User and Reference Manual

ALTOVA®

umodel”
2007

Copyright @ 1993-2007 Altova GmbH, &ll rights reserved. Use of this software iz gowerned by and
subject to an Altowa software license agreement, ¥MLSpy, MapForce, StyleVizion, SernanticWorks,
Schermadgent, UModel, DatabaseSpy, Diff Coq, Authentic, Altow a XML, Missionkit, and ALTOVA 2z well as
their logos are trademarks and/ or registerad trademarks of Altava SmbH.

HMWIL, XEL, XHTML, and W3C are trademarks [registered innumerous countries] of the World wide
Wb Conzor tium; marks of the W3 C are registered and held by itz host institution s, BT, INR LA,

& and Keio, UMICODE and the Unicode Logo are trademarks of Unicode Inc. Thiz software
ALTOVA containg Jrd party copyrighted software or material that is protected by copyright and
subject bt ather terms and canditions as detailed an the Altova website at

http :ifwwew altova.com?legal L3 rdparty. hkml

Altova UModel 2007 User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any means
- graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered
trademarks of the respective owners. The publisher and the author make no claim to
these trademarks.

While every precaution has been taken in the preparation of this document, the publisher
and the author assume no responsibility for errors or omissions, or for damages resulting
from the use of information contained in this document or from the use of programs and
source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have
been caused directly or indirectly by this document.

Published: 2007
© 2007 Altova GmbH
UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are

either registered trademarks or trademarks of Object Management Group, Inc. in the
United States and/or other countries.

Table of Contents

1 UModel 3
2 Introducing UModel 6
3 UModel tutorial 8
3.1 Starting UMOGEL ...cc.veeiiiiieiieeie ettt ettt e e et saee st esaeesnsessbaesseesseessnesnnas 9
3.2 USE CASES teerireeriiieeiiteeniee ettt e st ee ettt e sateeebe e ebtee sttt e sbbeesabeeebteesabeeenbbeesabeeebbeesabeeebaean 12
3.3 Class DIAGIAMSccceovuerieiiiniiiieieiieeteie ettt ettt ettt ettt st et ste st saeeaee b 19

3.3.1 Creating derived CIASSEScoieviiiiieiieieiecieere et esteesteesteeereereeveesveeseesenesenas 25
3.4 ODJECt DIAGIAINS ..veevveervreeieeiieieeieestestesereeteeseesaessaessaesssessseassessseesseesssesssesssesssessseens 30
3.5 Component DIQGIAMSccvevvieriierieriesieeieeieesieesteesaesressseesseeseessaesssesssessessseesseens 35
3.6 Deployment DIQGramsccccccveeverierieiiinieesieesieeseesnessesseesseesseesseesssesssesssesssessseens 40
3.7 Round-trip engineering (model - code - model)ccccereeeiiniriinininiininecneceee 44
3.8 Round-trip engineering (code - model - cOde)coceevuirirrienireeninieieninieeseeeenn 50
4 UModel User Interface 58
4.1 MOE] TTEE PANE ...veevereeieeiiieieeieerieeseesre e e ebeeteessaesssessseesseesaesseessaesssessseanseessessssesnns 59

4.1.1 Diagram TIEE taDccvvcvieiiieiiierie ettt reesreesraeseaesnne e 63

4.1.2 FaVOTItES taD ..ecueeieiieeieiieeeesee ettt ettt ees 65
4.2 PIOPEITIES PANE ..eveeeurieeiieeeiieeeiieeeiteesteeeetteeeteeeteeesnteesbeeesateesnseesaseeesnseessaesansaesnseesnssens 66
i B = 155 1 o] 1) 0 21 o RSP 69
4.4 OVEIVIEW DAINEC ...eevieeieiereereeteesseesteeseesssesseesseesseesseesssesssessseessessseesssesssessseessessseesssessses 72
4.5 MESSAZES WINAOWeouviiiiiiiiiiiieiiniietente ettt ettt sttt sttt et bt e be et et sneennenaes 73
4.6 DIQGIAIM PANECoovviuieiiiieiiiieeieentente ettt ettt ettt ettt s bt e bt bt et bt sae et b renas 74

4.6.1 Cut, copy and paste in UModel Diagramsccceeeveevierreenreeneeseesnecneenns 77
4.7 Adding/Inserting model €lemMENtScceevvierierierieriieieeeereesiee e sre e be e sseesenes 80
4.8 Hyperlinking modeling elementsccccverierierieniiniieeeeesee e eve e 82
4.9 UModel Command line interfacecocerereerieniirieninieereeee et 86
4.10 Bank SAMPIEScc.eeieriiriiiiiiiiieiiee ettt st 89

Altova UModel 2007

5 Projects and code engineering 92

5.1 Importing SOUrce COde INtO PIOJECES ..vevvvrrrererierrieriierierresreereeseesseesseesssesssessseesseesseens 94
5.2 Importing C# and Java DINATICSccceeveverreriiieiiieriiereesieereereeveeseesseesenesssesnseeseesseens 98
5.3 Synchronizing Model and SOUrce COdecovvvirrirriieniierienienie e 103
5.4 Forward engineering PrereqUISILEScverreruerrerereerieerieeseeseesresseaseeseeseesseesseessns 105
5.5 Java code to/from UModel elementsccccceeueriiiiiiinienienienie e 107
5.6 C# code to/from UModel elementsooeeiiiiiiiiiiiiienienie e 112
5.7 XML Schema to/from UModel elementscccceeveerieienierieiereeiee e 125
5.8 Including other UMOdE] PrOJECEScvievieiuiiieiiieiieiiieieeieecre ettt eve e eve e 134
5.9 Sharing Packages and DIQ@ramsccceevververiiniierieenieenieeseesnesnesneesseeseesseessnesnns 136
5.10 UML teMPIAtES .oouvieeiiieiiieeiiieeeiee ettt ettt ettt e et e e steeesbeeeabeesnteesneeesaseesnens 139
5.10.1 Template SIZNATUTEScc.eetereertirierieeiere sttt ette ettt st eee b e e e e 141

5.10.2 Template DINAINGc.ccovevuieiiiiiiiiieiiecreeeee sttt e ete et steesereeveereesree s 142

5.10.3 Template usage in operations and Propertiescoceeveerrrerrerreerveerreenneens 143

511 ProOJECt SETHNES .uveeuieiiieieieiteeteste ettt ettt sttt ettt sttt st sbe et e b et e e e 144
5.12 Enhancing performanceccoeoueeruiereenienienieee ettt et e st e st e et e be e b e saeesaees 145
6 Creating model relationships 148
6.1 Associations, realizations and dependenciesccccveveereereerreeiveeieesreeeeseenee s 150
6.2 Showing model relationShiPsc.cccveriieriiriiiiieeeieeeee e 152
7 Profiles and stereotypes 154
7.1 Adding Stereotypes and defining tagged valuesccceveevieiieeie e, 156
8 Generating UML documentation 162
9 UML Diagrams 168
9.1 Behavioral DIa@ramsc.ccecceieeiiiriiieniie e eeiee ettt e eieeesieeeate st esaeeesebee e 169
0.1.1 AcCtiVity DIQgramcccvevuieviieriiiieeiieieesieeseeste e ereesteeseeeseeessreenseenseeseens 170
Inserting Activity Diagram elements.cccoovveevvueieniiiinieiniiinieneneeene, 171

Creating branches and merges...................cccccecveveiniiiiiiiiiiniiiiiicene 173

Diagram elements..............c.ooooueueeueieiiieiiiiiiiecee e 175

9.1.2 State Machine DIagramcccccccvririiviieriieniie e et et sereeeveereesaeens 184
Inserting state machine diagram elements............c.cooovevviviieieniiniieiinnienenn, 184

Altova UModel 2007

Creating states, activities and transitioNS..........cccovevveviiiviiiniiinieiniiiieiiens 185

COMPOSTLE SEALES....vvvvveviiiniiiieiieiieteiecic e 189
Diagram elements...............c.ococvvevuiiiiiiiiiiiiiiiiiiic s 192

0.1.3 Use Case DIa@raimlccceccviieiiieiiieeiieceieeeiee et eeree e e svaeeeaeeseseeeveeeeseas 194
9.1.4 Communication DIiagramcccceeevieviieviienieiie e e eereesieesee e eveeveesaeens 195
Inserting Communication Diagam elements...............ccccooevvecveveeneeeenennenn. 195

9.1.5 Interaction Overview Diagramcccccceeeeeieeniieniiie e cree e esveeevee e 198
Inserting Interaction Overview elementsocovvevienienienieniiiineeneennn, 198

0.1.6 Sequence DIagramccccccvereerieiireiiesieesieeseestesreereeteesseesssesssessseenseesseens 203
Inserting sequence diagram elementscoeovvveeeiiiiiniiiiiiiiiciieeieeeiieene 203

........... LATCLIIIE oo e evvvvvvereeeeeeeireeeeeeeeeeeetreeeeeeeeeesaaereeeeeeeessasereeesessssssanseseeessssssssnneseesessnnnnnns 204
........... Combined Fragment. ... woeoeeverersisisinininiereisiiisinieieieisisisineesessnsssssniesesessssnsnnss 203
........... TNtELACHON UUSE -eeeeeeeerrrrrreeeeeeeiirrereeeeeeeiirreereeeeeeessssnreeeeesssssrsnseeseessssssssseesesssennnnnees 208
........... GALE -+ eeveerreereenteeteetesitesteentteteenteeatesteesbeenbeenseetesnnesreesneenseenseennesnnesseesseessesssessaennee 209
........... SEALE TIIVATIANE +++vvvveveeeeerermrrrreeeeeeesirrrereeeeeeessssrsreeeeeessssssnseesseesssssssreeeeessssssnneeeeessnns 210
........... MIESSAGES ++++++vresesrsrsesersssmmsrsniniesssstststssssisiesesssssssssssssesessssssssssnsesesessssnsssssssnsesesessnns 210

0.1.7 Timing DIQGIAIMeccvieiieiieiierieeieeieesieesieeseeseesresbeeseesseesssesssessseenseeseens 214
Inserting Timing Diagram elements.............oocoovvvevviueriniiiiniiiniieireeeieeene 214
LIfOLINE.c..ccevoviiviiniiiicniiiieccte s 215

TECK MATTaeevveeniaaeiieeeiieee ettt e e s e e ettt res e e e e e e e aaabaeeseeeeaesaananns 217
EVONE/SHIMUIUS ettt 218
DUrAtioNCONSIIAINT cceve oottt ettt sttt et eeees 218
Ti@CONSTFQINL.«e ettt ettt ettt ettt et e niteesbaeenaees 219
MESSAZGE..cvvenveveeniiiiiniiiictieetcee s 219

9.2 Structural DIAGTAIMSccceeveveeciieirieiriesiiesiesiesre et eseesseessaesseesssesssessseesseesseesseesssessses 221
0.2.1 Class DIagramccceecueeriieriienieiieeiteieesieesieesresresseeseesseessnesssessseenseesaens 222
9.2.2 Composite Structure Diagramccceeceveeevieeriieniiie e e eieeesveeeaee e 232
Inserting Composite Structure Diagram elements...............ccoceeveveennennnnn. 232

0.2.3 Component DIaGramcccecverrerieririerieerieesieeseeereeseesseesseesssessresseesseesseens 234
9.2.4 Deployment DIagramccccueeeevieeiiieiiieeiieesreeeieeeiveesreeeeeeesseesneeesssens 235
0.2.5 ODbject DIagramc.ccccveeuieriieriiiieiiieieeseeseeseesresveesteesseesssesssessseenseeseens 236
0.2.6 Package DIagramcccccviieiiieiiiieiieeeiee ettt et e ere s 237
Inserting Package Diagram elementscccoeecveviiiiiniiniinieniiniiciiieennn, 238

9.3 Additional DIa@ramscceeevieviieriiesiieriieniesie et et esreeseeseesenessresnsesseesseesseessnensnes 240
9.3.1 XML Schema Dia@ramsc..cceevievuieoeeieeeeeeeeeereeeteeeveeeee e eere v 241
Importing an XML SCHEMQ...........c.oovvieiiiiiiiiiiiniiiiiiiiiciicieic e 242
Inserting XML Schema elements.............c..coovvvieiiiiiiiniiiiiieniiinciienicenenn, 246
Creating and generating an XML SCRema...............ccooevvvviiiviiniiiniiiiiiiinn, 250

10 XMI - XML Metadata Interchange 254

Altova UModel 2007

11 UModel Diagram icons 258

| O w07 17 BT Y s o USRS 259
11.2 Class DIAQIAIN ...ccveeviieriieiieeie ettt ettt st e e st esbe e e e staestaessaessseanseasseesseesseesssensss 260
11.3 Communication di@@IAMcceeeveerreereerrerieeieeteeieesseesseesseessnessseasessseesseesseesssessnes 261
11.4 Composite Structure DIagramcccecvververieiciiriierieerieseeseesresreeseesseeseesseessnesnnes 262
11.5 Component DIaGIamccccoeeueriirieniinieienientee et eeente sttt s este b seeenee e 263
11.6 Deployment DIagramc..coceevueriirieeninienieniinteiesieetenie ettt sttt sre st seeenee e 264
11.7 Interaction OVErview dia@lamccceeecveeeiirerieeeriieeeieeeieeesreeereeesereesreeeeseessseeenens 265
11.8 ODBJECt DIAGIAINveevieiiieiiieciie ettt ettt e sttt e b e ebeeteesteesteestaesabeesbeesbeesseesseesssessnas 266
11.9 Packa@e diagramcccceevieeiieeieeieeieereeree ettt e steeseaesnnesnbeesseessaesseessnennnes 267
11.10 Sequence DIaGIamccceeecuieeriiieriieeiieeeiteeiee et estte e st e st e s snteesbeessateesnteesneeesnseesnnes 268
11.11 State Machine DIQ@ramc.cccvecvieriierierienieeieeieeieeseeseeseeesnesressessseesseesseessnensnes 269
11.12 Timing DIQGIamccccccievieriieiieeieeieeseestestesre et ebeesseesseestaessnesssesnsessseesseesseesssessss 270
11.13 Use Case dIQZGIAIMNcverueeiirieeiiiieeeienieetente et sttt ettt ettt b esae b seeenee e 271
11.14 XML Schema dia@ramccceeervierinienieninieieneetenic ettt eeeene e eee e sve e 272
12 UModel Reference 274
I2.1 FIle ettt et 275
12.2 Edit ettt sh et 277
12.3° PIOJECE ettt ettt sttt ettt e et ettt 279
124 LAYOUL ettt s e e 287
12,5 VIBW ettt ettt ettt n et e et e n e e te et e et e aeenne s e 288
2 T I o £ USSR 289
12.6.1 CUSIOIMZE. .. eeeuieeieeieiitieieie et te ettt et ent et et e e sae et e sseentebeeseensenseeneensenne 290
COMINATIAS e e et e e e e e e e eaenas 290

TOOIDAFS- ettt ettt sttt et ettt ettt 290

TOOLS oottt ettt e ettt e e 291
KEYDOAFA......eooueniiiiiiiiiiiec 291

MERU eeeeeeeeee ettt et ettt ettt e e st e e st e e et 292

OPIONS ottt 293

12.6.2 OPLIONS coeeieciie ettt ettt e e sre e s teeestbeesbeeestbeessbeeensaeesseeensaeensreas 294

12,7 WINAOW ettt ettt b et e st bt et b et e beeae e 298
|2 T = (<] TSRS 299
13 Code Generator 302

Altova UModel 2007

13.1 The way to SPL (Spy Programming Language)cccceccevireevienineeneneeneeneneennenn 303

13.1.1 BasiC SPL StIUCTUIEcc.eeecviieiiieeiieeiieeciee et ettt e eveeseveeevaeeeveeevaeeeneas 304

13.1.2 Variables ...oooiiiiiciiceceeeee ettt et e b e ree 305

L3.1.3 OPCIALOIS eeeieeiiieeiieeiieeeite et e e tteeite e et e s tteesate e s bt eenteesnbeeensaeesnteesnseeenneeas 310

13.1.4 CONAItIONS ..uviiieiieiiiieeiie e eieeeieeetee et e etreesbeesbeeeeseessveeessaeesseesssaeensseas 311

I3.1.5 f01€aCh oo e ra e 312

13.1.6 SUDTOULINEScuvoiieiieiiiiieieieeeete ettt ste et seseeesaesreessesbesreesseseeseensenns 313

SUDTOULTNE ACCIATALION v eevveeeeeeeeeieeeiie et et ettt st ettt e st eeeaaeesvee s 313

SUDFOULINE THVOCALION. cevvevveenveereeeieesiesreeieeseeseesseessaessaesssessessseesseesseesseesnns 314

13.2 EITOT COUES .oiovviieiiiieiiie ettt eeite ettt e et e tee et e e etae e s tbeesteeessbeeesbaeessseesssaeensseessseeensns 315

14 Appendices 318

14.1 License INfOrmationc.ccceecuieiiienienierierieeieereeieeeesieesteeseaeseaesnseesseesseesseessnessnes 319

14.1.1 Electronic Software DiStribUtionccceeveeveeriieeiieerieeieniereesieereeeeenieens 320

14.1.2 LiCeNSE MELETINGuveeeuiieeiiieiiieeieeeciteesteeeteeeseveesreeeereessseeessseessseesssaeenssens 321

0 G T 00} o) 0 = | OSSP UPPSRTS 322

14.1.4 Altova End User License AGreementc..ceveeeveeeveeereeereeieeeieeeineeereeenens 323
Index

Altova UModel 2007

Chapter 1

UModel

UModel 3

1 UModel

UModel™ 2007 is an affordable UML modeling application with a rich visual interface and
superior usability features to help level the UML learning curve, and includes many high-end
functions to empower users with the most practical aspects of the UML 2.1.1 specification.

UModel™ 2007 supports:

all 13 UML 2.1.1 modeling diagrams

XML Schema diagrams

import of Java and C# binaries

hyperlinking of diagrams and modeling elements

context sensitive entry helpers

syntax coloring in diagrams

cascading styles

customizable design elements

unlimited Undo and Redo

sophisticated Java and C# code generation from models
reverse engineering of existing Java, C# source code
complete round-trip processing allowing code and model merging
XMl version 2.1 for UML 2.0 & 2.1 - model import and export
generation of UModel project documentation

These capabilities allow developers, including those new to software modeling, to quickly
leverage UML to enhance productivity and maximize their results.

ALTOVA®

umodel”
2007

Copyright @ 1993-2007 Altowa GmbH. Al rights reserved. Use of this software iz gowerned by and
subject to an Altowva szoftware license agreement, XMLSpy, MapForce, StyleVizion, SernanticWorks,
Schermafgent, UMadel, DatabaseSpy, DiffCog, Authentic, Altowa XML, Missionkit, and ALTOWA 2z well as
their logos are tradernarks andf or reqgistered trademarks of Altava SmbH,

XML, XEL, XHTML, and W3C are trademarks [registered innumerous countries] of the World wide
w'eb Conzortium; marks of the W3 C are registered and held by itz host institution s, BMIT, INR LA,

® and Keio. UMICODE and the Unicode Logo are trademarks of Unicode Inc. Thiz software

ALTOVA containg Grd party copyrighted software or material that is protected by copyright and

subject to ather terms and conditions as detailed an the Altova website at
heepeffwewew altova.com Mlegal 3 rdparty.html

UML®, OMG™, Object Management Group™, and Unified Modeling Language™ are either
registered trademarks or trademarks of Object Management Group, Inc. in the United States
and/or other countries.

© 2007 Altova GmbH Altova UModel 2007

Chapter 2

Introducing UModel

6 Introducing UModel

2 Introducing UModel

The UML is a complete modeling language but does not discuss, or prescribe, the methodology
for the development, code generation and round-trip engineering processes. UModel has
therefore been designed to allow complete flexibility during the modeling process:

e UModel diagrams can be created in any order, and at any time; there is no need to
follow a prescribed sequence during modeling.

e Code, or model merging can be achieved at the project, package, or even class level.
UModel does not require that pseudo-code, or comments in the generated code be
present, in order to accomplish round-trip engineering.

e Code generation is customizable: the code-generation in UModel is based on SPL
templates and is, therefore, completely customizable. Customizations are automatically
recognized during code generation.

e Code generation and reverse-engineering currently support Java versions 1.4.x and
5.0, as well as C# versions 1.2 and 2.0. A single project can support both Java and C#
code simultaneously.

e Support for UML templates and generics.
e XML Metadata Interchange (XMI version 2.1) for UML 2.0 or 2.1.1.

e When adding properties, or operations UModel provides in-place entry helpers to
choose types, protection levels, and all other manner of properties that are also
available in industrial-strength IDEs such as XMLSpy, Visual Studio .Net or Eclipse.

e Syntax-coloring in diagrams makes UML diagrams more attractive and intuitive.

¢ Modeling elements and their properties (font, colors, borders etc.) are completely
customizable in an hierarchical fashion at the project, node/line, element family and
element level.

e Customizable actors can be defined in use-case diagrams to depict terminals, or any
other symbols.

e Modeling elements can be searched for by name in the Model diagram tab, Model Tree
pane, Messages and Documentation windows.

e Class, or object associations, dependencies, generalizations etc. can be
found/highlighted in model diagrams through the context menu.

e The unlimited levels of Undo/Redo track not only content changes, but also all style
changes made to any model element.

Please note:
This document does not attempt to describe, or explain, the Unified Modeling Language
(UML); it describes how to use the UModel modeling application, to model code and
achieve round-trip engineering results.

Altova UModel 2007 © 2007 Altova GmbH

Chapter 3

UModel tutorial

8 UModel tutorial

3 UModel tutorial

This tutorial describes, and follows, the general sequence used when creating a modeling
project in UModel.

The major portion of the tutorial deals with the forward-engineering process, i.e. using UModel
to create UML diagrams and generate code as the precursor to the round-trip engineering
sections that follow. The round-trip engineering sections, describe the process from both code
and model vantage points.

The tutorial describes the following UML diagrams, and how to manipulate the various modeling
elements within them. The following diagrams and follow-on tasks are discussed:

Forward engineering process:
Use cases

Class diagrams
Object diagrams
Component diagrams
Deployment diagrams

Round-trip process (model - code - model)
e Code generation from UModel
e Add a new operation to the external code
e Merge the external code back into UModel.

Round-trip process (code - model - code)
e Import code produced by XMLSpy from a directory (or from a project file)
e Add a new class to the generated model in UModel
e Merge the updated project with the external code.

The examples used in the tutorial are available in the default installation path/folder
c:\Program Files\Altova\UModel2007\UModelExamples\Tutorial\.

BankView-start.ump
is the UModel project file that constitutes the initial state of the tutorial sample. Several
model diagrams as well as classes, objects, and other model elements exist at this
stage. Working through the tutorial adds new packages, model diagrams and many
other elements that will acquaint you with the ease with which you can model
applications using UModel. Please note that the syntax check function reports errors
and warnings on this file, the tutorial shows you how to resolve these issues.

BankView-finish.ump
is the UModel project file that constitutes final state of the tutorial sample, if you have
worked through it step by step. This project file is the one used when generating code
and synchronizing it with UModel.

e The OrgChart.zip file supplied in the folder is used for the round-trip engineering
process. Please unzip it in the ...\UModelExamples folder before starting the section.

Additional example files for both Java and C# programming languages are also available in the
same directory, i.e. Bank_Java.ump, Bank_CSharp.ump and Bank_MultiLanguage.ump.
These project files also contain Sequence diagrams which are described later in this
documentation.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Starting UModel 9

3.1 Starting UModel

Having installed UModel on your computer:

1. Start UModel by double-clicking the UModel icon on your desktop, or use the Start | All

Programs menu to access the UModel program.
UModel is started with a default project "NewProject1" visible in the interface.

Ll Altova UModel - NewProjeckl

File Edit Projeck Lawout Wew Tools ‘Window Help

D@ o >[4 p | XEBR|(S| MR mesae

I EI Model Treel = Diagram .. l 4% Favorites ‘

Properties o X

Note the major parts of the user interface: the three panes on the left hand side and the
empty diagram pane at right.

Two default packages are visible in the Model Tree tab, "Root" and "Component View".
These two packages cannot be deleted or renamed in a project.

To open the BankView-start project:
1. Select the menu option File | Open and navigate to the ...\UModelExamples folder of

UModel.
2. Open the BankView-start.ump project file.
The project file is now loaded into UModel. Several predefined packages are now

visible under the Root package.

© 2007 Altova GmbH Altova UModel 2007

10

UModel tutorial Starting UModel

L Altova UModel - C:Program Files', Altova' UModel2006% UModeIEXSs - O] x|
File Edit Projeck Lawouk Wew Tools Window Help

@[~ |4 p | X EEBRBR| S| A B nesae -
Model Tree X

" Roat
[Component Yiew

A Deployment Yiew

A Design-phase

- B ava Lang [J ava Lang.ump]
- [Unknown Externals

- [5) ava Profile [lava Profile.ump]

I El Model Treel = Diagram .. l 4% Favorites ‘

Properties o x

Messages x

I Properties l Skvles l Hierarchy: J ﬂ ﬂﬂ ﬂﬁ ﬂﬂ ﬂﬂﬂ E

OveErviem o x

.
I Overview l Documentation 4 3 |

Ready CAR NUM SCRL

The Model Tree pane supplies you with various views of your modeling project:

o The Model Tree tab contains and displays all modeling elements of your UModel
project. Elements can be directly manipulated in this tab using the standard editing keys
as well as drag and drop.

e The Diagram Tree tab allows you quick access to the modeling diagrams of you project
wherever they may be in the project structure. Diagrams are grouped according to their
diagram type.

o The Favorites tab is a user-definable repository of modeling elements. Any type of
modeling element can be placed in this tab using the "Add to Favorites" command of
the context menu.

The Properties pane supplies you with two views of specific model properties:

e The Properties tab displays the properties of the currently selected element in the
Model Tree pane or in the Diagram tab. Element properties can defined or updated in
this tab.

e The Styles tab displays attributes of diagrams, or elements that are displayed in the
Diagram view. These style attributes fall into two general groups: Formatting and
display settings.

The Overview pane displays two tabs:

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Starting UModel 11

e The Overview tab, which displays an outline view of the currently active diagram

e The Documentation tab which allows you to document your classes on a per-class
basis.

Modeling element icon representation in the Model Tree

Package types:

UML Package
=1 Java namespace root package
“*| C# namespace root package
= XML Schema root package
#| Java, C#, code package (package declarations are created when code is generated)

Diagram types:

Object diagram
Package diagram
Sequence diagram
State Machine diagram
Timing diagram

Use Case diagram
XML Schema diagram

Activity diagram

Class diagram
Communication diagram
Component diagram
Composite Structure diagram
Deployment diagram
Interaction Overview diagram

2l 5 [o b [

=
n
=

S @ EmE

Element types:

=

An element that is currently visible in the active diagram is displayed with a blue dot at its base.
In this case a class element.

E Class Instance/Object
1 Class instance slot

B Class
@1 Property
» Operation
» Parameter

& Actor (visible in active use case diagram)
2 Use Case

£] Component

& Node

(3 Artifact

- Interface

% Relations (/package)
i} Constraints

© 2007 Altova GmbH Altova UModel 2007

12 UModel tutorial

Use cases

3.2 Use cases

The aim of this tutorial section is to:

Add a new package to the project

Add a new Use Case diagram to the project
Add use case elements to the diagram, and define the dependencies amongst them
Align and size elements in the diagram tab.

To add a new package to a project:
1. Right click the Root package in the Model Tree tab, and select New | Package.
2. Enter the name of the new package e.g. Use Case View, and press Enter.

Maodel Tree

=
=
=

i)

Ront

Companent Yigw
D eployment Wigw
Design-phase

-[F &7 Java Lang [Java Lang.ump]

IJnknown Externalz
I1ze Caze Yiew

- [« 7] ava Profile [Java Profile.ump]

l EI Model Treel = Diagram .. l 4% Favorites ‘

Please see Packages for more information on packages and their properties.

Adding a diagram to a package:
1. Right click the previously created Use Case View package.

2. Select New | UseCase Diagram.

Maodel Tree

o X

&
&
&

&
=

R oot

Component 4w
Deployment Yigw
D esign-phaze

&7 Java Lang [Java Lang.ump]

ko E wternals
IJze Caze Yiew
B UzelCazeDiagraml

M7 ava Profile [Java Profile ump)

I EI Model Treel = Diagram .. l 4% Favorites ‘

Properties

nanme
elerment kind | zeCazeliagram

| zeCazeliagraml

KT

FuseCaseDiagram1 ‘

Messages

¥ vial vja| vial mim/G X

A Use Case diagram has now been added to the package in the Model Tree view, and
a diagram tab has been created in the diagram pane. A default name has been

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial Use cases 13

provided automatically.
3. Double click the supplied name, in the Model Tree tab, change it to "Overview Account
Balance", and press Enter to confirm.

Root

‘A 1 Component Yiew
-|| 1 Deplopment Wiew
-@| 1 Design-phasze
- &7 Java Lang [Java Lang.ump]
A | 7 Unknown Externals
B 1Usze Case View

o B Overview Account Balance
A [+ 7)) ava Profile [Java Profile.ump)

Please see Diagrams for more information on diagrams and their properties.

Adding Use case elements to the Use Case diagram:
1. Right click in the newly created diagram and select New | Actor.
The actor element is inserted at the click position.

(s
2. Click the Use Case icon in the icon bar and click in the diagram tab to insert the
element.
A UseCase1 element is inserted. Note that the element, and its name, are currently
selected, and that its properties are visible in the Properties tab.

Actor

. i .

o —
- -
= LY

- L]
- seCasel 5

£
oH=p

o
[u}

1 . .
R extension points 4
-
LY

- -
- "'ll-_g_-r"' GEn

4

I@Dverview Account Balance

3. Change the title to "get account balance", press Enter to confirm. Double click the title if
it is deselected.

Note that the use case is automatically resized to adjust to the text length.

© 2007 Altova GmbH Altova UModel 2007

14 UModel tutorial Use cases

Actor

get account balance

extension points

Il

Model elements have various connection handles and other items used to manipulate
it.

Manipulating UModel elements: handles and compartments
1. Double click the Actor1 text, of the Actor element, change the name to "Standard User"
and press Enter to confirm.
2. Place the mouse cursor over the "handle" to the right of the actor.
A tooltip containing "Association" appears.

. f .

Standard User

—a

5

3. Click the handle, drag the Association line to the right, and drop it on the "get account
balance" use case.

An association has now been created between the actor and the use case. The
association properties are also visible in the Properties tab. The new association has
been added to Model Tree under the Relations item of the Use Case View package.

Model Tree
& | Deplovment Wiew ;I
‘& 1Design-phaze Standard User

M Z7Java Lang [lava Lang.ump]
A Unknown Externals

| Use CaseView
L E Overview Account Balance get ac

£ get account balance st
- aﬁ- Standard zer
@ = Relations ;I
El rlodel Treel EDiagram .. l 4F Favarites ‘
Properties o x
EN il KR
element kind Agzociation ffoverview Account Balance
wizibility public =l

4. Click the use case and drag it to the right to reposition it.
The association properties are visible on the association object.
5. Click the use case to select it, then click the collapse icon on the left hand edge of the

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Use cases

15

use case ellipse.

ff' get account balance
o
Q\ extension points .
-

-

Lo

-

-
- -
- -
. -u_g_-u- Em

The extension points compartment is now hidden.

.) .

-

F. '\ﬁ
n—{ get account balance Jl—u

L% -
&

- -
n "g"’ E=

Please note:

A blue dot next to an element icon |‘5% standard User , in the Model Tree tab, signifies
that the element is visible in the current diagram tab. Resizing the actor adjusts the text
field which can be multi line. A line break can be inserted into the text using
CTRL+Enter.

Finishing up the use case diagram:
Using the methods discussed above:

1. Click the Use Case icon in the icon bar and simultaneously hold down the CTRL
keyboard key.

2. Click at two different vertical positions in the diagram tab to add two more use cases,
then release the CTRL key.

3. Name the first use case "get account balance sum" and the second, "generate monthly
revenue report".

4. Click on the collapse icon of each use case to hide the extensions compartment.

Standard User

get account balance

get account balance sum

[] -"1 ------ Fm

5. Click the actor and use the association handle to create an association between

© 2007 Altova GmbH Altova UModel 2007

16 UModel tutorial Use cases

Standard user and "get account balance sum".

Standard User

get account balance

get account balance sum

To create an "Include” dependency between use cases (creating a subcase):
1. Click the Include handle of the "get account balance sum" use case, at the bottom of
the ellipse, and drop the dependency on "get account balance".

. f .

e ——————
- -
- -
-
h\

L4

f Y
D—{. get account balance sum O
L &

]

-

- Ny
-r—__é___,_--l' El=

3

An "include" dependency is created, and the include stereotype is displayed on the
dotted arrow.

Standard User

get account balance

A "
==inckde==

get account balance sum

Inserting user-defined actors:
The actor in the "generate monthly revenue report" use case is not a person, but an automated
batch job run by a Bank computer.

1. Insert an actor into the diagram using the Actor icon in the icon bar.

2. Rename the actor to Bank.

3. Move the cursor over to the Properties tab, and click the browse |:| icon next to the
"icon file name" entry.

4. Click the Browse icon to select the user-defined bitmap, Bank-PC.bmp.

5. Deselect the "Absolute Path" check box to make the path relative. Preview displays a
preview of the selected file in the dialog box.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial

Use cases 17

p— —
O i ol-

Maodel Tree

& Deploymer
& 1 Design-ph
M 7 Java Lang
7 Unknown
=) Idze Caze’

Enter Filepath

........ B Overvies
i £ get acc

File: path: IEank-F’E.I:ump

v Ereview

Befrezh |

6% Actarl

Actor

v 6% Standard User -
l M Madel Treel = Diagram .. l 4% Favorites ‘ -
Properties o =
elerment kind Achor ﬂ 1] |
wisibility public = T Overview Account Balance ‘
lexaf |
abstract] Messages
con fe name 3| [~[al S[al s[a awe X

6. Click OK to confirm the settings and insert the new actor.
7. Move the new Bank actor to the right of the lowest use case.
8. Click the Association icon L in the icon bar and drag from the Bank actor to the

"generate monthly revenue report" use case.

This is an alternative method of creating an association.

generate monthly revenue report
Bank

Please note:

The background color used to make the bitmap transparent has the RGB values

82.82.82.

Aligning and adjusting the size of elements:
Create a selection marquee by dragging on the diagram background, making sure that

1.

you encompass all three use cases starting from the top.

Note that the last use case to be marked, is shown in a dashed outline in the diagram,
as well as in the Overview window.

© 2007 Altova GmbH

Altova UModel 2007

18 UModel tutorial

Use cases

IStandard User

get account balance
.|. .
/’—tl\ n

generate monthly revenue report ‘|=I:|'
r

-
- -
hal T i

G-

az=includs==

Fl
L

S .

o
-

--qeee- e

All use cases are selected, with the lowest being the basis for the following

adjustments.
2. Click the Make same size icon

3. Click the Center Horizontally icon

=+[+
o=

in the title bar.

to line up all the ovals.

The use case elements are all centered and of the same size.

Please note:

You can also use the CTRL key to select multiple elements.

Standard User

get account balance

o
ddlncﬂl,l'dEbb

get account balance sum

Bank

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial

Class Diagrams 19

3.3

Class Diagrams

The aim of this tutorial section is to:

e Add a new abstract class called Account, as well as attributes and operations
e Create a composite association from Bank to Account

To open a different diagram in UModel:
1. Click the Diagram Tree tab.

2. Expand the Class Diagrams package to see its contents.

Diagram Tree

Y

= Diagrams
- 53 UzeCaze Diagrams
2= Clazz Diagrams
-------- 1 Apply Java Profile
o A Bankiiew Main
- [Object Diagrams
- g1 Component Diagrams
@A a1 Deployment Diagrams
------- =] Sequence Diagrams

EI Model Tree IE Diagram Tree l%'% Favarites ‘

All class diagrams contained in the project are displayed.

3. Double click the I/ BankView Main diagram icon.
The Class diagram appears as a tab in the working area.

Please note:

You could of course, double click the Class diagram icon in the Model Tree tab below
the BankView package to achieve the same thing.

Two concrete classes with a composite association between them, are visible in the class

diagram.

BankWiew

@] banks:Bank[*] {ordered}
@] bankaPLIBankAR

@} collectBank&drezzinfoshoolean

@"} collectAccountinfos boolean

% collectDatalchoolesn

% getBalancestBankin sString it
¥ ngetBalanceSumofAlBanks int

#hanks

Bank

& BankViewin IBank AR bl

&l
a1
gl
&1

bankname: String
|Padress: String

uzername: String
pazsword: Sting

&
4
&
&
4
&
&

Banklin ssteing, inc o steing, ing
collectAccourtinfosiin =k
getBalanceOfAccountsint
getBankiamer String
getlPAdress) String
getlsername 1 =tring
getPazsword) String

© 2007 Altova GmbH

Altova UModel 2007

20 UModel tutorial Class Diagrams

To add a new class and define it as abstract:

1. Click the class icon = in the icon bar, then click to the right of the Bank class to
insert it.
2. Change the Class1 name to e.g. "Account”, press Enter to confirm, (double click the

name if it becomes deselected).

-t .

[} -
Bank 1 Account !

“=tring i CString, inpeee String
Bank AP boolean
irt

Note that the Properties tab displays the current class properties.
3. Click the "abstract" check box in the Properties pane to make the class abstract.
4. Click in the "code file name" text box, and enter Account.java to define the Java class.

Propetties

name Account =
element kind |Claz=s

wizihility public e
leeaf O

abstract

active O

code file name Account java |-
< <fimals» L]

£ nbrimbEe 1 LI
lPererties lSters ‘

The class title is now displayed in italic, which is the identifying characteristic of abstract
classes.

S

| Account '

To add properties to a class:
1. Right click the Account class and select New | Property, or press the F7 key.
A default property "Property1" is inserted with stereotype identifiers << >>.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Class Diagrams 21

2. Enter the Property name "balance", and then add a colon character ":".
A drop-down list containing all valid types is displayed.

3. Enter the "f" character through the keyboard, and press Enter to insert the return value
datatype "float".
Please note that drop-down lists are case sensitive!

.- ‘t ___[char
Account |couble

4. Continue on the same line by appending "=0" to define the default value.
5. Press the F7 keyboard key to add a second property to the class.
6. Enter Id: and select String from the drop-down list.

L t _______ u

: Account -:

—1 1

= 1

—a] halance: float=0 o
.—E@ 1 IekString i
SRR e T

To add operations to a class:
1. Right click the Account class and select New | Operation, or press the F8 key.
2. Enter Account() as the constructor.
Using the method described above:
3. Add two more operations namely getBalance:float and getld:String.

L — Jt _________ u
! Account 1
!]
B 1
19 1 balance: float=0 :
1@ I String '
i :
HEf .
1 Accourt :
1< getBalance) float !
1
' <% oetld) String :
' "
Wommmmmmmmm e T

Using the autocomplete function while defining operations:

4. Create another operation, using F8, collectAccountinfo and enter the open
parenthesis character "(".
Entering the "i" character opens the drop-down list allowing you to select one of the
operation direction parameters: in, inout, or out.

5. Select "in" from the drop-down list, enter a "space" character, and continue editing on
the same line.

6 Enter "bankAPI" and then a colon.

7. Select IBankAPI from the drop-down list, add the close parenthesis character ")", and
enter a colon ":".

© 2007 Altova GmbH Altova UModel 2007

22 UModel tutorial Class Diagrams

L]
1
!
!
!
!
!
!
!
!
!
=
!
!
!
!
!
!
!
!
!

(]

-

getld) =ting
ctdccountinfolin |l

! Account 1
,_, 1
= 1
E @] balance:float=0 i
101 ldString :
q FloatingDecimal -
'_: Accourt Hashiiap
Hazhset
1 4» ogetBalance | float el
| O ;
A4
1
"

8. Press the "b" key to select the boolean datatype, then Enter to insert it.
9. Press Enter to end the definition.

L j‘ ________________ 1.
: Account 1
—1 1
g i
1o] balance:float=0 i
i o 1 lkString I
] 1
L Ef Lo
1 Accourt '
1 <> getBalance float :
1 1
: Oy oetld :String !
143 collectAcoourtinalin IBank AP baolean |
L EEEEEE R PR Bfe
Please note:

Clicking the visibility icon to the left of an operation * 5, or property §‘1|, opens a
drop-down list enabling you to change the visibility status.

Deleting class properties and operations from a class diagram:
1. Press F8 then Enter, to add a default operation "Operation1" in the Account class.
2. Click Operation1 and press the Del. key to delete it.

A delete prompt appears asking if you want to delete the element from the project. Click
Yes to delete Operation1 from the class as well as from the project.

Please note:
If you only want to delete the operation from the class in the diagram, but not from the
project, press the CTRL + Del. key.

Deleting (finding) class properties and options from the Model Tree:

Properties and options can also be deleted directly from the Model Tree. To do this safely, it is
important to first find the correct property. Assuming you have inserted "Operation1" in the
Account class (press F8, then Enter to insert):

1. Right click Operation1 in the Account class.
2. Select the option "Select in Model Tree".
The Operation1 item is now highlighted under Account in the Model Tree tab.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Class Diagrams 23

vocklree - o x |

-------- [= Sripne SO ﬂ
- B AltovaBank

- B John's Checking

-8B Account -
S |§| -1 balance 1 .| ------------ .ﬂ- » T- -t- o
........ §11d o o
. =
-------- < Account 1gl balance: fiost=0
@ < getBalance ! &1 IiString
A 4 getld &
- O collecticcountin o~ P Account
........ «» Operation | 1 & oetBalance flost
@8 Bank hd LD gyl String
; 1
IE| Maod... l@ Diagr.. l 4% Favo.., J 1 ¢ collectAccountinfarin
: » Operation
1
| |

Propetties o X

3. Press the Del key to delete the operation from the class and project!

Please note:
A delete prompt appears asking if you want to delete the element from the project. Click
Yes to delete Operation1 from the class as well as from the project.. Undo can correct
any number of mishaps at any time.

Creating an composition association between the Bank and Account classes:

1. Click the Composition icon * [in the title bar, then drag from the Bank class to the

Account class. The class is highlighted when the association can be made.
A new property (Property1:Account) is created in the Bank class, and an composite
association arrow joins the two classes.

Bank Account

@1 bankname: String @] balance:flost=0
@] [Padres:: String @] [cd: String

@] usernameString
#Propertyl | <F Accournt

<% oetBalance :float
< getld 1 String

@'1 pazsweord: String
@] Property ! Account

2. Double click the new Property1 entry in the Bank class and change it to "accounts”,
being sure not to delete the Account type definition (displayed in teal/green).

3. Press the End keyboard key to place the text cursor at the end of the line, and

4. Enter the open square bracket character "[" and select "*" from the dropdown list, to
define the multiplicity, and press Enter to confirm.

© 2007 Altova GmbH Altova UModel 2007

24 UModel tutorial

Class Diagrams

Bank

g1
21
g1
g1
21

bankname: String
Padress: String
username: String
password String
accounts: Accourt][*)

Account
@] balance: flost=0
@] id:String
. #accounts © | 0 Accourt()
s | 4 oetBalancel): fiost

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial Class Diagrams 25

3.3.1 Creating derived classes
The aim of this tutorial section is to:

¢ Add a new Class diagram called Account Hierarchy to the project
e Insert existing classes, and create a new Savings account class
e Create three derived classes of the abstract base class Account, using Generalizations

To create a new Class Diagram:
1. Right click the bankview package (under Design-phase | BankView | com | altova) in
the Model Tree tab, and select New | Class Diagram.
2. Double click the new ClassDiagram1 entry and rename it to "Account Hierarchy", and
press Enter to confirm.

Model Tree qx
-8/ 1 Design-phase ﬂ

........ =7 Owerview

-[&7 Banking access
- &7 Bank\iew
........ [&pply Java Profile
-] com
E'E| v altova
E'E| | banksiew
........ [Account Hierarchy
o Batkiew Main
........ [Sample Accounts
.E AltovaB ank:,
E John's Checking j

lEl Model Tree l@ Diagram Tree l%% Favorites ‘

The Account Hierarchy tab is now visible in the working area.

Inserting existing classes into a diagram:
1. Click the Account class in the BankView package (under com | altova | bankview),
and

-E| W com ﬂ
@l altorva
5..1_:_| 7] bank view
........ 1 Account Hierarchy
........ [Bank¥iew Main
........ [Sample Accounts
- [0 AltarvaBank
- [0 John's Checking
- [John's Credit
@ [John's Saving
Ral= Aecoun
- 2 Bank
-F B BankWiew [

2. Drag it into the Account Hierarchy tab.
3. Click the CheckingAccount class (of the same package) and drag it into the tab.
4. Place the class below and to the left of the Account class.

© 2007 Altova GmbH Altova UModel 2007

26 UModel tutorial Class Diagrams

5. Use the same method to insert the CreditCardAccount class. Place it to the right of
the CheckingAccount class.

Account
[fram bankview)

@] balance:flost=0
@1 Id:String

¢ Account

¢ getBalance: flost

% oetld ! String

¢ collectaccountindolin [BankAPl hoolean

Checkingfccount
[fram bankviess)

CreditCardAccount
[fram bankwviesn

P 1 minimumBalznce: flost=10000 crecitLimit: flost
irterestRateCnBalance: float

irterestRateOnCazhAdvance: flosq

¢ Checkingfccount

|]
1
1
1
1
—
I—I
1
1
1
1
1
1
& collectdccourtinfolin 1B ark AP boolesn o
1
1
1
1
1
1
1
1
1
1
1
1

=i SE R
e

,
W

CreditCardAccount
getCreditlimit) flost
getinterestRateCnBalance) float
getinterestRateCnCazhadvance
& collectccountingalin 1B

PO
W N

Adding a new class:
1. Right click the diagram background (to the right of CreditAccountClass) and select New
| Class.
A new class is automatically added to the correct package, i.e. BankView which
contains the current class diagram Account Hierarchy.
2. Double click the class name and change it to SavingsAccount.

CreditCardAccount | SavingsAccount |

- O=y —a
[from bankwviesw =] 1
I;. """""" 'lﬂll

@1 credilimit:float
@] interestRateCnBalance: float
] 1 interestRateCnCashidvance: flost

Y CreditCardAcoount

O getCredilimit) flost

» oetinterestRateCnBalance : float

< getinterestRateOnCashidvance T flost

Y collectaccourtintolin [BankAPhoolean

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Class Diagrams 27

3. Press the F7 key to add a new property.

4. Enter "interestRate", then a colon, and press "f" to select the float datatype from the
dropdown list and press Enter twice to select and confirm the entry.

5. Press F8 and add the operation/constructor SavingsAccount().

6. Use the same method, F8, to add the operation getMinimumBalance:float.

e | S

Savingsaccount

CreditCardAccount
[from bankwvies)

@1 interestRate:float

@1 credilimi: float
gl interestRateOnBalance: flost
o 1 interestRateCnCazshAdvance: flost

u
..
1
1
1
1
1
—a
1
1
1

¢ Savingsaccourt

P getMinimumBalance) flost i

;..,..,..,..,..,..,..,..,..*.*.,.,.*.*.,.*.*.*.E.

-._----LJT--EJ--

¥ CreditCardAocount

& getCreditLimit) flost

¢ oetinterestRateCnBalance | float

% getinterestRate0nCazshadvance) flost

¥ colectcocountinalin Bank AR boolean

7. Click in the "code file name" text box, in the Properties tab, and enter
SavingsAccount.java to define the Java code class.

Properties

frame SavingsAccount =
cualified name [Design Vieww: Bankview: cot
element kind Clazs

vizibility public hadl
et |

ahatract |

active | —

code file name |[SavingsAccount java
code file path COUML_Bank_Samplehulttii:
==zannotations== |[] LI

[=]Properties l & Shyles l Hierarchy ‘

Reusing/copying existing Properties/Operations:
Properties and operations can be directly copied, or moved, from one class to another. This can
be achieved using drag and drop, as well as the standard keyboard shortcuts:

within a class in the diagram tab
between different classes in the diagram tab
in the Model Tree view

between different UML diagrams, by dropping the copied data onto a different diagram
tab.

Please see "Cut, copy and paste in UModel Diagrams" for more information.

—_

Expand the Account class in the Model Tree.
2. Right click the collectAccountinfo operation and select Copy.

© 2007 Altova GmbH Altova UModel 2007

28

UModel tutorial

Class Diagrams

B8 Aeccount

- < getBalance

S getld

- 4% collecttocountinfo
-[H B Bank

-[F B Bankigw

B8 Checkingtccount
B8 CreditCardAccount
- = Relations

REp=] S avingstcoount

3. Right click the SavingsAccount class in the Model Tree and select Paste.
The operation is copied into the SavingsAccount class, which is automatically expanded
to display the new operation.
L=
EE Savingsfcoount :I
- 5] interestRate
-3 Savingshocount
- > getMinimumE alance (=l
[% collecticcountinfa
o O el mbime ;I
Tree l@ Diagram Tree l%% Fawarites ‘ j-
u L
[e]
L 5 A nt
L qx '_: avingsAccou |
=] 1
collectdccountinfo - '@1 irterestRate: float !
rid Operation a 1
. o= H
public 5 1 SavingsAccourt !
g 1<% getMinimumBalance: | flost :
I i1
— LI I % collectccountinfacin BankaF :bu:u:uleang:
s_l Skyles l Hierarchy ‘ L i
The new operation is now also visible in the SavingsAccount class in the Class
Diagram.
Please note:

You can use the Copy/Paste keyboard shortcuts (CTRL X, C, or V), as well as drag and
drop in the Model Tree to achieve the same effect. You might have to disable the sort
options to drop the operation between specific items.

Creating derived classes - Generalization/Specialization:

At this point the class diagram contains the abstract class, Account, as well as three specific
Account classes. We now want to define, or create a generalization/specialization relationship
between Account and the specific classes i.e. to create three derived concrete classes.

—_

T

Click the Generalization icon

in the icon bar and hold down the CTRL key.

Drag from CreditCardAccount (the class in the middle) and drop on the Account class.
Drag from the CheckingAccount class and drop the arrowhead of the previously

created generalization.
Drag from the SavingsAccount cl

ass and drop the arrowhead of the previously created

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial

Class Diagrams 29

generalization: release the CTRL key at this point.
5. Generalization arrows are created between the three subclasses, and the Account

superclass.

[from bankwview:)

Acconnt

@1 balanceflost=0
g1 ldString

¢ Account

Oy el String

O oetBalance) flost

< collectdccountinfarin

[BankAPl:koalean

i

CheckingAccount

CreditCardAccount

[from bankyvies)

SavingsAccount

fanice: flost="10000

oLt
Lntinforin IBankAPl:boolesn

&1
&1
g1

crediLimit: flost
interestRateCnBalance: float
interestRateCnCashadvance: float

@]

interestRate: float

(4]

CreditCardsccount

o
4]
43

SavingsAccount
gethMinimumBalance T flost
collectccountinfolin i

© 2007 Altova GmbH

Altova UModel 2007

30 UModel tutorial Object Diagrams

3.4 Object Diagrams
The aim of this tutorial section is to:

e Show how class and object diagrams can be combined in one diagram, to give you a
snapshot of the objects at a given point of time

e Create Objects/Instances and define the relationships between them

e Format association/links

e Enter real-life data into objects/instances

To open the Object diagram:

1. Double click the Sample Accounts diagram icon under the bankview package (or
under Object Diagrams in the Diagram Tree tab).

The Bank class and two related objects/instances are displayed in the object diagram.

AltovaBank:Bank is the object/instance of the Bank class, while John's checking:
CheckingAccount is an instance of the class CheckingAccount.

Model Tree o x Bank
E‘] altova . il @1 bankname:String
L w bankyvigw]
-------- A Account Hierarchy ? 1 [Packess:String
-------- 1 Bankiew Main @l username:String
........ m 5ample Accournts @1 pazzword String
[g &lboeaB ank, g accounts:Account]*]
-3 John's Checking _ — — —
--EJDhn'S Credit % Bankiin String, in (FString, in JString, inopeee Sty
g John's Saving ¥ collectsccourtinfosin [Bank &P badlesn
E‘E Aeccount » aetBalanceOfAccounts! int
--@] balance ¢ cetBankMame) String
g 1 i 21l ¢y getiPadress:: String
IEI Maodel Tree l@ Diagram Tree l%% Fawvatites ‘ O getUzername!) String
Froperties g x || <» oetPassword):String
nanme Sample Accountz
element kind ObjectDiagram
AltovaBank: Bank B
bankname = AtovaBank
Padress = 1010127 128 John's Checking

Inserting a class into an Object diagram:
e Click the Account class icon B Account in the Model Tree, and drag it into the "Sample
Accounts" tab.

The composite association defined previously, in BankView Main diagram, is
automatically created.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial

Object Diagrams

31

Bank
Account
@] balance:float=0
@1 IdString
#accourts | F Accourt

L etBalancer 1 float
Sstring i S=tringin s=tring S

% el String

(BankAP:boolean

ot & collectdccountinfo’in IBank
i

To add a new object/instance by selecting its type:

1.

2.

Click the InstanceSpecification icon
Checking object in the diagram tab.

[

in the icon bar, then click under the John's

Change the name of the instance to John's Credit, and press Enter.

[« | mil

IEIM-::::I... l@Diagr...l‘ﬁ% Faw:u...‘

[]

John's Checking: CheckingAccount E

Properties o x
narme John's Credit

element kind |InstanceS pecification
wizihility public hdl
clazzifier d|
specification

I Properties l Skyles l Hierarche ‘

balance =

Id =

minimumBalance = 10,000.00
L L]
'_E John's Credit: '

While the instance is active, all its properties are visible in the Properties tab.
Click the classifier combo box and select the entry CreditCardAccount from the

drop-down list.

L4 ' | Ol
IElM-:ud... l@Diagr...l%} Favu:u...‘

John's Checking: CheckingAccount B

balance =
Propetties o= Id =
hame Mohn's Credt minimumBalance = 10,000 00
element kind |Instances pecification
wizibility public hd R .
clazzifier CreditCard®ccount =] 1 John's Credit: CreditCardAccount & :
L 1
gpecification] g
| balance = !
1l = i
1 e 1
I Properties l Shyles l Hierarchy ‘ 1 crecitlimit = !
: interestRateonBalance = :
Querview + o | interestRateCnCashAdvance = 1
E~ R %) Cnlleleleleletleleleletelieleeletalieiaat .

To add a new object in the Model Tree view (then insert it into a diagram):

© 2007 Altova GmbH

Altova UModel 2007

32 UModel tutorial Object Diagrams

1. Right click the bankview package in the Model Tree tab, and select New |
InstanceSpecification.

2. Change the default object name to John's Saving, and press Enter to confirm.
The new object is added to the package and sorted accordingly.

=] w0 com

E"L:J o altowa

@[bankview

........ [Account Hierarchy
........ [Bankiew Main
........ @ Sample Accounts
- E AltowaBank,
- [John's Checking
- [John's Credi
- [John's Saving
B8 Account

While the object is still selected in the Model Tree tab,
3. Click the classifier combo box, in the Properties tab, and select SavingsAccount.

Fo - -------- D John's Saving LI
lEll"-"lDd... l@Diagr...l‘%{% Faw:u...‘
Properties o x
name John's Saving
elerment kind Inztances pecification
wizibility public =l
clazzifier S avingsdccount =]
specification

4. Drag the John's Saving object/instance from the Model Tree tab, into the Sample
Accounts tab, placing it below John's credit.

Propetties o x John's Credit: CreditCardAccount =

hame John's Saving

elerment kind Inztances pecification halance =

visibility public = =

clazzifier SavingsAccount =] creditlimit =

specification irterestRateOnBalance =
irterestRatecnCashadvance =

B e e] u
:Juhn's Saving: SavingsAccount & :
=]
| balance = Lg
TE :
1
1

l Properties l Skyles l Hierarchy ‘ ' terestRate -
P TR R PR T [- .I W.

Creating "links" between objects:
Links are the instances of class associations, and describe the relationships between
objects/instances at a fixed moment in time.

1. Click the existing link (association) between the AltovaBank and John's Checking.
2. Inthe Properties tab, click the classifier combo box and select the entry Account -

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial

Object Diagrams 33

Bank.
The link now changes to a composite association, in accordance with the class
definitions.
Properties o =
Fiarne John's Checking:
element kind |Instances pecification
wisibility public -l oy PEHANGE =
clazsifier [Account - Bank]] accounts |14 =
gpecification minimumBalance =
John's Credit: Cni

3. Click the InstanceSpecification icon

the John's Credit class.
The cursor now appears as a + sign.

John's Credit: Credi

balance =
Il =

in the icon bar, and position the cursor over

4. Drag from John's Credit object to AltovaBank to create a link between the two.
5. Use the classifier combo box in the Properties tab to change the link type to Account -

Bank.
6. Use the method outlined above to create a link between John's Saving and
AltovaBank.
AltovaBank: Bank E John's Checking: CI
bankname = AtovaBank > halance =
Padres= = 1010127128 J— Id =
uzername = John Doe minimumBalance = 10
pazzword = Jodoe
Accounts = - John's Credit: Cred|
accounts
halance =
Id =
crediLimit =
irterezstRatenBalancy
irtereztRateOnCazhig
accountz | John's Saving: Savir]
halance =
lf =
irterezstRate =
Please note:

Changes made to the association type in any class diagram, are now automatically

updated in the object diagram.

© 2007 Altova GmbH

Altova UModel 2007

34 UModel tutorial Object Diagrams

Formatting association/link lines in a diagram:
1. Click the lowest link in the diagram, if not active, and drag the corner connector to the
left.
This allows you to reposition the line both horizontally and vertically.

1
accourts = - |‘v John's Credit: Credi
accourts

balance =

Id =

creditLimit =
interestRateCnBalance
interestRateOnCashic

JJJnhn's Saving: Savir

=
% accourts

Use this method to reposition links in the diagram tab.

balance =

Entering sample data into objects:
The instance value of an Attribute/Property in an object is called a slot.

1. Click in the respective slots of each object and enter sample data.

2. E.g.inJohn's Checking object, double click in the balance slot and enter 11,975.00
as the balance.

3. Fillin the rest of the data to give yourself an idea of the current instance state.

John's Checking: CheckingAccount

AhovaBank: Bank H

balance = 11 975.00

bankname = AtovaBank . id= JDCA-57E9
Padress = 1010127 128 BCCOUnts | i mBalance = 10,000.00

uzername = John Doe
password = Jodoe

accounts = L " John's Credit: CreditCardAccount B
. accounts

balance = §2.00

id = JDiCCA-0123

crediLimit = 20,000.00
irterestRateCnBalance = 3.5
interestRateOnCashidvance = 14.0

John's Saving: SavingsAccount &

accourts
balance = & 743.00

id=JD3A-2345
irterestRate = 1.2

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Component Diagrams 35

3.5 Component Diagrams
The aim of this tutorial section is to:

Show how to insert classes into a component diagram

Create realization dependencies between the classes and the BankView component
Show how to change line properties

Insert components into a component diagram, and create usage dependencies to an
interface

To open the component diagram:
1. Click the Diagram Tree tab, expand the Component Diagrams component and double
click the "BankView realization" diagram icon.
The "BankView realization" component diagram is displayed.

Diagram Tree o=

= Diagrams =

- [z UzeCasze Diagrams

A5 Clazz Diagrams

E|)] Object Diagrams ==Realization] ==
Lo [Sample Accounts s

= 21 Component Diagrams ==component== %] %ealizaﬂun?bb Bank

-------- g‘!Bank‘-.-.’iew realization BankView Cirom bankview
e T Overviens | iﬂ. 1{:}

BankView
[fram bankwview)

1 [an Deployment Diagrams

-

nnnnnnnn [PENC R,

i ' fl
IEI Maodel ... l =l Diagra... 1%} Faw:urites‘ { ==Reslization=>

.
i
.

==Realizstiond== l‘a\

R B ankMiew realization h

element kind ComponentDiagram i Y,
CheckingfAccount

[fram bankwview

Properties o x

I Properties l Skwles l Hierarchy ‘ i

Cveryiew o x CreditCardAccount

W A = E % (from hankyvies)

2. Switch back to the Model Tree tab by clicking that tab.

To insert (existing) classes into a component diagram:
1. Locate the SavingsAccount class |- B Savingsécoourt| ynder the bankview package.

2. Drag it into the component diagram.
The class is displayed with all its compartments.

© 2007 Altova GmbH Altova UModel 2007

36 UModel tutorial

Component Diagrams

==COMmp

BankWiew

onert==]

2
=]

S

i Sauingsn-c::aﬁr:t ----------- -E : o
(from bankview)) ==Realization
L K]
@1 interestRate: fioat iﬂ%"‘ goe N
1 I"'-._L
& SavingsAccount i
& gethinimumBalance) float : Check]
1
¢ collecticcountinalin [BEnk AR boolean | (from b
Wossmssssossoooe- 7 At e
CreditCardAccount

[fram bankvie

)

3. Click both collapse icons to end up with the only the class name compartment.
4. Use the same method to insert the abstract class Account.

Account
[fram bankviess)

SavingsAccount
[fram bankwiesn

==COmponent==
BankView

Fehealizati
2]

4%

i «=Realization3==

i
i
~:~:Healiz§tiun4:~:~
!
;
;

*,
My
Checkingfcc

[fram bankyvie

CreditCardAccount
[fram bankview)

Please note:

The package containing the inserted class, is displayed in the name compartment in the

form "from bankview".

To create Realization dependencies between a class and component:

1. Click the Realization icon

E,

in the icon bar.

2. Drag from SavingsAccount, and drop the arrow on the BankView component.

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial

Component Diagrams 37

==Ccomponent==
BankView

£] E=Realizati

Account
[fram bankyviess)

SavingsAccount
[fram bankwiesn

4%

]
==Reslizationd==
;

f -:-:ReéligatinnSrr

5
,
A

Checkingfcc
[fram bankyvie

on the BankView component.

Click the ComponentRealization handle of the Account class (at the base), and drop it

A S .

_: Account 1

SavingsAccount
[fram bankwviess)

£

==Camponert==
BankView

ins

{ ««Realizationi==

i
v

~:~:Healiz§tiun4r—~:~

5
A
A

Checkingfcc
[fram bankyvie

Both of these methods can be used to create realization dependencies. There is
another method that allows you to create realization dependencies solely in the Model
Tree, please see Round-trip engineering (code - model - code) for more information.

Changing (Realization) line characteristics:
Clicking a dependency or any other type of line in a UModel diagram, activates the line drawing
icons in the Layout icon bar.

1. Click the realization line between SavingsAccount and BankView.
2. Click the line type icon Direct line / in the Layout toolbar.
L=component== g | ﬁ_ea_"_z?t'_‘
BankView
Account F
[from bankwview) f---omeeemeeemeeeeee é'lh' ,fﬁ- ;’_':1 1\'}
o ' .
J |I I-\.
o i ==Realization3==
» ¢ ;
- .
o .
-~ ==Realizationd== '
" ! "
a") ‘\‘\.
Savingsaccount ' CheckingAco
[fram bankview) h [fram bankview

The line properties are immediately altered. Lines have small icons along them called
waypoints. Waypoints can be clicked and moved to alter line characteristics. Change

the line properties to suit your needs.

© 2007 Altova GmbH

Altova UModel 2007

38 UModel tutorial

Component Diagrams

Inserting components and creating usage dependencies:

1. Double click the Overview diagram icon directly under the Design-phase package in
the Model Tree.
The Overview component diagram is opened and displays the currently defined system
dependencies between components and interfaces.
Model Tree o x
Floot i
21| Component Yies ==Interfaces==
~@| | Banking access IBankaAP|
E| B ankiiew (from Banking access)
........ =7 Bank\“?ew realization <=component=> _ £]
'E Bank\iew ¢» connect(in String rhoclean oo Bank APl client
b 5] EanleE'-f" GUI ¢» logindin “String, in : [from Banking access)
= EED_ID-"JmEnt View » dizconnect! T void
E‘ emgn-pf ase & oethrCfsccountsint
b B Dlverview)))
o .Banking access < getAocountiCin tint String
E‘ T Bank\iew 1l & oetéccountBalanceiin ntr
a8 | > |_I getAccountlimitin ‘it sirt
IEIMD::IEI ...l@Diagra...J‘%}%’Favurites‘ ¥ izCheckinadcoount(in it
5 izSavingsAccount(in sintkb
»
nams_ Overyview . % isSavingsdccount(in int Tk
elerment kind CornponentDiagram T it
2. Click the BankView GUI component under the Component View | BankView package

in the Model Tree, and drag it into the Overview diagram tab.
The package containing the inserted component is displayed in the name compartment,

"from BankView".

3. Use the same method to insert the BankView component under the same package.

==COmponent==
BankWiew GUI
[fram Bank'view)

Z]

=2component==

BankView
[from Bankhiew)

[fram Banking access)

=zlnterfaces==
IBankAPI

% connect(in :String 1 boolean

< loginoin cstring, in s String boolean
¢ dizconnect:void

O pethlrOfAccounts it

% getAccountiDon it String

¢ geticocountBalancelin srt it

The BankView component is the component produced by the "forward-engineering"
process described in this tutorial.

To create a usage dependency between interfaces and components:

u

1. Click the Usage icon

-*

in the icon bar.

2.
3.
interface.

Drag from the BankView GUI component to the BankView component.
Click the Usage icon again, and drag from the BankView component to the IBankAPI

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial

Component Diagrams 39

==component==
BankVWiew GUI
[from Bank'iew)

Z]

2=l de==

i

Sscomponent== I |

BankView
[fram BankWiew)

LR

[from Banking access)

==lnterface==
IBankAPI

connectin

.

loginin

-~

dizconnect void

gethrOfACcourts
getLccourtlDiin

5

__..
WO W N W

5

)

getAccourtBalancelin

J=tring 1 boolean
String, in - String boolean
it
At String

int it

The usage dependency (<<use>>) connects a client element to a supplier element. In
this case the IBankinterfaceAPI interface uses the services of components BankView

and BankView GUI.

© 2007 Altova GmbH

Altova UModel 2007

40 UModel tutorial Deployment Diagrams

3.6 Deployment Diagrams
The aim of this tutorial section is to:

e Show the artifact manifestation of components
¢ Add a new node and dependency to a Deployment diagram
e Add artifacts to a node and create relationships between them

To open the Deployment (Artifacts) diagram:

1. Click the Model Tree tab, expand the Deployment View diagram package, then double
click the Artifacts icon.

Model Tree
Foot
= Component Wigw
' Barking access ==component== £ | _ .
BankView Bank APl client | SSMEnfestsrlocodifacts [
- &7 Bankiew realization (from Banking access) | BankAPLjar
& BankView

&) Bankview GLI
B | Deployment Wiew

[Home PC ==component== | .
- () My Hame PC BankView | semanitests> | ceadifact=> [

e [Bankidresses ini "| [from Bank'iew:) - BankWiew.jar

This diagram shows the manifestation of the Bank API client and the BankView
components, to their respective compiled Java .jar files.

To open the Deployment diagram:
1. Double click the Deployment icon under the Deployment View package.
The Deployment diagram is opened and displays the physical architecture of the
system, which currently only comprises of the Home PC node.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Deployment Diagrams 41

modeitree 2 x |

Ront -

| 1 Component Wiew
Banking access
§.E| Bankiiew
-------- =7 BankYiew realization
.‘g Bankiigw Home PC
b 3] BankWiew GUI
= Deplovrment Yiew _
........ [Adtifacts
(- {7 Deployment
@ [Home PC
< () My Home PC
. [BankAdresses.ini j

EI Maodel ... l@ Diagra... l 43 Fa'-.-'u:-rites‘

Propetties o x

hame Dreployrment
elerment kind DreploymentDiagram

To add a Node to a Deployment diagram:

1. Click the Node icon =) in the icon bar, and click right of the Home PC node to insert
it.
2. Rename the node to Bank, and drag on one of its edges to enlarge it.

Home PC

Bank

To create a dependency between two nodes:

1. Click the dependency icon L~ "I, then drag from the Home PC node to the Bank node.

This creates a dependency between the two nodes.

2. Click into the name field of the Properties tab, change it to TCP/IP, and press Enter to
confirm.

The dependency name appears above the dependency line.

© 2007 Altova GmbH Altova UModel 2007

42

UModel tutorial

Deployment Diagrams

1] i B3

EIM::H:I... l@Diagr...l{% Faw:u...‘ Home PC

Propetties o x

name TCRAP

element kind | Dependency

vigibility public Ed ==TCPAP== Bank
B o= Al - =

Adding artifacts to a node and creating dependencies between them:

Expand the Deployment View package, in the Model Tree, to see its contents:

1. Click each of the BankAddresses.ini, BankAPl.jar and BankView.jar artifacts
individually, and place them on the diagram background (Deployment dependencies

are displayed for each artifact).

Home PC

==TCPAP==

qqdeﬁ[ﬂy}} T ﬁqdeﬁ[ﬂy}}

==deploy==

BankAPljar

==gttifact== [==atifact== [

BankView.jar

==gtifact== [
BankAdresses.ini

2. Click the BankView.jar artifact and drag it onto the Home PC node.

The node is highlighted when the drop action will be successful.

3. Use the same method to drag the other artifacts onto the Home PC node.
The artifacts are now part of the node and move with it when it is repositioned.

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial Deployment Diagrams 43

Home PC

==attifact== [
BankView.jar

==TCPAP==

==grtifact== [==grtifact== [
BankAdresses.ini BankAPLjar

4. Click the Dependency icon in the icon bar, and hold down the CTRL key.

5. Drag from the BankView.jar artifact to the BankAddresses.ini artifact; still holding
down the CTRL key.

6. Drag from the BankView.jar artifact to the BankAPl.jar artifact.

n .
lf 1
i Home PC :
i i
: ==attifact== [0]
: BankView.jar !
i
: :

i
: Wl W : ==TCPAP==
V| =esrtitact== [y | |=eotitact== [} !
i
: BankAdresses.ini BankAPLjar :
: :
T S e e e e e s s s s s s s s s s e 6-
Please note:

Dragging an artifact out of a node onto the diagram background, automatically creates
a Deployment dependency.

To delete an artifact from a node and the project:
¢ Click the artifact you want to delete and press the Del keyboard key.
The artifact and any dependencies are deleted from the node as well as the project.
To remove an artifact from a node and its diagram:

1. Use drag and drop to place the artifact onto the diagram background.
2. Hold down the CTRL key and press Del.

The artifact and any dependencies are deleted from the current diagram and not from
the project.

© 2007 Altova GmbH Altova UModel 2007

44 UModel tutorial Round-trip engineering (model - code - model)

3.7 Round-trip engineering (model - code - model)

The aim of this tutorial section is to:

Perform a project syntax check

Generate project code

Add a new method external code i.e. to the SavingsAccount class
Synchronize the UModel model new code with the model

Packages and Code / model synchronization:
Code can be merged/synchronized at different levels:

Project, Root package level (menu item)
Package level (multiple package selection / generation is possible)
Class level (multiple class selection / generation is possible)

The BankView realization diagram, depicts how the BankView component is realized by its six
constituent classes. This is the component that is produced when the forward-engineering
section of the tutorial is complete.

To be able to produce code:

The component must be realized by one or more classes.

The component must have a physical location, i.e. directory, assigned to it. The
generated code is then placed in this directory.

Components must be individually set to be included in the code engineering process.
The Java, and C#, namespace root package must be defined.

Please note:

The Java namespace root has been set on the Design-phase | BankView | com
package in the Model Tree.

Java and C# code can be combined in one project and are automatically handled
during the round-trip engineering process. The Bank_MultiLanguage.ump file in the ...\
UModelExamples folder is an example of a project for both types of code.

To define a code generation target directory:

1.

2.

Double click the 1 Overview icon under the Design-phase package to switch into the
component overview.

Click the BankView component, in the diagram, and note the current settings in the
Properties tab.

Click the browse button |:| to the right of the directory field.

Enter/select the target directory in the dialog box (the supplied example is defined as
InstallationDir\UModelExamples\Tutoriallumlcode\bankview), or click the "Make
New Folder" button to create a new folder.

The path now appears in the directory field.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial

Round-trip engineering (model - code - model) 45

Maodel Tree n =

oot -
B IComponent Yiew
Banking access
5..E| Bank\iew
........ &7 Bankiiew realization
l@ Bank e
b 3] BankWiew GUI
-H | Deployment Vieww
-8 |Design-phase
........ =M Crverview

-

IEI Mn:u:iel Tree l@ Diagrarm T.. l {% Fawviotites ‘

Properties o x
Marme Bankiew

cualified name Component Yies: Bankiew:
elerment kind Coamponent

vizibility puklic |
et O

ahatract O
lindirectiinstartiste:

code language Javal 4 =]
directory umlcodetbhankvies

Iuse for code engine

==component== 3 |
BankView GUI
[fram Bankview)

=ZlEEEE

ST R]

! s=component== 3 i

P BankView r----s
| (from Bankyisw) "

[fron

&
O
&
&
O
&
&
O
&
&
O
(4]

To include/exclude components from code generation:

1.

Click the BankView GUI component.

2. Uncheck the "use for code engineering" check box (if not already unchecked).

Propetties
frame Bank'iew

qualified name Component “ies::Bank®
element kind Component

vizibility public =
lleat O

ahatract O
lindirectlyinstantiated

code language Javal 4 hadl
clirectory umlcodetbankvies

u=ze for code engineering E

[=]Properties l &% Shyles l Hierarchy ‘

Checking project syntax prior to code generation:

Select the menu option Project | Check project syntax.
2. A syntax check is performed, and messages appear in the Messages window, "Bank
API-client: code project file or directory not set" - "IBankAPI: code file name not set".

1.

© 2007 Altova GmbH

Altova UModel 2007

46

UModel tutorial

Round-trip engineering (model - code - model)

Messages

| w4l 7| al v|al 0GB X

=] Starting Syntas Check. ..
I@ ‘Bark AP client code project file ar directarny not et

@ 'IBankaPl" code file name not zet - defaulk name will be generated
... finizhed Suntax Check - 1 emror(z], 1 warninglz]

Click the first message in the messages window.

The Bank API client package is highlighted in the Model Tree view, with its properties

visible in the Properties tab.

Uncheck the "use for code engineering" check box for the Bank API client component.

- Maodel Tree

Foot -
B JComponent e
E| Banking access
. .[@£] Bank APl cliert
“E| |Bankiiew
-------- &7 Bankiiew realization
-‘g Bank e

o BT Brank i GUI |
lEl Model Tree l@ Diagram T.. l 2% Favorites ‘
Properties o x
IS Bank APl cliert
qualified name Component Yiew: :Banki
element kincd Componernt
vizibility public i

(== O

abstract]
lindirectlyinstartisted

code language Javal 4 |
directory umlcodetbankwvies

fu=e for code engineering |

Check the project syntax again using Project | Check project syntax.

Messages

| v|a| 7| a| v|a| O/E G X

=] Starting Syntas Check ...
I@ ‘Bank AP client: code project file or directony not zet

@ B ankAPl: code file name not zet - default name will be generated
... firnizhed Syntax Check - 1 emnarlz], 1 warmning(z]

= Starting Syntas Check ...
... firnizhed Spntax Check - 0 enorfz], O warnings)

No errors are reported this time around. We can now generate program code for this

project. Please see Check Project syntax for more information.

To generate project code:

1.

Click the BankView package to select it.

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial Round-trip engineering (model - code - model) 47

2. Select the menu option Project | Merge Program Code from UModel project.

3. Select your synchronization options from the dialog box, and press OK to proceed (no
changes needed for the tutorial; see "Merge Program Code from UModel project” for
more information).

Synchronization Settings ﬂ

Cade fram Model | tadel fram Code I

— SPL templates
¥ Uszer-defined overide default

—When deleting Code
& Comment out € Delete

— Synchronization
i+ Merge Model into Code

" Owenwrite Code according to Model

v flways show disglog when synchionizing

ak. Cancel

The message pane displays the outcome of the code generation process.

Messages

o] v|a| v]a| w|a) X

[Starting Syntax Check ..

(- ... finizhed Syntax Check - 0 error(=s), O warning(=)
[Starting update code from project ...

e Collecting zource files in 'C:'\Program FilesWhowa\UMode 2007 UModelExamplesiTutorialun
-------- Par=ing file: 'C:\Program Files\Atovaldkodel 2007 ModelExamplesiTutorialumlcodebanky
-------- Parsing file; 'COProgram Files\WAhkovaldhodel 2007 ModelExamplesiTutarialumlcodebanky
-------- Parszing file: '"COProgram Files\WAkovallModel 2007 ModelExamplesiTutorialumlcodebanky
. ... finizhed update code from project - O eror(z], O warning(s]

4. Navigate to the target directory.
Six .Java files have been created for the project.

Synchronizing the UModel model having updated Java code externally:
1. Open the SavingsAccount.java file in the text editor of your choice, XMLSpy for
example.
2. Add the new method to the generated code "public float getinterestRate() {}", and
save the file.

© 2007 Altova GmbH Altova UModel 2007

48 UModel tutorial Round-trip engineering (model - code - model)

1
z public class SawvingsiAccount extends Lﬁ.ccnunt
3 {
4
) protected float interestBate;
&
7 public Savingsiccount ()
2 {
e }
10
11 public float getMinimumBalance ()
1z {
1z }
14
15 = public float getInterestBate()
1l {
17 }
1z
13 public boolean collecthccountInfo(IBankAPI bankAPI)
Z0 {
z1 }
ZE }
e
. . . . =] .
3. Switch to UModel and right click the SavingsAccount class under the BankView
package.

4. Select the option Code Engineering | Merge UModel Class from Program Code.
This opens the Synchronization Settings dialog box with the "Model from Code" tab

being active. No changes are needed for the tutorial; see "Merge UModel project from
code" for more information)

Synchronization Settings El

Code from Model Model from Code |

Synchronization
¥ herge Code into Maodel

" Ovenanite Model according to Code

V¥ flwaps show dislog when gpnchronizing

Praoject Settings | 0k, I Cancel

5. Click OK to merge the model from the code.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial Round-trip engineering (model - code - model) 49

Messages

v| v|a| v|a| w|a X
Bl Starting update code from project ...
i Collecting source files in "C:'Program Files\AkowaUModel 2007 UModelExamplestTutorialun

Parsing file: "C:'Program FilesWhowva\Ukodel 2007 UodelExamplesiTutoriahumlcode \banky
Parsing file: 'C:'Program FilesWhowva\Ukodel 2007 UkodelExamplesiTutoriahumlcode \banky
Par=ing file: "CProgram Files\akovaUhodel 2007 ode ExamplesiTutorialumlcodebhanky
... firnizhed update code from project - 0 eror(z), 0 warning(z)

[l Starting update madel fram code .
Parzing file: "C:OProgram Files\atovaUbMode 2007 odeExamplesiTutorialumlcodebhanky
... finished update maodel from code - O eror(z), 0 warning(z)]

6. Click the Account Hierarchy tab to see the outcome of the merge process.

CreditCardAccount SavingsAccount

j @1 interestRate:flost

-float

eOnBalance: float & Savingsdecount
Ee@nﬂash.&dvance:flnsﬂ % gethinimumBalance : flost

% getinterestRatel :float

HACcount ¢» collectdcoountinolin IBank AP boolean
Lirmiti): float

tRateCnBalance I float

B g Bankiiew realization | (L] Sample Accounts | = Bank¥iew Main | = Account Hierarch
|=] P b

The new method added to the code, (getinterestRate...) generates a new operation in
the SavingsAccount class of UModel.

© 2007 Altova GmbH Altova UModel 2007

50 UModel tutorial Round-trip engineering (code - model - code)

3.8 Round-trip engineering (code - model - code)
The aim of this tutorial section is to:

e Import a directory containing Java code generated by XMLSpy
e Add a new class to the project in UModel
e Merge to the program code from a UModel package

The files used in this example are available as the OrgChart.zip file under
...\UModelExamples folder of your installation. Please unzip the OrgChart.zip file into the
..\UModelExamples folder before you start this section.

This creates the OrgChart directory which will then be used to import the existing code.

To Reverse engineer/import existing code from a directory:
1. Select File | New to create a new project.
2. Select Project | Import source directory.
3. Select the C#, or Java version (1.4, or 5.0.) that the source code conforms to.

4. Click the Browse button |:| and select the OrgChart directory supplied in the
...\UModelExamples folder.

Import Source Directory 5[

Language: |Java5.0 (1.5) [

(YT (u) (U 1 21 Filezhbae gt M odel 20074 M odelE samples

¥ Process all subdirectories

—Jawa Project Settings

[T JavaDocs az Documentation

[efined symbols:

— Synchronization
&+ Merge Code into Maodel

™ Ovenwrite Model according to Code

— Diagram generation

[w Enable diagram generation

¢ Back I Hest = I Finizh Cancel

5. Making sure that the "Enable diagram generation” check box is active, select any
specific import settings you need, and click Next.

Altova UModel 2007 © 2007 Altova GmbH

UModel tutorial

Round-trip engineering (code - model - code)

51

Content Diagram Generation

— Content diagrams

x|

[w Generate zingle diagran

¥ Generate diagram per package
¥ COpen diagrams

[Show nested classifiers separately
¥ Show anonymous bound elements

v Hyperlink package(s) to diagramiz]

— Style

¥ Show Attibutes compartment

[” Show Operations compartment

¥ Show nested Clazsifiers compartment
¥ Show EnumerationLiterals cmpt.

¥ Show Tagged Values

—Autolayout

v Autolayout

=~

I hierarchic

< Back I Mest » I

Finish |

Cancel

Note that UModel can generate a single overview diagram and/or a diagram for each
package. The settings show above are the default settings.
6. Click Next to continue.

Package Dependency Diagram Generation

— Package dependency diagram

v Open diagram

[T lgnaore estemnal packages
[mot child of import target]

¥ Hypeilink package to diagram

— Style

Fill color of external packages:

[—

— Autolayout
v autolayout

=~

I hierarchic

x|

< Back |

Hes | Firish |

Cancel

This dialog box allows you to define the package dependency generation settings.

7. Click Finish to use the default settings.
The data is parsed while being input, and a new package called "OrgChart" is created.

© 2007 Altova GmbH

Altova UModel 2007

52

UModel tutorial

Round-trip engineering (code - model - code)

Maodel Tree

_|Roat

Component “iew

/£ OrgChart

'nj #|Java Profile [Java Profile ump]
L 5 Unknawn Externals

IEI Model Tree l@ Diagram ... l%} Favarites ‘

Root =
- 1Component Yigw
= |;"r’L' OrgiChart
........ [Content of OrgChart
-------- [AContert of OraChart and all subpac
-------- _E-"!F'an:kage dependencies of QOrgChar
B e com b
........ [FContert of com
B e | Etova
e OrgChart
i A Content of CrgChart
. B CompanyLogoType

H DescType
JIl = hivizinnTwne -
1| | 3

IEI Model Tree l@ Diagram ... l%} Favarites ‘

—

9. Double click the "Content of OrgChart" diagram icon .

8. Expand the new package and keep expanding the sub packages until you get to the
OrgChart package (com | OrgChart).

The collapsed classes that make up OrgChart are displayed in the main tab.

:
DivisionType o}
1
1

The current window/view is shown by the red box in the Overview window, which

occupies an empty area of the diagram.

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial Round-trip engineering (code - model - code) 53

[—— - —] =Nl ——N——
=

l Crverview l Docurnentation

10. Click the expand icon of the operation compartment, e.g. emailType, to see the
constituent operations.

S T
: emailType
DivizsionType 5
VL1 sPatternalues: Strino[*={ "Tho{l } -1+ [Nl b -1+l }
=y
' Oy emailTyper)
o= O emailTypedin newyalue: String)
: O emailTypelin newalue: SchemaSteing)
1
1> getPatternCourtyint
: % getPattern®aluerin indesint T String
PO validater) vaid
.I --
Please note:

You could also select the Project | Import source project option and select the
Borland JBuilder OrgChart.jpx project file to import the project created by XMLSpy.

Round-trip engineering and relationships between modeling elements:

When updating model from code, associations between modeling elements are automatically
displayed, if the option Editing | Automatically create Associations has been activated in the
Tools | Options dialog box. Associations are displayed for those elements where the attributes
type is set, and the referenced "type" modeling element is in the same diagram.

InterfaceRealizations as well as Generalizations are all automatically shown in the diagram
when updating model from code.

Adding a new class to the OrgChart diagram:
1. Click the Class icon = in the icon bar and click to insert a new class.
2. Add a new Class called CompanyType.
3. Add new operations to the class using the F8 shortcut key:
e.g. CompanyType(), getCompanyType():String, setCompanyType():String.

© 2007 Altova GmbH Altova UModel 2007

54 UModel tutorial Round-trip engineering (code - model - code)
CompanyLogoType
==MEMmespacess ¥ CompanyLogoType
ipo » CompanyLogaTypelin CompanyLogoTypd
¢ CompanyLogoTypelin sorg.we 3 .o Mo
% CompanyLogoTypelin sorg sy 3c.dom Docun
CompanyType O adiustPrefio) void
P gethrefhinCourt; :int
& CompanyType » oethrefMaxCount int
< oetCompany Type T String & oethrefCourt int
O setCompanyType! 1 String ¥ hashref :hoolean
< gethrefAt(in it =chemaz=tring
O petStartinghrefCursor org 3o dom Mode

Making the new class available for code generation:
While the CompanyType class is active,

1.

2. Click the new CompanyType class in the Model Tree, drag upwards and drop onto the
OrgChart component below the Component View package. A popup appears when the

Click into the "code file name" field and

enter the Java file name of the new class

CompanyType.java.
Properties o x
name CompanyType = ': “““ C- u-raﬁa{}?il;e- T ‘:
oualified name OrgChart: com: OrgChart: d H
elemert kind Clazs Ei :
wizibility puklic kd e < CompartyTypel) b
et | : ';) getCampany Type() =tring i
abatract O . % =stCompany Typel): String !
active O | wTTTTEsssssssssssss T
code file name CompanyType java
code file path
==annotations== |[] -
[=] Properties l &% Shyles l Hierarchy ‘

mouse pointer is over a component.

Altova UModel 2007

© 2007 Altova GmbH

UModel tutorial

Round-trip engineering (code - model - code) 55

[oseinee o < |

Foot

= com i) Info:

-E £] attq Drop will add ComponentRealizations to the Component

- £] ipo

-E 2] CrgChar
:’:; Felations

-] CrgChartTest

- £] types

- =] xml

0 & OrgChart

-------- [Contert of OrgChart and all su
-------- [E|Package dependencies of Org |
=] com
........ [Content of com
- atova
-3 wOrgChart

. | Cortent of OrgChart

. e o

E CompanyLogoType

L}
[|

1
1
G
........ [Content of OrgChart nj
i
1

1

1
o

1

R oy e

- B Company Type

7 H DescType ;I FContent of OrgChart | E conter

Please note:
This method creates a Realization between a class and a component, without having to

use component or deployment diagrams.

Expand the Relations item below the Orgchart component, to see the newly created

realization.

-E £] OrgChart
| =, Relations
Companent B ealization: [ComparywLogaTvpe]

—p Companent B ealization: [CamparyType]

-l
.. Component Realization: [DivisionT ype

Component Realization: [DezcType]

Merging program code from a package:
Right click the OrgChart package, select Code Engineering | Merge Program code

1.

from UModel Package, and press Enter to confirm.

© 2007 Altova GmbH

Altova UModel 2007

56 UModel tutorial Round-trip engineering (code - model - code)

Synchronization Settings

Code from Model | todel from Code I

— SPL templatez
v Ll zer-defined cvenide default

—When deleting Code
% Comment out £ Delete

— Synchranization
" herge Model into Code

" Owvenanite Code according to Model

#ML Schema files are always ovenaritten

¥ Always show dialog when synchronizing

Froject Settings |] I Cancel

The messages window displays the syntax checks being performed and status of the
synchronization process.

When complete, the new CompanyType.java class has been added to the folder
...\0rgChart\com\OrgChart\.

Please note:
All method bodies and changes to the code will either be commented out or deleted,

depending on the setting in the "When deleting code" group, in the Synchronization
settings dialog box.

That's it!
You have learned how to create a modeling project using the forward engineering process, and

also completed a full round-trip code engineering cycle with UModel. The rest of this document
describes how best to achieve modeling results with UModel.

Altova UModel 2007 © 2007 Altova GmbH

Chapter 4

UModel User Interface

58 UModel User Interface

4 UModel User Interface

UModel consists of series of panes on the left and a larger diagram tab at right. The panes at
left allow you to view and navigate your UModel project from differing viewpoints, and edit data
directly.

The panes are Model Tree, Properties, and Overview. The working/viewing area at right is the
UModel Diagram tab which currently shows the Class Diagram of the BankView Main package.

Please note:
All panes, as well as diagram tabs, can be searched using the Find combo box in the
Main toolbar, which contains the text "account"” in the screenshot below, or by pressing
CTRL+F.

=10l x|

= File Edt Project Layout “iew Tools Wwindow Help -5 x

DBEHvo 4P [3XEBR(S| S Ron FLsEnl B B

e obet NECERE| EE®| A

Model Tree 3 x :l
-BZ Bankview -]
- [Apply Java Profile
-E1]) com J
LE | alava
H . L
“B| v barkview BankView i
o] Acoount Hierarchy =
. [BankMiew Main LI @1 banksBank[*] {ordered} :ﬁ] banknaim
: [I R PO T . [
hank AP IBankaPl IPadress
{Elr'-’lodel l@ Diagra...l‘ﬁ}%‘ Favorites] gl #hanks | gl
— s ~a §1 UzErmEM
P a x ||| & Bankviswin IBank AR 1 4 :91 ——
— Bank - ﬁ") collectBankAdreszintoz hoolesn :91 acounts
glement kind | Class g collecticcountinfos hoolean i - Sn—
wigibility public =l % collectDatal) boolsan 1 > Bankiin
1
leat] <» getBalancetBankin - String) int ! & collectic
abstract L - & getBalanceSumorAlBanks! it 14> oetBalan
arhwe 1
{Pruperties lSters lHierarchyl : & etk
1 getlPAdn
Crverview o x 1> getUserr
1
N - .9, orass
1 1 []
: 1
! ! E
1
= K1 | E
[Overview chu:umentatiu:un ElBank¥iew Main I 4 [
Ready CAP NUM SCRL .

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface

Model Tree pane 59

4.1

Model Tree pane

Model Tree tab
The Model Tree tab allows you to manipulate model items directly in the Model Tree, as well as
navigate/view specific items in the Design tab. Right clicking an item opens the context menu,
from which specific commands can be selected. The contents of the context menu depend on
the item that you select.

Model elements in the Model Tree pane can be directly manipulated:

Added / inserted

Copied or moved

Deleted

Renamed

Sorted according to several criteria
Constrained

- &7 Bankiiew
-------- [&pply Java Profile

-2 com

§.E| 1 altowva

@[bankview

........ [Account Hierarchy
........ [B ankMiew Main
........ [Sample Accounts
- [AltowaBank
@ B John's Checking
@ B John's Credit
@ B John's Saving

-F B Account

IEI Model Tree l@ Diagram Tree l%% Favarites ‘

In the Model Tree tab, each folder symbol is a UML package!

Adding a new package (or any other modeling element):
1.
2. Select New | Package (or respective model Element).

Right click the folder that you want the new package/element to appear under.

Copying or moving model elements:

1.
2.

Sorting elements in the Model Tree (activating no sort):
1. Right click the empty background of the Model Tree tab.

2.

Use the standard windows Cut, Copy or Paste commands or,

Drag model elements to different packages. Dragging an elements moves it. Holding

down CTRL a and dragging an element creates a copy.

When dragging elements a message might appear stating that select "No sort" needs
to be activated to allow you to complete the action. Please see "Cut, copy and paste in
UModel Diagrams" for more information.

Select Sort | No sort.

Elements can now be positioned anywhere in the Model Tree.

Please note:
The Sort popup menu also allows you to individually define the sort properties of

© 2007 Altova GmbH

Altova UModel 2007

60 UModel User Interface Model Tree pane

Properties and Operations.

Renaming an element:
1. Double click the element name and edit it.
The Root and Component View packages are the only two elements that cannot be
renamed.

Deleting an element:
1. Click the element you want to delete (use CTRL+click to mark multiple elements).
2. Press the Del. keyboard key.

The modeling element is deleted from the Model Tree. This means that it is also
deleted from the Diagram tab, if present there, as well as from the project. Elements
can be deleted from a diagram without deleting them from the project, using CTRL+
Del. Please see deleting elements.

To open a diagram in the Diagram tab:
1. Double click the diagram icon 1 of the diagram you want to view in the diagram tab.

Modeling element icon representation in the Model Tree

Package types:

UML Package
=1 Java namespace root package
“*| C# namespace root package
#= XML Schema root package
#| Java, C#, code package (package declarations are created when code is generated)

Diagram types:

Object diagram
Package diagram
Sequence diagram
State Machine diagram
Timing diagram

Use Case diagram
XML Schema diagram

Activity diagram

Class diagram
Communication diagram
Component diagram
Composite Structure diagram
Deployment diagram
Interaction Overview diagram

2] 5 [o b [

Q[mEmE

Element types:

=

An element that is currently visible in the active diagram is displayed with a blue dot at its base.
In this case a class element.

E Class Instance/Object
1 Class instance slot

B Class
g1 Property
» Operation
» Parameter

& Actor (visible in active use case diagram)
<> Use Case
£] Component

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Model Tree pane 61

7 Node
Y Artifact
== Interface

% Relations (/package)
1} Constraints

Opening / expanding packages in the Model Tree view:
There are two methods available to open packages in the tree view; one opens all packages
and sub packages, the other opens the current package.

Click the package you want to open and:

e Press the * key to open the current package and all sub packages
e Press the + key to open the current package.

To collapse the packages, press the = keyboard key.
Note that you can use the standard keyboard keys, or the numeric keypad keys to
achieve this.

To find modeling elements in Diagram tab(s):
While navigating the elements in the Model Tree, you might want to see where, or if, the
element is actually present in a model diagram. There are two methods to find elements:

1. Right click the element you want to see in the Model Tree tab, and select:
e Show element in active diagram - to find it in the same type of diagram tab
e Show element in all diagrams - if currently active diagram differs from selected
model element.

To generate a list of elements not used in any diagram:
1. Right click the package you would like to inspect.
2. Select the menu option "List elements not used in any diagram.
A list of unused element appears in the Messages pane. The list in parenthesis,
displays the specific elements which have been selected to appear in the unused list,
please see the View tab in Reference section under, Tools | Options for more
information.

I List all elements [Clazsifier, Package, Relations, InstanceS pecification] not uzed in any diagram...
oM
b

b altn:n\-'a.
b hankvigw
...4 elements have been faund

To locate the missing elements in the Model Tree:
e Click the element name in the Messages pane.

Please note:
The unused elements are displayed for the current package and its sub packages.

Packages in the Model Tree tab:
Only the Root and Component packages are visible on startup, i.e. when no project is currently
loaded.

e Packages can be created, or deleted at any position in the Model Tree
e Packages are the containers for all other UML modeling elements, use case diagrams
etc.

© 2007 Altova GmbH Altova UModel 2007

62 UModel User Interface Model Tree pane

Packages/contents can be moved/copied to other packages in the Model Tree (as well
as into valid model diagrams in the diagram tab)

Packages and their contents can be sorted according to several criteria

Packages can be placed within other packages

Packages can be used as the source, or target elements, when generating or
synchronizing code

Generating/merging code:
UModel allows you to generate, or merge program code directly from the Model Tree, please
see: Synchronizing Model and source code for more information.

Constraining UML elements:

Constraints can be defined for most model elements in UModel. Please note that they are not
checked by the syntax checker, as constraints are not part of the Java code generation
process.

To constrain an element (Model Tree):

Right click the element you want to constrain, and select New | Constraint.

Enter the name of constraint and press Enter.

Click in the "specification" field of the Properties tab, and enter the constraint e.g. name
length > 10.

1.
2.
3.

Propetties
e ‘Conztraint]
elernent kind Conztraint
wizibility public bl
gpecificatian hame length > 10
bank g

conztrained elements —
O

l Properties l Skyles l Hierarchy ‘

To constrain an element in UML diagrams:

1.
2.

Double click the specific element to be able to edit it.
Add the constraint between curly braces e.g. interestRate:float #{interestRate >=0}.

§.§|“| irterestRate: float {interestRate = 0}

To assign constraints to multiple modeling elements:

1.
2.

3.

Right click the "constrained elements" field in the Properties tab.

Select "Add element to constrained elements".

This opens the "Select Elements to be Constrained" dialog box.

Select the specific element you want to assign the current constraint to.

The "constrained element” field contains the names of the modeling elements it has
been assigned to. The image above, shows that Constraint1 has been assigned to the
bankview and com packages.

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Model Tree pane 63

411

Diagram Tree tab

Diagram Tree tab
This tab displays the currently available UModel diagrams in two ways:

e Grouped by diagram type, sorted alphabetically
e As an alphabetical list of all project diagrams

Please note:
Diagrams can be added to, or deleted from, the Diagram Tree tab by right clicking and
selecting the requisite command.

To open a diagram in the Diagram tab:
e Double click the diagram you want to view in the diagram tab.

To view all Diagrams within their respective model groups:
¢ Right click in the pane, and activate the "Group diagram by diagram type" option.

Diagram Tree

= Diagrams
- 579 UzeCaze Diagrams
- E™ Overview Account Balance
=[5 Clazs Diagrams
-------- [Account Higrarchy
(— 1 Apply Java Prafile
s [B Ak gy b ain
- [z) Object Diagrams
- [@ S ample Accounts
- [] Component Diagrams
-------- & BankXiew realization

- &7 Overview

-2 [g Deployment Diagrams
........ () Artifacts
- {7 Deployment

-]) Sequence Diagrams
....[E] SequenceDiagram

IEI Model Tree l@ Diagram Tree l%'% Favarites ‘

Diagrams are grouped alphabetically within their group.

To view all Diagram types in list form (alphabetically):
¢ Right click in the pane, and deactivate the "Group diagram by diagram type" option.

© 2007 Altova GmbH Altova UModel 2007

64

UModel User Interface

Model Tree pane

Diagram Tree

= Diagrams

....... [Account Hierarchy
....... 1 4pply Java Profile
....... () Artifacts

------- [BankVigw Main

....... =7 BankYiew realization
....... (1 D eployment

....... &7 Overview

------- B Owerview Account B alance
....... @ Sample Accounts
....... [Sequenceliagram?

IEI Model Tree l@ Diagram Tree l{% Favarites ‘

All Diagrams are shown in an alphabetically sorted list.

Altova UModel 2007

© 2007 Altova GmbH

UModel User Interface Model Tree pane 65

4.1.2 Favorites tab

Favorites tab

Use this tab as a user-defined repository, or library, for all types of named UML elements i.e.
classes, objects, associations etc. but not ProfileApplication or Generalization dependencies.
This allows you to create your personal pick-list of modeling elements for quick access.

The contents of the Favorites tab are automatically saved with each project file. Select the
menu option Tools | Options, File tab and click the "Load and save with project file" check box
to change this setting.

To add an existing modeling element to the Favorites tab:
1. Right click an element in the Model Tree tab, or in the diagram working area.
2. Select the menu item "Add to Favorites".
3. Click the Favorites tab to see the element.

Favarites

& Favoribes -
5.{_:_| | banksiew

........ [Account Hierarchy

........ [BankYiew Main

-------- [Sample Accounts

-3 B AltovaB ank

& B John's Checking —
@ B John's Credit
@ B John's Saving
- B Accour

-
=T e T . [P

lEl Model Tree l@ Diagram Tree l%% Favorites ‘

The element appears in the Favorites tab is a view of an existing element, i.e. it is not a
copy or clone!

To add a NEW element to the Favorites tab:
1. Right click a previously added package, to which you want to add the element.
2. Select New | "modeling element" from the context menu, where "modeling element"
is a class, component, or any other modeling element available in the context menu.
New elements are added to the same element/package in the project, and are therefore
also visible in the Model Tree tab.

To REMOVE an element from the Favorites tab:
1. Right click the same element/package that you added to Favorites.
2. Select Remove from Favorites.

Please note:
You can add and remove elements added to the Favorites tab, from the Favorites tab,

as well as the Model Tree tab.

Deleting elements from the Favorites tab:
1. Right click the element you want to delete, and press the Del key.
A message box appears, informing you that the element will be deleted from the
project.
2. Click OK if you want to delete it from the project.
3. Click Cancel to retain it, and use the Remove method described above, to delete it
from the Favorites tab.

© 2007 Altova GmbH Altova UModel 2007

66 UModel User Interface Properties pane

4.2 Properties pane

Properties tab
The Properties tab displays the UML properties of the currently active element.

Propetties

name Bank -» Account

element kind Agzzociation

wizihility public e
leeaf |

abtract |

derived |

A name accountz

A aggreagation composgite il
A2 memberE ndkind | memberEnd hd
A raclbiplicity * il
B: name Prapertyl

B: aqgreqation hiohe il
EB: memberEndind ownedEnd hd
BE: rultiplicity 1 |
l Properties l Skyles l Hierarchy ‘

¢ Clicking any model element in any of the supplied views, or tabs, displays its
properties.

e Once visible, model properties can be changed, or completed, by entering data, or
selecting various options in the tab.

e Selected properties can also be located in the diagram tabs by selecting Show in Active
Diagram from the context menu.

Styles tab
The Styles tab is used to view, or change attributes of diagrams, or elements that are displayed

in the diagram view.

Froject Stylez j
Fill Cilar vahite [— -
Pen Calar 525252 D - ﬁ
Font Calar black, I - ﬁ
Font Anial =l
Font-Size 11 =l
Fontheight normal =l
Header Color black, I - @
Header Font Anial =]
Header Font-Size 11 =]
Header Fontweight |bold =]
Attribute Color purple I @
Attribute Font Anial =]
Attribute Font-Size |11 = =]
l Properties l Skyles l Hierarchy ‘

These style attributes fall into two general groups:

e Formatting settings; i.e. font size, weight, color etc.

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Properties pane 67

e Display settings/options; show background color, grid, visibility settings etc.

The Styles tab is subdivided into several different categories/sections which can be selected by
clicking the "Styles" combo box. The combo box contents depends on the currently selected
model element.

I Element Styles

iE lement S tle

Element Family Styles

Mode Styles

Project Styles

Font]
Font-Size =l L

Clicking an element in a diagram tab automatically selects the Element Style context, while
clicking and element in the Model Tree tab selects the Project Style context.

Style precedence is bottom-up, i.e. changes made at the more specific level override the more
general settings. E.g changes (to an object) made at the Element Style level override the
current Element Family and Project Styles settings. However, selecting a different object and
changing the Element Family Styles setting, updates all other objects except for the one just
changed at the Element Style level.

Please note:
Style changes made to model elements can all be undone!

Element Styles:
Applies to the currently selected element in the currently active diagram. Multiple selections are
possible.

Element Family Styles:

Applies to all elements of the same type i.e. of the selected Element Family. E.g. you want to
have all Component elements colored in aqua. All components in the Component and
Deployment diagrams are now in aqua.

Node / Line Styles:

"Node" applies to all rectangular objects.

"Lines" applies to all connectors: association, dependency, realization lines etc. for the whole
project.

Project Styles:
Project Styles apply to the current UModel Project in its entirety (e.g. you want to change the
default Arial font to Times New Roman for all text in all diagrams of the project).

Diagram Styles:

These styles only becomes available when you click/select a diagram background. Changing
settings here, only affects the single UML diagram for which the settings are defined in the
project.

To change settings for all diagrams of a project:
1. Click in the respective diagram,
2. Select the Project Styles entry in the combo box, and scroll to the bottom of the tab.
3. Select one of the Diag.yyy options e.g. Diag. Background color.
This then changes the background color of all diagrams in the current project.

Styles display when multiple elements are selected:

© 2007 Altova GmbH Altova UModel 2007

68

UModel User Interface Properties pane

If multiple elements are selected in the diagram pane, then all different style values are
displayed in the respective field. In the screenshot below, Class1 and Class2 have been
selected.

The fill Color field displays the values for each of the elements, i.e. aqua and silver.

Skyles o x

Element Styles j i .- o .
Fill Color agua, siver v || GE Clas=s1 i Class2 |
Pen Colar =53~ [5 e, :
Font Colar >3 | g | Propertyt Jg\] Property? i
Forit LI I;] I:' """" "lﬂll
Font-Size |

Fart-iieight | 4

e A

Displaying cascading styles:

If a style is overridden at a more specific level, a small red triangle appears in the respective
field in the styles tab.

Placing the mouse pointer over the field displays a popup which indicates the style precedence.

ElMDdE|

jri Info:

‘Element Styles' override this setting

Project Styles] . T .
Fill Color Twhite [v |50 & :

Pen Color 5252 v | T —

Fort Color black NN ~ |3 'g1 Property! 1
Fort Avial -])
Font-Zize 11 |

Fort-wigight normal | P
Ll el Co 0T 0SB e 5 LI J

| [=] Properties | 3 Shyles | Hisrarchy | ackage dependencies d

E.g.

The Enumeration, Package and Profile elements all have default fill color settings defined in the
Element Family Styles settings. To change the fill colors at the project level, clear the value in
the Element Family Styles i.e. select the empty entry in the drop-down list box, select Project
styles from the Styles combo box, and change the fill color there.

Altova UModel 2007

© 2007 Altova GmbH

UModel User Interface

Hierarchy tab 69

4.3 Hierarchy tab
Hierarchy tab

The hierarchy tab displays all relations of the currently selected modeling item, in two different
views. The modeling element can be selected in a modeling diagram, the Model Tree, or in the

Favorites tab.

Show Tree view

Hierarchy =

E SchemaString
B — supetypes
-EGe SohemaTypetumber
E)— SchemaType
-E5- SchemaTypeCalendar
9— SchemaType
- a— Subitypes
EE SchematlormalizedString
- B SchemaTaken
........ E emailT‘fpe
-------- E Ell_Postcode
........ E s _State
------- -, Dependencies, Uzages (Client)
------- oo Dependencies, Uzages (zupplier)
-, Associations
------- M, Elemertlmparts (importedElement)
------- MM Elementimports (importingMamespace)

------- LM Packagelmports (mportedPackage)
[=]Properties l &3 Shyles l Hierarchy: ‘

[0 = Y A S

................. I

Schemastring
[fram com::attova:types)

value: String
izempty:boolean

iznull:boolean

=i HEn SE
] L

g] PR 1

r,
'

Schemaztring)

r
'

Schemastrinalin newsvalue; Zchen

r
W

Schemastringlin newvalue: String

r,
w

SchemaStringlin newvalue: Schen

r
'

Schemastrinalin newsvalue; Zchen

r,
W

Zchemastringlin newvalue: =chen
getvaluel 1 String

setvaluelin nesevalue: String) woidg

P
W N N

parzelin nesyalue: String) woid

r
'

assigniin neswwvalue: SchemaType
zetMull]) woid

LY Tl N TR T TR P]

r
W

¥

This view shows multiple relations of the currently selected element e.g. SchemaString.
Clicking the various icons in the icon bar, allows you to show all types of relations, or narrow
them down by clicking/activating the various icons. In the screenshot above, all icons are active
and thus all relations are shown in a tree view.

Double clicking one of the element icons, in the tab, displays the relations of that element.

Show graph view

© 2007 Altova GmbH

Altova UModel 2007

70 UModel User Interface Hierarchy tab

Hierarchy

&[] I[=] - B — m oo

= Cloneable | O= Comparable | D= Serializable | D= Cloneghble | D=1

ES ES

- E

- Sl:he_maType o=

E

Schemaﬂfpemumber =che
& e

E Scheha&tring

‘E SchemaNn.rmalizedString

‘E S-:herﬁaTu:uken

E SchehaName ‘E ScheméNMTn—

E Su:hem.aNCName

Kl | LIj

IEI Propetties l &% Styles l Higrarchy ‘

This view shows a single set of relations in an hierarchical overview. Only one of the relation
icons can be active at any one time. The Show Generalizations icon is currently active.

Double clicking one of the element icons in the tab, e.g. SchemaTypeNumber, displays the
relations of that element.

+ +
- SchemaType - SchemaType

Q&Schemaﬂfperﬂumber Q—Schemaﬂ-’peCalendar

‘E SchehaString

The currently selected element is now SchemaTypeNumber.

o= Cloneable | O= Comparable | D= Serializable

s b +

e Su:hETmaT\,fpe

= SchemaﬂpeNumber
T

E Su:hémalnt E Su:herﬁalnteger E SchémaLnng

Creating a new diagram from the contents of the window:
The current contents of the graph view pane can be displayed in a new diagram.
1. Right click in the graph view pane and select Create diagram as this graph.

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Hierarchytab 71

Mew Hierarchy Diagram

Diagram Mame: IHierar-:h_l,l diagram

Diagram Type: Il:|-3$$ Diagram j (4 diagrar-iterms]

[T Create hyperlink to diagram

~ Style
¥ Show Athibutes compartment
¥ Show Operations compartment
¥ Show nested Clazsifiers compartment
¥ Show EnumerationLiterals compartment

¥ Show Extenzion Points compartment

¥ Show Tagged Yalues Cancel

i

2. Edit the diagram name if necessary, select the style options and click OK.
A new diagram is created.

© 2007 Altova GmbH Altova UModel 2007

72

UModel User Interface Overview pane

4.4

Overview pane

Overview tab
The Overview tab displays an outline view of the currently active diagram. Clicking and dragging
the red rectangle, scrolls the diagram view in the diagram tab.

l Overview l Docurmentation

Documentation tab

Allows you to document any of the UML elements available in the Model Tree tab. Click the
element you want to document and enter the text in the Documentation tab. The standard
editing shortcuts are supported i.e. cut, copy and paste.

Document ation

Bark to account association, ;I

This is a composite association |

l Owerview l Documentation

Documentation and code engineering:
During code engineering, only class and interface documentation is input/output. This includes
documentation defined for class/interface properties and operations.

1. Select Project | Synchronization settings.
2. Activate the "Write Documentation as JavaDocs" check box to enable documentation
output.

Please note:
When importing XML schemas, only the first annotation of a complex- or simpleType is
displayed in the Documentation window.

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Messages window 73

4.5 Messages window

The Messages window displays warnings, hints and error messages when merging code, or
checking the project syntax.

J JJ v|a| v|al 0GB X
ElStartlng Syntax Check ..
--------- .. finizhed Syntax Check - 0 error(s], O warning(=)

ElStartlng update code from project ..

Collecting zource files in 'C: 'I.F‘ru:ugram FilezWhowalUModel 2007 UModelExamplesiTutorialun
-------- Par=ing file: 'C:\Program Files\Atovaldkodel 2007 ModelExamplesiTutorialumlcodebanky
-------- Parsing file; 'COProgram Files\WAhkovaldhodel 2007 ModelExamplesiTutarialumlcodebanky
Parszing file: '"COProgram Files\WAkovallModel 2007 ModelExamplesiTutorialumlcodebanky
. finizhed update code from project - 0 emarlz], 0 warningls)

© 2007 Altova GmbH Altova UModel 2007

74

UModel User Interface Diagram pane

4.6

Diagram pane

The diagram pane displays all the currently opened UModel diagrams as individual tabs.

1 & 1 banknazme: Steing
{ordered} —
kAP thanks | F 1 IPadreszString
1 usernsme:String
IBank APl '1‘" . 7)
& 1 pazsword: String
drezzinfos) boolean
@] accounts:Accou
ritinfos) boalean
“honlean <» Bankiin ‘St
tBankiin - String 1t & collect2ccountin
umiotAIBanks s int Y getBalsnceCfacT
¢» getBankMame ¢

O oetlPAdress _Stlll
| 3

lgﬁank?iew Main l@@verview Account Balance lg.ﬁ.ccuunt Hierarchy ‘ q p

To create a new diagram:
1. Click a package in the Model Tree tab.
2. Select New | YYY Diagram.

To create a new diagram containing contents of an existing package:
1. Right click a package and select Show in new Diagram | Content.

To open / access a diagram:
¢ Double click the diagram icon in any of the Model Tree pane tabs (to open).
e Clicking any of the tabs in the Diagrams pane (to access).

To close all but the active diagram:

¢ Right click the diagram tab that is to remain open, select the option Close All but
active.

Deleting a diagram:
e Click the diagram icon in the Model Tree and press Del. key.

Moving diagrams in a project:
e Drag the diagram icon to any other package in the Model Tree Tab.
You might have to enable the "no sort" option to move it.

Deleting elements from a diagram:

Delete element from the diagram and project!
e Select the element you want to delete and press the Del. keyboard key.

Delete element from diagram only - not from the project!
Select the element you want to "delete"
2. Hold down the CTRL key and press Del.

—_

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Diagram pane

75

An auto-layout function allows you to define how you would like your diagram to be visually
structured. Right click the diagram background and select either:

e Autolayout All | Force directed, or
e Autolayout All | Hierarchic

Showing relationships between modeling elements:
1. Right click the specific element and select Show.
The popup menu shown below is context specific, meaning that only those options are
available that are relevant to the specific element.

Generalizations {general)
Generalizations (specific
aGeneralization Hierarchy {general)
Generalization Hierarchy {specific)

Full Generalization Hierarchy (general and specific)

InterfaceRealizations (contracks)

InterfaceRealizations {implementingClassifier)

Dependencies, Usages {client)

Dependencies, sages (supplier)

Profiledpplications {appliedPraofile)
ProfileApplications {applvingPackage)

Associakions

"Propertyz” as Associakion

Bound elements

TypedElements

To show a class attribute/property as an association:
1. Right click the property in the class.

I;' """"""" "[ﬂ'll

2. Select the menu option Show | "PropertyXX" as Association.
This inserts/opens the referenced class and shows the relevant association.

Clas=1 Class2

@1 Froperty2Class2 #Property2 @1 myProperty

Configuring diagram properties
Click on the diagram background and then select one of the styles from the Styles combo box.
Please see Styles pane for more information.

© 2007 Altova GmbH Altova UModel 2007

76 UModel User Interface Diagram pane

To enlarge the Diagram size:
The size of the diagram tab is defined by the elements and their placement.

e Drag an element to one of the diagram tab edges to automatically scroll the diagram
tab and enlarge it.

Positioning modeling elements - the grid
Modeling elements can be positioned manually, or made to snap to a visible/invisible grid in a
diagram.

toggles between showing / hiding the grid

toggles between snapping elements to the visible / invisible grid

Displaying the UML diagram heading

il toggles between displaying the UML diagram heading, i.e. the frame around a
diagram with its name tag in the top left corner.

pkg bankview]
L j‘ ______________ 1I

Bank'View

.§|“| hanks: Bank[*] {ordered}
.§|"| bank &P Bankapl

o g -

y % Bankiew(in bank&PEIBankaP

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Diagram pane 77

4.6.1 Cut, copy and paste in UModel Diagrams

Cut, Copy and Paste of diagram elements within the Diagram pane

All UModel diagram elements can be cut, copied and pasted within, across the same type, and
even into other types of diagram tab. Mouse or keyboard shortcuts can be used to achieve this
in two different ways:

Having copied an element:
e "Paste", using the keyboard shortcut CTRL+V, or "Paste" from the context menu, as
well as Paste from the Edit menu, always adds a new modeling element to the diagram
and to the Model Tree.

e "Paste in diagram only", using the context menu, i.e. right clicking on the diagram
background, only adds a "link/view" of the existing element, to the current diagram and
not to the Model Tree.

Using the Class diagram as an example:

Paste (CTRL+V) of a copied class:
e Pasting a copied class in the same diagram (or package), inserts a new class with the
source class name plus a sequential number. E.g source class name is myClass,
pasted class name is myClass1. All operations and properties are also copied to the

new class.
Model Tree o x

. - LI ? _______ "

- A MyClass 2l MyClass i MyClass1 |

- B MyClasst i, 1

= 1
-[[E] AccourtType @1 MyProperty o @l MyPropety 4

: @ = Relations g !

[=% Relations & MyOperation) 1 & MyOperation() !
........... 2

e Pasting a copied class into a different package, also inserts a new class, but keeps the
original class name.

¢ In both cases the new class is also added to the Model Tree as well.

Paste (CTRL+V) of copied Properties or Operations:

e Pasting a Property in the same class, inserts a new property with the source property
name plus a sequential number e.g. MyProperty1.

EE MWy Clazs - . Tl ______ u
. @'1 hyProperty

1

1

B 1 MyProperty Di
s Wy Cperation 0—
i

=

1

@] Wy Property
§] MyPropertyl :

[B MyClass1

E :ED;;EETSTWE J & MyOperation)
L —< Felgtonze 00 Tl Jamsmssmsmmmmaa
¥

- _'"_l__-__.l

e Pasting an Operation in the same class, inserts a new operation of the same name as
the source operation.

© 2007 Altova GmbH Altova UModel 2007

78 UModel User Interface Diagram pane

Model Tree ox
3 || —
MyClass :
2 My Property :
1
2 hyProperty :—n
1
1
1

1
1

& MyOperationt)
>

o AccourtType .
: H@ VR My Cperation])]

- = Relations

S . A T

¢ In both cases a new property/operation is added to the Model Tree.

"Paste in Diagram only":
Whenever you use the context menu and select this option, a "link", or "view" to the element is
created in the diagram you paste it into. Using the Class diagram as an example:

"Paste in diagram only", creates a "view" to the original class

The class is inserted into the diagram and displayed exactly as the source class
A new class has not been added to the Model Tree!

No class name or other Operation/Property changes are made

Changing element properties in one of the "views", changes it in the other one
automatically

- @ AccountType

& My Operation)) '
- :’g} Relstions >

hiyOperation) !

< MyOperstion))

Model Tree
EE My Class ;I | P —— Tl o
- | MyProperty MyClass] MyClass]
& MyProperty1 e
.@; m:or;;;izn @l MyFroperty i @l MyProperty i
ek
........ ;:} Wy Operation 'Er‘] hyProperty D_: I§|] hyPraperty :—EI
- = MyClasst J < MyOperationd) E :
'
-

Copy and pasting of elements using the mouse:
1. Click on the modeling element you want to copy.
2. Move the mouse pointer to the position you want to place the new element.
3. Hold down the CTRL key. A small plus appears below the mouse pointer to signify that
this is a copy procedure.
4. Release the mouse button.

| P — T _______]
I MyClass1 1 '(I
=} i i Paste
b 1 MyProperty ‘o
d ? ! Faste in Diagram only
1
y e My Cperation ! |
[e 1w

A popup menu appears at this point allowing you to select between Paste, and Paste in
Diagram only.
5. Select the option that you would like to perform.

Please note:

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Diagram pane 79

Using the mouse and CTRL key allows you to copy, or move properties and operations
directly within a class.

© 2007 Altova GmbH Altova UModel 2007

80 UModel User Interface Adding/Inserting model elements

4.7 Adding/Inserting model elements
Model elements can be created and inserted into diagrams using several methods:

By adding the elements to specific packages, in the Model Tree view
By dragging existing elements from the Model Tree tab into the diagram tab
By clicking a specific UML element icon, and inserting it into the diagram

By using the context menu to add elements to the diagram (and automatically to the
Model Tree view).

Please note that multiple elements can be selected in the Model Tree using either
SHIFT+click, or CTRL+click.

Adding elements in the Model Tree/Favorites tab:
¢ Right click a package, select New, and then select the specific element from the
submenu.
This adds the new element to the Model Tree tab in the current project.

Inserting elements from the Model Tree view into a diagram:

Model elements can be inserted individually, or as a group. To mark multiple elements use the
CTRL key and click each item. There are two different methods of inserting the elements into
the diagram: drag left, and drag right.

e Drag left (normal drag and drop) inserts elements immediately at the cursor position
(any associations, dependencies etc. that exist between the currently inserted elements
and the new one, are automatically displayed).

e Drag right (holding down the right mouse button and releasing it in the diagram tab)
opens a popup menu from which you can select the specific associations,
generalizations you want to display.

Inzert

Insert with Generalizations {general)
Insert with Generalizations (specific)
Insert with Generalization Hierarchy (general)
Insert with Generalization Hierarchy {specific)

Insert with Full Generalizakion Hierarchy (aeneral and specific)

Insert with InkerfaceRealizations (contracks)

Insert with InkerfaceRealizations (mplementingClassifier)

Insert with Dependencies, Usages, Realizations {supplier)

Insert with Dependencies, Usages, Realizations (client)

Insert with ProfileApplications (importedProfile)

Insert with ProfileApplications (Package)

Insert wikh Associations

Insert with TypedElements

Example:

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Adding/Inserting model elements 81

You want to replicate the Account Hierarchy diagram in a new class diagram.

1. Right click the bankview package and select New | Class Diagram.

2. Locate the abstract Account class in the model tree, and use drag right to place it in
the new diagram.
The context menu shown above, is opened.

3. Select the Insert with Generalization Hierarchy (specific) item.

Styles of new items X|

¥ Suppress Extension Paints

[Suppress Operations
¥ Suppress nested Clazsifier
™ Suppress Tagged Yalues

Cancel

[Do not show this dislog again |

4. Deselect the check boxes for specific items you want to appear in the elements
(Properties and Operations in this case).

5. Click OK.
The Account class and its three subclasses, are all inserted into the diagram tab. The

Generalization arrows are automatically displayed.

Adding elements to a diagram using the icons in the icon bar:
1. Select the specific element you want to insert by clicking the associated icon in the icon

bar.
2. Click in the diagram tab to insert the element.

Please note:
Holding down the CTRL key before clicking in the diagram tab, allows you to insert
multiple elements of the same type with each individual click in the diagram.

Adding elements to a diagram using the context menu:
¢ Right click the diagram background and select New | element name.

Please note:
Adding new elements directly to the diagram tab, automatically adds the same element
to the Model Tree tab. The element is added to the package containing the UML
diagram in the Model Tree view.

e Right click an element and select Show | xx
E.g. Right clicking the Account class and selecting Show | Generalization hierarchy.
This then inserts the derived classes into the diagram as well.

© 2007 Altova GmbH Altova UModel 2007

82 UModel User Interface Hyperlinking modeling elements

4.8 Hyperlinking modeling elements

UModel now supports automatic and manual hyperlinking of modeling elements. Automatic
hyperlinking occurs when selecting the specific setting when importing source code, or binary
files, into a model.

Manual hyperlinks are created between any modeling elements (except for lines) and:

any diagram in the current ump project

any diagram on a different ump project

any element on a diagram

external documents, e.g. PDF, Excel or Word documents
web pages

Opening the Bank Server diagram under the Bank Server package displays the IBankAPI
interface as well as the BankServer class. An enumeration element containing the names of the
EnumerationLiterals is also visible. What we want to do is create a hyperlink from the
Enumeration to the Account Hierarchy class diagram.

_ |] | |
-------- S| Owverview ;I :-;q;;Jm-e-ra-ti-n;;; -E
- = Bankiew i AccountType 1
[27 Banking access = '
[k# Bank Server E CheckingAcoaurt |
A Agency ' CreditCardAccount :
-------- [Bank Server FavingsAceount |
- = BankServer " T
E@ AccountType
o [EEI CheckingAccount | ==gttributes==
i . [ERICreditCard Accourt BankServer
- [EBSavingsAccount
- :{ Relations % loginlin uzername: =tring, in passward: string):bd

To create a diagram hyperlink:
1. Right click the element and select Hyperlinks | Insert/Edit hyperlinks.

Default name ILlser defined name I.&.ddress Add File Link |
Add Web Link |
dd Diagram Link |
Deltelink |
Gotolink |
| k. I Cancel
e

This opens the Edit Hyperlinks dialog box in which you manage the hyperlinks.

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Hyperlinking modeling elements 83

2. Click the Add Diagram Link button to define a link to an existing diagram.

Select Hyperlink Target

= Diagrams =
[|] Activity Disgrams
-3 |5 -lazs Diagramsz
[&pply Java Profile
[[Bank Server
[Bank e hain
[Hierarchy of Account
------- ea Communication Disgrams
[| g Component Diagrams
- == Composite Structure Diagrams

3. Select the hyperlink target that you want to be able to navigate to, e.g. Hierarchy of
Account diagram, and click OK.

Edit Hyperlinks

Default name ILIser defined name Address

Hierarchy of Account dcoount Hierarchy Hierarchy of Account

Double clicking in the User defined name column allows you to define your own link
name.

Note that you can add multiple, as well as different kinds of links from a single modeling
element e.g. a web link to http://altova.com/support_help.html using the Add Web Link

button.
Edit Hyperlinks
Detfault name ILIser defined name I.ﬂ.ddress
Hierarchy of Account |Account Hierarchy Hierarchy of Account foco|
Hl'tp:ﬂartcwa.cnmfsuppc| |r'rl'tp:Irartnva.mmisuppnr‘t_help.Htm

4. Click OK when you have finished defining your hyperlinks.
A link icon has now been added to the top left of the enumeration element.

1#] ==enumeration==]
1
'_; AccountType |
= i
| CheckingAccount |
: CreditCardAoocount :
1
1 SavingsAccount |
it Lm

To create a link to a specific diagram element:
1. Create the hyperlink as before but click the + sign to expand the diagram contents.

© 2007 Altova GmbH Altova UModel 2007

http://altova.com/support_help.html

84

UModel User Interface Hyperlinking modeling elements

Select Hyperlink Target

= Diagrams -
- [t Activity Disorams

@[l collectDst Draft

........ |¥ 1 sec zince last update

........ @ aborted

........ E:l collectAccourtinfos

........ i Decizionbode

-------- o ExpansionRegion

-------- @. finizhed

........ 52 Handle Display Exception

........ 3§ Joinniode

........ # manual invokation —
-------- prl Receive Update LIl Event

-------- IE) Send Afterlpoate Signal

........ Updatelog

........ E} Walidate References

- 5 Class Diagrams

------- =3 Communication Ciagrams | Cancel |
A

2. Select the specific modeling element you want to link to and click OK to confirm.

Clicking the link icon opens the designated diagram with the element visible and
selected.

To create a link to a document:
1. Click the Add File Link button in the Edit Hyperlinks dialog box.
2. Select the document that you want to link e.g. *.DOC, *.XLS, *.PDF etc.

To create a hyperlink from a note:
1. Select the text in the note by dragging or double clicking a word.
2. Right click the selected text and select the menu object Insert/Edit Hyperlinks.
3. Use the Edit Hyperlinks dialog box to create a link to a diagram.

Click here to go to Bankiesw Main 51

To navigate to a hyperlink target:
1. Click the hyperlink icon in the modeling element.
If only one target is defined then the target diagram, website etc., will appear
immediately.

If multiple targets were defined, a popup dialog appears allowing you to select one of
the available targets.

enymerstinn 1
Account Hierarchy

htkp:/falkova, com/support_help. html

C
C % Insert, edit ar remove hyperlinks
SIS ST T E

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface

Hyperlinking modeling elements 85

Clicking the first item opens the Hierarchy of Account diagram.

Navigating hyperlinks:

e Click the Previous

and Next

source and destination links.

To edit/change a hyperlink target:
1. Right click the link icon and select Insert, edit or remove hyperlinks item.
2. Use the Edit Hyperlinks dialog box in to manage your hyperlinks.

icons, in the main icon bar, to navigate the

© 2007 Altova GmbH

Altova UModel 2007

86

UModel User Interface

UModel Command line interface

4.9

UModel Command line interface

UModel now supports batch-processing. A UModelBatch.exe file is available in the ...\UModel

2007 folder.

The command line parameter syntax is shown below, and can be displayed in the command

prompt window by entering: umodelbatch /?

Please note:

If the path, or file name contains a space, please use quotes around the path/file

name i.e. "c:\Program Files\...\File name"

1e~OEWLa cCERAVIAT xeied =Ach a ~alécefrae 7

mm/ﬁ‘g °§ ~ /Eé,l'”o Py /Em" ﬁ
BFReR-FEn FeacadUeh~a0ca(ea HRA ST
HE-segapac

mmlﬂ@vragpereﬁ:a a E‘é:e
BCAR MR cA oA & Faeses @2ca a Bae
Mm @@zﬁﬁpma Pg:e

crEele Calea OFaFedra =-ifis drefraca 3 ~aCH
DOERZMERHEFAIR T ,Cf?fg -

TRV cefe=im e

TEeZ M codteetin e

TR M cedteali i

Altova UModel 2007

© 2007 Altova GmbH

UModel User Interface UModel Command line interface 87

ke Ehec@Rca & ~aCe Rl AIEAA 2 ~ACHT
EErz MRS 3 Fae=egriracre

EAChZ MOEER: @203 & Fae=each caabae
Mm&e@ﬁmpmﬁ eate

WW a E"aJElﬁEE’EC

M aadiaa e

,”o..'ﬁg UJ ﬁ]epe-
]Ef@ZMN%Tep&rﬁe

EE?&WBQ@E] (
Thrh 323 e i3fRseb®) 10ME: § 10KF

EElE CoMa Barigrhd iegn

Lok 2Rl 21 50& ~®eq) i¥oqcs pt loa®

In the projects section:

The Inew parameter defines the path and file name of the new project file (*.ump).

The /set parameter overwrites current default settings in the registry, with the options/settings
defined here.

The Igui parameter displays the UModel interface during the batch process.

Example 1:
Import source code and create new project file:

? W@:C%a @) T~y rj cCEOMMT v QCEa ~ARRRRR 77 Wietea e dey Ty
rj cCEDMMT ¥ g:CEa ST 1 @CKE e2BCZ0WES ~diey § oCRrdTaiEna
7 g~ REvERECZ NG 77 NE R SZ NE a7 NES. ~TZRER

/new: Specifies that the newly-created project file should be called "Fred.ump" in
C:\Program Files\Altova\r j cCEOMMT \UModelBatchOut\

fisd= Specifies that the root directory to import into should be
"X:\TestCases\UModel\Fred"

/set: Specifies that any options used in the command line tool will be saved in the
registry (When subsequently starting UModel, these settings become the
default settings).

/gui: display the UModel GUI during batch processing

ficlg: UModel will import the code as Java5.0

fipsd=1: recursively process all subdirectories of the root directory specified in the /isd
parameter

/pfd=1: creates packages in the UModel project for each imported directory

fijde=1: created JavaDoc from comments where appropriate

/dgen=1: generates diagrams

/dopn=1; opens generated diagrams

/dmax=5: will open a maximum of 5 diagrams

/chk: performs a syntax check

© 2007 Altova GmbH Altova UModel 2007

88

UModel User Interface UModel Command line interface

Example 2:
Imports source code from X:\TestCases\UModel, and saves the resulting project file in
"C:\Program...".

? WieCea <@ -y J o(Fa OMMT ¥ § oCFa ~PURTERSBE: 77 WikeCea <&y T~y
rj cCEOMME ¥ ofFa 0 1l 36Ea ez~ oy

2BV, g~ R N Y NEOR 87 NECESZ NS ~ 7 RES VNI N B

/dsat=1: suppresses attributes in the generated diagrams

/dsnc=1: suppresses nested classifiers in the generated diagrams

Example 3:
Synchronize code using existing project file (e.g. one of the ones created above).

? WA cEY Iy offn OMMIy) oCFa SURTER iR <@y gy
ri cCEDMMT 9 oCia ~ 1R a e2h OMDE Y NACCT NI &7 NHORZ N S22 N

"C:\Program Files\Altova\UModeloMT \UModelBatchOut\Fred.ump": the project file we want to
use.

/m2c update the code from the model

/ejdc: comments in the project model should be generated as JavaDoc
/ecod=1: comment out any deleted code

/emrg=1 synchronize the merged code

/egfn=1: generate any missing filenames in the project

/eusc=1 use the syntax check

Altova UModel 2007 © 2007 Altova GmbH

UModel User Interface Bank samples

89

410 Bank samples

The ..\UModelExamples folder contains sample files which show different aspects of UML
modeling in UModel. They are designed to show language specific models for Java, C# and a
combination of both languages in one modeling project.

The Bank_Java.ump sample file is shown below:
e the Java profile has been assigned to the Bankview package
¢ the Java namespace root has been assigned to the Banking access and BankView
packages.
e the Interaction View package contains two interaction elements which each contain a
sequence diagram.

Maodel Tree

Roat -
@ | Component Yisw Apply the Java Profile to
. access the Java specific
o Dep.h:nym?nt Wiew Stereotypes and Dgtatypes.
H D esign Yiew Apply the 'namespace’
-------- =7 Overview stereatype to define a Java
[&7 Banking access

B |:'r‘L' B ankiiew

7 Apply J ava Profile |
- o — . ==apply== ==profig==
L@ = Relations BankView p----o-oo-oe-oeoooeoo | Java Profile
e :{ Felations [fram Design Yiew (from Root)
- Interaction Wiew ll

lEl Model Tree l@ Diagram ... l%} Favorites ‘

Propetties o x

hare B anl:iew

elernent kind Package

wizibility public hdl

sénamespace:s> |

The Bank_CSharp.ump sample file is shown below:
e the C# profile has been assigned to the BankView package
e the C# namespace root has been assigned to the Banking access and BankView
packages.
e the Interaction View package contains two interaction elements which each contain a
sequence diagram.

© 2007 Altova GmbH Altova UModel 2007

90 UModel User Interface

Bank samples

oceiree 2 x |

Roat -]
‘A 1 Component Yiew
-A| 1 Deplopment Wiew
-8 1 Design Yiew
........ =7 Overview
[e# Banking access
- g B ankMiew
- Apply CSharp Profile
v SO
: :’% Relations
- :}g} Felations

- Interaction Wiew

A 1 Jse Caze Yiew j
lEIM::nde...l = Diagr...l%% Fava... ‘
Properties o X
nanme B anki\iew
element kind |Package
wizibility public =l

<<namespaces [

Aaply the C# Profile to access the CF
shecific Sterectypes and Datatypes.

Apply the ‘namespace’ sterectype to

define & CR - namespace

1]

[fram Design iew

==apply==

[]

==profile==

BankView

C# Profile
[fram Root)

The Bank_MultiLanguage.ump sample file is shown below:
e the Java profile has been assigned to the BankView package

e the C# namespace root has been assigned to the Bank Server package
¢ the Java namespace root has been assigned to the BankView package.
[]

the Interaction View package contains two interaction elements which each contain a

sequence diagram.

Madel Tree o x

Fioot =
& Component View
H | 1 Deplovment Wiew
| 1 Design View
-------- =1 Overview
¢ Bank Server
L Banking access
Z BankMiew
:}t:} Relations

==lnterfaces==
IBankAPI
[fram BankAF

A1 Interaction Wiew
A &7 ava Lang [Java Lang.ump’

& 1 Unknown Externals -
; | e | .

IﬁMDde...lEDiagr...lﬁ% Faw:u...]

C}" connect{in Paddress: String) hoolean

-\) loginlin username: =tring, in password: =tiing) boolean

% dizconnectvoid
& pethrOfAccounts(rint

-\) get2ccourt Diin nacoounthr:int; =tring

-\) getAoccourtBalancelin n&ccountir:int) int

C) getAcocountLimit(in nAccourdMeind 1int

-\) izCheckingAcocount(in nAccountirint: boolean
g) izSavingsAccount(in nAccountirint):boolean

Altova UModel 2007

© 2007 Altova GmbH

Chapter 5

Projects and code engineering

92

Projects and code engineering

Projects and code engineering

UModel now supports all Java specific constructs, among them:
e Java annotations
Attributes, operations and nested qualifiers for EnumerationLiterals
Enumerations can realize interfaces
Netbeans project files

Reverse engineering now supports:
e The ability to generate a single diagram for all reverse engineered elements
e Possibility to show/hide anonymous bound elements on diagrams
e Ability to automatically create hyperlinks from packages to their corresponding package
content diagrams during the import process.

To create a new project:
1. Click the New icon in the icon bar, (or select the menu item File | New).

The Root and Component packages are automatically inserted when a new project is created,
and are visible in the Model Tree tab. A new project with the default name NewProject1 is
created. Note that starting UModel opens a new project automatically.

Ll Altova UModel - NewProjeckl
File Edit Projeck Lawout Wew Tools ‘Window Help

@ oo |4 b | & X EBRRB| S| A B mesae
Model Tree
" Fioat

e Component Yiew

I EI Model Treel = Diagram .. l 4% Favorites ‘

Properties o X

A newly created UModel project consists of the following packages:

e Root package, and
e Component View package
These two packages are the only ones that cannot be renamed, or deleted.

All project relevant data is stored in the UModel project file, which has an *.ump extension.
Each folder symbol in the Model Tree tab represents a UML package!

UModel Project workflow:
UModel does not force you to follow any predetermined modeling sequence!

You can add any type of model element: UML diagram, package, actor etc., to the project in any
sequence (and in any position) that you want; Note that all model elements can be inserted,
renamed, and deleted in the Model Tree tab itself, you are not even forced to create them as
part of a diagram.

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

93

To insert a new package:

1.

2.

Right click the package you want the new package to appear under, either Root, or
Component View in a new project.
Select New | Package.

A new package is created under an existing one. The name field is automatically
highlighted allowing you to enter the package name immediately.

Packages are the containers for all other UML modeling elements, use case diagrams,
classes, instances etc.

Packages can be created, at any position in the Model Tree.

Packages/contents can be moved/copied to other packages in the Model Tree (as well
as into valid model diagrams in the diagram tab).

Packages and their contents can be sorted (in the Model Tree tab) according to
several criteria.

Packages can be placed within other packages.

Packages can be used as the source, or target elements, when merging, or
synchronizing code.

To have elements appear in a UML diagram, you have to:

1.
2.

3.

Insert a new UML diagram, by right clicking and selecting New | (Class) Diagram.
Drag and drop an existing model element from the Model Tree into the newly created
Diagram, or

Use the context menu within the diagram view, to add new elements directly.

To save a project:
Select the menu option File | Save as... (or File | Save).

To open a project:
Select the menu option File | Open, or select one of the files in the file list.

Please note:

Changes made externally to the project file, or included file(s), are automatically
registered and cause a prompt to appear. You can then choose if you want to reload
the project or not.

© 2007 Altova GmbH

Altova UModel 2007

94 Projects and code engineering Importing source code into projects

5.1 Importing source code into projects

Source code can be imported as a source project or as a source directory. For an example of
importing a source directory please see Round-trip engineering (code - model - code) in the
tutorial.

e JBuilder .jpx, Eclipse .project project files, as well as NetBeans (project.xml) are currently
supported.

e C# projects:
- MS Visual studio.Net projects, csproj, csdprj..., as well as
- Borland .bdsproj project files

To import an existing project into UModel:
1. Select Project | Import source project.

2. Click the browse button |:| in the "Import Source Project" dialog box.

Import Source Projeck : ﬂ

Language: |Javah.0 [1.5) =l

ad aT[=2ed 1= | =] 200 7L b odelE wamples\OrgChartsOrgChart. jp

—Java Project Settings
[T JavaDocs az Documentation

[efined | symbals:

— Synchronization

* herge Code into kMaodel
i~ Owvenwrite Model according to Code

— Diagram generation

¥ Enable diagram generation

¢ Back Hest = Eirmizh || Cancel I

3. Select the project file type e.g. .jpx and click Open to confirm. This Jbuilder project file
is available in the OrgChart.zip file in the ...\UModelExamples folder.

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering

Importing source code into projects 95

2

Looks in; I I OrgChart

o2 e E

classes
com

CraChart, jpe

File name: |DrgEhart.ipH

Open I

Files of twpe: | Barland® JBuilder® [.jpx)

j Cancel |

i

Eclipze [.pru:uieu:t]_

E | D Shyles | NetBeans® project :-:ml

4. Make sure that you have activated the Enable diagram generation check box, and
select any other specific import settings you need, and click Next.

Content Diagram Generation

x|

— Content diagrams

[w Generate zingle diagran

¥ Generate diagram per package
¥ COpen diagrams

[Show nested classifiers separately
¥ Show anonymous bound elements

v Hyperlink package(s) to diagramiz]

— Style

¥ Show Attibutes compartment

[” Show Operations compartment

¥ Show nested Clazsifiers compartment
¥ Show EnumerationLiterals cmpt.

¥ Show Tagged Values

—Autolayout
v Autolayout

I hierarchic j

< Back I Mest » I Finizh | Cancel

Note that UModel can generate a single overview diagram and/or a diagram for each
package. The settings shown above are the default settings.

5. Click Next to continue.

This dialog box allows you to define the package dependency generation settings.

© 2007 Altova GmbH

Altova UModel 2007

96

Projects and code engineering

Importing source code into projects

Package Dependency Diagram Generation

— Package dependency diagram

v Open diagram

[T lgnaore estemnal packages
[mot child of import target]

¥ Hypeilink package to diagram

— Style

Fill color of external packages:

[—

— Autolayout
v autolayout

I hierarchic j

X

< Back

| Hest = | Finizh I Cancel

Click Finish to use the default settings.

The project is parsed and the UModel model is generated.

Model Tree

|Root

- Component View
@ OrgChart
Unknowen Externals
«#]Java Profile [Java Profile umg)

1] | =l
lﬁMDde...l@Diagr...l% Favn...‘

Properties o x
NaIme OrgChart
qualified name |COrgChart
element kind Package
vizibility public |

=ENAMesSpace== D

lEl Properties l &3 Shyles l Hierar

Cverview a X

==final==_Afribute: shor=0

==final== Elemert: shor=1

==final== Text short=2

==final== Comment: short=4

o1
@1
@]
@] ==final== Chata short=3
a1
@1

@] domiode: org.weSc dom Mode=null

1

1

1

1

1

1

1

1

1

:—n

1

1

r;:l‘__"‘-\-\.
==final== Proceszinginstruction: shart=5 &

1

EContent of OrgChart and all subpackages I@F‘acka

Messages

N v|a| v|al v|a| OEE X

----- Parzing file: 'C:WProgram FilesiatovallUiode 2007 IMocdelE
----- Parzing file: 'C:WProgram FilesiatovallUiode 2007 IMocdelE
----- Parsing file: 'CProgram Files\atovalliiode 2007 UodelE
----- Parsing file: 'CProgram Files\atovalliiodel 2007 UodelE
----- Parsing file: 'CProgram Files\Atovalliiode 2007 Ukode(E
----- Parzing file: 'CProgram Files\Atovalkode 2007 MadelE

Please note:

If you are importing into an existing project, you will be prompted for the package it
should be imported into. If you are using a new project, an OrgChart folder is

automatically created.

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

Importing source code into projects 97

Raised exceptions

Clicking an operation in one of the classes, then clicking the Exception combo box,
displays the exception information that an operation can throw.

narme
elerment kind
wizibility

|zaf

ghatic:

abstract

Uy

raized exceptions
<L atnictipe >
<4finaly»

£ < pAabves

Properties | Stvles

Cverview

po Py getad

gethref - i % oethred

Operation :\"} o

oublic - g
| 1

O 14 W remov

14> addhrs

1> addhrg

i < inzerth

Company T ype
Comparable
Drate
DezcTupe
Drivigion T ype
Diocument

EU_Address

EJ_Postocode

E xzeption
FirstT ype

Foot:Packagel::com: OrgChart -
Fioot: Unknown Externals
A

Raoot:Unknown Estermals

Raoot:Packagel:
Root:Packagel:
Foot:Packagel:
Foot:Packagel:
Foot:Packagel::

R oot Unknown Esternals

Root:Packagel:

com::OrgChart
com::OrgChart
o altova:sml
com::OrgChart::ipo
com::JrgChart::ipo

|

com:OrgChart

© 2007 Altova GmbH

Altova UModel 2007

98

Projects and code engineering Importing C# and Java binaries

5.2

Importing C# and Java binaries

UModel now supports the import of C# and Java binaries. This is extremely useful when
working with binaries from a third party, or the original source code has become unavailable.

If you intend to import Java and/or C# binary files, the following programs/components must be
installed:

Java 1.4/5.0:
Sun Java Runtime Environment (JRE), or Development Kit (JDK) in Versions 1.4, 1.5, 1.6

UModel support:
Type import is supported for all Class Archives targeting these environments, i.e.
adhering to the Java Virtual Machine Specification.

C# 2.0:
.NET Framework 2.0, 3.0

UModel support:
Type import is supported for Assemblies targeting:
.NET Framework 1.1, 2.0, 3.0
.NET Compact Framework v1.0, v2.0 (for PocketPC, Smartphone, WindowsCE)

Restrictions:
Assembly mscorlib with the .NET core types can only be imported from the .NET
Framework 2.0

These requirements only apply if you intend to import Java or C# binaries; if you do not, there is
no need for the Java Runtime Environment, or the MS .NET Framework to be installed.
The import of either Java, or C#, obfuscated binaries is not supported.

To import binary files:
1. Select the menu option Project | Import Binary Types.

Import Binary Types] 5[

Language: |Java5.0 (1.5) [
=

Runtime: |JRE1.5.0_04

— Synchronization
= Merge Code into Model

" Owverwiite Model according to Code

— Diagram generation

¥ Enable diagram generatioré

< Back I Mest » I Firizh Cancel

2. Select the language and runtime edition, then click Next.
This opens the Import Binary Selection dialog box.

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering

Importing C# and Java binaries 99

3. Click the Add button and select the Class Archive from the flyout window, e.g. Class
Archives from Java Runtime... .

. x|

import tupes]:

| Add v ClassFile Archive (JARJZIF)..,
lass File Package Root Folder, .,

BHemoyve | Class Archives from Class Path. ..

Class Archives from Jawva Runkime. ..

B emone Al II

flowe g |

flmwe o | CreditCardAccount

hative code libranies; Lt flost

j Add | restRateOnBalance: flost

trestRateCnCazhbdyance: float

3. Click the "+" expand button to expand the list of binaries, and activate the check box
(es) of those that you want to import (the first three in the screen shot below), then click
Next.

Import Binary Selection

Binanes in load arder [zet check mark to import tepes]: —| =

-------- com.sun.accessikility internal resources accessibility

-------- com.sun.accessibilty irternal resources accessibility _de
-------- com.zun.accessibity internal resources accessibilty _er
-------- [cotm.sun.accessibiity internal resources accessibility_es
-------- [cotm.sun.accessibity irternal resources accessibility _fr
-------- [com.sun.accessibiity internal resources accessibiity it
-------- [com.zun.accessibiity internal resources accessibiity_ja
-------- [com.sun.accessibility internal resources accessibility ke

=l COProgram FilesJavaijret 5.0_04ikt jar il

&dd J |

Hemoyve

Remowve Al |

This opens the Import Binary Options dialog box.

© 2007 Altova GmbH

Altova UModel 2007

100 Projects and code engineering

Importing C# and Java binaries

Import Binary Options

X

—Automatic Type [nchizion

[iadd all referenced types, optional restricted to the following pack ages:

| =]

— Content Bezstrction

[import only twpes [no fields, operations etc.]

[~ import only elemerts with visibility greater: Ipubliu: j

[” zuppress annatation modifiers

¢Back | Mew> | Finish |

Cancel

4. Select the specific options you need and click Next to continue.

Import Target

H | Component i

....... U=se Caze Yiew

-FH| Design View

------- Interaction e

------- Deployment i

[[Unknowen Externals

....... Behavior Wiew

M £ Java Lang [Java Lang ump]
....... Z0rgChart

v dmpart in new Pack age

¢ Back I Hest = I Finizh

5. Define the Import Target, or click the Import in new Package check box, then click
Next.

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

Importing C# and Java binaries

101

Content Diagram Generation -

— Content diagrams

[Generate zingle diagran

¥ Generate diagram per package
¥ COpen diagrams

[Show nested classifiers separately
W Show anonymous bound elements

¥ Huperlink package(s) to diagramis]

— Style

¥ Show Attributes compartment
[” Show Operations compartment
¥ Show nested Clazsifiers compartment

¥ Show EnumerationLiterals cmpt,
v Show Tagged Yalues

—Autolapout
v Autalayout

I hierarchic

[

6. Select the Content Diagram Generation properties from the dialog box and click Next to

continue.

Note that you can generate a single diagram for each package, as well a single
overview diagram.

Package Dependency Diagram Generation i

x|

— Package dependency diagram

¥ Open diagram

[T lgnaore exstermnal packages
[t child af irmpart target]

¥ Hypeilink package to diagram

~ Style

Fill calar of external packages:

[— R

—Autolayout
v Autalayout

I hierarchic

=~

< Back |

e | Finish |

Cancel

7. Select the Package Dependency options that you would like to include and click Finish

to complete the import procedure.

The screenshot below shows the diagram containing the package dependencies of the

Java binaries.

© 2007 Altova GmbH

Altova UModel 2007

102 Projects and code engineering

Importing C# and Java binaries

1

Unknown Externals
[from Root)

¥
Y
._!-\,

==NAMEspaces=
resources
(from internal)

Kl

1]

==profiles==
Java Profile

-7 from Ract)
L)

|I a
i
i

[fram Root)

SSnamespaces==
CoIm

==NAMEspaces=
internal
(from accessibility)

b | =lContent of rt lgc::untent af vt and all subpackages l@PackagE dependencies of rt

8. Click the other tabs to see the class files etc.

Please note:

Clicking the link icon of a folder, automatically opens the referenced diagram.

-

Content of resources J

rt
[fram Raot)

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering Synchronizing Model and source code 103

5.3 Synchronizing Model and source code

UModel allows you to synchronize model and code from both sides.

Code / model synchronization:

Code can be merged/synchronized at different levels described below. When using the context
menu, e.g. when right clicking a class, the context menu reflects your selection in the menu
option. Note that the Project menu only allows you to synchronize at the root/project level.

Project, Root package level:
1. Right click the Root package.
2. Select one of the code merging options: Merge Program..., or Merge UModel project...
Alternatively, use the Project menu.

Package level:
1. Use SHIFT, or CTRL + click to select the package(s) you want to merge.
2. Right click the selection, and select one of the code merging options:
Merge Program..., or Merge UModel project...

Class level:
1. Use SHIFT, or CTRL + click to select the classes(s) you want to merge.
2. Right click the selection, and select one of the code merging options:
Merge Program..., or Merge UModel project...

Define your synchronization options by selecting:
1. Project | Synchronization options.
Each tab allows you to define the specific merge settings.
2. Click the "Project Settings" button to select the specific programming language settings.
3. Define you specific settings and confirm with OK.

Synchronization Settings ﬂ

Cade fram Model | tadel fram Code I

— SPL templates
¥ Uszer-defined overide default

—When deleting Code
& Comment out € Delete

— Synchronization
i+ Merge Model into Code

" Owenwrite Code according to Model

v flways show disglog when synchionizing

ak. Cancel

Please note:
When synchronizing code, you might be confronted with a dialog box that prompts you
to update your UModel project before synchronization.

© 2007 Altova GmbH Altova UModel 2007

104 Projects and code engineering Synchronizing Model and source code

This only occurs if you are using UModel projects created before the latest release.
Please click YES to update your project, and save your project file. This prompt will not
occur once this has been done.

SPL Templates:
SPL templates are used during the generation of Java and C# code.

To modify the provided SPL templates:

1. Locate the provided SPL templates in the default directory: ...\UModel2007
\UModelSPL\Java\Default\. (or ...\C#\Default.)

2. Copy the SPL files you want to edit/modify into the parent directory, i.e. ..\UModel2007
\UModelSPL\Java\.
3. Make your changes and save them there.

To use the user-defined SPL templates:
1. Select the menu option Project | Synchronization settings.
2. Activate the "User-defined override default" checkbox in the SPL templates group.

Then select one of the menu options shown below, to initiate the synchronization process.

e Project | Merge Program Code from UModel project, please see Round-trip
engineering (model - code - model) for more information, or

e Project | Merge UModel Project from Project code, please see Round-trip
engineering (code - model - code) for more information.

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering

Forward engineering prerequisites 105

5.4

Forward engineering prerequisites

Minimum conditions needed to produce code for forward engineering:

A component must be realized by one or more classes, or interfaces.

The component must have a physical location, i.e. directory, assigned to it. The
generated code is then placed in this directory.
Components must be individually set to be included in the code engineering process.
The Java, or C#, namespace root package must be defined.

To create a component realization:
Drag the class, or interface onto the respective component in the Model Tree view.

1.

You can also create a realization in a component diagram using the Realization icon.

To assign a physical location:
Select the component in the Model Tree, or in the diagram.

1.

2. Click the Browse button |:| of the directory property and select a directory (or enter it

directly).
Madel Tree n =
Root .

B Component e
Banking access
E'E| Bankviewn
........ =7 Bankiew realization
@ Bankiew
(- a Bank ey GLUI
-H Deployment Wiew
B |Design-phaze

- g‘!@verview -

IEI Mu:u:iel Tree l@ Diagram T.. l %{% Favarites ‘

Properties o x

nSime: Bankiew

qualified name Component Yiew::Bankiew:

element kind Camponent

vizibility public i
lleat O

ahatract O
lindirectlyinstantiste:

code language Javal 4 i

clirectory umlcodetbankvies

Iuse for code engine

=<Component== 3 |
BankVWiew GUI
[from Bankhiew)

4

ez D

=l EEEE
T Y .

| z=component==

B BankView S
| (from Bankyisw)]

[fran

4]
4]
4
4]
4]
4
4]
&
4]
4]
4]

= FoN = I

To include components in the code engineering process:
1.

Select the component in the Model Tree, or in the diagram.
2. Activate the "use for code engineering" check box.

To define the Java namespace root:
1.

Right clicking a package and selecting "Set as Java namespace root" sets the Java

namespace root.

This means that this package and all sub packages, are enabled during the code

© 2007 Altova GmbH

Altova UModel 2007

106 Projects and code engineering Forward engineering prerequisites

engineering process. The Java namespace root is denoted with a = icon in the Model
Tree pane.

e Selecting the command again removes the Java namespace for this package.

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering

Java code to/from UModel elements

107

5.5

Java code to/from UModel elements

The table below shows the one-to-one correspondence between:

e UModel elements and Java code elements, when outputting model to code
e Java code elements and UModel model elements, when inputting code into model

Java <Il> UModel

Java name UModel Element name
Project [project file project file Campanent
directory directory
Package |name narne Package
<Znamespaces:
Class [name name Class
modifiers |package vigibility |package
public public
pratected protected
private private
abstract abstract
strictfp <<gtrictfp=>
final z<final==
file narme code file name
associated project file/directory ComponentRealization
extends clause Generalization
implements clause InterfaceRealization(s)
java docs Camment(-=Documentation)
Field name name Froperty
rmodifiers |package visibility |package
public public
protected protected
private private
static static
transient <<transient==
volatile <<yolatile==
final <=final=>
type type
type dimensions multiplicity
default value default
Java docs Camrment(-
*Documentation)

© 2007 Altova GmbH

Altova UModel 2007

108

Projects and code engineering

Java code to/from UModel elements

throws clauge

raised exceptions

java docs Commenti-
=Documentation)
type directinn|return Farameter
Parameter|name nare
madifier [final [<<final==>
. warArglist
type type
type multiplicity
dimensions
Type |name name Template
Farameter|pind constraining Farameter
classifier
Constructor|name hame
modifiers public visibility |public
protected pratected
private private
throws clause raised exceptions
java docs Commenti-
=Documentation)
Parameter[name name Parameter
madifier [final [<<final==>
. varArglist
type type
type multiplicity
dimensions
Type |name narne Termplate
Farameter|pqind constraining Farameter
classifier

Java <|[> UModel
Java name UModel Element name
Class MWethod |name name Ciperation Class
modifiers [package visibility |package
public public
protected pratected
private private
static static
ahstract ahstract
final <=final=»
native <<natives>
strictfp <<strictfpz=
synchronized|<<synchronizeds»

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

Java code to/from UModel elements

109

Java <|[> UModel
Java name UModel Element name
Interface (narme name Interface
modifiers |package visibility |package
public public
protected pratected
private private
abstract abstract
strictfp <=gtrictfp==
file name code file name
associated project file/directary ComponentRealization
extends clause Generalization(s)
Java docs Comrmenti-=Documentation)
Field name name Froperty
modifiers [public wigibility |puh|i|:
static static
final <=final=»
type type
type dimensions multiplicity
default value default
Java docs Comment(-
=0ocumentation)
Method |name name Ciperation
modifiers [public wisibility |puh|i|:
abstract abstract
throws clause raized exceptions
Java docs Comrnenti-
=0ocumentation)
type directinn|return Farameter
Parameter|name narne
modifier |final |<<final=>
. varArglist
type type
type multiplicity
dimensions
Type |name name Template
FParameter Farameter
bound canstraining
classifier
Type name name Template
Parameter bound constraining classifier Parameter

© 2007 Altova GmbH

Altova UModel 2007

110

Projects and code engineering

Java code to/from UModel elements

Java <|[> UModel
Java name UModel Element name
Enum |narme Narme Enumeration

rodifiers |package wisibility |package

public public

protected protected

private private
file name code file name

associated project file/directory

ComponentRealization

Java docs Comment{-=Documentation)
Enum [name name Enumeratian
Constant Literal
Field name name Froperty
rmodifiers |package wvisibility |package
public public
protected protected
private private
static static
transient <<transient>x
volatile <<vnlatile= =
final <=final=>
type type
type dimensions multiplicity
default value default
Java docs Camrment(-
*Documentation)
Method [name narme Ciperation
madifiers |package wisibility |package
public public
protected protected
private private
static static
abstract abstract
final <<final==
native <<nativers
strictfp <<strictfp==
synchronized|<<synchronized=>

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering Java code to/from UModel elements 111

Java <|[> UModel
Java name UModel Element name
Enum | Method |throws clause raized exceptions Uperation | Enumeration
Java docs Camrment(-
=Docurmentation)
type directinn|return Farameter
Parameter|name narme
modifier [final |<<final==
. varArglist
type type
type multiplicity
dimensions
Type |name name Template
Farameter|, i constraining FParameter
classifier
Constructar|name narme
modifiers |public visibility |public
protected protected
private private
throwes clause raised exceptions
Java docs Comment(-
=Documentation)
FParameter[name name FParameter
modifier [final |<<final==
. varArglist
type type
type multiplicity
dimensions
Type |name name Template
Fararmeter|pqind constraining FPararmeter
classifier
Parameterized Type Anonymous Bound Element

© 2007 Altova GmbH Altova UModel 2007

112 Projects and code engineering

C# code to/from UModel elements

5.6 C# code to/from UModel elements

The table below shows the one-to-one correspondence between:

e UModel elements and C# code elements, when outputting model to code
e C# code elements and UModel model elements, when inputting code into model
C# <1i> UModel
C# UModel
ot et o
Mame FPackage
space narne narme <<name
spacess
Clags [name narne Class
internal package
protected internal protected <<internalz>
public wigibility | public
protected protected
private private
modifiers |gealed leaf
abstract abstract
static <=gtaticx>
unsafe <<ungafe>>
partial <<partialz=
nes <<news>

file name

code file name

agsociated project file/directory

CornponentRealization

base types

Generalization, InterfaceRealization(s)

attribute sections

<<attributes=>

doc comments

Comment-=Documentation)

narne narne
internal package
protected internal protected <<internalz>
public wisibility [public
protected protected
modifiers priva_lte _ private
static static
readonly readonly
Field valatile <=volatile=>
unsafe <zunsafex»
newy LLRewE>
type type
type dimensions multiplicity
type pointer type modifier
nullable <znullable=:=
default value default
attribute sections <zattributesz>
doc comments Comment(->Documentation)

Property

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

C# code to/from UModel elements

113

attribute sections

<<gttributes>>

C# <]i> UModel
c# UModel
Class name name Class
internal package
protected internal protected <<internalz>
modifiers puhblic visibility |public
protected protected
private private Property
Constant newy SEnew s “zconstse
type type
type dimensions multiplicity
type pointer type rnodifier
nullable <<nullable=>
default value default
attribute sections <<attributess>
doc comments Comment(-=0Documentation)
name narne
internal package
protected internal protected <<internal=
public visibility |public
protected protected
private private
modifiers static static
abstract abstract
sealed leaf
override <2overtides=
virtual <<virtual==
new LLhEwE
unsafe <<unsafe=>
attribute sections <<attributes==
doc comments Cornrnent(->Documentation) .
Method type direction [retumn Operation
narme narne
. ref direction inout
modifiers |out out
Parameter params varArglist Parameter
type type
type dimensions multiplicity
type pointer type modifier
nullable zznullable=>
narme narne
constraint constraining classifier
Type predefined |Struct <<WalueTypeConstraints> Ternplate
Parameter| aint |class =<ReferenceTypeCanstraint==| Parameter
neswi() =<ConstructorConstraint =

© 2007 Altova GmbH

Altova UModel 2007

114

Projects and code engineering

C# code to/from UModel elements

C# <]i> UModel
C# UModel
narme narme
internal package
protected internal protected <<internal=>
public isibility [public
modifiers |protected protected
private private
static static
unsafe <<unsafes>
attribute sections <<attributess= :
Constructor d - Operation
oc comments Commenti-=Documentation)
narne narme
ref direction inaut
maodifiers |out out
Parametar params varArgList Parametar
type type
type dimensions multiplicity
type pointer type modifier
nullable <<nullables =
name name
. tivate visibilit rivate
Class Destructor modifiers Ensafe {(UnS:fEDl’i Cperation Class
attribute sections <<attributes>>
doc comments Commenti-=Documentation)
name narme
internal package
protected internal protected <<internal=>
public visibility [public
protected protected
private private
modifiers static static
abstract abstract
sealed leaf
override <<oyerrides=
virtual =<virual>>
new LLhEwE >
unsafe <<unsafess .
- - - Operation
Property attribute sections <<attributes>> . <<praperty
doc comments Commenti-=Documentation) o
type direction [return
type dimensions multiplicity Parameter
nullable zznullablez=
internal package
Get modifiers [iar:?é?r?;?d Lisibility protected internal <<GetAce
Accessor protected protected essor=>
private private

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

C# code to/from UModel elements

115

C# <]i> UModel
c# UModel
Clazs Property internal package Operation Clazs
St _ protected o «=Sethce [FTRropery
Accessor modifiers Jintamal visibility protected internal BssOres =
protected protected
private private
narme narme
public isibility [public
madifiers |static static
unsafe <<ungafess
attribute sections <<attributes=>
doc comments Commenti-=Documentation) Operation
Operator |type direction [return <<operatar
name narme ==
rodifier [params varArglist
Parameter|t¥Pe type Parameter
type dimensions multiplicity
type pointer type modifier
nullable =<nullable>=
name (="this") name (="this")
internal package
protected internal protected <<internal=>
public pisibility [public
protected protected
private private
modifiers static static
abstract abstract
sealed leaf
override <2gvertides=
virtual <<virtual=>
new TLhEwE R
unsafe <<ungafess
attribute sections <<attributes>>
doc comments Comment(->Documentation) Operation
Indexer type direction |r9t|_|m <<indexer
name narme 2
rodifier [params arArglist
Parameter Lype - - type. — Parameter
type dimensions multiplicity
type pointer type modifier
nullable <<nullable>=

© 2007 Altova GmbH

Altova UModel 2007

116

Projects and code engineering

C# code to/from UModel elements

C# <]i> UModel
C# UModel
Class Indexer internal packane Operation | Class
et modifiars F;F;fnc;w visibility protected internal zzGet |<<indexer
Accessar Accessorzz =
protected protected
private private
internal package
Set modifiers '?;?;Eﬁ;?d isibility protected internal “<Sethcce
Accessor protected pratected §30r>>
private private
name name
internal package
protected internal protected <<internalz»
public visibility |public
protected protected
private private
modifiars static static
abstract abstract
sealed leaf
Event o.\terride <<0.verrideb> Operation
virtual <<virtual== “<eyentss
new “Ehews>
unsafe zzunsafe=>
attribute sections <<attributesz»
doc comments Comment(-=Documentation)
type direction |return
type dimensions multiplicity Parameter
nullable <<nullabless=
ggfn?vceciii?;ssur <<AddRemovedccessors»
name name
constraint constraining classifier
Type struct <<ValueTypeConstraint== Temnplate
Farameter |predefined) Parameter
constraint (1388 <<ReferenceTypeConstraint=>
new() <<ConsgtructorConstraint==>
attribute sections <<attributes=>

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

C# code to/from UModel elements 117

C# <> UModel
C# UModel
Class |name name Class
internal package
protected internal protected <<internal>>
public visibility |public
madifiers protected protected
private private
unsafe zzunsafex>
partial zzparial=>
new <<news >
file name code file name
associated project filefdirectory ComponentRealization
base types InterfaceRealizationis)
attribute sections <<attributes==
doc comments Comment->Documentation)
narme narne
internal packaie
protected internal protected <<internalz>
public visibility |public
protected protected
modifiers private private
static static
readonly readonly
Field volatile <<volatile== Property
unsafe zzunsafex>
new <<news >
type type
type dimensions multiplicity
type pointer type modifier
nullable <zhullables>
default value default
attribute sections <<attributess>
doc comments Comment(-=Documentation)
name narme
internal packaie
protected internal protected <<internal>>
modifiers public visibility |public
protected protected
private private Property
Constant new SEnEWS > “<const
type . . twpe -
type dimensions multiplicity

© 2007 Altova GmbH

Altova UModel 2007

118 Projects and code engineering

C# code to/from UModel elements

C# <> UModel
C# UModel
Class | Congtant |L¥Pe pointer type modifier Property | Class
nullable <znullable== J—
default value default _—
attribute sections <<attributess>=
doc comments Comment->Documentation)
narme narne
internal package
protected internal protected <<internalz>
public visibility |public
madifiers |protected protected
private private
Fixedsize unsafe <<unsafe>> Property
Buffer e LLNEWE <afined»»
type type
type pointer type modifier
nullable <<nullables=
buffer size default
attribute sections =zattributes==
doc caomments Comment(->Documentation)
narme narne
internal package
protected internal protected <<internal>>
public visibility |public
protected protected
private private
madifiers static static
abstract abstract
sealed leaf
override “zoverride=>
wirtual <<yirtual=>
new LhEwE R
unsafe <<ungafes=
attribute sections <=attributes>>
doc comments Comment->Documentation) :
Method g direction [return Operation
narme narne
. ref direction nout
modifiers ot out
Paramater params vatArglist Parameter
type type
type dimensions multiplicity
type pointer type modifier
nullable zznullable==

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering C# code to/from UModel elements 119
C# <1i> UModel
C# UModel
Struct hethod name name - Operation | Class
constraint constraining classifier P
Type predefined [struct <<WalueTypeConstraint>> Ternplate
Parameter constraint [Elass <<ReferenceTypeConstraint>=| Farameter
new() <<ConstructorConstraint==
attribute sections =zattributes==
name narme
internal package
protected internal protected <<internal>>
public visibility |public
modifiers |protected protected
private private
static static
unszafe <<unsafes>
attribute sections “<attributess> :
Constructor 1 - Cperation
oc comments Comment->=Documentation)
narne narne
. ref direction inout
modifiers |out out
Pararmeter params varrglist Parameter
type twpe
type dimensions multiplicity
type pointer type modifier
nullable <<nullabless
narme narne
- rivate vigibilit rivate
Destructor modifiers Ensafe <<unsgfe|>[l Cperation
attribute sections <<attributess>
doc comments Comment->Documentation)
narme narne
internal package
protected internal protected <<internal==
public visibility |public
protected protected
private private
modifiers static static
abstract abstract
sealed leaf
override <<overridess
wirtual <virualz>
new LEnEwsE
unsafe <zunsafez:= Operation
Property [attribute sections <<attributess> ==property
doc comments Comment(-»Documentation) =

© 2007 Altova GmbH

Altova UModel 2007

120

Projects and code engineering

C# code to/from UModel elements

C# <1i> UModel
cH | UModel
Struct Froperty type - - dlrec_tu:_un_ [return Parameter | Operation | Class
type dimensions multiplicity <<property |<<struct=>
nullable <<nullables= .
internal package
Get modifiers ?;?é?ﬁ;?d isibility protected internal | <<GetAcce
Accessor protected protected seor=>
private private
internal package
Set modifiers %?é?ﬁ;?ﬁ isibility protected internal <<SetAcce
Accessor protected protected seor=>
private private
narme narne
public visibility [public
madifiers |static static
unsafe <<unsafe==
attribute sections ==attributes>>
doc comments Cornment(->Docurmentation) Operation
Operatar |type direction [retum <=operator
narme narne b
rmodifier |params varArglist
Parameter|[l¥Pe type Parameter
type dimensions multiplicity
type painter type modifier
nullable ==nullable>>
name (="this") name (="this")
internal package
protected internal protected <<internal==
public visibility |public
protected protected
private private
modifiers static static
abstract abstract
sealed leaf
override <<overridess
wirtual <<vifualz>
rew <anews>
unsafe zzunsafex>
attribute sections <<attributess>
doc comments Comment->Documentation) Operation
Indexer type direction |re‘tum <<indexer
narme name et
modifier [params varArglist
Parameter| LEE - type Parameter
type dimensions multiplicity
type pointer type modifier
nullable ==znullable>>

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering C# code to/from UModel elements 121

C# <1i> UModel
C# UModel
Struct Indexer i[ar}to'gtr;en;led packaie Operation | Class
. : P i < i
Get madifiers Linternal visibility protected internal GetAcce |<<indexer [<<struct=»
Accessor protected protected SEOrE> ==
private private
internal package
profected . ce
Set madifiers Linternal visibility protected internal SetAcce
ACCessor protected protected g50r>>
private private
narme narne
internal package
protected internal protected <<internal>>
public visibility |public
protected protected
private private
modifiers static static
abstract abstract
sealed leaf
Event override <<overridess Oiperation
wirtual <<vifualz> <<eyent=>
new <
unsafe zzunsafex>
attribute sections <<attributess>
doc comments Comment->0Documentation)
type direction |return
type dimensions multiplicity Parameter
nullable zznullable==
Add Accessor
=zAddRemovedccessors»
Remove Accessor
narme narne
constraint constraining classifier
Type struct <<WalueTypeConstraint>> Template
Parameter [predefined] Fararmeter
constraint Lclass =zReferenceTypeConstraint ==
new() <<ConstructorConstraint==
attribute sections =zattributes==
Interface |hame harne Interface
internal package
protected internal protected <<internal>>
public visibility |public
modifiers pr?tected pr?tected
private private
unsafe <<ungafe=>

© 2007 Altova GmbH Altova UModel 2007

122

Projects and code engineering

C# code to/from UModel elements

C# <1i> UModel
C# UModel
Interface partial =<partial=> Interface
nEw LR
file name code file name
associated project filefdirectory ComponentRealization
base types Generalization(s)
attribute sections <<attributes==
doc comments Comment(-=Documentation)
narme narne
public visibility [public
modifiers |new LLNEWE
unsafe <<unsafe=>
attribute sections zzattributes==
doc comments Comment(->Documentation)
type direction |return
narme narne
ref direction inout
madifiers |out out
Method | paorameter params vartrgList Parameter | Operation
type type
type dimensions multiplicity
type pointer type modifier
nullable <znullables =
name narme
constraint constraining classifier
Type predefined |struct <=WalueTypeConstraint>> Ternplate
Parameter constraint [Elass <<ReferenceTypeConstraint»=| Farameter
new() <<ConstructorConstraint==
attribute sections =zattributes==
narme narne
public visibility [public
maodifiers |new e
unsafe zzunsafex>
attribute sections <<attributess>
doc comments Comment->Documentation)
type direction |return
tyﬁ;le };ﬂllmensmns multiplicity Parameter Operation
Praperty nullable _ ==znullable>> <<property
internal package .
profected . ce
Get madifiers Linternal visibility protected internal GetAcce
Accessor protected protected se0r=>
private private
internal packaie
profected . ce
Set madifiers Linternal visibility protected internal SetAcce
Accessor protected protected geors>
private private

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering C# code to/from UModel elements 123
C# <> UModel
cH | UModel
Interface name (="this"] name (="this"] Interface
public visibility [public
modifiers |new = B
unsgafe <<unsafe==
attribute sections zzattributes==
doc comments Comment(->Documentation)
type direction |return
narme narne
rmodifier [params varfrglist
Parameter| 22 . tpe Parameter | operation
Indexer type dimensions multiplicity ceindexer
type pointer type modifier .~
nullable <<nullables=
internal package
protected .
Get modifiers Linternal isibility protected internal | <<GetAcce
Accessor protected protected §s0r==
private private
internal package
protected .
Set modifiers Linternal isibility protected internal <<SetAcce
Accessor protected protected gs0re=
private private
name narme
public visibility [public
modifiers |new SRR
unsafe <unsafess
attribute sections <<attributess>= Oneration
Event |doc comments Comment->Documentation) P
— <<event==
type direction |return
type dimensions multiplicity Parameter
nullable <<nullables=
Add Accessor
= <<AddRemovedccessorss
emove Accessar
narme narne
constraint constraining classifier
Type struct <<valueTypeConstraint>> Template
Parameter [predefined] Farameter
constraint Lclass =zReferenceTypeConstraint ==
new() <<ConstructorConstraint==
attribute sections <<attributes==
Delegate |harme hatne Class
internal package <<delegate
protected internal protected <<internal>> ==
public visibility |public
modifiers |protected protected

© 2007 Altova GmbH

Altova UModel 2007

124 Projects and code engineering C# code to/from UModel elements
C# <1i> UModel
cH | UModel
private private
unsafe <<unsafe=>
nEw <R
file name code file name
associated project filefdirectory ComponentRealization
attribute sections <=attributes>>
doc comments Comment(->Documentation)
— Clazs
Del type direction [return del
elegate narme harne ==<delegate
- B8
ref direction nout
madifiers |out out
Parameter params wardrglist FParameter | Operation
type type
type dimensions multiplicity
type pointer type modifier
nullable zznullable==
narme narne
constraint constraining classifier
Type struct <<4alueTypeConstraint>> Template
Parameter [predefined] Fararmeter
constraint Lclass =zReferenceTypeConstraint ==
new() <<ConstructorConstraint==
attribute sections << attributess>
narrne narne
internal package
protected internal protected <<internal>>
i visibilit i
modifiers public ¥ [public
protected protected
private private
nEw LR
Erum file name code file name Enum-
associated project file/directory ComponentRealization eration
bage type type <<BageTypez=
attribute sections <<attributess>=
doc comments Comment(-=Documentation)
name narme
Enurm default value default Enumerat-
Constant |attribute sections <=attrihutess> jon Literal
doc comments Comment(->Documentation)
Parameterized Type Anonymous Bound Element

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

XML Schema to/from UModel elements

125

5.7

XML Schema to/from UModel elements

The table below shows the one-to-one correspondence between:

UModel elements and XML Schema elements, when outputting model to code
XML Schema elements and UModel model elements, when inputting code into model

-}{EDIUML Element
-Steren’wpe property =tagged valug)

X¥SD <10 Urmnodel

XSD Ukodel
file path project file Companent
Package
target namespace name ==name
space==
attributeFormDefault attributeF ormDefault
hlockDefault hlockDefault
elementF ormDefault elementFormDefault
finalDefault finalDefault
Yergion wersion
¥mllang Hrmllang
xming xmins
source source
i Comment
i appinio ==appinfo==
annotation
. . . Comment
docurnentation |xml:lang Hrmllang <<docurnentation==
schema name name Class
) Camment =zschema
appinfo . o
==appinfo==
annotation
Comment
documentation ==dacument
ation==
name name
farm frm
use
; use Class
iputeGroup attribute [raf Property | «<attributasroups=
tyne ==gtttibute==
type
default
default
fixed fixed
Froperty
attributeGroup |ref type ==attribute Group
==
namespace
anyAttribute Namespace Propgrhf
processContants processContents ==<anyAltribute~»

© 2007 Altova GmbH

Altova UModel 2007

126 Projects and code engineering XML Schema to/from UModel elements
XSD <10+ Umodel
XSD UhModel
name name
farm form
use use
trpe type
default FProperty
- default
C]
attribute fired Class ==attribute==
anpinfo Caomment
p ==gppinfo==
tati
annotation Commart
dacumentation ==dacument-
ation==
. _ DataType
simpleType name (= name of Class + <esimpleType==
" anonymousType[n]™
name name
ahstract abstract
Class
schema block block xe
schema
final final ==
nillable nillable
trpe type
default FProperty
- default
C]
element fired Class ==element==
anpinfo Caomment
p ==gppinfo==
annatation Samment
dacumentation ==daocument-
ation==
. _ DataType
simpleType Irlwme (= name DfCIa“ss * |<<simpleType==
_anonymousType[n]"
Class
complexType name (= name of Class + | <=<complexType
" anonymousType[n]™ ==
name name
i Caomment
graup anpinto <=appinfo=> | Class ==<group==
tati
annotation Commant
dacumentation ==document-
ation==

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

XML Schema to/from UModel elements 127

XSD <10+ Umodel

XsD

UModel

schema group

all

narme (="_all"

Propery

narne (= "rg'_+ "all"y

annotation

appinfo

Comment
==gppinfo==

dacumentation

Comrment
==documernt
ation==

element

name

name

ref

Froperty
type «=glement=»

type

Class ==all==

choice

name {(="_choice")

Froperty

name (="mg"_ + "choice™

annotation

appinfo

Caomment
==appinfo==

dacumentation

Comment
==document
ation==

elerment

name

name

ref

Froperty
type «=glement==

type

group

FProperty
=Igrogps=

any

Property
==ANyEE

chaice

Propetty

Class
==choice==

SefUeEnCE

Froperty

Class
==ZErUBNCE
e

Class
==choice==

Class

Class ==group== [==
aroup schema
=

© 2007 Altova GmbH

Altova UModel 2007

128 Projects and code engineering XML Schema to/from UModel elements

XSD <10+ Umodel
XSD UhModel
harme (="_sequence") Property
name (= "mg'_+
"sequence™
i Comment
appinto ==gppinfo==
annotation
Comment
dacumentation ==dacument
ation==
narne narme
Froperty
element ref ==glement==
trpe
type
Class
stherna| group seguence Froperty Class Class ==<group== =
group =<group== ==5EUBNCE=> sC EI’IIE
FProperty
any <dany>>
Froperty
choice
Class
==choice==
Froperty
SeqUence Ciaes
==se[Uence
==
name name
system system
public public
notation DataType
appinfa Comment <=notation==
==appinfo==
annotation Comment
documentation ==document
ation==

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering

XML Schema to/from UModel elements

129

XSD <10+ Umodel

XSD UnModel
name name
abstract abstract
hlack block
final final
mixed tmived
source source
; Camment
appinfo .
annatation =s=appinfor»
Comment
documentation|xmllang Hmillang ==gdocument
ation==
name (=" _ref[n]"}
group maxdeours Froperty
rmultiplicity ==group==
minCceurs
ref type
Class Class
schema | complexType name (="mg"_ +"all"y Glass ==all== [==<complexTypes==|=<=
schema
b3
all name (="_all"y
Froperty
maxdccurs
multiplicity
minOccurs
name (="mg"_ + Class
“choice[n]") ==choice==
chaice hame (="_chaice[n]"
Froperty
maxOcours
multiplicity
minQcecurs
name (="mg"_ + Class
"sequenceln]” ==gEfUence==
sequence name (="_seguence[n]"
Froperty
maxOcours
multiplicity
minQcecurs

© 2007 Altova GmbH

Altova UModel 2007

130

Projects and code engineering

XML Schema to/from UModel elements

X¥SD <10 Umnodel

XSD Ukodel
name name
attribute ref Pro.pemf
tyipe ==gltribute==
trpe
Froperty
attribute Group |ref type ==gtiributeGroup
complexType el C||aS-T'
namespace ==caomplexTypes==
anyAttribute NAMEZpace Propgrty
processContents processContents ==anyAttributes=
- Generalization
restriction .
==restriction==
complexConten base general
. Generalization
extension)
==extension==
narne name
Class
schema final final =
schema
source source ==
. Caomment
appinfo .
annotation s=appinfo==
Comment
documentation|xml:lang mllang ==document
ation==
narme (= Property
iternType "_|temType =zjtemTypes== DataType
simpleType list) ==list=> ==simpleTypes==
cimpleTyne DataType Enumeration
rietyn ==5impleTypes= ==5impleTypes==
name (= Froperty
memherTypes "memberTy | ==memhber
urnian peln) Tyne=> ==Unioh==
_ DataType
simpleType ==zimpleType==
) o |value [value =<minExclusive
minExclusive
fixed fiszed ==
) - |value [alue <=mininclusive==
minlnelusive
fixed fixed

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering XML Schema to/from UModel elements 131

X¥SD <10 Umnodel

XSD UModel
_ value value ==maxExclusive
maxExclusive
fixed fisced ==
_ |value value ==radnclusive
maxlnclusive
fixed fisced =
value value
totalDigits ==totalDigits==
fixed fixed
value value i i
fractionDigits <=fractionDigits
fixed fixed ==
value value
length ==langth==
fixed fixed
value value DataType Class
schema | simpleType rminLenath =z=minLength== | ==simpleType== ==
fixed fixed Enumeration SCHETS
value value s=simpleType==
maxLength ==maxLength==
fixed fixed
value value
whitespace ==ywhitespace==
fixed fixed
pattern value value ==ywhitespaces:=

EnumerationLite

enumeration |value narme val
_ DataType
simpleTyne ==gimpleType==
- Generalization
rastriction |hase denaral < <testriction=s
narne narne
source source
appinfo Camment
; i DataType
complexType | annotation “appinio=> <<comple:'l?‘fpe>=
simpleCon
Fent] Comment ==gimpleContent==
documentation {xml:lang #mililang ==document
ation==
) - |value value z=minExclusive
minExclusive oo
fixed fixed

© 2007 Altova GmbH Altova UModel 2007

132

Projects and code engineering

XML Schema to/from UModel elements

X¥SD <10 Umnodel

XSD Uiodel
; ; value value ==mininclusive
minlnclusive
fixed fixed ==
manEclusive [[[value ==ranExciusive
fixed [[Fzcect =
- |value [[value «=maxinclusive
maxinclusive e ||ﬂxed .
o |valug [[value o
totalDigits e ||ﬂxed ==totalDigits==
o |walue [[value ==fractionDigits
fractionDigits Ted ||ﬂxed e
value [[value
length Toed ||ﬂ>(ed ==|ength==
. valug [[value .
minLength e ||ﬂxed ==minLength==
valug [[value
maxLength Tred ||ﬂxed ==zmaxLength==
complexType) value [value : DataType Class
schema| joniecon | Whitespace el =swhitespace==| __oomnlexTypess | <=
tent] ==simpleContent== SCheTS
pattern value value ==whitespaces=
name name
. ref Property
attribute type ==aftribute==
type
FProperty
attribute Group |ref type ==aftribute Group
=
namespace
anyAttribute Namespace Propgr’ry
processicontents processContents s=anyhttribute==
_ DataType
simpleType ==simpleType==
- Generalization
restriction |base general .
==restriction==
; Generalization
extension |hase general R
==gxtension==

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering

XML Schema to/from UModel elements 133

X¥SD <10 Umnodel

camplexType

attributeGroup

==redefine=»

graup

XSD Ukodel
schemalocation schemalacation
namespace namespace
. . Comment Elementimpoart
import appinfo))
==appinfos:= =2impotts=
annotation Somirert
documentation ==document
atioh=:=
schemalocation schemalocation
appinfa Comment
include <zappinfoss ElemeTtlgnpon
annotation ==incluge==
Comment
documentation ==document
schema afion>> ELSSS
schemalocation ; schema
schemalocation -
inf Caomment
appinio ==appinfo== Elementimpart
annotation ==include==
Comment
dacumentation ==dacument
ation==
simpleType e DataType
redefine simpleType==

==attrihuteGroup==

Class
==complexTypes==

Class

Class ==graup=>=

© 2007 Altova GmbH

Altova UModel 2007

134 Projects and code engineering Including other UModel projects

5.8 Including other UModel projects

UModel is supplied with several files that can be included in a UModel project. Clicking one of
the Java tabs allows you to include Java lang classes, interfaces and packages in your project,
by selecting one of the supplied files.

1. Select Project | Include Subproject to open the "Include" dialog box.
2. Click the UModel project file you want to include, and press OK.

UModel projects can be included within other UModel projects. To include projects place the
respective *.ump files in:

e ..\UModel2007\UModellnclude to appear in the Basic tab, or
e ..\UModel2007\UModelinclude\Java1.4 / Java5.0 to appear in the Java tab.

Basic | CH2.0| Javal 4| JavaB0|

@ O O
CH#

lava LML Standard
Prafile,urnp Prafile, urp

Prafile. urnp

|l

Browsze...

Description:

The CH Profile containe datatypes and sterectypes for CH and iz eszential
for CH# RoundT np Engineerning.

Please note:

An include file, which contains all types of the Microsoft .NET Framework 2.0, is
available in the C# 2.0 tab.

To view all currently imported projects:
e Select the menu option Project | Open Subproject as project.
The flyout menu displays the currently included subprojects.

Cpen Subproject &s Project I*| Java Lang.ump

Java Profile.ump

= T T T TR

Clear Messages

To create a user-defined tab/folder:
1. Navigate to the ...\UModel2007\UModellnclude and create/add your folder below
..\UModellnclude, i.e. ...\UModellnclude\myfolder.

To create descriptive text for each UModel project file:
1. Create a text file using the same name as the *.ump file and place in the same folder.
Eg. the MyModel.ump file requires a descriptive file called MyModel.txt. Please make

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering Including other UModel projects

135

sure that the encoding of this text file is UTF-8.

To remove an included project:
1. Click the included package in the Model Tree view and press the Del. key.
2. You are prompted if you want to continue the deletion process.
3. Click OK to delete the included file from the project.

Please note:
¢ To delete or remove a project from the "Include" dialog box, delete or remove the
(MyModel).ump file from the respective folder.

© 2007 Altova GmbH Altova UModel 2007

136 Projects and code engineering Sharing Packages and Diagrams

5.9 Sharing Packages and Diagrams

UModel allows you to share packages and UML diagrams they might contain, between different

projects. Packages can be included in other UModel projects by reference, or as a copy.

Shared package prerequisites:
e Links to other packages outside of the shared scope are not permissible.

To share a package between projects:
1. Right click a package in the Model Tree tab and select Subproject | Share package.
Root
‘& | Component Yiew
Hied Deplayment Yigw
o= Dezign-phaze

=7 O werview

£ Banking access
A 2] Bankiiew

A "shared" icon appears below the shared package in the Model Tree. This package
can now be included in any other UModel project.

To include/import a shared folder in a project:

1. Open the project which should contain the shared package (an empty project in this
example).

~|Root
- Cornporent Yiew

2. Select the menu item Project | Include Subproject...

3. Click the Browse button, select the project that contains the shared package and click
Open.

incude x|

— Kind of include

% Include by reference; This will store a reference to the original data of your subproject.
Elements of the subproject cannot be modified.

" Include az a copy: This will store a copy of the shared data of your subpraject in pour
Ik adel project file. Any references b the original data will be lost,

— Styles of included diagrams
€% Fetain styles: Allincluded diagrams will appear a2 defined in their subproject.

" lze project file styles: Diagrams will use current project file stules.

IBank.ump

v tdake path relative to BankWiew-finizh. ump 0k I Cancel

The "Include" dialog box allows you to choose between including the package/project

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering Sharing Packages and Diagrams 137

by reference, or as a copy.
4. Select the specific option (Include by reference) and click OK.

Foot
H | Component View
- e+ Deplavrment Wisw
& 1 Design-phaze
A Z7Java Lang [Java Lang. ump]
@[1 Unknown Externals
A [+ 7 CH Profile [CH Profile. ump]
A [« 7 dava Profile [Jawa Profile.ump)

The "Deployment View" package is now visible in the new package. The packages'
source project is displayed in parenthesis (BankView-start.ump).

Shared folders that have been included by reference can be changed to "Include by
copy" at any time, by right clicking the folder and selecting Subproject | Include as a

Copy.

Please note:
All included projects of the source project, have also been included: Java Lang,
Unknown Externals and Java Profile.

Shared packages - links to external elements:

Model Tree

R oot
‘@ | Campaonent Yiew
[o+ Deplavment Wiew
o= Dezign-phaze

| »

e B Overviews

@ & Barking access
§.E| £ B ankiew

-------- FApply Java Prafile
@« com

= Relations -

IEI Model Tree IE Diagram Tree l%‘%‘ Favarites ‘

Attempting to share a package which has links to external elements causes a prompt to appear.
E.g. trying to share the BankView package.

The shared Packagels) have links to external elements |
! These errors musk be solved before the UModel projectfile can be saved.
Do o skill wank to change the shared skatus of this Package 7

Rl Zancel

Clicking Yes, forces you to resolve the external links before you can save.
The Messages pane provides information on each of the external links.

© 2007 Altova GmbH Altova UModel 2007

138 Projects and code engineering Sharing Packages and Diagrams

Messages

W w|al v]al vlal BBE X

=l Starting Checking shared packages .. -
I@ Property ‘bankaPl' has links out of the zhared Package(z]

I@ Parameter 'bankAPI hag links out of the shared Package(z]
I@ Parameter 'bankAPl' hag links out of the shared Package(z]
I@ Parameter 'bankAPI' has links out of the shared Package(z]
I@ Parameter 'bankAPI' has links out of the shared Package(z]

... firnished Checking shared packages _ILI
4 k

Clicking an error entry, in the Messages pane, displays the relevant element in the Model Tree
tab.

- B Bankiew

-------- &] bankAF

-3 < Bankiew
s % bankAP

--E_hg,u\} collectB ankddreszinfoz
b ¢ Parameter]

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering UML templates 139

5.10 UML templates

UModel now supports the use of UML templates and their mapping to/from Java 5.0 and C#
generics.

e Templates are "potential" model elements with unbound formal parameters.

e These parameterized model elements, describe a group of model elements of a
particular type: classifiers, or operations.

e Templates cannot be used directly as types, the parameters have to be bound.
e Instantiate means binding the template parameters to actual values.
e Actual values for parameters are expressions.

e The binding between a template and model element, produces a new model element (a
bound element) based on the template.

e If multiple constraining classifiers exist in C#, then the template parameters can be
directly edited in the Properties tab, when the template parameter is selected.

Template signature display in UModel:

MyWector

& 1 mearrany: T[]

e Class template called MyVector, with formal template parameter "T", visible in the
dashed rectangle.

e Formal parameters without type info (T) are implicitly classifiers: Class, Datatype,
Enumeration, PrimitiveType, Interface. All other parameter types must be shown
explicitly e.g. Integer.

e Property myArray with unbounded number of elements of type T.

Right clicking the template and selecting Show | Bound elements, displays the actual
bound elements.

Template binding display:

intvector:Myvector<T-=int>=

A bound named template intvector
Template of type, MyVector, where
Parameter T is substituted/replaced by int.
"Substituted by" is shown by - >.

Template use in properties/operations:
Class3

@‘I fyFlost'Yector MyWector=T-=flost=

An anonymous template binding:
¢ Property MyFloatVector of type MyVector<T->float>

© 2007 Altova GmbH Altova UModel 2007

140 Projects and code engineering

UML templates

Templates can also be defined when defining properties or operations. The autocomplete

function helps you with the correct syntax when doing this.

Clas=3

% Cperation] (nhyYector=T-=float=

e Operation1 returns a vector of floats.

Altova UModel 2007

© 2007 Altova GmbH

Projects and code engineering UML templates 141

5.10.1 Template signatures

A Template signature is a string that specifies the formal template parameters. A template is a
parameterized element that is used to generate new model elements by substituting/binding the
formal parameters to actual parameters (values).

Formal template parameter
T
Template with a single untyped formal parameter
(stores elements of type T)

Multiple formal template parameters
KeyType:DateType, ValueType

Parameter substitution
T>aBaseClass

The parameter substitution must be of type "aBaseClass", or derived from it.

Default values for template parameters
T=aDefaultValue

Substituting classifiers
T>{contract}aBaseClass

allowsSubstitutable is true
Parameter must be a classifier that may be substituted for the classifier designated by
the classifier name.

Constraining template parameters
T:Interface>anlInterface

When constraining to anything other than a class, (interface, datatype), the constraint is
displayed after the colon ":" character. E.g. T is constrained to an interface (T:Interface)
which must be of type "aninterface" (>aninterface).

Using wildcards in template signatures
T>vector<T->?<aBaseClass>

Template parameter T must be of type "vector" which contains objects which are a
supertype of aBaseClass.

Extending template parameters
T>Comparable<T->T>

© 2007 Altova GmbH Altova UModel 2007

142

Projects and code engineering UML templates

5.10.2

Template binding

Template binding involves the substitution of the formal parameters by actual values, i.e. the
template is instantiated. UModel automatically generates anonymously bound classes, when
this binding occurs. Bindings can be defined in the class name field as shown below.

intvector:Myvector<T-=int>=

Substituting/binding formal parameters
vector <T->int>

Create bindings using the class name
a_float_vector:vector<T->float>

Binding multiple templates simultaneously
Class5:vector<T->int, map<KeyType->int, ValueType<T->int>

Using wildcards ? as parameters (Java 5.0)
vector<T->7>

Constraining wildcards - upper bounds (UModel extension)
vector<T->?7>aBaseClass>

Constraining wildcards - lower bounds (UModel extension)
vector<T->?<aDerivedClass>

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering UML templates 143

5.10.3 Template usage in operations and properties

Operation returning a bound template
Class1
Operation1():vector<T->int>

Parameter T is bound to "int". Operation1 returns a vector of ints.

Class containing a template operation
Class1
Operation1<T>(in T): T

Using wildcards
Class1
Property1:vector<T->7>

This class contains a generic vector of unspecified type (? is the wildcard).

Typed properties can be displayed as associations:
¢ Right click a property and select Show | PropertyX as Association, or

e Drag a property onto the diagram background.

© 2007 Altova GmbH Altova UModel 2007

144 Projects and code engineering Project Settings

5.11 Project Settings

This option allows you to define the global project settings.
x|

Java CH |

— Update Program Code from Uk odel Project

[“wiite Documentation as DocComments

— pdate Ukodel Project from Program Code

[T DocComments as Documentation

Defined symbols:
fER_1:VER_1_5

k. I Cancel

Select the menu item Tools | Options to define your local settings, please see Tools | Options
in the Reference section for more details on the local settings.

Altova UModel 2007 © 2007 Altova GmbH

Projects and code engineering Enhancing performance 145

5.12 Enhancing performance

Due to the fact that some modeling projects can become quite large, there are a few ways you
can enhance the modeling performance:

e Make sure that you are using the latest driver for your specific graphics card (resolve
this before addressing the following tips)

e Disable syntax coloring - Styles tab | Use Syntax Coloring = false.

e Disable "gradient" as a background color for diagrams, use a solid color. E.g. Styles
tab | Diagram background color | White.

© 2007 Altova GmbH Altova UModel 2007

Chapter 6

Creating model relationships

148 Creating model relationships

6 Creating model relationships

Model relationships can be created and inserted into diagrams using several methods:

e By clicking the aggregation 1 or composition *~ licons in the icon bar.
e By using the connection handles, please see Use cases for an example.
e By clicking the association icon — |in the icon bar, and creating a connection between

elements using drag and drop

When an association has been created, a new attribute is automatically inserted in the
originating (A:name) class, e.g. Property1:Class2, in the example below.

Class1 E
@1 FPropertyl:Class2 #Property

Having created the association it is shown as active, and the Properties tab displays its
properties.

Clicking an association line, displays the association properties in the Properties tab. A:Name
and B:Name indicate the role of each class in the other.

Propetties

harie

element kind Agzociation

wizibility public hdl
le:af O

abtract O

derived O

A nanme Propertyl

A aggregation none =]
A0 memberE ndkine memberEnd d
A rulbiplicity =]
B: name

B: aggregation none =]
E: memberE ndiine ownedE nd ed
B: multiplicity hd
l Properties l Skyles l Hierarchy ‘

Depending on the "memberEndKind" - property (of A:name "Property1"):
the attribute either belongs to:

e the class - i.e. A\memberEndKind = memberEnd, (attribute is visible in class1), or
e the association - i.e. B:memberEndKind = ownedEnd (attribute not visible in class2).

If both attributes belongs to the association, i.e. both ends are defined as "ownedEnd,
then this association becomes bi-directional, and the navigability arrow disappears.
Both ends of the association are "ownedEnd".

If the memberEndKind of any of the association is set to "navigableOwnedEnd, then the

Altova UModel 2007 © 2007 Altova GmbH

Creating model relationships 149

attribute is still part of the association, but the navigability arrow reappears depending on which
end (A:name or B:Name) it is set.

To define the type of association (association, aggregate, or composite)
1. Click the association arrow.
2. Scroll down to the aggregation item in the Properties tab.
3. Select: none, shared or composite.

None: a standard association
shared: an aggregate association
composite: a composite association.

Please note:
Associations can be created using the same class as both the source and target. This
is a so-called self link. It describes the ability of an object to send a message to itself,
for recursive calls.

Click the relationship icon, then drag from the element, dropping somewhere else on
the same element. A self-link appears.

Displaying associations in Diagrams automatically

When inserting diagram elements in a diagram, the "Automatically create Associations" option
in the Tools | Options | Editing tab, allows existing associations between modeling elements
to be automatically created/displayed in the current diagram. This occurs if the attributes type is
set, and the referenced "type" modeling element is in the current diagram.

Deleting relationships/associations:
1. Click the relationship in the diagram tab, or in the Model Tree.
2. Press the Del. keyboard key.
The dependency is deleted from the diagram and project.

Deleting class associations:
Deleting a class association does not delete the attribute/property that was automatically
generated, from the class!

1. Right click the attribute/property in the class.
2. Select the option "Delete PropertyX" from "ClassX" to delete it.

Creating association qualifiers:
1. Having defined an association between two classes
2. Right click the association line and select New | Qualifier.

Clas=1

@1 Propertyl:Clazs2 @H

#Property?
) 1 Property2Class2

Clas=s2

Please note that qualifiers are attributes of an association.

© 2007 Altova GmbH Altova UModel 2007

150

Creating model relationships Associations, realizations and dependencies

6.1

Associations, realizations and dependencies

Creating relationships using connection handles:

1. Given two classes in the class diagram,

2. Click the first class to make it the active class.
Connection handles appear on three sides.

3. Move the mouse pointer over the handle on the right border of the class.
A Tooltip appears, informing you of the type of relationship that this handle creates,
Association in this case.

4. Drag to create a connector, and drop it on the second class. The target class is
highlighted if this type of association is possible.
An association has now been created between these two classes.

Elements in the various model diagrams supply you with different connection handles.
E.g. a class in a class diagram supplies the following relationship handles (in clockwise
fashion):

e InterfaceRealization

e Generalization

e Association

An Artifact in the Deployment view supplies the following handles:
e Manifestation
e Association
e Deployment

Creating relationships using icons in the icon bar:
Given two elements in a modeling diagram,
1. Click the icon that represents the relationship you want to create e.g. association,
aggregation, or composition.
2. Drag from the one object to the other, and drop when the target element is highlighted.

When creating a new association, a new attribute is automatically inserted in the
originating (A:name) class, Property1:Class2, in the example below.

Class1 Class?
B 1 Propery!:.Class2 #Property

UModel always shows all attributes of a class!

Please note:
The screenshots in this manual do not show the Association Ownership dot.

Class1 Clazs2

#Property?

@‘I Property
@‘I Propertyz Class?

To enable it, set the Show Assoc. Ownership, in the Styles tab, to true.

Deleting relationships/associations:
1. Click the relationship in the diagram tab, or in the Model Tree.

Altova UModel 2007 © 2007 Altova GmbH

Creating model relationships Associations, realizations and dependencies 151

2. Press the Del. keyboard key.
The dependency is deleted from the diagram and project.

Deleting class associations:
Deleting a class association does not delete the attribute/property that was automatically
generated, from the class!

1. Right click the attribute/property in the class.
2. Select the option "Delete PropertyX" from "ClassX" to delete it.

© 2007 Altova GmbH Altova UModel 2007

152

Creating model relationships

Showing model relationships

6.2

Showing model relationships

Showing relationships between modeling elements:
1. Right click the specific element and select Show.
The popup menu shown below is context specific, meaning that only those options are
available that are relevant to the specific element.

Generalizations {general)
Generalizations (specific
aGeneralization Hierarchy {general)

Generalization Hierarchy {specific)

Full Generalization Hierarchy (general and specific)

InterfaceRealizations (contracks)

InterfaceRealizations {implementingClassifier)

Dependencies, Usages {client)

Dependencies, sages (supplier)

Profiledpplications {appliedPraofile)
ProfileApplications {applvingPackage)

Associakions

"Propertyz” as Associakion

Bound elements

TypedElements

To show a class attribute/property as an association:

1. Right click the property in the class.

S, S —— -
i Clas=1 |
i 1
o, T
sG] Property2:Class2
i 1
CREEEEEEEEEEE i

2. Select the menu option Show | "PropertyXX" as Association.

This inserts/opens the referenced class and shows the relevant association.

Clas=1

@1 Froperty2Class2 #Property2

Class2

B 1 myProperty

Altova UModel 2007

© 2007 Altova GmbH

Chapter 7

Profiles and stereotypes

154 Profiles and stereotypes

7 Profiles and stereotypes

The Profiles package is used to extend the UML meta model. The primary extension construct
is the Stereotype, which is itself part of the profile. Profiles must always be related to a
reference meta model such as UML, they cannot exist on their own.

The Java Profile.ump (or C# Profile.ump) file needs to be applied when creating new UModel
projects using the menu item Project | Include Subproject. This profile supplies the Java
datatypes and stereotypes, and is essential when creating code for round-trip engineering.

The Bank_CSharp.ump sample file (in the ...\UModelExamples folder) shows how this is
done. The C# profile has been applied to the BankView package.

okl 2 x |

Root -
@ Component Yiew — Apply the C# Profile to access the C#
zpecific Stereotypes and Datatyvpes.
Aaply the ‘namespace’ stereatype ta
define a C¥ - namespace

‘@ Deplovment View

-8 Design Yiew

........ =7 Overview

[k# Banking access

- g B ankMiew
7 Apply CSharp Profile]
' W | GO =zapply=: ==profile=:=
@ = Relations BankView =4 C# Profile

N :’;; Fielationz (from Design Wigw) (fram Roat)

- 1 Interaction Wiew

A 1 Jee Caze View ;I

lﬁMDde...l@Diagr...l% Favn...‘

Propetties a3 x

nane Bank\igw

element kind |Package

wizihility public e
<<namespaces [

e Profiles are specific types of packages, that are applied to other packages.
e Stereotypes are specific metaclasses, that extend standard classes.
e "Tagged values" are values of stereotype attributes.

A Profile Application shows which profiles have been applied to a package, and is a type of
package import that states that a Profile is applied to a Package. The Profile extends the

package it has been applied to. Applying a profile, using the ProfileApplication icon means
that all stereotypes that are part of it, are also available to the package.

Profile names are shown as dashed arrows from the package to the applied profile, along with
the <<apply>> keyword.

Stereotypes:
A stereotype defines how an existing metaclass may be extended. It is a kind of class that
extends Classes through Extensions. Stereotypes can only be created in Profiles. Stereotypes

are displayed as classes, in class diagrams, with the addition of the keyword <<stereotype>>
added above the name of the class.

Altova UModel 2007 © 2007 Altova GmbH

Profiles and stereotypes 155

e Stereotypes may have properties, which are called "tag definitions"

¢ When the stereotype is applied to a model element, the property values are called "
tagged values"

e When stereotypes containing properties are applied, the tagged values are
automatically displayed in a comment element (shown below). Please see Tagged
values for more info on how to customize the tagged values view

e If the attribute is of type "enumeration”, then an popup menu allows you to select from
the predefined values. You can also enter/select the specific value in the Properties tab
e.g. <<GetAccessor>> visibility = public, protected etc.

Altova UModel - C:4Program Files' Altoya’ UModel20065 UModelExam: ' - |EI|5|

(& File Edt Project Lavout Wiew Tools Window Help -8
N oo e [pRizans|agaHolne =aoR B
e Bl bl e o e P T

11
v

Model Treia _ TR BankHame() (Operation) [;I
= ba”kWE”_' _ ;I <<Gethceessor>> visibility = protected
"""" 7 BankVisw hain IPAddres=() (Operation)

........ [Hierarchy of Account

<<GetAccessor>> visibilty =
-------- [@ Sample Accounts

@ [AgercyBark Uszername() (Operation)
@ Johr's 13t <<GetAccessor>> visihilty =
N
@ g John's 2nd Password() (Operation)
@ @ John's Jd <<GetAccessor~> visibilty =
-E B Accowuf I.-'
{1 B Bank !
L BankView hd /
I Cimodel 7. l HDiagra... l 4% Favariees I Fmmmmmmmmmmemmmmaem e T
Bank 1
1
Propetties !
— BarkName & bankname:s*tr.lng :
element kind Operation IPaddress:string :
wizibility public: hd uzername:string :."_
|izaf O pazsword: string L
H 1
static 0l ACCounts; Account[*] 1
abztract O '_D
QuEry O Bank(in name:string, in [P:string, in user string, in paee string) :
N 1
<<ﬁtct"?::‘ mee‘“mem”g CollectAccourtinostin spi Bank APl bool :
<L attributes: > - H
< cevantss O GetBalanceOfAccountz0int :
CoaRter > O — ==Getdcoessor, property== BankMame() string :
<<Gethooezsars» ==etdooeszar, property== PAddrezs(string :
wizibility ==eticcessor, property== Username)string T i
H 1
jj!ntde:-:erlii g ==Getdcocessor, property== Password() string : -
internalz> L ks e s s s s mm s mm s s sm s s m e ———————————— - _I
<<nems 1 LI —I 4
I Properties l Skyles lHierarchy I ElBank¥iew Main I q
Feady CAP NUM SCRL

© 2007 Altova GmbH Altova UModel 2007

156 Profiles and stereotypes Adding Stereotypes and defining tagged values

7.1 Adding Stereotypes and defining tagged values

This section uses the Bank_MultiLanguage.ump file available in the ...\UModelExamples
folder.

Creating a stereotype and defining its attributes
1. Create a new profile in the Model Tree view, e.g. right click the Root package and
select New | Profile and name it "MyProfile".

Behaviar View

4 7|Java Profile [Java Profile ump)
= Java Lang [Java Lang.umg)

4 7| ¥ Prafile [CR Profile.umg]

i Lo Wy PrOfilE

2. Right click MyProfile and select New Diagram | Class Diagram.

3. Drag the newly created profile "MyProfile", from the Model Tree into the new class
diagram.

4. Drag the DesignView package into the new class diagram as well.

5. Click the ProfileApplication icon in the icon bar, select the DesignView package
and drag the connector onto the MyProfile package.

BRI CEETE VIE :I
! Interaction Yiew
A 1 Deployment Wiews

M Unknowen Externals ==apply==

@/ Behavior Yiew Design View | ==profile==
@[5 Java Profile [Java Profie.umg] (from Root) MyProfile
- [Java Lang [Java Lang umg] (from Root)

{H |+ 7] C# Profile [C# Profile ump]
'uj | MyPrafile -

IElI"-’ID::IeI l@Diagra... lﬁ% FavuritesJ

This allows the stereotypes defined in this profile (MyProfile) to be used in the
DesignView package, or any of its subpackages.

E

6. Click the stereotype icon in the icon bar and insert a stereotype "class".

Altova UModel 2007 © 2007 Altova GmbH

Profiles and stereotypes

Adding Stereotypes and defining tagged values 157

7. Press F7 to add an attribute to the stereotype e.g. MyKey1. Do the same thing to add

| ==apply== |
Des=sign View = ==profiless
[fram Root) MyProfile
[fram Root)
|, T ______ []
I ==steretype==]
! MyKeyValuePair |
1
g """""" |E|Il
MyKey2.
Properties o x
name oyl =
cualified name el Profile:: Myl eywall
element kind Property
wizibility priotected lhd
liesarf O
ot clered O
LInicjLE
mttiplicity =]

R S

: ==gtereatype== 1
1
1

This concludes the definition of the stereotype for the moment. We can now use/assign
the stereotype when adding an attribute to a class which is part of the BankView

package.

Using / assigning stereotypes

1. Double click the BankView Main class diagram icon in the Model Tree.

© 2007 Altova GmbH

Altova UModel 2007

158 Profiles and stereotypes

Adding Stereotypes and defining tagged values

4.

modeiTee 0 x|

-E1 | wcom ;I
L:.| | aftova
E"E| w | hankviewy _I
........ [Sample Accounts
. [Bankiew hain
........ [FHierarchy of Account
o P Clrzz Dicagraim

B CheckingAccount -
1| I 3

I CMadel T.. l = Diagra. .. l 4% Favorites ‘

Propetties o x
MEIme Bank\iew Main
element kind Clazs Diagram

[E] Properties l &3 Shyles l Hierarchy ‘

BankView

@] hanks: Bank[*] {ordered}
@] bank&PLIBankAP

q} Bankiew(in bank&PLIBank AP

@} collectBankAddressinfos() boolean

@} collectAccountinfostboolean

% collectDatal)-hoolean

a} getBalanceAtBankiin bankname: Stringint
a) getBalance=umOf AlEBank=) int

K1 [

HBank¥iew Main lgclassDiagraml

This opens the class diagram and displays the associations between the various
classes. We now want to add an attribute to the BankView class, and assign/use the

previously defined stereotype.

Click the BankView class and press F7 to add an attribute.
Use the scrollbar of the Properties tab to scroll to the bottom of the list. Notice that the
MyKeyValuePair stereotype is available in the list box.

anoregstion none had ;I
fmemberEndkind ris
==annotations== O
==annaotation TypeElement== |
==final== O
==tk ey aluePairs= O
=<tranziert== |
==volatie== O -

Click the MyKeyValuePair check box to activate/apply it. The two tagged values
MyKey1 and MyKey2, are now shown under the Stereotype entry.
5. Double click in the respective fields and enter some values.

Altova UModel 2007

© 2007 Altova GmbH

Profiles and stereotypes Adding Stereotypes and defining tagged values 159

o ———_—— ™ I —————
Properties : BankView
. |
==annatations==] ﬂ E
) 1@ bankzBank[*] {ordered}
==annatationTypeElem(] : 7 :
==finalz= O 151 bankAPEBanksP|
==hykey'aluePair== :@] ==hdyHey v aluePair== Propettyl
by ke 20 = —
hiyh{ey 2 '3—: % Bankview(in bankPLIBankaP)
«=fransient==] 1e» collectBankaddressinfos():boolzan
==vnlatiles== | - : @) collectAccourtinfas)) bodlean
1
— 1 collectDatal): boolean
[=]Properties l@ Skyles lHierarchy ‘ . | 1 4 | 0

Displaying tagged values in a diagram
1. Click the Styles tab, scroll down to the Show Tagged Values entry and select all.

=howy Parameter briie =] ;I
=hiovy Par direction briie =]
Showy ExtensionPoints |true =]

Show Tagged Values @l hd
Shiowe Execution Specifidtrue]
Showy Mezsage Mumber:nested =] —

Shiowy Szsoc, Cwenershiltrue | ;I

The diagram tab now displays the tagged values in the note element. Double clicking a
value in the note element allows you to edit it directly.

BankView

L=

Property! (Property)
<<MyKeyValuePair>=> hykeyl = 20
Mykey2 = 30

banks Bank[*] {ordered}
bank AP BNk AP
==MykeyaluePair== Property1

v

mE iRE SE
b |]l

¢

Bank'fiew(in bank&PLIBank AP
collectBank&ddressinfos() hoolg
collectAccountinfos 1 boolean
collectDatal 1 boolean

SO ¢

T m,
F

P

Stereotypes and enumerations
UModel has an efficient method of selecting enumerated values of stereotypes.

Click the diagram tab containing the stereotype definition:

1. Click the Enumeration icon = in the icon bar to insert an enumeration in the class
diagram (containing the previously defined stereotype).

2. Add EnumerationLiterals to the enumeration by pressing SHIFT+F7, or use the context
menu, e.g. Yes, No.

© 2007 Altova GmbH Altova UModel 2007

160 Profiles and stereotypes Adding Stereotypes and defining tagged values

B e e L]
z=sterentype=s= | ==enumeration== R
Myt eyWaluePair ‘ MyEnum i
=, = 1
- i
Myl | e i
1
Py by 1 Na 1
o oh

3. Click the stereotype "class" and press F7 to add a new attribute/property, e.g. Finished.
4. Select type "My Enum" from the Properties tab.

Properties .- T -
name Finizhed = | ==sterectypess | ==gnuimeration=:=
cualified name My Profile:: MyHey' aluel | MyKeyValuePair | MyEnum
element kind Property E'I :
isibilty protected - i Mk ' ves
et O i MyKey2 ' e
ordered W HFinished - MyEnUm
L e
LinicuE . il
mttiplicity d
bype : LI I 1|

5. Switch back to the BankView Main class diagram.
6. Property Finished, is now shown as a tagged value in the note element.

1

W o o m m m m m m m m m m m m m m m m n

rPruperl].ﬂ (Property) t\, -

' .

{ <<MyKeyValuePair=> hykeyl = 20 1 |®@1 banksBark*

' .

:_ Mykey2=30 | @1 bark&PLIBan

X Finished = ffes *-o @] ==Mykeyyal

o Yes —
i % BankWiew(in

g collectBanks
@"} collectscoou
% collectDatal);

Double clicking the Finished tagged value, presents the predefined enumeration values
in a popup. Click one of the enumerations to select it.

Poperties a x| T Nea~om
i BankView
==annotations== | ;l Property! (Property) &
==annotationTypeElemd{] <<MyKeyWaluePair>> hykey! = 20 1@ banksBank[*] {ordsred)
- O MiyKey2 = 30 1§71 bankAPLBankAF
I.
==hilykey aluePair-= Firished = Yes [---H@] ==MyleyValusPair== Properyl
My eyl 20 E:
Myhey2 30 D—: < BankWiewin hankAPEBanksP
Finizhed Yes e : @) callectBankAddressinfos()hooled
==transzient== O : @“) collect&cocourtinfos(hoolean
N 1
==volatile== O - ' % collectDatal) boolean
IEI Prope.. l 9 Shyles l . I i < getBalancettBankin bankname: 5
1 4% getBalanceSumCiANBanks]Tint
Creerview o x ol

Altova UModel 2007 © 2007 Altova GmbH

Chapter 8

Generating UML documentation

162 Generating UML documentation

8 Generating UML documentation

The Project | Generate Documentation... command generates detailed documentation about
your UML project in HTML, Microsoft Word, or RTF formats. Note: In order to generate
documentation in MS Word format, you must have MS Word (version 2000 or later) installed.

Note that you can also create partial documentation of modeling elements by right clicking an
element in the Model Tree and selecting "Generate Documentation”. The documentation
options are the same in both cases.

UModel documentation X|

b ain |Inu:|u|:|e| Details | Fonts |

— Output format
o HTMI_ Create Diagrams as:
" Microzoft Word {* PG € EME
" RTF [T Embed diagrams
[Split output to multiple files

v Show result file after generation

k. I Cancel

Related elements are hyperlinked in the onscreen output, enabling you to navigate from
component to component. Note also that documentation is also generated for included C#
and/or Java subprojects (profiles). Note that documenting subprojects can be disabled by
deselecting the "Included subprojects" check box.

The Embed diagrams option is enabled for the Microsoft Word and RTF output options. When
this option is selected, diagrams are embedded in the generated file. Diagrams are created as
PNG files (for HTML), or PNG/EMF files (for MS Word and RTF), which are displayed in the
result file via object links.

Split output to multiple files generates an output file for each modeling element that would
appear in the TOC overview when generating a single output file e.g. a class C1 with a nested
class CNest exists; C1.html contains all info pertaining to C1 and CNest as well as all their
attributes, properties etc.

The Include tab allows you to select which diagrams and modeling elements are to appear in
the documentation.

Altova UModel 2007 © 2007 Altova GmbH

Generating UML documentation

163

UModel documentation

Main Inchide | Detailsl Fonts I

Diagrams: Elements:
&ctivity Diagram [AcceptEventaction a| ¥ Index
Clazz Diagram [] Action
w
Communicstion Disgram [ActioningputPin ¥ Named elements only
Component Cisgraim [Activity ¥ Included subprojects
Composite Structure Diagram | |[] ActivityEdge
Deployment Disdram [ActivityFinalMode . |
Imteraction Cwverviesy Diagram | ActivityMode Szfea o) Dizaremms
Chject Diagram [ActivityParameterMocde S elect Mo Di |
Packane Diagram [ActivityPartition Elect MO Lladram
Seqguence Disoram Actor
S.ta?e Mgchlne Cisgram O .-'J-.rtlfactt . S elect All Elements |
Timing Disgram [[] AzzocistionClass
JzeCase Diagram [Behaviar |
Select Mo Element

XML Schema Diagram []BehavioralF esture

[[] BehavioredClaszifier

[Call&ction LI Select Default |

L Y 1] TP PR NP R |

The Details tab allows you to select the element details that are to appear in the

documentation.

UModel documentation

b air I Include Details I Fonts I

— Element details

¥ Hierarchy diagram

E sxpanded nesting depth: |5

¥ Cwaner
I¥ Template parameters

¥ Generalz

Specifics

%] <

LY

¥ Implemented Interfaces
v Associations boffrom

¥ Sourcestarget of other relations

¥ Template parameter substitutions ¥ Tuped elements
I¥ Properties ¥ Bound elements
¥ Operation parameters ¥ Shown on diagram
¥ Owned diagrams ¥ Hyperlinks
¥ Owned members v Documentation Select all |
¥ as HTML
Select Mone |
(] I Cancel |

© 2007 Altova GmbH

Altova UModel 2007

164 Generating UML documentation

The Fonts tab allows you to customize the font settings for the various headers and text

content.

UModel documentation

b air Ilncludel Detailz Fonts |

Header
Header?

— Font face and zcrpt

|mia|

[Element Name Header

Elernent Kind Header
Line Title

Line Contemnt

Sub-line Title

Sub-line Content

Footer

Foaoter2

[Usze the zame for all

—Size

[T Use the zame for &l

— Styles

B 7 U®D

o |

Cancel

The following screenshots show the generated documentation for the Bank_MultiLanguage.
ump file that is included in the ...\UModelExamples directory.

Altova UModel 2007

© 2007 Altova GmbH

Generating UML documentation

165

Bank_MultiLanguage.ump

broject location ChProgram Files\AhlovatUModel2007 UModelExamples\Bank MultiLanguage.ump

Index of diagrams:

Index of elements:
Activity

Actor

Artitact

CallEvent

Clazs

ActivityDiagram

Cla=ssDiagram

CompanertDiagram
CompiosteStructureDiagram
DeploymertDiagram
OhbjectDiagram
Sequenceliagram
Statemachinelbiagram

UzeCazeliagram

collectData Draft

Apphy Java Profile
ClassDiagram

Bank realizations
Account Transfer
Deployment

Sample Accounts

Collect Account Information

Bank Server
ClassDiagram

Overview

Connect to BankAPI

BankAPI Draft

BankWiew
Bank

BankAddresses.ini

{CallEvent collectAccountinfof} §

Ouverview Account Balance

Query BankServer Draft

Standard User

BankAPLjar
{CallEvent collectAccountinfor})

BankWiew Main
Hierarchy of Account

BankServer

{CallEvent collectAccountind

{CallEvent connect()

(CallEvent qetHrofAccounts() §

{CallEvent disconnect() }
{CallEvent login() }

{CallEvent) {CallEvent)

{CallEvent) {CallEvent)
AccessControlContext Account

BankView BasicPermission
CharsetDecoder ChargetEncoder
Class1 Class1

Collection Constructoriccessor
FieldAccessor File

HaghSet Hashtable
Interruptible 10Exception
java.io.ObjectOutputStream java.net.URL
java.security.Permission java.security.Protectionbomain
Map MethodAccessor
Permission PrintStream
ProtectionDomain Random

Set SignalHandler

UnsupportedEncodingException URL

{CallEvent getAccountBalan
(CallEvent loginf) }
{CallEvent)

(CallEvent)

Bank
ByteToCharConverter
CharToByteConverter
Clags2?
CreditCardAccount
FileDescriptor
InetAddress
java.io.lOException
java.security.BasicPermissi

Locale
ObjectStreamnField
PrintWriter
ReflectionFactory
Stack

URL ClassPath

The screenshot above shows the generated documentation with the diagram and element index
links at the top of the HTML file. The screenshot below shows the specifics of the Account class
and its relation to other classes.

Note that the individual attributes and properties in the class diagrams are also hyperlinked to
their definitions. Clicking a property takes you to its definition.

© 2007 Altova GmbH

Altova UModel 2007

166 Generating UML documentation

Class Account

diagrarn

Account

& balance:fost=0

g idEtring

< Account)

¥ petBalancel): float

< getld() String

c\) collectAccourtinfolin bank AP IBank AP boolzan
hierarchy

E Account

F

B Checkiﬁg.&ccuunt B Saving.s.&cccuunt B Cred'rtcérd.&ccu:uunt

owner | hankview

properties gualified name Design iew: :BankView::com:altova::bankview: Account
visihility public

leaf false

abstract true

active false

code file name Account.java

code file path CAUML Bank Sampledtultilanguage’davaCodetc ormbalt ovabl
<=annotations=> false
<«final== false
=<y keviialuePair== false
w<statice > false

==strictfpr = false

ownedilember | Account balance collectAccountlnfo getBalance getld id

specific | CheckingAccount CreditCardAccount SavingsAccount

target of | ComponentRealization BankWiew
relation

typedElements Class Bank Froperty accounts
Interaction Collect Account Information Froperty b

Altova UModel 2007 © 2007 Altova GmbH

Chapter 9

UML Diagrams

168 UML Diagrams

9 UML Diagrams

There are two major groups of UML diagrams, Structural diagrams, which show the static view
of the model, and Behavioral diagrams, which show the dynamic view. UModel supports all
thirteen diagrams of the UML 2.1.1 specification as well as an additional diagram: XML Schema
diagram.

Behavioral diagrams include Activity, state machine, and use case diagrams as well as the
interaction diagrams Communication Diagram, Interaction Overview Diagram Sequence
Diagram Timing Diagram.

Structural diagrams include: class, composite structure, component, deployment, object, and
package diagrams.

Additional diagrams XML schema diagrams.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 169

9.1 Behavioral Diagrams

These diagrams depict behavioral features of a system or business process, and include a
subset of diagrams which emphasize object interactions.

Behavioral Diagrams

i’ Activity Diagram

*=| State Machine Diagram
%" Use Case Diagram

A subset of the Behavioral diagrams are those that depict the object interactions, namely:

%“& Communication Diagram
2| |nteraction Overview Diagram
= Sequence Diagram

Timing Diagram

© 2007 Altova GmbH Altova UModel 2007

170

UML Diagrams Behavioral Diagrams

9.1.1

Activity Diagram

Activity diagrams are useful for modeling real-world workflows of business processes, and
display which actions need to take place and what the behavioral dependencies are. The
Activity diagram describes the specific sequencing of activities and supports both conditional
and parallel processing. The Activity diagram is a variant of the State diagram, with the states
being activities.

Please note that the Activity diagram shown in the following section is available in the
Bank_MultiLanguage.ump sample, in the ...\UModelExamples folder supplied with UModel.

manual invokation

Receive Update Ul Event

Validate References

1 zec since last update

[reference missing)

[walid]

aborted

collectAccountinfos

[Banksiew:)
]

resut Handle Display Exception
<<zelection>> |‘|—|
FiterDisplayData [777 —

{Drdering = ordered}

<<parallel>>

- ™
Send data to Dlspla}r
H

Exception

A
S

Twveight=*}

==datastore==
Updatelog

Send AfterUpdate Signal

finizhed

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 171

Inserting Activity Diagram elements

Add Elements - Activity Diagram
@@ O XD %Y e e -k il == =lelEd

HEE AE|— M+ | h s o @D

Using the toolbar icons:
1. Click the specific activity diagram icon in the Activity Diagram toolbar.
2. Click in the Activity Diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the activity diagram:
Most elements occurring in other activity diagrams, can be inserted into an existing activity
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the activity diagram.

Inserting an action (CallBehavior):

1. Click the Action (CallBehavior) icon in the icon bar, and click in the Activity

diagram to insert it.
2. Enter the name of the Action, e.g. Validate References, and press Enter to confirm.

Propetties o X

Iname Walidate References

elemert kind |CalBehavior Action manual invokation

wigibility unzpecified d

leaf O '!f ------------- -....'
iz Synchronous ! Validate References JI—EI
behavior ad g mmmmmmm——————— B -

Inserting an action (CallOperation) and selecting a specific operation:

1. Click the Action (CallOperation) icon in the icon bar, and click in the Activity
diagram to insert it.

2. Enter the name of the Action, e.g. collectAccountinfo, and press Enter to confirm.

3. Click the Browse button to the right of the operation field in the Properties tab.

© 2007 Altova GmbH Altova UModel 2007

172

UML Diagrams

Behavioral Diagrams

Propetties o x poo T Tt
i o— collectAccountinfos }—D
name collect&ccountinfos e 4
n B =
element kind Calloperationaction
wvizibility unspecified =] M Select operation
leat O
i=Synchronous | Root
operation _% Behavior Wiew
Component Yiew
LI @[Deployment ie
[thlcollectDat, | (@] Desion iew
| Interaction issw

This opens the "Select Operation" dialog box in which you can select the specific
operation.
4. Navigate to the specific operation that you want to insert, and click OK to confirm.

Il 5elect operation

L:_| v |attova
E--{_—‘_| | bankyviessy
[Bankigar hdain
-------- [Hierarchy of Account

1

- B AgencyBank
- B John's 13t
- B John's 2ncd
- B John's Srd
- B Accownt

- E Barnk

-[F EH Bank*iewy

[Zample Accounts

-------- @ 1 bank2Pl

- < Banktiew

- @) collectBank&ddressinfos:
g collectocountinfos

- < collectData -
- -

Cancel |

A

In this example the operation "collectAccountinfos” is in the BankView class.

Properties

rSime callectAccountinfos

element kind Calllperationdction

wizibility unzpecified =]
et |

i=Synchronous

operation collectAccourtinfos]) boolean

-‘..r"' -------- "‘1.‘
i collectAccountinfos 5—”
" (Bankiewn:: !
= e m e E‘ u

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams

Behavioral Diagrams

173

Creating branches and merges

Creating a branch (alternate flow)
A branch has a single incoming flow and multiple outgoing guarded flows. Only one of the
outgoing flows can be traversed, so the guards should be mutually exclusive.

In this example the (BankView) references are to be validated:

1.

branch1 has the guard "reference missing", which transitions to the abort activity
branch2 has the guard "valid", which transitions to the collectAccountinfos activity.

tn

£

Click the DecisionNode icon

(’u’alidate References)

in the title bar, and insert it in the Activity diagram.

collectAccountinfos
[Bank\iew::)

®
Click the ActivityFinalNode icon which represents the abort activity, and insert it

into the Activity diagram.
Click the Validate References activity to select it, then click the right-hand handle,
ControlFlow, and drag the resulting connector onto the DecisionNode element.

s s -

#
D—{. Yalidate References

M ———————

L]

3

The element is highlighted when you can drop the connector.

Click the DecisionNode element, click the right-hand connector, ControlFlow, and drop

it on the collectAccountinfos action. Please see "Inserting an Action (CallOperation" for
more information.

© 2007 Altova GmbH

Altova UModel 2007

174 UML Diagrams Behavioral Diagrams

(‘lul'alidate REferent:es)

collectAccountinfos
[Bank'iew::

s

5. Enter the guard condition "valid", in the guard field of the Properties tab.

Iname (Ualidate Rﬂferences)

elerment kind ControlFlow

vizibility unzpecified =]
leat Il
cjLard healid

sneeicht @

ishtuttiCast | _
ishutiReceive | [walid]
=election

-l :
i collect Accountinfos

[Bankiew::)

ftranzformation

6. Click the DecisionNode element and drag from the right-hand handle, ControlFlow,
and drop it on the ActivityFinalNode element.
The guard condition on this transition is automatically defined as "else". Double click the
guard condition in the diagram to change it e.g. "reference missing".

(‘u‘alidate References)

[reference missing]

®

[walid]

collectAccountinfos
[BankWiew::]

Please note that UModel does not validate, or check, the number of Control/Object Flows in a
diagram.

Creating a merge:

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Behavioral Diagrams

175

14l
1. Click the MergeNode icon ¢ in the icon bar, then click in the Activity diagram to
insert it.
Properties o X
e MergeMode
clement kind [Mergeiode "
vizibility unspecified | : .
1=t O » VE.

lPererties lSt*;.-'Ies ‘

drop the arrow(s) on the MergeNode symbol.

Diagram elements

Action (CallBehavior)

Click the ControlFlow (ObjectFlow) handles of the actions that are to be merged, and

Inserts the Call Behavior Action element which directly invokes a specific behavior.
Selecting an existing behavior using the behavior combo box, e.g. HandleDisplayException,
and displays a rake symbol within the element.

Properties o l
name Handle Dizplay Exception S .

; ; ; P .
elemert kind CalBehavior Action ¢ Handle Display Exception |
wizikility unzpecified == I'"I 0
leat O _"-\ _______________ [ZH-
i=Synchronous
behisior HandleDisplayException |
. .

Action (CallOperation)

Properties
MIAITIE collectAccourtinfos '_‘,,-- ------------ ~~, "
eletnent kind Callsperationction i collectAccountinfos 5_':'
wizibility unzpecified =] " (Bankiewn:: !
leaf O e " .
i=Synchronous
operation collectAccourtinfos]) boolean
21 .

AcceptEventAction

Inserts the Call Operation Action which indirectly invokes a specific behavior as a method.
Please see "Inserting an action (CallOperation)" for more information.

Inserts the Accept Event action which waits for the occurrence of an event which meets specific

conditions.

© 2007 Altova GmbH

Altova UModel 2007

176 UML Diagrams

Behavioral Diagrams

pi

AcceptEventAction (TimeEvent)
Inserts a AcceptEvent action, triggered by a time event, which specifies an instant of time by an
expression e.g. 1 sec. since last update.

ENCES

Receive Update Ul Event

1 sec since last update

C

SendSignalAction

Inserts the Send Signal action, which creates a signal from its inputs and transmits the signal to
the target object, where it may cause the execution of an activity.

i
Froperties o x ..,.'
Mame Send Afterpdate Signal
element kind [Zendzignalaction =1
wiitility unzpecified ld ';- ------------------ . "
et O |_o—! Send AfterUpdate Signal
zional S ——— s

- H El

finizhed

1o
= DecisionNode

Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded
transitions. Please see "Creating a branch" for more information.

(‘u‘alidate References)

[reference missing]

[walid]

collectAccountinfos
[BankWiew::]

l<1->l

MergeNode

®

Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node.
The Merge Node does not synchronize concurrent processes, but selects one of the processes.

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 177

® s
InitiaINode

The beginning of the activity process. An activity can have more than one initial node.

®

ActivityFinalNode
The end of the activity process. An activity can have more that one final node, all flows in the
activity stop when the "first" final node is encountered.

@

FlowFinalNode
Inserts the Flow Final Node, which terminates a flow. The termination does not affect any other
flows in the activity.

-k
ForkNode
Inserts a vertical Fork node.
Used to divide flows into multiple concurrent flows.

-4
el ForkNode (Horizontal)

Inserts a horizontal Fork node.

Used to divide flows into multiple concurrent flows.

b JoinNode
Inserts a vertical Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

Aok

- Join Node (horizontal)
Inserts a horizontal Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

InputPin

Inserts an input pin onto a Call Behavior, or Call Operation action. Input pins supply input values
that are used by an action. A default name, "argument”, is automatically assigned to an input

pin.

Propetties o X
> =<parallel>>

name argument
element kind |InputPin .-

izikility Lnspecified | update I'.I'Iﬁlil ui
|:eaf |
WS bl |

The input pin symbol can only be placed onto those activity elements where the mouse pointer

changes to the hand symbol *_i. Dragging the symbol repositions it on the element border.

- OutputPin

Inserts an output pin action. Output pins contain output values produced by an action. A name
corresponding to the UML property of that action e.g. result, is automatically assigned to the
output pin.

© 2007 Altova GmbH Altova UModel 2007

178 UML Diagrams Behavioral Diagrams

| Properties oI X
Mame result
element kind |OutputPin update qieny ui
wizibility unspecified | 1=

leaf 1 -I'Eli\
bype =1

sas oo clificr Cula

The output pin symbol can only be placed onto those activity elements where the mouse pointer

changes to the hand symbol {b Dragging the symbol repositions it on the element border.

- ValuePin

Inserts a Value Pin which is an input pin that provides a value to an action, that does not come
from an incoming object flow. It is displayed as an input pin symbol, and has the same
properties as an input pin.

5 CentralBufferNode
Inserts a Central Buffer Node which acts as a buffer for multiple in- and out flows from other
object nodes.

5 DataStoreNode
Inserts a Data Store Node which is a special "Central Buffer Node" used to store persistent (i.e.
non transient) data.

=

ActivityPartition (horizontal)

Inserts a horizontal Activity Partition, which is a type of activity group used to identify actions that
have some characteristic in common. This often corresponds to organizational units in a
business model.

Properties =

-
Matme .I o
elemnert kind |ActivityPartition b
wizibility unzpecified lhd
i=Dimension o

1]
izExternal O =

=

Double clicking a label allows you to edit it directly; pressing Enter orients the text correctly.

Please note that Activity Partitions are the UML 2.0 update to the "swimlane" functionality of
previous UML versions.

il ActivityPartition (vertical)

Inserts a vertical Activity Partition, which is a type of activity group used to identify actions that
have some characteristic in common. This often corresponds to organizational units in a
business model.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 179

Properties o x

naime hanager - .
element kind | ActivityPartition Clerk Managsr E
vizibility Lnspecified =]

izDimenzion |

izExternal |

i ActivityPartition (2 Dimensional)

Inserts a two dimensional Activity Partition, which is a type of activity group used to identify
actions that have some characteristic in common. Both axes have editable labels.

EU SCO

Dim-1

Clerk

e
M anager

To remove the Dim1, Dim2 dimension labels:
1. Click the dimension label you want to remove e.g. Dim1
2. Double click in the Dim1 entry in the Properties tab, delete the Dim1 entry, and press
Enter to confirm.

Propetties o X
Iname

element kind A ctivityPartition

wigibility unzpecified o
izDimension

izExternal |

IPrnperties lSters ‘

Cverview o X

E ==]

Note that Activity Partitions can be nested:
1. Right click the label where you want to insert a new partition.
2. Select New | ActivityPartition.

© 2007 Altova GmbH Altova UModel 2007

180

UML Diagrams

Behavioral Diagrams

L 3
1
! Dim2
1
" EU SCO SA0
"
: g
1 [
1 =
| o
1 E =
L=
1
: 5
1 i
o
—
ControlFlow
A Control Flow is an edge, i.e. an arrowed line, that connects two activities/behaviours, and
starts an activity after the previous one has been completed.
Properties o x ""‘lj\:lﬁ _______________
MAMe
elemnent kind |(ControlFlow Twveight=*}
wvizibility unspecified . T
leat | | Send AfterUpdate Signal
Updatelog
guard
gyt
= :
ObjectFlow

A Object Flow is an edge, i.e. an arrowed line, that connects two actions/object nodes, and
starts an activity after the previous one has been completed. Objects or data can be passed

along an Object Flow.

Properties

X

raime
elemernt kind OhbjectFlow
wizibility Lnspecified
leaf |

[NE=T g

nveicght

izhiuttiCast |
izhutiReceive ([
=zelection

transformation

IPererties lSters ‘

KIE]

tccuuntlnfus
kM e

{ordering = ordered}

e [| pmmmmmm—en- -
| -

LI
(Send data to Display H

A

ExceptionHandler

An Exception Handler is an element that specifies what action is to be executed if a specified
exception occurs during the execution of the protected node.

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 181

Properties o X =
elemernt kind ExceptionHandler Ll Ll i e L
raized exception | Exception i — I‘|_|JJ
ng = ardered}
________ -,
|
|
|
|
|
]—\ 7 Exception
Display ;
I iy i

An Exception Handler can only be dropped on an Input Pin of an Action.

m Activity
Inserts an Activity into the activity diagram.
Propetties o x
" L WL W WL W W L L W N W W - b
Irame Payment i "I
element kind Activity \ Payment !
visibility public = I '
lieat O E :
abstract O ! {
reentrant N : Send payment Accept payment | |
izReadonly | { i
izSingleExecution|[]] !
i
' I
3 !
L1 J'J
IF‘rnperties lSters ‘ e i B .
E: ActivityParameterNode

Inserts an Activity Parameter node onto an activity. Clicking anywhere in the activity places the
parameter node on the activity boundary.

Properties -

rname Reguested order Process Order [order rejected]
eletnent kind ActivityParametertode

wizibility unspecified hd I: ﬁ;al:f;s}eﬁ -ur-d-e-r-:.

leaf | T " Tlw

bype =l

vioe modifier |nfa

izCortrolType [Receive order = Fill oder
ordering FIFZ ldd

=zelection ld [Crdder accepted)
LipperBound

ar StructuredActivityNode

© 2007 Altova GmbH Altova UModel 2007

182

UML Diagrams

Behavioral Diagrams

Inserts a Structured Activity Node which is a structured part of the activity, that is not shared
with any other structured node.

Properties o x

name Structuredactivityhlode N mmmmsmmmmaa- -, -
element kinc Structureddctivitybode i '
vizibility unspecified =] : westructured:> :
leat O 1'..____________ !
muztizolate O - G -
A,

"™ | ExpansionRegion

An expansion region is a region of an activity having explicit input and outputs (using
ExpansionNodes). Each input is a collection of values.

_————

(s

Propetties o = ————— 1

e ExpansionRegion {ardering = ordered}
element kind |ExpansionRegion grmmmmm————— [TTT)= T]] kmmmmmmmaaa - "
wvizibility unspecified =]

leat O

mustlzolate O

e parallel led LI

|
i
i
i
i
‘
end data to Display i
i
i
i
i
|
|
]

The expansion region mode is displayed as a keyword, and can be changed by clicking the
"mode" combo box in the Properties tab. Available settings are:parallel, iterative, or stream.

ExpansionNode

Inserts an Expansion Node onto an Expansion Region. Expansion nodes are input and output
nodes for the Expansion Region, where each input/output is a collection of values. The arrows
into, or out of, the expansion region, determine the specific type of expansion node.

Propetties o x
Marme ExpansionMode
elemernt kind Expansioniode
wvizibility unspecified =]
leat O

by dl
Ivipe modifier |[nda

i=CortralType |

ordering ordered

selection

LpperBound

IF‘rl:uperties lSters ‘

\({nrderlng ordered}
4:' - r 1
B

L1

(Send data to Dizsplay
]

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 183

s

ENE

InterruptableActivityRegion
An interruptible region contains activity nodes. When a control flow leaves an interruptible
region all flows and behaviors in the region are terminated.

To add an interrupting edge:
Making sure that:

e an Action element is present in the InterruptableActivityRegion, as well as an outgoing
Control Flow to another action:

re T

1. Right click the Control Flow arrow, and select New | InterruptingEdge.

Propetties QX ||u

element kincd IrterruptibledctivityRegion
interruptingEdge (ControlFlows: (Action -= collec = |

o

Please note:
You can also add an InterrupingEdge by clicking the InterruptableActivityRegion, right

clicking in the Properties window, and selecting Add InterruptingEdge from the pop-up
menu.

© 2007 Altova GmbH Altova UModel 2007

184 UML Diagrams Behavioral Diagrams

9.1.2 State Machine Diagram

The State Machine Diagram models the behavior of a system by describing the various states
an object may be in, and the transitions between those states. They are generally used to
describe the behavior of an object spanning several use cases. A state machine can have any
number of State Machine Diagrams (or State Diagrams) UModel.

Two types of processes can achieve this:
Actions, which are associated to transitions, are short-term processes that cannot be
interrupted. E.g. an initial transition, internal error /notify admin.

State Activities (behaviors), which are associated to states, are longer-term processes that
may be interrupted by other events. E.g. listen for incoming connections.

Please note that the State machine diagrams shown in the following section are available in the
Bank_MultiLanguage.ump sample, in the ...\UModelExamples folder supplied with UModel.

:

f/— Hot Connected T
bﬂ Nisten for incoming connections:

vy dizconnect, [akbort

connect [SS0 available]

. User Connected ™

login

Logqging in User

[authertication ok] [authertication failed] Aog failure

irternal error fmotify admin

=)

Suspended

User Authenticated)

transact

- Performing Transaction Y

Tran=acting : BankServer
(e S
e

Logging Transactiun)i

-
b ~

Inserting state machine diagram elements

Using the toolbar icons:
1. Click the specific state machine diagram icon in the State Machine Diagram toolbar.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 185

Add Elements - State Machine Diagram - X

CRE= /(e ® 00 cdxEailbEmHol—|m .0

2. Click in the State Diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the state machine diagram:
Most elements occurring in other state machine diagrams, can be inserted into an existing state
machine.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the state diagram.

Creating states, activities and transitions

To insert a simple state:

=
1. Click the state icon in the icon bar and click in the State diagram to insert it.

2. Enter the name of the state and press Enter to confirm.
Simple states do not have any regions or any other type of substructure. UModel allows
you to add activities as well as regions to a simple state through the context menu.

To add an activity to a state:
1. Right click the state element, select New, and then one of the entries from the context
menu.

rh Do Activiey

&3 Dot Inkerackion
= Do StakeMachine
rh Entry: Ackivity

0 Entry: Interaction
= Entry: StateMachine
rh Exit: Activity

0,2 Exit: Inkeraction

DD
H

Exit; StateMachine

Reqion

You can select one action from the Do, Entry and Exit action categories. Activities are
placed in their own compartment in the state element, though not in a separate region.
The type of activity that you select is used as a prefix for the activity e.g. entry / store
current time.

© 2007 Altova GmbH Altova UModel 2007

186 UML Diagrams Behavioral Diagrams

Properties o = J/ comimane sert
rSme stare current time .-"’--ll.ﬂ-.ll';ti-n- -qu Fe-s-u?t---”"" '
clemert kind | Activity t S g . -
- i ientry § store current time
- puble = : exit ! free allocated memar :-
=1 O !l W ’:
abatract O e |
reentrant |

i=REadOnlky | result accepted fstare result

i=SingleExecutio [

IPererties lSt';.ers ‘ ExitPoint

To delete an activity:
1. Click the respective activity in the state element and press the Del. key.

To create a transition between two states:
1. Click the Transition handle of the source state (on the right of the element).
2. Drag-and-drop the transition arrow onto the target state.

User Connected

login

Logging in User

The Transition properties are now visible in the Properties tab. Clicking the "kind"
combo box, allows you to define the transition type: external, internal or local.

Properties o x I('r Hot Connected Ty
name bﬂ HHisten for incoming connections
elerment kind | Transition oy
visibilty unspecified = connect [S5L available]
e]
kinct external [User Connected
ouard ==L available

jin

= Logaing in User

IF‘rl:uperties lSters ‘ ll

Transitions can have an event trigger, a guard condition and an action in the form
eventTrigger [guard condition] /activity.

To create a transition trigger:
1. Right click a previously created transition (arrow).

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 187

2. Select New | Trigger.

| e activiey

T |[:1 Trigget

|| Il Activity Diagram

An "a" character appears in the transition label above the transition arrow, if it is the first
trigger in the state diagram. Triggers are assigned default values of the form alphabetic
letter, source state -> target state.

3. Double click the new character and enter the transition properties in the form
eventTrigger [guard condition] /activity.

Transition property syntax; the text entered before the square brackets is the trigger,
between brackets the guard condition, and after the slash, the activity. Manipulating this
string automatically creates or deletes the respective elements in the Model Tree.

Please note:
To see the individual transition properties, right click the transition (arrow) and select
"Select in Model Tree". The event, activity and constraint elements are all shown below
the selected transition.

E)} Llser.Cn:nnnected B I(" Hot Connected Ty
B Relations ED flizten for incaming connections

-------- E Transition: [-= Mot Connected) o
-ED%I- Transition: (connect [SSL available],
Joonnect connect [S3L available]

. {} : SSL availskle

Adding an Activity diagram to a transition:
UModel has the unique capability of allowing you to add an Activity diagram to a transition, to
describe the transition in more detail.
1. Right click a transition arrow in the diagram, and select New | Activity Diagram.
This inserts an Activity diagram window into the diagram at the position of the transition
arrow.
2. Click the inserted window to make it active. You can now use the scroll bars to scroll
within the window.

o

(Reading transaction data)
ldata read
___________ ||
FY
database
-
K zert jeffect

exit ! free allocated memary

N
|

entry

3. Double click the Action window to switch into the Activity diagram and further define the

© 2007 Altova GmbH Altova UModel 2007

188 UML Diag

rams

Behavioral Diagrams

tr

ansition, e.g. change the Action name to Database logon.

" o

=)

[=]|uery BankServer Draft lActivitrDiagraml ‘ q I

Note that a new Activity Diagram tab has now been added to the project. You can add
any activity modeling elements to the diagram, please see "Activity Diagram" for more
information.
4. Click the State Machine Diagram tab to switch back to see the update transition.

(Reading transaction data)
i data read
__________ u

wn
S S 5

F

mechnert

exit ! free allocated memao

entry

B p—"
database
Databasze

il zert feffect

s

result accepted fstore result
",

Kl

‘ timeout

[=]Query BankServer Draft l.ﬁ.ctivityDiagraml

5. Drag the Activity window to reposition it in the diagram, and click the resize handle if

necessary.

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 189

(Reading transaction data)

data read

(Sending command to datahase)

= Crpmand sent feffect

-
-u-u-u.....__-q”‘.

I('f Wating for result _\'I
entry ! store current time

exit f free allocated memory

Dragging the Activity window between the two states, displays the transition in and out
of the activity.

0
(Sending command to datahase)

l command sent feffect

I(,— Wating for result _\\I
entry fstore current time

exit f free alocated memary

Composite states

& Composite state
This type of state contains a second compartment comprised of a single region. Any number of
states may be placed within this region.

To add a region to a composite state:
1. Right click the composite state and select New | Region from the context menu.
A new region is added to the state. Regions are divided by dashed lines.

To delete a region:
1. Click the region you want to delete in the composite state and press the Del. key.
Deleting a region of an orthogonal state reverts it back to a composite state; deleting
the last region of a composite state changes it back to a simple state.

To place a state within a composite state:
1. Click the state element you want to insert (e.g. Logging in User), and drop it into the
region compartment of the composite state.

© 2007 Altova GmbH Altova UModel 2007

190 UML Diagrams Behavioral Diagrams

The region compartment is highlighted when you can drop the element. The inserted

element is now part of the region, and appears as a child element of the region in the
Model Tree pane.

E?p U=zer Connected ;I
- [] Region

........ £ . User Connected
........ & _
........ .>|3 login o ,----------..,“-
........ i H Logging in User |[—@O
........ ® e e
-------- —Connecting to BankServer \£
........ O Logging in User [authentication ok] [aLthenticat
- Perfarming Transaction - | |

Moving the composite state moves all contained states along with it.

Orthogonal state

This type of state contains a second compartment comprised of two or more regions, where the
separate regions indicate concurrency.

Right clicking a state and selecting New | Region allows you add new regions.

] u
-,
I

arthugunalstatm “I

4

Submachine state

This state is used to hide details of a state machine. This state does not have any regions but is
associated to a separate state machine.

To define a submachine state:
1. Having selected a state, click the submachine combo box in the Properties tab.
A list containing the currently defined state machines appears.
2. Select the state machine that you want this submachine to reference.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

To add entry / exit points to a submachine state:

Behavioral Diagrams 191
Properties -
Iname Tranzacting
element kind [State transact - =
wizibility unspecified | Performing Transaction
lleat O gt T EEE L e e - "
zubmachine aE Transacting : BankServer @-
""" " 1._______________?‘:' 4
n T =

Properties

{Lugging Transaction

A

Civerview
F :

il
all |

M

The state which the point is connected to, must itself reference a submachine State

Machine (visible in the Properties tab).

This submachine must contain one or more Ent
£y

Click the ConnectionPointReference icon

and Exit points

in the title bar, then click the

submachine state that you want to add the entry/exit point to.

- ™

Performing Transaction

y

» | Fransacting : BankServer
B oo

Right click in the Properties tab and select Add entry. Please note that another Entry, or
Exit Point has to exist elsewhere in the diagram to enable this pop-up menu.

Performing Transaction

~,

|[Foansacting : BankServer
& e el

poperes o x]§
&
frame ConnectionPaointReferen
element kind ConnectionPaointReferen A..{'
visibility unspecified =] ‘C&
L}J Add entry i

Remove entry
Add exit

Remove exit

. L
Logging Transactlun_/'.

A

lPererties lSters ‘

This adds an EntryPoint row to the Properties tab, and changes the appearance of the

ConnectionPointReferece element.

© 2007 Altova GmbH

Altova UModel 2007

192 UML Diagrams Behavioral Diagrams

Propetties

- Performing Transgaction ™

frame ConnectionPointReferen:
element kincd ConnectionPointReferem ’..,(

o iy y |Feansacting : BankServer
vizibility unzpecified =] ’ s
entry ErtryPoint ld El'ltr':.-';biﬁ‘.

{Lugging Transaﬂiun}
M iy

3. Use the same method to insert an ExitPoint, by selecting "Add exit" from the context
menu.

Diagram elements

&
InitialState (pseudostate)

The beginning of the process.

FinalState
The end of the sequence of processes.

EntryPoint (pseudostate)
The entry point of a state machine or composite state.

ExitPoint (pseudostate)
The exit point of a state machine or composite state.

<

Choice
This represents a dynamic conditional branch, where mutually exclusive guard triggers are
evaluated (OR operation).

* Junction (pseudostate)
This represents an end to the OR operation defined by the Choice element.

Terminate (pseudostate)
The halting of the execution of the state machine.

§
Fork (pseudostate)
Inserts a vertical Fork bar.
Used to divide sequences into concurrent subsequences.

4
ok Fork horizontal (pseudostate)
Inserts a horizontal Fork bar.
Used to divide sequences into concurrent subsequences.

ik

Join (pseudostate)

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 193

Joins/merges previously defined subsequences. All activities have to be completed before
progress can continue.

Ak

e Join horizontal (pseudostate)
Joins/merges previously defined subsequences. All activities have to be completed before
progress can continue.

@ DeepHistory
A pseudostate that restores the previously active state within a composite state.

@ ShallowHistory
A pseudostate that restores the initial state of a composite state.

All pseudostate elements can be changed to a different "type", by changing the kind combo box
entry in the Properties tab.

Properties
Mame ExitPoirt
element kind PzeudoState
wiitility unzpecified ld|
ki ﬁ!ml |
initiail a
deepHistary
shallowHistory
join
Properties | SEdfark
CvEryiE |un|:.1||:|n
choice
entryPoint
terminate ;L
— ConnectionPointReference

A connection point reference represents a usage (as part of a submachine state) of an
entry/exit point defined in the
statemachine reference by the submachine state.

To add Entry or Exit points to a connection point reference:

e The state which the point is connected to, must itself reference a submachine State
Machine (visible in the Properties tab).

e This submachine must contain one or more Entry and Exit points

—

Transition

A direct relationship between two states. An object in the first state performs one or more
actions and then enters the second state depending on an event and the fulfilment of any guard
conditions.

Transitions have an event trigger, guard condition(s), an action (behavior), and a target state.

© 2007 Altova GmbH Altova UModel 2007

194 UML Diagrams Behavioral Diagrams

9.1.3 Use Case Diagram

Please see the Use Cases section in the tutorial for more information on how to add use case
elements to the diagram.

Standard User

get account balance

L
-=C-=C||'||:'|-{I,|'d|33=-3=-

get account balance sum

Bank

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 195

9.1.4

Communication Diagram

Communication diagrams display the interactions i.e. message flows, between objects at run-
time, and show the relationships between the interacting objects. Basically, they model the
dynamic behavior of use cases.

Communication diagrams are designed in the same way as sequence diagrams, except that the
notation is laid out in a different format. Message numbering is used to indicate message
sequence and nesting.

UModel allows you to generate Communication diagrams from Sequence diagrams and vice
versa, in one simple action see "Generating Sequence diagrams" for more information.

— 13 Meszagel
T s[k]:B

1h1: Message3 $
i, 1.1 .1 Messaged
Th Message? ~y
¢ 1b.1.2 hMessages

s[u]:B

Inserting Communication Diagam elements

Using the toolbar icons:
1. Click the specific communication icon in the Communication Diagram toolbar.

E | —F & *D A

2. Click in the Communication diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Communication Diagram:
Elements occurring in other diagrams, e.g. classes, can be inserted into a Communication
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the Communication diagram.

=

Lifeline

The lifeline element is an individual participant in an interaction. UModel allows you to insert
other elements into the sequence diagram, e.g. classes. Each of these elements then appear
as a new lifeline. You can redefine the lifeline colors/gradient using the "Header Gradient"
combo boxes in the Styles tab.

© 2007 Altova GmbH Altova UModel 2007

196 UML Diagrams Behavioral Diagrams

To insert a Communication lifeline:
1. Click the Lifeline icon in the title bar, then click in the Communication diagram to insert
it.

Properties o x
riaime Lifeline1 ': -------- -:'
qualified name Interaction? :: Lifeline1 ' Lifelinet :_n
element kind Lifeline : :
wisibility unspecifiedd | = ——-— =
represents -

destruction |

selectar

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.

Messages

A Message is a modeling element that defines a specific kind of communication in an
interaction. A communication can be e.g. raising a signal, invoking an Operation, creating or
destroying an instance. The message specifies the type of communication as well as the sender
and the receiver.

— §-oe = . +
Message (Call) Message (Reply) L1 Message (Creation) Message

(Destruction)

To insert a message:
1. Click the specific message icon in the toolbar.
2. Drag and drop the message line onto the receiver objects.

Lifelines are highlighted when the message can be dropped.

Propetties o x
name Messages
cualified name Irteraction::Messag Lifelined Lifeling?
element kind hMessage
wizikility Lnspecified | — 1. Meszagel
message=or synchCall | N "
operation ---JY 11 Message?
azynch | " e
Lzer defined sequence

Lifeline3

Note: holding down the CTRL key allows you to insert a message with each click.

To insert additional messages:
1. Right click an existing communication link and select New | Message.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 197

Lifelined Lifeline2

— 1: Mezzagel

¢ 1.1 Mezzage2
Jr 1.2 Mezsage3

Lifeline3

e The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

e Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

Message numbering

The Communication diagram uses the decimal numbering notation, which makes it easy to see
the hierarchical structure of the messages in the diagram. The sequence is a dot-separated list
of sequence numbers followed by a colon and the message name.

Generating Sequence diagrams from Communication diagrams:
UModel allows you to generate Communication diagrams from Sequence diagrams and vice
versa, in one simple action:

¢ Right click anywhere in a Communication diagram and select Generate Sequence Diagram
from the context menu.

| =2 Lifedi.. | 2 Lifedi.. | =2 Lifedi..
Lifeline Lifeline2 Lifeline3
: 1: Message :
: -

1.1: Message2

=
Replyv
it
1.2 Messages
-
Reply2
o

Reply3

. faue- Famanannd

© 2007 Altova GmbH Altova UModel 2007

198 UML Diagrams Behavioral Diagrams

9.1.5 Interaction Overview Diagram

Interaction Overview Diagrams are a variant of Activity diagrams and give an overview of the
interaction between other interaction diagrams such as Sequence, Activity, Communication, or
Timing diagrams. The method of constructing a diagram is similar to that of Activity diagram
and uses the same modeling elements: start/end points, forks, joins etc.

b

EstablishAccess("lllegal PIH"}

ref]

{0..25%
=d
zer ACSystem
: CardCut i
[pim k]
=d
User ACSystem
Please enter :

Two types of interaction elements are used instead of activity elements: Interaction elements
and Interaction use elements.

Interaction elements are displayed as iconized versions of a Sequence, Communication,
Timing, or Interaction Overview diagram, enclosed in a frame with the "SD" keyword displayed
in the top-left frame title space.

Interaction occurrence elements are references to existing Interaction diagrams with "Ref"
enclosed in the frame's title space, and the occurrence's name in the frame.

Inserting Interaction Overview elements

Using the toolbar icons:
1. Click the specific icon in the Interaction Overview Diagram toolbar.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 199

Add Elements - Interaction Overview Diagram

oo & @ ® f il il = E

2. Click in the diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Interaction Overview Diagram:
Elements occurring in other diagrams, e.g. Sequence, Activity, Communication, or Timing
diagrams can be inserted into a Interaction Overview diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the diagram.

Inserting an Interaction element:

1. Click the CallBehaviorAction (Interaction) icon
Interaction Overview diagram to insert it.

in the icon bar, and click in the

Properties ax

rame CallBehavior Action (Interaction) KOO0 1

cualified name |Design Yisw:: Activity] CallBets e R

Element kind CallBiehavior &ction []
vizibility unzpecified x| H H 5

leaf O P S : :

5 Synchronous : o
behaviordiagram [Collect Account Information | e tiri] e —" .

psccchrRulinca

e gran caelippey
e wnion

[E] Properties | 53 Styles

.
cobigcccurintd N N

Owerview 3 x

The Collect Account Information sequence diagram is automatically inserted if you are
using the Bank_Multilanguage.ump example file from the ...\UModelExamples folder.
The first sequence diagram, found in the model tree, is selected per default.

2. To change the default interaction element: Click the behavior/diagram combo box in
the Properties tab.
A list of all the possible elements that can be inserted is presented.

© 2007 Altova GmbH Altova UModel 2007

200

UML Diagrams

Behavioral Diagrams

Propetties

bebavioridiagram g

riarme: CalBehavior Action (Interaction)
cualified name Design Yies: Activity1: CallBeh
elemert kind CalBehavior Action

wizibility unspecified =]
leat O

i=Synchronous

{=d
g B)

LU T LT
bt i 1 AP
ke

colkmcchringa]

=tef= [BankWiew)
=tef= (FiterDisplayData)

Overview

=ref= (write empty result, log error)

=tef= (HandleDizplayException)

) =tef= (lizten for incoming connections)
Properties
Mdrefb (Biark PN Raat:

=tef= [(Collect Accourt Information)
Collect Account Information
=tef= (Connect to BankaPn

Foot:: Behavior Wiew
oot Bekhaviar View: BankWiew
oot Bekhaviar View: BankWiew

‘Behaviar Wiew

Root:: Interaction Wiew

Root:: Interaction Wiew:: Collect A4
Rt

Rioot::

Click the element you want to insert to e.g. Connect to BankAPI.

hehavioridiadram (Connect to Bank AP |

Propetties o x .
Marme CallBehaviorAction (Inte
oualified name Dezign Wiesw Activity1:
elemert kind CalBehavior Action
wvizibility unspecified lhdl
leat O

i=Synchronous

[~

corra]

=d

horkSBEE SR —

corrucal

ki

BTy apk by] 'WE|

|

EmmEEm LR RN

As this is also a sequence diagram, the Interaction element appears as an iconized

version of the sequence diagram.

If you select <ref> BankAPI, then the Interaction element occurrence is displayed.

Properties o x
Iname CallBehaviorAction (Inte
gualified name Design Wiesw:: Activity1:
elemert kind CallBehaviar Action
wizibility unspecified |
leaf O

izSynchronous

behavioridiagram =ref= (BankAPl) =]

Inserting an Interaction element occurrence:

1.

Click the CallBehaviorAction (InteractionUse) icon
Interaction Overview diagram to insert it.

in the icon bar, and click in the

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 201

Collect Account Information is automatically inserted as a Interaction occurrence
element, if you are using the Bank_Multilanguage.ump example file from the ...\
UModelExamples folder. The first existing sequence diagram is selected per default.

Properties o x

name CallBehavior&ction (InteractionlUsze) .]
cualified name De=ign Wiew: Activity 1. CallBehawvior &

lement kind |CallBehavior Action | Collect Account Information
vizibility unspecified =
et O i

i=Synichronous

hehavioridiagram [=ref= (Collect Account Information) « |

2. To change the Interaction element: double click the behavior combo box in the
Properties tab.
A list of all the possible elements that can be inserted is presented.

3. Select the occurrence you want to insert.
Note that all elements inserted using this method appear in the form shown in the
screenshot above i.e. with "ref" in the frame's title space.

i_:é:_:

DecisionNode
Inserts a Decision Node which has a single incoming transition and multiple outgoing guarded
transitions. Please see "Creating a branch" for more information.

14l
¢ MergeNode

Inserts a Merge Node which merges multiple alternate transitions defined by the Decision Node.

The Merge Node does not synchronize concurrent processes, but selects one of the processes.

® s
InitiaINode

The beginning of the activity process. An interaction can have more than one initial node.

®

ActivityFinalNode
The end of the interaction process. An interaction can have more that one final node, all flows
stop when the "first" final node is encountered.

§
ForkNode
Inserts a vertical Fork node.
Used to divide flows into multiple concurrent flows.

-}
i ForkNode (Horizontal)

Inserts a horizontal Fork node.

Used to divide flows into multiple concurrent flows.

Gl JoinNode
Inserts a vertical Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

© 2007 Altova GmbH Altova UModel 2007

202 UML Diagrams Behavioral Diagrams

Aok

T

Join Node (horizontal)
Inserts a horizontal Fork node.
A Join node synchronizes multiple flows defined by the Fork node.

[+ AddDurationConstraint
A Duration defines a ValueSpecification that denotes a duration in time between a start and

endpoint. A duration is often an expression representing the number of clock ticks, which may
elapse during this duration.

—

ControlFlow

A Control Flow is an edge, i.e. an arrowed line, that connects two behaviours, and starts an
interaction after the previous one has been completed.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Behavioral Diagrams

203

9.1.6

Sequence Diagram

UModel supports the standard Sequence diagram defined by UML, and allows easy
manipulation of objects and messages to model use case scenarios. Please note that the
sequence diagrams shown in the following sections are only available in the Bank_Java.ump,
Bank_CSharp.ump and Bank_MultiLanguage.ump samples, in the ...\UModelExamples
folder supplied with UModel.

a:BankView 5

1: connect()

bankaPI

[IBankAPI_—

connect)

if the password is Ok,

"l

2. Bank("AgencyBank", ip, usr,)

bank=Bank()

bank:Bank =

2.1 loging)

the no. of accounts is
determined, else the
connection iz closed.

att]

sl 211 disconnect()
[I
assert)
2.1 2 gethrOfAccounts)
{au:u:u:uunt#k[n unt = 0}
loging)

a

3 collectaccountinfos()

collectAccountinfos()

e

bank*iew collects accou

pEf)

4: bank =null

Collect Account Information

an invalved process, this
anothet interaction, wher
detail, ie. Collect Accourd

Inserting sequence diagram elements

A sequence diagram models runtime dynamic object interactions, using messages. Sequence
diagrams are generally used to explain individual use case scenarios.

Lifelines are the horizontally aligned boxes at the top of the diagram, together with a
dashed vertical line representing the object's life during the interaction. Messages are

© 2007 Altova GmbH

Altova UModel 2007

204

UML Diagrams Behavioral Diagrams

shown as arrows between the lifelines of two or more objects.

o Messages are sent between sender and receiver objects, and are shown as labeled
arrows. Messages can have a sequence number and various other optional attributes:
argument list etc. Conditional, optional, and alternative messages are all supported.
Please see Combined Fragment for more information.

Sequence diagram and other UModel elements, can be inserted into a sequence diagram using
several methods.

| S aBank | 53 brAccount | 2 ciBankaFl | A dBanK
fte element
that the
e has been
another
pticn. a:Bank 5 b:Account 5 c:IBankAPl_— d:Bank (]

1. collectAccourtinfos()

'
-

loop [0,n]] 1.1: collectacoountinfal)

> 1.1.1: getaccourtBalancel)

Thiz loop iterates
aver all hank
accounts.

A guery S0P database

The gray overlapping

execLution specification
iz created automatically
and depicts recursion. [

11411 autherticate challe

autherticate response

return query result -

getAccountBalance) e

collectAccountinfal) d

callectdccountinfos

Using the toolbar icons:
1. Click the specific sequence diagram icon in the Sequence Diagram toolbar.
2. Click in the Sequence diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the sequence diagram:
Most classifier types, as well as elements occurring in other sequence diagrams, can be
inserted into an existing sequence diagram.
1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL+F, to search for any element).
2. Drag the element(s) into the sequence diagram.

Lifeline

=

Lifeline

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Behavioral Diagrams 205

The lifeline element is an individual participant in an interaction. UModel also allows you to
insert other elements into the sequence diagram, e.g. classes and actors. Each of these
elements appear as a new lifeline once they have been dragged into the diagram pane from the
Model Tree tab.

The lifeline label appears in a bar at the top of the sequence diagram. Labels can be
repositioned and resized in the bar, with changes taking immediate effect in the diagram tab.
You can also redefine the label colors/gradient using the "Header Gradient" combo boxes in the
Styles tab.

Most classifier types can be inserted into the sequence diagram. The "represents” field in the
Properties tab displays the element type that is acting as the lifeline.

Mode! Tree X ||| Shbccount | S lBankasFl
: F oot et (1] .
- Compaonent YWigw s b:Account 5 ! cilBankAPI_—
Deployment Wiew ! '
i@} Designview 0000 =l TTTEEEIFSEESS :
[mteraction Wiew
ZJava Lang [lava Lang.umpllll
a | v
IEl Model l E Diagra.. l 4% Favari,. ‘
Properties a X Wntntoc)
narme Lifeline2 7 1.1 .1: getdccountBalencer)
element kind Lifeline
wizibility Lnzpecified lhd|
represents brAccaunt lhd|
deshruchian O The grg':.f l:werla_r:!pinl_:_; P_\W
P execution specification

Execution Specification (Object activation):

An execution specification (activation) is displayed as a box (rectangle) on the object lifeline. An
activation is the execution of a procedure and the time needed for any nested procedures to
execute. Activation boxes are automatically created when a message is created between two
lifelines.

A recursive, or self message (one that calls a different method in the same class) creates
stacked activation boxes.

Displaying/hiding activation boxes:
1. Click the Styles tab and scroll to the bottom of the list.
The "Show Execution Specifications" combo box allows you to show/hide the
activation boxes in the sequence diagram.

Lifeline attributes:

The destruction check box allows you to add a destruction marker, or stop, to the lifeline
without having to use a destruction message.

The selector field allows you to enter an expression that specifies the particular part
represented by the lifeline, if the ConnectableElement is multivalued, i.e. has a multiplicity
greater than one.

Combined Fragment

CombinedFragment

© 2007 Altova GmbH

Altova UModel 2007

206

UML Diagrams

Behavioral Diagrams

Combined fragments are subunits, or sections of an interaction. The interaction operator
visible in the pentagon at top left, defines the specific kind of combined fragment. The constraint
thus defines the specific fragment, e.g. loop fragment, alternative fragment etc. used in the

interaction.

bank:Bank 5

2.1: loging)

att)

[lpasswordOk]

211 dizconnect()

{account

212 gethrofAccounts()

A[r%unt =0}

The combined fragment icons in the icon bar, allow you to insert a specific combined fragment:
seq, alt or loop. Clicking the interactionOperator combo box, also allows you to define the
specific interaction fragment.

Properties o x
hame CombinedFragraentl
element kind CombinedFragrent
wizibility unzpecified |
interactionOperator | alk |
IPererties lSters ‘

O eryiem o x

— —

k[ﬂ unt = 0}

212 gethrOfAccounts(

1
1
1
1
1
1
1
1 {accounts
1
1
1
1
1
1

InteractionOperators

Weak sequencing seq

[s0a)

The combined fragment represents weak sequencing between the behaviours of the operands.

ALT

Alternatives alt

Only one of the defined operands will be chosen, the operand must have a guard expression

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 207

:art B !
Fw 1
1N 1
s mssmsmmmm====

1[elze] .:
................. =g

If one of the operands uses the guard "else", then this operand is executed if all other guards
return false. The guard expression can be entered immediately upon insertion, will appear
between the two square brackets.

=

fom| CombinedFragment1
IrteractionCperand
- 11 {pazswordok}

o o
Interactionoperand = H = o o o o o«
LI S P _I oL
I P -
E I I- 4 : [ebee} - - .
El Model ... l@ Diagra... l‘ﬁ% Favurites‘ 1 =
: assert) |
Propetties I = ;
1
name - Coe e
— : {account,
qualified name] .
elemert kind |(InteractionConstraint i
wizibility public o li
guard IpaszwordOk Collect Account Infarm

The InteractionConstraint is actually the guard expression between the square brackets.

Option opt
Option represents a choice where either the sole operand is executed, or nothing happens.

Break break
The break operator is chosen when the guard is true, the rest of the enclosing fragment is
ignored.

Parallel par
Indicates that the combined fragment represents a parallel merge of operands.

Strict sequencing strict
The combined fragment represents a strict sequencing between the behaviours of the
operands.

Loop

Loop loop
The loop operand will be repeated by the number of times defined in the guard expression.

| loop [0,n])

Having selected this operand, you can directly edit the expression (in the loop pentagon) by
double clicking.

Critical Region critical
The combined fragment represents a critical region. The sequence(s) may not be interrupted/
interleaved by any other processes.

Negative neg
Defines that the fragment is invalid, and all others are considered to be valid.

© 2007 Altova GmbH Altova UModel 2007

208 UML Diagrams Behavioral Diagrams

Assert assert
Designates the valid combined fragment, and its sequences. Often used in combination with
consider, or ignore operands.

Ignore ignore
Defines which messages should be ignored in the interaction. Often used in combination with
assert, or consider operands.

Consider consider
Defines which messages should be considered in the interaction.

Adding InteractionOperands to a combined fragment:
1. Right click the combined fragment and select New | InteractionOperand.
The text cursor is automatically set for you to enter the guard condition.
2. Enter the guard condition e.g. !passwordOK and press Enter to confirm.

Properties o= .
narme Interactiondperand = att !
element kind Interactiond perand H [lpasswnrdOk] 2
visibilty unspecified ml |:
quard IpazswordOk
[el=e]

IF‘ererties lSt';.ers ‘

2
ivm
3. Use the same method to add the second interaction operand with the guard condition

"else".
Dashed lines separate the individual operands in the fragment.

Deleting InteractionOperands:
1. Double click the guard expression in the combined fragment element, of the diagram
(not in the Properties tab).
2. Delete the guard expression completely, and press Enter to confirm.
The guard expression/interaction operand is removed and the combined fragment is
automatically resized.

Interaction Use

|

InteractionUse
The InteractionUse element is a reference to an interaction element. This element allows you to
share portions of an interaction between several other interactions.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 209

T = TIava Cang [Tava Cand]

H assert

“E [] Unknovn Externals J]
“E [1 Usze Caze View

L [91) ava Profile [Java Profile ump) {ECDDUW*E‘ Ll

IEIM-::::IEI l@Diagra... l%{% Favu:urites‘

lcgginn)

Properties a x| :

nanme |Hteractionld sel . :
element kind |Interactionl) ze 5 o ==
wizibility unzpecified =l - .]

. 1

refersTo Collect Account Information | I CullEaSutuEtli ey]
_______ ! :
e =

i : :

IF‘ru:uperI:ies lSt';.-'Ies J .

Clicking the "refersTo" combo box, allows you to select the interaction that you want to refer to.
The name of the interaction use you select, appears in the element.

Please note:
You can also drag an existing Interaction Use element from the Model Tree into the
diagram tab.
Gate
D{
Gate

A gate is a connection point which allows messages to be transmitted into, and out of,
interaction fragments. Gates are connected using messages.

1. Insert the gate element into the diagram.

2. Create a new message and drag from the gate to a lifeline, or drag from a lifeline and
drop onto a gate.
This connects the two elements. The square representing the gate is now smaller.

a:Bank 5 b:Acco

1: collectAccourtinfos)

E

——————
i loop [0,n] ! 11: collect&ccourtinfor)

Thiz loop iterates
over all bank
accounts.

© 2007 Altova GmbH Altova UModel 2007

210 UML Diagrams Behavioral Diagrams

State Invariant

{5} .

Statelnvariant
A Statelnvariant is a condition, or constraint applied to a lifeline. The condition must be fulfilled
for the lifeline to exist.

To define a Statelnvariant:
1. Click the State invariant icon, then click a lifeline, or an object activation to insert it.
2. Enter the condition/constraint you want to apply, e.g. accountAmount > 0, and press
Enter to confirm.

Properties o x
P - assert |
harme Statelrvarniant 297
element kind | Statelmeariant . .
wizibility unzpecified =] {au:u:u:uunt.lk[n unt = 07}
| | | |
Messages

Messages are sent between sender and receiver lifelines, and are shown as labeled arrows.
Messages can have a sequence number and various other optional attributes: argument list
etc. Messages are displayed from top to bottom, i.e. the vertical axis is the time component of
the sequence diagram.

e Acallis a synchronous, or asynchronous communication which invokes an operation
that allows control to return to the sender object. A call arrow points to the top of the
activation that the call initiates.

e Recursion, or calls to another operation of the same object, are shown by the stacking
of activation boxes (Execution Specifications).

To insert a message:
1. Click the specific message icon in the Sequence Diagram toolbar.
2. Click the lifeline, or activation box of the sender object.
3. Drag and drop the message line onto the receiver objects lifeline or activation box.
Object lifelines are highlighted when the message can be dropped.

e The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

e Activation box(es) are automatically created, or adjusted in size, on the sender/receiver
objects. You can also manually size them by dragging the sizing handles.

e Depending on the message numbering settings you have enabled, the numbering
sequence is updated.

e Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

To delete a message:
1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from
diagram"”.
The message numbering and activation boxes of the remaining objects are updated.

To position dependent messages:

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 211

1. Click the respective message and drag vertically to reposition it.
The default action when repositioning messages, is it to move all dependent messages
related to the active one.

Using CTRL+ click, allows you to select multiple messages.

To position messages individually:

ik

1. Click the "Toggle dependent message movement" icon to deselect it.
2. Click the message you want to move and drag to move it.
Only the selected message moves during dragging. You can position the message

anywhere in the vertical axis between the object lifelines.

To automatically create reply messages:

1. Click the "Toggle automatic creation of replies for messages" icon
2. Create a new message betwween two lifelines.
A reply message is automatically inserted for you.

Message numbering:
UModel supports different methods of message numbering: nested, simple and none.

—

e None removes all message numbering.

1
e Simple L assigns a numerical sequence to all messages from top to bottom i.e. in

the order that they occur on the time axis.

1.2
e Nested || uses the decimal notation, which makes it easy to see the hierarchical

structure of the messages in the diagram. The sequence is a dot-separated list of
sequence numbers followed by a colon and the message name.

1.1: collectAccountingor)

1.1.1: getdcocourtBalance)

g0 query S0P database

| The dray overlannino B

To select the message numbering scheme:

There are two methods of selecting the numbering scheme:
e Click the respective icon in the icon bar.
e Use the Styles tab to select the scheme.

To select the numbering scheme using the Styles tab:
1. Click the Styles tab and scroll down to the Message Numbering field.
2. Click the combo box and select the numbering option you want to use.
The numbering option you select is immediately displayed in the sequence diagram.

Please note:
The numbering scheme might not always correctly number all messages, if ambiguous
traces exist. If this happens, adding return messages will probably clear up any
inconsistencies.

Message replies:
Message reply icons are available to create reply messages, and are displayed as dashed
arrows.

© 2007 Altova GmbH Altova UModel 2007

212

UML Diagrams

Behavioral Diagrams

collectAccourtinfo)

AT T TSRS TR S TUTT.

getAccountBalance) IERRE

-I

|

autherticate responsze

return guery resutt -

Reply messages are also generally implied by the bottom of the activation box when activation
boxes are present. If activation boxes have been disabled (Styles tab | Show Execution
Specifics=false), then reply arrows should be used for clarity.

Creating objects with messages:

1.

+0

Messages can create new objects. This is achieved using the Message Creation icon

Drag the message arrow to the lifeline of an existing object to create that object.

This type of message ends in the middle of an object rectangle, and often repositions
the object box vertically.

Properties o x
== Bank["AgencyBank”, i
element kind |Mezsage

vizibility unzpecified =]
meszageSort | createbessage

2 Bank("AgencyBank", ip, usr, puae

L R Y .

bank:Bank =

Sending messages to specific class methods/operations in sequence diagrams
Having inserted a class from the Model Tree into a sequence diagram, you can then create a
message from a lifeline to a specific method of the receiver class (lifeline) using UModel's
syntax help and autocompletion functions.

1. Create a message between two lifelines, the receiving object being a class lifeline
(Bank)
As soon as you drop the message arrow, the message name is automatically
highlighted.

2. Enter a character using the keyboard e.g. "b".

A pop-up window containing a list of the existing class methods is opened.

2: Bank("AgencyBank", ip, usr, pa)

bank:Bank =5

2.1 loging)

b akt
Bank N I—) B
collectacoountinfos | [paszwvordok]
getBalanceCfAcco | |:|‘
cetBankMame
getlPAddress bl [I Y A -
[elze]
[aceert | | [

3. Select an operation from the list, and press Enter to confirm e.g. collectAccountinfos.

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams 213

4. Press the spacebar and press Enter to select the parenthesis character that is
automatically supplied.
A syntax helper popup now appears, allowing you to enter the parameter correctly.

2 Bank("AgencyBank”, i, usr, pw bank:Bank 5 .
217 loging) .
-
- collectAccountinfosin api: BankAPN:boolean | |
collectAccountinfos(] alt |
> [rasswardOk] |:_
else] I
ageart] i

Message icons:

_’.
Message (Call)
{...
Message (Reply)
o
; Message (Creation)
i Message (Destruction)
Ny
Asynchronous Message (Call)
5 Asynchronous Message (Reply)
\X
Asynchronous Message (Destruction)
=
Toggle dependent message movement
= . . .
. Toggle automatic creation of replies for messages

© 2007 Altova GmbH Altova UModel 2007

214 UML Diagrams

Behavioral Diagrams

9.1.7 Timing Diagram

Timing diagrams depict the changes in state, or condition, of one or more interacting objects
over a given period of time. States, or conditions, are displayed as timelines responding to
message events, where a lifeline represents a Classifier Instance or Classifier Role.

A Timing diagram is a special form of a sequence diagram. The difference is that the axes are
reversed i.e. time increases from left to right, and lifelines are shown in separate vertically

stacked compartments.

Timing diagrams are generally used when designing embedded software or real-time systems.

State ar Candition DurationCaonstraint | Time conztraint
}e {d. 3%} 9{
WisitCatd
Lifeline ;
» User Wathooess
CardOut
event or lalle {0.13} ¥
shimulus ft.t+3}
= Code
=i}
il Meszzage
MaCard
ACSystem1
Ha=Card
| L1 1 L1 1 1
| | I I 1
DT‘I 2 t T
tick mark values timing ruler

There are two different types of timing diagram: one containing the State/Condition timeline as

shown above, and the other, the General value lifeline, shown below.

1
1
1
1
1
1
1
1
1
‘sdUserh ldie >< WaitAccess ><I.-“-.fa'rtl:ard>< Iclle
1
1
1
1
1
1
1
1
1

Inserting Timing Diagram elements

Using the toolbar icons:
1. Click the specific timing icon in the Timing Diagram toolbar.

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Behavioral Diagrams

215

Add Elements - Timing Diagram

2. Click in the Timing Diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the timing machine diagram:
Elements occurring in other diagrams, e.g. classes, can be inserted into an Timing Diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the state diagram.

Lifeline

or = Lifeline

The lifeline element is an individual participant in an interaction, and is available in two different

representations: State/Condition timeline or General Value lifeline.

To insert a State Condition (Statelnvariant) lifeline and define state changes:

1. Click the Lifeline (State/Condition) icon in the title bar, then click in the Timing
Diagram to insert it.
E un e un ettt
1 [i 1
1 m EStatE1 1
i | State2 l .
| E‘E’Il

2. Enter the lifeline name to change it from the default name, Lifeline1, if necessary.

3. Place the mouse cursor over a section of one of the timelines and click left. This selects

the line.
4. Move the mouse pointer to the position you want a state change to occur, and click

again.
Note that you will actually see the double headed arrow when you do this.

A red box appears at the click position and divides the line at this point.
5. Move the cursor to the right hand side of the line and drag the line upwards.

Any number of state changes can be defined per lifeline. Once the red box appears on

© 2007 Altova GmbH

Altova UModel 2007

216 UML Diagrams Behavioral Diagrams

a line, clicking anywhere else in the diagram deletes it.

To add a new state to the lifeline:
1. Right click the lifeline and select New | State/Condition (Statelnvariant).

To move a state within a lifeline:
1. Click the state label that you want to move.
2. Drag it to a different position in the lifeline.

To delete a state from a lifeline:
1. Click the state and press the Del. key, or alternatively, right click and select Delete.

To switch between timing diagram types:
1. Click the "toggle notation" icon at the bottom right of the lifeline.

] .

This changes the display to the General Value lifeline, the cross-over point represents a
state/value change.

|““““:“‘““‘“““““““““““‘.‘
|]
| Lifeline1 Stated ><State?>< State]
i ! I
e ¥ gEIL]
Please note that clicking the Lifeline (General Value) icon = inserts the lifeline as

shown above. You can switch between the two representations at any time.

To add a new state to the General value lifeline:
1. Right click the lifeline and select New | State/Condition (Statelnvariant).
2. Edit the new name e.g. State3, and press Enter to confirm.

A new State is added to the lifeline.

Grouping lifelines
Placing, or stacking lifelines, automatically positions them correctly and preserves any tick
marks that might have been added. Messages can also be created between separate lifelines

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Behavioral Diagrams 217

by dragging the respective message object.

0]
! 1
: }e {d. 3%} 9{ :
: WaitCard :
! 1
! 1
1 .
: User Wattoocess :
: Cardout -
: Icdle: {0..13} !
: it.t+3r
i Code :
! 1

i i ; (K

! MoCard

ACSystem :
i Ha=Card
E 1 1 L1 1 L1
I L | 1 Bl @
o1 2

Tick Mark
3| TickMark

The tick mark is used to insert the tick marks of a timing ruler scale onto a lifeline.

To insert a TickMark:

1. Click the tick mark icon and click on the lifeline to insert it.

States = .

Stater
Lifeline1 State? l I

2. Insert multiple tick marks by holding down the CTRL key and repeatedly clicking at
different positions on the lifeline border.

3. Enter the tick mark label in the field provided for it.

Drag tick marks to reposition them on the lifeline.

To evenly space tick marks on a lifeline:
1. Use the marque, by dragging in the main window, to mark the individual tick marks.

2. Click the Space Across icon

H

in the icon bar.

Stater
Lifelinet State?

Stated

© 2007 Altova GmbH

Altova UModel 2007

218

UML Diagrams Behavioral Diagrams

Event/Stimulus

T

© Event / Stimulus

The Event/Stimulus ExecutionEvent is used to show the change in state of an object caused by
the respective event or stimulus. The received events are annotated to show the event causing
the change in condition or state.

To insert an Event/Stimulus:
1. Click the Event/Stimulus icon, then click the specific position in the timeline where the
state change takes place.

Propetties o X
MISIme Code }e 1d..3*%d} %|

nualified name |Design Wiew:: Code WaitCard
element kinc ExecutionEvent I_
viibility public ||| Wathccess

CardCut

e ———

2. Enter a name for the event, in this example the event is "Code".
Note that the event properties are visible in the Properties tab.

DurationConstraint

[DurationConstraint

A Duration defines a ValueSpecification that denotes a duration in time between a start and
endpoint. A duration is often an expression representing the number of clock ticks, which may
elapse during this duration.

To insert an DurationConstraint:
1. Click the DurationConstraint icon, then click the specific position on the lifeline where
the constraint is to be displayed.

Properties o x

e DurationConstraint
gualified name (Design Yieww: Interacti
element kind DurationConzstraint

WE - (.t} - 2

visibility public | | vaitCard . Gl
Imin I5| _
attccess
=R t
CardOut
Iclle

Code

The default minimum and maximum values, "d..t", are automatically supplied. These
values can be edited by double clicking the time constraint, or by editing the values in
the Properties window.

2. Use the "handles" to resize the object if necessary.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Behavioral Diagrams 219

Propetties o x
Name: DurationConstraint
gualified name [Design Yiew: Interacti
element kind DurationConzstraint]
visibility aublic ~ | [
i d WaitAoocess
T a*d

Icdle:

To-fdad) -3
1

. i

CardOut

-

Code

Changing the orientation of the DurationConstraint:
1. Click the "Flip" icon to orient the constraint vertically.

{d. 1}

Wiofdtp-de

. i':'l
% {d.l.t}

I.If

l"ﬂ'l

TimeConstraint

.

=
bl

TimeConstraint

A TimeConstraint is generally shown as graphical association between a Timelnterval and the
construct that it constrains. Typically this graphical association between an EventOccurrence

and a Timelnterval.

To insert a TimeConstraint:
1. Click the TimeConstraint icon, then click the specific position on the lifeline where the
constraint is to be displayed.

Propetties

nx |

rame
cualified name
elemert kind
wizibility

1T

Wtk

TimeConstraint

TimeiConstraint
puklic

t

t+3

Design Yiesw:Interaction:: J

[]

CardCut
n n
Ok 4t 143}
n n

The default minimum and maximum values are automatically supplied, "d..t"
respectively. These values can be edited by double clicking the time constraint, or by
editing the values in the Properties window.

Message

_’

Message (Call)

_| Message (Reply)

Async message (Call)

© 2007 Altova GmbH

Altova UModel 2007

220 UML Diagrams Behavioral Diagrams

A Message is a modeling element that defines a specific kind of communication in an
Interaction. A communication can be e.g. raising a signal, invoking an Operation, creating or
destroying an Instance. The Message specifies the type of communication defined by the
dispatching ExecutionSpecification, as well as the sender and the receiver.

Messages are sent between sender and receiver timelines, and are shown as labeled arrows.

To insert a message:
1. Click the specific message icon in the toolbar.
2. Click anywhere on the timeline sender object e.g. Idle.
3. Drag and drop the message line onto the receiver objects timeline e.g. NoCard.

Lifelines are highlighted when the message can be dropped.

LT T
FProperties o x
hame Code WigitAocess
pualified name |Design View::Interaction:: Cardout
Element kind Message Iclle —_— {013}
izitility unspecified |
nessagesot synchcal | Cade
operation
m=vnch O
MoCard
HazCard
1] 1 [|
I 1 11 | L
o1 2 t

e The direction in which you drag the arrow defines the message direction. Reply
messages can point in either direction.

e Having clicked a message icon and holding down CTRL, allows you to insert multiple
messages by repeatedly clicking and dragging in the diagram tab.

To delete a message:
1. Click the specific message to select it.
2. Press the Del. key to delete it from the model, or right click it and select "Delete from
diagram".

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Structural Diagrams 221

9.2 Structural Diagrams

These diagrams depict the structural elements that make up a system or function. Both the
static, e.g. Class diagram, and dynamic, e.g. Object diagram, relationships are presented.

Structural Diagrams

= Class Diagram

#! Component Diagram

== Composite Structure Diagram
& Deployment Diagram

El Object Diagram
O’ Package Diagram

© 2007 Altova GmbH Altova UModel 2007

222

UML Diagrams Structural Diagrams

9.21

Class Diagram

Please see the Class Diagrams section in the tutorial for more information on how to add
classes to a diagram.

CredtCardAccount

[]
]
]
]
]
]
]
]
]
—
]
]
]
]
]
]
]
-
]
]
]
]
]
]
]
]
]
]
]
]
]
r
r
r
'I

SavingsaAccount

1
1
P ! @] credilimi:flost
@1 interestRate:flo : @] interestRateOnBalance: flost
gl minimumBslance: flost=10000 E @] interestRateOnCashadvance: flog

% Sawingsdcoount!

% getinterestRater float

O collectAccourtindolin bank APEIBankAP 0 boolesn
% getMinimumBalance) flost

O CreditCardocoount)
getCreditlimit); flost
getinterestRateCnBalancer): float
getinterestRateCOnCazhadvancel
collectAccountinfodin bankAPLIBS

[PSS Y S] S

wWOW W W

Expanding / hiding class compartments in a UML diagram:
There are several methods of expanding the various compartments of class diagrams.

e Click on the * or - buttons of the currently active class to expand/collapse the specific
compartment.

e Use the marquee (drag on the diagram background) to mark multiple classes, then
click the expand/hide button. You can also use CTRL + click to select multiple classes.

e Press CTRL + A to select all classes, then click the expand/collapse button, on one of
the classes, to expand/collapse the respective compartments.

Expanding / collapsing class compartments in the Model Tree:

In the Model Tree classes are subelements of packages and you can affect either the packages
or the classes.

Click the package / class you want to expand and:

Press the * key to expand the current package/class and all sub-elements

Press the * key to open the current package/class.

To collapse the packages/classes, press the - keyboard key.
Note that you can use the standard keyboard keys, or the numeric keypad keys to achieve this.

Showing / Hiding class attributes or operations
UModel now allows you to individually display the attributes or operations of a class, as well as
define which should be shown when adding them as new elements.

Right click a class, e.g. SavingsAccount, and select the menu option Show/Hide Node content

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Structural Diagrams

223

¥isible elements

 Element Stlezs————— Attributes Ok, I
~ Show Aftibutes ——————— &] interestRate: flost
I public i protected @] minimumBalance: flogt=10000 ezl |
Operations
W private [V package % Savingsscoourt)
O getirterestRater): float
—Show Operations ———— -] callectaccountinfolin bank AP Bank AP boalean

s (mE] el O gethlinimumBalance): flost

v private W package

Select Al |
— Show nested Classifier Select None |
¥ public ¥ protected —"When new elements are added and not hidden by Element Styles
¥ | private. W package £ Show elements

£~ Hide elements [except thoze added to thiz node)

Deselecting the protected checkbox in the Show Attributes group, deselects the protected
attributes in the preview window.

Element Stlez Attributes
Show Attibutes ——————— [g interestRate: float
¥ public I protected] &1 minimumBalance: float=10000
; Operations
I pivate ¥ package ¥ Savings Account()
% petinterestRate): flost

Having confirmed with OK, the protected attributes in the class are replaced with ellipsis "...".
Double clicking the ellipsis opens the dialog box.

|]
: SavingsAccount 1
o "
e 1
et :
— O SavingsAccount() o
' > getinterestRate() flost i
E % collecttccountintolin bank AP Bank 4P boolesn :
V> gettinimumBalancer): flost :
e e o'

Note that individual attributes can be affected by only deselecting the check box in the preview
window.

Showing / Hiding class attributes or operations - Element styles

UModel allows you to insert multiple instances of the same class on a single diagram, or
even different diagrams. The visibility settings can be individually defined for each of these
"views" to the class. The screenshot below shows two views to the same class i.e.
SavingsAccount.

© 2007 Altova GmbH

Altova UModel 2007

224 UML Diagrams

Structural Diagrams

SavingsAccount

SavingsAccou

nt

minimumBalance; float=10000

% SavingsAccount)

<% getinterestRate]): flost
collectAccountinfolin bank AR IEank AP boolean
% gethinimumBalance!): flost

g1

minirmumBalance; flost="10000

% SavingsAcoount)

% getirterestRater): flost

% collectdcoountindodin bank,
% gethinimumBalance!. float

PIIE

The "When new elements are added and not hidden by Element Styles" option allows you to

define what will be made visible when new elements are added to the class. Elements can be
added manually in the model diagram and in the Model Tree, or automatically during the code
engineering process.

f* Show elements

™ Hide elements [except those added ta this node]

—When new elements are added and naot hidden by Element Stules

Show elements: displays all new elements that are added to any view of the class.

E.g. The interestRate:float attribute has been hidden in both "views" of SavingsAccount, leaving
the minimumBalance attribute visible. The "Show elements" radio button is active for the left-

hand class.

Double clicking the ellipsis "..." in the attribute compartment of the left-hand class shows that
the "Show elements" radio button is active.

SavingsAccount

SavingsAcc(

@] minimumBalance: float=10000

@] minimumBalance: float=100

— Element Stylez

v public
v private

¥isible elements

— Show Attributes

[¥ protected
¥ package

¥ public
v private

— Show Operationg

¥ protected
v package

¥ public
¥ private

— Show nested Clazsifier

¥ protected
¥ package

Attributes
[g interestRate: flost

@] minimumBalance: float=10000

Operations
™ SavingsAccount()

< petinterestRate): flost
™ collect2ccountinfalin bankaPIBankaPD: 4
™ gethinimumBalance! . float

—when new elements are added and nat hidden by ENf

& Show elements

" Hide elements [except thaze added ta thiz node]

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams

Structural Diagrams 225

Double clicking the ellipsis "..." in the attribute compartment of the right-hand class shows that
the "Hide elements (except those added to this node)" radio button is active.

SavingsAccount

________________ e

SavingsAccount

Fater:
buritind

iBalan

ance: flost=10000

Leon--fl--

@] minimumBalance: float=10000

s d ¥isible elements ﬁé,ji

~ Element Styles
— Show Attributes
¥ public ¥ protected

¥ piivate |V package

— Show Dperations
¥ public v protected
¥ piivate |V package

— Show nested Clazzifier
¥ putlic. ¥/ pratected

¥ privater ¥ package

Attriburtes
[@1 interestRate: float

Operations
< Savings Account)

i~ Show elements

@ 1 minimumBalance: flost=10000

™ petirterestRater) flost
™ callect Accauntinfalin bank &P Bank AP
™ gethdinimumBalancel) flost

—"When new elementz are added and nat hidden by E|

*' Hide elements [except those added to thiz nods]

Clicking the left-hand class and pressing F7, (or clicking the class in the Model Tree and
pressing F7) adds a new attribute (Property1) to the class.

. I o .
] SavingsAccount : SavingsAccount
- 1
e i
:@] tminimumBialsnce: flost=10000 i &1 minimumBalance: float=10000
:lgﬂ k=== Propertyl i
1 1
e Lo | > SavingsAccount()
E;‘} SavingsaAccourt() E O getinterestRated): flost
: % oetinterestRate: float : % collect&ccountinfolin bank&PLIE
: % collectdcoountinfolin bankAPEIBank AP boolean : O getMinimumBalance: flost
1
' <% getMinimumBalance) flost "
I ‘lﬂll

The new element is only visible in the left-hand class, because "Show elements" is set as
active. The right-hand class setting is "Hide elements...", so the new element is not shown

there.

Clicking the right-hand class and pressing F7 adds a new attribute (Property2) to the class.
This new attribute is now visible because the Hide elements... setting has the qualifier "except
those added to this node", where "node" generically means this class, or modelling element.

© 2007 Altova GmbH

Altova UModel 2007

226 UML Diagrams Structural Diagrams

SavingsAccount SavingsAccount

@] minimumBalance: flost=10000

@] Property
@] Propertyz

@] minimumBalance: float=10000

2 1 Propery2

% SavingsAccount)

<% oetinterestRate: float

% collectdcoourtinfolin bank Pl
% getMinimumBalance): flost

% SavingzAccount)

% getinterestRater) flost

% collectaccourdinfolin banksPLIBsnk &P boolesn
% gethinimumBalance s flost "

The Property2 attribute is also visible in the left hand class, because the setting there is "Show
elements"”

Changing the syntax coloring of operations/properties
UModel automatically enables syntax coloring, but lets you customize it to suit your needs. The
default settings are shown below.

Project Styles j BankView

Line Style rectangular d ;I]

U 5 yiers el . = @] banks:Bank[*] {ordered}

o StErEDt'fFIES alive - ﬂ ﬁ Igri] bankAPLIBankAP]

22 ?ame f3F|3F3F — ﬂ % O Bankviswin bankaPLIBank AP 4
=] (=] - -

SC Mi?tipliu:'rty navy - @ @'} collectBank&ddressinfos) boolean

SC Default Yalue —_ @ ﬁ."} collectAccountinfos]) boolean

SC Constraint purple - IalGE) % collectDatar:boolean

= Parameter #oaanss I T E <% ngetBalancestBankiin bankname: String:int

=C Par direction BlLe ____JRalf] O petBalanceSumOTAIBanks) int

SC Mested Classifier [nawvy ____JRa|[]

Showy Attributes Compar|true =l 1l |

To change the default syntax coloring options (shown below):

1. Switch to the Styles tab and scroll the SC prefixed entries.
2. Change one of the SC color entries e.g. SC Type to red.

BankView

@] banks: Bank[*] {ordered}
@] bank&PLIBankAP

% BankViewin bankAPLIBankAP
@} collectBankddressinfos i bhoolean

To disable syntax coloring:
1. Switch to the Styles tab and change the Use Syntax Coloring entry to false.
2. Use the Attribute Color, or Operation Color entries in the Styles tab to customize
these items in the class.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Structural Diagrams 227

Project Styles j
Attribute Color purple — EaER
Attribte Font Arial =]
Attribute Font-Size 11 i
Attribute Font-@izioht normal i
Attribute Sort-Macde no 2ot]
Operation Colar blue [Jalie]
Cperation Font Arial =

Overriding base class operations and implementing interface operations
UModel gives you the ability to override the base-class operations, or implement interface
operations of a class. This can be done from the Model Tree, Favorites tab, or in Class

diagrams.

1. Right click one of the derived classes in the class diagram, e.g. CheckingAccount, and
select Override/Implement Operations.

Overridden Methods

B e e oo |] |

: CheckingAccount : SavingsAccount
£ :
= 0 g interestRate:flost

‘ Checking, rit
" P Checkingsccount() i g1 minimumBalance: flost=10000
: % collectaccourtinfolin bankaPLIBankAP: boolean 1
1
e e e e Sim

EH Account
[<% Accounte)

l

[] <% getBalancel): float

[] 7 aetldl’): String
<™ collectAccountinfolin bankAPL: I Bank AP

| ﬂ Select Mone | Cancel

% SavingsAccount!)

— Dperations

Sart-Mode: Ir‘u:l gort ;I
v Hide ztatic

¥ Hide private

[Hide <<final>

™| Hide all but < <wirtuals >, <<ovenmdes»

Select undefined [nterface methods

Select undefined abstract methods

Select Al |

i

2. Select the Operations that you want to override and confirm with OK.

Creating getter / setter methods
During the modeling process it is often necessary to create get/set methods for existing
attributes. UModel supplies you with two separate methods to achieve this:

e Drag and drop an attribute into the operation compartment
e Use the context menu to open a dialog box allowing you to manage get/set methods

© 2007 Altova GmbH

Altova UModel 2007

228 UML Diagrams Structural Diagrams

To create getter/setter methods using drag and drop:
1. Drag an attribute from the Attribute compartment and drop it in the Operations
compartment.

u
]
]
]
]
]
]
]
]
—
]
]
]
]
]
]
]
:—D
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
lI

] SavingsAccp——* -
= jr" Info:
i : ;
:?'5'1 2T 2Ei e HEE Drop will create getker/setter
1 minimumBalance: flost=1 00 ;
49! L ; |
bH=r b —a
1 SavingsAccount() ! 5
E O etinterestRater: flost : &
1
: <% collectaccountinfoiin bankAPLIBankaP:hoalesn : ey
: 4 '} gethinimumBalance!): flost : O
g - TaTm 1
4]

A popup appears at this point allowing you to decide what type of get/set method you
want to create.

Create getter & setker {default) |

Create getter (default)

Create setter (default)

Choose getterfsetter. ..

Selecting the first item creates a get and set method for interestRate:float.

.I | I —_— e "

i SavingsaAccount

1@ interestRate: flost
157 minimumBalance: float=10000

% SavingsAccount)

% petinterestRater) flost

% collectccourtinfodin bankAPEIBank AR boolesn
% getMinimumBalancer): float

% setinterestRatelin InterestRate: float’: void

% getinterestRate!): flost

e e

To create getter/setter methods using the context menu:
1. Right click the class title, e.g. SavingsAccount, and select the context menu option
Create Getter/Setter Operations.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Structural Diagrams 229

Create Getters;Setters

linterestRate Select Getters |
setter [| setinterestRate(in InterestRate: flost): void
getter [| getinterestRater: flost Select Setters |

|minimumBalance
setter [setMinimumBalance(in MinimumBalance: flost): void
getter [| getMinimumBalance!): flost Select &l

Select Hone

I
I
oK, |
|

Cancel

The Create Getters/Setters dialog box opens displaying all attributes available in the
currently active class.

2. Use the buttons to select the items as a group, or click the getter/setter check boxes
individually.

Please note:
You can also right click a single attribute and use the same method to create an
operation for it.

Ball and socket notation

UModel now supports the ball and socket notation of UML 2.0. Classes that require an
interface, display a "socket" and the interface name, while classes that implement an interface
display the "ball".

Cla==s3

-.zElzeEE
L"*-__h l____jl____]

- a
© by 2=interface== 1

Class1 | ==uza== 1 Class2
._____________:_; Interfaced :5;]' """" ass
B
==LEeEE
L e 1r e

-

Class4 |-~

In the shots shown above, Class2 realizes Interface1, which is used by classes 1, 3, and 4. The
usage icons were used to create the usage relationship between the classes and the interface.

To switch between the standard and ball-and-socket view:
e Click the Toggle Interface notation icon at the base of the interface element.

© 2007 Altova GmbH Altova UModel 2007

230

UML Diagrams

Structural Diagrams

Clas=3

Irterfacel

Cla=s1 Claz=s2

fffj@

Clas=4

Adding Raised Exceptions to methods of a class
Click the method of the class you want to add the raised exception to in the Model Tree

1.

window, e.g. getBalance of the Account class.

2. Right click in the Properties window and select Add Raised Exception from the popup

menu.
T T 7 SCCOTT
Pl - @ < getBalance ;I
Iﬁl Model Tree l@ Diagram Tree l‘%% Favorites J
Properties
riame getBalance -
qualified name Design YWiews:: Bankiew:: cor
element kind Operation
wizikility o |
- Add Raised Exception
=tatic Remove Raised Exception
abtract] % Ched
CONCUrFency zequertial . O calle
'
UEry | LI K
IEl Properties l@ Styles J FHierarchy o
OVErViEW J;l = Messages
I mRmenenns | [~ ~[a[~[d

This adds the raised exceptions field to the Properties window, and automatically

selects the first entry in the popup menu.

3. Select an entry from the popup, or enter your own into the field.

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams

Structural Diagrams 231

Propetties

COMCLFTENSyY
Uy
==annotations==
==final==
==native==
==strictfp=s=
==synchronizeds==

raized exceptions

[=]Properties l@ Staf

zequertial

O gaooo

ApstractdethodError
A, fethiodEr rar
thodErrar
AccessibleOhject

Overview

Acoount

ArithmeticException
Array

~]

% Ched
& colle

Root:; Java Lang;
Root:; Java Lang
Root:; Design Vi
Root:; Java Lang
Root:; Java Lang

© 2007 Altova GmbH

Altova UModel 2007

Structural Diagrams

232 UML Diagrams

9.2.2 Composite Structure Diagram
The Composite Structure Diagram has been added in UML 2.0 and is used to show the internal

structure, including parts, ports and connectors, of a structured classifier, or collaboration.

-
T ccount Transfer
P 0000000000000 0000000000000000000 *1‘
J'I” hh\
rJ L]
L s
: secure connection I
% Provider Receiver i
) ’
\“ ’,‘
\“m ‘J"
“qﬁ-“hh----_------"'-d_FF
-F"'-* --------- ‘--“-m
- -
- Bank Account Transfer S
- [I I i . L L "
- - *w
;” “M‘
------ LY
,” rz"#'— qh"'w‘ \\.‘
& i Account Transfer ! b
rf khh_‘ '_._,ﬂ"' Tl E——— 'IL_.
: - ." - Provider Source Bank .‘
H ;
i ! }
|
L y
1
LS ! ;
% N F
. i ; Py
. | Receiver ,
L] + o
LY -
Sa Target Bank i
—
- - — - - - -
—
- - -
-

Inserting Composite Structure Diagram elements

Add Elements - Composite Structure Diagram ~ X
OB o o — - b Y |y

£ o

Using the toolbar icons:
1. Click the specific Composite Structure diagram icon in the toolbar.
2. Click in the Composite Structure diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Composite Structure diagram:
Most elements occurring in other Composite Structure diagrams, can be inserted into an
existing Composite Structure diagram.

Locate the element you want to insert in the Model Tree tab (you can use the search

1.
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the Composite Structure diagram.

© 2007 Altova GmbH

Altova UModel 2007

UML Diagrams

Structural Diagrams

233

s

" | Collaboration

Inserts a collaboration element which is a kind of classifier/instance that communicates with
other instances to produce the behavior of the system.

CollaborationUse

Inserts a Collaboration use element which represents one specific use of a collaboration

involving specific classes or instances playing the role of the collaboration. A collaboration use
is shown as a dashed ellipse containing the name of the occurrence, a colon, and the name of
the collaboration type.

Properties

qx

M3Mme

wizibility
[y e

elenent kind |Collaborationlze

unspecified had
Accourt Transfer »|

mm -

“ Bank Account Transfer

e

] i

-

F
o,
iknccuunt Transfer @

Provider

Source Bank

When creating dependencies between collaboration use elements, the "type" field must be filled
to be able to create the role binding, and the target collaboration must have at least one part/

role.

=

Part (Property)

Inserts a part element which represents a set of one or more instances that a containing
classifier owns. A Part can be added to collaborations and classes.

Port

Inserts a port element which defines the interaction point between a classifier and its
environment, and can be added on parts with a defined type.

=

Class

Inserts a Class element, which is the actual classifier that occurs in that particular use of the

collaboration.

Connector

Inserts a Connector element which can be used to connect two or more instances of a part, or a
port. The connector defines the relationship between the objects and identifies the

communication between the roles.

Dependency (Role Binding)

Inserts the Dependency element, which indicates which connectable element of the classifier or

operation, plays which role in the collaboration.

© 2007 Altova GmbH

Altova UModel 2007

234 UML Diagrams Structural Diagrams

9.2.3 Component Diagram
Please see the Component Diagrams section in the tutorial for more information on how to add
component elements to the diagram.

Diagram Tree o x
= Diagrams -
- [z UzeCasze Diagrams
A5 Clazz Diagrams BankView
[fram bankwview)

B =] Dbiect Diagrams ==Realization] ==

[Sample Accounts

QRJ lizationz==]
g] Ea Bank
=}

Ela Component Diagrams —=component==
-k Bank‘-.-.’lew realization BankVYiew (Tram bankview
- B Dwervisw . | iﬂ\. 1[:::
1 [an Deployment Diagrams ;
T O o [T hal :
IEI Model ... l = Diagra... 1‘5} Faw:urites‘ { ==Reslization=>
LT 2 ~:~:Realiz;atmn4:~:~ 1“
R B ankMiew realization h
element kind ComponentDiagram i Y,

CheckingfAccount
[fram bankwview

I Properties l Skwles l Hierarchy ‘ ;

Cveryiew o x CreditCardAccount

W A = E % (from hankyvies)

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Structural Diagrams 235

9.2.4 Deployment Diagram

Please see the Deployment Diagrams section in the tutorial for more information on how to add
nodes and artifacts to the diagram.

P

Home PC

==attifact== [
BankView.jar

s i

==TCPAP==

==artifact== [==artifact== [
BankAdresses.ini BankAPLjar

B

R o N s I.

R

© 2007 Altova GmbH

Altova UModel 2007

236 UML Diagrams Structural Diagrams

9.2.5 Object Diagram

Please see the Object Diagrams section in the tutorial for more information on how to add new
objects/instances to the diagram.

John's Checking: CheckingAccount

AhovaBank: Bank H

balance = 11 975.00

bankname = AtovaBank . id= JDCA-57E9
Padress = 1010127 128 BCCOUnts | i mBalance = 10,000.00

uzername = John Doe
password = Jodoe

accounts = L " John's Credit: CreditCardAccount B
. accounts

balance = §2.00

id = JDiCCA-0123

crediLimit = 20,000.00
irterestRateCnBalance = 3.5
interestRateOnCashidvance = 14.0

John's Saving: SavingsAccount &

accourts
balance = & 743.00

id=JD3A-2345
irterestRate = 1.2

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Structural Diagrams 237

9.2.6

Package Diagram

Package diagrams display the organization of packages and their elements, as well as their
corresponding namespaces. UModel additionally allows you to create a hyperlink and navigate
to the respective package content.

Packages are depicted as folders and can be used on any of the UML diagrams, although they
are mainly used on use-case and class diagrams.

==NAMESPACE== ==NAMESPaceE== [#]
bankview lang ==MEAMESPRcE==
[from altova) [from jawa) http:iwww.altova.comAPO
T =% T = -

P
1
|

e
S

o oy
. S

-

L ==profile== .ffl I
Behavior View T
) Foat X5D Profile . XSDDatatypes
rom Ro -
() [fram Root) K,-‘ [fram ®=D Prafile)
Iy ."I. o =Y
|'{I __.-'{"".'
.lI ;l .-""""
==MAMESpaces=

http:/weww . xmilspy.com/schemasiorgchart

Automatic Package Dependency diagram generation
UModel has the capability to generate a package dependency diagram for any package in the
Model Tree.

Dependency links between packages are created if there are any references between the
modeling elements of those packages. E.g. Dependencies between classes, derived classes, or
if attributes have types that are defined in a different package.

To generate a package dependency diagram:
1. Right click a package in the Model Tree, e.g. altova, and select Show in new Diagram
| Package Dependencies... .
This opens the New Package Dependency Diagram dialog box.

© 2007 Altova GmbH

Altova UModel 2007

238

UML Diagrams

Structural Diagrams

Mew Package Dependency Diagram

Diagram Mame: IF'au:kage dependencies of altova

[lgnore extemnal packages [not child of altoval

v Create hyperlink to diagram

Style Autolayout
Fill calor of external packages: V¥ Autolapout
[—— j | hierarchic |

o]

Cancel |

2. Select the specific options you need and click OK to confirm.

Tree o X

2 Bankigw - I

[o bankviey
[=, Relations
= Relations

7]

..... A &pply Java Profile
E| com q.:cprnfile::.'p =SENAMESPaces== ==NaAMmespace=>=
H
gl atova | Java Profile BankAPI lang
[fram Root) [fram Banking access) [fram java)
— [E Package depe a ~

Ay

£ Banking access ==NAMEEPace== | .~

| Bank AP altova ==NAmespace==
D -

=! Relations (from com) bankview
Y

A new diagram is generated and displays the package dependencies of the altova
package.

Inserting Package Diagram elements

Using the toolbar icons:
1. Click the specific icon in the Package Diagram toolbar.

Add Elements - Package Diagr = X

[[

2. Click in the diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the Package Diagram:
Elements occurring in other diagrams, e.g. other packages, can be inserted into a Package
diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the diagram.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Structural Diagrams 239

O Package
Inserts the package element into the diagram. Packages are used to group elements and also
to provide a namespace for the grouped elements. Being a namespace, a package can import
individual elements of other packages, or all elements of other packages. Packages can also be
merged with other packages.

Profile

Inserts the Profile element, which is a specific type of package that can be applied to other
packages.

The Profiles package is used to extend the UML meta model. The primary extension construct
is the Stereotype, which is itself part of the profile. Profiles must always be related to a
reference meta model such as UML, they cannot exist on their own.

Dependency
Inserts the Dependency element, which indicates a supplier/client relationship between
modeling elements, in this case packages, or profiles.

o

Packagelmport

Inserts an <<import>> relationship which shows that the elements of the included package will
be imported into the including package. The namespace of the including package gains access
to the included namespace; the namespace of the included package is not affected.

Note: elements defined as "private" within a package, cannot be merged or imported.

1

PackageMerge

Inserts a <<merge>> relationship which shows that the elements of the merged (source)
package will be imported into the merging (target) package, including any imported contents the
merged (source) package.

If the same element exists in the target package then these elements' definitions will be
expanded by those from the target package. Updated or added elements are indicated by a
generalization relationship back to the source package.

Note: elements defined as "private" within a package, cannot be merged or imported.

ProfileApplication
Inserts a Profile Application which shows which profiles have been applied to a package. This is
a type of package import that states that a Profile is applied to a Package.

The Profile extends the package it has been applied to. Applying a profile, using the
ProfileApplication icon, means that all stereotypes that are part of it, are also available to the
package.

Profile names are shown as dashed arrows from the package to the applied profile, along with
the <<apply>> keyword.

© 2007 Altova GmbH Altova UModel 2007

240 UML Diagrams Additional Diagrams

9.3 Additional Diagrams

UModel now supports the import and generation of W3C XML Schemas as well as their forward
and reverse-engineering in the code-engineering process.

50 XML Schema

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Additional Diagrams 241

9.3.1 XML Schema Diagrams

XML Schema diagrams display schema components in UML notation. Global elements i.e.
elements, simpleTypes, complexTypes are shown as classes, or datatypes, with attributes in
the attributes compartment. There are no operations in the Operation compartment. The
Tagged Value note modeling element is used to display the schema details.

To see how the UML elements and XML schema elements/attributes are mapped, navigate to
XML Schema to/from UModel elements.

(7] ==complexType, global==
Address

[1 _sequence:mg_sequence

B ==zequences: mQ_seqUence

==gxterlzion==

(7] ==complexType, global==
EU-Addres= Z=ZzegUences:
mg_sequence
[1 _sequence:mg_sequence * (from EU-Address)

_=ErUEncE

[==sttributes= export-code: postivelnteger=1

[==element== postcode: ELU-Postco

i
v

B ==seguences== my_sequUence

- po=steode (Property) b}

v

! <<element>> form = gualified
export-code (Property)

<<attribute>> fixed = true

form = ungualified

Please note:
Invalid XML Schemas cannot be imported into UModel. XML Schemas are not
validated when importing, or creating them in UModel. XML Schemas are also not
taken into account during the project syntax check. A well-formed check is however
performed when importing an XML schema.

© 2007 Altova GmbH Altova UModel 2007

242 UML Diagrams Additional Diagrams

Importing an XML Schema

To import an XML Schema:
1. Select the menu option Project | Import XML Schema file.

Import XML Schema File E x|

Language: IKSD‘I] j

=500 file: Iva"-.LlMn:ndeIEEIEI?'\LIMn:-deIE:-:amples'xElrgEhart.:-:sdjJ

— Synchronization
' Merge Code into Model

" Owvervite Model according to Code

— Dviagram generation

¥ Enable diagram generation

< Back I Hest » I Finizh Cancel

2. Make sure that the Enable diagram generation check box is active and click Next, to
continue.

Content Diagram Generaktion & 5'

— Content diagrams

¥ Generate diagrams for <S50 globals Sl

v Open diagrams

¥ Show Attributes compartment
[T Show D perations compartment
¥ Hyperlink diagrams
¥ Show nested Classifiers compartment
¥ Show EnumerationLiterals compartrent

¥ Show Schema Details as Tagged Yalues

< Back I Hest » I Finizh Cancel

3. Define the Content diagram options in the group of that name. The first option creates a
separate diagram for each schema global element.

4. Select the compartments that are to appear in the class diagrams in the Style group.
The "Show schema details as tagged values" option displays the schema details in the
Tagged Value note modeling element.

5. Click Next to define the Package dependency diagram.

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams

Additional Diagrams

243

Package Dependency Diagram Generation

— Package dependency diagram

¥ Open diagram

[T lgnore external packages
[not child of import target]

¥ Hyperlink package to diagram

— Style
Fill zolor of external packages:
[—
 Sutolayout
v fustolapout
Ihieraru:hin: j

X

< Back |

HEws || Finish |

Cancel |

6. Click Finish to start the XML Schema import.
The schema(s) are imported into UModel and all diagrams are available as tabs. The
screenshot below shows the content of the EU-Address (complexType) diagram.

Made! Tree e :|E| ==complexType, global== 1
]
Fioot =k Address]
B eo Al Schemaz ;l' i
-------- [H|Package dependencies of 4 [_=sequence:mg_sequence i
L 1 = 1
-2 [t ey alftorva comAPO 3] 1
3
E‘ B address-Schermsa | B ==sequences= mg_sequence '
e [=n Address (complexType - = = e e e e m e ———————— -
o e EU-Adddress (complex]
o R US-Address (complex” ==gxterzions==
- B Address
E‘E EL-Address = (7] ==complexType, global==
1| r EU-Address
IEI Model l E Diagra.. l 2% Favor,. ‘
[1 _seguencemg_sequence *f (from E
Properties [=esttributes= export-code: posttivelnteger=1 |- He 0
Name Adddress - =
cualified name Al Schemas: hitp B cseruences= my_sequence
element kind Clazz postco)
vizibility public = ! <<elem
leat O export-code (Property)
ahstract O <<attribute=> fixed = true
active O form = ungualified
Please note:

A new package called All Schemas was created and set as the XSD Namespace Root. All XSD
globals generate an XML Schema diagram, with the diagrams under the respective namespace

packages.

© 2007 Altova GmbH

Altova UModel 2007

244

UML Diagrams

Additional Diagrams

Maodel Tree

Foot
- asp All Schemas
-------- !E'!F‘au:kage dependencies of All Schemas
B g ey altova comAPO
--EE address-Schema
-------- m.ﬂ.ddress [complexType)
-------- f,E.jELI-Address [complexType)
-------- mUS-.&.ddress [complexType)
‘E Addrezs
-[F B EU-Addrezs
-H B U=-Address
-[@ [E] US-State
-[@ [r] EU-Postcode
- = Relations

B H CrgChart-schema
o[l bl CElement)
b [isi| Department (element)

IEI Model Tree l@ Diagram Tree l{% Favarites ‘

Bt e xmilspy comfschemasiorgchart

[

Schema details display - tagged values

Schema details displayed as tagged values in the Tagged Value note element, can be
configured using the Show Tagged Values in the Styles tab, or by clicking the "Toggle compact
mode" icon at the bottom right of the Tagged Value note. This switches between the two states

"all" and "all, hide empty", both of which are shown below.

“howe ExtenzionPointz |brue

Shioww Tagged Yalues
=hiovwy Execution Specific
Showe Meszage Mumber:|element

Shiowy Azsoc, Crnershi|Eement, hide empty
all

21 RN EHENEY

Mamespace Display Mo

Project Styles j
Shiowe Detfault Yalue true ;I
Shiovwy Parameter true
Shiovwy Par direction true

Cirawy hirrored all, hide empty -

Diag. Background Color swhite 1= @J
Diag. Grid Colar black IR

| TR ml ECIP R T | | TR -l =

[=] Propetties l@ Shyle ‘

Show tagged values: all

Displays the tagged values of the class as well as those of the owned attributes, operations etc.

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams Additional Diagrams 245

T i .

] <<complexType:=>
lid =
{ block =

i final =
1

 mg_sequence (Class)

i “<sequence=> id=

i export-code (Property)

| ecattribute>> id=

fixed = true

form = ungualified

L

Show tagged values: all, hide empty
Displays only those tagged values where a value exists e.g. fixed=true.

(7] ==complexType, global==
EU-Address
[fram address-Schema)

[1 _sequence:mg_sequence

[==sttributes== export-code: positiveinteger=1

B ==zequences== my_sequence

'.. -1 L
{ export-code (Property) -3‘!

t<<attribute>> fixed = lrue [Toggle campact mode]
:_ form = unquali\i%
ey P e eee e L vy

Show tagged values: element
Displays the tagged values of the class but not those of the owned attributes, operations etc.

I'__ _________ 11__ - 1\ | |
{ TocomplexType-> -1:
{id= 123 :
i block = !
*finl = i
! mixed = i

e mm e o

Show tagged values: element, hide empty
Displays only those tagged element values of a class, without the owned attributes, where a
value exists e.g. id=123

7
l'_ ________ d o o 1, []
: <<complexType=> -
Vi = 123 1
e Erm'-

© 2007 Altova GmbH Altova UModel 2007

246

UML Diagrams Additional Diagrams

XML Schema annotation:
When importing XML schemas, please note that only the first annotation of a complex- or
simpleType is displayed in the Documentation window.

Inserting XML Schema elements

Add Elements - XML Schema Diagram

Using the toolbar icons:
1. Click the specific XML Schema diagram icon in the toolbar.
2. Click in the XML Schema diagram to insert the element.
Note that holding down CTRL and clicking in the diagram tab, allows you to insert
multiple elements of the type you selected.

Dragging existing elements into the XML Schema diagram:
Elements occurring in other diagrams can be inserted into an existing XML Schema diagram.

1. Locate the element you want to insert in the Model Tree tab (you can use the search
function text box, or press CTRL + F, to search for any element).
2. Drag the element(s) into the XML Schema diagram.

Note: you can also use the Copy and "Paste in diagram only" commands to insert
elements.

B XSD Target Namespace
Inserts/defines the target namespace for the schema. The XSD Target Namespace must
belong to an XSD Namespace Root package.

= XSD Schema
Inserts/defines an XML schema. The XSD schema must belong to an XSD Target Namespace
package.

............. ST
Propetties E ==zchema=»= |
- i address-Schema .
==redefines== O :I d !
«=zchemass = !
; = 4
iicd 5 '
ttribteF armDetaut - : B ==complexType, global== Address :_.;.
blockDefault | : B ==complexType, dobal== EU-Address |
1
elementFormbefault gualified =] ! [E] ==global, zimpleTypes== US-State :
. 1
finalCefaut | : [0] ==global, simpleTypes== EU-Postcode :
WErEIon : B ==complexType, global== Us-Address |
il lang possssssssssssscssssmnnnne Tolm
hittp: e a3 org F2007 Dbl S L
wmins P g —I

ipu=krttp:lmvww.artnva.u:-:umﬂF'Oj [:st] Address {complexType) lELI-P.u:Iu:Iress (oo

[Z=]Properties l@l Skvles J

Messages

Altova UModel 2007 © 2007 Altova GmbH

UML Diagrams Additional Diagrams 247

=]
Element (global)
Inserts a global element into the diagram. Note that a property is also automatically generated in
the attributes compartment.
Properties o x === L S
— T _I : ==glement== 1
== L
ORI R i XSDElement3 |
==glement=:= 1 1
- | (from KESDSchema) Lo
B 1
block hd 1§71 XSDElements |
firal -l o —— 1
fixed - . b
form o
nillakle o
==glabal== I:l

To define the property datatype:
1. Double click the property and place the cursor at the end of the line.
2. Enter a colon character ":", and select the datatype from the popup dialog box, e.g string.

| Froperties X

frzime ¥SDElemert & . 3 .
yialifisd name b -Schemasz: bt i cglemerte= 3
element kind Property E YSODElement: :
visihilty protected =] ! (from XSDSchems) —a
| [N O o v
ordered O ke 1 HSDElemertd:string: '
LinicjLe A ——————— .l
multiplicity |

bype atring =l

by e modifier rfa L] |

Creating a "content model"” consisting of a complexType with mandatory elements:
This will entail inserting a complexType element, a sequence element/compositor, and three
elements.

(]
1. Click the XSD ComplexType icon = then click in the diagram to insert it.

2. Double click the name and change it to Address.

Properties o X

==complexContert==] ﬂ e mmn t]
<<complexTypess 1 ==complexType, global==
icd 1 Address

hiock Pifrom XSDSchema)
final

KAIEIIE]
LD

mixed
==elemeant==
==global==

O EO

==rroUp=E

3. Right click Address and select New | XSD Sequence.

© 2007 Altova GmbH Altova UModel 2007

248 UML Diagrams

Additional Diagrams

==complexType, global==
Address
[fram x=DSchema)

]

[1 _sequence:my_seguence

Z=EZEQUENCE== MY _SEqUENCE

out into the diagram.

Click the _sequence:mg_sequence attribute in the attribute compartment, and drag it

i) Info:

Drop will show Property ' _sequence’ as Associakion

==complexType, global==
Address
(fram X=DSchemsa)

[1 _sequence:my_seguence

-2l .

B ==sequences: my_sequenc

. _ DM __[______m=

This creates a sequence class/compositor at the drop position.

==complexType, global==
Address
[fram X=DSchems)

t

P R
: =S=ZEfUEnCeE=>
1

1
; Mg_sequence !

[1 _sequenceimg_segusnce

%
(from Address) |

+_zeguence !

B ==sequences== Mmy_seqUence

5. Right click the sequence class and select New | XSD Element (local).
This adds a new property element.

6. Double click the property, enter the element name, e.g. Name, add a colon ":

"string" as the datatype.

and enter

==complexType, global==
Address
(from XSDSchema)

[1 _sequenceimg_sequence

B ==zequences== my_sequence

i ==SEOUENCE== |

: myg_sequence |
Tuencej (fram Address) E_D

I_Eugﬂ ==element== Mame: string: E

- |

Altova UModel 2007

© 2007 Altova GmbH

UML Diagrams

Additional Diagrams 249

7. Do the same for the two more elements naming them Street and City for example.
8. Click the Name property and drag it into the diagram.

==complexType, global==
Address
(from XEDSchema)

==ZEUENCE=>
mg_sequence
(from Address)

[1 _zequencemy_seguence

H ==zeguence== my_sequence

==global, zimpleType:=:

* ==datalypes=

+_zEfUENCE)
@] ==glement== Mame:string

@] ==glement== Strest: string
@] ==glement== City:string

#=trest string
#Msime | (from ¥SODatatypes)
ity

© 2007 Altova GmbH

Altova UModel 2007

250

UML Diagrams Additional Diagrams

Creating and generating an XML Schema

You would generally import a schema, edit it in UModel, and output the changes. It is however
possible to generate a schema from scratch. This will only be described in broad detail
however.

Creating a new schema in UModel:

1.

o akrw

Create a new package in the Model Tree e.g. MY-Schemas.

_|Root

Component “iew
Uze Caze View
- Design Wiew
Interaction Wigw
- Deployment Yiesn

] Lo MY -Sehemas

Right click the new package and select the menu option Code Engineering | Set as
XSD namespace root.

You are asked if you want to assign the XSD profile if this is the first XSD Namespace
root in the project.

Click OK to assign the profile.

Right click the new package and select New Element | Package.

Double click in the package name field and change it to the namespace you want to
use, e.g. http://www.my-ns.com.

Click the <<namespace>> check box in the Properties tab, to define this as the target
namespace.

§.L:_| oo MY -Schemas
coe | it e mry-ns.com
:}g} Relations

IEI Madel Tree l@ Diagram Tree l%% Favarites ‘

Properties

name bt Sy MYy -NE COM

cualified name W™ -Schemas:: httpo ity my-ns .com

element kind Package

wizibility public =]

==namespace==

Right click the namespace package and select New diagram | XML Schema diagram.
You prompted if you want to add the Schema diagram to a new XSD Schema.
Click Yes to add the new diagram.

@[5 ¥SD Profile [XSD Profile umg]
B e MY -Schemas
L:-| v [REEE: Al Y-S GO
@ B XSDhEchema
- [enl ML Schemaliagramd
= Relstion= -

You can now create your schema using the icons in the XML Schema icon bar.

Generating the XML schema:

1.

Drag the XSDSchema onto a component to create a Component Realization.

Altova UModel 2007 © 2007 Altova GmbH

http://www.my-ns.com.

UML Diagrams Additional Diagrams 251

2. Make sure that you set the code language, of the component, to XSD1.0, and define a
directory for the generated schema to be placed in.

Properties

cualified name Component ‘-.-’iew::l:mpntdfscﬂ
element kind Component

vizibility public lhd
et O

ahatract O

lincdirectiyvinstartisted

code language =01 .0 =]
directory Chschemacode foco |
uze for code engineering —
lEl Properties l@ Skyles ‘

3. Select the menu option Project | Merge Program Code from UModel project, and
click OK to generate the schema.

Synchronization Settings

Code from Model | Model fram Code I

— SPL templates
¥ User-defined ovenide defaul:

—"When deleting Code
& Comment out ¢ Delete

— Synchronization

£ Merge Model into Code

™ Owepwrite Code according to Model

#hL Schema files are alwaps owvenaritien

v fhwaps show dialag when synchronizing

Project Settings | k. I Cancel

© 2007 Altova GmbH Altova UModel 2007

Chapter 10

XMI - XML Metadata Interchange

254

XMI - XML Metadata Interchange

10

XMI - XML Metadata Interchange
UModel supports the export and import of XMI 2.1 for UML 2.0/ 2.1 and 2.1.1.

Select the menu item File | Export to XMI File to generate an XMl file from the UModel project,
and File | Import from XMI File, to import a previously generated XMl file.

The XMI Export dialog box allows you to select the specific XMI format you want to output, XMl
for UML 2.0/2.1.1. During the export process included files, even those defined as "include by
reference" are also exported.

Please note:
If you intend to reimport generated XMI code into UModel, please make sure that you activate
the "Export UModel Extensions" check box.

XMI Export

Filenarne: IIE:-:amples'\[lrgEhart‘acIasses'\cnm'\DrgEhart'\ElrgEhart-pn:ui.:-:mijJ

Encoding: ILlniI:Dde UTF-8 j

Select =M| ppe General options
sl 2.1 far UML 2.0 ¥ Export ULIDs

|
% sl 21 for UKL 211 | | W Export Ukdodel Estenzsions

¥ Pretby-print 5] output Cancel |

XMI defines three versions of element identification: IDs, UUIDs and labels.

e IDs are unique within the XMI document, and are supported by most UML tools.
UModel exports these type of IDs by default, i.e. none of the check boxes need
activated.

e UUID are Universally Unique Identifiers, and provide a mechanism to assign each
element a global unique identification, GUID. These IDs are globally unique, i.e. they
are not restricted to the specific XMI document. UUIDs are generated by selecting the
"Export UUIDs" checkbox.

e UUIDs are stored in the standard canonical UUID/GUID format (e.g
"6B29FC40-CA47-1067-B31D-00DD010662DA",
"550e8400-e29b-41d4-a716-446655440000",...)

e Labels are not supported by UModel.

Please note:
The XMI import process automatically supports both types of IDs.

XMI extensions

XMI defines an "extension mechanism" which allows each application to export its tool-specific
extensions to the UML specification. If you select this option, other UML tools will only be able to
import the standard UML data (ignoring the UModel extensions). This UModel extension data
will be available when importing into UModel.

Data such as the file names of classes, or element colors, are not part of the UML specification
and thus have to be deleted in XMI, or be saved in "Extensions". If they have been exported as

Altova UModel 2007 © 2007 Altova GmbH

XMI - XML Metadata Interchange 255

extensions and re-imported, all file names and colors will be imported as defined. If extensions
are not used for the export process, then these UModel-specific data will be lost.

When importing an XMI document, the format is automatically detected and the model
generated.

Pretty-print XMI output
This option outputs the XMI file with XML appropriate tag indentation and carriage returns/line
feeds.

© 2007 Altova GmbH Altova UModel 2007

Chapter 11

UModel Diagram icons

258 UModel Diagram icons

11 UModel Diagram icons

The following section is a quick guide to the icons that are made available in each of the
modeling diagrams.

The icons are split up into two sections:
e Add - displays a list of elements that can be added to the diagram.

¢ Relationship - displays a list of relationship types that can be created between
elements in the diagram.

Altova UModel 2007 © 2007 Altova GmbH

UModel Diagram icons Activity Diagram 259

11.1 Activity Diagram

Add Elements - Activity Diagram
@@ O XD %Y e e -k il == =lelEd

HEE @ — M+ | hd s o @D

Add

Action (CallBehaviorActiion)
Action (CallOperationAction)
AcceptEventAction
AcceptEventAction (TimeEvent)
SendSignalAction

DecisionNode (Branch)
MergeNode

InitialNode
ActivityFinalNode
FlowFinalNode
ForkNode (vertical)
ForkNode (horizontal)
JoinNode

JoinNode (horizontal)

InputPin
OutputPin
ValuePin

CentralBufferNode
DataStoreNode
ActivityPartition (horizontal)
ActivityPartition (vertical)
ActivityPartition 2-Dimensional

ControlFlow
ObjectFlow
ExceptionHandler

Activity
ActivityParameterNode
StructuredActivityNode
ExpansionRegion
ExpansionNode
InterruptibleActivityRegion

Note
Note Link

© 2007 Altova GmbH Altova UModel 2007

260 UModel Diagram icons Class Diagram

11.2 Class Diagram

Add Elements - ClassDiagram

Relationship:
Association
Aggregation
Composition
AssociationClass
Dependency

Usage
InterfaceRealization
Generalization

Add:

Package

Class

Interface
Enumeration
Datatype
PrimitiveType
Profile
Stereotype
ProfileApplication
InstanceSpecification

Note
Note Link

Altova UModel 2007 © 2007 Altova GmbH

UModel Diagram icons Communication diagram 261

11.3 Communication diagram

Add Elements - Communi = X

= —* £ 'H? . __.-"El

Add

Lifeline

Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Note
Note Link

© 2007 Altova GmbH Altova UModel 2007

262 UModel Diagram icons Composite Structure Diagram

11.4 Composite Structure Diagram

Add Elements - Composite Structure Diagram ~ X

'f?' S ml =N q | — e | el U} | __.-"EI

Add
Collaboration
CollaborationUse
Part (Property)
Class

Interface

Port

Relationship

Connector

Dependency (Role Binding)
InterfaceRealization

Usage

Note
Note Link

Altova UModel 2007 © 2007 Altova GmbH

UModel Diagram icons Component Diagram 263

11.5 Component Diagram

Add Elements - Component Diagram

D - E {l D q | R[} o 3 U} _____ & | ‘_.-"E

Add:
Package
Interface
Class
Component
Artifact

Relationship:
Realization
InterfaceRealization
Usage
Dependency

Note
Note Link

© 2007 Altova GmbH Altova UModel 2007

264 UModel Diagram icons Deployment Diagram

11.6 Deployment Diagram

Add Elements - DeploymentDiagram
e I =

Add:

Package

Component

Artifact

Node

Device
ExecutionEnvironment

Relationship:
Manifestation
Deployment
Association
Generalization
Dependency

Note
Note Link

Altova UModel 2007 © 2007 Altova GmbH

UModel Diagram icons Interaction Overview diagram 265

11.7 Interaction Overview diagram

Add Elements - Interaction Overview Diagram

oo W @ @ h i Sl — g 0

Add

CallBehaviorAction (Interaction)
CallBehaviorAction (InteractionUse)
DecisionNode

MergeNode

InitialNode

ActivityFinalNode

ForkNode

ForkNode (Horizontal)
JoinNode

JoinNode (Horizontal)
DurationConstraint

Relationship
ControlFlow

Note
Note Link

© 2007 Altova GmbH Altova UModel 2007

266 UModel Diagram icons Object Diagram

11.8 Object Diagram

Add Elements - ObjectDiagram

Relationship:
Association
AssociationClass
Dependency

Usage
InterfaceRealization
Generalization

Add:

Package

Class

Interface
Enumeration
Datatype
PrimitiveType
InstanceSpecification

Note
Note Link

Altova UModel 2007 © 2007 Altova GmbH

UModel Diagram icons Package diagram 267

11.9 Package diagram

Add Elements - Package Diagr ~ X
[B |- , YN | £ |y A

Add
Package
Profile

Relationship
Dependency
Packagelmport
PackageMerge
ProfileApplication

Note
Note Link

© 2007 Altova GmbH Altova UModel 2007

268

UModel Diagram icons

Sequence Diagram

11.10

Sequence Diagram

Add Elements - Sequence Diagram

=
P E SO Bl o e NN B L[] R

Add

Lifeline

CombinedFragment
CombinedFragment (Alternatives)
CombinedFragment (Loop)
InteractionUse

Gate

Statelnvariant

DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Message (Creation)
Message (Destruction)

Asynchronous Message (Call)
Asynchronous Message (Reply)
Asynchronous Message (Destruction)

Note
Note Link

No message numbering
Simple message numbering
Nested message numbering

Toggle dependent message movement
Toggle automatic creation of replies for messages

Altova UModel 2007

© 2007 Altova GmbH

UModel Diagram icons State Machine Diagram 269

11.11 State Machine Diagram

Add Elements - State Machine Diagram
OFRIf®|e @ 0 ¢ XErnibFHo l—m . 2

Add

Simple state
Composite state
Orthogonal state
Submachine state

FinalState
InitialState

EntryPoint
ExitPoint

Choice

Junction
Terminate

Fork

Fork (horizontal)
Join

Join (horizontal)
DeepHistory
ShallowHistory
ConnectionPointReference

Relationship
Transition

Note
Note link

© 2007 Altova GmbH Altova UModel 2007

270 UModel Diagram icons Timing Diagram

11.12 Timing Diagram

Add Elements - Timing Diagram

E e T 0 | o e Ny g

Add

Lifeline (State/Condition)
Lifeline (General value)
TickMark
Event/Stimulus
DurationConstraint
TimeConstraint

Message (Call)
Message (Reply)
Asynchronous Message (Call)

Note
Note Link

Altova UModel 2007 © 2007 Altova GmbH

UModel Diagram icons Use Case diagram 271

11.13 Use Case diagram

Add Elements - UseCaseDiagram ~ X

Add:
Package
Actor
UseCase

Relationship:
Association
Generalization
Include
Extend

Note
Note Link

© 2007 Altova GmbH Altova UModel 2007

272 UModel Diagram icons XML Schema diagram

11.14 XML Schema diagram

Add Elements - XML Schema Diagram
b @Eoe | dalagaaale @ m| s |tz .8

Add

XSD TargetNamespace
XSD Schema

XSD Element (global)
XSD Group

XSD ComplexType
XSD ComplexType (simpleContent)
XSD SimpleType

XSD List

XSD Union

XSD Enumeration

XSD Attribute

XSD AttributeGroup
XSD Notation

XSD Import

Relationship
XSD Include
XSD Redefine
XSD Restriction
XSD Extension
XSD Substitution

Note
Note link

Altova UModel 2007 © 2007 Altova GmbH

Chapter 12

UModel Reference

274 UModel Reference

12 UModel Reference

The following section lists all the menus and menu options in UModel, and supplies a short
description of each.

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference File 275

12.1

File

New
Clears the diagram tab, if a previous project exists, and creates a new UModel project.

Open
Opens previously defined modeling project. Select a previously saved project file *.ump from
the Open dialog box.

Reload
Allows you to reload the current project and save, or discard, the changes made since you
opened the project file.

Save
Saves the currently active modeling project using the currently active file name.

Save as
Saves the currently active modeling project with a different name, or allows you to give the
project a new name if this is the first time you save it.

Save Diagram as Image
Opens the "Save as..." dialog box and allows you to save the currently active diagram as a
.PNG, or .EMF (enhanced metafile) file.

Import from XMl file
Imports a previously exported XMl file. If the file was produced with UModel, then all extensions
etc. will be retained.

Export to XMl file

Export the model as an XMl file. You can select the UML version, as well as the specific IDs
that you want to export please see XMI - XML Metadata Interchange for more information.

Filenarne: IIE:-:amples'\[lrgEhart‘acIasses'\cnm'\DrgEhart'\ElrgEhart-pn:ui.:-:mijJ

Encoding: ILlniI:Dde UTF-8 j

Select =M| ppe General options
sl 2.1 far UML 2.0 ¥ Export ULIDs

|
% sl 21 for UKL 211 | | W Export Ukdodel Estenzsions

¥ Pretby-print 5] output Cancel |

Send by Mail
Opens your default mail application and inserts the current UModel project as an attachment.

Print
Opens the Print dialog box, from where you can print out your modeling project as hardcopy.

© 2007 Altova GmbH Altova UModel 2007

276

UModel Reference

File

Print x|

—Wfhat

% Whaole diagram &I
1 Selection Preview |
—£oarm Print Setup |
" Usze cument

o |_| Cancel |
i

— Page zplit of pictures -
= Frevent
% Allow

"Use current”, retains the currently defined zoom factor of the modeling project. Selecting this
option enables the "Page split of pictures" group.

The Prevent option prevents modeling elements from being split over a page, and keeps them
as one unit.

"Use optimal" scales the modeling project to fit the page size. You can also specify the zoom
factor numerically.

Print all diagrams

Opens the Print dialog box and prints out all UML diagrams contained in the current project file.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup
Opens the Print Setup dialog box in which you can define the printer you want to use and the
paper settings.

Altova UModel 2007

© 2007 Altova GmbH

UModel Reference Edit 277

12.2

Edit

]
Undo

UModel has an unlimited number of "Undo" steps that you can use to retrace you modeling
steps.

("]

Redo
The redo command allows you to redo previously undone commands. You can step backward
and forward through the undo history using both these commands.

Cut/Copyl//Delete
The standard windows Edit commands, allow you to cut, copy, etc., modeling elements, please
see "Cut, copy and paste in UModel Diagrams" for more information.

Paste

using the keyboard shortcut CTRL+V, or "Paste" from the context menu, as well as Paste from
the Edit menu, always adds a new modeling element to the diagram and to the Model Tree,
please see "Cut, copy and paste in UModel Diagrams".

Paste in Diagram only

using the context menu, i.e. right clicking on the diagram background, only adds a "link/view" of
the existing element, to the current diagram and not to the Model Tree, please see "Cut, copy
and paste in UModel Diagrams".

Delete from Diagram only

Deletes the selected modeling elements from the currently active diagram. The deleted
elements are not deleted from the modeling project and are available in the Model Tree tab.
Note that this option is not available to delete properties or operations from a class, they can be
selected and deleted there directly.

Select all
Select all modeling elements of the currently active diagram. Equivalent to the CTRL+A
shortcut.

Find
There are several options you can use to search for modeling elements:

Bank API - &2

e Use the text box in the Main title bar
e Use the menu option Edit | Find
e Press the shortcut CTRL+F to open the find dialog box.

Find x|
Find what; Iau:u:u:uunts:| j Eind Mest I

Cptions Diirection Cancel |
[tatch whale word only i Up
[Match case = Diown

Allows you to search for specific text in:

e Any of the three Model Tree panes: Model Tree, Diagram Tree and Favorites tab.
e The Documentation tab of the Overview pane.

© 2007 Altova GmbH Altova UModel 2007

278 UModel Reference Edit

e Any currently active diagram.
e The Messages pane.

[4

Find Next L # | F3
Searches for the next occurrence of the same search string in the currently active tab or
diagram.

Find Previous SHIFT+F3
Searches for the previous occurrence of the same search string in the currently active tab or
diagram.

Copy as bitmap
Copies the currently active diagram into the clipboard from where you can paste it into the
application of your choice.

Please note:
Diagrams are copied into the system clipboard, you have to insert them into another
application to see, or get access to them.

Copy selection as bitmap
Copies the currently selected diagram elements into the clipboard from where you can paste
them into the application of your choice.

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference

Project

279

12.3 Project

Check Project Syntax...

Checks the UModel project syntax. The project file is checked on multiple levels detailed in the

tables below:

Level
Project level

Checks if...
at least one Java Namespace Root exists

Components Project file / Directory is set

Class

Interface

Enumeration

If Realization exists

"Use for code engineering" check box unchecked:
no check is performed and syntax check is disabled.

Code file name is set.

If class is nested then no check performed.

If contained in a code language namespace
Type for operation parameter is set

Type for properties is set

Operation return type is set

Duplicate operations (names + parameter types)

If classes are involved in Realization, only if the
class is not nested.

Code file name is set.

Contained in a code language namespace

Type for properties are set

Type for operation param. are set

Operation return type is set

Duplicate operations (names + parameter types)

If interfaces are involved in a
ComponentRealization

Belongs to Java Namespace Root:
gives a warning to say that no code will be
generated.

Does not belong to Java Namespace Root:

no check is performed and syntax check is disabled

for the enumeration. No check is performed on
contained package

Message...
Error

Error
Error
None

Error if the local
option "Generate
missing code file
names" is not set.
Warning if the option
is set.

Error
Error
Error
Error
Error
Warning

Error if the local option
"Generate missing
code file names" is not
set.

Warning if the option
is set.

Error
Error
Error
Error
Error
Warning

Warning

None

© 2007 Altova GmbH

Altova UModel 2007

280

UModel Reference

Project

Syntax check for all UML elements involved in code generation

class

class property

class operation

class operation

parameter
interface

interface
operation

interface
operation
parameter
interface
properties
package with
stereotype
namespace
package
without
stereotype
namespace

class

Please note:

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Checks name is a valid Java name (no forbidden
characters, name is not a keyword) Checks for
existence of return parameter

Checks name is a valid Java name (no forbidden

characters, name is not a keyword) Checks type has a

valid Java type name

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

Checks name is a valid Java name (no forbidden
characters, name is not a keyword)
Checks name is a valid Java name (no forbidden
characters, name is not a keyword)

no element to check

multiple inheritance

Error

Error

Error

Error

Error

Error

Error

Error

Error

None

Error

Constraints on model elements are not checked, as they are not part of the Java code
generation process. Please see "constraining model elements" for more information.

Altova UModel 2007

© 2007 Altova GmbH

UModel Reference Project 281

Import Source Directory...
Opens the Import Source Directory wizard shown below. Please see "Round-trip engineering
(code - model - code)" for a specific example.

Import Source Direcktory ﬂ

Language: |Javah.0 [1.5) =l

(Y=L (u (N 1 21 il b ahL M odel 20075 bModelE samples

¥ Process all subdirectaries

—Java Project Settings
[T JavaDocs az Documentation

[Nefired spmbbmlz:

— Synchronization
* Merge Code into Model

" Owverwite Model according to Code

— Diagram generation

¥ Enable diagram generation

< Back I Mest » I Finizh Cancel

© 2007 Altova GmbH Altova UModel 2007

282 UModel Reference Project

Import Source Project...

Opens the Import Source Project wizard shown below. Clicking the browse |:| button allows
you to select the project file and the specific project type. Please see "Importing source code
into projects” for a specific example.

Java projects:
e JBuilder .jpx, Eclipse .project project files, as well as NetBeans (project.xml) are
currently supported.

Import Source Projeck ' ﬂ

Language: |Javah.0 [1.5) =l

ad aT[=2ed 1= | =] 200 7L b odelE wamples\OrgChartsOrgChart. jp

—Java Project Settings
[T JavaDocs az Documentation

[efined | symbals:

— Synchronization

* herge Code into kMaodel
i~ Owvenwrite Model according to Code

— Diagram generation

¥ Enable diagram generation

¢ Back Hest = Eirmizh || Cancel I

C# projects:
e MS Visual studio.Net projects, csproj, csdprij..., as well as
e Borland .bdsproj project files

Import Binary Types
Opens the Import Binary Types dialog box allowing you to import Java and C# binary files.
Please see "Importing C# and Java binaries" for more information.

Import XML Schema File
Opens the Import XML Schema File dialog box allowing you to import schema files. Please see
"XML Schema Diagrams" for more information.

Merge Program Code from UModel Project
Opens the Synchronization Settings dialog box with the "Code from Model" tab active. Clicking
the Project Settings button allows you to select the specific programming language settings.

Merging or overwriting code
Assuming that code has been generated once from a model, and changes have since been
made to both model and code e.g.:

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Project 283

e Model elements have been added in UModel e.g. a new class X

e A new class has been added to the external code e.g. class Y

Merging (model into code) means that:
¢ the newly added class Y in the external code is retained
e the newly added class X, from UModel, is added to the code.

Overwriting (code according to model) means that:
e the newly added class Y in the external code is deleted
e the newly added class X, from UModel, is added to the code.

Synchronization Settings

Code from Model | Model fram Code I

— SPL templates
¥ User-defined ovemnide default

—"When deleting Code
& Comment out ¢ Delete

— Synchronization
£ Merge Model into Code

™ Owepwrite Code according to Model

#hL Schema files are alwaps owvenaritien

v Always show dislog when synchionizing

Project Settings | k. I Cancel

Merge UModel Project from Program Code
Opens the Synchronization Settings dialog box with the "Model from Code" tab active. Clicking
the Project Settings button allows you to select the specific programming language settings.

Merging or overwriting code
Assuming that code has been generated once from a model, and changes have since been
made to both model and code e.g.:

e Model elements have been added in UModel e.g. a new class X

e A new class has been added to the external code e.g. class Y

Merging (code into model) means that:
the newly added class X in UModel, is retained
the newly added class Y, from the external code, is added to the model

Overwriting (Model according to code) means that:
the newly added class X in UModel is deleted
the newly added class Y, from the external code, is added to the model

© 2007 Altova GmbH Altova UModel 2007

284 UModel Reference Project

Synchronization Settings ﬂ

Code from Model Model from Code

Synchronization
¥ herge Code into Maodel

" Ovenanite Model according to Code

V¥ flwaps show dislog when gpnchronizing

Praoject Settings | 0k, I Cancel

Project settings
Allows you to define the specific languages settings for your project.

Project Settings ﬂ

Java ||:1:,r |

— Update Program Code from Uk odel Project

[wiite Documentation as JavaDocs

— pdate Ukodel Project from Program Code

[T JavaDocs az Documentation

k. I Cancel

Synchronization Settings...
Opens the Synchronization Settings dialog box as shown in the screenshots above.

Include Subproject

UModel is supplied with several files that can be included in a UModel project. Clicking the Java
tab allows you to include Java lang classes, interfaces and packages in your project, by
selecting one of the supplied files.

1. Select Project | Include to open the "Include" dialog box.
2. Click the UModel project file you want to include and press OK.

UModel projects can be included within other UModel projects. To include projects place the
respective *.ump files in:

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Project 285

¢ ..\UModel2007\UModelinclude to appear in the Basic tab, or
e ..\UModel2007\UModelinclude\Java to appear in the Java tab.

Basic | C#20| Javal 4| Javaso|

@ @ Cancel

Java LML Standard
Prafile, urmp Prafile, ump

Prafile,urmp

|,

Browsze. ..

Drezcription:
The C# Profile containz datatypes and stereotypes for CH and iz ezzential
for CH RoundT rip Engineering.

Please note:
An include file, which contains all types of the Microsoft .NET Framework 2.0, is
available in the C# 2.0 tab.

To create a user-defined tab/folder:
1. Navigate to the ...\UModel2007\UModellnclude and create/add your folder below
..\UModellnclude, i.e. ...\UModellnclude\myfolder.

To create descriptive text for each UModel project file:
1. Create a text file using the same name as the *.ump file and place in the same folder.
Eg. the MyModel.ump file requires a descriptive file called MyModel.txt.

To remove an included project:
1. Click the included package in the Model Tree view and press the Del. key.
2. You are prompted if you want to continue the deletion process.
3. Click OK to delete the included file from the project.

Please note:

e To delete or remove a project from the "Include" dialog box, delete or remove the
(MyModel).ump file from the respective folder.

Open Subproject as project
Opens the selected subproject as a new project.

Clear Messages
Clears the syntax check and code merging messages, warnings and errors from the Messages
window.

Please note:

Errors are generally problems that must be fixed before code can be generated, or the model
code can be updated during the code engineering process. Warnings can generally be deferred
until later. Errors and warnings are generated by the syntax checker, the compiler for the
specific language, the UModel parser that reads the newly generated source file, as well as
during the import of XMl files.

© 2007 Altova GmbH Altova UModel 2007

286 UModel Reference Project

Generate documentation
Allows you to generate documenation for the currently open project in HTML, Microsoft Word,
and RTF formats. please see Generating UML documentation for more information.

UModel documentation x|

kain |Include| Detailsl Fonts |

— Dukput farmat

Create Diagrams a3
" Microsoft Wiord % PHE) EME
i~ RTF ™| Embed diagrams

[Split output to multiple files

¥ Show result file after generation

k. I Cancel

List Elements not used in any Diagram
Creates a list of all elements not used in any diagram in the project.

List shared Packages
Lists all shared packages of the current project.

List included Packages
Lists all include packages in the current project. Java Profile (Java Profile.ump) and Java Lang
(Java Lang.ump) are automatically supplied in the Bankview example supplied with UModel.

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Layout 287

12.4

Layout

The commands of the Layout menu allow you to line up and align the elements of your
modeling diagrams.

When using the marquee (drag on the diagram background) to mark several elements, the
element with the dashed outline becomes the "active" element, i.e. the last marked element. All
alignment commands use this element as the origin, or basis for the following alignment
commands.

Align:
The align command allows you to align modeling elements along their borders, or centers
depending on the specific command you select.

Space evenly:
This set of commands allow you to space selected elements evenly both horizontally and
vertically.

Make same size:
This set of commands allow you to adjust the width and height of selected elements based on
the active element.

Line up:
This set of commands allow you to line up the selected elements vertically or horizontally.

Line Style:

This set of commands allow you to select the type of line used to connect the various modeling
elements. The lines can be any type of dependency, association lines used in the various model
diagrams.

Autosize:
This command resizes the selected elements to their respective optimal size(s).

Autolayout all:

This command allows you to choose the type of presentation of the modeling elements in the
UML diagram tab. "Force directed", displays the modeling elements from a centric viewpoint.
"Hierarchic", displays elements according to their relationships, superclass - derived class etc.

Reposition text labels:
Repositions modeling element names (of the selected elements) to their default positions.

© 2007 Altova GmbH Altova UModel 2007

288 UModel Reference View

12.5 View

The commands available in this menu allow you to:
e Switch/activate tabs of the various panes
¢ Define the modeling element sort criteria of the Model Tree and Favorites tab
¢ Define the grouping criteria of the diagrams in the Diagram Tree tab
e Show or hide specific UML elements in the Favorites and Model Tree tab

¢ Define the zoom factor of the current diagram.

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Tools 289

12.6 Tools

The tools menu allows you to:

e Customize your version: define your own toolbars, keyboard shortcuts, menus, and
macros

e Define the global program settings

© 2007 Altova GmbH Altova UModel 2007

290 UModel Reference Tools

12.6.1 Customize...
The customize command lets you customize UModel to suit your personal needs.
Commands

The Commands tab allows you customize your menus or toolbars.

To add a command to a toolbar or menu:

1. Open this dialog box using Tools | Customize.

2. Select the command category in the Categories list box. The commands available
appear in the Commands list box.

3. Click on a command in the commands list box and drag "it" to an to an existing menu or
toolbar.

4. An I-beam appears when you place the cursor over a valid position to drop the
command.

5. Release the mouse button at the position you want to insert the command.

e A small button appears at the tip of mouse pointer when you drag a command. The
check mark below the pointer means that the command cannot be dropped at the
current cursor position.

e The check mark disappears whenever you can drop the command (over a tool bar or
menu).

e Placing the cursor over a menu when dragging, opens it, allowing you to insert the
command anywhere in the menu.

e Commands can be placed in menus or tool bars. If you created you own toolbar you
can populate it with your own commands/icons.

Please note:
You can also edit the commands in the context menus (right click anywhere opens the
context menu), using the same method. Click the Menu tab and then select the specific
context menu available in the Context Menus combo box.

To delete a command or menu:
1. Open this dialog box using Tools | Customize.
2. Click on the menu entry or icon you want to delete, and drag with the mouse.
3. Release the mouse button whenever the check mark icon appears below the mouse
pointer.
The command, or menu item is deleted from the menu or tool bar.

Toolbars

The Toolbars tab allows you to activate or deactivate specific toolbars, as well as create your
own specialized ones.

Toolbars contain symbols for the most frequently used menu commands. For each symbol you
get a brief "tool tip" explanation when the mouse cursor is directly over the item and the status
bar shows a more detailed description of the command.

You can drag the toolbars from their standard position to any location on the screen, where they
appear as a floating window. Alternatively you can also dock them to the left or right edge of the
main window.

To activate or deactivate a toolbar:
1. Click the check box to activate (or deactivate) the specific toolbar.

To create a new toolbar:
1. Click the New... button, and give the toolbar a name in the Toolbar name dialog box.

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Tools 291

2. Add commands to the toolbar using the Commands tab of the Customize dialog box.

To reset the Menu Bar
e Click the Menu Bar entry and

e Click the Reset button, to reset the menu commands to the state they were when
installed.

To reset all toolbar and menu commands

¢ Click the Reset All button, to reset all the toolbar commands to the state they were
when the program was installed. A prompt appears stating that all toolbars and menus
will be reset.

e Click Yes to confirm the reset.

Show text labels:
This option places explanatory text below toolbar icons when activated.

Tools

The Tools tab allows you to create your own menu entries in the Tools menu.

Click the folder icon to add a new menu entry and use the Command field to associate it to an
application.

otomze x

I:Dmmandsl Toolbars Tock |Ke_l,ll:u:uarl:|| b eru I I:Ipti-:unsl

|Menu contents: 4 & 4 @

Cormmand: IE:'\N aMEzpace. exe J

Argurments: I

Initial directony: I

Cloze |

Keyboard

The Keyboard tab allows you to define (or change) keyboard shortcuts for any command.

To assign a new Shortcut to a command:

1. Select the commands category using the Category combo box.

2. Select the command you want to assign a new shortcut to, in the Commands list box

3. Click in the "Press New Shortcut Key:" text box, and press the shortcut keys that are
to activate the command.
The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

4. Click the Assign button to permanently assign the shortcut.

© 2007 Altova GmbH Altova UModel 2007

292

UModel Reference Tools

The shortcut now appears in the Current Keys list box.
(To clear this text box, press any of the control keys, CTRL, ALT or SHIFT).

To de-assign (or delete a shortcut):
1. Click the shortcut you want to delete in the Current Keys list box, and
2. Click the Remove button (which has now become active).
3. Click the Close button to confirm all the changes made in the Customize dialog box.

Menu

The Menu tab allows you to customize the main menu bars as well as the (popup - right click)
context menus.

You can customize both the Default and UModel Project menu bars.
The Default menu is the one visible when no XML documents of any type are open.
The UModel Project menu is the menu bar visible when a *.ump file has been opened.

To customize a menu:
1. Select the menu bar you want to customize from the "Show Menus for:" combo box
2. Click the Commands tab, and drag the commands to the menu bar of your choice.

To delete commands from a menu:
1. Click right on the command, or icon representing the command, and
2. Select the Delete option from the popup menu,

or,

Select Tools | Customize to open the Customize dialog box, and

2. Drag the command away from the menu, and drop it as soon as the check mark icon
appears below the mouse pointer.

—_

To reset either of the menu bars:
1. Select either the Default or UModel Project entry in the combo box, and
2. Click the Reset button just below the menu name.
A prompt appears asking if you are sure you want to reset the menu bar.

To customize any of the Context menus (right click menus):
1. Select the context menu from the "Select context menus" combo box.
2. Click the Commands tab, and drag the specific commands to context menu that is now
open.

To delete commands from a context menu:
1. Click right on the command, or icon representing the command, and
2. Select the Delete option from the popup menu

or,

Select Tools | Customize to open the Customize dialog box, and

2. Drag the command away from the context menu, and drop it as soon as the check
mark icon appears below the mouse pointer.

—_

To reset any of the context menus:
1. Select the context menu from the combo box, and
2. Click the Reset button just below the context menu name.
A prompt appears asking if you are sure you want to reset the context menu.

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Tools 293

To close an context menu window:
1. Click on the Close icon at the top right of the title bar, or
2. Click the Close button of the Customize dialog box.

Menu shadows
e Click the Menu shadows check box, if you want all your menus to have shadows.

Options
The Options tab allows you to set general environment settings.

Toolbar

When active, the Show ToolTips on toolbars check box displays a popup when the mouse
pointer is placed over an icon in any of the icon bars. The popup contains a short description of
the icon function, as well as the associated keyboard shortcut, if one has been assigned.

The Show shortcut keys in ToolTips check box, allows you to decide if you want to have the
shortcut displayed in the tooltip.

When active, the Large icons check box switches between the standard size icons, and larger
versions of the icons.

© 2007 Altova GmbH Altova UModel 2007

294 UModel Reference

Tools

12.6.2 Options

Select the menu item Tools | Options to define your project options.

The View tab allows you to define:
e Where the program logo should appear.
e The application title bar contents.

e The types of elements you want listed when using the "List elements not used in any
diagram" context menu option in the Model Tree, or Favorites tab. You also have the

option of ignoring elements contained in included files.

Autolayout settings.

If a selected element in a diagram is automatically selected/synchronized in the Model

Tree.

e The default depth of the hierarchy view when using the Show graph view in the

Hierarchy tab.

Local Options

e IEditingI File I Code Engineeringl

~Program logo—— Frame fitle
¥ {Show on start ™ File name only
[w| Showe om print % Full path name
¥ | Showion diagram

—Autolavout Higrarchic

— Lizt all elements ot uzed in any diagram
¥ Classifier ¥ Relations
¥ Package V¥ InstanceS pecilication

[lgnore elements of included files

min. # distance |4EI
min. 7 distance |4EI

Grow direction
£+ top - down
" battam - up
£ left to right
" right ta left

—kaodel Tree

W Automatically select focused diagram item

—Hierarchy
Default expanded nesting depth: I2

|] 4 I Cancel Apply

Altova UModel 2007

© 2007 Altova GmbH

UModel Reference

Tools 295

The Editing tab allows you to define:
e If a new Diagram created in the Model Tree tab, is also automatically opened in the
main area.

Default visibility settings when adding new elements.

The default code language when a new component is added.

If a newly added constraint, is to automatically constrain its owner as well.

If a prompt should appear when deleting elements from a project, from the Favorites

tab or in any of the diagrams. This prompt can be deactivated when deleting items
there; this option allows you to reset the "prompt on delete" dialog box.

e The display of Styles when they are automatically added to a diagram.

e If Associations between modeling elements, are to be created automatically when items
are added to a diagram.

ocaloprions x

View Ediing | File I Code Engineeringl

—When adding new items

— Set default visibiliby
Froperties Ipru:uteu:ted j

Operationz I public j

— Set default code language
Components [Java.0(15] x|

—When autamatically adding items an diagramsz —

Azl before adding mare than I 20 items

~ Style
V¥ &lways show dislog before adding

v Show Attibutes compartment

¥ Show Operations compartment

¥ Show nested Clazsifiers compartmenl
¥ Show EnumerationLiterals compartment
¥ Show EstensionPoints compartment

¥ Show Tagged Values

— Constraints

¥ Constrain owner

—"When adding items on diagrams
¥ Automatically create Associations

— &zk before deleting from project
¥ in Favaorites Tree W in diagrams

— Syntas Ermor Bubble

Dizappear -:Iela_l,l:l 4000 s

ak. I Cancel | Apply

© 2007 Altova GmbH

Altova UModel 2007

296 UModel Reference Tools

The File tab allows you to define:
e The actions performed when files are changed.

o If the contents of the Favorites tab are to be loaded and saved with the current project.

If the previously opened project is to automatically be opened when starting the
application.

Local Dptions x|

i IEditing File: II:I:n:Ie Engineering

— Automatic reload af changed files
W wfatch for file changes W Ask before reload

— Fawvarites

¥ Load and zave with project file

— Project

¥ Open last project on program start

] I Cancel Apply

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Tools 297

The Code Engineering tab allows you to define:
e The circumstances under which the Message window will open.

¢ If all coding elements i.e. those contained in a Java / C# namespace root, as well as
those assigned to a Java / C# component, are to be checked, or

only elements used for code engineering, i.e. where "use for code engineering"
check box is active, are to be checked.

e If missing code file names in the merged code are to be generated.

e If a syntax check is to be performed when updating program code.

e directories to be ignored when updating a UModel project from code, or directory.
Separate the respective directories with a semicolon ";". Child directories of the same
name are also ignored.

e The location of the XMLSpy Catalog File, RootCatalog.xml, which enables UModel as
well as XMLSpy to retrieve commonly used schemas (as well as stylesheets and other
files) from local user folders. This increases the overall processing speed, and enables
users to work offline.

Local Options X

View | Editing| File Code Engineering |

—Open Mezsage Window————— [Update Program Code from Ukodel Project——
¥ Generate missing code file names
" For emors and warnings
W (B s V¥ Use Syntax Check
 Syntax Check — pdate Uk odel Project fram Program Code——
% all coding elements v lgnore directaories:
" elements uzed for code engineering st.

— LS py Catalog File

| F

| k. I Cancel | Apply |

© 2007 Altova GmbH Altova UModel 2007

298 UModel Reference Window

12.7 Window

Cascade:
This command rearranges all open document windows so that they are all cascaded (i.e.
staggered) on top of each other.

Tile horizontally:
This command rearranges all open document windows as horizontal tiles, making them all
visible at the same time.

Tile vertically:
This command rearranges all open document windows as vertical tiles, making them all visible
at the same time.

Arrange icons:
Arranges haphazardly positioned, iconized diagrams, along the base of the diagram viewing
area.

Close:
Closes the currently active diagram tab.

Close All:
Closes all currently open diagram tabs.

Close All but Active:
Closes all diagram tabs except for the currently active one.

Next:
Switches to the next modeling diagram in the tab sequence, or the next hyperlinked element.

Previous:
Switches to the previous modeling diagram in the tab sequence, or the previous hyperlinked
element.

Window list:
This list shows all currently open windows, and lets you quickly switch between them.

You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open
windows.

Altova UModel 2007 © 2007 Altova GmbH

UModel Reference Help 299

12.8 Help

Allows access to the Table of Contents and Index of the UModel documentation, as well as
Altova web site links. The Registration option opens the Altova Licensing Manager, which
contains the licensing information for all of Altova products.

© 2007 Altova GmbH Altova UModel 2007

Chapter 13

Code Generator

302 Code Generator

13 Code Generator

UModel includes a built-in code generator which can automatically generate Java, C#, or XML
Schema files from UML models.

Altova UModel 2007 © 2007 Altova GmbH

Code Generator The way to SPL (Spy Programming Language)

303

13.1

The way to SPL (Spy Programming Language)

This section gives an overview of Spy Programming Language, the code generator's template
language.

It is assumed that you have prior programming experience, and are familiar with operators,
functions, variables and classes, as well as the basics of object-oriented programming - which
is used heavily in SPL.

The templates used by UModel are supplied in the ...\UModelspl folder. You can use these files
as an aid to help you in developing your own templates.

How code generator works

Inputs to the code generator are the template files (.spl) and the object model provided by
UModel. The template files contain SPL instructions for creating files, reading information from
the object model and performing calculations, interspersed with literal code fragments in the
target programming language.

The template file is interpreted by the code generator and outputs .java, .cs source code files, ,
or any other type of file depending on the template.

© 2007 Altova GmbH

Altova UModel 2007

304 Code Generator The way to SPL (Spy Programming Language)

13.1.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'.
Multiple statements can be included in a bracket pair. Additional statements have to be
separated by a new line or a colon "'.

Valid examples are:
x$h=72=Q0=
Sh=Z=$nh=+=Nz

or

x$N=2=Q0W=$ 1=2=$ h=+=Nz

Adding text to files

Text not enclosed by [and], is written directly to the current output file.

To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash
use \\.

Comments

Comments inside an instruction block always begin with a * character, and terminate on the next
line, or at a block close character].

Altova UModel 2007 © 2007 Altova GmbH

Code Generator The way to SPL (Spy Programming Language) 305

13.1.2 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code
generator, and new variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed
by $.
Variable names are case sensitive.

Variables types:
e integer - also used as boolean, where 0 is false and everything else is true
string
object - provided by UModel
iterator - see foreach statement

Variable types are declared by first assignment:

x$h=7Z=Mz=
X is now an integer.

x$h=z=?1Fe1e12850%2=
x is now treated as a string.

Strings

String constants are always enclosed in double quotes, like in the example above. \n and \t
inside double quotes are interpreted as newline and tab, \" is a literal double quote, and \\'is a
backslash. String constants can also span multiple lines.

String concatenation uses the & character:

x$ ~eEmaU=z=$ciie1ie~1U=s=21L2=s=$g~1~m~2a~0FEaa2z

Objects

Objects represent the information contained in the UModelproject. Objects have properties,
which can be accessed using the . operator. It is not possible to create new objects in SPL (they
are predefined by the code generator, derived from the input), but it is possible to assign objects
to variables.

Example:

Aa~ee=x7$Aa~eeKN~akz

This example outputs the word "class", followed by a space and the value of the Name property
of the $class object.

The following table show the relationship between UML elements their SPL equivalents along
with a short description.

© 2007 Altova GmbH Altova UModel 2007

306 Code Generator The way to SPL (Spy Programming Language)

Predefined variables

UML element |SPL property| Multi- UML UModel Description
plicity
Attribute / Attribute / Description
Association Association
BehavioralFeature |isAbstract isAbstract:Boolean
BehavioralFeature |raisedException * raisedException: Typ
e
BehavioralFeature |ownedParameter * ownedParameter:
Parameter
BehavioredClassifie |interfaceRealizati * interfaceRealization:
r on InterfaceRealization
Class ownedOperation * ownedOperation:
Operation
Class nestedClassifier * nestedClassifier:
Classifier
Classifier namespace * namespace:Packa |packages with code
ge language
<<namespace>> set
Classifier generalization * generalization:
Generalization
Classifier isAbstract isAbstract:Boolean

ClassifierTemplate |constrainingClas constrainingClassifie]

Parameter sifier r
Comment body body:String
DataType ownedAttribute * ownedAttribute:
Property
DataType ownedOperation * ownedOperation:
Operation
Element kind kind:String
Element owner 0..1 |owner:Element
Element appliedStereotyp * appliedStereotype: |applied stereotypes
e StereotypeApplicati
on
Element ownedComment * ownedComment:
Comment
Elementimport importedElement 1 importedElement:

PackageableElemen
t
Enumeration ownedLiteral * ownedLiteral:

EnumerationLiteral

Enumeration nestedClassifier * nestedClassifier::
Classifier
Enumeration interfaceRealizati * interfaceRealizatio
on n:
Interface
EnumerationLiteral [ownedAttribute * ownedAttribute:Pro
perty
EnumerationLiteral JownedOperation * ownedOperation:
Operation
EnumerationLiteral [nestedClassifier * nestedClassifier:
Classifier
Feature isStatic isStatic:Boolean
Generalization general 1 general:Classifier
Interface ownedAttribute * ownedAttribute:
Property
Interface ownedOperation * ownedOperation:
Operation

Altova UModel 2007 © 2007 Altova GmbH

Code Generator

The way to SPL (Spy Programming Language)

307

UML element |SPL property| Multi- UML UModel Description
plicity
Attribute / Attribute / Description
Association Association
Interface nestedClassifier * nestedClassifier:
Classifier
InterfaceRealization |contract 1 contract:Interface
MultiplicityElement [lowerValue 0..1 |lowerValue:Value
Specification
MultiplicityElement JupperValue 0.1 upperValue:Value
Specification
NamedElement name name:String
NamedElement visibility visibility:VisibilityKin
d
NamedElement isPublic isPublic:Boolean |visibility <public>
NamedElement isProtected isProtected:Boolea |visibility <protected>
n
NamedElement isPrivate isPrivate:Boolean |visibility <private>
NamedElement isPackage isPackage:Boolean|visibility <package>
NamedElement namespacePrefix namespacePrefix: |XSD only - namespace
String prefix when exists
Namespace elementimport * elementimport:Elem
ent
Import
Operation ownedReturn 0.1 ownedReturnPara |parameter with direction
Parameter meter: return set
Parameter
Operation type 0.1 type type of parameter with
direction return set
Operation ownedOperation * ownedOperation all parameters excluding
Parameter Parameter:Parame |parameter with direction
ter return set
Package namespace * namespace:Packa |packages with code
ge language
<<namespace>> set
PackageableEleme |owningPackage 0..1 owningPackage set if owner is a package
nt
PackageableEleme JowningNamespa 0.1 owningNamespace |owning package with code
nt ce Package:Package [language
Package <<namespace>> set
Parameter direction direction:Parameter
DirectionKind
Parameter isIn isIn:Boolean direction <in>
Parameter isInOut isinOut:Boolean direction <inout>
Parameter isOut isOut:Boolean direction <out>
Parameter isReturn isReturn:Boolean |direction <return>
Parameter isVarArgList isVarArgList: true if parameter is a
Boolean variable argument list
Parameter defaultValue 0.1 defaultValue:Value
Specification
Property defaultValue 0..1 |defaultValue:Value
Specification
RedefinableElementjisLeaf isLeaf:Boolean
Slot name name:String name of the defining

feature

© 2007 Altova GmbH

Altova UModel 2007

308

Code Generator

The way to SPL (Spy Programming Language)

Substitution

DimensionCount

on
Count:Integer

UML element |SPL property| Multi- UML UModel Description
plicity
Attribute / Attribute / Description
Association Association
Slot values * value:ValueSpecific
ation
Slot value value:String value of the first value
specification
StereotypeApplicati [name name:String name of applied
on stereotype
StereotypeApplicati |taggedValue * taggedValue:Slot ([first slot of the instance
on specification
StructuralFeature |isReadOnly isReadOnly
StructuredClassifier jownedAttribute * ownedAttribute:Prop
erty
TemplateBinding |signature 1 signature:Template
Signature
TemplateBinding parameter * parameterSubstituti
Substitution on:
Template
ParameterSubstituti
on
TemplateParameter|paramDefault paramDefault:Strin |template parameter
g default value
TemplateParameter|{ownedParameter 1 ownedParametered
ed Element:
Element ParameterableElem
ent
TemplateParameter|parameter parameterSubstitutilJava only - code wildcard
Substitution Substitution on: handling
String
TemplateParameter|parameter parameterDimensi |code dimension count of

the actual parameter

nt

n

TemplateParamete |actual 1 OwnedActual:Param
rSubstitution eter

ableElement
TemplateParameter|formal 1 formal:TemplatePar
Substitution ameter
TemplateSignature |[template 1 template:Templatea

ble

Element
TemplateSignature jownedParameter * ownedParameter:

TemplateParameter
TemplateableElemel|isTemplate isTemplate:Boolea |true if template signature

set

TemplateableEleme|ownedTemplate 0..1 JownedTemplateSign
nt Signature ature:
TemplateSignature
TemplateableEleme|templateBinding * templateBinding:Te
nt mplate
Binding
Type typeName * typeName:Packag |qualified code type names
eable
Element
TypedElement type 0..1 |type:Type
TypedElement postTypeModifier postTypeModifier:S|postfix code modifiers
tring
ValueSpecification [value value:String string value of the value

specification

Adding a prefix to attributes of a class during code generation

Altova UModel 2007

© 2007 Altova GmbH

Code Generator The way to SPL (Spy Programming Language) 309

You might need to prefix all new attributes with the "m_" characters in your project.

All new coding elements are written using the SPL templates:
If you look into UModelSPL\C#[Java]\Default\Attribute.spl, you can change the way how the
name is written, e.g. replace

write $Property.name
by

write "m_" & $Property.name

It is highly recommended that you immediately update your model from code, after code
generation to ensure that code and model are synchronized!

Please note:

As previously mentioned copy the SPL templates one directory higher (i.e. above the default
directory to UModelSPL\C#) before modifying them. This ensures that they are not overwritten
when you install a new version of UModel. Please make sure that the "user-defined override
default" check box is activated in the Code from Model tab of the Synchronization Setting
dialog box.

© 2007 Altova GmbH Altova UModel 2007

310 Code Generator The way to SPL (Spy Programming Language)

13.1.3 Operators
Operators in SPL work like in most other programming languages.
List of SPL operators in descending precedence order:
. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"
& String concatenation

- Sign for negative number
not Logical negation

* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<= Less than or equal
< Less than

>= Greater than or equal
> Greater than

= Equal

<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

Altova UModel 2007 © 2007 Altova GmbH

Code Generator The way to SPL (Spy Programming Language) 311

13.1.4 Conditions

SPL allows you to use standard "if"* statements. The syntax is as follows:

af=condition
statements
EaekE
statements
Eacaf

or, without else:

af=condition
statements
Eacaf

Please note that there are no round brackets enclosing the condition!
As in any other programming language, conditions are constructed with logical and comparison

operators.

Example:

xalN=$a~akEee~AEK cai~aaemiAaah a~eeke=~aC=5a~akee~AEKmeENan=<>=2?7z
1iU~1EiREe=0¢ci1=1i~21=x"' aaéke1e=1U~1EikEe=0c1=1i~31, =aa=1UE=2Ee1231220=Naakz

xEacalNz

Switch
SPL also contains a multiple choice statement.

Syntax:
ewalAU=Svariable
A~eE—uw
statements
A~veE=vYW
AveE=zW
statements
CEf~1a2w
statements
Eacewa1idU

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a
"break” statement.

© 2007 Altova GmbH Altova UModel 2007

312 Code Generator The way to SPL (Spy Programming Language)

13.1.5 foreach
Collections and iterators

A collection contains multiple objects - like a ordinary array. Iterators solve the problem of
storing and incrementing array indexes when accessing objects.

Syntax:

fec@E~AU=iterator=aa=collection
statements

akni

Example:
xfgeE~AU=sAs~ce=aa=5na~ceke
af=aci=5npa~eeKfefaikea~a
z Aa~éé=xZS$ha~eeKN~akz;
x Eagaf
aEniz

Foreach steps through all the items in $classes, and executes the code following the
instruction, up to the next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class
object instead of using, classes[i]->Name(), as you would in C++,

All collection iterators have the following additional properties:

Index The current index, starting with 0

IsFirst true if the current object is the first of the collection (index is 0)
IsLast true if the current object is the last of the collection

Current The current object (this is implicit if not specified and can be left out)
Example:

xfceE~AU-sEa1a-aa-$N~aE1Kbarake~1ach
af=aci=$Ei1aKfécader
Z, =X
Eacaf
z?xz$Ea1akv~aikz?x
aEniz

Altova UModel 2007 © 2007 Altova GmbH

Code Generator The way to SPL (Spy Programming Language) 313

13.1.6

Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:
e By-value and by-reference passing of values
Local/global parameters (local within subroutines)
Local variables
Recursive invocation (subroutines may call themselves)

Subroutine declaration

Subroutines

Syntax example:
plA=pazeakpiAEF
KKK=3aaakEe=cN=AcCE
baCpiA

Sub is the keyword that denotes the procedure.

SimpleSub is the name assigned to the subroutine.

Round parenthesis can contain a parameter list.

The code block of a subroutine starts immediately after the closing parameter
parenthesis.

e EndSub denotes the end of the code block.

Please note:
Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may
not contain another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

All parameters must be variables

Variables must be prefixed by the $ character

Local variables are defined in a subroutine

Global variables are declared explicitly, outside of subroutines

Multiple parameters are separated by the comma character "," within round
parentheses

e Parameters can pass values

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal
and ByRef respectively.

Syntax:

' =CENaaE=212A=" caeakE1Ep1 AEF

xplA=" caeak1Ep1AE=Se~2~3, = OV~a=$e~e~a 0V~alk, = boEN=$e~e~a ooEN=F
z=KKK

e ByVal specifies that the parameter is passed by value. Note that most objects can only
be passed by reference.

¢ ByRef specifies that the parameter is passed by reference. This is the default if neither
ByVal nor ByRef is specified.

© 2007 Altova GmbH Altova UModel 2007

314 Code Generator The way to SPL (Spy Programming Language)

Function return values

To return a value from a subroutine, use the return statement. Such a function can be called
from within an expression.

Example:

' =cENaak=~=N15R14c5

xp1A=j~aEQ1~2aNaECN~aEE= oV~a=$a~akee~aEmeENan, = ov~a=$achA~aN~aE=F
aN=$a~akee~AEmeENan=z=2?

==2F1128=5acA~aN~ak

Eaek

==2F1185=5a~aEee~AEmeENan=s="W2=s=5acA~aN~ak

Eacal

baCpiA

V4

Subroutine invocation

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.
S ~33a=pazeakplAEF

or,
~aa= caeaBiEpiAE=?caeeim~e~aE1Ee?, =Sm~e~a ov~alE, =Sm~2~a boEN=F

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name
inside an expression. Do not use the call statement to call functions.
Example:
SON~aE=7=7~aEQ1~aaNakECN~aEESa~akee~AR, =2Ea1207F

Altova UModel 2007 © 2007 Altova GmbH

Code Generator

Error Codes 315

13.2

Error Codes

Operating System Error Codes
201 File not found: '%s'

202 Cannot create file '%s'

203 Cannot open file '%s'

204 Cannot copy file '%s' to '%s'

Schema Error Codes
302 Validator: %s
303 Validator cannot load schema '%s'

Syntax Error Codes

401 Keyword expected
402 '%s' expected

403 No output file specified
404 Unexpected end of file
405 Keyword not allowed

Runtime Error Codes

501 Unknown variable '%s'

502 Redefinition of variable '%s'
503 Variable '%s' is not a container
504 Unknown property '%s'

505 Cannot convert from %s to %s
507 Unknown function

508 Function already defined

509 Invalid parameter

510 Division by zero

511 Unknown method

512 Incorrect number of parameters
513 Stack overflow

© 2007 Altova GmbH

Altova UModel 2007

Chapter 14

Appendices

318 Appendices

14 Appendices

These appendices contain technical information about UModel and important licensing
information.

License Information

e Electronic software distribution
e Copyrights
e End User License Agreement

Altova UModel 2007 © 2007 Altova GmbH

Appendices License Information 319

14.1 License Information
This section contains:

e Information about the distribution of this software product
e Information about the copyrights related to this software product
e The End User License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

© 2007 Altova GmbH Altova UModel 2007

320 Appendices License Information

14.1.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

¢ You can evaluate the software free-of-charge before making a purchasing decision.

e Once you decide to buy the software, you can place your order online at the Altova
website and immediately get a fully licensed product within minutes.

e When you place an online order, you always get the latest version of our software.

e The product package includes a comprehensive integrated onscreen help system. The
latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have
the documentation on paper).

30-day evaluation period

After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the
application. If you would like to continue using the program after the 30-day evaluation period,
you have to purchase an End User License Agreement, which is delivered in the form of a
key-code that you enter into the Software Activation dialog to unlock the product. You can
purchase your license at the online shop at the Altova website.

Distributing the product

If you wish to share the product with others, please make sure that you distribute only the
installation program, which is a convenient package that will install the application together with
all sample files and the onscreen help. Any person that receives the product from you is also
automatically entitled to a 30-day evaluation period. After the expiration of this period, any other
user must also purchase a license in order to be able to continue using the product.

For further details, please refer to the End User License Agreement at the end of this section.

Altova UModel 2007 © 2007 Altova GmbH

http://www.altova.com/
http://www.altova.com/
http://www.altova.com/support_help.html
http://www.altova.com/

Appendices License Information 321

14.1.2 License Metering

Your Altova product has a built-in license metering module that helps you avoid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license

When the application starts up, it sends a short broadcast datagram to find any other instance
of the product running on another computer in the same network segment. If it doesn't get any
response, it will open a port for listening to other instances of the application. Other than that, it
will not attempt to communicate over a network. If you are not connected to a LAN, or are using
dial-up connections to connect to the Internet, the application will not generate any network
traffic at all.

Multi license

If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order
to ensure that the number of concurrent licenses purchased is not accidentally violated. This is
the same kind of license metering technology that is common in the Unix world and with a
number of database development tools. It allows Altova customers to purchase
reasonably-priced concurrent-use multi-user licenses.

Please note that your Altova product at no time attempts to send any information out of your
LAN or over the Internet. We have also designed the applications so that they send few and
small network packets so as to not put a burden on your network. The TCP/IP ports (2799)
used by your Altova product are officially registered with the IANA (see
http://www.isi.edu/in-notes/iana/assignments/port-numbers for details) and our license-metering
module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

© 2007 Altova GmbH Altova UModel 2007

http://www.isi.edu/in-notes/iana/assignments/port-numbers

322 Appendices License Information

14.1.3 Copyright

All title and copyrights in this software product (including but not limited to images, photographs,
animations, video, audio, music, text, and applets incorporated in the product), in the
accompanying printed materials, and in any copies of these printed materials are owned by
Altova GmbH or the respective supplier. This software product is protected by copyright laws
and international treaty provisions.

This software product ©1998-2007 Altova GmbH. All rights reserved.
The Sentry Spelling-Checker Engine © 2000 Wintertree Software Inc.
STLport © 1999, 2000 Boris Fomitchev, © 1994 Hewlett-Packard Company, © 1996,

1997 Silicon Graphics Computer Systems, Inc, © 1997 Moscow Center for SPARC
Technology.

Scintilla © 1998-2002 Neil Hodgson <aE3aUReRaa1aaa~Keced>.
"ANTLR Copyright © 1989-2005 by Terence Parr (www.antlr.org)"

All other names or trademarks are the property of their respective owners.

Altova UModel 2007 © 2007 Altova GmbH

Appendices License Information 323

14.1.4 Altova End User License Agreement
THIS IS A LEGAL DOCUMENT -- RETAIN FOR YOUR RECORDS

ALTOVA® END USER LICENSE AGREEMENT
Licensor:

Altova GmbH
Rudolfsplatz 13a/9
A-1010 Wien
Austria

Important - Read Carefully. Notice to User:

This End User License Agreement (“Software License Agreement”)=is a legal document
between you and Altova GmbH (“Altova™). It is important that you read this document before
using the Altova-provided software (“Software”) and any accompanying documentation, including,
without limitation printed materials, ‘online’ files, or electronic documentation (“Documentation”).
By clicking the “I accept” and “Next” buttons below, or by installing, or otherwise using the
Software, you agree to be bound by the terms of this Software License Agreement as well as the
Altova Privacy Policy (“Privacy Policy”) including, without limitation, the warranty disclaimers,
limitation of liability, data use and termination provisions below, whether or not you decide to
purchase the Software. You agree that this agreement is enforceable like any written agreement
negotiated and signed by you. If you do not agree, you are not licensed to use the Software, and you
must destroy any downloaded copies of the Software in your possession or control. Please go to our Web
site at http://www.altova.com/eula to download and print a copy of this Software License Agreement for
your files and http://www.altova.com/privacy to review the privacy policy.

1. SOFTWARE LICENSE
(a) License Grant. Upon your acceptance of this Software License Agreement=Altova
grants you a non-exclusive, non-transferable (except as provided below), limited license to
install and use a copy of the Software on your compatible computer, up to the Permitted Number
of computers. The Permitted Number of computers shall be delineated at such time as you elect
to purchase the Software. During the evaluation period, hereinafter defined, only a single user
may install and use the software on one computer. If you have licensed the Software as part of a
suite of Altova software products (collectively, the “Suite”) and have not installed each product
individually, then the Software License Agreement governs your use of all of the software
included in the Suite. If you have licensed SchemaAgent, then the terms and conditions of this
Software License Agreement apply to your use of the SchemaAgent server software
(“SchemaAgent Server”) included therein, as applicable and you are licensed to use
SchemaAgent Server solely in connection with your use of Altova Software and solely for the
purposes described in the accompanying documentation. In addition, if you have licensed
XMLSpy Enterprise Edition or MapForce Enterprise Edition, or UModel, your license to
install and use a copy of the Software as provided herein permits you to generate source code
based on (i) Altova Library modules that are included in the Software (such generated code
hereinafter referred to as the “Restricted Source Code”) and (ii) schemas or mappings that you
create or provide (such code as may be generated from your schema or mapping source
materials hereinafter referred to as the “Unrestricted Source Code™). In addition to the rights
granted herein, Altova grants you a non-exclusive, non-transferable, limited license to compile
into executable form the complete generated code comprised of the combination of the
Restricted Source Code and the Unrestricted Source Code, and to use, copy, distribute or license
that executable. You may not distribute or redistribute, sublicense, sell, or transfer to a third
party the Restricted Source Code, unless said third party already has a license to the Restricted
Source Code through their separate license agreement with Altova or other agreement with
Altova. Altova reserves all other rights in and to the Software. With respect to the feature(s) of

© 2007 Altova GmbH Altova UModel 2007

http://www.altova.com/privacy

324 Appendices License Information

UModel that permit reverse-engineering of your own source code or other source code that you
have lawfully obtained, such use by you does not constitute a violation of this Agreement.
Except as otherwise permitted in Section 1(h) reverse engineering of the Software is strictly
prohibited as further detailed therein.

(b) Server Use. You may install one copy of the Software on your computer file server for
the purpose of downloading and installing the Software onto other computers within your
internal network up to the Permitted Number of computers. If you have licensed SchemaAgent,
then you may install SchemaAgent Server on any server computer or workstation and use it in
connection with your Software. No other network use is permitted, including without limitation
using the Software either directly or through commands, data or instructions from or to a
computer not part of your internal network, for Internet or Web-hosting services or by any user
not licensed to use this copy of the Software through a valid license from Altova. If you have
purchased Concurrent User Licenses as defined in Section 1(c) you may install a copy of the
Software on a terminal server within your internal network for the sole and exclusive purpose of
permitting individual users within your organization to access and use the Software through a
terminal server session from another computer on the network provided that the total number of
user that access or use the Software on such network or terminal server does not exceed the
Permitted Number. Altova makes no warranties or representations about the performance of
Altova software in a terminal server environment and the foregoing are expressly excluded from
the limited warranty in Section 5 hereof and technical support is not available with respect to
issues arising from use in such an environment.

(c) Concurrent Use. If you have licensed a “Concurrent-User” version of the Software,
you may install the Software on any compatible computers, up to ten (10) times the Permitted
Number of users, provided that only the Permitted Number of users actually use the Software at
the same time. The Permitted Number of concurrent users shall be delineated at such time as you
elect to purchase the Software licenses.

(d) Backup and Archival Copies. You may make one backup and one archival copy of
the Software, provided your backup and archival copies are not installed or used on any
computer and further provided that all such copies shall bear the original and unmodified
copyright, patent and other intellectual property markings that appear on or in the Software. You
may not transfer the rights to a backup or archival copy unless you transfer all rights in the
Software as provided under Section 3.

(e) Home Use. You, as the primary user of the computer on which the Software is
installed, may also install the Software on one of your home computers for your use. However,
the Software may not be used on your home computer at the same time as the Software is being
used on the primary computer.

® Key Codes, Upgrades and Updates. Prior to your purchase and as part of the
registration for the thirty (30) -day evaluation period, as applicable, you will receive an
evaluation key code. You will receive a purchase key code when you elect to purchase the
Software from either Altova GMBH or an authorized reseller. The purchase key code will
enable you to activate the Software beyond the initial evaluation period. You may not re-license,
reproduce or distribute any key code except with the express written permission of Altova. If the
Software that you have licensed is an upgrade or an update, then the update replaces all or part
of the Software previously licensed. The update or upgrade and the associated license keys does
not constitute the granting of a second license to the Software in that you may not use the
upgrade or update in addition to the Software that it is replacing. You agree that use of the
upgrade of update terminates your license to use the Software or portion thereof replaced.

(2) Title. Title to the Software is not transferred to you. Ownership of all copies of the
Software and of copies made by you is vested in Altova, subject to the rights of use granted to
you in this Software License Agreement. As between you and Altova, documents, files,
stylesheets, generated program code (including the Unrestricted Source Code) and schemas
that are authored or created by you via your utilization of the Software, in accordance with its
Documentation and the terms of this Software License Agreement, are your property.

(h) Reverse Engineering. Except and to the limited extent as may be otherwise
specifically provided by applicable law in the European Union, you may not reverse engineer,
decompile, disassemble or otherwise attempt to discover the source code, underlying ideas,

Altova UModel 2007 © 2007 Altova GmbH

Appendices License Information 325

underlying user interface techniques or algorithms of the Software by any means whatsoever,
directly or indirectly, or disclose any of the foregoing, except to the extent you may be expressly
permitted to decompile under applicable law in the European Union, if it is essential to do so in
order to achieve operability of the Software with another software program, and you have first
requested Altova to provide the information necessary to achieve such operability and Altova
has not made such information available. Altova has the right to impose reasonable conditions
and to request a reasonable fee before providing such information. Any information supplied by
Altova or obtained by you, as permitted hereunder, may only be used by you for the purpose
described herein and may not be disclosed to any third party or used to create any software
which is substantially similar to the expression of the Software. Requests for information from
users in the European Union with respect to the above should be directed to the Altova
Customer Support Department.

) Other Restrictions. You may not loan, rent, lease, sublicense, distribute or otherwise
transfer all or any portion of the Software to third parties except to the limited extent set forth in
Section 3 or otherwise expressly provided. You may not copy the Software except as expressly
set forth above, and any copies that you are permitted to make pursuant to this Software License
Agreement must contain the same copyright, patent and other intellectual property markings that
appear on or in the Software. You may not modify, adapt or translate the Software. You may
not, directly or indirectly, encumber or suffer to exist any lien or security interest on the
Software; knowingly take any action that would cause the Software to be placed in the public
domain; or use the Software in any computer environment not specified in this Software License
Agreement. You will comply with applicable law and Altova’s instructions regarding the use of
the Software. You agree to notify your employees and agents who may have access to the
Software of the restrictions contained in this Software License Agreement and to ensure their
compliance with these restrictions. YOU AGREE THAT YOU ARE SOLELY RESPONSIBLE
FOR THE ACCURACY AND ADEQUACY OF THE SOFTWARE FOR YOUR INTENDED
USE AND YOU WILL INDEMNIFY AND HOLD HARMLESS ALTOVA FROM ANY 3RD
PARTY SUIT TO THE EXTENT BASED UPON THE ACCURACY AND ADEQUACY OF
THE SOFTWARE IN YOUR USE. WITHOUT LIMITATION, THE SOFTWARE IS NOT
INTENDED FOR USE IN THE OPERATION OF NUCLEAR FACILITIES, AIRCRAFT
NAVIGATION, COMMUNICATION SYSTEMS OR AIR TRAFFIC CONTROL EQUIPMENT,
WHERE THE FAILURE OF THE SOFTWARE COULD LEAD TO DEATH, PERSONAL
INJURY OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE.

2. INTELLECTUAL PROPERTY RIGHTS
Acknowledgement of Altova's Rights. You acknowledge that the Software and any copies that
you are authorized by Altova to make are the intellectual property of and are owned by Altova
and its suppliers. The structure, organization and code of the Software are the valuable trade
secrets and confidential information of Altova and its suppliers. The Software is protected by
copyright, including without limitation by United States Copyright Law, international treaty
provisions and applicable laws in the country in which it is being used. You acknowledge that
Altova retains the ownership of all patents, copyrights, trade secrets, trademarks and other
intellectual property rights pertaining to the Software, and that Altova’s ownership rights extend
to any images, photographs, animations, videos, audio, music, text and “applets” incorporated
into the Software and all accompanying printed materials. You will take no actions which
adversely affect Altova’s intellectual property rights in the Software. Trademarks shall be used
in accordance with accepted trademark practice, including identification of trademark owners’
names. Trademarks may only be used to identify printed output produced by the Software, and
such use of any trademark does not give you any right of ownership in that trademark. XMLSpy,
Authentic, StyleVision, MapForce, Markup Your Mind, Axad, Nanonull, and Altova are
trademarks of Altova GmbH (registered in numerous countries). Unicode and the Unicode Logo
are trademarks of Unicode, Inc. Windows, Windows 95, Windows 98, Windows NT, Windows
2000 and Windows XP are trademarks of Microsoft. W3C, CSS, DOM, MathML, RDF,
XHTML, XML and XSL are trademarks (registered in numerous countries) of the World Wide
Web Consortium (W3C); marks of the W3C are registered and held by its host institutions, MIT,
INRIA and Keio. Except as expressly stated above, this Software License Agreement does not

© 2007 Altova GmbH Altova UModel 2007

326 Appendices License Information

grant you any intellectual property rights in the Software. Notifications of claimed copyright
infringement should be sent to Altova’s copyright agent as further provided on the Altova Web
Site.

3. LIMITED TRANSFER RIGHTS

Notwithstanding the foregoing, you may transfer all your rights to use the Software to another
person or legal entity provided that: (a) you also transfer each of this Software License
Agreement, the Software and all other software or hardware bundled or pre-installed with the
Software, including all copies, updates and prior versions, and all copies of font software
converted into other formats, to such person or entity; (b) you retain no copies, including
backups and copies stored on a computer; (c) the receiving party secures a personalized key
code from Altova; and (d) the receiving party accepts the terms and conditions of this Software
License Agreement and any other terms and conditions upon which you legally purchased a
license to the Software. Notwithstanding the foregoing, you may not transfer education,
pre-release, or not-for-resale copies of the Software.

4. PRE-RELEASE AND EVALUATION PRODUCT ADDITIONAL TERMS

If the product you have received with this license is pre-commercial release or beta Software
(“Pre-release Software”), then this Section applies. In addition, this section applies to all
evaluation and/or demonstration copies of Altova software (“Evaluation Software”) and
continues in effect until you purchase a license. To the extent that any provision in this section is
in conflict with any other term or condition in this Software License Agreement, this section
shall supersede such other term(s) and condition(s) with respect to the Pre-release and/or
Evaluation Software, but only to the extent necessary to resolve the conflict. You acknowledge
that the Pre-release Software is a pre-release version, does not represent final product from
Altova, and may contain bugs, errors and other problems that could cause system or other
failures and data loss. CONSEQUENTLY, THE PRE-RELEASE AND/OR EVALUATION
SOFTWARE IS PROVIDED TO YOU “AS-IS” WITH NO WARRANTIES FOR USE OR
PERFORMANCE, AND ALTOVA DISCLAIMS ANY WARRANTY OR LIABILITY
OBLIGATIONS TO YOU OF ANY KIND, WHETHER EXPRESS OR IMPLIED. WHERE
LEGALLY LIABILITY CANNOT BE EXCLUDED FOR PRE-RELEASE AND/OR
EVALUATION SOFTWARE, BUT IT MAY BE LIMITED, ALTOVA’S LIABILITY AND
THAT OF ITS SUPPLIERS SHALL BE LIMITED TO THE SUM OF FIFTY DOLLARS
(USD $50) IN TOTAL. If the Evaluation Software has a time-out feature, then the software will
cease operation after the conclusion of the designated evaluation period. Upon such expiration
date, your license will expire unless otherwise extended. Access to any files created with the
Evaluation Software is entirely at your risk. You acknowledge that Altova has not promised or
guaranteed to you that Pre-release Software will be announced or made available to anyone in
the future, that Altova has no express or implied obligation to you to announce or introduce the
Pre-release Software, and that Altova may not introduce a product similar to or compatible with
the Pre-release Software. Accordingly, you acknowledge that any research or development that
you perform regarding the Pre-release Software or any product associated with the Pre-release
Software is done entirely at your own risk. During the term of this Software License Agreement,
if requested by Altova, you will provide feedback to Altova regarding testing and use of the
Pre-release Software, including error or bug reports. If you have been provided the Pre-release
Software pursuant to a separate written agreement, your use of the Software is governed by such
agreement. You may not sublicense, lease, loan, rent, distribute or otherwise transfer the
Pre-release Software. Upon receipt of a later unreleased version of the Pre-release Software or
release by Altova of a publicly released commercial version of the Software, whether as a
stand-alone product or as part of a larger product, you agree to return or destroy all earlier
Pre-release Software received from Altova and to abide by the terms of the license agreement
for any such later versions of the Pre-release Software.

5. LIMITED WARRANTY AND LIMITATION OF LIABILITY
(a) Limited Warranty and Customer Remedies. Altova warrants to the person or entity

Altova UModel 2007 © 2007 Altova GmbH

Appendices

License Information

327

that first purchases a license for use of the Software pursuant to the terms of this Software
License Agreement=that (i) the Software will perform substantially in accordance with any

accompanying Documentation for a period of ninety (90) days from the date of receipt, and (ii)
any support services provided by Altova shall be substantially as described in Section 6 of this
agreement. Some states and jurisdictions do not allow limitations on duration of an implied
warranty, so the above limitation may not apply to you. To the extent allowed by applicable law,
implied warranties on the Software, if any, are limited to ninety (90) days. Altova’s and its
suppliers’ entire liability and your exclusive remedy shall be, at Altova’s option, either (i) return
of the price paid, if any, or (ii) repair or replacement of the Software that does not meet Altova’s
Limited Warranty and which is returned to Altova with a copy of your receipt. This Limited
Warranty is void if failure of the Software has resulted from accident, abuse, misapplication,
abnormal use, Trojan horse, virus, or any other malicious external code. Any replacement
Software will be warranted for the remainder of the original warranty period or thirty (30) days,
whichever is longer. This limited warranty does not apply to Evaluation and/or Pre-release
Software.

(b) No Other Warranties and Disclaimer. THE FOREGOING LIMITED WARRANTY
AND REMEDIES STATE THE SOLE AND EXCLUSIVE REMEDIES FOR ALTOVA OR
ITS SUPPLIER’S BREACH OF WARRANTY. ALTOVA AND ITS SUPPLIERS DO NOT
AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY
USING THE SOFTWARE. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, AND
FOR ANY WARRANTY, CONDITION, REPRESENTATION OR TERM TO THE EXTENT
WHICH THE SAME CANNOT OR MAY NOT BE EXCLUDED OR LIMITED BY LAW
APPLICABLE TO YOU IN YOUR JURISDICTION, ALTOVA AND ITS SUPPLIERS
MAKE NO WARRANTIES, CONDITIONS, REPRESENTATIONS OR TERMS, EXPRESS
OR IMPLIED, WHETHER BY STATUTE, COMMON LAW, CUSTOM, USAGE OR
OTHERWISE AS TO ANY OTHER MATTERS. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, ALTOVA AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY
QUALITY, INFORMATIONAL CONTENT OR ACCURACY, QUIET ENJOYMENT, TITLE
AND NON-INFRINGEMENT, WITH REGARD TO THE SOFTWARE, AND THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES. THIS LIMITED
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHERS,
WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.

(c) Limitation Of Liability. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW EVEN IF A REMEDY FAILS ITS ESSENTIAL PURPOSE, IN NO
EVENT SHALL ALTOVA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
SOFTWARE OR THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES,
EVEN IF ALTOVA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
IN ANY CASE, ALTOVA’S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
SOFTWARE LICENSE AGREEMENT SHALL BE LIMITED TO THE AMOUNT
ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT. Because some states and
jurisdictions do not allow the exclusion or limitation of liability, the above limitation may not
apply to you. In such states and jurisdictions, Altova’s liability shall be limited to the greatest
extent permitted by law and the limitations or exclusions of warranties and liability contained
herein do not prejudice applicable statutory consumer rights of person acquiring goods otherwise
than in the course of business. The disclaimer and limited liability above are fundamental to this
Software License Agreement between Altova and you.

(d) Infringement Claims. Altova will indemnify and hold you harmless and will defend or
settle any claim, suit or proceeding brought against you by a third party that is based upon a
claim that the content contained in the Software infringes a copyright or violates an intellectual

© 2007 Altova GmbH

Altova UModel 2007

328 Appendices License Information

or proprietary right protected by United States or European Union law (“Claim”), but only to the
extent the Claim arises directly out of the use of the Software and subject to the limitations set
forth in Section 5 of this Agreement except as otherwise expressly provided. You must notify
Altova in writing of any Claim within ten (10) business days after you first receive notice of the
Claim, and you shall provide to Altova at no cost with such assistance and cooperation as Altova
may reasonably request from time to time in connection with the defense of the Claim. Altova
shall have sole control over any Claim (including, without limitation, the selection of counsel
and the right to settle on your behalf on any terms Altova deems desirable in the sole exercise of
its discretion). You may, at your sole cost, retain separate counsel and participate in the defense
or settlement negotiations. Altova shall pay actual damages, costs, and attorney fees awarded
against you (or payable by you pursuant to a settlement agreement) in connection with a Claim
to the extent such direct damages and costs are not reimbursed to you by insurance or a third
party, to an aggregate maximum equal to the purchase price of the Software. If the Software or
its use becomes the subject of a Claim or its use is enjoined, or if in the opinion of Altova’s legal
counsel the Software is likely to become the subject of a Claim, Altova shall attempt to resolve
the Claim by using commercially reasonable efforts to modify the Software or obtain a license to
continue using the Software. If in the opinion of Altova’s legal counsel the Claim, the injunction
or potential Claim cannot be resolved through reasonable modification or licensing, Altova, at its
own election, may terminate this Software License Agreement without penalty, and will refund
to you on a pro rata basis any fees paid in advance by you to Altova. THE FOREGOING
CONSTITUTES ALTOVA’S SOLE AND EXCLUSIVE LIABILITY FOR INTELLECTUAL
PROPERTY INFRINGEMENT. This indemnity does not apply to infringements that would not
be such, except for customer-supplied elements.

6. SUPPORT AND MAINTENANCE
Altova offers multiple optional “Support & Maintenance Package(s)” (“SMP”) for the version of
Software product edition that you have licensed, which you may elect to purchase in addition to
your Software license. The Support Period, hereinafter defined, covered by such SMP shall be
delineated at such time as you elect to purchase a SMP. Your rights with respect to support and
maintenance as well as your upgrade eligibility depend on your decision to purchase SMP and
the level of SMP that you have purchased:
(a) If you have not purchased SMP, you will receive the Software AS IS and will not
receive any maintenance releases or updates. However, Altova, at its option and in its sole
discretion on a case by case basis, may decide to offer maintenance releases to you as a courtesy,
but these maintenance releases will not include any new features in excess of the feature set at
the time of your purchase of the Software. In addition, Altova will provide free technical support
to you for thirty (30) days after the date of your purchase (the “Support Period” for the purposes
of this paragraph a), and Altova, in its sole discretion on a case by case basis, may also provide
free courtesy technical support during your thirty (30)-day evaluation period. Technical support
is provided via a Web-based support form only, and there is no guaranteed response time.
(b) If you have purchased SMP, then solely for the duration of its delineated Support
Period, you are eligible to receive the version of the Software edition that you have licensed
and all maintenance releases and updates for that edition that are released during your Support
Period. For the duration of your SMP’s Support Period, you will also be eligible to receive
upgrades to the comparable edition of the next version of the Software that succeeds the
Software edition that you have licensed for applicable upgrades released during your Support
Period. The specific upgrade edition that you are eligible to receive based on your Support
Period is further detailed in the SMP that you have purchased. Software that is introduced as
separate product is not included in SMP. Maintenance releases, updates and upgrades may or
may not include additional features. In addition, Altova will provide Priority Technical Support
to you for the duration of the Support Period. Priority Technical Support is provided via a
Web-based support form only, and Altova will make commercially reasonable efforts to respond
via e-mail to all requests within forty-eight (48) hours during Altova’s business hours (MO-FR,
8am UTC — 10pm UTC, Austrian and US holidays excluded) and to make reasonable efforts to
provide work-arounds to errors reported in the Software.

Altova UModel 2007 © 2007 Altova GmbH

Appendices License Information 329

During the Support Period you may also report any Software problem or error to Altova. If
Altova determines that a reported reproducible material error in the Software exists and
significantly impairs the usability and utility of the Software, Altova agrees to use reasonable
commercial efforts to correct or provide a usable work-around solution in an upcoming
maintenance release or update, which is made available at certain times at Altova’s sole
discretion.

If Altova, in its discretion, requests written verification of an error or malfunction discovered by
you or requests supporting example files that exhibit the Software problem, you shall promptly
provide such verification or files, by email, telecopy, or overnight mail, setting forth in
reasonable detail the respects in which the Software fails to perform. You shall use reasonable
efforts to cooperate in diagnosis or study of errors. Altova may include error corrections in
maintenance releases, updates, or new major releases of the Software. Altova is not obligated to
fix errors that are immaterial. Immaterial errors are those that do not significantly impact use of
the Software. Whether or not you have purchased the Support & Maintenance Package,
technical support only covers issues or questions resulting directly out of the operation of the
Software and Altova will not provide you with generic consultation, assistance, or advice under
any circumstances.

Updating Software may require the updating of software not covered by this Software License
Agreement before installation. Updates of the operating system and application software not
specifically covered by this Software License Agreement are your responsibility and will not be
provided by Altova under this Software License Agreement. Altova’s obligations under this
Section 6 are contingent upon your proper use of the Software and your compliance with the
terms and conditions of this Software License Agreement at all times. Altova shall be under no
obligation to provide the above technical support if, in Altova’s opinion, the Software has failed
due to the following conditions: (i) damage caused by the relocation of the software to another
location or CPU; (ii) alterations, modifications or attempts to change the Software without
Altova’s written approval; (iii) causes external to the Software, such as natural disasters, the
failure or fluctuation of electrical power, or computer equipment failure; (iv) your failure to
maintain the Software at Altova’s specified release level; or (v) use of the Software with other
software without Altova’s prior written approval. It will be your sole responsibility to: (i)
comply with all Altova-specified operating and troubleshooting procedures and then notify
Altova immediately of Software malfunction and provide Altova with complete information
thereof; (ii) provide for the security of your confidential information; (iii) establish and maintain
backup systems and procedures necessary to reconstruct lost or altered files, data or programs.

7. SOFTWARE ACTIVATION, UPDATES AND LICENSE METERING
(a) License Metering. Altova has a built-in license metering module that helps you to
avoid any unintentional violation of this Software License Agreement. Altova may use your
internal network for license metering between installed versions of the Software.
(b) Software Activation. Altova’s Software may use your internal network and
Internet connection for the purpose of transmitting license-related data at the time of
installation, registration, use, or update to an Altova-operated license server and
validating the authenticity of the license-related data in order to protect Altova against
unlicensed or illegal use of the Software and to improve customer service. Activation is
based on the exchange of license related data between your computer and the Altova
license server. You agree that Altova may use these measures and you agree to follow any
applicable requirements.
(c) LiveUpdate. Altova provides a new LiveUpdate notification service to you, which is
free of charge. Altova may use your internal network and Internet connection for the purpose of
transmitting license-related data to an Altova-operated LiveUpdate server to validate your
license at appropriate intervals and determine if there is any update available for you.
(d) Use of Data. The terms and conditions of the Privacy Policy are set out in full at
http://www.altova.com/privacy and are incorporated by reference into this Software License
Agreement. By your acceptance of the terms of this Software License Agreement or use of the
Software, you authorize the collection, use and disclosure of information collected by Altova for
the purposes provided for in this Software License Agreement and/or the Privacy Policy as

© 2007 Altova GmbH Altova UModel 2007

http://www.altova.com/privacy

330 Appendices License Information

revised from time to time. European users understand and consent to the processing of personal
information in the United States for the purposes described herein. Altova has the right in its
sole discretion to amend this provision of the Software License Agreement and/or Privacy
Policy at any time. You are encouraged to review the terms of the Privacy Policy as posted on
the Altova Web site from time to time.

8. TERM AND TERMINATION

This Software License Agreement may be terminated (a) by your giving Altova written notice of
termination; or (b) by Altova, at its option, giving you written notice of termination if you
commit a breach of this Software License Agreement and fail to cure such breach within ten (10)
days after notice from Altova or (c) at the request of an authorized Altova reseller in the event
that you fail to make your license payment or other monies due and payable.. In addition the
Software License Agreement governing your use of a previous version that you have upgraded
or updated of the Software is terminated upon your acceptance of the terms and conditions of the
Software License Agreement accompanying such upgrade or update. Upon any termination of
the Software License Agreement, you must cease all use of the Software that it governs, destroy
all copies then in your possession or control and take such other actions as Altova may
reasonably request to ensure that no copies of the Software remain in your possession or control.
The terms and conditions set forth in Sections 1(g), (h), (i), 2, 5(b), (c), 9, 10 and 11 survive
termination as applicable.

9. RESTRICTED RIGHTS NOTICE AND EXPORT RESTRICTIONS

The Software was developed entirely at private expense and is commercial computer software
provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S.
Government or a U.S. Government contractor or subcontractor is subject to the restrictions set
forth in this Agreement and as provided in FAR 12.211 and 12.212 (48 C.F.R. §12.211 and
12.212) or DFARS 227. 7202 (48 C.F.R. §227-7202) as applicable. Consistent with the above
as applicable, Commercial Computer Software and Commercial Computer Documentation
licensed to U.S. government end users only as commercial items and only with those rights as
are granted to all other end users under the terms and conditions set forth in this Software
License Agreement. Manufacturer is Altova GmbH, Rudolfsplatz, 13a/9, A-1010 Vienna,
Austria/EU. You may not use or otherwise export or re-export the Software or Documentation
except as authorized by United States law and the laws of the jurisdiction in which the Software
was obtained. In particular, but without limitation, the Software or Documentation may not be
exported or re-exported (i) into (or to a national or resident of) any U.S. embargoed country or
(ii) to anyone on the U.S. Treasury Department's list of Specially Designated Nationals or the
U.S. Department of Commerce's Table of Denial Orders. By using the Software, you represent
and warrant that you are not located in, under control of, or a national or resident of any such
country or on any such list.

10. = THIRD PARTY SOFTWARE
The Software may contain third party software which requires notices and/or additional terms
and conditions. Such required third party software notices and/or additional terms and
conditions are located Our Website at http://www.altova.com/legal 3rdparty.html and are made
a part of and incorporated by reference into this Agreement. By accepting this Agreement, you
are also accepting the additional terms and conditions, if any, set forth therein.

11. GENERAL PROVISIONS
If you are located in the European Union and are using the Software in the European Union and
not in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,

Altova UModel 2007 © 2007 Altova GmbH

Appendices License Information 331

Vienna) and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht, Wien (Commercial Court, Vienna) in connection with any such dispute or
claim.

If you are located in the United States or are using the Software in the United States then this
Software License Agreement will be governed by and construed in accordance with the laws of
the Commonwealth of Massachusetts, USA (excluding its conflict of laws principles and the
U.N. Convention on Contracts for the International Sale of Goods) and you expressly agree that
exclusive jurisdiction for any claim or dispute with Altova or relating in any way to your use of
the Software resides in the federal or state courts of Massachusetts and you further agree and
expressly consent to the exercise of personal jurisdiction in the federal or state courts of
Massachusetts in connection with any such dispute or claim.

If you are located outside of the European Union or the United States and are not using the
Software in the United States, then this Software License Agreement will be governed by and
construed in accordance with the laws of the Republic of Austria (excluding its conflict of laws
principles and the U.N. Convention on Contracts for the International Sale of Goods) and you
expressly agree that exclusive jurisdiction for any claim or dispute with Altova or relating in any
way to your use of the Software resides in the Handelsgericht, Wien (Commercial Court,
Vienna) and you further agree and expressly consent to the exercise of personal jurisdiction in
the Handelsgericht Wien (Commercial Court, Vienna) in connection with any such dispute or
claim. This Software License Agreement will not be governed by the conflict of law rules of any
jurisdiction or the United Nations Convention on Contracts for the International Sale of Goods,
the application of which is expressly excluded.

This Software License Agreement contains the entire agreement and understanding of the parties
with respect to the subject matter hereof, and supersedes all prior written and oral
understandings of the parties with respect to the subject matter hereof. Any notice or other
communication given under this Software License Agreement shall be in writing and shall have
been properly given by either of us to the other if sent by certified or registered mail, return
receipt requested, or by overnight courier to the address shown on Altova’s Web site for Altova
and the address shown in Altova’s records for you, or such other address as the parties may
designate by notice given in the manner set forth above. This Software License Agreement will
bind and inure to the benefit of the parties and our respective heirs, personal and legal
representatives, affiliates, successors and permitted assigns. The failure of either of us at any
time to require performance of any provision hereof shall in no manner affect such party’s right
at a later time to enforce the same or any other term of this Software License Agreement. This
Software License Agreement may be amended only by a document in writing signed by both of
us. In the event of a breach or threatened breach of this Software License Agreement by either
party, the other shall have all applicable equitable as well as legal remedies. Each party is duly
authorized and empowered to enter into and perform this Software License Agreement. If, for
any reason, any provision of this Software License Agreement is held invalid or otherwise
unenforceable, such invalidity or unenforceability shall not affect the remainder of this Software
License Agreement, and this Software License Agreement shall continue in full force and effect
to the fullest extent allowed by law. The parties knowingly and expressly consent to the
foregoing terms and conditions.

Last updated: 2006-09-05

© 2007 Altova GmbH Altova UModel 2007

Index

333

Index

.NET Framework,
Include file, 134

1

1.4,
Java, 50

5

5.0,
Java, 50

A

Abstract,
class, 19
Activation box,
Execution Specification, 204
Activity,
Add diagram to transition, 185
Add to state, 185
create branch / merge, 173
diagram elements, 175
icons, 259
Activity diagram, 170
inserting elements, 171
Actor,
user-defined, 12
Add,
diagram to package, 12
insert - delete from Model Tree, 59
move - delete - diagram, 74
new project, 92
package to project, 12

to Favorites, 65
All,
expand / collapse, 222
Annotation,
documenation, 72
XML schema, 242
Appendices, 318
Artifact,
add to node, 40
manifest, 40
Assign,
shortcut to a command, 291
stereotype, 156
Association,
aggregate/composite, 19
automatic display of, 148
between classes, 19
class memberEnd, 148
defining the type, 148
display during code engineering, 50
object links, 30
qualifier, 148
role, 148
Show property as, 74
Show relationships, 74, 152
show typed property, 143
use case, 12
Attribute,
coloring, 226
show / hide, 222
stereotype, 156
Autocomplete,
function, 19
Autogenerate,
reply message, 210
Automatic,
display of associations, 148
hyperlink, 82

B

Ball and socket,
interface notation, 222
Bank,
sample files, 89
Base,

© 2007 Altova GmbH

334

Index

Base,

class, 25
Base class,

inserting derived, 80

overriding, 222
Batch,

processing, 86
Behavioral,

diagrams, 169
Binary,

obfuscated - support, 98
Binary files,

importing C# and Jave, 98
Binding,

template, 142
Bitmap,

save elements as, 277
Borland,

bsdj project file, 279
Branch,

create in Activity, 173
bsdj,

Borland project, 279

C

C#,
code, 302
code to model correspondence, 112
import binary file, 98
import settings, 94
C++,
code, 302
Call,
message, 210
CallBehavior,
insert, 171
CallOperation,
insert, 171
Cascading,
styles, 66
Catalog,
file - XMLSpy Catalog file, 294
Check,
project syntax, 279
Class,

abstract and concrete, 19
add new, 19
add operations, 19
add properties, 19
associations, 19
ball and socket interface, 222
base, 25
base class overriding, 222
derived, 25
diagrams, 19
expand, collapse compartments, 222
icons, 260
in component diagram, 35
inserting derived classes, 80
multiple instances on diagram, 222
operation - overriding, 222
synchronization, 103
syntax coloring, 226
Class diagram, 222
Classifier,
constraining, 139
Close,
all but active diagram, 74
Code,
default, 294
generation - min. conditions, 105
prerequisites, 44
round trip engineering, 44
SPL, 303
synchronization, 103
target directory, 44
Code - C#,
to UModel elements, 112
Code - Java,
to UModel elements, 107
Code - XML Schema,
to UModel elements, 125
Code engineering, 44
import directory, 50
showing associations, 50
Code Generator, 302
Collaboration,
Composite Structre diagram, 232
Collapse,
class compartments, 222
Color,
syntax coloring - enable/disable, 226
Combined fragment, 205

© 2007 Altova GmbH

Index

335

Command,
add to toolbar/menu, 290
context menu, 292
delete from menu, 292
line processing, 86
reset menu, 292
Comments,
documentation, 72
Communication,
icons, 261

Communication diagram, 195

generate from Sequence diagram, 195

Compartment,

expand single / multiple, 222
Compatibility,

updating projects, 103
Component,

diagram, 35

icons, 263

insert class, 35

realization, 35
Component diagram, 234
Composite state, 189

add region, 189
Composite Structure,

icons, 262

insert elements, 232

Composite Structure diagram, 232

Composition,
association - create, 19
Concrete,
class, 19
Constrain,
element, 59
Constraining,
classifiers, 139
Constraint,
add in diagram, 59
assign to multiple element, 59
syntax check, 279
Content model,
of XML Schema, 246
Context menu,
commands, 292
Copy,
paste in Diagram, Model Tree, 77
Copyright information, 319
Create,

getter / setter methods, 222
XML schema, 250
csproj - csdproj,
MS Visual Studio .Net, 279
Customize, 290
context menu, 292
menu, 292

toolbar/menu commands, 290

D

Datatype,

defining in Schema, 246
Default,

menu, 292

path - examples folder, 8

project code, 294

SPL templates, 103
Delete,

class relationships, 148

command from context menu, 292

command from toolbar, 290

icon from toolbar, 290

shortcut, 291

toolbar, 290
Dependency,

include, 12

Show relationships, 74, 152

usage, 35
Deployment,

diagram, 40

icons, 264
Deployment diagram, 235
Derived,

class, 25

classes inserting, 80
Diagram,

- Activity, 170

- Class, 222

- Communication, 195

- Component, 234

- Composite structure, 232

- Deployment, 235

- Interaction Overview, 198

- Object, 236

- Package, 237

© 2007 Altova GmbH

336

Index

Diagram,

- Sequence, 203

- State machine, 184

- Timing, 214

- Use Case, 194

- XML schema, 241

Add activity to transition, 185

Additional - XML schema, 240

close all but active, 74

constrain elements, 59

generate Package dependency diagram, 237

hyperlink, 82

icons, 258

ignore elem. from inluded files, 294

multiple instances of class, 222

open, 63

Paste in Diagram only, 77

properties, 74

save as png, 275

save elements as bitmap, 277

share package and diagram, 136

sizing, 74

styles, 66

XML schema - import, 242
Diagram frame,

show UML diagram heading, 74
Diagram heading,

show UML diagram heading, 74
Diagram pane, 74
Diagram Tree, 63
Diagrams, 168

behavioral, 169

structural, 221
Directory,

examples folder, 8

for code generation, 44

ignoring on merge, 294

import, 50

importing code from, 94
Distribution,

of Altova's software products, 319, 320, 322
Document,

hyperlink to, 82
Documentation,

Annotation, 72

generate UML project, 162
Documentation tab, 72
Dot,

Ownership, 150
Drag and drop,
right mouse button, 80
DurationConstraint,
Timing diagram, 218

E

Edit, 277
Element,
add to Favorites, 65
assign constraint to, 59
associations when importing, 50
constrain, 59
cut, copy paste, 77
generate documentation, 162
hyperlink to, 82
inserting, 80
relationships, 148
save selected as bitmap, 277
styles, 66
Elements,
ignore from include files, 294
insert State Machine, 184
End User License Agreement, 319, 323
Enhance,
performance, 145
Entry point,
add to submachine, 189
Enumeration,
and stereotypes, 156
Error,
messages, 73
syntax check, 44
Evaluation period,
of Altova's software products, 319, 320, 322
Event/Stimulus,
Timing diagram, 218
Examples,
tutorial folder, 8
Exception,
Adding raised exception, 222
Java operation, 94
Execution specification,
lifeline, 204
Exit point,

© 2007 Altova GmbH

Index

337

Exit point,
add to submachine, 189
Expand,
all class compartments, 222
collapsing packages, 59
Export,
as XMI, 254
Extension,
XML, 254

F

Favorites, 65
File, 275
tutorial example, 8
ump, 92
Files,
sample files, 89
Find,
modeling elements, 59, 277
searching tabs, 58
unused elements, 59
Folder,
examples folder, 8
Forward,
engineering, 105
Frame,
show UML diagram heading, 74

G

Gate,

sequence diagram, 209
General Value lifeline,

Timing diagram, 215
Generalize,

specialize, 25
Generate,

code from schema, 302

reply message automatically, 210
Sequence dia from Communication, 195

UML project documentation, 162

XML Schema, 250
Get,

getter / setter methods, 222
Graph view,

single set of relations, 69
Grid,

show- snap to, 74

H

Handle,

create relationship, 150
Heading,

show UML diagram heading, 74
Help, 299
Hierarchy,

show all relations, 69
Hotkey, 291
Hyperlink, 82

automatic, 82

Icon,
Activity, 259
add to toolbar/menu, 290
class, 260
Communication, 261
component, 263
Composite Stucture, 262
deployment, 264
Interaction Overview, 265
object, 266
Package, 267
Sequence, 268
show large, 293
State machine, 269
Timing, 270
use case, 271
XML Schema, 272
ID,
IDs and UUIDs, 254
Ignore,
directories, 294
elements in list, 294
Import,

© 2007 Altova GmbH

338 Index

Import, implementing, 222
association of elements, 50 Introduction, 6
binary files, 98
C# project, 94

directory, 50
project, 94 J
source code, 94
source project, 50 Java,
code, 302

XMI file, 254

XML Schema, 242 code to model correspondence, 107

exception, 94

Importing,))
UModel generated XMI, 254 import binary file, 93
namespace root, 105
Include,

NET Framework, 134 versions supported, 50

dependency, 12 JavaDocs, 72
share package and diagram, 136

status - changing, 136

UModel project, 134 K
Insert,
action (CallBehavior), 171 Keyboard shortcut, 291

action (CallOperation), 171
Composite Stucture elements, 232

elements, 80

Interaction Overview elements, 198 L

Package diagram elements, 238

simple state, 185 Label,

Timing diagram elements, 214 IDs and UUIDs, 254

with..., 80 Layout, 287
Installation, Legal information, 319

examples folder, 8 License, 323
Installer, information about, 319

multi-user, 8 License metering,
Instance, in Altova products, 321

diagram, 30 Lifeline,

multiple class, and display of, 222 attributes, 204

object, 30 General Value, 215
Intelligent, Limit,

autocomplete, 19 constrain elements, 59
Interaction operand, 205 Line,
Interaction operator, orthogonal, 35

defining, 205 Line break,
Interaction Overview, in actor text, 12

icons, 265 Lines,

inserting elements, 198 formatting, 30
Interaction Overview diagram, 198 Link,
Interaction use, 208 create hyperlink, 82
Interface, List,

ball and socket, 222 unused elements, 59

© 2007 Altova GmbH

Index 339

Methods,
getter / setter, 222

M Minimum,
code generation conditions, 105

. Missing elements,
Mail,

send project, 275

listing, 59
Model from code,

Manlfest, showing associations, 50
artl-fact, 40 Model Tree,
Mapping, opening packages, 59
C# to/from model elements, 112
pane, 59
Java to/from model elements, 107 .
Modeling,

XML Schema to/from model elements, 125

MemberEnd,
association, 148

enhance performance, 145

Mouse,

copy, paste, 77
Menu,

Add menu to, 291
add/delete command, 290
customize, 292
Default/XMLSPY, 292
delete commands from, 292

Moving message arrows, 210
MS Visual Studio .Net,

csproj - csdproj project file, 279
Multiline,

actor text, 12
Multiple elements,

edit, 277 styles display, 66
file, 275 Multi-user,

help, 299 examples folder, 8
layc.)ut, 287 MyDocuments,
project, 279 example files, 8
tools, 289

view, 288

window, 298

Merge, N

code from model, 44

code into model, 279 Namespace,
create in Activity, 173 Java namespace root, 105
ignore directory, 294 Navigate,
model into code, 279 hyperlink, 82
Message, Node,
arrows, 210 add, 40
call, 210 add artifact, 40
create object, 210 styles, 66
inserting, 210 Note,
moving, 210 hyperlink from, 82
numbering, 210 Numbering,
Timing diagram, 219 messages, 210
Messages pane, 73
Metadata,
XMI output, 254
Method,

Add raised exception, 222

© 2007 Altova GmbH

340

Index

O

Obfuscated,

binary support, 98
Object,

create message, 210

diagram, 30

icons, 266

links - associations, 30
Object diagram, 236
Open,

diagram, 63

packages in tree view, 59

Operand,

P

Package,

expand/collapse, 59
icons, 267

profile, 156
sharing, 136

Package diagram, 237
generating dependency diagram, 237

insert elements, 238

Packagelmport, 238
PackageMerge, 238
Page,

prevent split over pages, 275

interaction, 205
Operation,
coloring, 226
exception, 94
overriding, 222
reusing, 25
show / hide, 222
template, 143
Operations,
adding, 19
Operator,
interaction, 205
Options,
project, 144
tools, 294
Orthogonal,
line, 35
state, 189
Output,
XMI file, 254
Override,

class operations, 222
default SPL templates, 103
Overview pane, 72

Overwrite,

code from model, 279
model from code, 279

OwnedEnd,
association, 148
Ownership,
dot, 150

Parameter,
batch, 86
template, 143

Partial,

documentation - generate, 162

Paste,

element in diagram, 77
in Diagram only, 77

Path,

examples folder, 8

Performance,
enhancement, 145
PNG,
save diagram, 275
Prerequisites,

forward engineering, 105

Pretty print,

XMI output, 254
Print,

preview, 275

Profile,

stereotypes, 154, 156

Project, 279
create, 92
default code, 294

file - updating, 103

generating documentation, 162

import, 94

include UModel project, 134

insert package, 92

open last on start, 294

© 2007 Altova GmbH

Index

341

Project, 279
options, 144
send by mail, 275
styles, 66
syntax checking, 279
workflow, 92
Project files,
Borland - MS Visual Studio .Net, 279
Properties,
adding, 19
Properties pane, 66
Property,
coloring, 226
reusing, 25
show as association, 74, 152
typed - show, 143

Q

Qualifier,
association, 148

R

Raised exception, 94

Adding, 222
Realization,

component, 35
Reference, 274

show referenced class, 74
Region,

add to composite state, 189
Relation,

show all - hierarchy tab, 69
Relationship,

Show model relationships, 74, 152
Relationships,

element, 148

using handles, 150
Remove,

from Favorites, 65
Reply,

message - autogenerate, 210
Reset,

menu commands, 292
shortcut, 291
toolbar & menu commands, 290

Right dragging, 80
Role,

association, 148

Root,

catalog - XMLSpy, 294
Java namespace, 105
package/class synchronization, 103

Round trip,

code - model -code, 50
engineering, 44
model - code - model, 44

S

Sample,

example files, 89

Save,

diagram as image, 275

elements as bitmaps, 277

SC,

syntax coloring, 226

Schema,

code generator, 302

create XML Schema, 250
Datatype - defining, 246
XML Schema, 241

XML Schema - import, 242

Search,

Find, 277

Searching tabs, 58
Send by mail,

project, 275

Sequence,

icons, 268

Sequence diagram, 203

combined fragment, 205

gate, 209

generate from Communication diag., 195
inserting elements, 203

interaction use, 208

lifeline, 204

messages, 210

state invariant, 210

© 2007 Altova GmbH

342

Index

Set,

getter / setter methods, 222
Setting,

synchronization, 103
Share,

package and diagram, 136
Shortcut, 291

assigning/deleting, 291

show in tooltip, 293
Show,

all relations - hierarchy tab, 69

graph view, 69

model relationships, 74, 152

or snap to grid, 74

property as association, 74, 143

tagged values, 244
Show/hide,

attributes, operations, 222
Signature,

template, 139, 141
Size,

diagram pane, 74
Snap,

to grid - show grid, 74
Socket,

Ball and socket, 222
Software product license, 323
Sort,

diagram, 63

elements in Model Tree, 59
Source code,

importing, 94
Specialize,

generalize, 25
Speed,

enhancememt, 145
SPL, 303

code blocks, 304

conditions, 311

foreach, 312

subroutines, 313

templates user-defined, 103
Split,

prevent split over pages, 275
Start,

UModel, 9

with previous project, 294
State,

add activity, 185

composite, 189

define transition between, 185

insert simple, 185

orthogonal, 189

submachine state, 189
State changes,

defining on a timeline, 215
State invariant, 210
State machine,

composite states, regions, 189

diagram elements, 192

icons, 269

insert elements, 184

states, activities, transitions, 185
State Machine Diagram, 184
Stereotype,

and enumeration, 156

assigning, 156

attributes - defining, 156

profiles, 154, 156
Structural,

diagrams, 221
Styles,

cascading, precedence, 66

multiple selections, 66
Styles tab, 66
Sub class,

inserting into diagram, 80
Submachine state,

add entry/exit point, 189
Synchronization,

settings, 103
Synchronize,

merge code from model, 44

merge model from code, 50

root/package/class, 103
Syntax,

batch file, 86

check project syntax, 279

checking, 44

errors - warnings, 44
Syntax check,

messages, 73
Syntax coloring, 226

© 2007 Altova GmbH

Index

343

T

Tagged,
values, 154, 156
Tagged values,
show, 244
Template,
binding, 142
operation/parameter, 143
signature, 139, 141
Templates,
user-defined SPL, 103
Tick mark,
Timing diagram, 217
TimeConstraint,
Timing diagram, 219
Timeline,
defining state changes, 215
Timing,
icons, 270
Timing diagram, 214
DurationConstraint, 218
Event/Stimuls, 218
General Value lifeline, 215
inserting elements, 214
Lifeline, 215
Message, 219
switch between types, 215
Tick mark, 217
TimeConstraint, 219
Timeline, 215
Toolbar,
activate/deactivate, 290
add command to, 290
create new, 290

reset toolbar & menu commands, 290

show large icons, 293
Tools, 289

Add to Tools menu, 291

options, 294
Tooltip,

show, 293

show shortcuts in, 293
Transition,

Add Activity diagram to, 185

define between states, 185

define trigger, 185
Traverse,

hyperlinks, 82
Trigger,

define transition trigger, 185
Tutorial,

aims, 8

example files, 8

examples folder, 8
Type,

property - show, 143

U

UML,
diagram - sharing, 136
diagram heading - show, 74
Diagrams, 168
templates, 139
UModel,
importing generated XMI, 254
starting, 9
to C# code, 112
to Java code, 107
to XML Schema code, 125
UModel diagram icons, 258
UModel Inroduction, 6
Ump,
file extension, 92
Unused elements,
listing, 59
Update,
project file, 103
Usage,
dependency, 35
Use case,
adding, 12
association, 12
compartments, 12
icons, 271
Use Case diagram, 194
User,
multi-user examples folder, 8
User defined,
actor, 12

© 2007 Altova GmbH

344 Index

User interface, 58
User-defined,

SPL templates, 103
UuID, Z
Universal Unique identifiers, 254
Zoom,
sizing, 74

\'

value,
tagged, 156
tagged, show, 244
View, 288
to multiple instances of element, 222

W

Warning,
messages, 73
syntax check, 44

Web,
hyperlink, 82

Window, 298

Workflow,
project, 92

X

XMI, 254
extentions, 254
pretty print output, 254
XML Schema,
annotation, 242
code to model correspondence, 125
Content model, 246
create/generate, 250
diagram, 241
icons, 272
XML schema - insert element, 246

© 2007 Altova GmbH

	UModel
	Introducing UModel
	UModel tutorial
	Starting UModel
	Use cases
	Class Diagrams
	Creating derived classes

	Object Diagrams
	Component Diagrams
	Deployment Diagrams
	Round-trip engineering (model - code - model)
	Round-trip engineering (code - model - code)

	UModel User Interface
	Model Tree pane
	Diagram Tree tab
	Favorites tab

	Properties pane
	Hierarchy tab
	Overview pane
	Messages window
	Diagram pane
	Cut, copy and paste in UModel Diagrams

	Adding/Inserting model elements
	Hyperlinking modeling elements
	UModel Command line interface
	Bank samples

	Projects and code engineering
	Importing source code into projects
	Importing C# and Java binaries
	Synchronizing Model and source code
	Forward engineering prerequisites
	Java code to/from UModel elements
	C# code to/from UModel elements
	XML Schema to/from UModel elements
	Including other UModel projects
	Sharing Packages and Diagrams
	UML templates
	Template signatures
	Template binding
	Template usage in operations and properties

	Project Settings
	Enhancing performance

	Creating model relationships
	Associations, realizations and dependencies
	Showing model relationships

	Profiles and stereotypes
	Adding Stereotypes and defining tagged values

	Generating UML documentation
	UML Diagrams
	Behavioral Diagrams
	Activity Diagram
	Inserting Activity Diagram elements
	Creating branches and merges
	Diagram elements

	State Machine Diagram
	Inserting state machine diagram elements
	Creating states, activities and transitions
	Composite states
	Diagram elements

	Use Case Diagram
	Communication Diagram
	Inserting Communication Diagam elements

	Interaction Overview Diagram
	Inserting Interaction Overview elements

	Sequence Diagram
	Inserting sequence diagram elements
	Lifeline
	Combined Fragment
	Interaction Use
	Gate
	State Invariant
	Messages

	Timing Diagram
	Inserting Timing Diagram elements
	Lifeline
	Tick Mark
	Event/Stimulus
	DurationConstraint
	TimeConstraint
	Message

	Structural Diagrams
	Class Diagram
	Composite Structure Diagram
	Inserting Composite Structure Diagram elements

	Component Diagram
	Deployment Diagram
	Object Diagram
	Package Diagram
	Inserting Package Diagram elements

	Additional Diagrams
	XML Schema Diagrams
	Importing an XML Schema
	Inserting XML Schema elements
	Creating and generating an XML Schema

	XMI - XML Metadata Interchange
	UModel Diagram icons
	Activity Diagram
	Class Diagram
	Communication diagram
	Composite Structure Diagram
	Component Diagram
	Deployment Diagram
	Interaction Overview diagram
	Object Diagram
	Package diagram
	Sequence Diagram
	State Machine Diagram
	Timing Diagram
	Use Case diagram
	XML Schema diagram

	UModel Reference
	File
	Edit
	Project
	Layout
	View
	Tools
	Customize...
	Commands
	Toolbars
	Tools
	Keyboard
	Menu
	Options

	Options

	Window
	Help

	Code Generator
	The way to SPL (Spy Programming Language)
	Basic SPL structure
	Variables
	Operators
	Conditions
	foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation

	Error Codes

	Appendices
	License Information
	Electronic Software Distribution
	License Metering
	Copyright
	Altova End User License Agreement

