/or other countries.

Chapter 2

Introducing UModel

6 Introducing UModel

© 2007 Altova GmbHAltova UModel 2007

2 Introducing UModel

The UML is a complete modeling language but does not discuss, or prescribe, the methodology
for the development, code generation and round-trip engineering processes. UModel has
therefore been designed to allow complete flexibility during the modeling process:

 UModel diagrams can be created in any order, and at any time; there is no need to
follow a prescribed sequence during modeling.

 Code, or model merging can be achieved at the project, package, or even class level.
UModel does not require that pseudo-code, or comments in the generated code be
present, in order to accomplish round-trip engineering.

 Code generation is customizable: the code-generation in UModel is based on SPL
templates and is, therefore, completely customizable. Customizations are automatically
recognized during code generation.

 Code generation and reverse-engineering currently support Java versions 1.4.x and
5.0, as well as C# versions 1.2 and 2.0. A single project can support both Java and C#
code simultaneously.

 Support for UML templates and generics.

 XML Metadata Interchange (XMI version 2.1) for UML 2.0 or 2.1.1.

 When adding properties, or operations UModel provides in-place entry helpers to
choose types, protection levels, and all other manner of properties that are also
available in industrial-strength IDEs such as XMLSpy, Visual Studio .Net or Eclipse.

 Syntax-coloring in diagrams makes UML diagrams more attractive and intuitive.

 Modeling elements and their properties (font, colors, borders etc.) are completely
customizable in an hierarchical fashion at the project, node/line, element family and
element level.

 Customizable actors can be defined in use-case diagrams to depict terminals, or any
other symbols.

 Modeling elements can be searched for by name in the Model diagram tab, Model Tree
pane, Messages and Documentation windows.

 Class, or object associations, dependencies, generalizations etc. can be
found/highlighted in model diagrams through the context menu.

 The unlimited levels of Undo/Redo track not only content changes, but also all style
changes made to any model element.

Please note:
This document does not attempt to describe, or explain, the Unified Modeling Language
(UML); it describes how to use the UModel modeling application, to model code and
achieve round-trip engineering results.

Chapter 3

UModel tutorial

8 UModel tutorial

© 2007 Altova GmbHAltova UModel 2007

3 UModel tutorial

This tutorial describes, and follows, the general sequence used when creating a modeling
project in UModel.

The major portion of the tutorial deals with the forward-engineering process, i.e. using UModel
to create UML diagrams and generate code as the precursor to the round-trip engineering
sections that follow. The round-trip engineering sections, describe the process from both code
and model vantage points.

The tutorial describes the following UML diagrams, and how to manipulate the various modeling
elements within them. The following diagrams and follow-on tasks are discussed:

Forward engineering process:
 Use cases
 Class diagrams
 Object diagrams
 Component diagrams
 Deployment diagrams

Round-trip process (model - code - model)
 Code generation from UModel
 Add a new operation to the external code
 Merge the external code back into UModel.

Round-trip process (code - model - code)
 Import code produced by XMLSpy from a directory (or from a project file)
 Add a new class to the generated model in UModel
 Merge the updated project with the external code.

The examples used in the tutorial are available in the default installation path/folder
c:\Program Files\Altova\UModel2007\UModelExamples\Tutorial\.

BankView-start.ump
is the UModel project file that constitutes the initial state of the tutorial sample. Several
model diagrams as well as classes, objects, and other model elements exist at this
stage. Working through the tutorial adds new packages, model diagrams and many
other elements that will acquaint you with the ease with which you can model
applications using UModel. Please note that the syntax check function reports errors
and warnings on this file, the tutorial shows you how to resolve these issues.

BankView-finish.ump
is the UModel project file that constitutes final state of the tutorial sample, if you have
worked through it step by step. This project file is the one used when generating code
and synchronizing it with UModel.

 The OrgChart.zip file supplied in the folder is used for the round-trip engineering
process. Please unzip it in the ...\UModelExamples folder before starting the section.

Additional example files for both Java and C# programming languages are also available in the
same directory, i.e. Bank_Java.ump, Bank_CSharp.ump and Bank_MultiLanguage.ump.
These project files also contain Sequence diagrams which are described later in this
documentation.

© 2007 Altova GmbH

Starting UModel 9UModel tutorial

Altova UModel 2007

3.1 Starting UModel

Having installed UModel on your computer:

1. Start UModel by double-clicking the UModel icon on your desktop, or use the Start | All
Programs menu to access the UModel program.
UModel is started with a default project "NewProject1" visible in the interface.

Note the major parts of the user interface: the three panes on the left hand side and the
empty diagram pane at right.

Two default packages are visible in the Model Tree tab, "Root" and "Component View".
These two packages cannot be deleted or renamed in a project.

To open the BankView-start project:
1. Select the menu option File | Open and navigate to the ...\UModelExamples folder of

UModel.
2. Open the BankView-start.ump project file.

The project file is now loaded into UModel. Several predefined packages are now
visible under the Root package.

10 UModel tutorial Starting UModel

© 2007 Altova GmbHAltova UModel 2007

The Model Tree pane supplies you with various views of your modeling project:

 The Model Tree tab contains and displays all modeling elements of your UModel
project. Elements can be directly manipulated in this tab using the standard editing keys
as well as drag and drop.

 The Diagram Tree tab allows you quick access to the modeling diagrams of you project
wherever they may be in the project structure. Diagrams are grouped according to their
diagram type.

 The Favorites tab is a user-definable repository of modeling elements. Any type of
modeling element can be placed in this tab using the "Add to Favorites" command of
the context menu.

The Properties pane supplies you with two views of specific model properties:

 The Properties tab displays the properties of the currently selected element in the
Model Tree pane or in the Diagram tab. Element properties can defined or updated in
this tab.

 The Styles tab displays attributes of diagrams, or elements that are displayed in the
Diagram view. These style attributes fall into two general groups: Formatting and
display settings.

The Overview pane displays two tabs:

© 2007 Altova GmbH

Starting UModel 11UModel tutorial

Altova UModel 2007

 The Overview tab, which displays an outline view of the currently active diagram

 The Documentation tab which allows you to document your classes on a per-class
basis.

Modeling element icon representation in the Model Tree

Package types:

 UML Package

 Java namespace root package

 C# namespace root package

 XML Schema root package

 Java, C#, code package (package declarations are created when code is generated)

Diagram types:

Activity diagram Object diagram

Class diagram Package diagram

Communication diagram Sequence diagram

Component diagram State Machine diagram

Composite Structure diagram Timing diagram

Deployment diagram Use Case diagram

Interaction Overview diagram XML Schema diagram

Element types:

An element that is currently visible in the active diagram is displayed with a blue dot at its base.
In this case a class element.

 Class Instance/Object
 Class instance slot

 Class

 Property

 Operation

 Parameter

 Actor (visible in active use case diagram)

 Use Case

 Component

 Node

 Artifact

 Interface

 Relations (/package)
Constraints

12 UModel tutorial Use cases

© 2007 Altova GmbHAltova UModel 2007

3.2 Use cases

The aim of this tutorial section is to:

 Add a new package to the project
 Add a new Use Case diagram to the project
 Add use case elements to the diagram, and define the dependencies amongst them
 Align and size elements in the diagram tab.

To add a new package to a project:
1. Right click the Root package in the Model Tree tab, and select New | Package.
2. Enter the name of the new package e.g. Use Case View, and press Enter.

Please see Packages for more information on packages and their properties.

Adding a diagram to a package:
1. Right click the previously created Use Case View package.
2. Select New | UseCase Diagram.

A Use Case diagram has now been added to the package in the Model Tree view, and
a diagram tab has been created in the diagram pane. A default name has been

© 2007 Altova GmbH

Use cases 13UModel tutorial

Altova UModel 2007

provided automatically.
3. Double click the supplied name, in the Model Tree tab, change it to "Overview Account

Balance", and press Enter to confirm.

Please see Diagrams for more information on diagrams and their properties.

Adding Use case elements to the Use Case diagram:
1. Right click in the newly created diagram and select New | Actor.

The actor element is inserted at the click position.

2. Click the Use Case icon in the icon bar and click in the diagram tab to insert the
element.
A UseCase1 element is inserted. Note that the element, and its name, are currently
selected, and that its properties are visible in the Properties tab.

3. Change the title to "get account balance", press Enter to confirm. Double click the title if
it is deselected.

Note that the use case is automatically resized to adjust to the text length.

14 UModel tutorial Use cases

© 2007 Altova GmbHAltova UModel 2007

Model elements have various connection handles and other items used to manipulate
it.

Manipulating UModel elements: handles and compartments
1. Double click the Actor1 text, of the Actor element, change the name to "Standard User"

and press Enter to confirm.
2. Place the mouse cursor over the "handle" to the right of the actor.

A tooltip containing "Association" appears.

3. Click the handle, drag the Association line to the right, and drop it on the "get account
balance" use case.

An association has now been created between the actor and the use case. The
association properties are also visible in the Properties tab. The new association has
been added to Model Tree under the Relations item of the Use Case View package.

4. Click the use case and drag it to the right to reposition it.
The association properties are visible on the association object.

5. Click the use case to select it, then click the collapse icon on the left hand edge of the

© 2007 Altova GmbH

Use cases 15UModel tutorial

Altova UModel 2007

use case ellipse.

The extension points compartment is now hidden.

Please note:

A blue dot next to an element icon , in the Model Tree tab, signifies
that the element is visible in the current diagram tab. Resizing the actor adjusts the text
field which can be multi line. A line break can be inserted into the text using
CTRL+Enter.

Finishing up the use case diagram:
Using the methods discussed above:

1. Click the Use Case icon in the icon bar and simultaneously hold down the CTRL
keyboard key.

2. Click at two different vertical positions in the diagram tab to add two more use cases,
then release the CTRL key.

3. Name the first use case "get account balance sum" and the second, "generate monthly
revenue report".

4. Click on the collapse icon of each use case to hide the extensions compartment.

5. Click the actor and use the association handle to create an association between

16 UModel tutorial Use cases

© 2007 Altova GmbHAltova UModel 2007

Standard user and "get account balance sum".

To create an "Include" dependency between use cases (creating a subcase):
1. Click the Include handle of the "get account balance sum" use case, at the bottom of

the ellipse, and drop the dependency on "get account balance".

An "include" dependency is created, and the include stereotype is displayed on the
dotted arrow.

Inserting user-defined actors:
The actor in the "generate monthly revenue report" use case is not a person, but an automated
batch job run by a Bank computer.

1. Insert an actor into the diagram using the Actor icon in the icon bar.
2. Rename the actor to Bank.

3. Move the cursor over to the Properties tab, and click the browse icon next to the
"icon file name" entry.

4. Click the Browse icon to select the user-defined bitmap, Bank-PC.bmp.
5. Deselect the "Absolute Path" check box to make the path relative. Preview displays a

preview of the selected file in the dialog box.

© 2007 Altova GmbH

Use cases 17UModel tutorial

Altova UModel 2007

6. Click OK to confirm the settings and insert the new actor.
7. Move the new Bank actor to the right of the lowest use case.

8. Click the Association icon in the icon bar and drag from the Bank actor to the
"generate monthly revenue report" use case.
This is an alternative method of creating an association.

Please note:
The background color used to make the bitmap transparent has the RGB values
82.82.82.

Aligning and adjusting the size of elements:
1. Create a selection marquee by dragging on the diagram background, making sure that

you encompass all three use cases starting from the top.
Note that the last use case to be marked, is shown in a dashed outline in the diagram,
as well as in the Overview window.

18 UModel tutorial Use cases

© 2007 Altova GmbHAltova UModel 2007

All use cases are selected, with the lowest being the basis for the following
adjustments.

2. Click the Make same size icon in the title bar.

3. Click the Center Horizontally icon to line up all the ovals.
The use case elements are all centered and of the same size.

Please note:
You can also use the CTRL key to select multiple elements.

© 2007 Altova GmbH

Class Diagrams 19UModel tutorial

Altova UModel 2007

3.3 Class Diagrams

The aim of this tutorial section is to:

 Add a new abstract class called Account, as well as attributes and operations
 Create a composite association from Bank to Account

To open a different diagram in UModel:
1. Click the Diagram Tree tab.
2. Expand the Class Diagrams package to see its contents.

All class diagrams contained in the project are displayed.

3. Double click the BankView Main diagram icon.
The Class diagram appears as a tab in the working area.

Please note:
You could of course, double click the Class diagram icon in the Model Tree tab below
the BankView package to achieve the same thing.

Two concrete classes with a composite association between them, are visible in the class
diagram.

20 UModel tutorial Class Diagrams

© 2007 Altova GmbHAltova UModel 2007

To add a new class and define it as abstract:

1. Click the class icon in the icon bar, then click to the right of the Bank class to
insert it.

2. Change the Class1 name to e.g. "Account", press Enter to confirm, (double click the
name if it becomes deselected).

Note that the Properties tab displays the current class properties.
3. Click the "abstract" check box in the Properties pane to make the class abstract.
4. Click in the "code file name" text box, and enter Account.java to define the Java class.

The class title is now displayed in italic, which is the identifying characteristic of abstract
classes.

To add properties to a class:
1. Right click the Account class and select New | Property, or press the F7 key.

A default property "Property1" is inserted with stereotype identifiers << >>.

© 2007 Altova GmbH

Class Diagrams 21UModel tutorial

Altova UModel 2007

2. Enter the Property name "balance", and then add a colon character ":".
A drop-down list containing all valid types is displayed.

3. Enter the "f" character through the keyboard, and press Enter to insert the return value
datatype "float".
Please note that drop-down lists are case sensitive!

4. Continue on the same line by appending "=0" to define the default value.
5. Press the F7 keyboard key to add a second property to the class.
6. Enter Id: and select String from the drop-down list.

To add operations to a class:
1. Right click the Account class and select New | Operation, or press the F8 key.
2. Enter Account() as the constructor.

Using the method described above:
3. Add two more operations namely getBalance:float and getId:String.

Using the autocomplete function while defining operations:
4. Create another operation, using F8, collectAccountInfo and enter the open

parenthesis character "(".
Entering the "i" character opens the drop-down list allowing you to select one of the
operation direction parameters: in, inout, or out.

5. Select "in" from the drop-down list, enter a "space" character, and continue editing on
the same line.

6 Enter "bankAPI" and then a colon.
7. Select IBankAPI from the drop-down list, add the close parenthesis character ")", and

enter a colon ":".

22 UModel tutorial Class Diagrams

© 2007 Altova GmbHAltova UModel 2007

8. Press the "b" key to select the boolean datatype, then Enter to insert it.
9. Press Enter to end the definition.

Please note:

Clicking the visibility icon to the left of an operation , or property , opens a
drop-down list enabling you to change the visibility status.

Deleting class properties and operations from a class diagram:
1. Press F8 then Enter, to add a default operation "Operation1" in the Account class.
2. Click Operation1 and press the Del. key to delete it.

A delete prompt appears asking if you want to delete the element from the project. Click
Yes to delete Operation1 from the class as well as from the project.

Please note:
If you only want to delete the operation from the class in the diagram, but not from the
project, press the CTRL + Del. key.

Deleting (finding) class properties and options from the Model Tree:
Properties and options can also be deleted directly from the Model Tree. To do this safely, it is
important to first find the correct property. Assuming you have inserted "Operation1" in the
Account class (press F8, then Enter to insert):

1. Right click Operation1 in the Account class.
2. Select the option "Select in Model Tree".

The Operation1 item is now highlighted under Account in the Model Tree tab.

© 2007 Altova GmbH

Class Diagrams 23UModel tutorial

Altova UModel 2007

3. Press the Del key to delete the operation from the class and project!

Please note:
A delete prompt appears asking if you want to delete the element from the project. Click
Yes to delete Operation1 from the class as well as from the project.. Undo can correct
any number of mishaps at any time.

Creating an composition association between the Bank and Account classes:

1. Click the Composition icon in the title bar, then drag from the Bank class to the
Account class. The class is highlighted when the association can be made.
A new property (Property1:Account) is created in the Bank class, and an composite
association arrow joins the two classes.

2. Double click the new Property1 entry in the Bank class and change it to "accounts",
being sure not to delete the Account type definition (displayed in teal/green).

3. Press the End keyboard key to place the text cursor at the end of the line, and
4. Enter the open square bracket character "[" and select "*" from the dropdown list, to

define the multiplicity, and press Enter to confirm.

24 UModel tutorial Class Diagrams

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

Class Diagrams 25UModel tutorial

Altova UModel 2007

3.3.1 Creating derived classes

The aim of this tutorial section is to:

 Add a new Class diagram called Account Hierarchy to the project
 Insert existing classes, and create a new Savings account class
 Create three derived classes of the abstract base class Account, using Generalizations

To create a new Class Diagram:
1. Right click the bankview package (under Design-phase | BankView | com | altova) in

the Model Tree tab, and select New | Class Diagram.
2. Double click the new ClassDiagram1 entry and rename it to "Account Hierarchy", and

press Enter to confirm.

The Account Hierarchy tab is now visible in the working area.

Inserting existing classes into a diagram:
1. Click the Account class in the BankView package (under com | altova | bankview),

and

2. Drag it into the Account Hierarchy tab.
3. Click the CheckingAccount class (of the same package) and drag it into the tab.
4. Place the class below and to the left of the Account class.

26 UModel tutorial Class Diagrams

© 2007 Altova GmbHAltova UModel 2007

5. Use the same method to insert the CreditCardAccount class. Place it to the right of
the CheckingAccount class.

Adding a new class:
1. Right click the diagram background (to the right of CreditAccountClass) and select New

| Class.
A new class is automatically added to the correct package, i.e. BankView which
contains the current class diagram Account Hierarchy.

2. Double click the class name and change it to SavingsAccount.

© 2007 Altova GmbH

Class Diagrams 27UModel tutorial

Altova UModel 2007

3. Press the F7 key to add a new property.
4. Enter "interestRate", then a colon, and press "f" to select the float datatype from the

dropdown list and press Enter twice to select and confirm the entry.
5. Press F8 and add the operation/constructor SavingsAccount().
6. Use the same method, F8, to add the operation getMinimumBalance:float.

7. Click in the "code file name" text box, in the Properties tab, and enter
SavingsAccount.java to define the Java code class.

Reusing/copying existing Properties/Operations:
Properties and operations can be directly copied, or moved, from one class to another. This can
be achieved using drag and drop, as well as the standard keyboard shortcuts:

 within a class in the diagram tab
 between different classes in the diagram tab
 in the Model Tree view
 between different UML diagrams, by dropping the copied data onto a different diagram

tab.
Please see "Cut, copy and paste in UModel Diagrams" for more information.

1. Expand the Account class in the Model Tree.
2. Right click the collectAccountInfo operation and select Copy.

28 UModel tutorial Class Diagrams

© 2007 Altova GmbHAltova UModel 2007

3. Right click the SavingsAccount class in the Model Tree and select Paste.
The operation is copied into the SavingsAccount class, which is automatically expanded
to display the new operation.

The new operation is now also visible in the SavingsAccount class in the Class
Diagram.

Please note:
You can use the Copy/Paste keyboard shortcuts (CTRL X, C, or V), as well as drag and
drop in the Model Tree to achieve the same effect. You might have to disable the sort
options to drop the operation between specific items.

Creating derived classes - Generalization/Specialization:
At this point the class diagram contains the abstract class, Account, as well as three specific
Account classes. We now want to define, or create a generalization/specialization relationship
between Account and the specific classes i.e. to create three derived concrete classes.

1. Click the Generalization icon in the icon bar and hold down the CTRL key.
2. Drag from CreditCardAccount (the class in the middle) and drop on the Account class.
3. Drag from the CheckingAccount class and drop the arrowhead of the previously

created generalization.
4. Drag from the SavingsAccount class and drop the arrowhead of the previously created

© 2007 Altova GmbH

Class Diagrams 29UModel tutorial

Altova UModel 2007

generalization: release the CTRL key at this point.
5. Generalization arrows are created between the three subclasses, and the Account

superclass.

30 UModel tutorial Object Diagrams

© 2007 Altova GmbHAltova UModel 2007

3.4 Object Diagrams

The aim of this tutorial section is to:

 Show how class and object diagrams can be combined in one diagram, to give you a
snapshot of the objects at a given point of time

 Create Objects/Instances and define the relationships between them
 Format association/links
 Enter real-life data into objects/instances

To open the Object diagram:
1. Double click the Sample Accounts diagram icon under the bankview package (or

under Object Diagrams in the Diagram Tree tab).

The Bank class and two related objects/instances are displayed in the object diagram.

AltovaBank:Bank is the object/instance of the Bank class, while John's checking:
CheckingAccount is an instance of the class CheckingAccount.

Inserting a class into an Object diagram:

 Click the Account class icon in the Model Tree, and drag it into the "Sample
Accounts" tab.
The composite association defined previously, in BankView Main diagram, is
automatically created.

© 2007 Altova GmbH

Object Diagrams 31UModel tutorial

Altova UModel 2007

To add a new object/instance by selecting its type:

1. Click the InstanceSpecification icon in the icon bar, then click under the John's
Checking object in the diagram tab.

2. Change the name of the instance to John's Credit, and press Enter.

While the instance is active, all its properties are visible in the Properties tab.
3. Click the classifier combo box and select the entry CreditCardAccount from the

drop-down list.

To add a new object in the Model Tree view (then insert it into a diagram):

32 UModel tutorial Object Diagrams

© 2007 Altova GmbHAltova UModel 2007

1. Right click the bankview package in the Model Tree tab, and select New |
InstanceSpecification.

2. Change the default object name to John's Saving, and press Enter to confirm.
The new object is added to the package and sorted accordingly.

While the object is still selected in the Model Tree tab,
3. Click the classifier combo box, in the Properties tab, and select SavingsAccount.

4. Drag the John's Saving object/instance from the Model Tree tab, into the Sample
Accounts tab, placing it below John's credit.

Creating "links" between objects:
Links are the instances of class associations, and describe the relationships between
objects/instances at a fixed moment in time.

1. Click the existing link (association) between the AltovaBank and John's Checking.
2. In the Properties tab, click the classifier combo box and select the entry Account -

© 2007 Altova GmbH

Object Diagrams 33UModel tutorial

Altova UModel 2007

Bank.
The link now changes to a composite association, in accordance with the class
definitions.

3. Click the InstanceSpecification icon in the icon bar, and position the cursor over
the John's Credit class.
The cursor now appears as a + sign.

4. Drag from John's Credit object to AltovaBank to create a link between the two.
5. Use the classifier combo box in the Properties tab to change the link type to Account -

Bank.
6. Use the method outlined above to create a link between John's Saving and

AltovaBank.

Please note:
Changes made to the association type in any class diagram, are now automatically
updated in the object diagram.

34 UModel tutorial Object Diagrams

© 2007 Altova GmbHAltova UModel 2007

Formatting association/link lines in a diagram:
1. Click the lowest link in the diagram, if not active, and drag the corner connector to the

left.
This allows you to reposition the line both horizontally and vertically.

Use this method to reposition links in the diagram tab.

Entering sample data into objects:
The instance value of an Attribute/Property in an object is called a slot.

1. Click in the respective slots of each object and enter sample data.
2. E.g. in John's Checking object, double click in the balance slot and enter 11,975.00

as the balance.
3. Fill in the rest of the data to give yourself an idea of the current instance state.

© 2007 Altova GmbH

Component Diagrams 35UModel tutorial

Altova UModel 2007

3.5 Component Diagrams

The aim of this tutorial section is to:

 Show how to insert classes into a component diagram
 Create realization dependencies between the classes and the BankView component
 Show how to change line properties
 Insert components into a component diagram, and create usage dependencies to an

interface

To open the component diagram:
1. Click the Diagram Tree tab, expand the Component Diagrams component and double

click the "BankView realization" diagram icon.
The "BankView realization" component diagram is displayed.

2. Switch back to the Model Tree tab by clicking that tab.

To insert (existing) classes into a component diagram:

1. Locate the SavingsAccount class under the bankview package.
2. Drag it into the component diagram.

The class is displayed with all its compartments.

36 UModel tutorial Component Diagrams

© 2007 Altova GmbHAltova UModel 2007

3. Click both collapse icons to end up with the only the class name compartment.
4. Use the same method to insert the abstract class Account.

Please note:
The package containing the inserted class, is displayed in the name compartment in the
form "from bankview".

To create Realization dependencies between a class and component:

1. Click the Realization icon in the icon bar.
2. Drag from SavingsAccount, and drop the arrow on the BankView component.

© 2007 Altova GmbH

Component Diagrams 37UModel tutorial

Altova UModel 2007

3. Click the ComponentRealization handle of the Account class (at the base), and drop it
on the BankView component.

Both of these methods can be used to create realization dependencies. There is
another method that allows you to create realization dependencies solely in the Model
Tree, please see Round-trip engineering (code - model - code) for more information.

Changing (Realization) line characteristics:
Clicking a dependency or any other type of line in a UModel diagram, activates the line drawing
icons in the Layout icon bar.

1. Click the realization line between SavingsAccount and BankView.

2. Click the line type icon Direct line in the Layout toolbar.

The line properties are immediately altered. Lines have small icons along them called
waypoints. Waypoints can be clicked and moved to alter line characteristics. Change
the line properties to suit your needs.

38 UModel tutorial Component Diagrams

© 2007 Altova GmbHAltova UModel 2007

Inserting components and creating usage dependencies:
1. Double click the Overview diagram icon directly under the Design-phase package in

the Model Tree.
The Overview component diagram is opened and displays the currently defined system
dependencies between components and interfaces.

2. Click the BankView GUI component under the Component View | BankView package
in the Model Tree, and drag it into the Overview diagram tab.
The package containing the inserted component is displayed in the name compartment,
"from BankView".

3. Use the same method to insert the BankView component under the same package.

The BankView component is the component produced by the "forward-engineering"
process described in this tutorial.

To create a usage dependency between interfaces and components:

1. Click the Usage icon in the icon bar.
2. Drag from the BankView GUI component to the BankView component.
3. Click the Usage icon again, and drag from the BankView component to the IBankAPI

interface.

© 2007 Altova GmbH

Component Diagrams 39UModel tutorial

Altova UModel 2007

The usage dependency (<<use>>) connects a client element to a supplier element. In
this case the IBankInterfaceAPI interface uses the services of components BankView
and BankView GUI.

40 UModel tutorial Deployment Diagrams

© 2007 Altova GmbHAltova UModel 2007

3.6 Deployment Diagrams

The aim of this tutorial section is to:

 Show the artifact manifestation of components
 Add a new node and dependency to a Deployment diagram
 Add artifacts to a node and create relationships between them

To open the Deployment (Artifacts) diagram:
1. Click the Model Tree tab, expand the Deployment View diagram package, then double

click the Artifacts icon.

This diagram shows the manifestation of the Bank API client and the BankView
components, to their respective compiled Java .jar files.

To open the Deployment diagram:
1. Double click the Deployment icon under the Deployment View package.

The Deployment diagram is opened and displays the physical architecture of the
system, which currently only comprises of the Home PC node.

© 2007 Altova GmbH

Deployment Diagrams 41UModel tutorial

Altova UModel 2007

To add a Node to a Deployment diagram:

1. Click the Node icon in the icon bar, and click right of the Home PC node to insert
it.

2. Rename the node to Bank, and drag on one of its edges to enlarge it.

To create a dependency between two nodes:

1. Click the dependency icon , then drag from the Home PC node to the Bank node.
This creates a dependency between the two nodes.

2. Click into the name field of the Properties tab, change it to TCP/IP, and press Enter to
confirm.
The dependency name appears above the dependency line.

42 UModel tutorial Deployment Diagrams

© 2007 Altova GmbHAltova UModel 2007

Adding artifacts to a node and creating dependencies between them:
Expand the Deployment View package, in the Model Tree, to see its contents:

1. Click each of the BankAddresses.ini, BankAPI.jar and BankView.jar artifacts
individually, and place them on the diagram background (Deployment dependencies
are displayed for each artifact).

2. Click the BankView.jar artifact and drag it onto the Home PC node.
The node is highlighted when the drop action will be successful.

3. Use the same method to drag the other artifacts onto the Home PC node.
The artifacts are now part of the node and move with it when it is repositioned.

© 2007 Altova GmbH

Deployment Diagrams 43UModel tutorial

Altova UModel 2007

4. Click the Dependency icon in the icon bar, and hold down the CTRL key.
5. Drag from the BankView.jar artifact to the BankAddresses.ini artifact; still holding

down the CTRL key.
6. Drag from the BankView.jar artifact to the BankAPI.jar artifact.

Please note:
Dragging an artifact out of a node onto the diagram background, automatically creates
a Deployment dependency.

To delete an artifact from a node and the project:

 Click the artifact you want to delete and press the Del keyboard key.

The artifact and any dependencies are deleted from the node as well as the project.

To remove an artifact from a node and its diagram:
1. Use drag and drop to place the artifact onto the diagram background.
2. Hold down the CTRL key and press Del.

The artifact and any dependencies are deleted from the current diagram and not from
the project.

44 UModel tutorial Round-trip engineering (model - code - model)

© 2007 Altova GmbHAltova UModel 2007

3.7 Round-trip engineering (model - code - model)

The aim of this tutorial section is to:

 Perform a project syntax check
 Generate project code
 Add a new method external code i.e. to the SavingsAccount class
 Synchronize the UModel model new code with the model

Packages and Code / model synchronization:
Code can be merged/synchronized at different levels:

 Project, Root package level (menu item)
 Package level (multiple package selection / generation is possible)
 Class level (multiple class selection / generation is possible)

The BankView realization diagram, depicts how the BankView component is realized by its six
constituent classes. This is the component that is produced when the forward-engineering
section of the tutorial is complete.

To be able to produce code:

 The component must be realized by one or more classes.
 The component must have a physical location, i.e. directory, assigned to it. The

generated code is then placed in this directory.
 Components must be individually set to be included in the code engineering process.
 The Java, and C#, namespace root package must be defined.

Please note:
The Java namespace root has been set on the Design-phase | BankView | com
package in the Model Tree.

Java and C# code can be combined in one project and are automatically handled
during the round-trip engineering process. The Bank_MultiLanguage.ump file in the ...\
UModelExamples folder is an example of a project for both types of code.

To define a code generation target directory:

1. Double click the Overview icon under the Design-phase package to switch into the
component overview.

2. Click the BankView component, in the diagram, and note the current settings in the
Properties tab.

3. Click the browse button , to the right of the directory field.
4. Enter/select the target directory in the dialog box (the supplied example is defined as

InstallationDir\UModelExamples\Tutorial\umlcode\bankview), or click the "Make
New Folder" button to create a new folder.
The path now appears in the directory field.

© 2007 Altova GmbH

Round-trip engineering (model - code - model) 45UModel tutorial

Altova UModel 2007

To include/exclude components from code generation:
1. Click the BankView GUI component.
2. Uncheck the "use for code engineering" check box (if not already unchecked).

Checking project syntax prior to code generation:
1. Select the menu option Project | Check project syntax.
2. A syntax check is performed, and messages appear in the Messages window, "Bank

API-client: code project file or directory not set" - "IBankAPI: code file name not set".

46 UModel tutorial Round-trip engineering (model - code - model)

© 2007 Altova GmbHAltova UModel 2007

3. Click the first message in the messages window.
4. The Bank API client package is highlighted in the Model Tree view, with its properties

visible in the Properties tab.
5. Uncheck the "use for code engineering" check box for the Bank API client component.

6. Check the project syntax again using Project | Check project syntax.

No errors are reported this time around. We can now generate program code for this
project. Please see Check Project syntax for more information.

To generate project code:
1. Click the BankView package to select it.

© 2007 Altova GmbH

Round-trip engineering (model - code - model) 47UModel tutorial

Altova UModel 2007

2. Select the menu option Project | Merge Program Code from UModel project.
3. Select your synchronization options from the dialog box, and press OK to proceed (no

changes needed for the tutorial; see "Merge Program Code from UModel project" for
more information).

The message pane displays the outcome of the code generation process.

4. Navigate to the target directory.
Six .Java files have been created for the project.

Synchronizing the UModel model having updated Java code externally:
1. Open the SavingsAccount.java file in the text editor of your choice, XMLSpy for

example.
2. Add the new method to the generated code "public float getInterestRate() {}", and

save the file.

48 UModel tutorial Round-trip engineering (model - code - model)

© 2007 Altova GmbHAltova UModel 2007

3. Switch to UModel and right click the SavingsAccount class under the BankView
package.

4. Select the option Code Engineering | Merge UModel Class from Program Code.

This opens the Synchronization Settings dialog box with the "Model from Code" tab
being active. No changes are needed for the tutorial; see "Merge UModel project from
code" for more information)

5. Click OK to merge the model from the code.

© 2007 Altova GmbH

Round-trip engineering (model - code - model) 49UModel tutorial

Altova UModel 2007

6. Click the Account Hierarchy tab to see the outcome of the merge process.

The new method added to the code, (getInterestRate...) generates a new operation in
the SavingsAccount class of UModel.

50 UModel tutorial Round-trip engineering (code - model - code)

© 2007 Altova GmbHAltova UModel 2007

3.8 Round-trip engineering (code - model - code)

The aim of this tutorial section is to:

 Import a directory containing Java code generated by XMLSpy
 Add a new class to the project in UModel
 Merge to the program code from a UModel package

The files used in this example are available as the OrgChart.zip file under
...\UModelExamples folder of your installation. Please unzip the OrgChart.zip file into the
...\UModelExamples folder before you start this section.

This creates the OrgChart directory which will then be used to import the existing code.

To Reverse engineer/import existing code from a directory:
1. Select File | New to create a new project.
2. Select Project | Import source directory.
3. Select the C#, or Java version (1.4, or 5.0.) that the source code conforms to.

4. Click the Browse button and select the OrgChart directory supplied in the
...\UModelExamples folder.

5. Making sure that the "Enable diagram generation" check box is active, select any
specific import settings you need, and click Next.

© 2007 Altova GmbH

Round-trip engineering (code - model - code) 51UModel tutorial

Altova UModel 2007

Note that UModel can generate a single overview diagram and/or a diagram for each
package. The settings show above are the default settings.

6. Click Next to continue.

This dialog box allows you to define the package dependency generation settings.
7. Click Finish to use the default settings.

The data is parsed while being input, and a new package called "OrgChart" is created.

52 UModel tutorial Round-trip engineering (code - model - code)

© 2007 Altova GmbHAltova UModel 2007

8. Expand the new package and keep expanding the sub packages until you get to the
OrgChart package (com | OrgChart).

9. Double click the "Content of OrgChart" diagram icon .
The collapsed classes that make up OrgChart are displayed in the main tab.

The current window/view is shown by the red box in the Overview window, which
occupies an empty area of the diagram.

© 2007 Altova GmbH

Round-trip engineering (code - model - code) 53UModel tutorial

Altova UModel 2007

10. Click the expand icon of the operation compartment, e.g. emailType, to see the
constituent operations.

Please note:
You could also select the Project | Import source project option and select the
Borland JBuilder OrgChart.jpx project file to import the project created by XMLSpy.

Round-trip engineering and relationships between modeling elements:
When updating model from code, associations between modeling elements are automatically
displayed, if the option Editing | Automatically create Associations has been activated in the
Tools | Options dialog box. Associations are displayed for those elements where the attributes
type is set, and the referenced "type" modeling element is in the same diagram.

InterfaceRealizations as well as Generalizations are all automatically shown in the diagram
when updating model from code.

Adding a new class to the OrgChart diagram:

1. Click the Class icon in the icon bar and click to insert a new class.
2. Add a new Class called CompanyType.
3. Add new operations to the class using the F8 shortcut key:

e.g. CompanyType(), getCompanyType():String, setCompanyType():String.

54 UModel tutorial Round-trip engineering (code - model - code)

© 2007 Altova GmbHAltova UModel 2007

Making the new class available for code generation:
While the CompanyType class is active,

1. Click into the "code file name" field and enter the Java file name of the new class
CompanyType.java.

2. Click the new CompanyType class in the Model Tree, drag upwards and drop onto the
OrgChart component below the Component View package. A popup appears when the
mouse pointer is over a component.

© 2007 Altova GmbH

Round-trip engineering (code - model - code) 55UModel tutorial

Altova UModel 2007

Please note:
This method creates a Realization between a class and a component, without having to
use component or deployment diagrams.

 3. Expand the Relations item below the Orgchart component, to see the newly created
realization.

Merging program code from a package:
1. Right click the OrgChart package, select Code Engineering | Merge Program code

from UModel Package, and press Enter to confirm.

56 UModel tutorial Round-trip engineering (code - model - code)

© 2007 Altova GmbHAltova UModel 2007

The messages window displays the syntax checks being performed and status of the
synchronization process.

When complete, the new CompanyType.java class has been added to the folder
...\OrgChart\com\OrgChart\.

Please note:
All method bodies and changes to the code will either be commented out or deleted,
depending on the setting in the "When deleting code" group, in the Synchronization
settings dialog box.

That's it!
You have learned how to create a modeling project using the forward engineering process, and
also completed a full round-trip code engineering cycle with UModel. The rest of this document
describes how best to achieve modeling results with UModel.

Chapter 4

UModel User Interface

58 UModel User Interface

© 2007 Altova GmbHAltova UModel 2007

4 UModel User Interface

UModel consists of series of panes on the left and a larger diagram tab at right. The panes at
left allow you to view and navigate your UModel project from differing viewpoints, and edit data
directly.

The panes are Model Tree, Properties, and Overview. The working/viewing area at right is the
UModel Diagram tab which currently shows the Class Diagram of the BankView Main package.

Please note:
All panes, as well as diagram tabs, can be searched using the Find combo box in the
Main toolbar, which contains the text "account" in the screenshot below, or by pressing
CTRL+F.

© 2007 Altova GmbH

Model Tree pane 59UModel User Interface

Altova UModel 2007

4.1 Model Tree pane

Model Tree tab
The Model Tree tab allows you to manipulate model items directly in the Model Tree, as well as
navigate/view specific items in the Design tab. Right clicking an item opens the context menu,
from which specific commands can be selected. The contents of the context menu depend on
the item that you select.

Model elements in the Model Tree pane can be directly manipulated:

 Added / inserted
 Copied or moved
 Deleted
 Renamed
 Sorted according to several criteria
 Constrained

In the Model Tree tab, each folder symbol is a UML package!

Adding a new package (or any other modeling element):
1. Right click the folder that you want the new package/element to appear under.
2. Select New | Package (or respective model Element).

Copying or moving model elements:
1. Use the standard windows Cut, Copy or Paste commands or,
2. Drag model elements to different packages. Dragging an elements moves it. Holding

down CTRL a and dragging an element creates a copy.

When dragging elements a message might appear stating that select "No sort" needs
to be activated to allow you to complete the action. Please see "Cut, copy and paste in
UModel Diagrams" for more information.

Sorting elements in the Model Tree (activating no sort):
1. Right click the empty background of the Model Tree tab.
2. Select Sort | No sort.

Elements can now be positioned anywhere in the Model Tree.

Please note:
The Sort popup menu also allows you to individually define the sort properties of

60 UModel User Interface Model Tree pane

© 2007 Altova GmbHAltova UModel 2007

Properties and Operations.

Renaming an element:
1. Double click the element name and edit it.

The Root and Component View packages are the only two elements that cannot be
renamed.

Deleting an element:
1. Click the element you want to delete (use CTRL+click to mark multiple elements).
2. Press the Del. keyboard key.

The modeling element is deleted from the Model Tree. This means that it is also
deleted from the Diagram tab, if present there, as well as from the project. Elements
can be deleted from a diagram without deleting them from the project, using CTRL+
Del. Please see deleting elements.

To open a diagram in the Diagram tab:

1. Double click the diagram icon of the diagram you want to view in the diagram tab.

Modeling element icon representation in the Model Tree

Package types:

 UML Package

 Java namespace root package

 C# namespace root package

 XML Schema root package

 Java, C#, code package (package declarations are created when code is generated)

Diagram types:

Activity diagram Object diagram

Class diagram Package diagram

Communication diagram Sequence diagram

Component diagram State Machine diagram

Composite Structure diagram Timing diagram

Deployment diagram Use Case diagram

Interaction Overview diagram XML Schema diagram

Element types:

An element that is currently visible in the active diagram is displayed with a blue dot at its base.
In this case a class element.

 Class Instance/Object
 Class instance slot

 Class

 Property

 Operation

 Parameter

 Actor (visible in active use case diagram)

 Use Case

 Component

© 2007 Altova GmbH

Model Tree pane 61UModel User Interface

Altova UModel 2007

 Node

 Artifact

 Interface

 Relations (/package)
Constraints

Opening / expanding packages in the Model Tree view:
There are two methods available to open packages in the tree view; one opens all packages
and sub packages, the other opens the current package.

Click the package you want to open and:

 Press the * key to open the current package and all sub packages

 Press the + key to open the current package.

To collapse the packages, press the - keyboard key.
Note that you can use the standard keyboard keys, or the numeric keypad keys to
achieve this.

To find modeling elements in Diagram tab(s):
While navigating the elements in the Model Tree, you might want to see where, or if, the
element is actually present in a model diagram. There are two methods to find elements:

1. Right click the element you want to see in the Model Tree tab, and select:
 Show element in active diagram - to find it in the same type of diagram tab
 Show element in all diagrams - if currently active diagram differs from selected

model element.

To generate a list of elements not used in any diagram:
1. Right click the package you would like to inspect.
2. Select the menu option "List elements not used in any diagram.

A list of unused element appears in the Messages pane. The list in parenthesis,
displays the specific elements which have been selected to appear in the unused list,
please see the View tab in Reference section under, Tools | Options for more
information.

To locate the missing elements in the Model Tree:
 Click the element name in the Messages pane.

Please note:
The unused elements are displayed for the current package and its sub packages.

Packages in the Model Tree tab:
Only the Root and Component packages are visible on startup, i.e. when no project is currently
loaded.

 Packages can be created, or deleted at any position in the Model Tree
 Packages are the containers for all other UML modeling elements, use case diagrams

etc.

62 UModel User Interface Model Tree pane

© 2007 Altova GmbHAltova UModel 2007

 Packages/contents can be moved/copied to other packages in the Model Tree (as well
as into valid model diagrams in the diagram tab)

 Packages and their contents can be sorted according to several criteria
 Packages can be placed within other packages
 Packages can be used as the source, or target elements, when generating or

synchronizing code

Generating/merging code:
UModel allows you to generate, or merge program code directly from the Model Tree, please
see: Synchronizing Model and source code for more information.

Constraining UML elements:
Constraints can be defined for most model elements in UModel. Please note that they are not
checked by the syntax checker, as constraints are not part of the Java code generation
process.

To constrain an element (Model Tree):
1. Right click the element you want to constrain, and select New | Constraint.
2. Enter the name of constraint and press Enter.
3. Click in the "specification" field of the Properties tab, and enter the constraint e.g. name

length > 10.

To constrain an element in UML diagrams:
1. Double click the specific element to be able to edit it.
2. Add the constraint between curly braces e.g. interestRate:float #{interestRate >=0}.

To assign constraints to multiple modeling elements:
1. Right click the "constrained elements" field in the Properties tab.
2. Select "Add element to constrained elements".

This opens the "Select Elements to be Constrained" dialog box.
3. Select the specific element you want to assign the current constraint to.

The "constrained element" field contains the names of the modeling elements it has
been assigned to. The image above, shows that Constraint1 has been assigned to the
bankview and com packages.

© 2007 Altova GmbH

Model Tree pane 63UModel User Interface

Altova UModel 2007

4.1.1 Diagram Tree tab

Diagram Tree tab
This tab displays the currently available UModel diagrams in two ways:

 Grouped by diagram type, sorted alphabetically
 As an alphabetical list of all project diagrams

Please note:
Diagrams can be added to, or deleted from, the Diagram Tree tab by right clicking and
selecting the requisite command.

To open a diagram in the Diagram tab:

 Double click the diagram you want to view in the diagram tab.

To view all Diagrams within their respective model groups:

 Right click in the pane, and activate the "Group diagram by diagram type" option.

Diagrams are grouped alphabetically within their group.

To view all Diagram types in list form (alphabetically):

 Right click in the pane, and deactivate the "Group diagram by diagram type" option.

64 UModel User Interface Model Tree pane

© 2007 Altova GmbHAltova UModel 2007

All Diagrams are shown in an alphabetically sorted list.

© 2007 Altova GmbH

Model Tree pane 65UModel User Interface

Altova UModel 2007

4.1.2 Favorites tab

Favorites tab
Use this tab as a user-defined repository, or library, for all types of named UML elements i.e.
classes, objects, associations etc. but not ProfileApplication or Generalization dependencies.
This allows you to create your personal pick-list of modeling elements for quick access.

The contents of the Favorites tab are automatically saved with each project file. Select the
menu option Tools | Options, File tab and click the "Load and save with project file" check box
to change this setting.

To add an existing modeling element to the Favorites tab:
1. Right click an element in the Model Tree tab, or in the diagram working area.
2. Select the menu item "Add to Favorites".
3. Click the Favorites tab to see the element.

The element appears in the Favorites tab is a view of an existing element, i.e. it is not a
copy or clone!

To add a NEW element to the Favorites tab:
1. Right click a previously added package, to which you want to add the element.
2. Select New | "modeling element" from the context menu, where "modeling element"

is a class, component, or any other modeling element available in the context menu.
New elements are added to the same element/package in the project, and are therefore
also visible in the Model Tree tab.

To REMOVE an element from the Favorites tab:
1. Right click the same element/package that you added to Favorites.
2. Select Remove from Favorites.

Please note:
You can add and remove elements added to the Favorites tab, from the Favorites tab,
as well as the Model Tree tab.

Deleting elements from the Favorites tab:
1. Right click the element you want to delete, and press the Del key.

A message box appears, informing you that the element will be deleted from the
project.

2. Click OK if you want to delete it from the project.
3. Click Cancel to retain it, and use the Remove method described above, to delete it

from the Favorites tab.

66 UModel User Interface Properties pane

© 2007 Altova GmbHAltova UModel 2007

4.2 Properties pane

Properties tab
The Properties tab displays the UML properties of the currently active element.

 Clicking any model element in any of the supplied views, or tabs, displays its
properties.

 Once visible, model properties can be changed, or completed, by entering data, or
selecting various options in the tab.

 Selected properties can also be located in the diagram tabs by selecting Show in Active
Diagram from the context menu.

Styles tab
The Styles tab is used to view, or change attributes of diagrams, or elements that are displayed
in the diagram view.

These style attributes fall into two general groups:

 Formatting settings; i.e. font size, weight, color etc.

© 2007 Altova GmbH

Properties pane 67UModel User Interface

Altova UModel 2007

 Display settings/options; show background color, grid, visibility settings etc.

The Styles tab is subdivided into several different categories/sections which can be selected by
clicking the "Styles" combo box. The combo box contents depends on the currently selected
model element.

Clicking an element in a diagram tab automatically selects the Element Style context, while
clicking and element in the Model Tree tab selects the Project Style context.

Style precedence is bottom-up, i.e. changes made at the more specific level override the more
general settings. E.g changes (to an object) made at the Element Style level override the
current Element Family and Project Styles settings. However, selecting a different object and
changing the Element Family Styles setting, updates all other objects except for the one just
changed at the Element Style level.

Please note:
Style changes made to model elements can all be undone!

Element Styles:
Applies to the currently selected element in the currently active diagram. Multiple selections are
possible.

Element Family Styles:
Applies to all elements of the same type i.e. of the selected Element Family. E.g. you want to
have all Component elements colored in aqua. All components in the Component and
Deployment diagrams are now in aqua.

Node / Line Styles:
"Node" applies to all rectangular objects.
"Lines" applies to all connectors: association, dependency, realization lines etc. for the whole
project.

Project Styles:
Project Styles apply to the current UModel Project in its entirety (e.g. you want to change the
default Arial font to Times New Roman for all text in all diagrams of the project).

Diagram Styles:
These styles only becomes available when you click/select a diagram background. Changing
settings here, only affects the single UML diagram for which the settings are defined in the
project.

To change settings for all diagrams of a project:
1. Click in the respective diagram,
2. Select the Project Styles entry in the combo box, and scroll to the bottom of the tab.
3. Select one of the Diag.yyy options e.g. Diag. Background color.

This then changes the background color of all diagrams in the current project.

Styles display when multiple elements are selected:

68 UModel User Interface Properties pane

© 2007 Altova GmbHAltova UModel 2007

If multiple elements are selected in the diagram pane, then all different style values are
displayed in the respective field. In the screenshot below, Class1 and Class2 have been
selected.
The fill Color field displays the values for each of the elements, i.e. aqua and silver.

Displaying cascading styles:
If a style is overridden at a more specific level, a small red triangle appears in the respective
field in the styles tab.
Placing the mouse pointer over the field displays a popup which indicates the style precedence.

E.g.
The Enumeration, Package and Profile elements all have default fill color settings defined in the
Element Family Styles settings. To change the fill colors at the project level, clear the value in
the Element Family Styles i.e. select the empty entry in the drop-down list box, select Project
styles from the Styles combo box, and change the fill color there.

© 2007 Altova GmbH

Hierarchy tab 69UModel User Interface

Altova UModel 2007

4.3 Hierarchy tab

Hierarchy tab
The hierarchy tab displays all relations of the currently selected modeling item, in two different
views. The modeling element can be selected in a modeling diagram, the Model Tree, or in the
Favorites tab.

 Show Tree view

This view shows multiple relations of the currently selected element e.g. SchemaString.
Clicking the various icons in the icon bar, allows you to show all types of relations, or narrow
them down by clicking/activating the various icons. In the screenshot above, all icons are active
and thus all relations are shown in a tree view.

Double clicking one of the element icons, in the tab, displays the relations of that element.

 Show graph view

70 UModel User Interface Hierarchy tab

© 2007 Altova GmbHAltova UModel 2007

This view shows a single set of relations in an hierarchical overview. Only one of the relation
icons can be active at any one time. The Show Generalizations icon is currently active.

Double clicking one of the element icons in the tab, e.g. SchemaTypeNumber, displays the
relations of that element.

The currently selected element is now SchemaTypeNumber.

Creating a new diagram from the contents of the window:
The current contents of the graph view pane can be displayed in a new diagram.

1. Right click in the graph view pane and select Create diagram as this graph.

© 2007 Altova GmbH

Hierarchy tab 71UModel User Interface

Altova UModel 2007

2. Edit the diagram name if necessary, select the style options and click OK.
A new diagram is created.

72 UModel User Interface Overview pane

© 2007 Altova GmbHAltova UModel 2007

4.4 Overview pane

Overview tab
The Overview tab displays an outline view of the currently active diagram. Clicking and dragging
the red rectangle, scrolls the diagram view in the diagram tab.

Documentation tab
Allows you to document any of the UML elements available in the Model Tree tab. Click the
element you want to document and enter the text in the Documentation tab. The standard
editing shortcuts are supported i.e. cut, copy and paste.

Documentation and code engineering:
During code engineering, only class and interface documentation is input/output. This includes
documentation defined for class/interface properties and operations.

1. Select Project | Synchronization settings.
2. Activate the "Write Documentation as JavaDocs" check box to enable documentation

output.

Please note:
When importing XML schemas, only the first annotation of a complex- or simpleType is
displayed in the Documentation window.

© 2007 Altova GmbH

Messages window 73UModel User Interface

Altova UModel 2007

4.5 Messages window

The Messages window displays warnings, hints and error messages when merging code, or
checking the project syntax.

74 UModel User Interface Diagram pane

© 2007 Altova GmbHAltova UModel 2007

4.6 Diagram pane

The diagram pane displays all the currently opened UModel diagrams as individual tabs.

To create a new diagram:
1. Click a package in the Model Tree tab.
2. Select New | YYY Diagram.

To create a new diagram containing contents of an existing package:
1. Right click a package and select Show in new Diagram | Content.

To open / access a diagram:

 Double click the diagram icon in any of the Model Tree pane tabs (to open).
 Clicking any of the tabs in the Diagrams pane (to access).

To close all but the active diagram:

 Right click the diagram tab that is to remain open, select the option Close All but
active.

Deleting a diagram:

 Click the diagram icon in the Model Tree and press Del. key.

Moving diagrams in a project:
 Drag the diagram icon to any other package in the Model Tree Tab.

You might have to enable the "no sort" option to move it.

Deleting elements from a diagram:

Delete element from the diagram and project!
 Select the element you want to delete and press the Del. keyboard key.

Delete element from diagram only - not from the project!
1. Select the element you want to "delete"
2. Hold down the CTRL key and press Del.

© 2007 Altova GmbH

Diagram pane 75UModel User Interface

Altova UModel 2007

An auto-layout function allows you to define how you would like your diagram to be visually
structured. Right click the diagram background and select either:

 Autolayout All | Force directed, or
 Autolayout All | Hierarchic

Showing relationships between modeling elements:
1. Right click the specific element and select Show.

The popup menu shown below is context specific, meaning that only those options are
available that are relevant to the specific element.

To show a class attribute/property as an association:
1. Right click the property in the class.

2. Select the menu option Show | "PropertyXX" as Association.
This inserts/opens the referenced class and shows the relevant association.

Configuring diagram properties
Click on the diagram background and then select one of the styles from the Styles combo box.
Please see Styles pane for more information.

76 UModel User Interface Diagram pane

© 2007 Altova GmbHAltova UModel 2007

To enlarge the Diagram size:
The size of the diagram tab is defined by the elements and their placement.

 Drag an element to one of the diagram tab edges to automatically scroll the diagram
tab and enlarge it.

Positioning modeling elements - the grid
Modeling elements can be positioned manually, or made to snap to a visible/invisible grid in a
diagram.

 toggles between showing / hiding the grid

 toggles between snapping elements to the visible / invisible grid

Displaying the UML diagram heading

 toggles between displaying the UML diagram heading, i.e. the frame around a
diagram with its name tag in the top left corner.

© 2007 Altova GmbH

Diagram pane 77UModel User Interface

Altova UModel 2007

4.6.1 Cut, copy and paste in UModel Diagrams

Cut, Copy and Paste of diagram elements within the Diagram pane
All UModel diagram elements can be cut, copied and pasted within, across the same type, and
even into other types of diagram tab. Mouse or keyboard shortcuts can be used to achieve this
in two different ways:

Having copied an element:
 "Paste", using the keyboard shortcut CTRL+V, or "Paste" from the context menu, as

well as Paste from the Edit menu, always adds a new modeling element to the diagram
and to the Model Tree.

 "Paste in diagram only", using the context menu, i.e. right clicking on the diagram
background, only adds a "link/view" of the existing element, to the current diagram and
not to the Model Tree.

Using the Class diagram as an example:

Paste (CTRL+V) of a copied class:
 Pasting a copied class in the same diagram (or package), inserts a new class with the

source class name plus a sequential number. E.g source class name is myClass,
pasted class name is myClass1. All operations and properties are also copied to the
new class.

 Pasting a copied class into a different package, also inserts a new class, but keeps the
original class name.

 In both cases the new class is also added to the Model Tree as well.

Paste (CTRL+V) of copied Properties or Operations:
 Pasting a Property in the same class, inserts a new property with the source property

name plus a sequential number e.g. MyProperty1.

 Pasting an Operation in the same class, inserts a new operation of the same name as
the source operation.

78 UModel User Interface Diagram pane

© 2007 Altova GmbHAltova UModel 2007

 In both cases a new property/operation is added to the Model Tree.

"Paste in Diagram only":
Whenever you use the context menu and select this option, a "link", or "view" to the element is
created in the diagram you paste it into. Using the Class diagram as an example:

 "Paste in diagram only", creates a "view" to the original class
 The class is inserted into the diagram and displayed exactly as the source class
 A new class has not been added to the Model Tree!
 No class name or other Operation/Property changes are made
 Changing element properties in one of the "views", changes it in the other one

automatically

Copy and pasting of elements using the mouse:
1. Click on the modeling element you want to copy.
2. Move the mouse pointer to the position you want to place the new element.
3. Hold down the CTRL key. A small plus appears below the mouse pointer to signify that

this is a copy procedure.
4. Release the mouse button.

A popup menu appears at this point allowing you to select between Paste, and Paste in
Diagram only.

5. Select the option that you would like to perform.

Please note:

© 2007 Altova GmbH

Diagram pane 79UModel User Interface

Altova UModel 2007

Using the mouse and CTRL key allows you to copy, or move properties and operations
directly within a class.

80 UModel User Interface Adding/Inserting model elements

© 2007 Altova GmbHAltova UModel 2007

4.7 Adding/Inserting model elements

Model elements can be created and inserted into diagrams using several methods:

 By adding the elements to specific packages, in the Model Tree view
 By dragging existing elements from the Model Tree tab into the diagram tab
 By clicking a specific UML element icon, and inserting it into the diagram
 By using the context menu to add elements to the diagram (and automatically to the

Model Tree view).

Please note that multiple elements can be selected in the Model Tree using either
SHIFT+click, or CTRL+click.

Adding elements in the Model Tree/Favorites tab:

 Right click a package, select New, and then select the specific element from the
submenu.
This adds the new element to the Model Tree tab in the current project.

Inserting elements from the Model Tree view into a diagram:
Model elements can be inserted individually, or as a group. To mark multiple elements use the
CTRL key and click each item. There are two different methods of inserting the elements into
the diagram: drag left, and drag right.

 Drag left (normal drag and drop) inserts elements immediately at the cursor position
(any associations, dependencies etc. that exist between the currently inserted elements
and the new one, are automatically displayed).

 Drag right (holding down the right mouse button and releasing it in the diagram tab)
opens a popup menu from which you can select the specific associations,
generalizations you want to display.

Example:

© 2007 Altova GmbH

Adding/Inserting model elements 81UModel User Interface

Altova UModel 2007

You want to replicate the Account Hierarchy diagram in a new class diagram.

1. Right click the bankview package and select New | Class Diagram.
2. Locate the abstract Account class in the model tree, and use drag right to place it in

the new diagram.
The context menu shown above, is opened.

3. Select the Insert with Generalization Hierarchy (specific) item.

4. Deselect the check boxes for specific items you want to appear in the elements
(Properties and Operations in this case).

5. Click OK.
The Account class and its three subclasses, are all inserted into the diagram tab. The
Generalization arrows are automatically displayed.

Adding elements to a diagram using the icons in the icon bar:
1. Select the specific element you want to insert by clicking the associated icon in the icon

bar.
2. Click in the diagram tab to insert the element.

Please note:
Holding down the CTRL key before clicking in the diagram tab, allows you to insert
multiple elements of the same type with each individual click in the diagram.

Adding elements to a diagram using the context menu:

 Right click the diagram background and select New | element name.

Please note:
Adding new elements directly to the diagram tab, automatically adds the same element
to the Model Tree tab. The element is added to the package containing the UML
diagram in the Model Tree view.

 Right click an element and select Show | xx
E.g. Right clicking the Account class and selecting Show | Generalization hierarchy.
This then inserts the derived classes into the diagram as well.

82 UModel User Interface Hyperlinking modeling elements

© 2007 Altova GmbHAltova UModel 2007

4.8 Hyperlinking modeling elements

UModel now supports automatic and manual hyperlinking of modeling elements. Automatic
hyperlinking occurs when selecting the specific setting when importing source code, or binary
files, into a model.

Manual hyperlinks are created between any modeling elements (except for lines) and:

 any diagram in the current ump project
 any diagram on a different ump project
 any element on a diagram
 external documents, e.g. PDF, Excel or Word documents
 web pages

Opening the Bank Server diagram under the Bank Server package displays the IBankAPI
interface as well as the BankServer class. An enumeration element containing the names of the
EnumerationLiterals is also visible. What we want to do is create a hyperlink from the
Enumeration to the Account Hierarchy class diagram.

To create a diagram hyperlink:
1. Right click the element and select Hyperlinks | Insert/Edit hyperlinks.

This opens the Edit Hyperlinks dialog box in which you manage the hyperlinks.

© 2007 Altova GmbH

Hyperlinking modeling elements 83UModel User Interface

Altova UModel 2007

2. Click the Add Diagram Link button to define a link to an existing diagram.

3. Select the hyperlink target that you want to be able to navigate to, e.g. Hierarchy of
Account diagram, and click OK.

Double clicking in the User defined name column allows you to define your own link
name.
Note that you can add multiple, as well as different kinds of links from a single modeling
element e.g. a web link to http://altova.com/support_help.html using the Add Web Link
button.

4. Click OK when you have finished defining your hyperlinks.
A link icon has now been added to the top left of the enumeration element.

To create a link to a specific diagram element:
1. Create the hyperlink as before but click the + sign to expand the diagram contents.

http://altova.com/support_help.html

84 UModel User Interface Hyperlinking modeling elements

© 2007 Altova GmbHAltova UModel 2007

2. Select the specific modeling element you want to link to and click OK to confirm.

Clicking the link icon opens the designated diagram with the element visible and
selected.

To create a link to a document:
1. Click the Add File Link button in the Edit Hyperlinks dialog box.
2. Select the document that you want to link e.g. *.DOC, *.XLS, *.PDF etc.

To create a hyperlink from a note:
1. Select the text in the note by dragging or double clicking a word.
2. Right click the selected text and select the menu object Insert/Edit Hyperlinks.
3. Use the Edit Hyperlinks dialog box to create a link to a diagram.

To navigate to a hyperlink target:
1. Click the hyperlink icon in the modeling element.

If only one target is defined then the target diagram, website etc., will appear
immediately.

If multiple targets were defined, a popup dialog appears allowing you to select one of
the available targets.

© 2007 Altova GmbH

Hyperlinking modeling elements 85UModel User Interface

Altova UModel 2007

Clicking the first item opens the Hierarchy of Account diagram.

Navigating hyperlinks:

 Click the Previous and Next icons, in the main icon bar, to navigate the
source and destination links.

To edit/change a hyperlink target:
1. Right click the link icon and select Insert, edit or remove hyperlinks item.
2. Use the Edit Hyperlinks dialog box in to manage your hyperlinks.

86 UModel User Interface UModel Command line interface

© 2007 Altova GmbHAltova UModel 2007

4.9 UModel Command line interface

UModel now supports batch-processing. A UModelBatch.exe file is available in the ...\UModel
2007 folder.

The command line parameter syntax is shown below, and can be displayed in the command
prompt window by entering: umodelbatch /?

Please note:
If the path, or file name contains a space, please use quotes around the path/file
name i.e. "c:\Program Files\...\File name"

usage : umodelbatch [project] [commands] [options]

/? or /help ... display this help information

project ... project file (*.ump)
/new[=file] ... create new project
/set ... set options permanent
/gui ... display UModel user interface

commands (executed in given order):
/chk ... check project syntax
/isd=path ... import source directory
/isp=file ... import source project (Eclipse *.project | JBuilder *.jpx)
/m2c ... update program code from model (export/forward engineer)
/c2m ... update model from program code (import/reverse engineer)
/ixf=file ... import XMI file
/exf=file ... export to XMI file
/inc=file ... include file
/doc=file ... write documentation to specified file
/lue[=cpri] ... list all elements not used on any diagram (i.e. unused)
/ldg ... list all diagrams
/lcl ... list all classes
/lsp ... list all shared packages
/lip ... list all included packages

options for import commands (saved with set command):
/iclg[=clg] ... code language (Java1.4 | Java5.0 | C#2.0)
/ipsd[=0|1] ... process sub directories (recursive)
/ijdc[=0|1] ... JavaDocs as comments
/icdc[=0|1] ... DocComments as C# comments
/icds[=lst] ... C# defined symbols
/imrg[=0|1] ... synchronize merged
/iudf[=0|1] ... use directory filter
/iflt[=lst] ... directory filter (presets /iudf)

options for diagram generation (saved with set command):
/dgen[=0|1] ... generate diagrams
/dopn[=0|1] ... open generated diagrams
/dmax[=cnt] ... max opened diagrams (presets /dopn)
/dsat[=0|1] ... suppress attributes
/dsop[=0|1] ... suppress operations
/dsnc[=0|1] ... suppress nested classifiers
/dstg[=0|1] ... suppress tagged values

© 2007 Altova GmbH

UModel Command line interface 87UModel User Interface

Altova UModel 2007

options for export commands (saved with set command):
/ejdc[=0|1] ... comments as JavaDocs
/ecdc[=0|1] ... C# comments as DocComments
/espl[=0|1] ... use user defined SPL templates
/ecod[=0|1] ... comment out deleted
/emrg[=0|1] ... synchronize merged
/egfn[=0|1] ... generate missing file names
/eusc[=0|1] ... use syntax check

options for XMI export
/exid[=0|1] ... export UUIDs
/exex[=0|1] ... export UModel specific extensions
/exuv[=ver] ... UML version (UML2.0 | UML2.1)

options for documentation generation
/doof[=fmt] ... output format (HTML | RTF | MSWORD)

In the projects section:

The /new parameter defines the path and file name of the new project file (*.ump).

The /set parameter overwrites current default settings in the registry, with the options/settings
defined here.

The /gui parameter displays the UModel interface during the batch process.

Example 1:
Import source code and create new project file:

"C:\Program Files\Altova\ UModel2007 \UModelBatch.exe" /new="C:\Program Files\Altova\
UModel2007 \UModelBatchOut\Fred.ump" /isd="X:TestCases\UModel\Fred" /set /gui
/iclg=Java5.0 /ipsd=1 /ijdc=1 /dgen=1 /dopn=1 /dmax=5 /chk

/new: Specifies that the newly-created project file should be called "Fred.ump" in
C:\Program Files\Altova\UModel2007 \UModelBatchOut\

 /isd= Specifies that the root directory to import into should be
"X:\TestCases\UModel\Fred"

/set: Specifies that any options used in the command line tool will be saved in the
registry (When subsequently starting UModel, these settings become the
default settings).

/gui: display the UModel GUI during batch processing

 /iclg: UModel will import the code as Java5.0

 /ipsd=1: recursively process all subdirectories of the root directory specified in the /isd
parameter

 /pfd=1: creates packages in the UModel project for each imported directory

 /ijdc=1: created JavaDoc from comments where appropriate

 /dgen=1: generates diagrams

 /dopn=1: opens generated diagrams

 /dmax=5: will open a maximum of 5 diagrams

 /chk: performs a syntax check

88 UModel User Interface UModel Command line interface

© 2007 Altova GmbHAltova UModel 2007

Example 2:
Imports source code from X:\TestCases\UModel, and saves the resulting project file in
"C:\Program...".

"C:\Program Files\Altova\UModel 2007 \UModelBatch.exe" /new="C:\Program Files\Altova\
UModel2007 \UModelBatchOut\finalclass.ump" /isd="X:\TestCases\UModel\
" /iclg=Java5.0 /ipsd=1 /ijdc=1 /dgen=1 /dopn=1 /dmax=5 /dsat=1 /dsnc=1 /chk

/dsat=1: suppresses attributes in the generated diagrams
/dsnc=1: suppresses nested classifiers in the generated diagrams

Example 3:
Synchronize code using existing project file (e.g. one of the ones created above).

"C:\Program Files\Altova\UModel 2007 \UModelBatch.exe" "C:\Program Files\Altova\
UModel2007 \UModelBatchOut\Fred.ump" /m2c /ejdc=1 /ecod=1 /emrg=1 /egfn=1 /eusc=1

"C:\Program Files\Altova\UModel2007 \UModelBatchOut\Fred.ump": the project file we want to
use.

/m2c update the code from the model

/ejdc: comments in the project model should be generated as JavaDoc

/ecod=1: comment out any deleted code

/emrg=1 synchronize the merged code

/egfn=1: generate any missing filenames in the project

/eusc=1 use the syntax check

© 2007 Altova GmbH

Bank samples 89UModel User Interface

Altova UModel 2007

4.10 Bank samples

The ...\UModelExamples folder contains sample files which show different aspects of UML
modeling in UModel. They are designed to show language specific models for Java, C# and a
combination of both languages in one modeling project.

The Bank_Java.ump sample file is shown below:
 the Java profile has been assigned to the Bankview package
 the Java namespace root has been assigned to the Banking access and BankView

packages.
 the Interaction View package contains two interaction elements which each contain a

sequence diagram.

The Bank_CSharp.ump sample file is shown below:
 the C# profile has been assigned to the BankView package
 the C# namespace root has been assigned to the Banking access and BankView

packages.
 the Interaction View package contains two interaction elements which each contain a

sequence diagram.

90 UModel User Interface Bank samples

© 2007 Altova GmbHAltova UModel 2007

The Bank_MultiLanguage.ump sample file is shown below:
 the Java profile has been assigned to the BankView package
 the C# namespace root has been assigned to the Bank Server package
 the Java namespace root has been assigned to the BankView package.
 the Interaction View package contains two interaction elements which each contain a

sequence diagram.

Chapter 5

Projects and code engineering

92 Projects and code engineering

© 2007 Altova GmbHAltova UModel 2007

5 Projects and code engineering

UModel now supports all Java specific constructs, among them:

 Java annotations
 Attributes, operations and nested qualifiers for EnumerationLiterals
 Enumerations can realize interfaces
 Netbeans project files

Reverse engineering now supports:

 The ability to generate a single diagram for all reverse engineered elements
 Possibility to show/hide anonymous bound elements on diagrams
 Ability to automatically create hyperlinks from packages to their corresponding package

content diagrams during the import process.

To create a new project:
1. Click the New icon in the icon bar, (or select the menu item File | New).

The Root and Component packages are automatically inserted when a new project is created,
and are visible in the Model Tree tab. A new project with the default name NewProject1 is
created. Note that starting UModel opens a new project automatically.

A newly created UModel project consists of the following packages:

 Root package, and
 Component View package

These two packages are the only ones that cannot be renamed, or deleted.

All project relevant data is stored in the UModel project file, which has an *.ump extension.
Each folder symbol in the Model Tree tab represents a UML package!

UModel Project workflow:
UModel does not force you to follow any predetermined modeling sequence!

You can add any type of model element: UML diagram, package, actor etc., to the project in any
sequence (and in any position) that you want; Note that all model elements can be inserted,
renamed, and deleted in the Model Tree tab itself, you are not even forced to create them as
part of a diagram.

© 2007 Altova GmbH

 93Projects and code engineering

Altova UModel 2007

To insert a new package:
1. Right click the package you want the new package to appear under, either Root, or

Component View in a new project.
2. Select New | Package.

A new package is created under an existing one. The name field is automatically
highlighted allowing you to enter the package name immediately.

 Packages are the containers for all other UML modeling elements, use case diagrams,
classes, instances etc.

 Packages can be created, at any position in the Model Tree.
 Packages/contents can be moved/copied to other packages in the Model Tree (as well

as into valid model diagrams in the diagram tab).
 Packages and their contents can be sorted (in the Model Tree tab) according to

several criteria.
 Packages can be placed within other packages.
 Packages can be used as the source, or target elements, when merging, or

synchronizing code.

To have elements appear in a UML diagram, you have to:
1. Insert a new UML diagram, by right clicking and selecting New | (Class) Diagram.
2. Drag and drop an existing model element from the Model Tree into the newly created

Diagram, or
3. Use the context menu within the diagram view, to add new elements directly.

To save a project:
Select the menu option File | Save as... (or File | Save).

To open a project:
Select the menu option File | Open, or select one of the files in the file list.

Please note:
Changes made externally to the project file, or included file(s), are automatically
registered and cause a prompt to appear. You can then choose if you want to reload
the project or not.

94 Projects and code engineering Importing source code into projects

© 2007 Altova GmbHAltova UModel 2007

5.1 Importing source code into projects

Source code can be imported as a source project or as a source directory. For an example of
importing a source directory please see Round-trip engineering (code - model - code) in the
tutorial.

 JBuilder .jpx, Eclipse .project project files, as well as NetBeans (project.xml) are currently
supported.

 C# projects:
- MS Visual studio.Net projects, csproj, csdprj..., as well as
- Borland .bdsproj project files

To import an existing project into UModel:
1. Select Project | Import source project.

2. Click the browse button in the "Import Source Project" dialog box.

3. Select the project file type e.g. .jpx and click Open to confirm. This Jbuilder project file
is available in the OrgChart.zip file in the ...\UModelExamples folder.

© 2007 Altova GmbH

Importing source code into projects 95Projects and code engineering

Altova UModel 2007

4. Make sure that you have activated the Enable diagram generation check box, and
select any other specific import settings you need, and click Next.

Note that UModel can generate a single overview diagram and/or a diagram for each
package. The settings shown above are the default settings.

5. Click Next to continue.
This dialog box allows you to define the package dependency generation settings.

96 Projects and code engineering Importing source code into projects

© 2007 Altova GmbHAltova UModel 2007

6. Click Finish to use the default settings.

The project is parsed and the UModel model is generated.

Please note:
If you are importing into an existing project, you will be prompted for the package it
should be imported into. If you are using a new project, an OrgChart folder is
automatically created.

© 2007 Altova GmbH

Importing source code into projects 97Projects and code engineering

Altova UModel 2007

Raised exceptions
Clicking an operation in one of the classes, then clicking the Exception combo box,
displays the exception information that an operation can throw.

98 Projects and code engineering Importing C# and Java binaries

© 2007 Altova GmbHAltova UModel 2007

5.2 Importing C# and Java binaries

UModel now supports the import of C# and Java binaries. This is extremely useful when
working with binaries from a third party, or the original source code has become unavailable.

If you intend to import Java and/or C# binary files, the following programs/components must be
installed:

Java 1.4/5.0:
Sun Java Runtime Environment (JRE), or Development Kit (JDK) in Versions 1.4, 1.5, 1.6

UModel support:
Type import is supported for all Class Archives targeting these environments, i.e.
adhering to the Java Virtual Machine Specification.

C# 2.0:
.NET Framework 2.0, 3.0

UModel support:
Type import is supported for Assemblies targeting:

.NET Framework 1.1, 2.0, 3.0

.NET Compact Framework v1.0, v2.0 (for PocketPC, Smartphone, WindowsCE)

Restrictions:
Assembly mscorlib with the .NET core types can only be imported from the .NET
Framework 2.0

These requirements only apply if you intend to import Java or C# binaries; if you do not, there is
no need for the Java Runtime Environment, or the MS .NET Framework to be installed.

The import of either Java, or C#, obfuscated binaries is not supported.

To import binary files:
1. Select the menu option Project | Import Binary Types.

2. Select the language and runtime edition, then click Next.
This opens the Import Binary Selection dialog box.

© 2007 Altova GmbH

Importing C# and Java binaries 99Projects and code engineering

Altova UModel 2007

3. Click the Add button and select the Class Archive from the flyout window, e.g. Class
Archives from Java Runtime... .

3. Click the "+" expand button to expand the list of binaries, and activate the check box
(es) of those that you want to import (the first three in the screen shot below), then click
Next.

This opens the Import Binary Options dialog box.

100 Projects and code engineering Importing C# and Java binaries

© 2007 Altova GmbHAltova UModel 2007

4. Select the specific options you need and click Next to continue.

5. Define the Import Target, or click the Import in new Package check box, then click
Next.

© 2007 Altova GmbH

Importing C# and Java binaries 101Projects and code engineering

Altova UModel 2007

6. Select the Content Diagram Generation properties from the dialog box and click Next to
continue.
Note that you can generate a single diagram for each package, as well a single
overview diagram.

7. Select the Package Dependency options that you would like to include and click Finish
to complete the import procedure.
The screenshot below shows the diagram containing the package dependencies of the
Java binaries.

102 Projects and code engineering Importing C# and Java binaries

© 2007 Altova GmbHAltova UModel 2007

8. Click the other tabs to see the class files etc.

Please note:
Clicking the link icon of a folder, automatically opens the referenced diagram.

© 2007 Altova GmbH

Synchronizing Model and source code 103Projects and code engineering

Altova UModel 2007

5.3 Synchronizing Model and source code

UModel allows you to synchronize model and code from both sides.

Code / model synchronization:
Code can be merged/synchronized at different levels described below. When using the context
menu, e.g. when right clicking a class, the context menu reflects your selection in the menu
option. Note that the Project menu only allows you to synchronize at the root/project level.

Project, Root package level:
1. Right click the Root package.
2. Select one of the code merging options: Merge Program..., or Merge UModel project...

Alternatively, use the Project menu.

Package level:
1. Use SHIFT, or CTRL + click to select the package(s) you want to merge.
2. Right click the selection, and select one of the code merging options:

Merge Program..., or Merge UModel project...

Class level:
1. Use SHIFT, or CTRL + click to select the classes(s) you want to merge.
2. Right click the selection, and select one of the code merging options:

Merge Program..., or Merge UModel project...

Define your synchronization options by selecting:
1. Project | Synchronization options.

Each tab allows you to define the specific merge settings.
2. Click the "Project Settings" button to select the specific programming language settings.
3. Define you specific settings and confirm with OK.

Please note:
When synchronizing code, you might be confronted with a dialog box that prompts you
to update your UModel project before synchronization.

104 Projects and code engineering Synchronizing Model and source code

© 2007 Altova GmbHAltova UModel 2007

This only occurs if you are using UModel projects created before the latest release.
Please click YES to update your project, and save your project file. This prompt will not
occur once this has been done.

SPL Templates:
SPL templates are used during the generation of Java and C# code.

To modify the provided SPL templates:

1. Locate the provided SPL templates in the default directory: ...\UModel2007
\UModelSPL\Java\Default\. (or ...\C#\Default.)

2. Copy the SPL files you want to edit/modify into the parent directory, i.e. ...\UModel2007
\UModelSPL\Java\.

3. Make your changes and save them there.

To use the user-defined SPL templates:
1. Select the menu option Project | Synchronization settings.
2. Activate the "User-defined override default" checkbox in the SPL templates group.

Then select one of the menu options shown below, to initiate the synchronization process.

 Project | Merge Program Code from UModel project, please see Round-trip
engineering (model - code - model) for more information, or

 Project | Merge UModel Project from Project code, please see Round-trip
engineering (code - model - code) for more information.

© 2007 Altova GmbH

Forward engineering prerequisites 105Projects and code engineering

Altova UModel 2007

5.4 Forward engineering prerequisites

Minimum conditions needed to produce code for forward engineering:

 A component must be realized by one or more classes, or interfaces.
 The component must have a physical location, i.e. directory, assigned to it. The

generated code is then placed in this directory.
 Components must be individually set to be included in the code engineering process.
 The Java, or C#, namespace root package must be defined.

To create a component realization:
1. Drag the class, or interface onto the respective component in the Model Tree view.

You can also create a realization in a component diagram using the Realization icon.

To assign a physical location:
1. Select the component in the Model Tree, or in the diagram.

2. Click the Browse button of the directory property and select a directory (or enter it
directly).

To include components in the code engineering process:
1. Select the component in the Model Tree, or in the diagram.
2. Activate the "use for code engineering" check box.

To define the Java namespace root:
1. Right clicking a package and selecting "Set as Java namespace root" sets the Java

namespace root.

This means that this package and all sub packages, are enabled during the code

106 Projects and code engineering Forward engineering prerequisites

© 2007 Altova GmbHAltova UModel 2007

engineering process. The Java namespace root is denoted with a icon in the Model
Tree pane.

 Selecting the command again removes the Java namespace for this package.

© 2007 Altova GmbH

Java code to/from UModel elements 107Projects and code engineering

Altova UModel 2007

5.5 Java code to/from UModel elements

The table below shows the one-to-one correspondence between:

 UModel elements and Java code elements, when outputting model to code
 Java code elements and UModel model elements, when inputting code into model

108 Projects and code engineering Java code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

Java code to/from UModel elements 109Projects and code engineering

Altova UModel 2007

110 Projects and code engineering Java code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

Java code to/from UModel elements 111Projects and code engineering

Altova UModel 2007

112 Projects and code engineering C# code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

5.6 C# code to/from UModel elements

The table below shows the one-to-one correspondence between:

 UModel elements and C# code elements, when outputting model to code
 C# code elements and UModel model elements, when inputting code into model

© 2007 Altova GmbH

C# code to/from UModel elements 113Projects and code engineering

Altova UModel 2007

114 Projects and code engineering C# code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

C# code to/from UModel elements 115Projects and code engineering

Altova UModel 2007

116 Projects and code engineering C# code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

C# code to/from UModel elements 117Projects and code engineering

Altova UModel 2007

118 Projects and code engineering C# code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

C# code to/from UModel elements 119Projects and code engineering

Altova UModel 2007

120 Projects and code engineering C# code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

C# code to/from UModel elements 121Projects and code engineering

Altova UModel 2007

122 Projects and code engineering C# code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

C# code to/from UModel elements 123Projects and code engineering

Altova UModel 2007

124 Projects and code engineering C# code to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

XML Schema to/from UModel elements 125Projects and code engineering

Altova UModel 2007

5.7 XML Schema to/from UModel elements

The table below shows the one-to-one correspondence between:

 UModel elements and XML Schema elements, when outputting model to code
 XML Schema elements and UModel model elements, when inputting code into model

126 Projects and code engineering XML Schema to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

XML Schema to/from UModel elements 127Projects and code engineering

Altova UModel 2007

128 Projects and code engineering XML Schema to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

XML Schema to/from UModel elements 129Projects and code engineering

Altova UModel 2007

130 Projects and code engineering XML Schema to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

XML Schema to/from UModel elements 131Projects and code engineering

Altova UModel 2007

132 Projects and code engineering XML Schema to/from UModel elements

© 2007 Altova GmbHAltova UModel 2007

© 2007 Altova GmbH

XML Schema to/from UModel elements 133Projects and code engineering

Altova UModel 2007

134 Projects and code engineering Including other UModel projects

© 2007 Altova GmbHAltova UModel 2007

5.8 Including other UModel projects

UModel is supplied with several files that can be included in a UModel project. Clicking one of
the Java tabs allows you to include Java lang classes, interfaces and packages in your project,
by selecting one of the supplied files.

1. Select Project | Include Subproject to open the "Include" dialog box.
2. Click the UModel project file you want to include, and press OK.

UModel projects can be included within other UModel projects. To include projects place the
respective *.ump files in:

 ...\UModel2007\UModelInclude to appear in the Basic tab, or

 ...\UModel2007\UModelInclude\Java1.4 / Java5.0 to appear in the Java tab.

Please note:
An include file, which contains all types of the Microsoft .NET Framework 2.0, is
available in the C# 2.0 tab.

To view all currently imported projects:

 Select the menu option Project | Open Subproject as project.
The flyout menu displays the currently included subprojects.

To create a user-defined tab/folder:
1. Navigate to the ...\UModel2007\UModelInclude and create/add your folder below

...\UModelInclude, i.e. ...\UModelInclude\myfolder.

To create descriptive text for each UModel project file:
1. Create a text file using the same name as the *.ump file and place in the same folder.

Eg. the MyModel.ump file requires a descriptive file called MyModel.txt. Please make

© 2007 Altova GmbH

Including other UModel projects 135Projects and code engineering

Altova UModel 2007

sure that the encoding of this text file is UTF-8.

To remove an included project:
1. Click the included package in the Model Tree view and press the Del. key.
2. You are prompted if you want to continue the deletion process.
3. Click OK to delete the included file from the project.

Please note:
 To delete or remove a project from the "Include" dialog box, delete or remove the

(MyModel).ump file from the respective folder.

136 Projects and code engineering Sharing Packages and Diagrams

© 2007 Altova GmbHAltova UModel 2007

5.9 Sharing Packages and Diagrams

UModel allows you to share packages and UML diagrams they might contain, between different
projects. Packages can be included in other UModel projects by reference, or as a copy.

Shared package prerequisites:

 Links to other packages outside of the shared scope are not permissible.

To share a package between projects:
1. Right click a package in the Model Tree tab and select Subproject | Share package.

A "shared" icon appears below the shared package in the Model Tree. This package
can now be included in any other UModel project.

To include/import a shared folder in a project:
1. Open the project which should contain the shared package (an empty project in this

example).

2. Select the menu item Project | Include Subproject...
3. Click the Browse button, select the project that contains the shared package and click

Open.

The "Include" dialog box allows you to choose between including the package/project

© 2007 Altova GmbH

Sharing Packages and Diagrams 137Projects and code engineering

Altova UModel 2007

by reference, or as a copy.
4. Select the specific option (Include by reference) and click OK.

The "Deployment View" package is now visible in the new package. The packages'
source project is displayed in parenthesis (BankView-start.ump).

Shared folders that have been included by reference can be changed to "Include by
copy" at any time, by right clicking the folder and selecting Subproject | Include as a
Copy.

Please note:
All included projects of the source project, have also been included: Java Lang,
Unknown Externals and Java Profile.

Shared packages - links to external elements:

Attempting to share a package which has links to external elements causes a prompt to appear.
E.g. trying to share the BankView package.

Clicking Yes, forces you to resolve the external links before you can save.

The Messages pane provides information on each of the external links.

138 Projects and code engineering Sharing Packages and Diagrams

© 2007 Altova GmbHAltova UModel 2007

Clicking an error entry, in the Messages pane, displays the relevant element in the Model Tree
tab.

© 2007 Altova GmbH

UML templates 139Projects and code engineering

Altova UModel 2007

5.10 UML templates

UModel now supports the use of UML templates and their mapping to/from Java 5.0 and C#
generics.

 Templates are "potential" model elements with unbound formal parameters.

 These parameterized model elements, describe a group of model elements of a
particular type: classifiers, or operations.

 Templates cannot be used directly as types, the parameters have to be bound.

 Instantiate means binding the template parameters to actual values.

 Actual values for parameters are expressions.

 The binding between a template and model element, produces a new model element (a
bound element) based on the template.

 If multiple constraining classifiers exist in C#, then the template parameters can be
directly edited in the Properties tab, when the template parameter is selected.

Template signature display in UModel:

 Class template called MyVector, with formal template parameter "T", visible in the
dashed rectangle.

 Formal parameters without type info (T) are implicitly classifiers: Class, Datatype,
Enumeration, PrimitiveType, Interface. All other parameter types must be shown
explicitly e.g. Integer.

 Property myArray with unbounded number of elements of type T.

Right clicking the template and selecting Show | Bound elements, displays the actual
bound elements.

Template binding display:

 A bound named template intvector

 Template of type, MyVector, where
 Parameter T is substituted/replaced by int.

 "Substituted by" is shown by - >.

Template use in properties/operations:

An anonymous template binding:
 Property MyFloatVector of type MyVector<T->float>

140 Projects and code engineering UML templates

© 2007 Altova GmbHAltova UModel 2007

Templates can also be defined when defining properties or operations. The autocomplete
function helps you with the correct syntax when doing this.

 Operation1 returns a vector of floats.

© 2007 Altova GmbH

UML templates 141Projects and code engineering

Altova UModel 2007

5.10.1 Template signatures

A Template signature is a string that specifies the formal template parameters. A template is a
parameterized element that is used to generate new model elements by substituting/binding the
formal parameters to actual parameters (values).

Formal template parameter
T
Template with a single untyped formal parameter
(stores elements of type T)

Multiple formal template parameters
KeyType:DateType, ValueType

Parameter substitution
T>aBaseClass

The parameter substitution must be of type "aBaseClass", or derived from it.

Default values for template parameters
T=aDefaultValue

Substituting classifiers
T>{contract}aBaseClass

allowsSubstitutable is true
Parameter must be a classifier that may be substituted for the classifier designated by
the classifier name.

Constraining template parameters
T:Interface>anInterface

When constraining to anything other than a class, (interface, datatype), the constraint is
displayed after the colon ":" character. E.g. T is constrained to an interface (T:Interface)
which must be of type "anInterface" (>anInterface).

Using wildcards in template signatures
T>vector<T->?<aBaseClass>

Template parameter T must be of type "vector" which contains objects which are a
supertype of aBaseClass.

Extending template parameters
T>Comparable<T->T>

142 Projects and code engineering UML templates

© 2007 Altova GmbHAltova UModel 2007

5.10.2 Template binding

Template binding involves the substitution of the formal parameters by actual values, i.e. the
template is instantiated. UModel automatically generates anonymously bound classes, when
this binding occurs. Bindings can be defined in the class name field as shown below.

Substituting/binding formal parameters
vector <T->int>

Create bindings using the class name
a_float_vector:vector<T->float>

Binding multiple templates simultaneously
Class5:vector<T->int, map<KeyType->int, ValueType<T->int>

Using wildcards ? as parameters (Java 5.0)
vector<T->?>

Constraining wildcards - upper bounds (UModel extension)
vector<T->?>aBaseClass>

Constraining wildcards - lower bounds (UModel extension)
vector<T->?<aDerivedClass>

© 2007 Altova GmbH

UML templates 143Projects and code engineering

Altova UModel 2007

5.10.3 Template usage in operations and properties

Operation returning a bound template
Class1
Operation1():vector<T->int>

Parameter T is bound to "int". Operation1 returns a vector of ints.

Class containing a template operation
Class1
Operation1<T>(in T):T

Using wildcards
Class1
Property1:vector<T->?>

This class contains a generic vector of unspecified type (? is the wildcard).

Typed properties can be displayed as associations:

 Right click a property and select Show | PropertyX as Association, or

 Drag a property onto the diagram background.

144 Projects and code engineering Project Settings

© 2007 Altova GmbHAltova UModel 2007

5.11 Project Settings

This option allows you to define the global project settings.

Select the menu item Tools | Options to define your local settings, please see Tools | Options
in the Reference section for more details on the local settings.

© 2007 Altova GmbH

Enhancing performance 145Projects and code engineering

Altova UModel 2007

5.12 Enhancing performance

Due to the fact that some modeling projects can become quite large, there are a few ways you
can enhance the modeling performance:

 Make sure that you are using the latest driver for your specific graphics card (resolve
this before addressing the following tips)

 Disable syntax coloring - Styles tab | Use Syntax Coloring = false.
 Disable "gradient" as a background color for diagrams, use a solid color. E.g. Styles

tab | Diagram background color | White.

Chapter 6

Creating model relationships

148 Creating model relationships

© 2007 Altova GmbHAltova UModel 2007

6 Creating model relationships

Model relationships can be created and inserted into diagrams using several methods:

 By clicking the aggregation , or composition icons in the icon bar.
 By using the connection handles, please see Use cases for an example.

 By clicking the association icon in the icon bar, and creating a connection between
elements using drag and drop

When an association has been created, a new attribute is automatically inserted in the
originating (A:name) class, e.g. Property1:Class2, in the example below.

Having created the association it is shown as active, and the Properties tab displays its
properties.

Clicking an association line, displays the association properties in the Properties tab. A:Name
and B:Name indicate the role of each class in the other.

Depending on the "memberEndKind" - property (of A:name "Property1"):
the attribute either belongs to:

 the class - i.e. A:memberEndKind = memberEnd, (attribute is visible in class1), or

 the association - i.e. B:memberEndKind = ownedEnd (attribute not visible in class2).

If both attributes belongs to the association, i.e. both ends are defined as "ownedEnd,
then this association becomes bi-directional, and the navigability arrow disappears.
Both ends of the association are "ownedEnd".

If the memberEndKind of any of the association is set to "navigableOwnedEnd, then the

© 2007 Altova GmbH

 149Creating model relationships

Altova UModel 2007

attribute is still part of the association, but the navigability arrow reappears depending on which
end (A:name or B:Name) it is set.

To define the type of association (association, aggregate, or composite)
1. Click the association arrow.
2. Scroll down to the aggregation item in the Properties tab.
3. Select: none, shared or composite.

None: a standard association
shared: an aggregate association
composite: a composite association.

Please note:
Associations can be created using the same class as both the source and target. This
is a so-called self link. It describes the ability of an object to send a message to itself,
for recursive calls.

Click the relationship icon, then drag from the element, dropping somewhere else on
the same element. A self-link appears.

Displaying associations in Diagrams automatically
When inserting diagram elements in a diagram, the "Automatically create Associations" option
in the Tools | Options | Editing tab, allows existing associations between modeling elements
to be automatically created/displayed in the current diagram. This occurs if the attributes type is
set, and the referenced "type" modeling element is in the current diagram.

Deleting relationships/associations:
1. Click the relationship in the diagram tab, or in the Model Tree.
2. Press the Del. keyboard key.

The dependency is deleted from the diagram and project.

Deleting class associations:
Deleting a class association does not delete the attribute/property that was automatically
generated, from the class!

1. Right click the attribute/property in the class.
2. Select the option "Delete PropertyX" from "ClassX" to delete it.

Creating association qualifiers:
1. Having defined an association between two classes
2. Right click the association line and select New | Qualifier.

Please note that qualifiers are attributes of an association.

150 Creating model relationships Associations, realizations and dependencies

© 2007 Altova GmbHAltova UModel 2007

6.1 Associations, realizations and dependencies

Creating relationships using connection handles:
1. Given two classes in the class diagram,
2. Click the first class to make it the active class.

Connection handles appear on three sides.
3. Move the mouse pointer over the handle on the right border of the class.

A Tooltip appears, informing you of the type of relationship that this handle creates,
Association in this case.

4. Drag to create a connector, and drop it on the second class. The target class is
highlighted if this type of association is possible.
An association has now been created between these two classes.

Elements in the various model diagrams supply you with different connection handles.
E.g. a class in a class diagram supplies the following relationship handles (in clockwise
fashion):
 InterfaceRealization
 Generalization
 Association

An Artifact in the Deployment view supplies the following handles:
 Manifestation
 Association
 Deployment

Creating relationships using icons in the icon bar:
Given two elements in a modeling diagram,

1. Click the icon that represents the relationship you want to create e.g. association,
aggregation, or composition.

2. Drag from the one object to the other, and drop when the target element is highlighted.

When creating a new association, a new attribute is automatically inserted in the
originating (A:name) class, Property1:Class2, in the example below.

UModel always shows all attributes of a class!

Please note:
The screenshots in this manual do not show the Association Ownership dot.

To enable it, set the Show Assoc. Ownership, in the Styles tab, to true.

Deleting relationships/associations:
1. Click the relationship in the diagram tab, or in the Model Tree.

© 2007 Altova GmbH

Associations, realizations and dependencies 151Creating model relationships

Altova UModel 2007

2. Press the Del. keyboard key.
The dependency is deleted from the diagram and project.

Deleting class associations:
Deleting a class association does not delete the attribute/property that was automatically
generated, from the class!

1. Right click the attribute/property in the class.
2. Select the option "Delete PropertyX" from "ClassX" to delete it.

152 Creating model relationships Showing model relationships

© 2007 Altova GmbHAltova UModel 2007

6.2 Showing model relationships

Showing relationships between modeling elements:
1. Right click the specific element and select Show.

The popup menu shown below is context specific, meaning that only those options are
available that are relevant to the specific element.

To show a class attribute/property as an association:
1. Right click the property in the class.

2. Select the menu option Show | "PropertyXX" as Association.
This inserts/opens the referenced class and shows the relevant association.

Chapter 7

Profiles and stereotypes

154 Profiles and stereotypes

© 2007 Altova GmbHAltova UModel 2007

7 Profiles and stereotypes

The Profiles package is used to extend the UML meta model. The primary extension construct
is the Stereotype, which is itself part of the profile. Profiles must always be related to a
reference meta model such as UML, they cannot exist on their own.

The Java Profile.ump (or C# Profile.ump) file needs to be applied when creating new UModel
projects using the menu item Project | Include Subproject. This profile supplies the Java
datatypes and stereotypes, and is essential when creating code for round-trip engineering.

The Bank_CSharp.ump sample file (in the ...\UModelExamples folder) shows how this is
done. The C# profile has been applied to the BankView package.

 Profiles are specific types of packages, that are applied to other packages.
 Stereotypes are specific metaclasses, that extend standard classes.
 "Tagged values" are values of stereotype attributes.

A Profile Application shows which profiles have been applied to a package, and is a type of
package import that states that a Profile is applied to a Package. The Profile extends the

package it has been applied to. Applying a profile, using the ProfileApplication icon , means
that all stereotypes that are part of it, are also available to the package.

Profile names are shown as dashed arrows from the package to the applied profile, along with
the <<apply>> keyword.

Stereotypes:
A stereotype defines how an existing metaclass may be extended. It is a kind of class that
extends Classes through Extensions. Stereotypes can only be created in Profiles. Stereotypes
are displayed as classes, in class diagrams, with the addition of the keyword <<stereotype>>
added above the name of the class.

© 2007 Altova GmbH

 155Profiles and stereotypes

Altova UModel 2007

 Stereotypes may have properties, which are called "tag definitions"
 When the stereotype is applied to a model element, the property values are called "

tagged values"
 When stereotypes containing properties are applied, the tagged values are

automatically displayed in a comment element (shown below). Please see Tagged
values for more info on how to customize the tagged values view

 If the attribute is of type "enumeration", then an popup menu allows you to select from
the predefined values. You can also enter/select the specific value in the Properties tab
e.g. <<GetAccessor>> visibility = public, protected etc.

156 Profiles and stereotypes Adding Stereotypes and defining tagged values

© 2007 Altova GmbHAltova UModel 2007

7.1 Adding Stereotypes and defining tagged values

This section uses the Bank_MultiLanguage.ump file available in the ...\UModelExamples
folder.

Creating a stereotype and defining its attributes
1. Create a new profile in the Model Tree view, e.g. right click the Root package and

select New | Profile and name it "MyProfile".

2. Right click MyProfile and select New Diagram | Class Diagram.
3. Drag the newly created profile "MyProfile", from the Model Tree into the new class

diagram.
4. Drag the DesignView package into the new class diagram as well.

5. Click the ProfileApplication icon in the icon bar, select the DesignView package
and drag the connector onto the MyProfile package.

This allows the stereotypes defined in this profile (MyProfile) to be used in the
DesignView package, or any of its subpackages.

6. Click the stereotype icon in the icon bar and insert a stereotype "class".

© 2007 Altova GmbH

Adding Stereotypes and defining tagged values 157Profiles and stereotypes

Altova UModel 2007

7. Press F7 to add an attribute to the stereotype e.g. MyKey1. Do the same thing to add
MyKey2.

This concludes the definition of the stereotype for the moment. We can now use/assign
the stereotype when adding an attribute to a class which is part of the BankView
package.

Using / assigning stereotypes
1. Double click the BankView Main class diagram icon in the Model Tree.

158 Profiles and stereotypes Adding Stereotypes and defining tagged values

© 2007 Altova GmbHAltova UModel 2007

This opens the class diagram and displays the associations between the various
classes. We now want to add an attribute to the BankView class, and assign/use the
previously defined stereotype.

2. Click the BankView class and press F7 to add an attribute.
3. Use the scrollbar of the Properties tab to scroll to the bottom of the list. Notice that the

MyKeyValuePair stereotype is available in the list box.

4. Click the MyKeyValuePair check box to activate/apply it. The two tagged values
MyKey1 and MyKey2, are now shown under the Stereotype entry.

5. Double click in the respective fields and enter some values.

© 2007 Altova GmbH

Adding Stereotypes and defining tagged values 159Profiles and stereotypes

Altova UModel 2007

Displaying tagged values in a diagram
1. Click the Styles tab, scroll down to the Show Tagged Values entry and select all.

The diagram tab now displays the tagged values in the note element. Double clicking a
value in the note element allows you to edit it directly.

Stereotypes and enumerations
UModel has an efficient method of selecting enumerated values of stereotypes.

Click the diagram tab containing the stereotype definition:

1. Click the Enumeration icon in the icon bar to insert an enumeration in the class
diagram (containing the previously defined stereotype).

2. Add EnumerationLiterals to the enumeration by pressing SHIFT+F7, or use the context
menu, e.g. Yes, No.

160 Profiles and stereotypes Adding Stereotypes and defining tagged values

© 2007 Altova GmbHAltova UModel 2007

3. Click the stereotype "class" and press F7 to add a new attribute/property, e.g. Finished.
4. Select type "My Enum" from the Properties tab.

5. Switch back to the BankView Main class diagram.
6. Property Finished, is now shown as a tagged value in the note element.

Double clicking the Finished tagged value, presents the predefined enumeration values
in a popup. Click one of the enumerations to select it.

Chapter 8

Generating UML documentation

162 Generating UML documentation

© 2007 Altova GmbHAltova UModel 2007

8 Generating UML documentation

The Project | Generate Documentation... command generates detailed documentation about
your UML project in HTML, Microsoft Word, or RTF formats. Note: In order to generate
documentation in MS Word format, you must have MS Word (version 2000 or later) installed.

Note that you can also create partial documentation of modeling elements by right clicking an
element in the Model Tree and selecting "Generate Documentation". The documentation
options are the same in both cases.

Related elements are hyperlinked in the onscreen output, enabling you to navigate from
component to component. Note also that documentation is also generated for included C#
and/or Java subprojects (profiles). Note that documenting subprojects can be disabled by
deselecting the "Included subprojects" check box.

The Embed diagrams option is enabled for the Microsoft Word and RTF output options. When
this option is selected, diagrams are embedded in the generated file. Diagrams are created as
PNG files (for HTML), or PNG/EMF files (for MS Word and RTF), which are displayed in the
result file via object links.

Split output to multiple files generates an output file for each modeling element that would
appear in the TOC overview when generating a single output file e.g. a class C1 with a nested
class CNest exists; C1.html contains all info pertaining to C1 and CNest as well as all their
attributes, properties etc.

The Include tab allows you to select which diagrams and modeling elements are to appear in
the documentation.

© 2007 Altova GmbH

 163Generating UML documentation

Altova UModel 2007

The Details tab allows you to select the element details that are to appear in the
documentation.

164 Generating UML documentation

© 2007 Altova GmbHAltova UModel 2007

The Fonts tab allows you to customize the font settings for the various headers and text
content.

The following screenshots show the generated documentation for the Bank_MultiLanguage.
ump file that is included in the ...\UModelExamples directory.

© 2007 Altova GmbH

 165Generating UML documentation

Altova UModel 2007

The screenshot above shows the generated documentation with the diagram and element index
links at the top of the HTML file. The screenshot below shows the specifics of the Account class
and its relation to other classes.

Note that the individual attributes and properties in the class diagrams are also hyperlinked to
their definitions. Clicking a property takes you to its definition.

166 Generating UML documentation

© 2007 Altova GmbHAltova UModel 2007

Chapter 9

UML Diagrams

168 UML Diagrams

© 2007 Altova GmbHAltova UModel 2007

9 UML Diagrams

There are two major groups of UML diagrams, Structural diagrams, which show the static view
of the model, and Behavioral diagrams, which show the dynamic view. UModel supports all
thirteen diagrams of the UML 2.1.1 specification as well as an additional diagram: XML Schema
diagram.

Behavioral diagrams include Activity, state machine, and use case diagrams as well as the
interaction diagrams Communication Diagram, Interaction Overview Diagram Sequence
Diagram Timing Diagram.

Structural diagrams include: class, composite structure, component, deployment, object, and
package diagrams.

Additional diagrams XML schema diagrams.

© 2007 Altova GmbH

Behavioral Diagrams 169UML Diagrams

Altova UModel 2007

9.1 Behavioral Diagrams

These diagrams depict behavioral features of a system or business process, and include a
subset of diagrams which emphasize object interactions.

Behavioral Diagrams

 Activity Diagram

 State Machine Diagram

 Use Case Diagram

A subset of the Behavioral diagrams are those that depict the object interactions, namely:

 Communication Diagram

 Interaction Overview Diagram

 Sequence Diagram

 Timing Diagram

170 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.1.1 Activity Diagram

Activity diagrams are useful for modeling real-world workflows of business processes, and
display which actions need to take place and what the behavioral dependencies are. The
Activity diagram describes the specific sequencing of activities and supports both conditional
and parallel processing. The Activity diagram is a variant of the State diagram, with the states
being activities.

Please note that the Activity diagram shown in the following section is available in the
Bank_MultiLanguage.ump sample, in the ...\UModelExamples folder supplied with UModel.

© 2007 Altova GmbH

Behavioral Diagrams 171UML Diagrams

Altova UModel 2007

Inserting Activity Diagram elements

Using the toolbar icons:
1. Click the specific activity diagram icon in the Activity Diagram toolbar.
2. Click in the Activity Diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the activity diagram:
Most elements occurring in other activity diagrams, can be inserted into an existing activity
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the activity diagram.

Inserting an action (CallBehavior):

1. Click the Action (CallBehavior) icon in the icon bar, and click in the Activity
diagram to insert it.

2. Enter the name of the Action, e.g. Validate References, and press Enter to confirm.

Inserting an action (CallOperation) and selecting a specific operation:

1. Click the Action (CallOperation) icon in the icon bar, and click in the Activity
diagram to insert it.

2. Enter the name of the Action, e.g. collectAccountInfo, and press Enter to confirm.
3. Click the Browse button to the right of the operation field in the Properties tab.

172 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

This opens the "Select Operation" dialog box in which you can select the specific
operation.

4. Navigate to the specific operation that you want to insert, and click OK to confirm.

In this example the operation "collectAccountInfos" is in the BankView class.

© 2007 Altova GmbH

Behavioral Diagrams 173UML Diagrams

Altova UModel 2007

Creating branches and merges

Creating a branch (alternate flow)
A branch has a single incoming flow and multiple outgoing guarded flows. Only one of the
outgoing flows can be traversed, so the guards should be mutually exclusive.

In this example the (BankView) references are to be validated:
 branch1 has the guard "reference missing", which transitions to the abort activity
 branch2 has the guard "valid", which transitions to the collectAccountInfos activity.

1. Click the DecisionNode icon in the title bar, and insert it in the Activity diagram.

2. Click the ActivityFinalNode icon which represents the abort activity, and insert it
into the Activity diagram.

3. Click the Validate References activity to select it, then click the right-hand handle,
ControlFlow, and drag the resulting connector onto the DecisionNode element.

The element is highlighted when you can drop the connector.
4. Click the DecisionNode element, click the right-hand connector, ControlFlow, and drop

it on the collectAccountInfos action. Please see "Inserting an Action (CallOperation" for
more information.

174 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

5. Enter the guard condition "valid", in the guard field of the Properties tab.

6. Click the DecisionNode element and drag from the right-hand handle, ControlFlow,
and drop it on the ActivityFinalNode element.
The guard condition on this transition is automatically defined as "else". Double click the
guard condition in the diagram to change it e.g. "reference missing".

Please note that UModel does not validate, or check, the number of Control/Object Flows in a
diagram.

Creating a merge:

© 2007 Altova GmbH

Behavioral Diagrams 175UML Diagrams

Altova UModel 2007

1. Click the MergeNode icon in the icon bar, then click in the Activity diagram to
insert it.

2. Click the ControlFlow (ObjectFlow) handles of the actions that are to be merged, and
drop the arrow(s) on the MergeNode symbol.

Diagram elements

 Action (CallBehavior)
Inserts the Call Behavior Action element which directly invokes a specific behavior.
Selecting an existing behavior using the behavior combo box, e.g. HandleDisplayException,
and displays a rake symbol within the element.

 Action (CallOperation)
Inserts the Call Operation Action which indirectly invokes a specific behavior as a method.
Please see "Inserting an action (CallOperation)" for more information.

 AcceptEventAction
Inserts the Accept Event action which waits for the occurrence of an event which meets specific
conditions.

176 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

 AcceptEventAction (TimeEvent)
Inserts a AcceptEvent action, triggered by a time event, which specifies an instant of time by an
expression e.g. 1 sec. since last update.

 SendSignalAction
Inserts the Send Signal action, which creates a signal from its inputs and transmits the signal to
the target object, where it may cause the execution of an activity.

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded
transitions. Please see "Creating a branch" for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node.
The Merge Node does not synchronize concurrent processes, but selects one of the processes.

© 2007 Altova GmbH

Behavioral Diagrams 177UML Diagrams

Altova UModel 2007

 InitialNode
The beginning of the activity process. An activity can have more than one initial node.

 ActivityFinalNode
The end of the activity process. An activity can have more that one final node, all flows in the
activity stop when the "first" final node is encountered.

 FlowFinalNode
Inserts the Flow Final Node, which terminates a flow. The termination does not affect any other
flows in the activity.

 ForkNode
Inserts a vertical Fork node.
Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node.
Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

 Join Node (horizontal)
Inserts a horizontal Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

 InputPin
Inserts an input pin onto a Call Behavior, or Call Operation action. Input pins supply input values
that are used by an action. A default name, "argument", is automatically assigned to an input
pin.

The input pin symbol can only be placed onto those activity elements where the mouse pointer

changes to the hand symbol . Dragging the symbol repositions it on the element border.

 OutputPin
Inserts an output pin action. Output pins contain output values produced by an action. A name
corresponding to the UML property of that action e.g. result, is automatically assigned to the
output pin.

178 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

The output pin symbol can only be placed onto those activity elements where the mouse pointer

changes to the hand symbol . Dragging the symbol repositions it on the element border.

 ValuePin
Inserts a Value Pin which is an input pin that provides a value to an action, that does not come
from an incoming object flow. It is displayed as an input pin symbol, and has the same
properties as an input pin.

 CentralBufferNode
Inserts a Central Buffer Node which acts as a buffer for multiple in- and out flows from other
object nodes.

 DataStoreNode
Inserts a Data Store Node which is a special "Central Buffer Node" used to store persistent (i.e.
non transient) data.

 ActivityPartition (horizontal)
Inserts a horizontal Activity Partition, which is a type of activity group used to identify actions that
have some characteristic in common. This often corresponds to organizational units in a
business model.

Double clicking a label allows you to edit it directly; pressing Enter orients the text correctly.

Please note that Activity Partitions are the UML 2.0 update to the "swimlane" functionality of
previous UML versions.

 ActivityPartition (vertical)
Inserts a vertical Activity Partition, which is a type of activity group used to identify actions that
have some characteristic in common. This often corresponds to organizational units in a
business model.

© 2007 Altova GmbH

Behavioral Diagrams 179UML Diagrams

Altova UModel 2007

 ActivityPartition (2 Dimensional)
Inserts a two dimensional Activity Partition, which is a type of activity group used to identify
actions that have some characteristic in common. Both axes have editable labels.

To remove the Dim1, Dim2 dimension labels:
1. Click the dimension label you want to remove e.g. Dim1
2. Double click in the Dim1 entry in the Properties tab, delete the Dim1 entry, and press

Enter to confirm.

Note that Activity Partitions can be nested:
1. Right click the label where you want to insert a new partition.
2. Select New | ActivityPartition.

180 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two activities/behaviours, and
starts an activity after the previous one has been completed.

 ObjectFlow
A Object Flow is an edge, i.e. an arrowed line, that connects two actions/object nodes, and
starts an activity after the previous one has been completed. Objects or data can be passed
along an Object Flow.

 ExceptionHandler
An Exception Handler is an element that specifies what action is to be executed if a specified
exception occurs during the execution of the protected node.

© 2007 Altova GmbH

Behavioral Diagrams 181UML Diagrams

Altova UModel 2007

An Exception Handler can only be dropped on an Input Pin of an Action.

 Activity
Inserts an Activity into the activity diagram.

 ActivityParameterNode
Inserts an Activity Parameter node onto an activity. Clicking anywhere in the activity places the
parameter node on the activity boundary.

 StructuredActivityNode

182 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

Inserts a Structured Activity Node which is a structured part of the activity, that is not shared
with any other structured node.

 ExpansionRegion
An expansion region is a region of an activity having explicit input and outputs (using
ExpansionNodes). Each input is a collection of values.

The expansion region mode is displayed as a keyword, and can be changed by clicking the
"mode" combo box in the Properties tab. Available settings are:parallel, iterative, or stream.

 ExpansionNode
Inserts an Expansion Node onto an Expansion Region. Expansion nodes are input and output
nodes for the Expansion Region, where each input/output is a collection of values. The arrows
into, or out of, the expansion region, determine the specific type of expansion node.

© 2007 Altova GmbH

Behavioral Diagrams 183UML Diagrams

Altova UModel 2007

 InterruptableActivityRegion
An interruptible region contains activity nodes. When a control flow leaves an interruptible
region all flows and behaviors in the region are terminated.

To add an interrupting edge:
Making sure that:
 an Action element is present in the InterruptableActivityRegion, as well as an outgoing

Control Flow to another action:

1. Right click the Control Flow arrow, and select New | InterruptingEdge.

Please note:
You can also add an InterrupingEdge by clicking the InterruptableActivityRegion, right
clicking in the Properties window, and selecting Add InterruptingEdge from the pop-up
menu.

184 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.1.2 State Machine Diagram

The State Machine Diagram models the behavior of a system by describing the various states
an object may be in, and the transitions between those states. They are generally used to
describe the behavior of an object spanning several use cases. A state machine can have any
number of State Machine Diagrams (or State Diagrams) UModel.

Two types of processes can achieve this:
Actions, which are associated to transitions, are short-term processes that cannot be
interrupted. E.g. an initial transition, internal error /notify admin.

State Activities (behaviors), which are associated to states, are longer-term processes that
may be interrupted by other events. E.g. listen for incoming connections.

Please note that the State machine diagrams shown in the following section are available in the
Bank_MultiLanguage.ump sample, in the ...\UModelExamples folder supplied with UModel.

Inserting state machine diagram elements

Using the toolbar icons:
1. Click the specific state machine diagram icon in the State Machine Diagram toolbar.

© 2007 Altova GmbH

Behavioral Diagrams 185UML Diagrams

Altova UModel 2007

2. Click in the State Diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the state machine diagram:
Most elements occurring in other state machine diagrams, can be inserted into an existing state
machine.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the state diagram.

Creating states, activities and transitions

To insert a simple state:

1. Click the state icon in the icon bar and click in the State diagram to insert it.
2. Enter the name of the state and press Enter to confirm.

Simple states do not have any regions or any other type of substructure. UModel allows
you to add activities as well as regions to a simple state through the context menu.

To add an activity to a state:
1. Right click the state element, select New, and then one of the entries from the context

menu.

You can select one action from the Do, Entry and Exit action categories. Activities are
placed in their own compartment in the state element, though not in a separate region.
The type of activity that you select is used as a prefix for the activity e.g. entry / store
current time.

186 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

To delete an activity:
1. Click the respective activity in the state element and press the Del. key.

To create a transition between two states:
1. Click the Transition handle of the source state (on the right of the element).
2. Drag-and-drop the transition arrow onto the target state.

The Transition properties are now visible in the Properties tab. Clicking the "kind"
combo box, allows you to define the transition type: external, internal or local.

Transitions can have an event trigger, a guard condition and an action in the form
eventTrigger [guard condition] /activity.

To create a transition trigger:
1. Right click a previously created transition (arrow).

© 2007 Altova GmbH

Behavioral Diagrams 187UML Diagrams

Altova UModel 2007

2. Select New | Trigger.

An "a" character appears in the transition label above the transition arrow, if it is the first
trigger in the state diagram. Triggers are assigned default values of the form alphabetic
letter, source state -> target state.

3. Double click the new character and enter the transition properties in the form
eventTrigger [guard condition] /activity.

Transition property syntax; the text entered before the square brackets is the trigger,
between brackets the guard condition, and after the slash, the activity. Manipulating this
string automatically creates or deletes the respective elements in the Model Tree.

Please note:
To see the individual transition properties, right click the transition (arrow) and select
"Select in Model Tree". The event, activity and constraint elements are all shown below
the selected transition.

Adding an Activity diagram to a transition:
UModel has the unique capability of allowing you to add an Activity diagram to a transition, to
describe the transition in more detail.

1. Right click a transition arrow in the diagram, and select New | Activity Diagram.
This inserts an Activity diagram window into the diagram at the position of the transition
arrow.

2. Click the inserted window to make it active. You can now use the scroll bars to scroll
within the window.

3. Double click the Action window to switch into the Activity diagram and further define the

188 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

transition, e.g. change the Action name to Database logon.

Note that a new Activity Diagram tab has now been added to the project. You can add
any activity modeling elements to the diagram, please see "Activity Diagram" for more
information.

4. Click the State Machine Diagram tab to switch back to see the update transition.

5. Drag the Activity window to reposition it in the diagram, and click the resize handle if
necessary.

© 2007 Altova GmbH

Behavioral Diagrams 189UML Diagrams

Altova UModel 2007

Dragging the Activity window between the two states, displays the transition in and out
of the activity.

Composite states

 Composite state
This type of state contains a second compartment comprised of a single region. Any number of
states may be placed within this region.

To add a region to a composite state:
1. Right click the composite state and select New | Region from the context menu.

A new region is added to the state. Regions are divided by dashed lines.

To delete a region:
1. Click the region you want to delete in the composite state and press the Del. key.

Deleting a region of an orthogonal state reverts it back to a composite state; deleting
the last region of a composite state changes it back to a simple state.

To place a state within a composite state:
1. Click the state element you want to insert (e.g. Logging in User), and drop it into the

region compartment of the composite state.

190 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

The region compartment is highlighted when you can drop the element. The inserted
element is now part of the region, and appears as a child element of the region in the
Model Tree pane.

Moving the composite state moves all contained states along with it.

 Orthogonal state
This type of state contains a second compartment comprised of two or more regions, where the
separate regions indicate concurrency.

Right clicking a state and selecting New | Region allows you add new regions.

 Submachine state
This state is used to hide details of a state machine. This state does not have any regions but is
associated to a separate state machine.

To define a submachine state:
1. Having selected a state, click the submachine combo box in the Properties tab.

A list containing the currently defined state machines appears.
2. Select the state machine that you want this submachine to reference.

© 2007 Altova GmbH

Behavioral Diagrams 191UML Diagrams

Altova UModel 2007

To add entry / exit points to a submachine state:

 The state which the point is connected to, must itself reference a submachine State
Machine (visible in the Properties tab).

 This submachine must contain one or more Entry and Exit points

1. Click the ConnectionPointReference icon in the title bar, then click the
submachine state that you want to add the entry/exit point to.

2. Right click in the Properties tab and select Add entry. Please note that another Entry, or
Exit Point has to exist elsewhere in the diagram to enable this pop-up menu.

This adds an EntryPoint row to the Properties tab, and changes the appearance of the
ConnectionPointReferece element.

192 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

3. Use the same method to insert an ExitPoint, by selecting "Add exit" from the context
menu.

Diagram elements

 InitialState (pseudostate)
The beginning of the process.

 FinalState
The end of the sequence of processes.

 EntryPoint (pseudostate)
The entry point of a state machine or composite state.

 ExitPoint (pseudostate)
The exit point of a state machine or composite state.

 Choice
This represents a dynamic conditional branch, where mutually exclusive guard triggers are
evaluated (OR operation).

 Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

 Terminate (pseudostate)
The halting of the execution of the state machine.

 Fork (pseudostate)
Inserts a vertical Fork bar.
Used to divide sequences into concurrent subsequences.

 Fork horizontal (pseudostate)
Inserts a horizontal Fork bar.
Used to divide sequences into concurrent subsequences.

 Join (pseudostate)

© 2007 Altova GmbH

Behavioral Diagrams 193UML Diagrams

Altova UModel 2007

Joins/merges previously defined subsequences. All activities have to be completed before
progress can continue.

 Join horizontal (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before
progress can continue.

 DeepHistory
A pseudostate that restores the previously active state within a composite state.

 ShallowHistory
A pseudostate that restores the initial state of a composite state.

All pseudostate elements can be changed to a different "type", by changing the kind combo box
entry in the Properties tab.

 ConnectionPointReference
A connection point reference represents a usage (as part of a submachine state) of an
entry/exit point defined in the
statemachine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

 The state which the point is connected to, must itself reference a submachine State
Machine (visible in the Properties tab).

 This submachine must contain one or more Entry and Exit points

 Transition
A direct relationship between two states. An object in the first state performs one or more
actions and then enters the second state depending on an event and the fulfillment of any guard
conditions.

Transitions have an event trigger, guard condition(s), an action (behavior), and a target state.

194 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.1.3 Use Case Diagram

Please see the Use Cases section in the tutorial for more information on how to add use case
elements to the diagram.

© 2007 Altova GmbH

Behavioral Diagrams 195UML Diagrams

Altova UModel 2007

9.1.4 Communication Diagram

Communication diagrams display the interactions i.e. message flows, between objects at run-
time, and show the relationships between the interacting objects. Basically, they model the
dynamic behavior of use cases.

Communication diagrams are designed in the same way as sequence diagrams, except that the
notation is laid out in a different format. Message numbering is used to indicate message
sequence and nesting.

UModel allows you to generate Communication diagrams from Sequence diagrams and vice
versa, in one simple action see "Generating Sequence diagrams" for more information.

Inserting Communication Diagam elements

Using the toolbar icons:
1. Click the specific communication icon in the Communication Diagram toolbar.

2. Click in the Communication diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Communication Diagram:
Elements occurring in other diagrams, e.g. classes, can be inserted into a Communication
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the Communication diagram.

Lifeline
The lifeline element is an individual participant in an interaction. UModel allows you to insert
other elements into the sequence diagram, e.g. classes. Each of these elements then appear
as a new lifeline. You can redefine the lifeline colors/gradient using the "Header Gradient"
combo boxes in the Styles tab.

196 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

To insert a Communication lifeline:
1. Click the Lifeline icon in the title bar, then click in the Communication diagram to insert

it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.

Messages
A Message is a modeling element that defines a specific kind of communication in an
interaction. A communication can be e.g. raising a signal, invoking an Operation, creating or
destroying an instance. The message specifies the type of communication as well as the sender
and the receiver.

 Message (Call) Message (Reply) Message (Creation) Message
(Destruction)

To insert a message:
1. Click the specific message icon in the toolbar.
2. Drag and drop the message line onto the receiver objects.

Lifelines are highlighted when the message can be dropped.

Note: holding down the CTRL key allows you to insert a message with each click.

To insert additional messages:
1. Right click an existing communication link and select New | Message.

© 2007 Altova GmbH

Behavioral Diagrams 197UML Diagrams

Altova UModel 2007

 The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

 Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

Message numbering
The Communication diagram uses the decimal numbering notation, which makes it easy to see
the hierarchical structure of the messages in the diagram. The sequence is a dot-separated list
of sequence numbers followed by a colon and the message name.

Generating Sequence diagrams from Communication diagrams:
UModel allows you to generate Communication diagrams from Sequence diagrams and vice
versa, in one simple action:

 Right click anywhere in a Communication diagram and select Generate Sequence Diagram
from the context menu.

198 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.1.5 Interaction Overview Diagram

Interaction Overview Diagrams are a variant of Activity diagrams and give an overview of the
interaction between other interaction diagrams such as Sequence, Activity, Communication, or
Timing diagrams. The method of constructing a diagram is similar to that of Activity diagram
and uses the same modeling elements: start/end points, forks, joins etc.

Two types of interaction elements are used instead of activity elements: Interaction elements
and Interaction use elements.

Interaction elements are displayed as iconized versions of a Sequence, Communication,
Timing, or Interaction Overview diagram, enclosed in a frame with the "SD" keyword displayed
in the top-left frame title space.

Interaction occurrence elements are references to existing Interaction diagrams with "Ref"
enclosed in the frame's title space, and the occurrence's name in the frame.

Inserting Interaction Overview elements

Using the toolbar icons:
1. Click the specific icon in the Interaction Overview Diagram toolbar.

© 2007 Altova GmbH

Behavioral Diagrams 199UML Diagrams

Altova UModel 2007

2. Click in the diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Interaction Overview Diagram:
Elements occurring in other diagrams, e.g. Sequence, Activity, Communication, or Timing
diagrams can be inserted into a Interaction Overview diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the diagram.

Inserting an Interaction element:

1. Click the CallBehaviorAction (Interaction) icon in the icon bar, and click in the
Interaction Overview diagram to insert it.

The Collect Account Information sequence diagram is automatically inserted if you are
using the Bank_Multilanguage.ump example file from the ...\UModelExamples folder.
The first sequence diagram, found in the model tree, is selected per default.

2. To change the default interaction element: Click the behavior/diagram combo box in
the Properties tab.
A list of all the possible elements that can be inserted is presented.

200 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

3. Click the element you want to insert to e.g. Connect to BankAPI.

As this is also a sequence diagram, the Interaction element appears as an iconized
version of the sequence diagram.
If you select <ref> BankAPI, then the Interaction element occurrence is displayed.

Inserting an Interaction element occurrence:

1. Click the CallBehaviorAction (InteractionUse) icon in the icon bar, and click in the
Interaction Overview diagram to insert it.

© 2007 Altova GmbH

Behavioral Diagrams 201UML Diagrams

Altova UModel 2007

Collect Account Information is automatically inserted as a Interaction occurrence
element, if you are using the Bank_Multilanguage.ump example file from the ...\
UModelExamples folder. The first existing sequence diagram is selected per default.

2. To change the Interaction element: double click the behavior combo box in the
Properties tab.
A list of all the possible elements that can be inserted is presented.

3. Select the occurrence you want to insert.
Note that all elements inserted using this method appear in the form shown in the
screenshot above i.e. with "ref" in the frame's title space.

 DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded
transitions. Please see "Creating a branch" for more information.

 MergeNode
Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node.
The Merge Node does not synchronize concurrent processes, but selects one of the processes.

 InitialNode
The beginning of the activity process. An interaction can have more than one initial node.

 ActivityFinalNode
The end of the interaction process. An interaction can have more that one final node, all flows
stop when the "first" final node is encountered.

 ForkNode
Inserts a vertical Fork node.
Used to divide flows into multiple concurrent flows.

 ForkNode (Horizontal)
Inserts a horizontal Fork node.
Used to divide flows into multiple concurrent flows.

 JoinNode
Inserts a vertical Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

202 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

 Join Node (horizontal)
Inserts a horizontal Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

 AddDurationConstraint
A Duration defines a ValueSpecification that denotes a duration in time between a start and
endpoint. A duration is often an expression representing the number of clock ticks, which may
elapse during this duration.

 ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two behaviours, and starts an
interaction after the previous one has been completed.

© 2007 Altova GmbH

Behavioral Diagrams 203UML Diagrams

Altova UModel 2007

9.1.6 Sequence Diagram

UModel supports the standard Sequence diagram defined by UML, and allows easy
manipulation of objects and messages to model use case scenarios. Please note that the
sequence diagrams shown in the following sections are only available in the Bank_Java.ump,
Bank_CSharp.ump and Bank_MultiLanguage.ump samples, in the ...\UModelExamples
folder supplied with UModel.

Inserting sequence diagram elements

A sequence diagram models runtime dynamic object interactions, using messages. Sequence
diagrams are generally used to explain individual use case scenarios.

 Lifelines are the horizontally aligned boxes at the top of the diagram, together with a
dashed vertical line representing the object's life during the interaction. Messages are

204 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

shown as arrows between the lifelines of two or more objects.

 Messages are sent between sender and receiver objects, and are shown as labeled
arrows. Messages can have a sequence number and various other optional attributes:
argument list etc. Conditional, optional, and alternative messages are all supported.
Please see Combined Fragment for more information.

Sequence diagram and other UModel elements, can be inserted into a sequence diagram using
several methods.

Using the toolbar icons:
1. Click the specific sequence diagram icon in the Sequence Diagram toolbar.
2. Click in the Sequence diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the sequence diagram:
Most classifier types, as well as elements occurring in other sequence diagrams, can be
inserted into an existing sequence diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL+F, to search for any element).

2. Drag the element(s) into the sequence diagram.

Lifeline

Lifeline

© 2007 Altova GmbH

Behavioral Diagrams 205UML Diagrams

Altova UModel 2007

The lifeline element is an individual participant in an interaction. UModel also allows you to
insert other elements into the sequence diagram, e.g. classes and actors. Each of these
elements appear as a new lifeline once they have been dragged into the diagram pane from the
Model Tree tab.

The lifeline label appears in a bar at the top of the sequence diagram. Labels can be
repositioned and resized in the bar, with changes taking immediate effect in the diagram tab.
You can also redefine the label colors/gradient using the "Header Gradient" combo boxes in the
Styles tab.

Most classifier types can be inserted into the sequence diagram. The "represents" field in the
Properties tab displays the element type that is acting as the lifeline.

Execution Specification (Object activation):
An execution specification (activation) is displayed as a box (rectangle) on the object lifeline. An
activation is the execution of a procedure and the time needed for any nested procedures to
execute. Activation boxes are automatically created when a message is created between two
lifelines.

A recursive, or self message (one that calls a different method in the same class) creates
stacked activation boxes.

Displaying/hiding activation boxes:
1. Click the Styles tab and scroll to the bottom of the list.

The "Show Execution Specifications" combo box allows you to show/hide the
activation boxes in the sequence diagram.

Lifeline attributes:
The destruction check box allows you to add a destruction marker, or stop, to the lifeline
without having to use a destruction message.

The selector field allows you to enter an expression that specifies the particular part
represented by the lifeline, if the ConnectableElement is multivalued, i.e. has a multiplicity
greater than one.

Combined Fragment

CombinedFragment

206 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

Combined fragments are subunits, or sections of an interaction. The interaction operator
visible in the pentagon at top left, defines the specific kind of combined fragment. The constraint
thus defines the specific fragment, e.g. loop fragment, alternative fragment etc. used in the
interaction.

The combined fragment icons in the icon bar, allow you to insert a specific combined fragment:
seq, alt or loop. Clicking the interactionOperator combo box, also allows you to define the
specific interaction fragment.

InteractionOperators

Weak sequencing seq

The combined fragment represents weak sequencing between the behaviours of the operands.

Alternatives alt
Only one of the defined operands will be chosen, the operand must have a guard expression

© 2007 Altova GmbH

Behavioral Diagrams 207UML Diagrams

Altova UModel 2007

that evaluates to true.

If one of the operands uses the guard "else", then this operand is executed if all other guards
return false. The guard expression can be entered immediately upon insertion, will appear
between the two square brackets.

The InteractionConstraint is actually the guard expression between the square brackets.

Option opt
Option represents a choice where either the sole operand is executed, or nothing happens.

Break break
The break operator is chosen when the guard is true, the rest of the enclosing fragment is
ignored.

Parallel par
Indicates that the combined fragment represents a parallel merge of operands.

Strict sequencing strict
The combined fragment represents a strict sequencing between the behaviours of the
operands.

Loop loop
The loop operand will be repeated by the number of times defined in the guard expression.

Having selected this operand, you can directly edit the expression (in the loop pentagon) by
double clicking.

Critical Region critical
The combined fragment represents a critical region. The sequence(s) may not be interrupted/
interleaved by any other processes.

Negative neg
Defines that the fragment is invalid, and all others are considered to be valid.

208 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

Assert assert
Designates the valid combined fragment, and its sequences. Often used in combination with
consider, or ignore operands.

Ignore ignore
Defines which messages should be ignored in the interaction. Often used in combination with
assert, or consider operands.

Consider consider
Defines which messages should be considered in the interaction.

Adding InteractionOperands to a combined fragment:
1. Right click the combined fragment and select New | InteractionOperand.

The text cursor is automatically set for you to enter the guard condition.
2. Enter the guard condition e.g. !passwordOK and press Enter to confirm.

3. Use the same method to add the second interaction operand with the guard condition
"else".
Dashed lines separate the individual operands in the fragment.

Deleting InteractionOperands:
1. Double click the guard expression in the combined fragment element, of the diagram

(not in the Properties tab).
2. Delete the guard expression completely, and press Enter to confirm.

The guard expression/interaction operand is removed and the combined fragment is
automatically resized.

Interaction Use

InteractionUse
The InteractionUse element is a reference to an interaction element. This element allows you to
share portions of an interaction between several other interactions.

© 2007 Altova GmbH

Behavioral Diagrams 209UML Diagrams

Altova UModel 2007

Clicking the "refersTo" combo box, allows you to select the interaction that you want to refer to.
The name of the interaction use you select, appears in the element.

Please note:
You can also drag an existing Interaction Use element from the Model Tree into the
diagram tab.

Gate

Gate
A gate is a connection point which allows messages to be transmitted into, and out of,
interaction fragments. Gates are connected using messages.

1. Insert the gate element into the diagram.
2. Create a new message and drag from the gate to a lifeline, or drag from a lifeline and

drop onto a gate.
This connects the two elements. The square representing the gate is now smaller.

210 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

State Invariant

StateInvariant
A StateInvariant is a condition, or constraint applied to a lifeline. The condition must be fulfilled
for the lifeline to exist.

To define a StateInvariant:
1. Click the State invariant icon, then click a lifeline, or an object activation to insert it.
2. Enter the condition/constraint you want to apply, e.g. accountAmount > 0, and press

Enter to confirm.

Messages

Messages are sent between sender and receiver lifelines, and are shown as labeled arrows.
Messages can have a sequence number and various other optional attributes: argument list
etc. Messages are displayed from top to bottom, i.e. the vertical axis is the time component of
the sequence diagram.

 A call is a synchronous, or asynchronous communication which invokes an operation
that allows control to return to the sender object. A call arrow points to the top of the
activation that the call initiates.

 Recursion, or calls to another operation of the same object, are shown by the stacking
of activation boxes (Execution Specifications).

To insert a message:
1. Click the specific message icon in the Sequence Diagram toolbar.
2. Click the lifeline, or activation box of the sender object.
3. Drag and drop the message line onto the receiver objects lifeline or activation box.

Object lifelines are highlighted when the message can be dropped.

 The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

 Activation box(es) are automatically created, or adjusted in size, on the sender/receiver
objects. You can also manually size them by dragging the sizing handles.

 Depending on the message numbering settings you have enabled, the numbering
sequence is updated.

 Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

To delete a message:
1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from

diagram".
The message numbering and activation boxes of the remaining objects are updated.

To position dependent messages:

© 2007 Altova GmbH

Behavioral Diagrams 211UML Diagrams

Altova UModel 2007

1. Click the respective message and drag vertically to reposition it.
The default action when repositioning messages, is it to move all dependent messages
related to the active one.

Using CTRL+ click, allows you to select multiple messages.

To position messages individually:

1. Click the "Toggle dependent message movement" icon to deselect it.
2. Click the message you want to move and drag to move it.

Only the selected message moves during dragging. You can position the message
anywhere in the vertical axis between the object lifelines.

To automatically create reply messages:

1. Click the "Toggle automatic creation of replies for messages" icon .
2. Create a new message betwween two lifelines.

A reply message is automatically inserted for you.

Message numbering:
UModel supports different methods of message numbering: nested, simple and none.

 None removes all message numbering.

 Simple assigns a numerical sequence to all messages from top to bottom i.e. in
the order that they occur on the time axis.

 Nested uses the decimal notation, which makes it easy to see the hierarchical
structure of the messages in the diagram. The sequence is a dot-separated list of
sequence numbers followed by a colon and the message name.

To select the message numbering scheme:
There are two methods of selecting the numbering scheme:
 Click the respective icon in the icon bar.
 Use the Styles tab to select the scheme.

To select the numbering scheme using the Styles tab:
1. Click the Styles tab and scroll down to the Message Numbering field.
2. Click the combo box and select the numbering option you want to use.

The numbering option you select is immediately displayed in the sequence diagram.

Please note:
The numbering scheme might not always correctly number all messages, if ambiguous
traces exist. If this happens, adding return messages will probably clear up any
inconsistencies.

Message replies:
Message reply icons are available to create reply messages, and are displayed as dashed
arrows.

212 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

Reply messages are also generally implied by the bottom of the activation box when activation
boxes are present. If activation boxes have been disabled (Styles tab | Show Execution
Specifics=false), then reply arrows should be used for clarity.

Creating objects with messages:
1. Messages can create new objects. This is achieved using the Message Creation icon

.
2. Drag the message arrow to the lifeline of an existing object to create that object.

This type of message ends in the middle of an object rectangle, and often repositions
the object box vertically.

Sending messages to specific class methods/operations in sequence diagrams
Having inserted a class from the Model Tree into a sequence diagram, you can then create a
message from a lifeline to a specific method of the receiver class (lifeline) using UModel's
syntax help and autocompletion functions.

1. Create a message between two lifelines, the receiving object being a class lifeline
(Bank)
As soon as you drop the message arrow, the message name is automatically
highlighted.

2. Enter a character using the keyboard e.g. "b".
A pop-up window containing a list of the existing class methods is opened.

3. Select an operation from the list, and press Enter to confirm e.g. collectAccountInfos.

© 2007 Altova GmbH

Behavioral Diagrams 213UML Diagrams

Altova UModel 2007

4. Press the spacebar and press Enter to select the parenthesis character that is
automatically supplied.
A syntax helper popup now appears, allowing you to enter the parameter correctly.

Message icons:

Message (Call)

Message (Reply)

Message (Creation)

Message (Destruction)

Asynchronous Message (Call)

Asynchronous Message (Reply)

Asynchronous Message (Destruction)

Toggle dependent message movement

Toggle automatic creation of replies for messages

214 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.1.7 Timing Diagram

Timing diagrams depict the changes in state, or condition, of one or more interacting objects
over a given period of time. States, or conditions, are displayed as timelines responding to
message events, where a lifeline represents a Classifier Instance or Classifier Role.

A Timing diagram is a special form of a sequence diagram. The difference is that the axes are
reversed i.e. time increases from left to right, and lifelines are shown in separate vertically
stacked compartments.

Timing diagrams are generally used when designing embedded software or real-time systems.

There are two different types of timing diagram: one containing the State/Condition timeline as
shown above, and the other, the General value lifeline, shown below.

Inserting Timing Diagram elements

Using the toolbar icons:
1. Click the specific timing icon in the Timing Diagram toolbar.

© 2007 Altova GmbH

Behavioral Diagrams 215UML Diagrams

Altova UModel 2007

2. Click in the Timing Diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the timing machine diagram:
Elements occurring in other diagrams, e.g. classes, can be inserted into an Timing Diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the state diagram.

Lifeline

 or Lifeline
The lifeline element is an individual participant in an interaction, and is available in two different
representations: State/Condition timeline or General Value lifeline.

To insert a State Condition (StateInvariant) lifeline and define state changes:

1. Click the Lifeline (State/Condition) icon in the title bar, then click in the Timing
Diagram to insert it.

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.
3. Place the mouse cursor over a section of one of the timelines and click left. This selects

the line.
4. Move the mouse pointer to the position you want a state change to occur, and click

again.

Note that you will actually see the double headed arrow when you do this.

A red box appears at the click position and divides the line at this point.
5. Move the cursor to the right hand side of the line and drag the line upwards.

Note that lines can only be moved between existing states of the current lifeline.

Any number of state changes can be defined per lifeline. Once the red box appears on

216 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

a line, clicking anywhere else in the diagram deletes it.

To add a new state to the lifeline:
1. Right click the lifeline and select New | State/Condition (StateInvariant).

A new State e.g. State3 is added to the lifeline.

To move a state within a lifeline:
1. Click the state label that you want to move.
2. Drag it to a different position in the lifeline.

To delete a state from a lifeline:
1. Click the state and press the Del. key, or alternatively, right click and select Delete.

To switch between timing diagram types:
1. Click the "toggle notation" icon at the bottom right of the lifeline.

This changes the display to the General Value lifeline, the cross-over point represents a
state/value change.

Please note that clicking the Lifeline (General Value) icon , inserts the lifeline as
shown above. You can switch between the two representations at any time.

To add a new state to the General value lifeline:
1. Right click the lifeline and select New | State/Condition (StateInvariant).
2. Edit the new name e.g. State3, and press Enter to confirm.

A new State is added to the lifeline.

Grouping lifelines
Placing, or stacking lifelines, automatically positions them correctly and preserves any tick
marks that might have been added. Messages can also be created between separate lifelines

© 2007 Altova GmbH

Behavioral Diagrams 217UML Diagrams

Altova UModel 2007

by dragging the respective message object.

Tick Mark

 TickMark
The tick mark is used to insert the tick marks of a timing ruler scale onto a lifeline.

To insert a TickMark:
1. Click the tick mark icon and click on the lifeline to insert it.

2. Insert multiple tick marks by holding down the CTRL key and repeatedly clicking at
different positions on the lifeline border.

3. Enter the tick mark label in the field provided for it.
Drag tick marks to reposition them on the lifeline.

To evenly space tick marks on a lifeline:
1. Use the marque, by dragging in the main window, to mark the individual tick marks.

2. Click the Space Across icon in the icon bar.

218 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

Event/Stimulus

Event / Stimulus
The Event/Stimulus ExecutionEvent is used to show the change in state of an object caused by
the respective event or stimulus. The received events are annotated to show the event causing
the change in condition or state.

To insert an Event/Stimulus:
1. Click the Event/Stimulus icon, then click the specific position in the timeline where the

state change takes place.

2. Enter a name for the event, in this example the event is "Code".
Note that the event properties are visible in the Properties tab.

DurationConstraint

DurationConstraint
A Duration defines a ValueSpecification that denotes a duration in time between a start and
endpoint. A duration is often an expression representing the number of clock ticks, which may
elapse during this duration.

To insert an DurationConstraint:
1. Click the DurationConstraint icon, then click the specific position on the lifeline where

the constraint is to be displayed.

The default minimum and maximum values, "d..t", are automatically supplied. These
values can be edited by double clicking the time constraint, or by editing the values in
the Properties window.

2. Use the "handles" to resize the object if necessary.

© 2007 Altova GmbH

Behavioral Diagrams 219UML Diagrams

Altova UModel 2007

Changing the orientation of the DurationConstraint:
1. Click the "Flip" icon to orient the constraint vertically.

TimeConstraint

TimeConstraint
A TimeConstraint is generally shown as graphical association between a TimeInterval and the
construct that it constrains. Typically this graphical association between an EventOccurrence
and a TimeInterval.

To insert a TimeConstraint:
1. Click the TimeConstraint icon, then click the specific position on the lifeline where the

constraint is to be displayed.

The default minimum and maximum values are automatically supplied, "d..t"
respectively. These values can be edited by double clicking the time constraint, or by
editing the values in the Properties window.

Message

 Message (Call) Message (Reply) Async message (Call)

220 UML Diagrams Behavioral Diagrams

© 2007 Altova GmbHAltova UModel 2007

A Message is a modeling element that defines a specific kind of communication in an
Interaction. A communication can be e.g. raising a signal, invoking an Operation, creating or
destroying an Instance. The Message specifies the type of communication defined by the
dispatching ExecutionSpecification, as well as the sender and the receiver.

Messages are sent between sender and receiver timelines, and are shown as labeled arrows.

To insert a message:
1. Click the specific message icon in the toolbar.
2. Click anywhere on the timeline sender object e.g. Idle.
3. Drag and drop the message line onto the receiver objects timeline e.g. NoCard.

Lifelines are highlighted when the message can be dropped.

 The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

 Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

To delete a message:
1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from

diagram".

© 2007 Altova GmbH

Structural Diagrams 221UML Diagrams

Altova UModel 2007

9.2 Structural Diagrams

These diagrams depict the structural elements that make up a system or function. Both the
static, e.g. Class diagram, and dynamic, e.g. Object diagram, relationships are presented.

Structural Diagrams

 Class Diagram

 Component Diagram

 Composite Structure Diagram

 Deployment Diagram

 Object Diagram

 Package Diagram

222 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.2.1 Class Diagram

Please see the Class Diagrams section in the tutorial for more information on how to add
classes to a diagram.

Expanding / hiding class compartments in a UML diagram:
There are several methods of expanding the various compartments of class diagrams.

 Click on the + or - buttons of the currently active class to expand/collapse the specific
compartment.

 Use the marquee (drag on the diagram background) to mark multiple classes, then
click the expand/hide button. You can also use CTRL + click to select multiple classes.

 Press CTRL + A to select all classes, then click the expand/collapse button, on one of
the classes, to expand/collapse the respective compartments.

Expanding / collapsing class compartments in the Model Tree:
In the Model Tree classes are subelements of packages and you can affect either the packages
or the classes.

Click the package / class you want to expand and:

Press the * key to expand the current package/class and all sub-elements

Press the + key to open the current package/class.

To collapse the packages/classes, press the - keyboard key.
Note that you can use the standard keyboard keys, or the numeric keypad keys to achieve this.

Showing / Hiding class attributes or operations
UModel now allows you to individually display the attributes or operations of a class, as well as
define which should be shown when adding them as new elements.

Right click a class, e.g. SavingsAccount, and select the menu option Show/Hide Node content
.

© 2007 Altova GmbH

Structural Diagrams 223UML Diagrams

Altova UModel 2007

Deselecting the protected checkbox in the Show Attributes group, deselects the protected
attributes in the preview window.

Having confirmed with OK, the protected attributes in the class are replaced with ellipsis "...".
Double clicking the ellipsis opens the dialog box.

Note that individual attributes can be affected by only deselecting the check box in the preview
window.

Showing / Hiding class attributes or operations - Element styles
UModel allows you to insert multiple instances of the same class on a single diagram, or
even different diagrams. The visibility settings can be individually defined for each of these
"views" to the class. The screenshot below shows two views to the same class i.e.
SavingsAccount.

224 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

The "When new elements are added and not hidden by Element Styles" option allows you to
define what will be made visible when new elements are added to the class. Elements can be
added manually in the model diagram and in the Model Tree, or automatically during the code
engineering process.

Show elements: displays all new elements that are added to any view of the class.

E.g. The interestRate:float attribute has been hidden in both "views" of SavingsAccount, leaving
the minimumBalance attribute visible. The "Show elements" radio button is active for the left-
hand class.

Double clicking the ellipsis "..." in the attribute compartment of the left-hand class shows that
the "Show elements" radio button is active.

© 2007 Altova GmbH

Structural Diagrams 225UML Diagrams

Altova UModel 2007

Double clicking the ellipsis "..." in the attribute compartment of the right-hand class shows that
the "Hide elements (except those added to this node)" radio button is active.

Clicking the left-hand class and pressing F7, (or clicking the class in the Model Tree and
pressing F7) adds a new attribute (Property1) to the class.

The new element is only visible in the left-hand class, because "Show elements" is set as
active. The right-hand class setting is "Hide elements...", so the new element is not shown
there.

Clicking the right-hand class and pressing F7 adds a new attribute (Property2) to the class.
This new attribute is now visible because the Hide elements... setting has the qualifier "except
those added to this node", where "node" generically means this class, or modelling element.

226 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

The Property2 attribute is also visible in the left hand class, because the setting there is "Show
elements"

Changing the syntax coloring of operations/properties
UModel automatically enables syntax coloring, but lets you customize it to suit your needs. The
default settings are shown below.

To change the default syntax coloring options (shown below):

1. Switch to the Styles tab and scroll the SC prefixed entries.
2. Change one of the SC color entries e.g. SC Type to red.

To disable syntax coloring:
1. Switch to the Styles tab and change the Use Syntax Coloring entry to false.
2. Use the Attribute Color, or Operation Color entries in the Styles tab to customize

these items in the class.

© 2007 Altova GmbH

Structural Diagrams 227UML Diagrams

Altova UModel 2007

Overriding base class operations and implementing interface operations
UModel gives you the ability to override the base-class operations, or implement interface
operations of a class. This can be done from the Model Tree, Favorites tab, or in Class
diagrams.

1. Right click one of the derived classes in the class diagram, e.g. CheckingAccount, and
select Override/Implement Operations.

2. Select the Operations that you want to override and confirm with OK.

Creating getter / setter methods
During the modeling process it is often necessary to create get/set methods for existing
attributes. UModel supplies you with two separate methods to achieve this:

 Drag and drop an attribute into the operation compartment
 Use the context menu to open a dialog box allowing you to manage get/set methods

228 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

To create getter/setter methods using drag and drop:
1. Drag an attribute from the Attribute compartment and drop it in the Operations

compartment.

A popup appears at this point allowing you to decide what type of get/set method you
want to create.

Selecting the first item creates a get and set method for interestRate:float.

To create getter/setter methods using the context menu:
1. Right click the class title, e.g. SavingsAccount, and select the context menu option

Create Getter/Setter Operations.

© 2007 Altova GmbH

Structural Diagrams 229UML Diagrams

Altova UModel 2007

The Create Getters/Setters dialog box opens displaying all attributes available in the
currently active class.

2. Use the buttons to select the items as a group, or click the getter/setter check boxes
individually.

Please note:
You can also right click a single attribute and use the same method to create an
operation for it.

Ball and socket notation
UModel now supports the ball and socket notation of UML 2.0. Classes that require an
interface, display a "socket" and the interface name, while classes that implement an interface
display the "ball".

In the shots shown above, Class2 realizes Interface1, which is used by classes 1, 3, and 4. The
usage icons were used to create the usage relationship between the classes and the interface.

To switch between the standard and ball-and-socket view:

 Click the Toggle Interface notation icon at the base of the interface element.

230 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

Adding Raised Exceptions to methods of a class
1. Click the method of the class you want to add the raised exception to in the Model Tree

window, e.g. getBalance of the Account class.
2. Right click in the Properties window and select Add Raised Exception from the popup

menu.

This adds the raised exceptions field to the Properties window, and automatically
selects the first entry in the popup menu.

3. Select an entry from the popup, or enter your own into the field.

© 2007 Altova GmbH

Structural Diagrams 231UML Diagrams

Altova UModel 2007

232 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.2.2 Composite Structure Diagram

The Composite Structure Diagram has been added in UML 2.0 and is used to show the internal
structure, including parts, ports and connectors, of a structured classifier, or collaboration.

Inserting Composite Structure Diagram elements

Using the toolbar icons:
1. Click the specific Composite Structure diagram icon in the toolbar.
2. Click in the Composite Structure diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Composite Structure diagram:
Most elements occurring in other Composite Structure diagrams, can be inserted into an
existing Composite Structure diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the Composite Structure diagram.

© 2007 Altova GmbH

Structural Diagrams 233UML Diagrams

Altova UModel 2007

 Collaboration
Inserts a collaboration element which is a kind of classifier/instance that communicates with
other instances to produce the behavior of the system.

 CollaborationUse
Inserts a Collaboration use element which represents one specific use of a collaboration
involving specific classes or instances playing the role of the collaboration. A collaboration use
is shown as a dashed ellipse containing the name of the occurrence, a colon, and the name of
the collaboration type.

When creating dependencies between collaboration use elements, the "type" field must be filled
to be able to create the role binding, and the target collaboration must have at least one part/
role.

 Part (Property)
Inserts a part element which represents a set of one or more instances that a containing
classifier owns. A Part can be added to collaborations and classes.

 Port
Inserts a port element which defines the interaction point between a classifier and its
environment, and can be added on parts with a defined type.

 Class
Inserts a Class element, which is the actual classifier that occurs in that particular use of the
collaboration.

 Connector
Inserts a Connector element which can be used to connect two or more instances of a part, or a
port. The connector defines the relationship between the objects and identifies the
communication between the roles.

 Dependency (Role Binding)
Inserts the Dependency element, which indicates which connectable element of the classifier or
operation, plays which role in the collaboration.

234 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.2.3 Component Diagram

Please see the Component Diagrams section in the tutorial for more information on how to add
component elements to the diagram.

© 2007 Altova GmbH

Structural Diagrams 235UML Diagrams

Altova UModel 2007

9.2.4 Deployment Diagram

Please see the Deployment Diagrams section in the tutorial for more information on how to add
nodes and artifacts to the diagram.

236 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.2.5 Object Diagram

Please see the Object Diagrams section in the tutorial for more information on how to add new
objects/instances to the diagram.

© 2007 Altova GmbH

Structural Diagrams 237UML Diagrams

Altova UModel 2007

9.2.6 Package Diagram

Package diagrams display the organization of packages and their elements, as well as their
corresponding namespaces. UModel additionally allows you to create a hyperlink and navigate
to the respective package content.

Packages are depicted as folders and can be used on any of the UML diagrams, although they
are mainly used on use-case and class diagrams.

Automatic Package Dependency diagram generation
UModel has the capability to generate a package dependency diagram for any package in the
Model Tree.

Dependency links between packages are created if there are any references between the
modeling elements of those packages. E.g. Dependencies between classes, derived classes, or
if attributes have types that are defined in a different package.

To generate a package dependency diagram:
1. Right click a package in the Model Tree, e.g. altova, and select Show in new Diagram

| Package Dependencies... .
This opens the New Package Dependency Diagram dialog box.

238 UML Diagrams Structural Diagrams

© 2007 Altova GmbHAltova UModel 2007

2. Select the specific options you need and click OK to confirm.

A new diagram is generated and displays the package dependencies of the altova
package.

Inserting Package Diagram elements

Using the toolbar icons:
1. Click the specific icon in the Package Diagram toolbar.

2. Click in the diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Package Diagram:
Elements occurring in other diagrams, e.g. other packages, can be inserted into a Package
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the diagram.

© 2007 Altova GmbH

Structural Diagrams 239UML Diagrams

Altova UModel 2007

 Package
Inserts the package element into the diagram. Packages are used to group elements and also
to provide a namespace for the grouped elements. Being a namespace, a package can import
individual elements of other packages, or all elements of other packages. Packages can also be
merged with other packages.

 Profile
Inserts the Profile element, which is a specific type of package that can be applied to other
packages.

The Profiles package is used to extend the UML meta model. The primary extension construct
is the Stereotype, which is itself part of the profile. Profiles must always be related to a
reference meta model such as UML, they cannot exist on their own.

 Dependency
Inserts the Dependency element, which indicates a supplier/client relationship between
modeling elements, in this case packages, or profiles.

 PackageImport
Inserts an <<import>> relationship which shows that the elements of the included package will
be imported into the including package. The namespace of the including package gains access
to the included namespace; the namespace of the included package is not affected.

Note: elements defined as "private" within a package, cannot be merged or imported.

 PackageMerge
Inserts a <<merge>> relationship which shows that the elements of the merged (source)
package will be imported into the merging (target) package, including any imported contents the
merged (source) package.

If the same element exists in the target package then these elements' definitions will be
expanded by those from the target package. Updated or added elements are indicated by a
generalization relationship back to the source package.
Note: elements defined as "private" within a package, cannot be merged or imported.

 ProfileApplication
Inserts a Profile Application which shows which profiles have been applied to a package. This is
a type of package import that states that a Profile is applied to a Package.

The Profile extends the package it has been applied to. Applying a profile, using the
ProfileApplication icon, means that all stereotypes that are part of it, are also available to the
package.

Profile names are shown as dashed arrows from the package to the applied profile, along with
the <<apply>> keyword.

240 UML Diagrams Additional Diagrams

© 2007 Altova GmbHAltova UModel 2007

9.3 Additional Diagrams

UModel now supports the import and generation of W3C XML Schemas as well as their forward
and reverse-engineering in the code-engineering process.

 XML Schema

© 2007 Altova GmbH

Additional Diagrams 241UML Diagrams

Altova UModel 2007

9.3.1 XML Schema Diagrams

XML Schema diagrams display schema components in UML notation. Global elements i.e.
elements, simpleTypes, complexTypes are shown as classes, or datatypes, with attributes in
the attributes compartment. There are no operations in the Operation compartment. The
Tagged Value note modeling element is used to display the schema details.

To see how the UML elements and XML schema elements/attributes are mapped, navigate to
XML Schema to/from UModel elements.

Please note:
Invalid XML Schemas cannot be imported into UModel. XML Schemas are not
validated when importing, or creating them in UModel. XML Schemas are also not
taken into account during the project syntax check. A well-formed check is however
performed when importing an XML schema.

242 UML Diagrams Additional Diagrams

© 2007 Altova GmbHAltova UModel 2007

Importing an XML Schema

To import an XML Schema:
1. Select the menu option Project | Import XML Schema file.

2. Make sure that the Enable diagram generation check box is active and click Next, to
continue.

3. Define the Content diagram options in the group of that name. The first option creates a
separate diagram for each schema global element.

4. Select the compartments that are to appear in the class diagrams in the Style group.
The "Show schema details as tagged values" option displays the schema details in the
Tagged Value note modeling element.

5. Click Next to define the Package dependency diagram.

© 2007 Altova GmbH

Additional Diagrams 243UML Diagrams

Altova UModel 2007

6. Click Finish to start the XML Schema import.
The schema(s) are imported into UModel and all diagrams are available as tabs. The
screenshot below shows the content of the EU-Address (complexType) diagram.

Please note:
A new package called All Schemas was created and set as the XSD Namespace Root. All XSD
globals generate an XML Schema diagram, with the diagrams under the respective namespace
packages.

244 UML Diagrams Additional Diagrams

© 2007 Altova GmbHAltova UModel 2007

Schema details display - tagged values
Schema details displayed as tagged values in the Tagged Value note element, can be
configured using the Show Tagged Values in the Styles tab, or by clicking the "Toggle compact
mode" icon at the bottom right of the Tagged Value note. This switches between the two states
"all" and "all, hide empty", both of which are shown below.

Show tagged values: all
Displays the tagged values of the class as well as those of the owned attributes, operations etc.

© 2007 Altova GmbH

Additional Diagrams 245UML Diagrams

Altova UModel 2007

Show tagged values: all, hide empty
Displays only those tagged values where a value exists e.g. fixed=true.

Show tagged values: element
Displays the tagged values of the class but not those of the owned attributes, operations etc.

Show tagged values: element, hide empty
Displays only those tagged element values of a class, without the owned attributes, where a
value exists e.g. id=123

246 UML Diagrams Additional Diagrams

© 2007 Altova GmbHAltova UModel 2007

XML Schema annotation:
When importing XML schemas, please note that only the first annotation of a complex- or
simpleType is displayed in the Documentation window.

Inserting XML Schema elements

Using the toolbar icons:
1. Click the specific XML Schema diagram icon in the toolbar.
2. Click in the XML Schema diagram to insert the element.

Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the XML Schema diagram:
Elements occurring in other diagrams can be inserted into an existing XML Schema diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).

2. Drag the element(s) into the XML Schema diagram.

Note: you can also use the Copy and "Paste in diagram only" commands to insert
elements.

 XSD Target Namespace
Inserts/defines the target namespace for the schema. The XSD Target Namespace must
belong to an XSD Namespace Root package.

 XSD Schema
Inserts/defines an XML schema. The XSD schema must belong to an XSD Target Namespace
package.

© 2007 Altova GmbH

Additional Diagrams 247UML Diagrams

Altova UModel 2007

 Element (global)
Inserts a global element into the diagram. Note that a property is also automatically generated in
the attributes compartment.

To define the property datatype:
1. Double click the property and place the cursor at the end of the line.
2. Enter a colon character ":", and select the datatype from the popup dialog box, e.g string.

Creating a "content model" consisting of a complexType with mandatory elements:
This will entail inserting a complexType element, a sequence element/compositor, and three
elements.

1. Click the XSD ComplexType icon , then click in the diagram to insert it.
2. Double click the name and change it to Address.

3. Right click Address and select New | XSD Sequence.

248 UML Diagrams Additional Diagrams

© 2007 Altova GmbHAltova UModel 2007

4. Click the _sequence:mg_sequence attribute in the attribute compartment, and drag it
out into the diagram.

This creates a sequence class/compositor at the drop position.

5. Right click the sequence class and select New | XSD Element (local).
This adds a new property element.

6. Double click the property, enter the element name, e.g. Name, add a colon ":" and enter
"string" as the datatype.

© 2007 Altova GmbH

Additional Diagrams 249UML Diagrams

Altova UModel 2007

7. Do the same for the two more elements naming them Street and City for example.
8. Click the Name property and drag it into the diagram.

250 UML Diagrams Additional Diagrams

© 2007 Altova GmbHAltova UModel 2007

Creating and generating an XML Schema

You would generally import a schema, edit it in UModel, and output the changes. It is however
possible to generate a schema from scratch. This will only be described in broad detail
however.

Creating a new schema in UModel:
1. Create a new package in the Model Tree e.g. MY-Schemas.

2. Right click the new package and select the menu option Code Engineering | Set as
XSD namespace root.
You are asked if you want to assign the XSD profile if this is the first XSD Namespace
root in the project.

3. Click OK to assign the profile.
4. Right click the new package and select New Element | Package.
5. Double click in the package name field and change it to the namespace you want to

use, e.g. http://www.my-ns.com.
6. Click the <<namespace>> check box in the Properties tab, to define this as the target

namespace.

7. Right click the namespace package and select New diagram | XML Schema diagram.
You prompted if you want to add the Schema diagram to a new XSD Schema.

8. Click Yes to add the new diagram.

You can now create your schema using the icons in the XML Schema icon bar.

Generating the XML schema:
1. Drag the XSDSchema onto a component to create a Component Realization.

http://www.my-ns.com.

© 2007 Altova GmbH

Additional Diagrams 251UML Diagrams

Altova UModel 2007

2. Make sure that you set the code language, of the component, to XSD1.0, and define a
directory for the generated schema to be placed in.

3. Select the menu option Project | Merge Program Code from UModel project, and
click OK to generate the schema.

Chapter 10

XMI - XML Metadata Interchange

254 XMI - XML Metadata Interchange

© 2007 Altova GmbHAltova UModel 2007

10 XMI - XML Metadata Interchange

UModel supports the export and import of XMI 2.1 for UML 2.0 / 2.1 and 2.1.1.

Select the menu item File | Export to XMI File to generate an XMI file from the UModel project,
and File | Import from XMI File, to import a previously generated XMI file.

The XMI Export dialog box allows you to select the specific XMI format you want to output, XMI
for UML 2.0/2.1.1. During the export process included files, even those defined as "include by
reference" are also exported.

Please note:
If you intend to reimport generated XMI code into UModel, please make sure that you activate
the "Export UModel Extensions" check box.

XMI defines three versions of element identification: IDs, UUIDs and labels.

 IDs are unique within the XMI document, and are supported by most UML tools.
UModel exports these type of IDs by default, i.e. none of the check boxes need
activated.

 UUID are Universally Unique Identifiers, and provide a mechanism to assign each
element a global unique identification, GUID. These IDs are globally unique, i.e. they
are not restricted to the specific XMI document. UUIDs are generated by selecting the
"Export UUIDs" checkbox.

 UUIDs are stored in the standard canonical UUID/GUID format (e.g
"6B29FC40-CA47-1067-B31D-00DD010662DA",
"550e8400-e29b-41d4-a716-446655440000",...)

 Labels are not supported by UModel.

Please note:
The XMI import process automatically supports both types of IDs.

XMI extensions
XMI defines an "extension mechanism" which allows each application to export its tool-specific
extensions to the UML specification. If you select this option, other UML tools will only be able to
import the standard UML data (ignoring the UModel extensions). This UModel extension data
will be available when importing into UModel.

Data such as the file names of classes, or element colors, are not part of the UML specification
and thus have to be deleted in XMI, or be saved in "Extensions". If they have been exported as

© 2007 Altova GmbH

 255XMI - XML Metadata Interchange

Altova UModel 2007

extensions and re-imported, all file names and colors will be imported as defined. If extensions
are not used for the export process, then these UModel-specific data will be lost.

When importing an XMI document, the format is automatically detected and the model
generated.

Pretty-print XMI output
This option outputs the XMI file with XML appropriate tag indentation and carriage returns/line
feeds.

Chapter 11

UModel Diagram icons

258 UModel Diagram icons

© 2007 Altova GmbHAltova UModel 2007

11 UModel Diagram icons

The following section is a quick guide to the icons that are made available in each of the
modeling diagrams.

The icons are split up into two sections:
 Add - displays a list of elements that can be added to the diagram.

 Relationship - displays a list of relationship types that can be created between
elements in the diagram.

© 2007 Altova GmbH

Activity Diagram 259UModel Diagram icons

Altova UModel 2007

11.1 Activity Diagram

Add
Action (CallBehaviorActiion)
Action (CallOperationAction)
AcceptEventAction
AcceptEventAction (TimeEvent)
SendSignalAction

DecisionNode (Branch)
MergeNode
InitialNode
ActivityFinalNode
FlowFinalNode
ForkNode (vertical)
ForkNode (horizontal)
JoinNode
JoinNode (horizontal)

InputPin
OutputPin
ValuePin

CentralBufferNode
DataStoreNode
ActivityPartition (horizontal)
ActivityPartition (vertical)
ActivityPartition 2-Dimensional

ControlFlow
ObjectFlow
ExceptionHandler

Activity
ActivityParameterNode
StructuredActivityNode
ExpansionRegion
ExpansionNode
InterruptibleActivityRegion

Note
Note Link

260 UModel Diagram icons Class Diagram

© 2007 Altova GmbHAltova UModel 2007

11.2 Class Diagram

Relationship:
Association
Aggregation
Composition
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add:
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
Profile
Stereotype
ProfileApplication
InstanceSpecification

Note
Note Link

© 2007 Altova GmbH

Communication diagram 261UModel Diagram icons

Altova UModel 2007

11.3 Communication diagram

Add
Lifeline
Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Note
Note Link

262 UModel Diagram icons Composite Structure Diagram

© 2007 Altova GmbHAltova UModel 2007

11.4 Composite Structure Diagram

Add
Collaboration
CollaborationUse
Part (Property)
Class
Interface
Port

Relationship
Connector
Dependency (Role Binding)
InterfaceRealization
Usage

Note
Note Link

© 2007 Altova GmbH

Component Diagram 263UModel Diagram icons

Altova UModel 2007

11.5 Component Diagram

Add:
Package
Interface
Class
Component
Artifact

Relationship:
Realization
InterfaceRealization
Usage
Dependency

Note
Note Link

264 UModel Diagram icons Deployment Diagram

© 2007 Altova GmbHAltova UModel 2007

11.6 Deployment Diagram

Add:
Package
Component
Artifact
Node
Device
ExecutionEnvironment

Relationship:
Manifestation
Deployment
Association
Generalization
Dependency

Note
Note Link

© 2007 Altova GmbH

Interaction Overview diagram 265UModel Diagram icons

Altova UModel 2007

11.7 Interaction Overview diagram

Add
CallBehaviorAction (Interaction)
CallBehaviorAction (InteractionUse)
DecisionNode
MergeNode
InitialNode
ActivityFinalNode
ForkNode
ForkNode (Horizontal)
JoinNode
JoinNode (Horizontal)
DurationConstraint

Relationship
ControlFlow

Note
Note Link

266 UModel Diagram icons Object Diagram

© 2007 Altova GmbHAltova UModel 2007

11.8 Object Diagram

Relationship:
Association
AssociationClass
Dependency
Usage
InterfaceRealization
Generalization

Add:
Package
Class
Interface
Enumeration
Datatype
PrimitiveType
InstanceSpecification

Note
Note Link

© 2007 Altova GmbH

Package diagram 267UModel Diagram icons

Altova UModel 2007

11.9 Package diagram

Add
Package
Profile

Relationship
Dependency
PackageImport
PackageMerge
ProfileApplication

Note
Note Link

268 UModel Diagram icons Sequence Diagram

© 2007 Altova GmbHAltova UModel 2007

11.10 Sequence Diagram

Add
Lifeline
CombinedFragment
CombinedFragment (Alternatives)
CombinedFragment (Loop)
InteractionUse
Gate
StateInvariant
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Asynchronous Message (Call)
Asynchronous Message (Reply)
Asynchronous Message (Destruction)

Note
Note Link

No message numbering
Simple message numbering
Nested message numbering

Toggle dependent message movement
Toggle automatic creation of replies for messages

© 2007 Altova GmbH

State Machine Diagram 269UModel Diagram icons

Altova UModel 2007

11.11 State Machine Diagram

Add
Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint
Choice
Junction
Terminate
Fork
Fork (horizontal)
Join
Join (horizontal)
DeepHistory
ShallowHistory
ConnectionPointReference

Relationship
Transition

Note
Note link

270 UModel Diagram icons Timing Diagram

© 2007 Altova GmbHAltova UModel 2007

11.12 Timing Diagram

Add
Lifeline (State/Condition)
Lifeline (General value)
TickMark
Event/Stimulus
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Asynchronous Message (Call)

Note
Note Link

© 2007 Altova GmbH

Use Case diagram 271UModel Diagram icons

Altova UModel 2007

11.13 Use Case diagram

Add:
Package
Actor
UseCase

Relationship:
Association
Generalization
Include
Extend

Note
Note Link

272 UModel Diagram icons XML Schema diagram

© 2007 Altova GmbHAltova UModel 2007

11.14 XML Schema diagram

Add
XSD TargetNamespace
XSD Schema
XSD Element (global)
XSD Group
XSD ComplexType
XSD ComplexType (simpleContent)
XSD SimpleType
XSD List
XSD Union
XSD Enumeration
XSD Attribute
XSD AttributeGroup
XSD Notation
XSD Import

Relationship
XSD Include
XSD Redefine
XSD Restriction
XSD Extension
XSD Substitution

Note
Note link

Chapter 12

UModel Reference

274 UModel Reference

© 2007 Altova GmbHAltova UModel 2007

12 UModel Reference

The following section lists all the menus and menu options in UModel, and supplies a short
description of each.

© 2007 Altova GmbH

File 275UModel Reference

Altova UModel 2007

12.1 File

New
Clears the diagram tab, if a previous project exists, and creates a new UModel project.

Open
Opens previously defined modeling project. Select a previously saved project file *.ump from
the Open dialog box.

Reload
Allows you to reload the current project and save, or discard, the changes made since you
opened the project file.

Save
Saves the currently active modeling project using the currently active file name.

Save as
Saves the currently active modeling project with a different name, or allows you to give the
project a new name if this is the first time you save it.

Save Diagram as Image
Opens the "Save as..." dialog box and allows you to save the currently active diagram as a
.PNG, or .EMF (enhanced metafile) file.

Import from XMI file
Imports a previously exported XMI file. If the file was produced with UModel, then all extensions
etc. will be retained.

Export to XMI file
Export the model as an XMI file. You can select the UML version, as well as the specific IDs
that you want to export please see XMI - XML Metadata Interchange for more information.

Send by Mail
Opens your default mail application and inserts the current UModel project as an attachment.

Print
Opens the Print dialog box, from where you can print out your modeling project as hardcopy.

276 UModel Reference File

© 2007 Altova GmbHAltova UModel 2007

"Use current", retains the currently defined zoom factor of the modeling project. Selecting this
option enables the "Page split of pictures" group.

The Prevent option prevents modeling elements from being split over a page, and keeps them
as one unit.

"Use optimal" scales the modeling project to fit the page size. You can also specify the zoom
factor numerically.

Print all diagrams
Opens the Print dialog box and prints out all UML diagrams contained in the current project file.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup
Opens the Print Setup dialog box in which you can define the printer you want to use and the
paper settings.

© 2007 Altova GmbH

Edit 277UModel Reference

Altova UModel 2007

12.2 Edit

Undo
UModel has an unlimited number of "Undo" steps that you can use to retrace you modeling
steps.

Redo
The redo command allows you to redo previously undone commands. You can step backward
and forward through the undo history using both these commands.

Cut/Copy//Delete
The standard windows Edit commands, allow you to cut, copy, etc., modeling elements, please
see "Cut, copy and paste in UModel Diagrams" for more information.

Paste
using the keyboard shortcut CTRL+V, or "Paste" from the context menu, as well as Paste from
the Edit menu, always adds a new modeling element to the diagram and to the Model Tree,
please see "Cut, copy and paste in UModel Diagrams".

Paste in Diagram only
using the context menu, i.e. right clicking on the diagram background, only adds a "link/view" of
the existing element, to the current diagram and not to the Model Tree, please see "Cut, copy
and paste in UModel Diagrams".

Delete from Diagram only
Deletes the selected modeling elements from the currently active diagram. The deleted
elements are not deleted from the modeling project and are available in the Model Tree tab.
Note that this option is not available to delete properties or operations from a class, they can be
selected and deleted there directly.

Select all
Select all modeling elements of the currently active diagram. Equivalent to the CTRL+A
shortcut.

Find
There are several options you can use to search for modeling elements:

 Use the text box in the Main title bar

 Use the menu option Edit | Find
 Press the shortcut CTRL+F to open the find dialog box.

Allows you to search for specific text in:

 Any of the three Model Tree panes: Model Tree, Diagram Tree and Favorites tab.
 The Documentation tab of the Overview pane.

278 UModel Reference Edit

© 2007 Altova GmbHAltova UModel 2007

 Any currently active diagram.
 The Messages pane.

Find Next F3
Searches for the next occurrence of the same search string in the currently active tab or
diagram.

Find Previous SHIFT+F3
Searches for the previous occurrence of the same search string in the currently active tab or
diagram.

Copy as bitmap
Copies the currently active diagram into the clipboard from where you can paste it into the
application of your choice.

Please note:
Diagrams are copied into the system clipboard, you have to insert them into another
application to see, or get access to them.

Copy selection as bitmap
Copies the currently selected diagram elements into the clipboard from where you can paste
them into the application of your choice.

© 2007 Altova GmbH

Project 279UModel Reference

Altova UModel 2007

12.3 Project

Check Project Syntax...
Checks the UModel project syntax. The project file is checked on multiple levels detailed in the
tables below:

Level Checks if... Message...

Project level at least one Java Namespace Root exists Error

Components Project file / Directory is set Error

 If Realization exists Error

 "Use for code engineering" check box unchecked:
no check is performed and syntax check is disabled.

None

Class Code file name is set.

If class is nested then no check performed.

Error if the local
option "Generate
missing code file
names" is not set.
Warning if the option
is set.

 If contained in a code language namespace Error

 Type for operation parameter is set Error

 Type for properties is set Error

 Operation return type is set Error

 Duplicate operations (names + parameter types) Error

 If classes are involved in Realization, only if the
class is not nested.

Warning

Interface Code file name is set. Error if the local option
"Generate missing
code file names" is not
set.
Warning if the option
is set.

 Contained in a code language namespace Error

 Type for properties are set Error

 Type for operation param. are set Error

 Operation return type is set Error

 Duplicate operations (names + parameter types) Error

 If interfaces are involved in a
ComponentRealization

Warning

Enumeration Belongs to Java Namespace Root:
gives a warning to say that no code will be
generated.

Warning

 Does not belong to Java Namespace Root:
no check is performed and syntax check is disabled
for the enumeration. No check is performed on
contained package

None

280 UModel Reference Project

© 2007 Altova GmbHAltova UModel 2007

Syntax check for all UML elements involved in code generation

class Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

class property Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

class operation Checks name is a valid Java name (no forbidden
characters, name is not a keyword) Checks for
existence of return parameter

Error

class operation
parameter

Checks name is a valid Java name (no forbidden
characters, name is not a keyword) Checks type has a
valid Java type name

Error

interface Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

interface
operation

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

interface
operation
parameter

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

interface
properties

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

package with
stereotype
namespace

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Error

package
without
stereotype
namespace

no element to check None

class multiple inheritance Error

Please note:
Constraints on model elements are not checked, as they are not part of the Java code
generation process. Please see "constraining model elements" for more information.

© 2007 Altova GmbH

Project 281UModel Reference

Altova UModel 2007

Import Source Directory...
Opens the Import Source Directory wizard shown below. Please see "Round-trip engineering
(code - model - code)" for a specific example.

282 UModel Reference Project

© 2007 Altova GmbHAltova UModel 2007

Import Source Project...

Opens the Import Source Project wizard shown below. Clicking the browse button allows
you to select the project file and the specific project type. Please see "Importing source code
into projects" for a specific example.

Java projects:
 JBuilder .jpx, Eclipse .project project files, as well as NetBeans (project.xml) are

currently supported.

C# projects:
 MS Visual studio.Net projects, csproj, csdprj..., as well as
 Borland .bdsproj project files

Import Binary Types
Opens the Import Binary Types dialog box allowing you to import Java and C# binary files.
Please see "Importing C# and Java binaries" for more information.

Import XML Schema File
Opens the Import XML Schema File dialog box allowing you to import schema files. Please see
"XML Schema Diagrams" for more information.

Merge Program Code from UModel Project
Opens the Synchronization Settings dialog box with the "Code from Model" tab active. Clicking
the Project Settings button allows you to select the specific programming language settings.

Merging or overwriting code
Assuming that code has been generated once from a model, and changes have since been
made to both model and code e.g.:

© 2007 Altova GmbH

Project 283UModel Reference

Altova UModel 2007

 Model elements have been added in UModel e.g. a new class X

 A new class has been added to the external code e.g. class Y

Merging (model into code) means that:
 the newly added class Y in the external code is retained

 the newly added class X, from UModel, is added to the code.

Overwriting (code according to model) means that:
 the newly added class Y in the external code is deleted

 the newly added class X, from UModel, is added to the code.

Merge UModel Project from Program Code
Opens the Synchronization Settings dialog box with the "Model from Code" tab active. Clicking
the Project Settings button allows you to select the specific programming language settings.

Merging or overwriting code
Assuming that code has been generated once from a model, and changes have since been
made to both model and code e.g.:

 Model elements have been added in UModel e.g. a new class X

 A new class has been added to the external code e.g. class Y

Merging (code into model) means that:
the newly added class X in UModel, is retained
the newly added class Y, from the external code, is added to the model

Overwriting (Model according to code) means that:
the newly added class X in UModel is deleted
the newly added class Y, from the external code, is added to the model

284 UModel Reference Project

© 2007 Altova GmbHAltova UModel 2007

Project settings
Allows you to define the specific languages settings for your project.

Synchronization Settings...
Opens the Synchronization Settings dialog box as shown in the screenshots above.

Include Subproject
UModel is supplied with several files that can be included in a UModel project. Clicking the Java
tab allows you to include Java lang classes, interfaces and packages in your project, by
selecting one of the supplied files.

1. Select Project | Include to open the "Include" dialog box.
2. Click the UModel project file you want to include and press OK.

UModel projects can be included within other UModel projects. To include projects place the
respective *.ump files in:

© 2007 Altova GmbH

Project 285UModel Reference

Altova UModel 2007

 ...\UModel2007\UModelInclude to appear in the Basic tab, or

 ...\UModel2007\UModelInclude\Java to appear in the Java tab.

Please note:
An include file, which contains all types of the Microsoft .NET Framework 2.0, is
available in the C# 2.0 tab.

To create a user-defined tab/folder:
1. Navigate to the ...\UModel2007\UModelInclude and create/add your folder below

...\UModelInclude, i.e. ...\UModelInclude\myfolder.

To create descriptive text for each UModel project file:
1. Create a text file using the same name as the *.ump file and place in the same folder.

Eg. the MyModel.ump file requires a descriptive file called MyModel.txt.

To remove an included project:
1. Click the included package in the Model Tree view and press the Del. key.
2. You are prompted if you want to continue the deletion process.
3. Click OK to delete the included file from the project.

Please note:
 To delete or remove a project from the "Include" dialog box, delete or remove the

(MyModel).ump file from the respective folder.

Open Subproject as project
Opens the selected subproject as a new project.

Clear Messages
Clears the syntax check and code merging messages, warnings and errors from the Messages
window.

Please note:
Errors are generally problems that must be fixed before code can be generated, or the model
code can be updated during the code engineering process. Warnings can generally be deferred
until later. Errors and warnings are generated by the syntax checker, the compiler for the
specific language, the UModel parser that reads the newly generated source file, as well as
during the import of XMI files.

286 UModel Reference Project

© 2007 Altova GmbHAltova UModel 2007

Generate documentation
Allows you to generate documenation for the currently open project in HTML, Microsoft Word,
and RTF formats. please see Generating UML documentation for more information.

List Elements not used in any Diagram
Creates a list of all elements not used in any diagram in the project.

List shared Packages
Lists all shared packages of the current project.

List included Packages
Lists all include packages in the current project. Java Profile (Java Profile.ump) and Java Lang
(Java Lang.ump) are automatically supplied in the Bankview example supplied with UModel.

© 2007 Altova GmbH

Layout 287UModel Reference

Altova UModel 2007

12.4 Layout

The commands of the Layout menu allow you to line up and align the elements of your
modeling diagrams.

When using the marquee (drag on the diagram background) to mark several elements, the
element with the dashed outline becomes the "active" element, i.e. the last marked element. All
alignment commands use this element as the origin, or basis for the following alignment
commands.

Align:
The align command allows you to align modeling elements along their borders, or centers
depending on the specific command you select.

Space evenly:
This set of commands allow you to space selected elements evenly both horizontally and
vertically.

Make same size:
This set of commands allow you to adjust the width and height of selected elements based on
the active element.

Line up:
This set of commands allow you to line up the selected elements vertically or horizontally.

Line Style:
This set of commands allow you to select the type of line used to connect the various modeling
elements. The lines can be any type of dependency, association lines used in the various model
diagrams.

Autosize:
This command resizes the selected elements to their respective optimal size(s).

Autolayout all:
This command allows you to choose the type of presentation of the modeling elements in the
UML diagram tab. "Force directed", displays the modeling elements from a centric viewpoint.
"Hierarchic", displays elements according to their relationships, superclass - derived class etc.

Reposition text labels:
Repositions modeling element names (of the selected elements) to their default positions.

288 UModel Reference View

© 2007 Altova GmbHAltova UModel 2007

12.5 View

The commands available in this menu allow you to:

 Switch/activate tabs of the various panes

 Define the modeling element sort criteria of the Model Tree and Favorites tab

 Define the grouping criteria of the diagrams in the Diagram Tree tab

 Show or hide specific UML elements in the Favorites and Model Tree tab

 Define the zoom factor of the current diagram.

© 2007 Altova GmbH

Tools 289UModel Reference

Altova UModel 2007

12.6 Tools

The tools menu allows you to:

 Customize your version: define your own toolbars, keyboard shortcuts, menus, and
macros

 Define the global program settings

290 UModel Reference Tools

© 2007 Altova GmbHAltova UModel 2007

12.6.1 Customize...

The customize command lets you customize UModel to suit your personal needs.

Commands

The Commands tab allows you customize your menus or toolbars.

To add a command to a toolbar or menu:
1. Open this dialog box using Tools | Customize.
2. Select the command category in the Categories list box. The commands available

appear in the Commands list box.
3. Click on a command in the commands list box and drag "it" to an to an existing menu or

toolbar.

4. An I-beam appears when you place the cursor over a valid position to drop the
command.

5. Release the mouse button at the position you want to insert the command.

 A small button appears at the tip of mouse pointer when you drag a command. The
check mark below the pointer means that the command cannot be dropped at the
current cursor position.

 The check mark disappears whenever you can drop the command (over a tool bar or
menu).

 Placing the cursor over a menu when dragging, opens it, allowing you to insert the
command anywhere in the menu.

 Commands can be placed in menus or tool bars. If you created you own toolbar you
can populate it with your own commands/icons.

Please note:
You can also edit the commands in the context menus (right click anywhere opens the
context menu), using the same method. Click the Menu tab and then select the specific
context menu available in the Context Menus combo box.

To delete a command or menu:
1. Open this dialog box using Tools | Customize.
2. Click on the menu entry or icon you want to delete, and drag with the mouse.
3. Release the mouse button whenever the check mark icon appears below the mouse

pointer.
The command, or menu item is deleted from the menu or tool bar.

Toolbars

The Toolbars tab allows you to activate or deactivate specific toolbars, as well as create your
own specialized ones.

Toolbars contain symbols for the most frequently used menu commands. For each symbol you
get a brief "tool tip" explanation when the mouse cursor is directly over the item and the status
bar shows a more detailed description of the command.

You can drag the toolbars from their standard position to any location on the screen, where they
appear as a floating window. Alternatively you can also dock them to the left or right edge of the
main window.

To activate or deactivate a toolbar:
1. Click the check box to activate (or deactivate) the specific toolbar.

To create a new toolbar:
1. Click the New... button, and give the toolbar a name in the Toolbar name dialog box.

© 2007 Altova GmbH

Tools 291UModel Reference

Altova UModel 2007

2. Add commands to the toolbar using the Commands tab of the Customize dialog box.

To reset the Menu Bar

 Click the Menu Bar entry and
 Click the Reset button, to reset the menu commands to the state they were when

installed.

To reset all toolbar and menu commands

 Click the Reset All button, to reset all the toolbar commands to the state they were
when the program was installed. A prompt appears stating that all toolbars and menus
will be reset.

 Click Yes to confirm the reset.

Show text labels:
This option places explanatory text below toolbar icons when activated.

Tools

The Tools tab allows you to create your own menu entries in the Tools menu.

Click the folder icon to add a new menu entry and use the Command field to associate it to an
application.

Keyboard

The Keyboard tab allows you to define (or change) keyboard shortcuts for any command.

To assign a new Shortcut to a command:
1. Select the commands category using the Category combo box.
2. Select the command you want to assign a new shortcut to, in the Commands list box
3. Click in the "Press New Shortcut Key:" text box, and press the shortcut keys that are

to activate the command.
The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

4. Click the Assign button to permanently assign the shortcut.

292 UModel Reference Tools

© 2007 Altova GmbHAltova UModel 2007

The shortcut now appears in the Current Keys list box.
(To clear this text box, press any of the control keys, CTRL, ALT or SHIFT).

To de-assign (or delete a shortcut):
1. Click the shortcut you want to delete in the Current Keys list box, and
2. Click the Remove button (which has now become active).
3. Click the Close button to confirm all the changes made in the Customize dialog box.

Menu

The Menu tab allows you to customize the main menu bars as well as the (popup - right click)
context menus.

You can customize both the Default and UModel Project menu bars.
The Default menu is the one visible when no XML documents of any type are open.
The UModel Project menu is the menu bar visible when a *.ump file has been opened.

To customize a menu:
1. Select the menu bar you want to customize from the "Show Menus for:" combo box
2. Click the Commands tab, and drag the commands to the menu bar of your choice.

To delete commands from a menu:
1. Click right on the command, or icon representing the command, and
2. Select the Delete option from the popup menu,

or,
1. Select Tools | Customize to open the Customize dialog box, and
2. Drag the command away from the menu, and drop it as soon as the check mark icon

appears below the mouse pointer.

To reset either of the menu bars:
1. Select either the Default or UModel Project entry in the combo box, and
2. Click the Reset button just below the menu name.

A prompt appears asking if you are sure you want to reset the menu bar.

To customize any of the Context menus (right click menus):
1. Select the context menu from the "Select context menus" combo box.
2. Click the Commands tab, and drag the specific commands to context menu that is now

open.

To delete commands from a context menu:
1. Click right on the command, or icon representing the command, and
2. Select the Delete option from the popup menu

or,
1. Select Tools | Customize to open the Customize dialog box, and
2. Drag the command away from the context menu, and drop it as soon as the check

mark icon appears below the mouse pointer.

To reset any of the context menus:
1. Select the context menu from the combo box, and
2. Click the Reset button just below the context menu name.

A prompt appears asking if you are sure you want to reset the context menu.

© 2007 Altova GmbH

Tools 293UModel Reference

Altova UModel 2007

To close an context menu window:
1. Click on the Close icon at the top right of the title bar, or
2. Click the Close button of the Customize dialog box.

Menu shadows

 Click the Menu shadows check box, if you want all your menus to have shadows.

Options

The Options tab allows you to set general environment settings.

Toolbar
When active, the Show ToolTips on toolbars check box displays a popup when the mouse
pointer is placed over an icon in any of the icon bars. The popup contains a short description of
the icon function, as well as the associated keyboard shortcut, if one has been assigned.

The Show shortcut keys in ToolTips check box, allows you to decide if you want to have the
shortcut displayed in the tooltip.

When active, the Large icons check box switches between the standard size icons, and larger
versions of the icons.

294 UModel Reference Tools

© 2007 Altova GmbHAltova UModel 2007

12.6.2 Options

Select the menu item Tools | Options to define your project options.

The View tab allows you to define:
 Where the program logo should appear.
 The application title bar contents.
 The types of elements you want listed when using the "List elements not used in any

diagram" context menu option in the Model Tree, or Favorites tab. You also have the
option of ignoring elements contained in included files.

 Autolayout settings.
 If a selected element in a diagram is automatically selected/synchronized in the Model

Tree.
 The default depth of the hierarchy view when using the Show graph view in the

Hierarchy tab.

© 2007 Altova GmbH

Tools 295UModel Reference

Altova UModel 2007

The Editing tab allows you to define:
 If a new Diagram created in the Model Tree tab, is also automatically opened in the

main area.
 Default visibility settings when adding new elements.
 The default code language when a new component is added.
 If a newly added constraint, is to automatically constrain its owner as well.
 If a prompt should appear when deleting elements from a project, from the Favorites

tab or in any of the diagrams. This prompt can be deactivated when deleting items
there; this option allows you to reset the "prompt on delete" dialog box.

 The display of Styles when they are automatically added to a diagram.
 If Associations between modeling elements, are to be created automatically when items

are added to a diagram.

296 UModel Reference Tools

© 2007 Altova GmbHAltova UModel 2007

The File tab allows you to define:
 The actions performed when files are changed.
 If the contents of the Favorites tab are to be loaded and saved with the current project.
 If the previously opened project is to automatically be opened when starting the

application.

© 2007 Altova GmbH

Tools 297UModel Reference

Altova UModel 2007

The Code Engineering tab allows you to define:
 The circumstances under which the Message window will open.

 If all coding elements i.e. those contained in a Java / C# namespace root, as well as
those assigned to a Java / C# component, are to be checked, or

only elements used for code engineering, i.e. where "use for code engineering"
check box is active, are to be checked.

 If missing code file names in the merged code are to be generated.
 If a syntax check is to be performed when updating program code.
 directories to be ignored when updating a UModel project from code, or directory.

Separate the respective directories with a semicolon ";". Child directories of the same
name are also ignored.

 The location of the XMLSpy Catalog File, RootCatalog.xml, which enables UModel as
well as XMLSpy to retrieve commonly used schemas (as well as stylesheets and other
files) from local user folders. This increases the overall processing speed, and enables
users to work offline.

298 UModel Reference Window

© 2007 Altova GmbHAltova UModel 2007

12.7 Window

Cascade:
This command rearranges all open document windows so that they are all cascaded (i.e.
staggered) on top of each other.

Tile horizontally:
This command rearranges all open document windows as horizontal tiles, making them all
visible at the same time.

Tile vertically:
This command rearranges all open document windows as vertical tiles, making them all visible
at the same time.

Arrange icons:
Arranges haphazardly positioned, iconized diagrams, along the base of the diagram viewing
area.

Close:
Closes the currently active diagram tab.

Close All:
Closes all currently open diagram tabs.

Close All but Active:
Closes all diagram tabs except for the currently active one.

Next:
Switches to the next modeling diagram in the tab sequence, or the next hyperlinked element.

Previous:
Switches to the previous modeling diagram in the tab sequence, or the previous hyperlinked
element.

Window list:
This list shows all currently open windows, and lets you quickly switch between them.

You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open
windows.

© 2007 Altova GmbH

Help 299UModel Reference

Altova UModel 2007

12.8 Help

Allows access to the Table of Contents and Index of the UModel documentation, as well as
Altova web site links. The Registration option opens the Altova Licensing Manager, which
contains the licensing information for all of Altova products.

Chapter 13

Code Generator

302 Code Generator

© 2007 Altova GmbHAltova UModel 2007

13 Code Generator

 UModel includes a built-in code generator which can automatically generate Java, C#, or XML
Schema files from UML models.

© 2007 Altova GmbH

The way to SPL (Spy Programming Language) 303Code Generator

Altova UModel 2007

13.1 The way to SPL (Spy Programming Language)

This section gives an overview of Spy Programming Language, the code generator's template
language.

It is assumed that you have prior programming experience, and are familiar with operators,
functions, variables and classes, as well as the basics of object-oriented programming - which
is used heavily in SPL.

The templates used by UModel are supplied in the ...\UModelspl folder. You can use these files
as an aid to help you in developing your own templates.

How code generator works
Inputs to the code generator are the template files (.spl) and the object model provided by
UModel. The template files contain SPL instructions for creating files, reading information from
the object model and performing calculations, interspersed with literal code fragments in the
target programming language.

The template file is interpreted by the code generator and outputs .java, .cs source code files, ,
or any other type of file depending on the template.

304 Code Generator The way to SPL (Spy Programming Language)

© 2007 Altova GmbHAltova UModel 2007

13.1.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'.
Multiple statements can be included in a bracket pair. Additional statements have to be
separated by a new line or a colon ':'.

Valid examples are:

[$x = 42
$x = $x + 1]

or

[$x = 42: $x = $x + 1]

Adding text to files
Text not enclosed by [and], is written directly to the current output file.
To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash
use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next
line, or at a block close character].

© 2007 Altova GmbH

The way to SPL (Spy Programming Language) 305Code Generator

Altova UModel 2007

13.1.2 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code
generator, and new variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed
by $.
Variable names are case sensitive.

Variables types:
 integer - also used as boolean, where 0 is false and everything else is true
 string
 object - provided by UModel
 iterator - see foreach statement

Variable types are declared by first assignment:

[$x = 0]
x is now an integer.

[$x = " t est st r i ng"]
x is now treated as a string.

Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t
inside double quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a
backslash. String constants can also span multiple lines.

String concatenation uses the & character:

[$BasePat h = $out put pat h & " / " & $JavaPackageDi r]

Objects
Objects represent the information contained in the UModelproject. Objects have properties,
which can be accessed using the . operator. It is not possible to create new objects in SPL (they
are predefined by the code generator, derived from the input), but it is possible to assign objects
to variables.

Example:

cl ass [=$cl ass. Name]

This example outputs the word "class", followed by a space and the value of the Name property
of the $class object.

The following table show the relationship between UML elements their SPL equivalents along
with a short description.

306 Code Generator The way to SPL (Spy Programming Language)

© 2007 Altova GmbHAltova UModel 2007

Predefined variables

UML element SPL property Multi-
plicity

UML UModel Description

Attribute /
Association

Attribute /
Association

Description

BehavioralFeature isAbstract isAbstract:Boolean

BehavioralFeature raisedException * raisedException:Typ
e

BehavioralFeature ownedParameter * ownedParameter:
Parameter

BehavioredClassifie
r

interfaceRealizati
on

* interfaceRealization:
InterfaceRealization

Class ownedOperation * ownedOperation:
Operation

Class nestedClassifier * nestedClassifier:
Classifier

Classifier namespace * namespace:Packa
ge

packages with code
language
<<namespace>> set

Classifier generalization * generalization:
Generalization

Classifier isAbstract isAbstract:Boolean

ClassifierTemplate
Parameter

constrainingClas
sifier

* constrainingClassifie
r

Comment body body:String

DataType ownedAttribute * ownedAttribute:
Property

DataType ownedOperation * ownedOperation:
Operation

Element kind kind:String

Element owner 0..1 owner:Element

Element appliedStereotyp
e

* appliedStereotype:
StereotypeApplicati
on

applied stereotypes

Element ownedComment * ownedComment:
Comment

ElementImport importedElement 1 importedElement:
PackageableElemen
t

Enumeration ownedLiteral * ownedLiteral:
EnumerationLiteral

Enumeration nestedClassifier * nestedClassifier::
Classifier

Enumeration interfaceRealizati
on

* interfaceRealizatio
n:
Interface

EnumerationLiteral ownedAttribute * ownedAttribute:Pro
perty

EnumerationLiteral ownedOperation * ownedOperation:
Operation

EnumerationLiteral nestedClassifier * nestedClassifier:
Classifier

Feature isStatic isStatic:Boolean

Generalization general 1 general:Classifier

Interface ownedAttribute * ownedAttribute:
Property

Interface ownedOperation * ownedOperation:
Operation

© 2007 Altova GmbH

The way to SPL (Spy Programming Language) 307Code Generator

Altova UModel 2007

UML element SPL property Multi-
plicity

UML UModel Description

Attribute /
Association

Attribute /
Association

Description

Interface nestedClassifier * nestedClassifier:
Classifier

InterfaceRealization contract 1 contract:Interface

MultiplicityElement lowerValue 0..1 lowerValue:Value
Specification

MultiplicityElement upperValue 0..1 upperValue:Value
Specification

NamedElement name name:String

NamedElement visibility visibility:VisibilityKin
d

NamedElement isPublic isPublic:Boolean visibility <public>

NamedElement isProtected isProtected:Boolea
n

visibility <protected>

NamedElement isPrivate isPrivate:Boolean visibility <private>

NamedElement isPackage isPackage:Boolean visibility <package>

NamedElement namespacePrefix namespacePrefix:
String

XSD only - namespace
prefix when exists

Namespace elementImport * elementImport:Elem
ent
Import

Operation ownedReturn
Parameter

0..1 ownedReturnPara
meter:
Parameter

parameter with direction
return set

Operation type 0..1 type type of parameter with
direction return set

Operation ownedOperation
Parameter

* ownedOperation
Parameter:Parame
ter

all parameters excluding
parameter with direction
return set

Package namespace * namespace:Packa
ge

packages with code
language
<<namespace>> set

PackageableEleme
nt

owningPackage 0..1 owningPackage set if owner is a package

PackageableEleme
nt

owningNamespa
ce
Package

0..1 owningNamespace
Package:Package

owning package with code
language
<<namespace>> set

Parameter direction direction:Parameter
DirectionKind

Parameter isIn isIn:Boolean direction <in>

Parameter isInOut isInOut:Boolean direction <inout>

Parameter isOut isOut:Boolean direction <out>

Parameter isReturn isReturn:Boolean direction <return>

Parameter isVarArgList isVarArgList:
Boolean

true if parameter is a
variable argument list

Parameter defaultValue 0..1 defaultValue:Value
Specification

Property defaultValue 0..1 defaultValue:Value
Specification

RedefinableElement isLeaf isLeaf:Boolean

Slot name name:String name of the defining
feature

308 Code Generator The way to SPL (Spy Programming Language)

© 2007 Altova GmbHAltova UModel 2007

UML element SPL property Multi-
plicity

UML UModel Description

Attribute /
Association

Attribute /
Association

Description

Slot values * value:ValueSpecific
ation

Slot value value:String value of the first value
specification

StereotypeApplicati
on

name name:String name of applied
stereotype

StereotypeApplicati
on

taggedValue * taggedValue:Slot first slot of the instance
specification

StructuralFeature isReadOnly isReadOnly

StructuredClassifier ownedAttribute * ownedAttribute:Prop
erty

TemplateBinding signature 1 signature:Template
Signature

TemplateBinding parameter
Substitution

* parameterSubstituti
on:
Template
ParameterSubstituti
on

TemplateParameter paramDefault paramDefault:Strin
g

template parameter
default value

TemplateParameter ownedParameter
ed
Element

1 ownedParametered
Element:
ParameterableElem
ent

TemplateParameter
Substitution

parameter
Substitution

parameterSubstituti
on:
String

Java only - code wildcard
handling

TemplateParameter
Substitution

parameter
DimensionCount

parameterDimensi
on
Count:Integer

code dimension count of
the actual parameter

TemplateParamete
rSubstitution

actual 1 OwnedActual:Param
eter
ableElement

TemplateParameter
Substitution

formal 1 formal:TemplatePar
ameter

TemplateSignature template 1 template:Templatea
ble
Element

TemplateSignature ownedParameter * ownedParameter:
TemplateParameter

TemplateableEleme
nt

isTemplate isTemplate:Boolea
n

true if template signature
set

TemplateableEleme
nt

ownedTemplate
Signature

0..1 ownedTemplateSign
ature:
TemplateSignature

TemplateableEleme
nt

templateBinding * templateBinding:Te
mplate
Binding

Type typeName * typeName:Packag
eable
Element

qualified code type names

TypedElement type 0..1 type:Type

TypedElement postTypeModifier postTypeModifier:S
tring

postfix code modifiers

ValueSpecification value value:String string value of the value
specification

Adding a prefix to attributes of a class during code generation

© 2007 Altova GmbH

The way to SPL (Spy Programming Language) 309Code Generator

Altova UModel 2007

You might need to prefix all new attributes with the "m_" characters in your project.

All new coding elements are written using the SPL templates:
If you look into UModelSPL\C#[Java]\Default\Attribute.spl, you can change the way how the
name is written, e.g. replace

write $Property.name

by

write "m_" & $Property.name

It is highly recommended that you immediately update your model from code, after code
generation to ensure that code and model are synchronized!

Please note:
As previously mentioned copy the SPL templates one directory higher (i.e. above the default
directory to UModelSPL\C#) before modifying them. This ensures that they are not overwritten
when you install a new version of UModel. Please make sure that the "user-defined override
default" check box is activated in the Code from Model tab of the Synchronization Setting
dialog box.

310 Code Generator The way to SPL (Spy Programming Language)

© 2007 Altova GmbHAltova UModel 2007

13.1.3 Operators

Operators in SPL work like in most other programming languages.

List of SPL operators in descending precedence order:

. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"

& String concatenation

- Sign for negative number
not Logical negation

* Multiply
/ Divide
% Modulo

+ Add
- Subtract

<= Less than or equal
< Less than
>= Greater than or equal
> Greater than

= Equal
<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

© 2007 Altova GmbH

The way to SPL (Spy Programming Language) 311Code Generator

Altova UModel 2007

13.1.4 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

i f condition
statements

el se
statements

endi f

or, without else:

i f condition
statements

endi f

Please note that there are no round brackets enclosing the condition!
As in any other programming language, conditions are constructed with logical and comparison
operators.

Example:
[i f $namespace. Cont ai nsPubl i cCl asses and $namespace. Pr ef i x <> " "]

what ever you want ['i nser t s what ever you want , i n t he r esul t i ng f i l e]
[endi f]

Switch
SPL also contains a multiple choice statement.

Syntax:
swi t ch $variable

case X:
statements

case Y:
case Z:
statements

defaul t :
statements

endswi t ch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a
"break" statement.

312 Code Generator The way to SPL (Spy Programming Language)

© 2007 Altova GmbHAltova UModel 2007

13.1.5 foreach

Collections and iterators

A collection contains multiple objects - like a ordinary array. Iterators solve the problem of
storing and incrementing array indexes when accessing objects.

Syntax:
for each iterator i n collection
statements

next

Example:
[for each $cl ass i n $cl asses

i f not $cl ass. I sI nt er nal
] cl ass [=$cl ass. Name] ;

[endi f
next]

Foreach steps through all the items in $classes, and executes the code following the
instruction, up to the next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class
object instead of using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

Index The current index, starting with 0
IsFirst true if the current object is the first of the collection (index is 0)
IsLast true if the current object is the last of the collection
Current The current object (this is implicit if not specified and can be left out)

Example:
[for each $enum i n $f acet . Enumer at i on

i f not $enum. I sFi r st
] , [

endi f
] " [=$enum. Val ue] " [

next]

© 2007 Altova GmbH

The way to SPL (Spy Programming Language) 313Code Generator

Altova UModel 2007

13.1.6 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:
 By-value and by-reference passing of values
 Local/global parameters (local within subroutines)
 Local variables
 Recursive invocation (subroutines may call themselves)

Subroutine declaration

Subroutines

Syntax example:

Sub Si mpl eSub()

. . . l i nes of code

EndSub

 Sub is the keyword that denotes the procedure.
 SimpleSub is the name assigned to the subroutine.
 Round parenthesis can contain a parameter list.
 The code block of a subroutine starts immediately after the closing parameter

parenthesis.
 EndSub denotes the end of the code block.

Please note:
Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may
not contain another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

 All parameters must be variables
 Variables must be prefixed by the $ character
 Local variables are defined in a subroutine
 Global variables are declared explicitly, outside of subroutines
 Multiple parameters are separated by the comma character "," within round

parentheses
 Parameters can pass values

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal
and ByRef respectively.

Syntax:
' def i ne sub Compl et eSub()
[Sub Compl et eSub($par am, ByVal $par amByVal ue, ByRef $par amByRef)
] . . .

 ByVal specifies that the parameter is passed by value. Note that most objects can only
be passed by reference.

 ByRef specifies that the parameter is passed by reference. This is the default if neither
ByVal nor ByRef is specified.

314 Code Generator The way to SPL (Spy Programming Language)

© 2007 Altova GmbHAltova UModel 2007

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called
from within an expression.

Example:
' def i ne a f unct i on
[Sub MakeQual i f i edName(ByVal $namespacePr ef i x, ByVal $l ocal Name)
i f $namespacePr ef i x = " "
 r et ur n $l ocal Name
el se
 r et ur n $namespacePr ef i x & " : " & $l ocal Name
endi f
EndSub
]

Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.

Cal l Si mpl eSub()
or,

Cal l Compl et eSub(" Fi r st Par amet er " , $Par amByVal ue, $Par amByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name
inside an expression. Do not use the call statement to call functions.
Example:

$QName = MakeQual i f i edName($namespace, " ent r y ")

© 2007 Altova GmbH

Error Codes 315Code Generator

Altova UModel 2007

13.2 Error Codes

Operating System Error Codes
201 File not found: '%s'
202 Cannot create file '%s'
203 Cannot open file '%s'
204 Cannot copy file '%s' to '%s'

Schema Error Codes
302 Validator: %s
303 Validator cannot load schema '%s'

Syntax Error Codes
401 Keyword expected
402 '%s' expected
403 No output file specified
404 Unexpected end of file
405 Keyword not allowed

Runtime Error Codes
501 Unknown variable '%s'
502 Redefinition of variable '%s'
503 Variable '%s' is not a container
504 Unknown property '%s'
505 Cannot convert from %s to %s
507 Unknown function
508 Function already defined
509 Invalid parameter
510 Division by zero
511 Unknown method
512 Incorrect number of parameters
513 Stack overflow

Chapter 14

Appendices

318 Appendices

© 2007 Altova GmbHAltova UModel 2007

14 Appendices

These appendices contain technical information about UModel and important licensing
information.

License Information

 Electronic software distribution
 Copyrights
 End User License Agreement

© 2007 Altova GmbH

License Information 319Appendices

Altova UModel 2007

14.1 License Information

This section contains:

 Information about the distribution of this software product
 Information about the copyrights related to this software product
 The End User License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

320 Appendices License Information

© 2007 Altova GmbHAltova UModel 2007

14.1.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

 You can evaluate the software free-of-charge before making a purchasing decision.
 Once you decide to buy the software, you can place your order online at the Altova

website and immediately get a fully licensed product within minutes.
 When you place an online order, you always get the latest version of our software.
 The product package includes a comprehensive integrated onscreen help system. The

latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have
the documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the
application. If you would like to continue using the program after the 30-day evaluation period,
you have to purchase an End User License Agreement, which is delivered in the form of a
key-code that you enter into the Software Activation dialog to unlock the product. You can
purchase your license at the online shop at the Altova website.

Distributing the product
If you wish to share the product with others, please make sure that you distribute only the
installation program, which is a convenient package that will install the application together with
all sample files and the onscreen help. Any person that receives the product from you is also
automatically entitled to a 30-day evaluation period. After the expiration of this period, any other
user must also purchase a license in order to be able to continue using the product.

For further details, please refer to the End User License Agreement at the end of this section.

http://www.altova.com/
http://www.altova.com/
http://www.altova.com/support_help.html
http://www.altova.com/

© 2007 Altova GmbH

License Information 321Appendices

Altova UModel 2007

14.1.2 License Metering

Your Altova product has a built-in license metering module that helps you avoid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license
When the application starts up, it sends a short broadcast datagram to find any other instance
of the product running on another computer in the same network segment. If it doesn't get any
response, it will open a port for listening to other instances of the application. Other than that, it
will not attempt to communicate over a network. If you are not connected to a LAN, or are using
dial-up connections to connect to the Internet, the application will not generate any network
traffic at all.

Multi license
If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order
to ensure that the number of concurrent licenses purchased is not accidentally violated. This is
the same kind of license metering technology that is common in the Unix world and with a
number of database development tools. It allows Altova customers to purchase
reasonably-priced concurrent-use multi-user licenses.

Please note that your Altova product at no time attempts to send any information out of your
LAN or over the Internet. We have also designed the applications so that they send few and
small network packets so as to not put a burden on your network. The TCP/IP ports (2799)
used by your Altova product are officially registered with the IANA (see
http://www.isi.edu/in-notes/iana/assignments/port-numbers for details) and our license-metering
module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

http://www.isi.edu/in-notes/iana/assignments/port-numbers

322 Appendices License Information

© 2007 Altova GmbHAltova UModel 2007

14.1.3 Copyright

All title and copyrights in this software product (including but not limited to images, photographs,
animations, video, audio, music, text, and applets incorporated in the product), in the
accompanying printed materials, and in any copies of these printed materials are owned by
Altova GmbH or the respective supplier. This software product is protected by copyright laws
and international treaty provisions.

 This software product ©1998-2007 Altova GmbH. All rights reserved.
 The Sentry Spelling-Checker Engine © 2000 Wintertree Software Inc.
 STLport © 1999, 2000 Boris Fomitchev, © 1994 Hewlett-Packard Company, © 1996,

1997 Silicon Graphics Computer Systems, Inc, © 1997 Moscow Center for SPARC
Technology.

 Scintilla © 1998–2002 Neil Hodgson <nei l h@sci nt i l l a. or g>.

 "ANTLR Copyright © 1989-2005 by Terence Parr (www.antlr.org)"

All other names or trademarks are the property of their respective owners.

© 2007 Altova GmbH

License Information 323Appendices

Altova UModel 2007

14.1.4 Altova End User License Agreement

THIS IS A LEGAL DOCUMENT -- RETAIN FOR YOUR RECORDS

ALTOVA® END USER LICENSE AGREEMENT

Licensor:

Altova GmbH
Rudolfsplatz 13a/9
A-1010 Wien
Austria

Important - Read Carefully. Notice to User:
This End User License Agreement (“Software License Agreement”) is a legal document

between you and Altova GmbH (“Altova”). It is important that you read this document before
using the Altova-provided software (“Software”) and any accompanying documentation, including,
without limitation printed materials, ‘online’ files, or electronic documentation (“Documentation”).
By clicking the “I accept” and “Next” buttons below, or by installing, or otherwise using the
Software, you agree to be bound by the terms of this Software License Agreement as well as the
Altova Privacy Policy (“Privacy Policy”) including, without limitation, the warranty disclaimers,
limitation of liability, data use and termination provisions below, whether or not you decide to
purchase the Software. You agree that this agreement is enforceable like any written agreement
negotiated and signed by you. If you do not agree, you are not licensed to use the Software, and you
must destroy any downloaded copies of the Software in your possession or control. Please go to our Web
site at http://www.altova.com/eula to download and print a copy of this Software License Agreement for
your files and http://www.altova.com/privacy to review the privacy policy.

1. SOFTWARE LICENSE
(a) License Grant. Upon your acceptance of this Software License Agreement Altova
grants you a non-exclusive, non-transferable (except as provided below), limited license to
install and use a copy of the Software on your compatible computer, up to the Permitted Number
of computers. The Permitted Number of computers shall be delineated at such time as you elect
to purchase the Software. During the evaluation period, hereinafter defined, only a single user
may install and use the software on one computer. If you have licensed the Software as part of a
suite of Altova software products (collectively, the “Suite”) and have not installed each product
individually, then the Software License Agreement governs your use of all of the software
included in the Suite. If you have licensed SchemaAgent, then the terms and conditions of this
Software License Agreement apply to your use of the SchemaAgent server software
(“SchemaAgent Server”) included therein, as applicable and you are licensed to use
SchemaAgent Server solely in connection with your use of Altova Software and solely for the
purposes described in the accompanying documentation. In addition, if you have licensed
XMLSpy Enterprise Edition or MapForce Enterprise Edition, or UModel, your license to
install and use a copy of the Software as provided herein permits you to generate source code
based on (i) Altova Library modules that are included in the Software (such generated code
hereinafter referred to as the “Restricted Source Code”) and (ii) schemas or mappings that you
create or provide (such code as may be generated from your schema or mapping source
materials hereinafter referred to as the “Unrestricted Source Code”). In addition to the rights
granted herein, Altova grants you a non-exclusive, non-transferable, limited license to compile
into executable form the complete generated code comprised of the combination of the
Restricted Source Code and the Unrestricted Source Code, and to use, copy, distribute or license
that executable. You may not distribute or redistribute, sublicense, sell, or transfer to a third
party the Restricted Source Code, unless said third party already has a license to the Restricted
Source Code through their separate license agreement with Altova or other agreement with
Altova. Altova reserves all other rights in and to the Software. With respect to the feature(s) of

http://www.altova.com/privacy

324 Appendices License Information

© 2007 Altova GmbHAltova UModel 2007

UModel that permit reverse-engineering of your own source code or other source code that you
have lawfully obtained, such use by you does not constitute a violation of this Agreement.
Except as otherwise permitted in Section 1(h) reverse engineering of the Software is strictly
prohibited as further detailed therein.
 (b) Server Use. You may install one copy of the Software on your computer file server for
the purpose of downloading and installing the Software onto other computers within your
internal network up to the Permitted Number of computers. If you have licensed SchemaAgent,
then you may install SchemaAgent Server on any server computer or workstation and use it in
connection with your Software. No other network use is permitted, including without limitation
using the Software either directly or through commands, data or instructions from or to a
computer not part of your internal network, for Internet or Web-hosting services or by any user
not licensed to use this copy of the Software through a valid license from Altova. If you have
purchased Concurrent User Licenses as defined in Section 1(c) you may install a copy of the
Software on a terminal server within your internal network for the sole and exclusive purpose of
permitting individual users within your organization to access and use the Software through a
terminal server session from another computer on the network provided that the total number of
user that access or use the Software on such network or terminal server does not exceed the
Permitted Number. Altova makes no warranties or representations about the performance of
Altova software in a terminal server environment and the foregoing are expressly excluded from
the limited warranty in Section 5 hereof and technical support is not available with respect to
issues arising from use in such an environment.
(c) Concurrent Use. If you have licensed a “Concurrent-User” version of the Software,
you may install the Software on any compatible computers, up to ten (10) times the Permitted
Number of users, provided that only the Permitted Number of users actually use the Software at
the same time. The Permitted Number of concurrent users shall be delineated at such time as you
elect to purchase the Software licenses.
(d) Backup and Archival Copies. You may make one backup and one archival copy of
the Software, provided your backup and archival copies are not installed or used on any
computer and further provided that all such copies shall bear the original and unmodified
copyright, patent and other intellectual property markings that appear on or in the Software. You
may not transfer the rights to a backup or archival copy unless you transfer all rights in the
Software as provided under Section 3.
(e) Home Use. You, as the primary user of the computer on which the Software is
installed, may also install the Software on one of your home computers for your use. However,
the Software may not be used on your home computer at the same time as the Software is being
used on the primary computer.
(f) Key Codes, Upgrades and Updates. Prior to your purchase and as part of the
registration for the thirty (30) -day evaluation period, as applicable, you will receive an
evaluation key code. You will receive a purchase key code when you elect to purchase the
Software from either Altova GMBH or an authorized reseller. The purchase key code will
enable you to activate the Software beyond the initial evaluation period. You may not re-license,
reproduce or distribute any key code except with the express written permission of Altova. If the
Software that you have licensed is an upgrade or an update, then the update replaces all or part
of the Software previously licensed. The update or upgrade and the associated license keys does
not constitute the granting of a second license to the Software in that you may not use the
upgrade or update in addition to the Software that it is replacing. You agree that use of the
upgrade of update terminates your license to use the Software or portion thereof replaced.
(g) Title. Title to the Software is not transferred to you. Ownership of all copies of the
Software and of copies made by you is vested in Altova, subject to the rights of use granted to
you in this Software License Agreement. As between you and Altova, documents, files,
stylesheets, generated program code (including the Unrestricted Source Code) and schemas
that are authored or created by you via your utilization of the Software, in accordance with its
Documentation and the terms of this Software License Agreement, are your property.
 (h) Reverse Engineering. Except and to the limited extent as may be otherwise
specifically provided by applicable law in the European Union, you may not reverse engineer,
decompile, disassemble or otherwise attempt to discover the source code, underlying ideas,

© 2007 Altova GmbH

License Information 325Appendices

Altova UModel 2007

underlying user interface techniques or algorithms of the Software by any means whatsoever,
directly or indirectly, or disclose any of the foregoing, except to the extent you may be expressly
permitted to decompile under applicable law in the European Union, if it is essential to do so in
order to achieve operability of the Software with another software program, and you have first
requested Altova to provide the information necessary to achieve such operability and Altova
has not made such information available. Altova has the right to impose reasonable conditions
and to request a reasonable fee before providing such information. Any information supplied by
Altova or obtained by you, as permitted hereunder, may only be used by you for the purpose
described herein and may not be disclosed to any third party or used to create any software
which is substantially similar to the expression of the Software. Requests for information from
users in the European Union with respect to the above should be directed to the Altova
Customer Support Department.
(i) Other Restrictions. You may not loan, rent, lease, sublicense, distribute or otherwise
transfer all or any portion of the Software to third parties except to the limited extent set forth in
Section 3 or otherwise expressly provided. You may not copy the Software except as expressly
set forth above, and any copies that you are permitted to make pursuant to this Software License
Agreement must contain the same copyright, patent and other intellectual property markings that
appear on or in the Software. You may not modify, adapt or translate the Software. You may
not, directly or indirectly, encumber or suffer to exist any lien or security interest on the
Software; knowingly take any action that would cause the Software to be placed in the public
domain; or use the Software in any computer environment not specified in this Software License
Agreement. You will comply with applicable law and Altova’s instructions regarding the use of
the Software. You agree to notify your employees and agents who may have access to the
Software of the restrictions contained in this Software License Agreement and to ensure their
compliance with these restrictions. YOU AGREE THAT YOU ARE SOLELY RESPONSIBLE
FOR THE ACCURACY AND ADEQUACY OF THE SOFTWARE FOR YOUR INTENDED
USE AND YOU WILL INDEMNIFY AND HOLD HARMLESS ALTOVA FROM ANY 3RD
PARTY SUIT TO THE EXTENT BASED UPON THE ACCURACY AND ADEQUACY OF
THE SOFTWARE IN YOUR USE. WITHOUT LIMITATION, THE SOFTWARE IS NOT
INTENDED FOR USE IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
NAVIGATION, COMMUNICATION SYSTEMS OR AIR TRAFFIC CONTROL EQUIPMENT,
WHERE THE FAILURE OF THE SOFTWARE COULD LEAD TO DEATH, PERSONAL
INJURY OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE.

2. INTELLECTUAL PROPERTY RIGHTS
Acknowledgement of Altova's Rights. You acknowledge that the Software and any copies that
you are authorized by Altova to make are the intellectual property of and are owned by Altova
and its suppliers. The structure, organization and code of the Software are the valuable trade
secrets and confidential information of Altova and its suppliers. The Software is protected by
copyright, including without limitation by United States Copyright Law, international treaty
provisions and applicable laws in the country in which it is being used. You acknowledge that
Altova retains the ownership of all patents, copyrights, trade secrets, trademarks and other
intellectual property rights pertaining to the Software, and that Altova’s ownership rights extend
to any images, photographs, animations, videos, audio, music, text and “applets” incorporated
into the Software and all accompanying printed materials. You will take no actions which
adversely affect Altova’s intellectual property rights in the Software. Trademarks shall be used
in accordance with accepted trademark practice, including identification of trademark owners’
names. Trademarks may only be used to identify printed output produced by the Software, and
such use of any trademark does not give you any right of ownership in that trademark. XMLSpy,
Authentic, StyleVision, MapForce, Markup Your Mind, Axad, Nanonull, and Altova are
trademarks of Altova GmbH (registered in numerous countries). Unicode and the Unicode Logo
are trademarks of Unicode, Inc. Windows, Windows 95, Windows 98, Windows NT, Windows
2000 and Windows XP are trademarks of Microsoft. W3C, CSS, DOM, MathML, RDF,
XHTML, XML and XSL are trademarks (registered in numerous countries) of the World Wide
Web Consortium (W3C); marks of the W3C are registered and held by its host institutions, MIT,
INRIA and Keio. Except as expressly stated above, this Software License Agreement does not

326 Appendices License Information

© 2007 Altova GmbHAltova UModel 2007

grant you any intellectual property rights in the Software. Notifications of claimed copyright
infringement should be sent to Altova’s copyright agent as further provided on the Altova Web
Site.

3. LIMITED TRANSFER RIGHTS
Notwithstanding the foregoing, you may transfer all your rights to use the Software to another
person or legal entity provided that: (a) you also transfer each of this Software License
Agreement, the Software and all other software or hardware bundled or pre-installed with the
Software, including all copies, updates and prior versions, and all copies of font software
converted into other formats, to such person or entity; (b) you retain no copies, including
backups and copies stored on a computer; (c) the receiving party secures a personalized key
code from Altova; and (d) the receiving party accepts the terms and conditions of this Software
License Agreement and any other terms and conditions upon which you legally purchased a
license to the Software. Notwithstanding the foregoing, you may not transfer education,
pre-release, or not-for-resale copies of the Software.

4. PRE-RELEASE AND EVALUATION PRODUCT ADDITIONAL TERMS
If the product you have received with this license is pre-commercial release or beta Software
(“Pre-release Software”), then this Section applies. In addition, this section applies to all
evaluation and/or demonstration copies of Altova software (“Evaluation Software”) and
continues in effect until you purchase a license. To the extent that any provision in this section is
in conflict with any other term or condition in this Software License Agreement, this section
shall supersede such other term(s) and condition(s) with respect to the Pre-release and/or
Evaluation Software, but only to the extent necessary to resolve the conflict. You acknowledge
that the Pre-release Software is a pre-release version, does not represent final product from
Altova, and may contain bugs, errors and other problems that could cause system or other
failures and data loss. CONSEQUENTLY, THE PRE-RELEASE AND/OR EVALUATION
SOFTWARE IS PROVIDED TO YOU “AS-IS” WITH NO WARRANTIES FOR USE OR
PERFORMANCE, AND ALTOVA DISCLAIMS ANY WARRANTY OR LIABILITY
OBLIGATIONS TO YOU OF ANY KIND, WHETHER EXPRESS OR IMPLIED. WHERE
LEGALLY LIABILITY CANNOT BE EXCLUDED FOR PRE-RELEASE AND/OR
EVALUATION SOFTWARE, BUT IT MAY BE LIMITED, ALTOVA’S LIABILITY AND
THAT OF ITS SUPPLIERS SHALL BE LIMITED TO THE SUM OF FIFTY DOLLARS
(USD $50) IN TOTAL. If the Evaluation Software has a time-out feature, then the software will
cease operation after the conclusion of the designated evaluation period. Upon such expiration
date, your license will expire unless otherwise extended. Access to any files created with the
Evaluation Software is entirely at your risk. You acknowledge that Altova has not promised or
guaranteed to you that Pre-release Software will be announced or made available to anyone in
the future, that Altova has no express or implied obligation to you to announce or introduce the
Pre-release Software, and that Altova may not introduce a product similar to or compatible with
the Pre-release Software. Accordingly, you acknowledge that any research or development that
you perform regarding the Pre-release Software or any product associated with the Pre-release
Software is done entirely at your own risk. During the term of this Software License Agreement,
if requested by Altova, you will provide feedback to Altova regarding testing and use of the
Pre-release Software, including error or bug reports. If you have been provided the Pre-release
Software pursuant to a separate written agreement, your use of the Software is governed by such
agreement. You may not sublicense, lease, loan, rent, distribute or otherwise transfer the
Pre-release Software. Upon receipt of a later unreleased version of the Pre-release Software or
release by Altova of a publicly released commercial version of the Software, whether as a
stand-alone product or as part of a larger product, you agree to return or destroy all earlier
Pre-release Software received from Altova and to abide by the terms of the license agreement
for any such later versions of the Pre-release Software.

5. LIMITED WARRANTY AND LIMITATION OF LIABILITY
(a) Limited Warranty and Customer Remedies. Altova warrants to the person or entity

© 2007 Altova GmbH

License Information 327Appendices

Altova UModel 2007

that first purchases a license for use of the Software pursuant to the terms of this Software
License Agreement that (i) the Software will perform substantially in accordance with any
accompanying Documentation for a period of ninety (90) days from the date of receipt, and (ii)
any support services provided by Altova shall be substantially as described in Section 6 of this
agreement. Some states and jurisdictions do not allow limitations on duration of an implied
warranty, so the above limitation may not apply to you. To the extent allowed by applicable law,
implied warranties on the Software, if any, are limited to ninety (90) days. Altova’s and its
suppliers’ entire liability and your exclusive remedy shall be, at Altova’s option, either (i) return
of the price paid, if any, or (ii) repair or replacement of the Software that does not meet Altova’s
Limited Warranty and which is returned to Altova with a copy of your receipt. This Limited
Warranty is void if failure of the Software has resulted from accident, abuse, misapplication,
abnormal use, Trojan horse, virus, or any other malicious external code. Any replacement
Software will be warranted for the remainder of the original warranty period or thirty (30) days,
whichever is longer. This limited warranty does not apply to Evaluation and/or Pre-release
Software.
 (b) No Other Warranties and Disclaimer. THE FOREGOING LIMITED WARRANTY
AND REMEDIES STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ALTOVA OR
ITS SUPPLIER’S BREACH OF WARRANTY. ALTOVA AND ITS SUPPLIERS DO NOT
AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY
USING THE SOFTWARE. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, AND
FOR ANY WARRANTY, CONDITION, REPRESENTATION OR TERM TO THE EXTENT
WHICH THE SAME CANNOT OR MAY NOT BE EXCLUDED OR LIMITED BY LAW
APPLICABLE TO YOU IN YOUR JURISDICTION, ALTOVA AND ITS SUPPLIERS
MAKE NO WARRANTIES, CONDITIONS, REPRESENTATIONS OR TERMS, EXPRESS
OR IMPLIED, WHETHER BY STATUTE, COMMON LAW, CUSTOM, USAGE OR
OTHERWISE AS TO ANY OTHER MATTERS. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, ALTOVA AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY
QUALITY, INFORMATIONAL CONTENT OR ACCURACY, QUIET ENJOYMENT, TITLE
AND NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE, AND THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES. THIS LIMITED
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS,
WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.
 (c) Limitation Of Liability. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW EVEN IF A REMEDY FAILS ITS ESSENTIAL PURPOSE, IN NO
EVENT SHALL ALTOVA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF ALTOVA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
IN ANY CASE, ALTOVA’S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
SOFTWARE LICENSE AGREEMENT SHALL BE LIMITED TO THE AMOUNT
ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT. Because some states and
jurisdictions do not allow the exclusion or limitation of liability, the above limitation may not
apply to you. In such states and jurisdictions, Altova’s liability shall be limited to the greatest
extent permitted by law and the limitations or exclusions of warranties and liability contained
herein do not prejudice applicable statutory consumer rights of person acquiring goods otherwise
than in the course of business. The disclaimer and limited liability above are fundamental to this
Software License Agreement between Altova and you.
 (d) Infringement Claims. Altova will indemnify and hold you harmless and will defend or
settle any claim, suit or proceeding brought against you by a third party that is based upon a
claim that the content contained in the Software infringes a copyright or violates an intellectual

328 Appendices License Information

© 2007 Altova GmbHAltova UModel 2007

or proprietary right protected by United States or European Union law (“Claim”), but only to the
extent the Claim arises directly out of the use of the Software and subject to the limitations set
forth in Section 5 of this Agreement except as otherwise expressly provided. You must notify
Altova in writing of any Claim within ten (10) business days after you first receive notice of the
Claim, and you shall provide to Altova at no cost with such assistance and cooperation as Altova
may reasonably request from time to time in connection with the defense of the Claim. Altova
shall have sole control over any Claim (including, without limitation, the selection of counsel
and the right to settle on your behalf on any terms Altova deems desirable in the sole exercise of
its discretion). You may, at your sole cost, retain separate counsel and participate in the defense
or settlement negotiations. Altova shall pay actual damages, costs, and attorney fees awarded
against you (or payable by you pursuant to a settlement agreement) in connection with a Claim
to the extent such direct damages and costs are not reimbursed to you by insurance or a third
party, to an aggregate maximum equal to the purchase price of the Software. If the Software or
its use becomes the subject of a Claim or its use is enjoined, or if in the opinion of Altova’s legal
counsel the Software is likely to become the subject of a Claim, Altova shall attempt to resolve
the Claim by using commercially reasonable efforts to modify the Software or obtain a license to
continue using the Software. If in the opinion of Altova’s legal counsel the Claim, the injunction
or potential Claim cannot be resolved through reasonable modification or licensing, Altova, at its
own election, may terminate this Software License Agreement without penalty, and will refund
to you on a pro rata basis any fees paid in advance by you to Altova. THE FOREGOING
CONSTITUTES ALTOVA’S SOLE AND EXCLUSIVE LIABILITY FOR INTELLECTUAL
PROPERTY INFRINGEMENT. This indemnity does not apply to infringements that would not
be such, except for customer-supplied elements.

6. SUPPORT AND MAINTENANCE
Altova offers multiple optional “Support & Maintenance Package(s)” (“SMP”) for the version of
Software product edition that you have licensed, which you may elect to purchase in addition to
your Software license. The Support Period, hereinafter defined, covered by such SMP shall be
delineated at such time as you elect to purchase a SMP. Your rights with respect to support and
maintenance as well as your upgrade eligibility depend on your decision to purchase SMP and
the level of SMP that you have purchased:
(a) If you have not purchased SMP, you will receive the Software AS IS and will not
receive any maintenance releases or updates. However, Altova, at its option and in its sole
discretion on a case by case basis, may decide to offer maintenance releases to you as a courtesy,
but these maintenance releases will not include any new features in excess of the feature set at
the time of your purchase of the Software. In addition, Altova will provide free technical support
to you for thirty (30) days after the date of your purchase (the “Support Period” for the purposes
of this paragraph a), and Altova, in its sole discretion on a case by case basis, may also provide
free courtesy technical support during your thirty (30)-day evaluation period. Technical support
is provided via a Web-based support form only, and there is no guaranteed response time.
(b) If you have purchased SMP, then solely for the duration of its delineated Support
Period, you are eligible to receive the version of the Software edition that you have licensed
and all maintenance releases and updates for that edition that are released during your Support
Period. For the duration of your SMP’s Support Period, you will also be eligible to receive
upgrades to the comparable edition of the next version of the Software that succeeds the
Software edition that you have licensed for applicable upgrades released during your Support
Period. The specific upgrade edition that you are eligible to receive based on your Support
Period is further detailed in the SMP that you have purchased. Software that is introduced as
separate product is not included in SMP. Maintenance releases, updates and upgrades may or
may not include additional features. In addition, Altova will provide Priority Technical Support
to you for the duration of the Support Period. Priority Technical Support is provided via a
Web-based support form only, and Altova will make commercially reasonable efforts to respond
via e-mail to all requests within forty-eight (48) hours during Altova’s business hours (MO-FR,
8am UTC – 10pm UTC, Austrian and US holidays excluded) and to make reasonable efforts to
provide work-arounds to errors reported in the Software.

© 2007 Altova GmbH

License Information 329Appendices

Altova UModel 2007

During the Support Period you may also report any Software problem or error to Altova. If
Altova determines that a reported reproducible material error in the Software exists and
significantly impairs the usability and utility of the Software, Altova agrees to use reasonable
commercial efforts to correct or provide a usable work-around solution in an upcoming
maintenance release or update, which is made available at certain times at Altova’s sole

discretion.
If Altova, in its discretion, requests written verification of an error or malfunction discovered by
you or requests supporting example files that exhibit the Software problem, you shall promptly
provide such verification or files, by email, telecopy, or overnight mail, setting forth in
reasonable detail the respects in which the Software fails to perform. You shall use reasonable
efforts to cooperate in diagnosis or study of errors. Altova may include error corrections in
maintenance releases, updates, or new major releases of the Software. Altova is not obligated to
fix errors that are immaterial. Immaterial errors are those that do not significantly impact use of
the Software. Whether or not you have purchased the Support & Maintenance Package,
technical support only covers issues or questions resulting directly out of the operation of the
Software and Altova will not provide you with generic consultation, assistance, or advice under
any circumstances.
Updating Software may require the updating of software not covered by this Software License
Agreement before installation. Updates of the operating system and application software not
specifically covered by this Software License Agreement are your responsibility and will not be
provided by Altova under this Software License Agreement. Altova’s obligations under this
Section 6 are contingent upon your proper use of the Software and your compliance with the
terms and conditions of this Software License Agreement at all times. Altova shall be under no
obligation to provide the above technical support if, in Altova’s opinion, the Software has failed
due to the following conditions: (i) damage caused by the relocation of the software to another
location or CPU; (ii) alterations, modifications or attempts to change the Software without
Altova’s written approval; (iii) causes external to the Software, such as natural disasters, the
failure or fluctuation of electrical power, or computer equipment failure; (iv) your failure to
maintain the Software at Altova’s specified release level; or (v) use of the Software with other
software without Altova’s prior written approval. It will be your sole responsibility to: (i)
comply with all Altova-specified operating and troubleshooting procedures and then notify
Altova immediately of Software malfunction and provide Altova with complete information
thereof; (ii) provide for the security of your confidential information; (iii) establish and maintain
backup systems and procedures necessary to reconstruct lost or altered files, data or programs.

7. SOFTWARE ACTIVATION, UPDATES AND LICENSE METERING
(a) License Metering. Altova has a built-in license metering module that helps you to
avoid any unintentional violation of this Software License Agreement. Altova may use your
internal network for license metering between installed versions of the Software.
(b) Software Activation. Altova’s Software may use your internal network and
Internet connection for the purpose of transmitting license-related data at the time of
installation, registration, use, or update to an Altova-operated license server and
validating the authenticity of the license-related data in order to protect Altova against
unlicensed or illegal use of the Software and to improve customer service. Activation is
based on the exchange of license related data between your computer and the Altova
license server. You agree that Altova may use these measures and you agree to follow any
applicable requirements.
(c) LiveUpdate. Altova provides a new LiveUpdate notification service to you, which is
free of charge. Altova may use your internal network and Internet connection for the purpose of
transmitting license-related data to an Altova-operated LiveUpdate server to validate your
license at appropriate intervals and determine if there is any update available for you.
(d) Use of Data. The terms and conditions of the Privacy Policy are set out in full at
http://www.altova.com/privacy and are incorporated by reference into this Software License
Agreement. By your acceptance of the terms of this Software License Agreement or use of the
Software, you authorize the collection, use and disclosure of information collected by Altova for
the purposes provided for in this Software License Agreement and/or the Privacy Policy as

http://www.altova.com/privacy

330 Appendices License Information

© 2007 Altova GmbHAltova UModel 2007

revised from time to time. European users understand and consent to the processing of personal
information in the United States for the purposes described herein. Altova has the right in its
sole discretion to amend this provision of the Software License Agreement and/or Privacy
Policy at any time. You are encouraged to review the terms of the Privacy Policy as posted on
the Altova Web site from time to time.

8. TERM AND TERMINATION
This Software License Agreement may be terminated (a) by your giving Altova written notice of
termination; or (b) by Altova, at its option, giving you written notice of termination if you
commit a breach of this Software License Agreement and fail to cure such breach within ten (10)
days after notice from Altova or (c) at the request of an authorized Altova reseller in the event
that you fail to make your license payment or other monies due and payable.. In addition the
Software License Agreement governing your use of a previous version that you have upgraded
or updated of the Software is terminated upon your acceptance of the terms and conditions of the
Software License Agreement accompanying such upgrade or update. Upon any termination of
the Software License Agreement, you must cease all use of the Software that it governs, destroy
all copies then in your possession or control and take such other actions as Altova may
reasonably request to ensure that no copies of the Software remain in your possession or control.
The terms and conditions set forth in Sections 1(g), (h), (i), 2, 5(b), (c), 9, 10 and 11 survive
termination as applicable.

9. RESTRICTED RIGHTS NOTICE AND EXPORT RESTRICTIONS
The Software was developed entirely at private expense and is commercial computer software
provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S.
Government or a U.S. Government contractor or subcontractor is subject to the restrictions set
forth in this Agreement and as provided in FAR 12.211 and 12.212 (48 C.F.R. §12.211 and
12.212) or DFARS 227. 7202 (48 C.F.R. §227-7202) as applicable. Consistent with the above
as applicable, Commercial Computer Software and Commercial Computer Documentation
licensed to U.S. government end users only as commercial items and only with those rights as
are granted to all other end users under the terms and conditions set forth in this Software
License Agreement. Manufacturer is Altova GmbH, Rudolfsplatz, 13a/9, A-1010 Vienna,
Austria/EU. You may not use or otherwise export or re-export the Software or Documentation
except as authorized by United States law and the laws of the jurisdiction in which the Software
was obtained. In particular, but without limitation, the Software or Documentation may not be
exported or re-exported (i) into (or to a national or resident of) any U.S. embargoed country or
(ii) to anyone on the U.S. Treasury Department's list of Specially Designated Nationals or the
U.S. Department of Commerce's Table of Denial Orders. By using the Software, you represent
and warrant that you are not located in, under control of, or a national or resident of any such
country or on any such list.

10. THIRD PARTY SOFTWARE
The Software may contain third party software which requires notices and/or additional terms
and conditions. Such required third party software notices and/or additional terms and
conditions are located Our Website at http://www.altova.com/legal_3rdparty.html and are made
a part of and incorporated by reference into this Agreement. By accepting this Agreement, you
are also accepting the additional terms and conditions, if any, set forth therein.

11. GENERAL PROVISIONS
If you are located in the European Union and are using the Software in the European Union and
not in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,

© 2007 Altova GmbH

License Information 331Appendices

Altova UModel 2007

Vienna)� and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht, Wien (Commercial Court, Vienna) in connection with any such dispute or
claim.
If you are located in the United States or are using the Software in the United States then this
Software License Agreement will be governed by and construed in accordance with the laws of
the Commonwealth of Massachusetts, USA (excluding its conflict of laws principles and the
U.N. Convention on Contracts for the International Sale of Goods) and you expressly agree that
exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use of
the Software resides in the federal or state courts of Massachusetts and you further agree and
expressly consent to the exercise of personal jurisdiction in the federal or state courts of
Massachusetts in connection with any such dispute or claim.
 If you are located outside of the European Union or the United States and are not using the
Software in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,
Vienna)� and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht Wien (Commercial Court, Vienna) in connection with any such dispute or
claim. This Software License Agreement will not be governed by the conflict of law rules of any
jurisdiction or the United Nations Convention on Contracts for the International Sale of Goods,
the application of which is expressly excluded.
This Software License Agreement contains the entire agreement and understanding of the parties
with respect to the subject matter hereof, and supersedes all prior written and oral
understandings of the parties with respect to the subject matter hereof. Any notice or other
communication given under this Software License Agreement shall be in writing and shall have
been properly given by either of us to the other if sent by certified or registered mail, return
receipt requested, or by overnight courier to the address shown on Altova’s Web site for Altova
and the address shown in Altova’s records for you, or such other address as the parties may
designate by notice given in the manner set forth above. This Software License Agreement will
bind and inure to the benefit of the parties and our respective heirs, personal and legal
representatives, affiliates, successors and permitted assigns. The failure of either of us at any
time to require performance of any provision hereof shall in no manner affect such party’s right
at a later time to enforce the same or any other term of this Software License Agreement. This
Software License Agreement may be amended only by a document in writing signed by both of
us. In the event of a breach or threatened breach of this Software License Agreement by either
party, the other shall have all applicable equitable as well as legal remedies. Each party is duly
authorized and empowered to enter into and perform this Software License Agreement. If, for
any reason, any provision of this Software License Agreement is held invalid or otherwise
unenforceable, such invalidity or unenforceability shall not affect the remainder of this Software
License Agreement, and this Software License Agreement shall continue in full force and effect
to the fullest extent allowed by law. The parties knowingly and expressly consent to the
foregoing terms and conditions.

Last updated: 2006-09-05

© 2007 Altova GmbH

Index 333

Index

.

.NET Framework,

Include file, 134

1
1.4,

Java, 50

5
5.0,

Java, 50

A
Abstract,

class, 19

Activation box,

Execution Specification, 204

Activity,

Add diagram to transition, 185

Add to state, 185

create branch / merge, 173

diagram elements, 175

icons, 259

Activity diagram, 170

inserting elements, 171

Actor,

user-defined, 12

Add,

diagram to package, 12

insert - delete from Model Tree, 59

move - delete - diagram, 74

new project, 92

package to project, 12

to Favorites, 65

All,

expand / collapse, 222

Annotation,

documenation, 72

XML schema, 242

Appendices, 318

Artifact,

add to node, 40

manifest, 40

Assign,

shortcut to a command, 291

stereotype, 156

Association,

aggregate/composite, 19

automatic display of, 148

between classes, 19

class memberEnd, 148

defining the type, 148

display during code engineering, 50

object links, 30

qualifier, 148

role, 148

Show property as, 74

Show relationships, 74, 152

show typed property, 143

use case, 12

Attribute,

coloring, 226

show / hide, 222

stereotype, 156

Autocomplete,

function, 19

Autogenerate,

reply message, 210

Automatic,

display of associations, 148

hyperlink, 82

B
Ball and socket,

interface notation, 222

Bank,

sample files, 89

Base,

Index

© 2007 Altova GmbH

334

Base,

class, 25

Base class,

inserting derived, 80

overriding, 222

Batch,

processing, 86

Behavioral,

diagrams, 169

Binary,

obfuscated - support, 98

Binary files,

importing C# and Jave, 98

Binding,

template, 142

Bitmap,

save elements as, 277

Borland,

bsdj project file, 279

Branch,

create in Activity, 173

bsdj,

Borland project, 279

C
C#,

code, 302

code to model correspondence, 112

import binary file, 98

import settings, 94

C++,

code, 302

Call,

message, 210

CallBehavior,

insert, 171

CallOperation,

insert, 171

Cascading,

styles, 66

Catalog,

file - XMLSpy Catalog file, 294

Check,

project syntax, 279

Class,

abstract and concrete, 19

add new, 19

add operations, 19

add properties, 19

associations, 19

ball and socket interface, 222

base, 25

base class overriding, 222

derived, 25

diagrams, 19

expand, collapse compartments, 222

icons, 260

in component diagram, 35

inserting derived classes, 80

multiple instances on diagram, 222

operation - overriding, 222

synchronization, 103

syntax coloring, 226

Class diagram, 222

Classifier,

constraining, 139

Close,

all but active diagram, 74

Code,

default, 294

generation - min. conditions, 105

prerequisites, 44

round trip engineering, 44

SPL, 303

synchronization, 103

target directory, 44

Code - C#,

to UModel elements, 112

Code - Java,

to UModel elements, 107

Code - XML Schema,

to UModel elements, 125

Code engineering, 44

import directory, 50

showing associations, 50

Code Generator, 302

Collaboration,

Composite Structre diagram, 232

Collapse,

class compartments, 222

Color,

syntax coloring - enable/disable, 226

Combined fragment, 205

© 2007 Altova GmbH

Index 335

Command,

add to toolbar/menu, 290

context menu, 292

delete from menu, 292

line processing, 86

reset menu, 292

Comments,

documentation, 72

Communication,

icons, 261

Communication diagram, 195

generate from Sequence diagram, 195

Compartment,

expand single / multiple, 222

Compatibility,

updating projects, 103

Component,

diagram, 35

icons, 263

insert class, 35

realization, 35

Component diagram, 234

Composite state, 189

add region, 189

Composite Structure,

icons, 262

insert elements, 232

Composite Structure diagram, 232

Composition,

association - create, 19

Concrete,

class, 19

Constrain,

element, 59

Constraining,

classifiers, 139

Constraint,

add in diagram, 59

assign to multiple element, 59

syntax check, 279

Content model,

of XML Schema, 246

Context menu,

commands, 292

Copy,

paste in Diagram, Model Tree, 77

Copyright information, 319

Create,

getter / setter methods, 222

XML schema, 250

csproj - csdproj,

MS Visual Studio .Net, 279

Customize, 290

context menu, 292

menu, 292

toolbar/menu commands, 290

D
Datatype,

defining in Schema, 246

Default,

menu, 292

path - examples folder, 8

project code, 294

SPL templates, 103

Delete,

class relationships, 148

command from context menu, 292

command from toolbar, 290

icon from toolbar, 290

shortcut, 291

toolbar, 290

Dependency,

include, 12

Show relationships, 74, 152

usage, 35

Deployment,

diagram, 40

icons, 264

Deployment diagram, 235

Derived,

class, 25

classes inserting, 80

Diagram,

- Activity, 170

- Class, 222

- Communication, 195

- Component, 234

- Composite structure, 232

- Deployment, 235

- Interaction Overview, 198

- Object, 236

- Package, 237

Index

© 2007 Altova GmbH

336

Diagram,

- Sequence, 203

- State machine, 184

- Timing, 214

- Use Case, 194

- XML schema, 241

Add activity to transition, 185

Additional - XML schema, 240

close all but active, 74

constrain elements, 59

generate Package dependency diagram, 237

hyperlink, 82

icons, 258

ignore elem. from inluded files, 294

multiple instances of class, 222

open, 63

Paste in Diagram only, 77

properties, 74

save as png, 275

save elements as bitmap, 277

share package and diagram, 136

sizing, 74

styles, 66

XML schema - import, 242

Diagram frame,

show UML diagram heading, 74

Diagram heading,

show UML diagram heading, 74

Diagram pane, 74

Diagram Tree, 63

Diagrams, 168

behavioral, 169

structural, 221

Directory,

examples folder, 8

for code generation, 44

ignoring on merge, 294

import, 50

importing code from, 94

Distribution,

of Altova's software products, 319, 320, 322

Document,

hyperlink to, 82

Documentation,

Annotation, 72

generate UML project, 162

Documentation tab, 72

Dot,

Ownership, 150

Drag and drop,

right mouse button, 80

DurationConstraint,

Timing diagram, 218

E
Edit, 277

Element,

add to Favorites, 65

assign constraint to, 59

associations when importing, 50

constrain, 59

cut, copy paste, 77

generate documentation, 162

hyperlink to, 82

inserting, 80

relationships, 148

save selected as bitmap, 277

styles, 66

Elements,

ignore from include files, 294

insert State Machine, 184

End User License Agreement, 319, 323

Enhance,

performance, 145

Entry point,

add to submachine, 189

Enumeration,

and stereotypes, 156

Error,

messages, 73

syntax check, 44

Evaluation period,

of Altova's software products, 319, 320, 322

Event/Stimulus,

Timing diagram, 218

Examples,

tutorial folder, 8

Exception,

Adding raised exception, 222

Java operation, 94

Execution specification,

lifeline, 204

Exit point,

© 2007 Altova GmbH

Index 337

Exit point,

add to submachine, 189

Expand,

all class compartments, 222

collapsing packages, 59

Export,

as XMI, 254

Extension,

XMI, 254

F
Favorites, 65

File, 275

tutorial example, 8

ump, 92

Files,

sample files, 89

Find,

modeling elements, 59, 277

searching tabs, 58

unused elements, 59

Folder,

examples folder, 8

Forward,

engineering, 105

Frame,

show UML diagram heading, 74

G
Gate,

sequence diagram, 209

General Value lifeline,

Timing diagram, 215

Generalize,

specialize, 25

Generate,

code from schema, 302

reply message automatically, 210

Sequence dia from Communication, 195

UML project documentation, 162

XML Schema, 250

Get,

getter / setter methods, 222

Graph view,

single set of relations, 69

Grid,

show- snap to, 74

H
Handle,

create relationship, 150

Heading,

show UML diagram heading, 74

Help, 299

Hierarchy,

show all relations, 69

Hotkey, 291

Hyperlink, 82

automatic, 82

I
Icon,

Activity, 259

add to toolbar/menu, 290

class, 260

Communication, 261

component, 263

Composite Stucture, 262

deployment, 264

Interaction Overview, 265

object, 266

Package, 267

Sequence, 268

show large, 293

State machine, 269

Timing, 270

use case, 271

XML Schema, 272

ID,

IDs and UUIDs, 254

Ignore,

directories, 294

elements in list, 294

Import,

Index

© 2007 Altova GmbH

338

Import,

association of elements, 50

binary files, 98

C# project, 94

directory, 50

project, 94

source code, 94

source project, 50

XMI file, 254

XML Schema, 242

Importing,

UModel generated XMI, 254

Include,

.NET Framework, 134

dependency, 12

share package and diagram, 136

status - changing, 136

UModel project, 134

Insert,

action (CallBehavior), 171

action (CallOperation), 171

Composite Stucture elements, 232

elements, 80

Interaction Overview elements, 198

Package diagram elements, 238

simple state, 185

Timing diagram elements, 214

with..., 80

Installation,

examples folder, 8

Installer,

multi-user, 8

Instance,

diagram, 30

multiple class, and display of, 222

object, 30

Intelligent,

autocomplete, 19

Interaction operand, 205

Interaction operator,

defining, 205

Interaction Overview,

icons, 265

inserting elements, 198

Interaction Overview diagram, 198

Interaction use, 208

Interface,

ball and socket, 222

implementing, 222

Introduction, 6

J
Java,

code, 302

code to model correspondence, 107

exception, 94

import binary file, 98

namespace root, 105

versions supported, 50

JavaDocs, 72

K
Keyboard shortcut, 291

L
Label,

IDs and UUIDs, 254

Layout, 287

Legal information, 319

License, 323

information about, 319

License metering,

in Altova products, 321

Lifeline,

attributes, 204

General Value, 215

Limit,

constrain elements, 59

Line,

orthogonal, 35

Line break,

in actor text, 12

Lines,

formatting, 30

Link,

create hyperlink, 82

List,

unused elements, 59

© 2007 Altova GmbH

Index 339

M
Mail,

send project, 275

Manifest,

artifact, 40

Mapping,

C# to/from model elements, 112

Java to/from model elements, 107

XML Schema to/from model elements, 125

MemberEnd,

association, 148

Menu,

Add menu to, 291

add/delete command, 290

customize, 292

Default/XMLSPY, 292

delete commands from, 292

edit, 277

file, 275

help, 299

layout, 287

project, 279

tools, 289

view, 288

window, 298

Merge,

code from model, 44

code into model, 279

create in Activity, 173

ignore directory, 294

model into code, 279

Message,

arrows, 210

call, 210

create object, 210

inserting, 210

moving, 210

numbering, 210

Timing diagram, 219

Messages pane, 73

Metadata,

XMI output, 254

Method,

Add raised exception, 222

Methods,

getter / setter, 222

Minimum,

code generation conditions, 105

Missing elements,

listing, 59

Model from code,

showing associations, 50

Model Tree,

opening packages, 59

pane, 59

Modeling,

enhance performance, 145

Mouse,

copy, paste, 77

Moving message arrows, 210

MS Visual Studio .Net,

csproj - csdproj project file, 279

Multiline,

actor text, 12

Multiple elements,

styles display, 66

Multi-user,

examples folder, 8

MyDocuments,

example files, 8

N
Namespace,

Java namespace root, 105

Navigate,

hyperlink, 82

Node,

add, 40

add artifact, 40

styles, 66

Note,

hyperlink from, 82

Numbering,

messages, 210

Index

© 2007 Altova GmbH

340

O
Obfuscated,

binary support, 98

Object,

create message, 210

diagram, 30

icons, 266

links - associations, 30

Object diagram, 236

Open,

diagram, 63

packages in tree view, 59

Operand,

interaction, 205

Operation,

coloring, 226

exception, 94

overriding, 222

reusing, 25

show / hide, 222

template, 143

Operations,

adding, 19

Operator,

interaction, 205

Options,

project, 144

tools, 294

Orthogonal,

line, 35

state, 189

Output,

XMI file, 254

Override,

class operations, 222

default SPL templates, 103

Overview pane, 72

Overwrite,

code from model, 279

model from code, 279

OwnedEnd,

association, 148

Ownership,

dot, 150

P
Package,

expand/collapse, 59

icons, 267

profile, 156

sharing, 136

Package diagram, 237

generating dependency diagram, 237

insert elements, 238

PackageImport, 238

PackageMerge, 238

Page,

prevent split over pages, 275

Parameter,

batch, 86

template, 143

Partial,

documentation - generate, 162

Paste,

element in diagram, 77

in Diagram only, 77

Path,

examples folder, 8

Performance,

enhancement, 145

PNG,

save diagram, 275

Prerequisites,

forward engineering, 105

Pretty print,

XMI output, 254

Print,

preview, 275

Profile,

stereotypes, 154, 156

Project, 279

create, 92

default code, 294

file - updating, 103

generating documentation, 162

import, 94

include UModel project, 134

insert package, 92

open last on start, 294

© 2007 Altova GmbH

Index 341

Project, 279

options, 144

send by mail, 275

styles, 66

syntax checking, 279

workflow, 92

Project files,

Borland - MS Visual Studio .Net, 279

Properties,

adding, 19

Properties pane, 66

Property,

coloring, 226

reusing, 25

show as association, 74, 152

typed - show, 143

Q
Qualifier,

association, 148

R
Raised exception, 94

Adding, 222

Realization,

component, 35

Reference, 274

show referenced class, 74

Region,

add to composite state, 189

Relation,

show all - hierarchy tab, 69

Relationship,

Show model relationships, 74, 152

Relationships,

element, 148

using handles, 150

Remove,

from Favorites, 65

Reply,

message - autogenerate, 210

Reset,

menu commands, 292

shortcut, 291

toolbar & menu commands, 290

Right dragging, 80

Role,

association, 148

Root,

catalog - XMLSpy, 294

Java namespace, 105

package/class synchronization, 103

Round trip,

code - model -code, 50

engineering, 44

model - code - model, 44

S
Sample,

example files, 89

Save,

diagram as image, 275

elements as bitmaps, 277

SC,

syntax coloring, 226

Schema,

code generator, 302

create XML Schema, 250

Datatype - defining, 246

XML Schema, 241

XML Schema - import, 242

Search,

Find, 277

Searching tabs, 58

Send by mail,

project, 275

Sequence,

icons, 268

Sequence diagram, 203

combined fragment, 205

gate, 209

generate from Communication diag., 195

inserting elements, 203

interaction use, 208

lifeline, 204

messages, 210

state invariant, 210

Index

© 2007 Altova GmbH

342

Set,

getter / setter methods, 222

Setting,

synchronization, 103

Share,

package and diagram, 136

Shortcut, 291

assigning/deleting, 291

show in tooltip, 293

Show,

all relations - hierarchy tab, 69

graph view, 69

model relationships, 74, 152

or snap to grid, 74

property as association, 74, 143

tagged values, 244

Show/hide,

attributes, operations, 222

Signature,

template, 139, 141

Size,

diagram pane, 74

Snap,

to grid - show grid, 74

Socket,

Ball and socket, 222

Software product license, 323

Sort,

diagram, 63

elements in Model Tree, 59

Source code,

importing, 94

Specialize,

generalize, 25

Speed,

enhancememt, 145

SPL, 303

code blocks, 304

conditions, 311

foreach, 312

subroutines, 313

templates user-defined, 103

Split,

prevent split over pages, 275

Start,

UModel, 9

with previous project, 294

State,

add activity, 185

composite, 189

define transition between, 185

insert simple, 185

orthogonal, 189

submachine state, 189

State changes,

defining on a timeline, 215

State invariant, 210

State machine,

composite states, regions, 189

diagram elements, 192

icons, 269

insert elements, 184

states, activities, transitions, 185

State Machine Diagram, 184

Stereotype,

and enumeration, 156

assigning, 156

attributes - defining, 156

profiles, 154, 156

Structural,

diagrams, 221

Styles,

cascading, precedence, 66

multiple selections, 66

Styles tab, 66

Sub class,

inserting into diagram, 80

Submachine state,

add entry/exit point, 189

Synchronization,

settings, 103

Synchronize,

merge code from model, 44

merge model from code, 50

root/package/class, 103

Syntax,

batch file, 86

check project syntax, 279

checking, 44

errors - warnings, 44

Syntax check,

messages, 73

Syntax coloring, 226

© 2007 Altova GmbH

Index 343

T
Tagged,

values, 154, 156

Tagged values,

show, 244

Template,

binding, 142

operation/parameter, 143

signature, 139, 141

Templates,

user-defined SPL, 103

Tick mark,

Timing diagram, 217

TimeConstraint,

Timing diagram, 219

Timeline,

defining state changes, 215

Timing,

icons, 270

Timing diagram, 214

DurationConstraint, 218

Event/Stimuls, 218

General Value lifeline, 215

inserting elements, 214

Lifeline, 215

Message, 219

switch between types, 215

Tick mark, 217

TimeConstraint, 219

Timeline, 215

Toolbar,

activate/deactivate, 290

add command to, 290

create new, 290

reset toolbar & menu commands, 290

show large icons, 293

Tools, 289

Add to Tools menu, 291

options, 294

Tooltip,

show, 293

show shortcuts in, 293

Transition,

Add Activity diagram to, 185

define between states, 185

define trigger, 185

Traverse,

hyperlinks, 82

Trigger,

define transition trigger, 185

Tutorial,

aims, 8

example files, 8

examples folder, 8

Type,

property - show, 143

U
UML,

diagram - sharing, 136

diagram heading - show, 74

Diagrams, 168

templates, 139

UModel,

importing generated XMI, 254

starting, 9

to C# code, 112

to Java code, 107

to XML Schema code, 125

UModel diagram icons, 258

UModel Inroduction, 6

Ump,

file extension, 92

Unused elements,

listing, 59

Update,

project file, 103

Usage,

dependency, 35

Use case,

adding, 12

association, 12

compartments, 12

icons, 271

Use Case diagram, 194

User,

multi-user examples folder, 8

User defined,

actor, 12

Index

© 2007 Altova GmbH

344

User interface, 58

User-defined,

SPL templates, 103

UUID,

Universal Unique identifiers, 254

V
value,

tagged, 156

tagged, show, 244

View, 288

to multiple instances of element, 222

W
Warning,

messages, 73

syntax check, 44

Web,

hyperlink, 82

Window, 298

Workflow,

project, 92

X
XMI, 254

extentions, 254

pretty print output, 254

XML Schema,

annotation, 242

code to model correspondence, 125

Content model, 246

create/generate, 250

diagram, 241

icons, 272

XML schema - insert element, 246

Z
Zoom,

sizing, 74

	UModel
	Introducing UModel
	UModel tutorial
	Starting UModel
	Use cases
	Class Diagrams
	Creating derived classes

	Object Diagrams
	Component Diagrams
	Deployment Diagrams
	Round-trip engineering (model - code - model)
	Round-trip engineering (code - model - code)

	UModel User Interface
	Model Tree pane
	Diagram Tree tab
	Favorites tab

	Properties pane
	Hierarchy tab
	Overview pane
	Messages window
	Diagram pane
	Cut, copy and paste in UModel Diagrams

	Adding/Inserting model elements
	Hyperlinking modeling elements
	UModel Command line interface
	Bank samples

	Projects and code engineering
	Importing source code into projects
	Importing C# and Java binaries
	Synchronizing Model and source code
	Forward engineering prerequisites
	Java code to/from UModel elements
	C# code to/from UModel elements
	XML Schema to/from UModel elements
	Including other UModel projects
	Sharing Packages and Diagrams
	UML templates
	Template signatures
	Template binding
	Template usage in operations and properties

	Project Settings
	Enhancing performance

	Creating model relationships
	Associations, realizations and dependencies
	Showing model relationships

	Profiles and stereotypes
	Adding Stereotypes and defining tagged values

	Generating UML documentation
	UML Diagrams
	Behavioral Diagrams
	Activity Diagram
	Inserting Activity Diagram elements
	Creating branches and merges
	Diagram elements

	State Machine Diagram
	Inserting state machine diagram elements
	Creating states, activities and transitions
	Composite states
	Diagram elements

	Use Case Diagram
	Communication Diagram
	Inserting Communication Diagam elements

	Interaction Overview Diagram
	Inserting Interaction Overview elements

	Sequence Diagram
	Inserting sequence diagram elements
	Lifeline
	Combined Fragment
	Interaction Use
	Gate
	State Invariant
	Messages

	Timing Diagram
	Inserting Timing Diagram elements
	Lifeline
	Tick Mark
	Event/Stimulus
	DurationConstraint
	TimeConstraint
	Message

	Structural Diagrams
	Class Diagram
	Composite Structure Diagram
	Inserting Composite Structure Diagram elements

	Component Diagram
	Deployment Diagram
	Object Diagram
	Package Diagram
	Inserting Package Diagram elements

	Additional Diagrams
	XML Schema Diagrams
	Importing an XML Schema
	Inserting XML Schema elements
	Creating and generating an XML Schema

	XMI - XML Metadata Interchange
	UModel Diagram icons
	Activity Diagram
	Class Diagram
	Communication diagram
	Composite Structure Diagram
	Component Diagram
	Deployment Diagram
	Interaction Overview diagram
	Object Diagram
	Package diagram
	Sequence Diagram
	State Machine Diagram
	Timing Diagram
	Use Case diagram
	XML Schema diagram

	UModel Reference
	File
	Edit
	Project
	Layout
	View
	Tools
	Customize...
	Commands
	Toolbars
	Tools
	Keyboard
	Menu
	Options

	Options

	Window
	Help

	Code Generator
	The way to SPL (Spy Programming Language)
	Basic SPL structure
	Variables
	Operators
	Conditions
	foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation

	Error Codes

	Appendices
	License Information
	Electronic Software Distribution
	License Metering
	Copyright
	Altova End User License Agreement

