
Altova StyleVision 2024 Professional Edition

User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2023

© 2017-2023 Altova GmbH

Altova StyleVision 2024 Professional Edition
User & Reference Manual

3Altova StyleVision 2024 Professional Edition

Table of Contents

1 Introduction 17

.. 181.1 Product Features

.. 221.2 Authentic View in Altova Products

.. 231.3 What Is an SPS?

.. 251.4 Setting up StyleVision

.. 261.5 Terminology

.. 291.6 About This Documentation

2 User Interface 31

.. 322.1 Main Window

.. 332.1.1 Design View

.. 352.1.2 Authentic View

.. 362.1.3 Output Views

.. 392.2 Sidebars

.. 422.2.1 Design Overview

.. 442.2.2 Schema Tree

.. 482.2.3 Design Tree

.. 512.2.4 Style Repository

.. 542.2.5 Styles

.. 552.2.6 Properties

.. 592.2.7 Project

.. 602.2.8 Messages

.. 612.2.9 Find and Replace

3 Quick Start Tutorial 63

.. 643.1 Creating and Setting Up a New SPS

.. 683.2 Inserting Dynamic Content (from XML Source)

.. 753.3 Inserting Static Content

Altova StyleVision 2024 Professional Edition4

.. 803.4 Formatting the Content

.. 863.5 Using Auto-Calculations

.. 903.6 Using Conditions

.. 973.7 Using Global Templates and Rest-of-Contents

.. 1013.8 That's It!

4 Usage Overview 102

.. 1034.1 SPS and Sources

.. 1044.2 Creating the Design

.. 1054.3 XSLT and XPath Versions

.. 1064.4 Internet Explorer Compatibility

.. 1084.5 SPS and Authentic View

.. 1104.6 Synchronizing StyleVision and Authentic

.. 1114.7 Generated Files

.. 1134.8 Projects in StyleVision

.. 1184.9 Catalogs in StyleVision

.. 1184.9.1 How Catalogs Work

.. 1194.9.2 Catalog Structure in StyleVision

.. 1204.9.3 Customizing Your Catalogs

.. 1224.9.4 Variables for Windows System Locations

5 SPS Content 124

.. 1255.1 Inserting XML Content as Text

.. 1275.1.1 Inserting Content with a Predefined Format

.. 1285.1.2 Adding Elements in Authentic View

.. 1305.1.3 Rest-of-Contents

.. 1325.2 Inserting MS Word Content

.. 1355.3 Inserting MS Excel Content

.. 1375.4 User-Defined Templates

.. 1405.5 User-Defined Elements, XML Text Blocks

.. 1405.5.1 User-Defined Elements

.. 1415.5.2 User-Defined XML Text Blocks

.. 1435.6 Tables

5Altova StyleVision 2024 Professional Edition

.. 1455.6.1 Static Tables

.. 1465.6.2 Dynamic Tables

.. 1505.6.3 Conditional Processing in Tables

.. 1515.6.4 Tables in Design View

.. 1535.6.5 Table Formatting

.. 1575.6.6 Row and Column Display

.. 1585.6.7 CALS/HTML Tables

.. 1635.7 Lists

.. 1635.7.1 Static Lists

.. 1655.7.2 Dynamic Lists

.. 1685.8 Graphics

.. 1685.8.1 Images: URIs and Inline Data

.. 1705.8.2 Image Types and Output

.. 1735.8.3 Example: A Template for Images

.. 1745.9 Form Controls

.. 1755.9.1 Input Fields, Multiline Input Fields

.. 1755.9.2 Check Boxes

.. 1775.9.3 Combo Boxes

.. 1805.9.4 Radio Buttons, Buttons

.. 1825.10 Links

.. 1835.11 Barcodes

.. 1875.12 Layout Modules

.. 1875.12.1 Layout Containers

.. 1905.12.2 Layout Boxes

.. 1945.12.3 Lines

.. 1975.13 The Change-To Feature

6 SPS Structure 200

.. 2026.1 Schema Sources

.. 2036.1.1 DTDs and XML Schemas

.. 2086.1.2 DB Schemas

.. 2096.1.3 User-Defined Schemas

.. 2116.1.4 Schema Manager

.. 2276.2 Merging XML Data from Multiple Sources

Altova StyleVision 2024 Professional Edition6

.. 2306.3 Modular SPSs

.. 2316.3.1 Available Module Objects

.. 2346.3.2 Creating a Modular SPS

.. 2386.3.3 Example: An Address Book

.. 2446.4 Templates and Design Fragments

.. 2446.4.1 Main Template

.. 2446.4.2 Global Templates

.. 2486.4.3 User-Defined Templates

.. 2516.4.4 Variable Templates

.. 2526.4.5 Node-Template Operations

.. 2556.4.6 Design Fragments

.. 2596.5 XSLT Templates

.. 2616.6 Multiple Document Output

.. 2626.6.1 Inserting a New Document Template

.. 2636.6.2 New Document Templates and Design Structure

.. 2636.6.3 URLs of New Document Templates

.. 2656.6.4 Preview Files and Output Document Files

.. 2686.6.5 Document Properties and Styles

7 Advanced Features 269

.. 2707.1 Auto-Calculations

.. 2707.1.1 Editing and Moving Auto-Calculations

.. 2727.1.2 Updating Nodes with Auto-Calculations

.. 2757.1.3 Auto-Calculations Based on Updated Nodes

.. 2767.1.4 Example: An Invoice

.. 2807.2 Conditions

.. 2807.2.1 Setting Up the Conditions

.. 2837.2.2 Editing Conditions

.. 2847.2.3 Output-Based Conditions

.. 2857.2.4 Conditions and Auto-Calculations

.. 2867.3 Conditional Presence

.. 2887.4 Grouping

.. 2907.4.1 Example: Group-By (Persons.sps)

.. 2927.4.2 Example: Group-By (Scores.sps)

7Altova StyleVision 2024 Professional Edition

.. 2967.5 Sorting

.. 2967.5.1 The Sorting Mechanism

.. 2987.5.2 Example: Sorting on Multiple Sort-Keys

.. 3027.6 Parameters and Variables

.. 3027.6.1 User-Declared Parameters

.. 3047.6.2 Parameters for Design Fragments

.. 3067.6.3 SPS Parameters for Sources

.. 3077.6.4 Variables

.. 3097.6.5 Editable Variables in Authentic

.. 3127.7 Table of Contents, Referencing, Bookmarks

.. 3157.7.1 Bookmarking Items for TOC Inclusion

.. 3227.7.2 Creating the TOC Template

.. 3277.7.3 Example: Simple TOC

.. 3317.7.4 Example: Hierarchical and Sequential TOCs

.. 3347.7.5 Auto-Numbering in the Document Body

.. 3387.7.6 Cross-referencing

.. 3397.7.7 Bookmarks and Hyperlinks

.. 3467.8 Example: Multiple Languages

8 Presentation and Output 349

.. 3508.1 Predefined Formats

.. 3528.2 Output Escaping

.. 3548.3 Value Formatting (Formatting Numeric Datatypes)

.. 3548.3.1 The Value Formatting Mechanism

.. 3578.3.2 Value Formatting Syntax

.. 3648.4 Working with CSS Styles

.. 3658.4.1 External Stylesheets

.. 3698.4.2 Global Styles

.. 3718.4.3 Local Styles

.. 3738.4.4 Setting Style Values

.. 3758.4.5 Style Properties Via XPath

.. 3788.4.6 Composite Styles

.. 3818.5 Text-Styling Flexibility in Authentic

.. 3818.5.1 Composite Styles

Altova StyleVision 2024 Professional Edition8

.. 3838.5.2 RichEdit

.. 3878.5.3 Text State Icons

.. 3908.6 HTML Document Properties

.. 3928.7 Designing Print Output

.. 3938.7.1 Document Sections

.. 4078.7.2 Keeps and Breaks

.. 4078.7.3 Footnotes

.. 4098.7.4 Pixel Resolution

.. 4118.7.5 Watermarks

9 Additional Functionality 415

.. 4169.1 Altova Global Resources

.. 4169.1.1 Defining Global Resources

.. 4279.1.2 Using Global Resources

.. 4339.2 Authentic Node Properties

.. 4359.3 Replace Parent Node OnClick With

.. 4389.4 Additional Validation

.. 4409.5 Unparsed Entity URIs

.. 4429.6 New from XSLT, XSL-FO or FO File

.. 4469.7 User-Defined XPath Functions

.. 4489.7.1 Defining an XPath Function

.. 4519.7.2 Reusing Functions to Locate Nodes

.. 4529.7.3 Parameters in XPath Functions

.. 4619.8 Working with Dates

.. 4629.8.1 Using the Date-Picker

.. 4639.8.2 Formatting Dates

.. 4679.9 Using Scripts

.. 4689.9.1 Defining JavaScript Functions

.. 4699.9.2 Assigning Functions as Event Handlers

.. 4709.9.3 External JavaScript Files

.. 4729.10 HTML Import

.. 4729.10.1 Creating New SPS via HTML Import

.. 4749.10.2 Creating the Schema and SPS Design

.. 4769.10.3 Creating Tables and Lists as Elements/Attributes

9Altova StyleVision 2024 Professional Edition

.. 4789.10.4 Generating Output

.. 4799.11 ASPX Interface for Web Applications

.. 4809.11.1 Example: Localhost on Windows 7

.. 4829.12 PXF File: Container for SPS and Related Files

.. 4829.12.1 Creating a PXF File

.. 4859.12.2 Editing a PXF File

.. 4869.12.3 Deploying a PXF File

10 Databases 488

.. 49010.1 DBs and StyleVision

.. 49210.2 Connecting to a Data Source

.. 49310.2.1 Start Database Connection Wizard

.. 49510.2.2 Database Drivers Overview

.. 49810.2.3 ADO Connection

.. 50310.2.4 ADO.NET Connection

.. 51010.2.5 ODBC Connection

.. 51310.2.6 JDBC Connection

.. 51710.2.7 SQLite Connection

.. 51910.2.8 Native Connection

.. 52010.2.9 Global Resources

.. 52110.2.10 Database Connection Examples

.. 57510.3 DB Data Selection

.. 57510.3.1 Non-XML Databases

.. 58210.3.2 XML Databases

.. 58610.4 The DB Schema and DB XML files

.. 58910.5 DB Filters: Filtering DB Data

.. 59410.6 SPS Design Features for DB

.. 59810.7 Generating Output Files

.. 59910.8 Query Database

.. 60010.8.1 Data Sources

.. 60310.8.2 Browser Pane: Viewing the DB Objects

.. 60710.8.3 Query Pane: Description and Features

.. 60910.8.4 Query Pane: Working with Queries

.. 61010.8.5 Results and Messages

Altova StyleVision 2024 Professional Edition10

11 Authentic View 613

.. 61411.1 Authentic View Interface

.. 61411.1.1 Overview of the GUI

.. 61511.1.2 Authentic View Toolbar Icons

.. 61711.1.3 Authentic View Main Window

.. 61911.1.4 Authentic View Entry Helpers

.. 62311.1.5 Authentic View Context Menus

.. 62611.2 Editing in Authentic View

.. 62611.2.1 Basic Editing

.. 63111.2.2 Tables in Authentic View

.. 63811.2.3 Editing a DB

.. 64411.2.4 Working with Dates

.. 64611.2.5 Defining Entities

.. 64811.2.6 Images in Authentic View

.. 64911.2.7 Keystrokes in Authentic View

12 Authentic Scripting 650

.. 65212.1 Scripting Editor

.. 65312.2 Macros

.. 65312.2.1 Macros on Design Elements

.. 65512.2.2 Macros on Context Menu Items

.. 65612.2.3 Custom Buttons

.. 65912.3 Event Handlers

.. 66012.4 Scripting Options

13 Automated Processing 661

.. 66213.1 Command Line Interface

.. 66213.1.1 StyleVision

.. 66313.1.2 StyleVision Server

.. 66513.2 Using RaptorXML

.. 66513.2.1 PDF Output

.. 66713.3 Automation with FlowForce Server

11Altova StyleVision 2024 Professional Edition

.. 66913.4 How to Automate Processing

14 StyleVision in Visual Studio 670

.. 67114.1 Installing the StyleVision Plugin

.. 67214.2 Differences with StyleVision Standalone

15 StyleVision in Eclipse 673

.. 67415.1 Install the Integration Package for Eclipse

.. 67615.2 StyleVision Perspective in Eclipse

.. 67915.3 Other Stylevision Entry Points in Eclipse

16 Menu Commands and Reference 680

.. 68116.1 Design View Symbols

.. 68516.2 Edit XPath Expression Dialog

.. 68616.2.1 Evaluator

.. 68916.2.2 Debugger

.. 69716.2.3 Expression Builder

.. 70216.3 Toolbars

.. 70416.3.1 Format

.. 70516.3.2 Table

.. 70616.3.3 Authentic

.. 70816.3.4 RichEdit

.. 70816.3.5 Insert Design Elements

.. 71116.3.6 Design Filter

.. 71216.3.7 Global Resources

.. 71216.3.8 Standard

.. 71416.4 File Menu

.. 71416.4.1 New

.. 72016.4.2 Open, Reload, Close, Close All

.. 72516.4.3 Save Design, Save All

.. 73016.4.4 Save As

.. 73316.4.5 Export as MobileTogether Design File

.. 73316.4.6 Save Authentic XML Data, Save As

Altova StyleVision 2024 Professional Edition12

.. 73416.4.7 Save Generated Files

.. 73616.4.8 Deploy to FlowForce

.. 73816.4.9 Web Design

.. 73816.4.10 Properties

.. 74316.4.11 Print Preview, Print

.. 74416.4.12 Most Recently Used Files, Exit

.. 74516.5 Edit Menu

.. 74516.5.1 Undo, Redo, Select All

.. 74516.5.2 Find, Find Next, Replace

.. 75016.5.3 Stylesheet Parameters

.. 75116.5.4 Collapse/Expand Markup

.. 75316.6 Project Menu

.. 75416.6.1 New Project, Open Project, Reload Project

.. 75416.6.2 Close Project, Save Project

.. 75516.6.3 Add Files / Global Resource / URL to Project

.. 75616.6.4 Add Active (and Related) Files to Project

.. 75616.6.5 Add Project and External Folders to Project

.. 76016.7 View Menu

.. 76016.7.1 Toolbars and Status Bar

.. 76116.7.2 Design Sidebars

.. 76216.7.3 Design Filter, Zoom

.. 76216.7.4 Output Previews

.. 76316.8 Insert Menu

.. 76316.8.1 Contents

.. 76416.8.2 Rest of Contents

.. 76416.8.3 RichEdit

.. 76616.8.4 Form Controls

.. 76616.8.5 DB Control

.. 76716.8.6 Auto-Calculation

.. 76816.8.7 Date Picker

.. 76916.8.8 Paragraph, Special Paragraph

.. 76916.8.9 Barcode

.. 77016.8.10 Image

.. 77216.8.11 Horizontal Line

.. 77316.8.12 Table

13Altova StyleVision 2024 Professional Edition

.. 77316.8.13 Bullets and Numbering

.. 77516.8.14 Bookmark

.. 77616.8.15 Hyperlink

.. 77716.8.16 Footnote

.. 77916.8.17 Condition, Output-Based Condition

.. 78116.8.18 Disabled

.. 78116.8.19 Template

.. 78216.8.20 User-Defined Template

.. 78316.8.21 Variable Template

.. 78416.8.22 Design Fragment

.. 78416.8.23 Layout Container, Layout Box, Line

.. 78416.8.24 Table of Contents

.. 78516.8.25 New Document

.. 78516.8.26 Page / Column / Document Section

.. 78616.8.27 User-Defined Item

.. 78716.9 Enclose With Menu

.. 78716.9.1 Template

.. 78816.9.2 User-Defined Template

.. 78816.9.3 Variable Template

.. 78816.9.4 Paragraph, Special Paragraph

.. 78916.9.5 Bullets and Numbering

.. 79016.9.6 Bookmarks and Hyperlinks

.. 79016.9.7 Condition, Output-Based Condition

.. 79216.9.8 Disabled

.. 79216.9.9 TOC Bookmarks and TOC Levels

.. 79316.9.10 New Document

.. 79316.9.11 User-Defined Element

.. 79416.10 Table Menu

.. 79416.10.1 Insert Table, Delete Table

.. 79516.10.2 Add Table Headers, Footers

.. 79516.10.3 Append/Insert Row/Column

.. 79616.10.4 Delete Row, Column

.. 79616.10.5 Join Cell Left, Right, Below, Above

.. 79616.10.6 Split Cell Horizontally, Vertically

.. 79716.10.7 View Cell Bounds, Table Markup

Altova StyleVision 2024 Professional Edition14

.. 79716.10.8 Table Properties

.. 79816.10.9 Edit CALS/HTML Tables

.. 79816.10.10 Vertical Alignment of Cell Content

.. 79916.11 Authentic Menu

.. 79916.11.1 Edit Authentic Scripts

.. 80016.11.2 Custom Toolbar Buttons

.. 80316.11.3 Check Macro References

.. 80416.11.4 Auto-Add Date Picker

.. 80416.11.5 Auto-Add DB Controls

.. 80416.11.6 Reload Authentic View, Validate XML

.. 80516.11.7 Select New Row with XML Data for Editing

.. 80616.11.8 Define XML Entities

.. 80616.11.9 View Markup

.. 80716.11.10 RichEdit

.. 80716.11.11 (Dynamic Table) Row Commands

.. 80916.12 Database Menu

.. 80916.12.1 Query Database

.. 81016.12.2 Edit DB Filter, Clear DB Filter

.. 81116.13 Properties Menu

.. 81116.13.1 Edit Bullets and Numbering

.. 81116.13.2 Predefined Value Formatting Strings

.. 81416.14 Tools Menu

.. 81416.14.1 Spelling

.. 81516.14.2 Spelling Options

.. 81816.14.3 Global Resources

.. 81916.14.4 Active Configuration

.. 82016.14.5 Schema Manager

.. 83516.14.6 Customize

.. 83916.14.7 Restore Toolbars and Windows

.. 83916.14.8 Options

.. 84716.15 Window Menu

.. 84816.16 Help Menu

.. 84816.16.1 Help

.. 84816.16.2 Activation, Order Form, Registration, Updates

.. 85216.16.3 Other Commands

15Altova StyleVision 2024 Professional Edition

17 Programmers' Reference 853

.. 85417.1 Scripting Editor

.. 85417.1.1 Creating a Scripting Project

.. 86617.1.2 Built-in Commands

.. 87717.2 Application API

.. 87817.2.1 Overview

.. 89817.2.2 Interfaces

.. 99617.2.3 Enumerations

.. 100217.3 ActiveX Integration

.. 100217.3.1 Prerequisites

.. 100317.3.2 Adding the ActiveX Controls to the Toolbox

.. 100517.3.3 Integration at Application Level

.. 100717.3.4 Integration at Document Level

.. 101017.3.5 ActiveX Integration Examples

.. 102417.3.6 Command Reference

.. 103717.3.7 Object Reference

18 Appendices 1059

.. 106018.1 XSLT and XQuery Engine Information

.. 106018.1.1 XSLT 1.0

.. 106018.1.2 XSLT 2.0

.. 106218.1.3 XSLT 3.0

.. 106318.1.4 XQuery 1.0

.. 106618.1.5 XQuery 3.1

.. 106818.2 XSLT and XPath/XQuery Functions

.. 106918.2.1 Altova Extension Functions

.. 114718.2.2 Miscellaneous Extension Functions

.. 116618.3 Datatypes in DB-Generated XML Schemas

.. 116618.3.1 ADO

.. 116718.3.2 MS Access

.. 116818.3.3 MS SQL Server

.. 116818.3.4 MySQL

Altova StyleVision 2024 Professional Edition16

.. 116918.3.5 ODBC

.. 117018.3.6 Oracle

.. 117118.3.7 Sybase

.. 117218.4 Technical Data

.. 117218.4.1 OS and Memory Requirements

.. 117218.4.2 Altova Engines

.. 117318.4.3 Unicode Support

.. 117318.4.4 Internet Usage

.. 117418.5 License Information

.. 117418.5.1 Electronic Software Distribution

.. 117518.5.2 Software Activation and License Metering

.. 117618.5.3 Altova End-User License Agreement

Index 1177

© 2017-2023 Altova GmbH

 17Introduction

Altova StyleVision 2024 Professional Edition

1 Introduction

Altova StyleVision 2024 Professional Edition is an application for graphically designing and editing StyleVision
Power Stylesheets, available in 64-bit and 32-bit versions. StyleVision® runs on Windows 10, Windows 11, and
Windows Server 2012 or newer. Some functionality of StyleVision and Altova MissionKit can be integrated with
applications of the Microsoft Office suite (MS Access, MS Excel, MS Word), version 2007 or newer.

A StyleVision Power Stylesheet (SPS) can be used for the following purposes:

· To control a graphical WYSIWYG view of XML documents in Authentic View, which is an XML
document editor available in the following Altova products: Altova XMLSpy, Altova StyleVision, Altova
Authentic Desktop, and Altova Authentic Browser. It enables you to easily create electronic forms
based on XML documents.

· To enable the editing of databases (DBs) via Authentic View and to generate database reports in
HTML, RTF, and Text format.

· To generate XSLT stylesheets based on the SPS design. (XSLT 1.0, XSLT 2.0, and XSLT 3.0 are
supported.) The XSLT stylesheets can be used outside StyleVision to transform XML documents into
outputs such as HTML and RTF (Rich Text Format, used by word processing applications such as MS
Word).

· To generate, directly from within StyleVision, HTML, RTF, and Text output from an XML document. In
the case of DB-based SPSs, StyleVision can additionally generate, for each SPS, an XML Schema
based on the DB and an XML instance document that adheres to this schema and contains data from
the DB.

Last updated: 19 October 2023

https://www.altova.com/stylevision
https://www.altova.com/missionkit
http://www.altova.com/stylevision/electronic-forms.html

18 Introduction Product Features

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1.1 Product Features

The main product features of StyleVision are listed below:

General product features
Given below is a list of the main high-level features of StyleVision.

· Enterprise and Professional editions are each available as separate 64-bit and 32-bit applications.
· StyleVision functionality can be called via StyleVision Server.
· StyleVision functionality can be integrated in external applications , and StyleVision an integrated in

Visual Studio and Eclipse .

Sources
SPS designs can be based on XML Schemas and DTDs. A design uses other source files, such as XML and
CSS files. The following additional features concerning sources are supported:

· Altova Global Resources can be used to locate source files such as schema, XML, and CSS. The
Global Resources mechanism enables faster and better development and testing by allowing
developers to quickly change source data and to use the functionality of other Altova applications from
within StyleVision.

· HTML documents can be converted to XML .

Interface
Given below are some general GUI features:

· Multiple SPS designs can be open simultaneously, with one being active at any given time. Each
SPS design is shown in a separate tab.

· Template filters allow you to customize the display of the design document. With this feature you
can disable the display of templates that are not currently being edited, thus increasing editing
efficiency.

· Hide Markup in Design View : Markup tags in Design View can be hidden and collapsed, thus
freeing up space in Design View.

· While designing the SPS, Authentic View , output views and stylesheets can be displayed by
clicking the respective tabs. This enables you to quickly preview the output and the XSLT code, and
test Authentic View features.

· When an SPS is associated with an XML source document or source DB , the source document
can be edited directly in the Authentic View of StyleVision.

Databases
The following DB features are supported:

· DB reports can either be viewed in StyleVision or saved as HTML and RTF files.
· IBM DB2 databases , which contain XML columns, are supported.
· A DB can be queried directly from StyleVision.

1002

670 673

416

472

31

711

33

35 36

203 208

488

492

599

http://www.altova.com/stylevision/stylevision-server.html

© 2017-2023 Altova GmbH

Product Features 19Introduction

Altova StyleVision 2024 Professional Edition

Output
Various output formats are supported depending upon the edition that has been installed. The following output-
related features are supported:

· XSLT versions 1.0, 2.0, and 3.0 are supported.
· In the Enterprise and Professional Editions, multiple output formats (HTML, RTF, and Text) are

generated from a single SPS design.
· Conditions can be set on SPS components to process them differently for different outputs . With

this level of granularity, different outputs can be flexibly structured to take in the requirements of that
particular output.

· Both XSLT files and output files can be generated and saved , either directly from within the GUI
or via StyleVision Server.

· Altova has developed a special PXF File format that enables an SPS file to be saved together with
related source and data files. This enables entire SPS projects to be transported rather than just the
SPS file.

· ASPX Interface for Web Applications : With this feature, HTML web pages can be quickly updated.
StyleVision generates, from an SPS, all the files necessary for an ASPX application. When the web
page (a .aspx file) is refreshed, the source data (including any updates) is dynamically transformed via
XSLT to the web page.

SPS design features

Given below is a list of the main StyleVision features specific to designing the SPS.

· The SPS can contain static text , which you enter in the SPS, and dynamic text , which is
selected from the source document .

· Dynamic content is inserted in the design by dragging-and-dropping nodes from the schema
source . Design Elements (paragraphs, lists, images, etc) can also be inserted first, and an XML
node from the schema tree can be assigned to the Design Element afterwards.

· Dynamic content can be inserted as text, or in the form of a data-entry device (such as an input
field or combo box). When inserted as a data-entry device such as a combo box , additional
possibilities are available. For example, the value of the node can be selected (by the Authentic View
user) from a list of enumerations.

· The structure of the design is specified and controlled in a single main template . This structure
can be modified by optional templates for individual elements—known as global templates because
they can be applied globally for that element.

· Global templates can also be created for individual datatypes, thus enabling processing to be
handled also on the basis of types.

· Multiple Document Output : The output generated by the SPS can be designed to be split into
multiple documents. In the design, New Document templates are created and content placed in them.
Each New Document template generates a separate document in the output.

· User-Defined Templates : A template can be generated for a sequence of items by an XPath
expression you specify. These items may be atomic values or nodes. An XPath expression enables
the selection of nodes to be more specific, allowing conditions and filters to be used for the selection.

· User-Defined Elements : This feature is intended to enable presentation language elements (such as
HTML, XSLT, and XSL-FO) to be freely inserted at any location in the design.

· User-Defined XML Text Blocks : XML Text blocks can be freely inserted at any location in the
design, and these blocks will be created at that location in the generated XSLT stylesheet.

· Design Fragments enable the modularization and re-use of templates within an SPS, and also
across multiple SPSs (see modular SPSs), in a manner similar to the way functions are used.

105

111

284

111 111

482

479

125 125

202

125

202

125 174

175 177 177

200 27

244

244

261

137

140

140

255

230

http://www.altova.com/stylevision/stylevision-server.html

20 Introduction Product Features

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· SPS modules can be added to other SPS modules, thus making objects defined in one SPS
module available to other modules. This enables re-use of module objects across multiple SPSs and
makes maintenance easier.

· XSLT Templates : XSLT files can be imported into the generated stylesheets. If a node in the XML
instance document is matched to a template in the imported XSLT file and no other template takes
precedence over the imported template, then the imported template will be used. Additionally, named
templates in the imported XSLT file can be called from within the design.

· New from XSLT : An SPS can be created from an XSLT-for-HTML or an XSLT-for-FO. Template
structure and styling in the XSLT will be created in the SPS. You can then modify the SPS
components and add content and formatting to the SPS.

· User-Defined XPath Functions : The user can define XPath functions which can be used anywhere in
the document where XPath functions may be used.

· Document Sections : Documents can be divided into sections, with each section having its own
properties, such as page layout properties. This enables different parts of a document to be presented
differently.

· Layout Containers : A Layout Container is a block in which Design Elements can be laid out and
absolutely positioned within the block.

· Blueprints : Within a Layout Container an image of a form can be used as an underlay blueprint for
the design. With the help of a blueprint, an existing design can be reproduced accurately.

· A common feature of XML documents is the repeating data structure. For example, an office
department typically has several employees. The data for each employee would be stored in a data
structure which is repeated for each employee. In the SPS, the processing for each such data
structure is defined once and applied to each relevant node in turn (the employee node in our
example).

· Multiple tables of contents can be inserted in XSLT 2.0 and 3.0 SPSs.
· Repeating data structures can also be inserted as dynamic tables . This provides looping in a

structured, table format, with each loop through the data structure producing a row (or, if required, a
column) of the table.

· A repeating element can be sorted on one or more sort-keys you select, and the sorted element
set is sent to the output (HTML and RTF).

· Variables : A variable can now be declared on a template and take a value that is specified with an
XPath expression. Previously, the value of a variable was limited to the selection of the node on which
it was created. Variables in the 2010 version allow any XPath expression to be specified as the value of
the variable.

· Nodes can be grouped on the basis of common data content (for example, the common value of an
attribute value) and their positions.

· The conditional templates feature enables one of a set of templates to be processed according to
what conditions in the XML document or system environment are fulfilled. This enables processing that
is conditional on information contained in the source document or that cannot be known to the SPS
document creator at the time of creation (for example, the date of processing). The available conditions
are those that can be tested using XPath expressions.

· Auto-Calculations enable you to manipulate data from the source document/s and to display the
result. This is useful, when you wish to perform calculations on numbers (for example, sum the prices
in an invoice), manipulate strings (for example, change hyphens to slashes), generate content, etc.
The available manipulations are those that can be effected using XPath expressions. Native Java and
.NET functions can be used in the XPath expressions of Auto-Calculations.

· When data is edited in Authentic View, the result of Auto-Calculations can also be passed to a
node in the source document. This procedure is referred to as updating the XML node (with the
value of the Auto-Calculation).

· Additional validation enables individual XML document nodes to be validated (additionally to schema
validation) against an XPath expression defined for that node. In this way, Authentic View users can be
alerted when the data they enter is invalid; a customized error message for the node can indicate the
problem.

230

259

442

446

393

187

190

125

312

143

296

307

288

280

270

270

272

438

© 2017-2023 Altova GmbH

Product Features 21Introduction

Altova StyleVision 2024 Professional Edition

· Barcodes : This new design component enables barcodes to be easily inserted in the design.
Barcode images are generated on the fly and placed in the output documents.

· Conditional presence : Certain design components have a conditional presence property. A
conditional design component will be created in the output only if the condition specified for it is
fulfilled.

· Images can be inserted in the design. The URI for the image can be static (entered in the SPS), or
dynamic (taken from a node in the source document), or a combination of both static and dynamic
parts.

· Images from inline data : Images can be generated from Base-16 and Base-64 encoded text in the
XML document. Consequently, images can be stored directly in the source XML document as text. An
SPS can now decode such text and render the image.

· Two types of lists can be created: static and dynamic. In a static list , each list item is defined in
the SPS. In a dynamic list , a node is created as a list item; the values of all instances of that node
are created as the items of the list.

· Static and dynamic links can be inserted in the design. The target URI can be static (entered in the
SPS), or dynamic (taken from a node in the source document), or a combination of both static and
dynamic parts.

· Static bookmarks can be inserted. These serve as anchors that can be linked to with a hyperlink.
· Parameters can be declared globally for the entire SPS. A parameter is declared with a name and a

string value, and can be used in XPath expressions in the SPS. The parameter value you declare is the
default value. It can be overridden by a value passed via StyleVision Server.

· With the Input Formatting feature, the contents of numeric XML Schema datatype nodes can be
formatted as required for Authentic View display and, in the case of some formats, optionally for output
display. Input Formatting can also be used to format the result of an Auto-Calculation .

· JavaScript functions can be used in the SPS to provide user-defined functionality for Authentic View
and HTML output.

· Authentic Scripting : Enables additional flexibility and interactivity in Authentic View.
· A number of predefined HTML formats are available via the GUI and can be applied to individual

SPS components.
· A large number of CSS text formatting and layout properties can be applied to individual SPS

components via the Styles sidebar .
· Additionally, CSS styles can be defined for HTML selectors at the global level of an SPS and in

external CSS stylesheets. These style rules will be applied to Authentic View and HTML output, thus
providing considerable formatting and layout flexibility.

· Styles can also be assigned using XPath expressions . This enables style property values to be
selected from XML documents and to set property values conditionally.

· For paged output (typically RTF, PDF, and Word 2007-and-higher), a number of page layout options
, such as orientation, margins, page-numbering, and headers and footers, can be specified in the SPS.

183

286

168

143

163 163

165

339

339

302

354

270

467

650

350

371

369

375

392

http://www.altova.com/stylevision/stylevision-server.html

22 Introduction Authentic View in Altova Products

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1.2 Authentic View in Altova Products

Authentic View is a graphical XML document editor available in the following Altova products:

 * Altova XMLSpy
 * Altova Authentic Desktop
 * Altova Authentic Browser
 * Altova StyleVision

In StyleVision, Authentic View can be viewed in the Authentic eForm tab of the Main Window .35

© 2017-2023 Altova GmbH

What Is an SPS? 23Introduction

Altova StyleVision 2024 Professional Edition

1.3 What Is an SPS?

A StyleVision Power Stylesheet (or SPS) is an extended XSLT stylesheet which is used:

· to control the display and entry of data in the Authentic View of XML documents and databases
(DBs); and

· to specify the output design of an XML document transformation.

An SPS is saved with the file extension .sps.

Design of the SPS
An SPS is created graphically in StyleVision. It is based on a schema (DTD or XML Schema); if the SPS is to
be used with a DB, it is based on an XML Schema generated automatically by StyleVision from the DB
structure. The design of the SPS is flexible. It can contain dynamic and static content. The dynamic
content is the data in one XML document or DB. The static content is content entered directly in the
SPS. Dynamic content can be included in the design either as straight text or within components such as input
fields, combo boxes, and tables. Additionally, dynamic content can be manipulated (using Auto-Calculations)
and can be displayed if certain conditions in the source document are fulfilled. Different pieces of content can
be placed at various and multiple locations in the SPS. Also, the SPS can contain various other components,
such as images, hyperlinks, and JavaScript functions. Each component of the SPS can then be formatted for
presentation as required.

The SPS and Authentic View
When a finished SPS is associated with an XML document or DB, that XML document or DB can be edited in
Authentic View . Authentic View is an ideal solution for enabling the distributed and graphical editing of an
XML document or DB. Multiple users can edit an XML document or DB in the graphical user interface presented
by Authentic View. In StyleVision, as you design an SPS, you can preview and test the SPS (in the Authentic
View tab for that SPS). For a detailed description of how SPSs work with Authentic View, see SPS and
Authentic View .

The SPS and XSLT stylesheets
After you have completed designing the SPS, you can generate XSLT stylesheets based on the design you
have created. StyleVision supports XSLT 1.0, XSLT 2.0 and XSLT 3.0, and from a single SPS, you can
generate XSLT stylesheets for HTML, RTF, XSL-FO, Text, and Word 2007-and-higher output (XSL-FO, Text,
and Word 2007-and-higher in Enterprise edition only; RTF and Text in Enterprise and Professional Editions; in
Basic Edition only HTML output is supported). The generated XSLT stylesheets can be used in external
transformations to transform XML documents based on the same schema as the SPS from which the XSLT
stylesheet was generated. For more information about procedures used with XSLT stylesheets, see the section
Generated Files .

The SPS and output
You can also use StyleVision to directly generate output (HTML, RTF, Text, XSL-FO, and PDF in Enterprise
Edition; HTML and RTF in Professional Edition; and HTML in Basic Edition). The tabs for Output Views
display the output for the active SPS document directly in the StyleVision GUI. The required output can also be
generated to file from within the GUI via the File | Save Generated Files command or via StyleVision
Server.

24

27 28

24

108

111

36

734

http://www.altova.com/stylevision/stylevision-server.html
http://www.altova.com/stylevision/stylevision-server.html

24 Introduction What Is an SPS?

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Authentic View in Altova Products
Authentic View is a graphical XML document editor available in the following Altova products:

 * Altova XMLSpy
 * Altova Authentic Desktop
 * Altova Authentic Browser
 * Altova StyleVision

© 2017-2023 Altova GmbH

Setting up StyleVision 25Introduction

Altova StyleVision 2024 Professional Edition

1.4 Setting up StyleVision

Altova StyleVision runs on Windows 10, Windows 11. After downloading StyleVision from the Altova website,
double-click the executable (.exe) file to run the setup program. The setup program will install StyleVision at
the desired location. The Altova XSLT Engines (1.0 and 2.0) are built into StyleVision and are used for all
internal transformations. You, therefore, do not need to install an XSLT Engine additionally to your StyleVision
installation.

You will, however, need to have the following components installed:

· Internet Explorer 5.5 or later, for Authentic View, HTML Preview and Design View. Internet Explorer 6.0
and later has better XML support and is recommended.

· Microsoft Word 2000 or later, for RTF Preview. Microsoft Word 2003 or later is recommended. For
copy-paste from Word documents (and of content that can be pasted into Word documents, such
as Excel tables and HTML page content) Word 2007+ is required

· Microsoft Word 2007-and-higher or Microsoft's Word 2007-and-higher Viewer, for previewing Word
2007-and-higher output in the Word 2007-and-higher Preview tab. Microsoft Word 2003 with
compatibilty pack can be used for previewing Word 2007-and-higher output, but is sometimes unable to
render Word 2007-and-higher files properly.

Note: In this documentation, we use the abbreviation Word 2007+ to refer to Microsoft Word 2007 or higher
versions of this program.

Note: If there is a problem with an embedded preview, StyleVision will attempt to open the preview document
in an external application (usually MS Word or Adobe Reader). An error message about the embedded
preview will appear in StyleVision. If the preview document is opened in an external application, you will
need to close the external application before regenerating the temporary output document, otherwise
you will get an error message saying the file is being used by another process. You should also close
the external application before closing the SPS design, otherwise StyleVision will not be able to close
the temporary output document due to the file lock placed on the document by the external application.

RaptorXML
RaptorXML can be used to transform XML to the required output format.

132

665

https://www.altova.com/

26 Introduction Terminology

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1.5 Terminology

This section lists terms used in the StyleVision GUI and in this documentation. Terms are organized into the
groups listed below, and within each group, they are listed alphabetically.

Altova product-related terms

A list of terms that relate to Altova products.

Authentic
View

An XML document editor view available in the following Altova products: Altova XMLSpy; Altova
StyleVision; Altova Authentic Desktop; Altova Authentic Browser. For more details about
Authentic View and Altova products, visit the Altova website.

SPS The abbreviated form of StyleVision Power Stylesheet, it is used throughout this
documentation to refer to the design document created in StyleVision and saved as a file with
the .sps extension. For a detailed description, see What Is an SPS? .

Global
resource

An alias for a set of files, a set of folders, or a set of databases. Each alias has a set of
configurations and each configuration is mapped to a resource. In StyleVision, when a global
resource is used, the resource can be changed by changing the active configuration in
StyleVision.

General XML terms

Definitions of certain XML terms as used in this documentation.

schema A schema (with lowercase 's') refers to any type of schema. Schemas supported by
StyleVision are XML Schema (capitalized) and DTD.

XML
Schema

In this documentation, XML Schema (capitalized) is used to refer to schemas that are
compliant with the W3C's XML Schema specification. XML Schema is considered to be a
subset of all schemas (lowercased).

URI and
URL

In this documentation, the more general URI is used exclusively—even when the identifier has
only a "locator" aspect, and even for identifiers that use the http scheme.

XSLT and XPath terms

There have been changes in terminology from XSLT 1.0 and XPath 1.0 to XSLT 2.0 and XPath 2.0. For
example, what was the root node in XPath 1.0 is the document node in XPath 2.0. In this documentation,
we use the newest, XSLT 3.0 and XPath 3.0, terminology.

absolute
XPath

A path expression that starts at the root node of the tree containing the context node . In
StyleVision, when entering path expressions in dialogs, the expression can be entered as an
absolute path if you check the Absolute XPath check box in the dialog. If this check box is
unchecked, the path is relative to the context node .

context
item /

The context item is the item (node or string value) relative to which an expression is evaluated.
A context node is a context item that is a node. The context item can change within an
expression, for example, with each location step, or within a filter expression (predicate).

23

26

26

27

26

26

https://www.altova.com/
http://www.w3.org/XML/Schema

© 2017-2023 Altova GmbH

Terminology 27Introduction

Altova StyleVision 2024 Professional Edition

context
node

current
node

The current node is the node being currently processed. The current node is the same as the
context node in expressions that do not have sub-expressions. But where there are sub-
expressions, the context node may change. Note that the current() function is an XSLT
function, not an XPath function.

document
element

In a well-formed XML document, the outermost element is known as the document element. It
is a child of the document node , and, in a well-formed XML document, there is only one
document element. In the GUI the document element is referred to as the root element.

document
node

The document node represents and contains the entire document. It is the root node of the
tree representation of the document, and it is represented in an XPath expression as: '/'. In
the Schema Tree window of StyleVision, it is represented by the legend: '/ Root elements'.

StyleVision-specific terms

Terms that refer to StyleVision mechanisms, concepts, and components.

Blueprint
image

A blueprint image is one that is used as the background image of a layout container , and
would typically be the scan of a form. The SPS design can be modelled on the blueprint
image, thus recreating the form design.

dynamic
items

Items that originate in XML data sources. Dynamic items may be text, tables, and lists; also
images and hyperlinks (when the URIs are dynamic).

global
element

An element in the Global Elements list in the Schema Tree window. In an XML Schema, all
elements defined as global elements will be listed in the Global Elements list. In a DTD, all
elements are global elements and are listed in the Global Elements list. Global templates
can be defined only for global elements.

global
template

A global template may be defined for a global element . Once defined, a global template
can be used for that element wherever that element occurs in the document. Alternatively to
the global template, processing for a global element may be defined in a local template .

Layout
container

A Layout Container is a design block in which design elements can be laid out and absolutely
positioned. If a design is to be based on a form, it can be created as a Layout Container, so
that design elements of the form can be absolutely positioned. Alternatively, a design can be
free-flowing and have layout containers placed within the flow of the document.

local
template

A local template is the template that defines how an element (global or non-global) is
processed within the main template . The local template applies to that particular
occurrence of the element in the main template . Instead of the local template, a global
template can be applied to a given occurrence of an element in the main template .

main
schema

One of the assigned schema sources is designated the main schema; the document node of
the Working XML File associated with the main schema is used as the starting point for
the main template .

main
template

The main entry-point template. In StyleVision, this template matches the document
element and is the first to be evaluated by the XSLT processor. In the Schema Tree
window, it is listed as the child of the document node . The main template defines the
basic output document structure and defines how the input document/s are to be processed. It
can contain local templates and can reference global templates .

26

26

27

26

27

27

27

27

27

27 27

28

27

27

27 27

27 27

28 Introduction Terminology

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

output The output produced by processing an XML document with an XSLT stylesheet. Output files
that can be generated by StyleVision would be HTML and RTF format. Authentic View is not
considered an output, and is referred to separately as Authentic View. XSLT stylesheets
generated by StyleVision are also not considered output and are referred to separately as
XSLT stylesheets.

static items Items that originate in the SPS and not in XML data sources. Static items may be text, tables,
and lists; also images, hyperlinks, and bookmarks (when the URIs are static).

SPS
component

An SPS component can be: (i) a schema node (for example, an element node); (ii) a static
SPS component such as an Auto-Calculation or a text string; or (iii) a predefined format
(represented in the SPS by its start and end tags).

template Defined loosely as a set of instructions for processing a node or group of nodes.

Template
XML File

A Template XML File is assigned to an SPS in StyleVision (Enterprise and Professional
editions). It is an XML file that provides the starting data of a new XML document created with
a given SPS when that SPS is opened in Authentic View. The Template XML File must be
conformant with the schema on which the SPS is based.

User-
defined
element

An element that is neither a node in the schema tree nor a predefined element or a design
element, but one that is specified by the user. An element can be specified with attributes.

User-
defined
template

A template that is created for a sequence specified in an XPath expression.

User-
defined
XML
text blocks

XML Text blocks can be freely inserted at any location in the design

Working
XML/XBRL
 File

A Working XML/XBRL File is an XML data file that is assigned to an SPS in StyleVision in
order to preview the Authentic View and output of the XML document in StyleVision. Without a
Working XML/XBRL File, the SPS in StyleVision will not have any dynamic XML data to
process. If the SPS is based on a schema that has more than one global element, there can
be ambiguity about which global element is the document element. Assigning a Working
XML/XBRL File resolves such ambiguity (because a valid XML document will, by definition,
have only one document element). Note that XBRL functionality is available only in the
Enterprise edition.

XML
document

XML document is used in two senses: (i) to refer to a specific XML document; (ii) to refer to
any XML data source, including DB sources (from which XML data documents are generated
for use with an SPS). Which sense is intended should be clear from the context.

270 350

27

© 2017-2023 Altova GmbH

About This Documentation 29Introduction

Altova StyleVision 2024 Professional Edition

1.6 About This Documentation

This documentation is the user manual delivered with StyleVision. It is available as the built-in Help system of
StyleVision, can be viewed online at the Altova website, and can also be downloaded from there as a PDF,
which you can print.

The user manual is organized into the following sections:

· An introduction, which explains what an SPS is and introduces the main features and concepts of
StyleVision.

· A description of the user interface , which provides an overview of the StyleVision GUI.
· A tutorial section, which is a hands-on exercise to familiarize you with StyleVision features.
· Usage Overview , which describes usage at a high level: for example, schema sources used to

create an SPS, the broad design process, Authentic View deployment, and projects.
· SPS File Content , which explains how static (stylesheet-originated) and dynamic (XML document-

originated) components are created and edited in the SPS.
· SPS File Structure , which shows how an SPS file can be structured and modularized, and

describes the handling of StyleVision's templates.
· SPS File Advanced Features , which describes advanced design features, such as the automatic

generation of calculations, the setting up of conditions, grouping and sorting on user-defined criteria,
and how to build tables of contents and cross-references in the output document.

· SPS File Presentation , which explains how SPS components are formatted and laid out.
· SPS File Additional Editing Functionality , which describes a range of additional features that can

make your SPS more powerful. These features include: global resources for leveraging functionality in
other Altova products, additional validation, scripts, and variables and parameters.

· SPS File and Databases , which explains how databases can be used with SPSs.
· Authentic View , which describes how XML documents are edited in Authentic View. The

StyleVision GUI contains an Authentic View preview tab, in which you can immediately test the
Authentic View output.

· Automated Processing , which explains how the generation of output files can be automated.
· StyleVision's integration features , which contains the documentation for integrating StyleVision in

other applications. There is also information on how to use StyleVision in Visual Studio and
Eclipse .

· A reference section containing descriptions of all symbols and commands used in StyleVision.
· Appendices containing information about the Altova XSLT Engine information and the conversion of

DB datatypes to XML Schema datatypes; technical data about StyleVision; and license information.

How to use
We suggest you read the Introduction, User Interface and Usage Overview sections first in order to get
an overview of StyleVision features and general usage. Doing the tutorial next would provide hands-on
experience of creating an SPS. The SPS File sections (SPS File Content , SPS File Structure , SPS File
Advanced Features , SPS File Presentation , SPS File Additional Functionality , SPS File and
Databases) provide detailed descriptions of how to use various StyleVision features. For subsequent
reference, the Reference section provides a concise description of all toolbar icon, design symbols, and
menu commands, organized according to toolbar and menu. The Authentic View section provides
information about editing in Authentic View.

File paths in Windows
File paths given in this documentation will not be the same for all operating systems. You should note the

31

63

102

124

200

269

349

415

488

614

661

1002

670

673

680

1059

31 102

63

124 200

269 349 415

488

680

626

http://www.altova.com/support_help.html

30 Introduction About This Documentation

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

following correspondences:

· (My) Documents folder: Located by default at the following locations. Example files are located in a
sub-folder of this folder.

Windows 7/8/10/11 C:\Users\<username>\Documents

· Application folder: The Application folder is the folder where your Altova application is located. The path
to the Application folder is, by default, the following.

Windows 7/8/10/11 C:\Program Files\Altova\

32-bit version on 64-bit OS C:\Program Files (x86)\Altova\

Note: StyleVision is also supported on Windows Server 2012 or newer.

Support options
Should you have any question or problem related to StyleVision, the following support options are available:

1. Check the Help file (this documentation). The Help file contains a full text-search feature, besides
being fully indexed.

2. Check the FAQs and Discussion Forum at the Altova Website.
3. Contact Altova's Support Center.

Commonly used abbreviations
The following abbreviations are used frequently in this documentation:

· SPS: StyleVision Power Stylesheet
· DB: Database
· CSS: Cascading Style Sheets
· FAQ: Frequently Asked Questions

17

http://www.altova.com/support_faq_main.html
http://www.altova.com/forum/default.aspx
http://www.altova.com/
http://www.altova.com/support_center.html

© 2017-2023 Altova GmbH

 31User Interface

Altova StyleVision 2024 Professional Edition

2 User Interface

The StyleVision GUI (illustration below, in which not all sidebars are shown) consists of the following parts:

· A menu bar. Click on a menu to display the items in that menu. All menus and their items are
described in the User Reference section. The menu bar also contains the Minimize, Restore, and
Close Active Document buttons.

· A toolbar area. The various toolbars and the command shortcuts in each toolbar are described in
the User Reference section.

· A tabbed Main Window , which displays one or more open SPS documents at a time. In this
window, you can edit the design of the SPS , edit the content of Authentic View (in the Authentic
eForm tab), and preview the XSLT stylesheets and output .

· The Design Sidebars —the Design Overview , Schema Tree , Design Tree , Style
Repository , Styles , Properties , and Project windows—which can be docked within the
application GUI or made to float on the screen.

· A status bar, which displays application status information. If you are using the 64-bit version of
StyleVision, this is indicated in the status bar with the suffix (x64) after the application name. There is
no suffix for the 32-bit version.

The Main Window and Design sidebars are described in more detail in the sub-sections of this section.

Note: The menu bar and toolbars can be moved by dragging their handles to the required location.

680

702

680

32

33 35

36

39 42 44 48

51 54 55 59

32 39

32 User Interface Main Window

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2.1 Main Window

The Main Window (illustration below) is where the SPS design, Authentic View, XSLT stylesheets, and output
previews are displayed.

SPS documents in the Main Window
· Multiple SPS documents can be open in StyleVision, though only one can be active at any time. The

names of all open documents are shown in tabs at the bottom of the Main Window, with the tab of the
active document being highlighted.

· To make an open document active, click its tab. Alternatively, use the options in the Windows menu.
· If so many documents are open that all document tabs are not visible in the document-tab bar, then

click the appropriate scroll button (at the right of the document-tab bar; see illustration above) to scroll
the tabs into view.

· To close the active document, click the Close Document button in the menu bar at the top right of the
application window (or select File | Close).

Document views
A document is displayed in the following views, one of which can be active at a time:

· Design View , in which you design the SPS and edit JavaScript functions for use in that SPS. The
view can be toggled between the design document and the JavaScript Editor by clicking the dropdown
menu arrow and selecting Design or JavaScript, as required.

· Authentic View (Authentic eForm tab), which enables you to immediately see the Authentic View of
an XML document (the Working XML File). The SPS is dynamically applied to the Working XML
File , thus enabling you to try out Authentic View.

· Output Views (HTML, Text, and RTF output). These views are a preview of the actual output format
and of the XSLT stylesheet used to generate that output. The view can be toggled between the output
preview and the XSLT stylesheet by clicking the dropdown menu arrow and making the appropriate
selection.

Each of the views listed above is available as a tab at the bottom of the Main Window in the Views Bar. To
select a view, click on its tab. The tab of the selected view is highlighted.

720

33

35

28

28

36

© 2017-2023 Altova GmbH

Main Window 33User Interface

Altova StyleVision 2024 Professional Edition

Output Preview
The Output Preview feature enables you to view the design or Authentic View in the left pane and preview the
output in the right pane. This enables you to preview output even as you design and to then modify your design
accordingly—not only in terms of presentation but also in terms of content.

You can click the Output Preview icon (circled red in the screenshot below) to split the Main Window into two
vertical panes: (i) Design View or Authentic View in the left pane and (ii) Output Previews in the right pane.
The Output Preview icon (see screenshot below) is located at the bottom left of the Main Window. In either
pane, select the view you want by clicking its tab at the bottom of the pane (Design View or Authentic View
in the left pane; the output preview in the right pane). To switch off Output Preview, click the Output Preview
icon again.

In the output-previews pane:

· Click the icon at extreme left to regenerate the currently selected output preview.
· Click the icon at extreme right to toggle between vertical and horizontal output previews.

2.1.1 Design View

The Design View (illustration below) is the view in which the SPS is designed. In Design View, you create the
design of the output document by (i) inserting content (using the sidebars, the keyboard, and the various
content creation and editing features provided in the menus and toolbars); and (ii) formatting the content using
the various formatting features provided in the sidebars and menus. These aspects of the Design View are
explained in more detail below.

33

33

34 User Interface Main Window

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Design View can also be switched to a JavaScript Editor or (Authentic) Scripting Editor. In the JavaScript
Editor you can create and edit JavaScript functions which then become available in the GUI for use in the
SPS. In the Scripting Editor you can create and edit scripts for Authentic View. To switch to the JavaScript
Editor or (Authentic) Scripting Editor, click the dropdown button in the Design tab (see illustration) and
select JavaScript or (Authentic) Scripting Editor from the dropdown menu. To switch back to Design View, click
the dropdown button in the JavaScript or (Authentic) Scripting Editor tab and select Design from the dropdown
menu.

In Design View, the SPS can have several templates: the main template, global templates, page layout
templates, and Design Fragments. You can control which of these template types is displayed in Design View
by using Template Display Filters , which are available as toolbar icons . These display filters will help
you optimize and switch between different displays of your SPS.

Displaying markup tags
The display of markup tags in Design View can be controlled via the markup icons (below).

The icons shown above are toggles. They are, from left: (i) Show small design markups (tags without names);
and (ii) Show large design markups (tags with names). When small markup is switched on, the path to a node
is displayed when you mouseover that node.

Output Preview
The Output Preview feature enables you to view the design or Authentic View in the left pane and preview the
output in the right pane. This enables you to preview output even as you design and to then modify your design
accordingly—not only in terms of presentation but also in terms of content.

You can click the Output Preview icon (circled red in the screenshot below) to split the Main Window into two
vertical panes: (i) Design View or Authentic View in the left pane and (ii) Output Previews in the right pane.
The Output Preview icon (see screenshot below) is located at the bottom left of the Main Window. In either
pane, select the view you want by clicking its tab at the bottom of the pane (Design View or Authentic View
in the left pane; the output preview in the right pane). To switch off Output Preview, click the Output Preview
icon again.

In the output-previews pane:

· Click the icon at extreme left to regenerate the currently selected output preview.
· Click the icon at extreme right to toggle between vertical and horizontal output previews.

468

467

468

711 711

33

33

© 2017-2023 Altova GmbH

Main Window 35User Interface

Altova StyleVision 2024 Professional Edition

2.1.2 Authentic View

In the Authentic View tab of the Main Window (the Authentic eForm tab), you can view and edit the Working
XML File in its Authentic View. This view enables you (i) to see how your Authentic XML document will look,
and (ii) to test the Authentic View created by the SPS. This is particularly useful if you wish to test the
dynamic features of Authentic View. For example, you could test how Authentic View behaves when you:

· Add new elements and attributes
· Add new paragraphs or table rows
· Change values that affect conditional templates

Authentic View and the Working XML File
In order for Authentic View to be displayed, a Working XML File must be assigned to the active SPS
document This Working XML File must be valid according to the schema on which the SPS is based.

StyleVision creates a temporary XML file that is based on the Working XML File, and it is this temporary file
that is displayed in the Authentic View tab of the Main Window. Modifications that you make in Authentic View
will modify the temporary XML file. The Working XML File itself will not be modified till you explicitly save the
modifications (with the menu command File | Save Authentic XML Data).

If no Working XML File is assigned, you will be prompted to assign a Working XML File when you click the
Authentic View tab.

Output Preview
The Output Preview feature enables you to view the design or Authentic View in the left pane and preview the
output in the right pane. This enables you to preview output even as you design and to then modify your design
accordingly—not only in terms of presentation but also in terms of content.

You can click the Output Preview icon (circled red in the screenshot below) to split the Main Window into two
vertical panes: (i) Design View or Authentic View in the left pane and (ii) Output Previews in the right pane.
The Output Preview icon (see screenshot below) is located at the bottom left of the Main Window. In either
pane, select the view you want by clicking its tab at the bottom of the pane (Design View or Authentic View

28

28 44

733

33

33

36 User Interface Main Window

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

in the left pane; the output preview in the right pane). To switch off Output Preview, click the Output Preview
icon again.

In the output-previews pane:

· Click the icon at extreme left to regenerate the currently selected output preview.
· Click the icon at extreme right to toggle between vertical and horizontal output previews.

Authentic View limitations
The Authentic View in the Main Window is similar to the full-fledged Authentic View available in XMLSpy and
Authentic Desktop except in the following major respects:

· Authentic View entry helpers are not available in the GUI. To insert or append nodes, you must right-
click and use the context menus.

· CALS/HTML tables are not available for insertion.
· Text state icons are not available.

To test these features, you should use the full-fledged Authentic View in XMLSpy or Authentic Desktop. A full
description of how to use Authentic View is given in the section Editing in Authentic View . For additional
information, please see the Authentic View tutorial in the XMLSpy or Authentic Desktop user manual.

2.1.3 Output Views

There are three Output View tabs, one each for HTML, RTF, and Text outputs. Each output view tab
(illustration below) displays: (i) the XSLT stylesheet for that output; and (ii) a preview of the output produced by
transforming the Working XML File with the XSLT stylesheet.

Note: In order for the different views to work correctly, you will need to install programs relevant to each view
as described in the section Setting up StyleVision .

Note: You can also split the Main Window to show the design in one half and the outputs in the other half.
See Splitt

In an Output View tab, the view can be switched between the XSLT stylesheet and the output preview by
clicking the dropdown button in the Output View tab and selecting the XSLT option or the output preview option
as required.

626

28

25

© 2017-2023 Altova GmbH

Main Window 37User Interface

Altova StyleVision 2024 Professional Edition

XSLT view
The XSLT view displays the XSLT stylesheet generated for that output format from the currently active SPS. The
stylesheet is generated afresh each time the XSLT view is selected.

A stylesheet in an Output View tab is displayed with line-numbering and expandable/collapsible elements; click
the + and – icons in the left margin to expand/collapse elements. The stylesheet in XSLT view cannot be
edited, but can be searched (select Edit | Find) and text from it can be copied to the clipboard (with Edit |
Copy).

Note: The XSLT stylesheets generated from the SPS can be separately generated and saved using the File
| Save Generated Files command.

Output preview
The Output preview displays the output produced by transforming the Working XML File with the XSLT
stylesheet for that output format. The output is generated afresh each time the Output preview tab is clicked.
Note that it is the saved version of the Working XML File that is transformed—not the temporary version that is
edited with Authentic View. This means that any modifications made in Authentic View will be reflected in the
Output preview only after these modifications have been saved to the Working XML File (File | Save
Authentic XML Data).

If no Working XML File is assigned when the Output preview is selected in the Output View tab, you will be
prompted to assign a Working XML File. For DB-based SPSs, there is no need to assign a Working XML
File since a temporary non-editable XML file is automatically generated when the DB is loaded and this XML
file is used as the Working XML File .

Note: The output files generated from the SPS can be separately generated and saved using the File | Save
Generated Files command.

Output Preview
The Output Preview feature enables you to view the design or Authentic View in the left pane and preview the
output in the right pane. This enables you to preview output even as you design and to then modify your design
accordingly—not only in terms of presentation but also in terms of content.

745

745

734

28

28

733

28

28

28

734

38 User Interface Main Window

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

You can click the Output Preview icon (circled red in the screenshot below) to split the Main Window into two
vertical panes: (i) Design View or Authentic View in the left pane and (ii) Output Previews in the right pane.
The Output Preview icon (see screenshot below) is located at the bottom left of the Main Window. In either
pane, select the view you want by clicking its tab at the bottom of the pane (Design View or Authentic View
in the left pane; the output preview in the right pane). To switch off Output Preview, click the Output Preview
icon again.

In the output-previews pane:

· Click the icon at extreme left to regenerate the currently selected output preview.
· Click the icon at extreme right to toggle between vertical and horizontal output previews.

33

33

© 2017-2023 Altova GmbH

Sidebars 39User Interface

Altova StyleVision 2024 Professional Edition

2.2 Sidebars

The Sidebars (also called sidebar windows or windows) are GUI components that help you design the SPS
and provide you with information related to the active view. Each sidebar (listed below) is described in a sub-
section of this section.

· Design Overview
· Schema Tree
· Design Tree
· Style Repository
· Styles
· Properties
· Project
· Messages
· Find and Replace

Layout of the views
The layout of a view refers to what sidebars are available in that view and how these sidebars are positioned
within the GUI. Layouts can be customized for separate view categories, and the customization consists of two
parts: (i) switching on or off the display of individual sidebars in a view (via the View menu or by right-clicking
the sidebar's title bar and selecting Hide); (ii) positioning the sidebar within the GUI as required. The layout
defined in this way for a view category is retained for that particular view category till changed. So, for example,
if in Design View, all the sidebars except the Styles sidebar are switched on, then this layout is retained for
Design View over multiple view changes, till the Design View layout is changed. Note that the layout defined for
any output preview (HTML, Text, and RTF Previews) applies to all output previews. The view categories are: (i)
no document open; (ii) Design View; (iii) Output Views; and (iv) Authentic View.

Docking and floating the Sidebar windows
Sidebar windows can be docked in the StyleVision GUI or can be made to float on your screen. To dock a
window, drag the window by its title bar and drop it on any one of the four inner or four outer arrowheads that
appear when you start to drag. The inner arrowheads dock the dragged window relative to the window in which
the inner arrowheads appear. The four outer arrowheads dock the dragged window at each of the four edges of
the interface window. To make a window float, (i) double-click the title bar; or (ii) drag the title bar and drop it
anywhere on the screen except on the arrowheads that appear when you start to drag.

Alternatively, you can also use the following mechanisms. To float a docked window, click the Menu button at
the top-right of a docked window (see screenshot below) and select Floating. This menu can also be accessed
by right-clicking the title bar of the docked window.

42

44

48

51

54

55

59

60

61

40 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To dock a floating window, right-click the title bar of the floating window and select Docking from the menu that
appears; the window will be docked in the position in which it was last docked.

Auto-Hiding Design sidebar windows
A docked window can be auto-hidden. When a sidebar window is auto-hidden, it is minimized to a tab at the
edge of the GUI. In the screenshot below, five sidebars have been auto-hidden: two at the left edge of the GUI,
two at the bottom edge, and one at the right edge.

Placing the cursor over the tab causes that window to roll out into the GUI and over the Main Window. In the
screenshot below, placing the cursor over the Styles tab causes the Styles sidebar to roll out into the Main
Window.

© 2017-2023 Altova GmbH

Sidebars 41User Interface

Altova StyleVision 2024 Professional Edition

Moving the cursor out of the rolled-out window and from over its tab causes the window to roll back into the tab
at the edge of the GUI.

The Auto-Hide feature is useful if you wish to move seldom-used sidebars out of the GUI while at the same time
allowing you easy access to them should you need them. This enables you to create more screen space for
the Main Window while still allowing easy access to Design sidebar windows.

To auto-hide a window, in a docked window, click the Auto Hide button (the drawing pin icon) at the top right of
the window (screenshot below). Alternatively, in the Menu , select Auto Hide; (to display the Menu , right-
click the title bar of the window or click the Menu button in the title bar of the docked window).

The window will be auto-hidden.

To switch the Auto-Hide feature for a particular window off, place the cursor over the tab so that the window rolls
out, and then click the Auto Hide button (screenshot below). Alternatively, in the Menu , deselect Auto Hide;
(to display the Menu , right-click the title bar of the window or click the Menu button in the title bar of the
window).

40 40

40

40

40 40

42 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: When the Auto-Hide feature of a sidebar window is off, the drawing pin icon of that window points
downwards; when the feature is on, the drawing pin icon points left.

Hiding (closing) sidebar windows
When a sidebar window is hidden it is no longer visible in the GUI, in either its maximized form (docked or
floating) or in its minimized form (as a tab at an edge of the GUI, which is done using the Auto-Hide feature).

To hide a window, click the Close button at the top right of a docked or floating window. Alternatively, in the
Menu , select Hide; (to display the Menu , right-click the title bar of the window or click the Menu
button in the title bar of the window).

To make a hidden (or closed) window visible again, select the name of the Design sidebar in the View
 menu. The Design sidebar window is made visible in the position at which it was (docked or floating) when it
was was hidden.

2.2.1 Design Overview

The Design Overview sidebar (screenshot below) enables you to add schema sources, global parameters,
SPS modules, and CSS files to the active SPS. It gives you an overview of these components and enables you
to manage them conveniently in one location.

40

40 40

40

761

© 2017-2023 Altova GmbH

Sidebars 43User Interface

Altova StyleVision 2024 Professional Edition

Adding schema sources
Schema sources may be added to an empty SPS. A schema source is added by clicking the command Add
New Source under the Sources heading. This pops up a menu (screenshot below) that enables you to add: (i)
an XML Schema or DTD or an XML Schema that is automatically generated by StyleVision from an XML file; (ii)
a schema generated by StyleVision from a DB; or (iii) a user-defined schema.

The Working XML File and Template XML File
When a schema is added, it is listed under the Sources item. Each schema has two sub-items :

· The Working XML File .
· The Template XML File .

Adding modules, CSS files, parameters, and XSLT files
Click the respective Add New commands at the bottom of the Modules, CSS Files, Parameters and XSLT
Files sections to add a new item to the respective section.

Design Overview features
The following features are common to each section (Sources, Parameters, etc) in the Design Overview sidebar:

· Each section can be expanded or collapsed by clicking the triangular arrowhead to the left of the
section name.

· Files in the Sources, Modules, and CSS Files sections are listed with only their file names. When you
mouseover a file name, the full file path is displayed in a popup.

· Items that are listed in gray are present in an imported module, not in the SPS file currently active in
the GUI.

· Each section also has a Add New <Item> command at the bottom of the section, which enables you
to add a new item to that section. For example, clicking the Add New Parameter command adds a
new parameter to the SPS and to the Parameters list in the Design Overview.

· Each item in a section has a context menu which can be accessed either by right-clicking that item or

clicking its Context Menu icon (the downward-pointing arrow to the right of the item).
· The Remove icon in the context menu removes the selected item. This command is also available in

context menus if the command is applicable.
· The context menu command Edit File in XMLSpy opens the selected file in the Altova application

XMLSpy.
· The context menu commands, Move Up and Move Down, are applicable only when one of multiple

modules in the Modules section is selected. Each button moves the selected module, respectively,
up or down relative to the immediately adjacent module.

28

28

234

44 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Sources
The Sources section lists the schema that the SPS is based on and the Working XML File and Template XML
File assigned to the SPS. You can change each of these file selections by accessing its context menu (by

right-clicking or clicking the Context Menu icon), and then selecting the appropriate Assign... option.

Modules
The Modules section lists the SPS modules used by the active SPS. New modules are appended to the list
by clicking the Add New Module command and browsing for the required SPS file. Since the order in which
the modules are listed is significant, if more than one module is listed, the Move Up / Move Down
command/s (in the context menu of a module) can be used to change the order. The context menu also
provides a command for opening the selected module in StyleVision.

Note: The Design Overview sidebar provides an overview of the modules, enabling you to manage modules at
the file level. The various module objects (objects inside the modules), however, are listed in the
Design Tree sidebar .

CSS Files
The CSS Files section lists the CSS files used by the active SPS. New CSS files are appended to the list by
clicking the Add New CSS File command and browsing for the required CSS file. Since the order in which the
CSS files are listed is significant, if more than one CSS file is listed, the Move Up / Move Down
command/s (in the context menu) become active when a CSS file is selected. The selected CSS file can be
moved up or down by clicking the required command. The context menu also provides a command for opening
the selected module in XMLSpy.

Note: The Design Overview sidebar provides an overview of the CSS files, enabling you to manage CSS files
at the file level. The various CSS rules inside the CSS files, however, are listed in the Style
Repository sidebar .

Parameters
The Parameters section lists the global parameters in the SPS. You can add new parameters using the Add
New Parameter command at the bottom of the section. Double-clicking the parameter name or value enables
you to edit the name or value, respectively. To remove a parameter, select the parameter and then click the
Remove command in the context menu.

XSLT Files
The XSLT Files section lists the XSLT files that have been imported into the SPS. XSLT templates in these
XSLT files will be available to the stylesheet as global templates. For a complete description of how this works,
see XSLT Templates .

2.2.2 Schema Tree

The Schema Tree sidebar (screenshot below) enables you to do the following:

· Select multiple root elements (document elements) for a schema.

230

234

231

48

365

365

51

259

© 2017-2023 Altova GmbH

Sidebars 45User Interface

Altova StyleVision 2024 Professional Edition

· Drag nodes (elements, attributes, global types) from a schema tree and drop them into the design.
These nodes represent the XML content that is to be included in the output.

· View listings of all global elements and types in the schema source. Enables a global element or
global type to be created as a global template.

· View a listing of all namespaces used in the SPS.
· Insert and edit Design Fragments .
· Insert and and edit user-defined XPath functions for the SPS.

Root elements
For each schema, under the $XML heading, the selected Root elements (or document elements) are
listed. This list consists of all the root elements you select for the schema (see below for how to do this). Each
root element can be expanded to show its content model tree. It is from the nodes in these root element trees
that the content of the main template is created. Note that the entry point of the main template is the document
node of the main schema, which you can select or change at any time (see below for how to do this).

To select the root elements for a schema, do the following: Click the Select button at the right of the Root
Elements item. This pops up the Select Root Elements dialog (screenshot below), in which you can select
which of the global elements in the schema is/are to be the root elements. See SPS Structure | Schema
Sources for an explanation of the possibilities offered by a selection of multiple root elements.

255

446

27 27

202

46 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Additionally, all the global elements in the schema are listed under the All Global Elements item. For each
global element, a global template can be created.

Global elements and global types
Global elements and global types can be used to create global templates which can be re-used in other
templates. Additionally, global types can also be used directly in templates.

Design Fragments
All the Design Fragments in the document are listed under this item and can be viewed when the Design
Fragments item is expanded. The following Design Fragment functionality is available:

· Creating a Design Fragment by clicking the Add icon of the Design Fragments item.
· Double-clicking the name of a Design Fragment in the Schema Tree enables the name of that Design

Fragment to be edited.
· A Design Fragment can be enabled or disabled by, respectively, checking or unchecking the check

box next to the Design Fragment.
· A Design Fragment can be dragged from the schema tree into the design.

See the section Design Fragments for information about working with Design Fragments.

User-defined XPath Functions

A user-defined XPath function can be added by clicking the Add icon of the Xpath Functions item. After an
XPath function has been created, it is listed in the Schema Tree. Double-clicking an XPath function opens the
function in its dialog for editing. The following XPath functionality is available:

· An XPath function can be enabled or disabled by, respectively, checking or unchecking the check box
next to the XPath Functions item.

244

244

255

255

© 2017-2023 Altova GmbH

Sidebars 47User Interface

Altova StyleVision 2024 Professional Edition

· Right-clicking an XPath function also opens a context menu which contains commands to rename and
remove an XPath function.

See the section, User-Defined XPath Functions , for detailed information about working with XPath functions.

Namespaces
The namespaces used in the SPS are listed under the Namespaces heading together with their prefixes. The
namespaces in this list come from two sources: (i) namespaces defined in the referenced schema or schemas
(see note below); and (ii) namespaces that are added to every newly created SPS by default. Referring to such
a list can be very useful when writing XPath expressions. Additionally, you can set an XPath default
namespace for the entire SPS by double-clicking the value field of the xpath-default-ns entry and then
entering the namespace.

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is
based.

Toolbar and schema tree icons
The following toolbar icons are shortcuts for common Schema Tree sidebar commands.

In a user-defined schema , adds a child element to the document element or appends a sibling
element to the selected element. More commands for building a user-defined schema are
available by clicking the dropdown arrow of the icon.

Make/Remove Global Template, enabled when a global element or global type is selected.

Remove the selected item.

Synchronize tree toggle. When toggled on (icon has border), selecting a node in the tree selects (i)
the corresponding node in the design, and (ii) the corresponding node in the Design Tree if the
Synchronize Tree icon in the Design Tree window is toggled on. When toggled off, the
corresponding node in the design is not selected. Switch the toggle off if dragging a node from the
tree and dropping it to the desired location in the design proves difficult.

Auto-collapses other items in the schema tree when the Synchronize Tree toggle is turned on and
an item is selected in the design. Note that this toggle is enabled only when the Synchronize Tree
toggle is turned on.

Symbols used in schema trees
Given below is a list of the symbols in schema trees.

Element.

Attribute.

Element with child elements. Double-clicking the element or the +/- symbol to
its left causes the element to expand/collapse.

446

209

209

48 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

DB Filter applied. Applies only to top-level data table elements in the schema
tree.

Global types can be either complex or simple. Complex types are indicated
with a cyan icon, simple types with a brown icon.

2.2.3 Design Tree

The Design Tree sidebar (screenshot below) provides an overview of the SPS design.

At the root of the Design Tree is the name of the SPS file; the location of the file is displayed in a pop-up when
you mouseover. The next level of the Design Tree is organized into the following categories:

· Scripts , which shows all the JavaScript functions that have been defined for the SPS using the
JavaScript Editor of StyleVision.

· Main Template , which displays a detailed structure of the main template.
· Global Templates , which lists the global templates in the current SPS, as well as the global

templates in all included SPS modules.
· Design Fragments , which shows all the Design Fragments in the design, and enables you to

create, edit, rename, and delete them.
· XSLT Templates , which provides the capability to view XSLT templates in imported XSLT files.
· User-Defined XPath Functions , which enables you to create, edit, rename, and remove your own

XPath functions.

Toolbar icons
The following toolbar icons are shortcuts for common Design Tree sidebar commands.

Adds a Design Fragment, main template, or layout item to the design. Clicking the left-hand part of
the icon adds a Design Fragment. Clicking the dropdown arrow drops down a list with commands to
add a Design Fragment or any of various layout items.

467

244

244

50

51

446

© 2017-2023 Altova GmbH

Sidebars 49User Interface

Altova StyleVision 2024 Professional Edition

Remove the selected item; icon is active when item in the Global Templates or Layout sub-trees is
selected.

Synchronize tree toggle. When toggled on (icon has border), selecting a node in the tree selects (i)
the corresponding node in the design, and (ii) the corresponding node in the schema tree if the
Synchronize Tree icon in the schema tree is toggled on. When toggled off, the corresponding nodes
in the design and schema tree are not selected.

Auto-collapses other items in the design tree when the Synchronize Tree toggle is turned on and an
item is selected in the design. Note that this toggle is enabled only when the Synchronize Tree
toggle is turned on.

Modifying the Design Tree display
The display of the Design Tree can be modified via the context menu (screenshot below), which pops up on
right-clicking an item in the Design Tree.

The Remove command removes the selected Design Tree item from the Design Tree. Make Design
Fragment creates a Design Fragment in the design and adds an item for it in the Design Tree. Expand All
expands all the items of the Design Tree.

Scripts and Main Template
The Scripts listing displays all the scripts in the Design, including those in imported modules. The Main
Template listing displays a tree of the main template. Items in the tree and the design can be removed by right-
clicking the item and selecting Remove.

Global Templates
The Global Templates item lists all global templates in the current SPS and in all added SPS modules.
Global templates defined in the current SPS are displayed in black, while global templates that have been
defined in added modules are displayed in gray (see screenshot below). Each global template has a check box
to its left, which enables you to activate or deactivate it. When a global template is deactivated, it is removed
from the design.

50

244

50 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

A global template in the current SPS (not one in an added module) can be removed by selecting it and clicking
the Remove button in the toolbar or the Remove command in the context menu. The component is removed
from the design and the tree.

Design Fragments
The Design Fragments item lists all the Design Fragments in the current SPS and in all added SPS
modules. Design Fragments defined in the current SPS are displayed in black, while Design Fragments that
have been defined in added modules are displayed in gray (see screenshot below). Each Design Fragment has
a check box to its left, which enables you to activate or deactivate it. A Design Fragment in the current SPS
(not one in an added module) can be removed by selecting it and clicking the Remove command in the
context menu. The component is removed from the design and the tree.

A Design Fragment can be added by clicking the Add icon to the right of the Design Fragments item. Each
Design Fragment is designed as a tree with expandable/collapsible nodes. Any component in a Design
Fragment tree (that is defined in the current SPS) can be removed by selecting it and clicking the Remove
button in the toolbar or the Remove command in the context menu. The component is removed from the
design and the tree.

255

© 2017-2023 Altova GmbH

Sidebars 51User Interface

Altova StyleVision 2024 Professional Edition

XSLT Templates
In the Design Tree sidebar (screenshot below), the XSLT Templates contained in the imported XSLT file are
displayed under the XSLT Templates heading.

There are two types of imported XSLT templates: (i) match templates (indicated by Match), and (ii) named
templates (indicated by Name). In the Design Tree, these two types are listed with (i) the value of the select
attribute of match templates, and (ii) by the value of the name attribute of named templates, respectively. For a
complete description of how XSLT Templates work, see XSLT Templates .

2.2.4 Style Repository

In the Style Repository sidebar (screenshot below), you can assign external CSS stylesheets and define
global CSS styles for the SPS. Style rules in external CSS stylesheets and globally defined CSS styles are
applied to Authentic View and the HTML output document.

259

52 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The Style Repository sidebar contains two listings, External and Global, each in the form of a tree. The
External listing contains a list of external CSS stylesheets associated with the SPS. The Global listing
contains a list of all the global styles associated with the SPS.

The structure of the listings in the Style Repository is as follows:

External

- CSS-1.css (Location given in popup that appears on mouseover)
 - Media (can be defined in Style Repository window)
 - Rules (non-editable; must be edited in CSS file)
 - Selector-1
 - Property-1
 - ...
 - Property-N
 - ...
 - Selector-N
+ ...
+ CSS-N.css
Global

- Selector-1
 + Selector-1 Properties
- ...
+ Selector-N

Precedence of style rules
If a global style rule and a style rule in an external CSS stylesheet have selectors that identify the same
document component, then the global style rule has precedence over that in the external stylesheet, and will
be applied. If two or more global style rules select the same document component, then the rule that is listed
last from among these rules will be applied. Likewise, if two or more style rules in the external stylesheets
select the same document component, then the last of these rules in the last of the containing stylesheets will
be applied

© 2017-2023 Altova GmbH

Sidebars 53User Interface

Altova StyleVision 2024 Professional Edition

Managing styles in the Style Repository
In the Style Repository sidebar you can do the following, using either the icons in the toolbar and/or items in
the context menu:

Add: The Add icon adds a new external stylesheet entry to the External tree or a new global style entry
to the Global tree, respectively, according to whether the External or Global tree was selected. The new entry
is appended to the list of already existing entries in the tree. The Add command is also available in the context
menu. For more details about using external stylesheets and global styles, see Working with CSS Styles .
Note that an external CSS stylesheet can also be added or a stylesheet removed via the Design Overview
sidebar .

Insert: The Insert icon inserts a new external stylesheet entry above the selected external stylesheet (in
the External tree) or a new global style entry above the selected global style (in the Global tree). The Insert
command is also available in the context menu. For more details about using external stylesheets and global
styles, see Working with CSS Styles .

Move Up/Down: The Move Up icon and Move Down icon move the selected external stylesheet or
global style respectively up and down relative to the other entries in its tree. These commands are useful for
changing the priority of external stylesheets relative to each other and of global style rules relative to each
other. The Move Up and Move Down commands are also available in the context menu. For more details
about how to change the precedence of styles, see Working with CSS Styles .

Views of a selector's styles: Any selector, whether in an external stylesheet or defined globally, can be

displayed in a view obtained by using three view settings. These settings are: List Non-Empty , Expand

All , and Collapse All , and they are available as toolbar buttons and context menu commands:
Toggling the List Non-Empty setting on causes only those style properties to be listed that have a value defined
for them. Otherwise all available style properties are displayed (which could make the view very cluttered). The
Expand All and Collapse All settings combine with the List Non-Empty setting, and respectively expand and
collapse all the style definitions of the selected selector. These commands are also available in the context
menu.

Toggle Important: Clicking the Toggle Important icon sets the CSS value !important on or off for the
selected CSS rule.

Reload All: The Reload All icon reloads all the external CSS stylesheets.

Reset: The Reset icon deletes the selected external stylesheet or global style.

Editing CSS styles in the Style Repository
The following editing mechanisms are provided in the Style Repository:

· You can add and remove a CSS Stylesheet, and you can specify the media to which each external
CSS stylesheet applies. How to do this is explained in the section External CSS Stylesheets .

· Global styles can have their selectors and properties directly edited in the Style Repository window.
How this is done is described in the section Defining CSS Styles Globally .

364

42

364

364

365

369

54 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2.2.5 Styles

The Styles sidebar (screenshot below) enables CSS styles to be defined locally for SPS components selected
in the Design View. This is as opposed to styles which are set globally in the Styles Repository sidebar.

The Styles sidebar is divided into two broad parts:

· The left-hand-side, Styles-For column, in which the selected component types are listed. You should
note that when a selection is made in Design View, it could contain several components. The selected
components are listed in the Styles-For column, organized by component type. One of these
component types may be selected at a time for styling. If there is only one instance of the component
type, then that one instance is selected for styling. If there are several instances of the component
type, then all the selected instances can be styled together. The defined styles are applied locally to
each instance. If you wish to style only one specific instance, then select that specific component
instance in Design View and style it locally in the Styles sidebar. You can also select a component
range by selecting the start-of-range and then the end-of-range component with the Shift-key pressed.
For detailed information about the selection of component types, see Defining CSS Styles Locally .

· The right-hand-side, Style Definitions pane, in which CSS styles are defined for the component
type/s selected in the Styles-For column. The Style Definitions pane can be displayed in three views
(see below for description). For the details of how to set style definitions, see Setting CSS Style

Values . The XPath icon toggles on and off the application of XPath expressions as the source
of style values. If a style property is selected and if the XPath icon is toggled on, then an XPath
expression can be entered for this property and the return value of the XPath expression is used as the
value of that style property. In this way, the value of a node in an XML document can be returned at
runtime as the value of a property. When the XPath icon is toggled off, a static value can be entered as
the value of the property.

Settings for Definitions-View
The view of definitions can be changed to suit your editing needs. Three view-settings (listed below) are
available as buttons in the toolbar and as commands in context menus.

51

371

373

© 2017-2023 Altova GmbH

Sidebars 55User Interface

Altova StyleVision 2024 Professional Edition

· List Non-Empty : When this setting is toggled on, for the component type selected in the left-
hand column, only those properties with values defined for them are displayed, in alphabetical order.
Otherwise all properties are displayed. This setting is very useful if you wish to see what properties are
defined for a particular component type. If you wish to define new properties for the selected
component type, this setting must be toggled off so that you can access the required property.

· Expand All : For the component type selected in the left-hand column, all the properties displayed
in the right-hand pane are expanded. This setting can be combined with the List Non-Empty setting.

· Collapse All : For the component type selected in the left-hand column of the window, all the
properties displayed in the right-hand pane are collapsed. This setting can be combined with the List
Non-Empty setting.

Toggle Important and Reset toolbar icons

Clicking the Toggle Important icon sets the CSS value !important on or off for the selected CSS rule.

Clicking the Reset icon resets the value of the selected property.

2.2.6 Properties

The Properties sidebar (screenshot below) enables properties to be defined for SPS components selected in
Design View.

The Properties sidebar is divided into two broad parts:

56 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· The Properties-For column, in which the selected component-types are listed. One of these
component types may be selected at a time and properties assigned for it. (In the screenshot above,
the template component is selected.) For detailed information about how components with properties
are grouped, see the section Components and their Property Groups below.

· The Property Definitions pane, in which component properties are defined for the component type
selected in the Properties For column. The Property Definitions pane can be displayed in three views
(see below). For the details of what properties are in each property group, see the section Property
Groups below.

Settings for Definitions-View
The view of definitions can be changed to suit your editing needs. Three view-settings (listed below) are
available as buttons in the toolbar and as commands in context menus.

· List Non-Empty : When this setting is toggled on, for the component type selected in the left-
hand column, only those properties with values defined for them are displayed, in alphabetical order.
Otherwise all properties are displayed. This setting is very useful if you wish to see what properties are
defined for a particular component type. If you wish to define new properties for the selected
component type, this setting must be toggled off so that you can access the required property.

· Expand All : For the component type selected in the left-hand column, all the properties displayed
in the right-hand pane are expanded. This setting can be combined with the List Non-Empty setting.

· Collapse All : For the component type selected in the left-hand column of the window, all the
properties displayed in the right-hand pane are collapsed. This setting can be combined with the List
Non-Empty setting.

Reset toolbar icon

Clicking the Reset icon resets the value of the selected property to its default.

Components and their property groups
The availability of property groups is context-sensitive. What property groups are available depends on what
design component is selected. The table below lists SPS components and the property groups they have.

Component Property Group

Template Template; Authentic

Content Content; Authentic; Common; Event

Text Text; Common; Event

Auto-Calculation AutoCalc; Authentic; Common; Event

Condition Branch When

Data-Entry Device Authentic; Common; [Data-Entry Device]; Event; HTML

56

58

© 2017-2023 Altova GmbH

Sidebars 57User Interface

Altova StyleVision 2024 Professional Edition

Image Image; Authentic; Common; Event; HTML

Link Link; Authentic; Common; Event; HTML

Table Table; Authentic; Common; Event; HTML; Interactive

Paragraph Paragraph; Authentic; Common; Event; HTML

The following points about component types should be noted:

· Template components are the main template, global templates, and all schema nodes in the design.
· Content components are the content and rest-of-contents placeholders. These represent the text

content of a node or nodes from the XML document.
· A text component is a single string of static text. A single string extends between any two

components other than text components, and includes whitespace, if any is present.
· Data-entry devices are input field, multiline input fields, combo boxes, check boxes, radio buttons and

buttons; their properties cover the data-entry device as well as the contents of the data-entry device, if
any.

· A table component refers to the table structure in the design. Note that it contains sub-components,
which are considered components in their own right. The sub-components are: row, column, cell,
header, and footer.

· A paragraph component is any predefined format.

58 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The table below contains descriptions of each property group.

Property Group Description

AutoCalc These properties are enabled when an Auto-Calculation is selected. The
Value Formatting property specifies the formatting of an Auto-
Calculation that is a numeric or date datatype. The XPath property specifies
the XPath expression that is used for the Auto-Calculation .

Authentic These are SPS-specific properties that are available for templates,
contents, AutoCalculations, data-entry devices, images, links, tables, and
paragraphs. What properties within the group are available are component-
specific. For more details, see Authentic Node Properties .

Common The Common property group is available for all component types except the
Template and AutoCalc component types. It contains the following
properties that can be defined for the component: class (a class name),
dir (the writing direction), id (a unique ID), lang (the language), and title
(a name).

Data-Entry
Device

Specifies the value range of combo boxes, check boxes, and radio buttons.
Note that this property group does not apply to input fields and buttons.

Event Contains properties that enable JavaScript functions to be defined for the
following client-side HTML events: onclick, ondblclick, onkeydown,
onkeypressed, onkeyup, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup.

HTML Available for the following component types: data-entry devices ;
image ; link ; table ; paragraphs . Note that there are different
types of data-entry devices and paragraphs , and that tables have
sub-components. These properties are HTML properties that can be set on
the corresponding HTML elements (img, table, p, div, etc). The available
properties therefore vary according to the component selected. Values for
these properties can be selected using XPath expressions.

In addition, there are component-specific properties for images , links , paragraphs and other predefined
formats , and condition branches . These properties are described in the respective sections.

Setting property values
Property values can be entered in one, two, or three ways, depending on the property:

· Entered directly in the Value column. To do this, select a property, double-click in its Value column,
enter the value using the keyboard, and press Enter or click anywhere in the GUI.

· By selecting a value from the dropdown list of the combo box for that property. Click the down arrow of
the combo box to drop down the list of property-value options.

· By using the Edit button at the right-hand side of the Value column for that property. Clicking the
Edit button pops up a dialog relevant to that property.

For some properties, in the Common and HTML groups of properties, XPath expressions can be used to

provide the values of the property. The XPath icon toggles on and off the application of XPath expressions

354

270

433

467

174

168 339 143 350

174 350 143

168 341

127 283

© 2017-2023 Altova GmbH

Sidebars 59User Interface

Altova StyleVision 2024 Professional Edition

as the source of property values. With a property selected, if the XPath icon is toggled on, then an XPath
expression can be entered for this property and the return value of the XPath expression is used as the value of
that property. In this way, the value of a node in an XML document can be returned, at runtime, as the value of
a property. When the XPath icon is toggled off, a static value can be entered as the value of the property. Also
see Style Properties Via XPath .

Modifying or deleting a property value
To modify a property value, use any of the applicable methods described in the previous paragraph, Setting

Property Values . To delete a property value, select the property and click the Reset icon in the toolbar
of the Properties sidebar.

2.2.7 Project

StyleVision projects are an efficient way of grouping, managing, and working with related files. Once collected
in a project, files can be accessed easily from the Project sidebar when designing an SPS. For example, an
SPS file can be dragged from the Project sidebar to the Design Tree sidebar and created there as a module; or
an image file can be dropped into the design as a static image; or a CSS stylesheet can be dragged to the
Style Repository sidebar as an external stylesheet.

A complete description of how to work with projects is given in the section Projects in StyleVision .

The Project sidebar (screenshot below) shows the currently active project. Commands in the Project menu
apply to the currently active project. The currently active project can be changed by either creating a new
project (Project | New Project) or by opening an existing project (Project | Open Project). These two
commands are also available as the first and second buttons in the toolbar of the Project sidebar (see
screenshot below). You can name a newly created project when you save it (Project | Save Project ; third
button in the toolbar of the Project sidebar).

The Add Files button in the toolbar (fourth button in the screenshot below) contains the commands shown in
the screenshot below. These commands enable files and folders to be added to the active project and are
described in the User Reference . A useful command is the Add Active and Related Files command, which

375

58

113

753

754 754

754

753

60 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

adds to the project all the files related to the currently active SPS. For example, with the tutorial file,
QuickStart.sps, active, clicking this command will add all related files as shown in the screenshot above.

The Project Properties button (fifth button in the toolbar) pops up the Properties dialog of (i) the project; (ii) a
folder; or (iii) a file, depending on which type of these three items is currently selected in the Project sidebar. If
the project or a file is selected, the Properties dialog displays the location of the file. The Properties dialog of a
folder allows you to edit the name of the folder and to specify the file extensions to associate with that folder;
only files with the associated file extensions are displayed in that project folder. See Projects in StyleVision
for details.

2.2.8 Messages

When StyleVision is opened for the first time, the Messages sidebar (screenshot below) is displayed below the
Main Window of the GUI. To toggle the Messages sidebar on and off, click View | Messages.

The Messages sidebar displays warnings in Design View and Authentic View. In Design View, the warnings
relate to various aspects related to the SPS document, from a missing Working XML File to errors in the design
structure. In Authentic View, the warnings are about the validity of the XML data entered, whether valid
according to the underlying schema or according to additional validation criteria.

113

© 2017-2023 Altova GmbH

Sidebars 61User Interface

Altova StyleVision 2024 Professional Edition

2.2.9 Find and Replace

The Find & Replace sidebar (screenshot below) enables you to search and replace text in Design View. Click
the dropdown arrow of the Find button (highlighted blue in the screenshot below) to select the search options.
You can search in text, styles, properties, variables, template matches, and XPath expressions for strings that
you enter directly in the Find field or construct with regular expressions. All searches carried out in this sidebar
apply to Design View. The menu commands Edit | Find and Edit | Replace sets the focus to this
sidebar and places the cursor in the Find field, enabling you to proceed with a search in Design View. The
results of the search are displayed in the sidebar. You can click on a result to go to the corresponding location
in the design. To toggle the Find & Replace sidebar on and off, click View | Find & Replace.

For information about searching in other views (JavaScript Editor, Authentic View, and XSLT stylesheets), see
the menu-reference topic Find, Find Next, Replace .

Finding
Enter the term you want to search for in the Find field. Then click the dropdown arrow of the Find button
(highlighted blue in the screenshot above) to select the search options. The following options are available:

· Where to search: The respective Include <component> item should be toggled on for that component
to be included in the search.

· Case and/or whole-word matches: These are toggle options.
· Regular expressions: Your entry will be treated as a regular expression. For a description of how to use

regular expressions, see the menu-reference topic Find, Find Next, Replace .

Results
The results are organized into groups according to the component in which the matched string appears (see
screenshot above). Each result item is show as a hierarchical path. You can click any of the links in the
hierarchy to go to that item in Design View.

The results pane has a toolbar with icons for the following commands, from left: copy an item or a group of
items to the clipboard; clear the results pane.

Replacing
After the results are displayed, you can select one or more of the result items for replacement. The selected
item/s will be indicated with a blue bullet (see screenshot above) and the Replace button will become enabled.

745 745

745

747

62 User Interface Sidebars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Enter the replacement string in the Replace text box and click Replace. The replacement is carried out and
the blue bullet becomes a green bullet.

© 2017-2023 Altova GmbH

 63Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

3 Quick Start Tutorial

The objective of this tutorial is to take you quickly through the the key steps in creating an effective SPS. It
starts with a section on creating and setting up the SPS, shows you how to insert content in the SPS, how to
format the components of the SPS, and how to use two powerful SPS features: Auto-Calculations and
conditions. Along the way you will get to know how to structure your output efficiently and how to use a variety
of structural and presentation features.

Files required
Files related to this Quick Start tutorial are in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\QuickStart:

· QuickStart.xsd, the XML Schema file on which the SPS is based.
· QuickStart.xml, the Working XML File, which is the source of the data displayed in the output

previews.
· QuickStart.sps, which is the finished SPS file; you can compare the SPS file you create with this

file.
· QuickStart.css, which is the external CSS stylesheet used in the tutorial.
· NewsItems.BMP, an image file that is used in the SPS.

Doing the tutorial
It is best to start at the beginning of the tutorial and work your way through the sections. Also, you should open
the XSD and XML files before starting the tutorial and take a look at their structure and contents. Keep the XSD
and XML files open while doing the tutorial, so that you can refer to them. Save your SPS document with a
name other than QuickStart.sps (say MyQuickStart.sps) so that you do not overwrite the supplied SPS file.
And, of course, remember to save after successfully completing every part.

29

64 Quick Start Tutorial Creating and Setting Up a New SPS

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3.1 Creating and Setting Up a New SPS

In this section, you will learn:

· How to create a new SPS document
· How to add a schema source for the SPS
· How to select the XSLT version of the SPS
· How to assign the Working XML File
· How to specify the output encoding
· How to save the SPS document

Files in this section
Files referred to in this section are located in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\QuickStart:

· QuickStart.xsd, the XML Schema file on which the SPS is based.
· QuickStart.xml, the Working XML File, which is the source of the data displayed in the output

previews.
· QuickStart.sps, which is the finished SPS file; you can compare the SPS file you create with this

file.

Creating a new SPS document

Create a new SPS document by clicking File | New | New (Empty) or select New (Empty) in the

dropdown list of the New icon in the application toolbar. The Create New Design dialog pops up.

The Create New Design dialog (screenshot below) prompts you to select either: (i) a free-flowing document
design, or (ii) a form-based document design (in which components are positioned absolutely, as in a layout
program).

64

66

67

67

67

67

29

714

712

© 2017-2023 Altova GmbH

Creating and Setting Up a New SPS 65Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

In a free-flowing document design, document content is laid out to fit the output media object or viewer (paper or
screen). Items in the document content can only be placed relative to each other, and not absolutely. This kind
of design is suited for documents such as reports, articles, and books.

In a form-based document, a single Layout Container is created, in which design components can be
positioned absolutely. The dimensions of the Layout Container are user-defined, and Layout Boxes can be
positioned absolutely within the Layout Container and document content can be placed within individual Layout
Boxes. If you wish the design of your SPS to replicate a specific form-based design, you can use an image of
the original form as a blueprint image . The blueprint image can then be included as the background image of
the Layout Container. The blueprint image is used to help you design your form; it will not be included in the
output.

You will be creating a free-flowing document, so select this option by clicking the Create a free-flow document
radio button, then click OK.

A new document titled SPS1.sps is created and displayed in Design View (screenshot below).

187

187

33

66 Quick Start Tutorial Creating and Setting Up a New SPS

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In Design View , an empty main template is displayed. In the Design Overview and Schema Tree
sidebars, there are no schema entries.

Adding a schema source
For this SPS, you will use the schema, QuickStart.xsd. To add this schema as the schema source, do the
following:

1. In the Design Overview sidebar, under the Sources heading, click the Add New Source command
(screenshot above). In the menu that pops up (screenshot below), select Add XML
Schema/DTD/XML.

2. In the Open dialog that pops up browse for the file QuickStart.xsd in the (My) Documents folder
 (see above), and click Open.

3. You will be prompted to select a Working XML File. Select the option to select the file from the
filesystem, then browse for the file QuickStart.xml in the (My) Documents folder (see above), and
click Open. The schema will be added as a schema source in the Design Overview sidebar and in the
Schema Tree sidebar (screenshot below). Also, in the Design Overview, the Working XML File you
chose will be assigned to the schema.

33 42 44

64

64

© 2017-2023 Altova GmbH

Creating and Setting Up a New SPS 67Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

You should note the following points: (i) In Design Overview, the $XML entry for the schema source lists
the schema and the Working XML File and Template XML File ; (ii) In the Schema Tree sidebar,
the Root Elements tree would list the one or more root elements (document elements) you select
from among the global elements defined in the schema. In the case of this schema, the element
presswatch is selected by default because it is the one global element in the schema that lies
clearly at the top of the hierarchy defined in the schema; (iii) All global elements in the schema are
listed in the All Global Elements tree .

Selecting the XSLT version

For this SPS you will use XSLT 2.0. To specify the XSLT version, in the application toolbar, click the icon.

Assigning or changing the Working XML File
While adding the XML Schema to the SPS in the previous step, you also assigned a Working XML File to
the schema. A Working XML File provides the SPS with a source of XML data to process. To assign, change,
or unassign a Working XML File for a given schema, in the Design Overview sidebar, right-click anywhere in

the Working XML File line you wish to modify (or click the Context Menu icon at the right), and select the
required command from the context menu that pops up. The Working XML File is now assigned, and the
filename is entered in the Design Overview. Before proceeding, ensure that you have correctly assigned the file
QuickStart.xml, which is in the (My) Documents folder , as the Working XML File.

Specifying the encoding of output
In the Default Encoding tab of the Options dialog (Tools | Options), set the HTML encoding to Unicode
UTF-8 and RTF encoding to UTF-8.

Saving the SPS document
After you have set up the SPS as described above, save it as MyQuickStart.sps in the (My) Documents
folder . Do this via the menu command File | Save Design or Ctrl+S. In the Save Design dialog that
pops up, select the Save as SPS option, and enter the name of the SPS file to save..

28 28

27

27

27

27

44

28

28

28

64

839

64 725

68 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3.2 Inserting Dynamic Content (from XML Source)

This section introduces mechanisms to insert data from nodes in the XML document. In it you will learn how to
drag element and attribute nodes from the schema tree into the design and create these nodes as contents.
When a node is created as contents, the data in it is output as a string which is the concatenation of the
content of that element's child text nodes and the text nodes of all descendant elements.

Inserting element contents
In your SPS, do the following:

1. In the Schema Tree sidebar , expand the schema tree up to the children of the newsitem element
(screenshot below).

2. Select the headline element (notice that the element's datatype is displayed in a pop-up when you
mouseover; screenshot above). Drag the element into Design View , and, when the arrow cursor
turns to an insertion point, drop it into the main template.

3. In the context menu that pops up, select Create Contents. The start and end tags of the headline
element are inserted at the point where you dropped the headline element, and they contain the
content placeholder. The headline tags are surrounded by the start and end tags of the ancestor
elements of headline (screenshot below).

4. In the design put elements on different lines (by pressing Enter) as shown in the screenshot below.

44

39

© 2017-2023 Altova GmbH

Inserting Dynamic Content (from XML Source) 69Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

Click the HTML tab to see a preview of the HTML output (screenshot below). The HTML preview
shows the contents of the headline child elements of newsitem, each as a text string.

You should also check the preview of Authentic View and the RTF output.

Note: You can also create the contents of a node by using the following steps: (i) Click the the Insert
Contents icon in the Insert Design Elements toolbar , (ii) Click the location in the design where you
wish to insert the content, (iii) Select, from the Schema Selector tree that pops up, the node for which
you wish to create contents.

Inserting attribute contents
When an element is inserted into the design as contents, the contents of its attributes are not automatically
inserted. You must explicitly drag the attribute node into the design for the attribute's value to be output. In your
SPS, now do the following:

1. Place the cursor after the end tag of the headline element and press Enter. This produces an empty
line (screenshot below).

36

35

708

70 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. In the Schema Tree sidebar, expand the dateline element (screenshot below).

Notice that the dateline element has two child elements, date and place, and that the place
element has two attributes, city and country.

3. Drag the dateline element into the design and drop it at the beginning of the newly created empty line
(screenshot below).

© 2017-2023 Altova GmbH

Inserting Dynamic Content (from XML Source) 71Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

4. Switch to HTML Preview and look carefully at the output of dateline (screenshot below).

Notice that while the contents of the date children of dateline elements have been output, no
contents have been output for the place children of dateline. This is because the place data is
contained in the attributes of the place element (in the attributes city and country) and attribute
contents are not output when the attribute's parent element is processed.

5. In Design View, go to the menu command Authentic | Auto-Add Date Picker , and toggle it off to
deactivate the auto-addition of the date picker . (The icon will have no border when toggled off.) This
step is required if the date picker is not to be inserted automatically when a node of type xs:date or
xs:dateTime is inserted into the design (which you will do in the next step). Drag the date element
from the Schema Tree sidebar and drop it (create it as contents) in between the start and end tags
of the dateline element.

6. Select the city attribute of the dateline/place element (screenshot below) in the Schema Tree
sidebar .

36

804

462

44

44

72 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7. Drag the @city attribute node into Design View , and drop it (create as contents) just after the end
tag of the date element.

8. Drag the @country attribute node into Design View , and drop it (create as contents) just after the
end tag of the @city attribute.

When you are done, the SPS design should look something like this:

The HTML Preview will look like this:

33

33

36

© 2017-2023 Altova GmbH

Inserting Dynamic Content (from XML Source) 73Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

Notice that the values of the @city and @country attributes are now included in the output.

Adding more dynamic content
The contents of elements and attributes from the XML data source can be inserted anywhere in the design
using the method described above. To complete this section, add the synopsis and source elements to the
design so that the design now looks like this:

Notice that the synopsis element has been placed before the source element, which is not the order in which
the elements are in the schema. After you have added the synopsis and source elements to the design,
check the HTML preview to see the output. This is an important point to note: That the order in which nodes

36

74 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

are placed in the main template is the order in which they will appear in the output (see the section,
Templates and Design Fragments , for more information about structuring the output document).

Another important point to note at this stage is the form in which a node is created in the design. In the HTML
preview , you will see that all the nodes included in the design have been sent to the output as text strings.
Alternatively to being output as a text string, a node can be output in some other form, for example, as a table
or a combo box. In this section, you have, by creating all the nodes as (contents), specified that the output
form of all nodes are text strings. In the section, Using Conditions , you will learn how to create a node as a
combo box, and in the section, Using Global Templates and Rest-of-Contents , how to create a node as a
(dynamic) table.

Make sure to save the file before moving to the next section.

27

244

36

90

97

© 2017-2023 Altova GmbH

Inserting Static Content 75Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

3.3 Inserting Static Content

Static content is content you enter or insert directly in the design—as opposed to content that comes from the
XML source. A variety of static components can be placed in an SPS design. In this part of the tutorial, you will
learn how to insert the following static components:

· An image
· A horizontal line
· Text

Inserting a static image
The static image to insert is in the (My) Documents folder : C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\QuickStart\NewsItems.BMP. It will
be used as the header of the document. To insert this image at the head of the document, do the following:

1. Place the cursor between the start-tags of newsitems and newsitem (screenshot below).

Notice that the cursor is within the newsitems element but outside the newsitem element. It will
therefore be inserted in the output once, at the start of processing of the newsitems element (because
there is only one newsitems element defined in the schema).

2. Right-click, and select Insert | Image . The Insert Image dialog pops up (screenshot below).

3. In the Static tab, click the Absolute Path check box, then browse for the file NewsItems.BMP and
select it.

4. Click OK to finish.

The HTML preview will look something like this:

75

76

76

29

770

76 Quick Start Tutorial Inserting Static Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Inserting horizontal lines
The first horizontal line you will insert is between the document header and document body. Do this as follows:

1. Place the cursor immediately after the recently inserted static image.
2. Right-click, and select Insert | Horizontal Line . A horizontal line is inserted.

Set properties for the line as follows:

1. With the line selected in Design View , in the Properties sidebar , select the line component (in
the Properties For column) and then the HTML group of properties.

2. Assign color and size properties for the line.
3. With the line selected in Design View , in the Styles sidebar , select the line component and then

the box group of properties. Define a margin-bottom property of 12pt.
4. Check the output in HTML Preview .

Now insert a horizontal line at the end of each news item. To do this the cursor would have to be placed
immediately before the end-tag of the newsitem element. This will cause the line to be output at the end of
each newsitem element. You can change the thickness of the line by setting the line's size property to a
number with no unit (in the Properties sidebar, select line, and set a value of, say 3).

Inserting static text
You have already added static text to your design. When you pressed the Enter key to obtain new lines (in the
section Inserting Dynamic Content (from XML Source)), whitespace (static text) was added. In this section,
you will add a few static text characters to your design.

The SPS you have designed up to this point will produce output which looks something like this:

772

33 55

33 54

36

68

© 2017-2023 Altova GmbH

Inserting Static Content 77Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

Notice that in the output of the dateline element, the contents of the date element and place/@city and
place/@country attributes are run together without spacing. You can add the spacing as static text. In the
design, place the cursor after the date element and enter a colon and a space. Next, enter a comma and
space after the @city attribute (screenshot below)

This part of the output will now look like this:

Notice the colon, spacing and comma in the dateline output. All of these text items are static text items that
were inserted directly in the design.

You will now add one more item of static text. In the design, type in the string "Source: " just before the start-
tag of the source element (screenshot below).

78 Quick Start Tutorial Inserting Static Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Formatting static text
To format static text, highlight the text to be formatted and specify local style properties. In the design,
highlight the text "Source:" that you just typed. In the Styles sidebar (screenshot below), notice that the 1
text component is selected. Now expand the font group of properties as shown in the screenshot below, and,
for the font-style property, select the italic option from the dropdown menu.

The static text (that is, the string "Source:") will be give an italic style in the design, and will look like this:

The output will look like this in HTML Preview:

54

© 2017-2023 Altova GmbH

Inserting Static Content 79Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

If you think there is too little vertical space between the source item and the horizontal line separating two
newsitem elements, then, in the design, insert a blank line between the source and the horizontal line (by
pressing Enter).

After you are done, save the file.

In this section you have learned how to insert static content and format it. In the next section you will learn
more about how design components can be formatted using CSS principles and properties.

80 Quick Start Tutorial Formatting the Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3.4 Formatting the Content

StyleVision offers a powerful and flexible styling mechanism , based on CSS, for formatting components in
the design. The following are the key aspects of StyleVision's styling mechanism:

· CSS style rules can be defined for both block components and inline components.
· Predefined formats are block components that have inherent styles and can be used as wrappers

for a group of components that need to be treated as a block. The inherent styles of these predefined
formats can be overridden by styles you specify locally on each component. This is in keeping with the
cascading principle of CSS.

· Class attributes can be declared on components in the design, and the class can be used as a
selector of external or global style rules.

· You can specify styles at three levels. These are, in increasing order of priority: (i) style rules in
external stylesheets , (ii) global style rules , and (iii) local style rules . Note, however, that
certain types of selectors in external and global style rules, such as name-based selectors (h1, a, img,
etc), will apply only to Authentic View and HTML output, not to RTF output. Rules that have class
selectors will apply to HTML, RTF, PDF, and Word 2007+ formats.

In this section, you will learn how to:

· Assign predefined formats
· Assign a component a class attribute
· Define styles in an external CSS stylesheet and add this stylesheet to the style repository of the

SPS
· Define global style rules
· Define local styles for a selection of multiple design components
· Define local styles for a single component

Assigning predefined formats
One reason to assign a predefined format is to give a component the inherent styling of that predefined
format . In the design, select the headline element and then select Enclose with | Special Paragraph |
Heading 3 (h3) (alternatively use the Predefined Formats combo box in the toolbar). The predefined format
tags are created around the headline element (screenshot below).

Notice that the font properties of the contents change and that vertical spacing is added above and below the
predefined format. These property values are inherent in the h3 predefined format.

Another use of predefined formats is to group design components in a block so that they can be formatted as a
block or assigned inline properties as a group. The most convenient predefined property for this purpose is the
div predefined format, which creates a block without spacing above or below. In your design, assign the
newsitem, dateline, synopsis, and source nodes separate div components. Your design should look
something like the screenshot below. Note that the static text "Source: " is also included in the div
component that contains the source element, and that the entire newsitem element is inside a div
component.

364

350

365 369

365 369 371

80

81

82

82

84

84

350

350

© 2017-2023 Altova GmbH

Formatting the Content 81Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

You have now grouped components together in different div blocks. Later in this section , you will learn how
to assign styles to such blocks of grouped components.

Assigning components to class attributes
A style rule can be defined for a class of components. For example, all headers can be defined to have a set of
common properties (for example, a particular font-family, font-weight, and color). To do this you must do two
things: (i) assign the components that are to have the common properties to a single class; (ii) define the
styling properties for that class.

In your design, select the h3 tag, and, in the Styles sidebar, select 1 paragraph (to select the predefined
format), and the common group of properties. Expand the common group of properties, then double-click in the
Value field of the class property and enter header.

84

82 Quick Start Tutorial Formatting the Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

This particular instance of the h3 format is now assigned to a class named header. When you define styling
properties for the header class (styles from an external stylesheet or global SPS styles), these properties will
be applied to all components in the SPS that have the header class.

Adding an external CSS stylesheet to the style repository
Style rules in an external CSS stylesheet can be applied to components in the SPS design. External
stylesheets must, however, first be added to the style repository in order for rules in them to be applied to
components. In the Style Repository sidebar (in Design View), do the following:

1. Select the External item.
2. Click the Add button in the toolbar of the Style Repository sidebar . This pops up the Open dialog.
3. Browse for the file C:\Documents and Settings\<username>\My

Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\QuickStart\QuickStart.

css, which is in the (My) Documents folder , and click Open.

The stylesheet is added to the style repository. It contains the following rules that are relevant at this stage:

.header {
 font-family: "Arial", sans-serif;
 font-weight: bold;
 color: red;
}

h3 {
 font-size: 12pt;
}

The style rules for the header class and h3 element are combined and produce the following HTML output for
the headline element.

Defining global style rules
Global style rules can be defined for the entire SPS using CSS selectors. The rules are defined directly in
the Style Repository sidebar . Create a global style rule for the header class as follows:

1. With Design View active, in the Style Repository sidebar , select the Global item.

51

51

29

369

51

33 33

© 2017-2023 Altova GmbH

Formatting the Content 83Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

2. Click the Add button in the toolbar. This creates an empty rule for the wildcard selector (*), which is
highlighted.

3. Type in .header to replace the wildcard as the selector.
4. Expand the color group of properties, and select green from the dropdown list of the color property

values (screenshot below).

Where the global style rule defines a property that is also defined in the external stylesheet (the color
property), the property value in the global rule takes precedence. In the HTML preview, the contents of the
headline will therefore be green. Other property definitions from the external stylesheet (not over-ridden by a
property in a global style rule) are retained (in this case, font-family and font-weight).

84 Quick Start Tutorial Formatting the Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: Since the global style rule uses the class selector, this rule also applies to RTF output—in addition to
Authentic View and HTML output.

Defining local styles for multiple components at once
Local styles can be defined for multiple components at once. In your design, to specify that the entire text
contents of a news item should have Arial as its font, click the div component surrounding the newsitem
element and, in the Styles sidebar , in the Styles For column, select 1 paragraph. Then, in the font group
of properties, assign Arial as the font-family. This property setting will be inherited by all five descendant
predefined formats.

Now, in the design, select the three div components surrounding the dateline, synopsis, and source nodes
(by keeping the Shift key pressed as you click each div component). In the Styles sidebar , select 3
paragraphs, then the font group of properties, and set a font-size of 10pt. (The h3 component was not
selected because it already has the required font-size of 12pt.)

Finally, in the design, select the div component surrounding the dateline element. In the Styles For column
of the Styles sidebar , select 1 paragraph. In the font group of properties, set font-weight to bold and
font-style to italic. In the color group of properties, set color to gray. The output of the dateline will look
like this

Notice that the styling defined for the div component has been applied to the static text within the div
component as well (that is, to the colon and the comma).

Defining local styles for a single component
A local style defined on a single component overrides all other styles defined at higher levels of the SPS for that
component. In the design, select the headline element and assign it a color of navy (color property in the
color group of style properties). The locally defined property (color:navy) overrides the global style for the
.header class (color:green).

Select the div component surrounding the source element. In the Styles sidebar , with the 1 paragraph
item in the Styles For column selected, set the color property (in the color group of style properties) to gray.
In the font group of style properties, set font-weight to bold. These values are applied to the static text.
Remember that in the last section the static text "Source: " was assigned a font-style value of italic. The
new properties (font-weight:bold and color:gray) are additional to the font-style:italic property.

Now, in Design View, select the (content) placeholder of the source element. In the Styles For column, with
1 content selected, set the color property (in the color group of style properties) to black. In the font group of
properties, set font-weight to normal. The new properties are set on the contents placeholder node of the
source element and override the properties defined on the div component (see screenshot below).

Completing the formatting
To complete the formatting in this section, select the div component on the synopsis element and, in the
Predefined Formats combo box in the toolbar, select p. This gives the block the inherent styles of HTML's p
element. The HTML preview should now look something like this:

54

54

54

54

350

© 2017-2023 Altova GmbH

Formatting the Content 85Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

After you are done, save the file.

86 Quick Start Tutorial Using Auto-Calculations

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3.5 Using Auto-Calculations

Auto-Calculations are a powerful mechanism for providing additional information from the available XML data.
In this section you will add two pieces of information to the design: the total number of news items and the time
period covered by the news items in the XML document. Neither piece of information is directly available in the
XML document but has to be calculated or manipulated from the available data.

Counting the news item nodes
In the design, do the following:

1. Create space, as shown in the screenshot below, for a line of static text (on which the Auto-Calculation
will also be placed). Use the Return key to add new lines and insert a horizontal line below the space
you create (see screenshot).

2. Type in the static text "Total number of news items: " as shown in the screenshot above.
3. Apply local styling of your choice to the static text. Do this as described in the section Formatting the

Content .
4. Place the cursor after the colon and select Insert | Auto-Calculation | Value. This pops up the Edit

XPath Expression dialog (screenshot below). (Alternatively, you can right-click and select the
command in the context menu.)

270

84

685

© 2017-2023 Altova GmbH

Using Auto-Calculations 87Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

5. In the schema tree, note that the context node is newsitems, which is highlighted. Now, in the
Expression text box either type in the expression count(newsitem) or build the expression using the
entry-helper panes below the Expression text box. (Double-click the count function (found in the
Sequence group of functions) to enter it, then (in the expression in the text box) place the cursor within
the parentheses of the function and double-click the newsitem node in the schema tree. You can see
what the XPath expression returns by clicking the Evaluator button. The result of the evaluation will be
in the Results pane (see screenshot below). For a detailed description of the Edit XPath Expression
dialog, see the section Edit XPath Expression .

685

88 Quick Start Tutorial Using Auto-Calculations

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6. Click OK to finish. The Auto-Calculation is inserted in the design at the cursor location (screenshot
below). Format the Auto-Calculation using local styles .

Your HTML output will look like this:

84

© 2017-2023 Altova GmbH

Using Auto-Calculations 89Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

Displaying the period covered by news items
The period covered by all the news items together can be obtained by getting the date of the earliest news item
and the date of the latest news item. This can be achieved with XPath expressions like those given below. The
first expression below outputs the contents of the date node. The second expression is a refinement,
outputting just the month and year values in the date node. You can use either of these.

· concat(min(//date), ' to ', max(//date)).
· concat(month-from-date(min(//date)), '/', year-from-date(min(//date)), ' to ',

month-from-date(max(//date)), '/', year-from-date(max(//date)))

In the design, insert the static text and Auto-Calculation as shown in the screenshot below. Apply whatever
local styling you like.

The HTML preview will look something like this:

After you are done, save the file.

90 Quick Start Tutorial Using Conditions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3.6 Using Conditions

If you look at QuickStart.xml, you will see that each newsitem element has a metainfo child element, which
in turn can contain one or more relevance child elements. In the SPS design, you can create a combo box
that has a dropdown list which you can populate with unique relevance element values. When the Authentic
View user selects an item from the dropdown list in the combo box, that item can be passed as a value to a
node in the XML document. A condition can test what the user selection is (by looking up that node) and
provide appropriate processing (displays) for each user selection. In this section, you will create a conditional
template that displays those news items that have a relevance element that matches the user selection.

We will proceed as follows:

1. Create a combo box in which the Authentic View user can select the byrelevance value. The values in
the dropdown list of the combo box are obtained by using an XPath expression, which dynamically
compiles a list of all unique relevance node values.

2. Insert a condition around the newsitem element. This condition selects all newsitem elements that
have a relevance element with content matching the content of the byrelevance node. The content
that is surrounded by a branch of a condition is known as a conditional template.

3. Within the conditional template, list each relevance node of that news item.
4. Highlight the relevance element (in the list of relevance elements) that matches the byrelevance

element. This is done by creating a condition to select such relevance elements and then applying
special formatting to this conditional template.

5. In the condition for the newsitem element, insert a branch that selects all news items.

Creating the combo box to select unique node values
In the XML document, the node that will contain the user selection is /presswatch/selection/byrelevance.
This is the node you will create as the combo box. Do this as follows:

1. Insert the static text "Select by relevance: " at the head of the document and just below the
second Auto-Calculation (screenshot below).

2. Drag the byrelevance node from the Schema Tree sidebar (screenshot below), and drop it after the
newly entered static text.

86

44

© 2017-2023 Altova GmbH

Using Conditions 91Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

3. In the context menu that appears, select Create Combo Box. This pops up the dialog shown below.

92 Quick Start Tutorial Using Conditions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4. In the Edit Combo Box dialog (screenshot above), select Use XPath Expression and then Use the
Same XPath for XML Values and Visible Entries. In the XPath for XML Values and Visible Entries,
enter the XPath expression: distinct-values(//relevance). This expression selects unique values
of all relevance elements in the XML document.

5. Click OK to finish. The combo box is inserted and the design will look something like this:

6. Switch to Authentic View . When you click the dropdown arrow of the combo box, notice that the
list contains the unique values of all relevance nodes (screenshot below). Check this against the XML
document. This is a dynamic listing that will be augmented each time a new relevance value is added
to the XML document.

Inserting a condition to display news items having the selected relevance

The condition selects newsitem elements that have a metainfo/relevance element with a value that is the
same as that selected by the user (and passed to the /presswatch/selection/byrelevance element). Insert
the condition as follows:

1. Select the contents of the newsitem part of the design which is to be contained inside the condition
(highlighted in the screenshot below).

35

© 2017-2023 Altova GmbH

Using Conditions 93Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

2. Select the menu command (or context menu command) Enclose with | Condition . This pops up
the Edit XPath Expression dialog .

3. Enter the expression metainfo/relevance=/presswatch/selection/byrelevance. This expression
evaluates to true when the value of the metainfo/relevance descendant of the current newsitem is
the same as the value of the /presswatch/selection/byrelevance element (the user selection).

4. Click OK. The condition is created around the contents of the newsitem element (screenshot below).

Note that there is a single branch in this condition. News items for which the condition test evaluates to true
are displayed, those for which the condition test does not evaluate to true are not displayed. The condition in
this case, therefore, works as a filter. Later in this section, you will add a second branch to this condition.

Inserting the relevance node as a list

In order to display the relevance nodes of each newsitem element, insert them in the design as follows (see
screenshot below):

790

685

94 Quick Start Tutorial Using Conditions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1. Create some vertical space below the div component for the source element and within the end-tag of
the conditional template.

2. Type in the static text "Relevance:" and create a predefined format of div around it (highlight the
static text and insert the predefined format).

3. Drag the relevance element from the Root elements tree in the Schema Tree sidebar and drop it
into the design below the static text Relevance:.

4. Create it as a list. (In the context menu that pops up when you drop the node in the design, select
Bullets and Numbering, and then select the desired list format.)

5. Apply text formatting to the contents of the list. When you are done, the design should look something
like this:

Now, in Authentic View, check the results for different selections of relevance; use the combo box to change
the selection.

Making the selected relevance element bold

Some news items have more than one relevance element. In such cases, the design would be improved if the
relevance that matches the user-selection were visually highlighted while the others were not. You can do this
in the following way:

1. Select the relevance element in the design.
2. Insert a condition, giving it an XPath expression of: .=/presswatch/selection/byrelevance. This

creates a condition with a single branch (screenshot below) that selects relevance elements that
match the byrelevance element.

44

© 2017-2023 Altova GmbH

Using Conditions 95Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

3. Select the contents placeholder and give it a local formatting (in the Styles sidebar) of bold (font
group) and yellow background-color (color group).

4. Right-click the condition and, from the context menu, select Copy Branch.
5. In the Edit XPath Expression dialog that pops up, check the Otherwise check box (top right-hand

side).
6. Click OK to finish. A new branch (Otherwise) is created (screenshot below). This condition branch

selects all relevance elements that do not match the byrelevance element.

7. Notice that the contents of the Otherwise branch are a copy of the first branch; the contents
placeholder is bold and has a yellow background. Remove this formatting (bold and background-color)
from the contents placeholder.

You have put a condition with two branches (each with its conditional template) that carries out the following
test on each relevance element: If the contents of relevance match those
of /presswatch/selection/byrelevance, then the contents of relevance are displayed bold and with a
yellow background. Otherwise (the second branch) they are displayed normal. Check this in Authentic View.

Modifying the combo box and inserting a second condition branch
In the combo box where the Authentic View user selects a byrelevance value, there is no dropdown list option
for selecting all news items. To include this option do the following:

1. In Design View, select the combo box.
2. In the Properties sidebar, with combobox selected in the Properties For column, click the Edit button

of the Combo box entry value property (in the combo box group of properties).
3. In the Edit Combo Box that pops up, modify the XPath expression from distinct-

values(//relevance) to distinct-values(//relevance), 'All'. This adds the string All to the
sequence of items returned by the XPath expression.

4. Check the dropdown list of the combo box in Authentic View (screenshot below).

685

177

96 Quick Start Tutorial Using Conditions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Now if the user selection is All, then this value (All) is passed to the
node /presswatch/selection/byrelevance. The idea is that when the byrelevance node contains the value
All, all news items should be displayed.

The condition that displays the news item template has a single branch with the expression
metainfo/relevance=/presswatch/selection/byrelevance. Since no metainfo/relevance node has the
value All, no news item will be displayed when All is the value of the byrelevance node. What you have to do
is create a second branch for the condition, which will test for a value of All. By creating the news item
template within this branch, you will be outputting the news item if the test is true. Do this as follows:

1. In Design View, select the news item condition.
2. Right-click the condition and, from the context menu, select Copy Branch.
3. In the Edit XPath Expression dialog that pops up, enter the

expression: /presswatch/selection/byrelevance='All'.
4. Click OK to finish. A second branch is created.

The second branch has as its contents the same template as the first branch. What the second branch does is
output the news item template if the user selection is All.

After you have completed this section, save the design.

685

© 2017-2023 Altova GmbH

Using Global Templates and Rest-of-Contents 97Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

3.7 Using Global Templates and Rest-of-Contents

Global templates are useful for specifying the processing of an element globally. This enables the rules of
the global template (defined in one location) to be used at multiple locations in the stylesheet. A global
template can be used in two ways:

· The rules of the global template can be copied to the local template.
· A local template (in the main template) can pass processing of that node to the global template. After

the global template is executed, processing resumes in the main template. In this case, the global
template is said to be invoked or used from the main template.

There are two mechanisms that are used to invoke a global template from the main template:

· A local template references a global template.
· A (rest-of-contents) instruction in the main template applies templates to the descendant

elements of the current element (that is, to the rest-of-contents of the current element). If a global
template exists for one of the descendant elements, the global template is applied for that element.
Otherwise the built-in template for elements is applied. (The built-in template for elements processes
child elements and outputs the text content of elements. As a result, the text content of all
descendants elements will be output. Note that the values of attributes are not output.)

In this section, you will create a design for the team-members' template using the rest-of-contents instruction
and a global template for the global element member.

Inserting the rest-of-contents instruction
The broad structure of the schema is shown in the screenshot below.

The document element presswatch contains three children: (i) selection; (ii) newsitems; and (iii) team. The
main template you have created this far processes the /presswatch element. Within the presswatch element,

27

27

98 Quick Start Tutorial Using Global Templates and Rest-of-Contents

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

only the newsitems element is processed. The selection and team elements are not processed within the
presswatch element (although selection has been processed within the newsitems element). Inserting the
rest-of-contents instruction within presswatch will therefore cause the selection and team elements to be
processed.

Insert the rest-of-contents instruction in the design by placing the cursor between the end-tags of
newsitems and presswatch, and selecting the menu command or context menu command Insert | Rest of
Contents . The rest-of-contents placeholder is inserted (screenshot below).

If you look at the HTML preview, you will see a string of text (screenshot below):

This string is the result of the application of the built-in templates to the selection and team elements. The
built-in template for elements processes child elements. The built-in template for text nodes outputs the text in
the text node. The combined effect of these two built-in templates is to output the text content of all the
descendant nodes of the selection and team elements. The text All comes from selection/byrelevance,
and is followed by the text output of team/member descendant nodes, first, last, email, in document order.
Note that the id attribute of member is not output (because, as an attribute, it is not considered a child of
member).

Creating a global template for selection

Since the content of selection is not required in the output, you should create an empty global template for
selection so that its contents are not processed. Do this as follows:

1. In Design View, right-click selection in the All Global Elements tree in the Schema Tree sidebar .
2. In the context menu that pops up, select Make / Remove Global Template. A global template for

selection is created (screenshot below).

3. In the global template, click the contents placeholder and press the Delete key of your keyboard. The
contents placeholder is deleted.

4. Check the HTML preview. The text All is no longer present in the line of text output by the built-in
templates (screenshot below).

764

44

© 2017-2023 Altova GmbH

Using Global Templates and Rest-of-Contents 99Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

Since the global template for selection is empty, the child elements of selection are not processed.

Creating a global template for team/member

The objective is to create a table to display details of the members of the press monitoring team. This table will
be created in a global template for the team element. Do this as follows:

1. Create a global template for the element team (right-click team in the All Global Elements list of the
Schema Tree sidebar and select Make / Remove Global Template).

2. In the All Global Elements list, expand the team element and drag its member child element into the
global template of team (in the design).

3. In the context menu that pops up when you drop the element into the global template of team, select
Create Table. This pops up the Create Dynamic Table dialog (screenshot below).

4. In the attributes/elements list deselect @id, department and telephone (see screenshot), and click
OK. The dynamic table is created.

5. Place the cursor in a cell of the table body, and in the Properties sidebar , with table selected in
the Properties For column, specify table properties as shown in the screenshot below.

55

100 Quick Start Tutorial Using Global Templates and Rest-of-Contents

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6. Set additional properties as required in the Properties and Styles sidebars. For example, a background
color can be set for the header row by placing the cursor in the header row, and with trow selected in
the Styles For column of the Styles sidebar, specifying a value for the background-color property
(color group). You can also edit the headers, which are strings of static text. Also, if the content
placeholder of the team element is still present in the global template, delete it.

The HTML preview of the table will look something like this:

© 2017-2023 Altova GmbH

That's It! 101Quick Start Tutorial

Altova StyleVision 2024 Professional Edition

3.8 That's It!

Congratulations for having successfully completed the tutorial. You have learned the most important aspects of
creating an SPS:

· How to create the structure of the document (main template and global templates).
· How to insert dynamic and static content in the design, using a variety of dynamic and static

SPS components..
· How to use CSS styles , in external stylesheets , in global style rules , and in local style

rules .
· How to use Auto-Calculations to derive additional information from the available XML data.
· How to use conditions to filter the XML data and how to obtain different outputs depending on values

in the XML data.
· How to use global templates and rest-of-contents .

For a more detailed description of these features, see the corresponding sections in the following four sections:

· SPS File: Content
· SPS File: Structure
· SPS File: Advanced Features
· SPS File: Presentation
· SPS File: Additional Functionality

These sections also contain descriptions of several other StyleVision features not encountered in the Quick
Start tutorial.

Using the SPS
After completing the SPS, you should also try out the two main uses of SPS:

· Editing XML documents in the Authentic View of XMLSpy or Authentic Desktop. (The Enterprise and
Professional editions contain an Authentic View preview tab, which does not have a few features such
as sidebars and Text State Icons.) These two products provide a full-feature Authentic View, in which
you can try out the sidebars and context menu. To edit QuickStart.xml in Authentic View in XMLSpy
or Authentic Desktop, associate the XML file with MyQuickStart.sps and switch to Authentic View.

· Generating XSLT stylesheets for transforming the XML file to HTML, Text output. The XSLT stylesheets
can be generated using the File | Save Generated Files command or via the command line . Try
generating XSLT stylesheets from MyQuickStart.sps and then using these stylesheets to transform
QuickStart.xml.

68 68 97

68 75

68 82 82

84

86

90

98 97

124

200

269

349

415

734 662

102 Usage Overview

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4 Usage Overview

Objectives
SPS documents that you create in StyleVision can be used for two broad purposes:

· To control the display of XML source documents in Authentic View and to enable data to be entered in
XML documents or DBs via the Authentic View interface.

· To generate XSLT stylesheets for HTML, Text, and RTF output.

In this way, the SPS can be used to enable XML document editing and to generate HTML, Text, and RTF
output from the edited XML document. Additionally, the generated XSLT stylesheets can be used to transform
other XML documents based on the same schema as the SPS.

Steps for creating an SPS
Given below is an outline of the steps involved in creating a new SPS.

1. Assign a schema to the newly created empty SPS. The schema may be: (i) a schema file (DTD or
XML Schema); (ii) an XML Schema generated from a DB (Enterprise and Professional editions only);
(iii) a schema based on an XBRL taxonomy (Enterprise edition only); (iv) a user-defined schema
(created directly in StyleVision). This is done in the Design Overview sidebar . Alternatively, a new
SPS can be created directly with a schema via the File | New command.

2. Assign a Working XML File to the SPS. The Working XML File provides the XML data
processed by the SPS when generating Authentic View and output previews. The Working XML File
is assigned in the Design Overview sidebar . The Working XML File enables you to preview output in
StyleVision.

3. Select the required XSLT version . In order to generate Text output, the XSLT version must be XSLT
2.0 or XSLT 3.0

4. Select the Internet Explorer Compatibility to match the installed Internet Explorer version.
5. The SPS document is designed in Design View using the various design components available to

the designer. The design process consists of creating a document structure and defining
presentation properties . If print output is required, then additional print formatting properties
can be specified.

6. The Authentic View and outputs are tested. If modifications to the design are required, these are made
and the SPS document is re-tested.

7. If XSLT files or output files are required, these are generated .
8. If required, assign a Template XML File. The Template XML File provides the starting data for a new

XML document that can be edited in Authentic View using the SPS.
9. The SPS is deployed for use among multiple Authentic View users.

44

42

44 28

28

42

105

106

33

104

349 392 392

111 111

103

108

© 2017-2023 Altova GmbH

SPS and Sources 103Usage Overview

Altova StyleVision 2024 Professional Edition

4.1 SPS and Sources

Creating a new SPS file
To create a new SPS document, select an option from under the File | New (Ctrl+N) command or click the

New Design icon in the Standard toolbar . A new SPS document is created and is displayed in
Design View. The new document is given a provisional name of SPSX.sps, where X is an integer corresponding
to the position of that SPS document in the sequence of new documents created since the application was
started.

After a new SPS document is created, the source files for the SPS must be assigned.

Assigning source files for the SPS
There are three types of source files that can be assigned to an SPS:

· Schema sources
· Working XML File
· Template XML File

These source file assignments are made in the Design Overview sidebar . How to make the assignments is
described in the section, Design Overview . The significant points about each type of source file are given
below.

Schema sources
A schema source file must be assigned to an SPS so that a structure for the design document can be created.
Schema sources are assigned in the Design Overview sidebar . A schema may be an XML Schema file
(.xsd file), an XML Schema generated from an XML file, an XML Schema generated from a DB file, a DTD, or a
user-defined schema. For each schema, one optional Working XML File and one optional Template XML
File can be assigned.

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is
based.

Working XML File
An SPS can, optionally, have a Working XML File associated with it. The function of the Working XML
File is to provide the XML data source for output previews in StyleVision, and it must therefore be valid
according to the schema with which it is associated. The Working XML File is assigned in the Design
Overview sidebar .

Template XML File
An SPS can have a Template XML File optionally associated with it. The function of the Template XML
File is to provide the starting data of the new XML document that is created each time that SPS is opened
in the Authentic View of a product other than StyleVision. The Template XML File must be valid
according to the schema with which it is associated. It is assigned in the Design Overview sidebar .

714

712

103

103

103

42

42

42

103

103

28

28

28

42

28

28

24 28

42

104 Usage Overview Creating the Design

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4.2 Creating the Design

In the SPS design, you specify:

1. What content (from the XML document or DB) should go to the output; additionally content can be
inserted directly in the SPS for inclusion in the output;

2. How the output should be structured ; and
3. What presentation (formatting) properties are applied to the various parts of the output.

Content for output
The content for the output can come from:

1. The XML document or DB to which the SPS is applied. Content from the XML document is included
in the SPS by dragging the required XML data node from the relevant schema tree in the Schema Tree
sidebar and dropping this node at the desired place in the SPS.

2. An external XML document that is accessible to the application (that is, to StyleVision or an Authentic
View product). By using the doc() function of XPath 2.0 in an Auto-Calculation, content from
external XML document sources can be accessed. An XML document accessed via the doc() function
in an XPath expression does not need to be referenced via the Schema Sources associations.

3. The SPS itself. Text and other content (such as images and tables) can be inserted directly in the
SPS using the keyboard and other GUI features. Such input is independent of the XML document.

4. Manipulated dynamic (XML source) data, with the manipulations being achieved using XPath
expressions. Manipulations are typically achieved with Auto-Calculations .

5. For the HTML output, JavaScript functions can be used to generate content.

Structure of output
In the SPS design, the structure of the output can be controlled by using either: (i) a procedural approach,
in which the output structure is specified in an entry-level template (StyleVision's main template) and
can be independent of the structure of the XML document; (ii) a declarative approach, in which template rules
are declared for various nodes (StyleVision's global templates), thus generating an output that follows
the structure of the XML document; or (iii) a combination of the procedural and declarative approaches. In
Design View, you can use a mix of main template and global templates to obtain the desired structure
for the output document. The use of Modular SPSs and Design Fragments provides additional flexibility
in the way an SPS is structured.

Presentation (or formatting) of the output
In Design View, presentation properties are applied to design components using CSS styles. Styles can be
defined locally on the component, for HTML selectors declared at the document level, and for HTML selectors
declared in an external CSS stylesheet. Additionally, certain HTML elements can be applied to components
using predefined formats . Specifying presentation properties is described in detail in the section,
Presentation Procedures .

104

104

104

28

44

24

44

270

467

244

244 244

244 244

244 244

230 255

350

349

© 2017-2023 Altova GmbH

XSLT and XPath Versions 105Usage Overview

Altova StyleVision 2024 Professional Edition

4.3 XSLT and XPath Versions

An SPS is essentially an XSLT stylesheet. For each SPS you must set the XSLT version: 1.0, 2.0, or 3.0. You

do this by clicking the appropriate toolbar icon: or or . The selection you make determines two
things:

· Which of the three XSLT engines in StyleVision is used for transformations; StyleVision has separate
XSLT 1.0, XSLT 2.0, and XSLT 3.0 engines.

· What XSLT functionality (1.0, 2.0, or 3.0) is displayed in the interface and allowed in the SPS. For
example, XSLT 3.0 uses XPath 3.0, which is a much more powerful language than XPath 1.0 (which is
used in XSLT 1.0) or XPath 2.0 (which is used in XSLT 2.0). Additionally, some SPS features, such as
the table-of-contents feature, is available only with XSLT 2.0 and XSLT 3.0.

Note: In order to generate Text output, the XSLT version must be XSLT 2.0 or XSLT 3.0

XSLT transformations
XSLT transformations in StyleVision are used: (i) to generate output views in the interface; and (ii) to
generate and save output files (HTML, Text, and RTF) from within the interface and via StyleVision
Server. The XSLT engine used for transformations (Altova XSLT 1.0, 2.0, or 3.0 Engines) corresponds to the
XSLT version selected in the SPS.

XSLT functionality in GUI
The functionality appropriate for each XSLT version relates mostly to the use of the correct XPath version (XPath
1.0 for XSLT 1.0, XPath 2.0 for XSLT 2.0, XPath 3.0 for XSLT 3.0). XPath expressions are widely used in
StyleVision—most commonly in features such as Auto-Calculations and Conditional Templates —and
there are interface mechanisms that require, and help you build, XPath expressions. The functionality of the
correct XPath version is automatically made available in the interface according to the XSLT version you select.

36

111 734

270 280

http://www.altova.com/stylevision/stylevision-server.html
http://www.altova.com/stylevision/stylevision-server.html

106 Usage Overview Internet Explorer Compatibility

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4.4 Internet Explorer Compatibility

Internet Explorer (IE) must be installed on the StyleVision machine to correctly display the SPS design (in
Design View) and output previews (in Authentic View and HTML Preview). Given below are notes about the IE
versions that are supported:

· Internet Explorer 5.5 or higher
· Internet Explorer 6.0 and higher has better XML support and is recommended.
· Internet Explorer 9 (IE9) or higher provides additional features, such as support for more image formats

and for new CSS styles. If you plan to use these additional features in your design, you might want to
consider using IE9.

IE9 feature-support in StyleVision
The following features of IE9 or higher are supported in StyleVision:

· Additional image formats supported: TIFF, JPEG XR, and SVG. (SVG documents must be in XML
format and must be in the SVG namespace.) These image formats will be displayed in IE9, but not in
older versions of IE. For a complete listing of images supported in the various outputs, see Image
Types and Output .

· Support for new CSS styles (including CSS3 styles), which are listed below. Application of these
styles is limited to Authentic View and HTML output.

§ background-clip
§ background-origin
§ background-size
§ box-sizing
§ box-shadow
§ border-radius (border-*-radius)
§ font-stretch
§ ruby-align
§ ruby-overhang
§ ruby-position
§ overflow-x, overflow-y
§ outline (outline-color, outline-style, outline-width)
§ text-align-last (partial)
§ text-overflow (partial)

· Support for the new CSS length function calc()
· Support for the new CSS color functions rgba(), hsl() and hsla()
· Support for the new CSS length units rem, vw, vm, vh and ch
· HTML5 elements that are supported by IE9 can be inserted in the design as user-defined elements .

Design View and IE versions
You can set up Design View for a specific IE version by specifying, in the Properties dialog, the IE version
with which you wish Design View to be compatible. This has the following effects:

· All CSS styles that can be rendered by the selected IE version will be automatically displayed in the
Styles sidebars of StyleVision. (Note, however, that if IE9 is selected, then IE9 must be installed for
the IE9-supported CSS styles to be available in the design interface.) For example, if IE9 is installed

170

140

738

© 2017-2023 Altova GmbH

Internet Explorer Compatibility 107Usage Overview

Altova StyleVision 2024 Professional Edition

and IE9 is selected as the compatibility version, then the CSS3 styles supported in IE9 will be
available in the design interface.

· HTML elements corresponding to the selected IE version can be entered as predefined formats or
as user-defined elements . The HTML element will be rendered in Authentic View and HTML Preview
according to how the installed IE version renders this element. For example, if IE9 is installed and IE9
selected as the compatibility version, then the supported HTML5 elements will be rendered in
Authentic View and HTML Preview.

Setting up Design View for a specific IE version
To set up Design View for a specific IE version, select the menu command File | Properties and, in the Output
tab, select the required IE (compatibility) version. See File | Properties for details.

Compatibility of older SPS designs with IE9
If you open an SPS design that has been created for an older IE version, and if the newer IE9 version or higher
is installed on the StyleVision machine, then StyleVision will detect the newer version and ask in a dialog
whether you wish to change the compatibility to IE9-compatibility. Changing to the new compatibility will
provide additional Design View options as indicated above. The appearance of the document in Design View,
Authentic View and HTML output will remain unchanged except for table columns, which are handled
differently by IE9. If you change the IE compatibility to IE9-compatibility, then check whether the table columns
are generated as required. If not, you can modify the properties of the table columns or switch, in the
Properties dialog, the IE compatibility back to that of the previously selected IE version.

127

140

738

738

108 Usage Overview SPS and Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4.5 SPS and Authentic View

One of the core uses of the SPS you create with StyleVision is to control the input of data and the display of
an XML document in Authentic View , which is a document view available in Altova products. With Authentic
View, users who are unfamiliar with XML can easily enter and edit XML document content correctly.

A document creation and editing process that involves Authentic View consists of two separate stages:

· Document design. The Authentic View of the XML document, which is graphical view, is designed in
StyleVision. The design document is an SPS. The SPS not only processes the XML document for
display in Authentic View and for final output; it also provides mechanisms, in Authentic View, for
inputting data into the XML file or DB.

· Content editing. This SPS created in the document design stage is linked to the XML document to be
edited. (The XML document must be valid according to the schema on which the SPS is based.) An
XML document which is linked to an SPS is presented graphically in the Authentic View of an Altova
product as the Authentic View of that XML document. When a new Authentic XML document is
created, it can be assigned an SPS and then be edited in Authentic View using the document template
(Template XML File) and controls specified in the SPS. If an existing XML document is opened and
assigned an SPS, the existing data is displayed in Authentic View according to the design in the SPS,
and the document can be edited in Authentic View.

The user of Authentic View is not expected to be knowledgeable about either XML or the schema being used
for the document. The document display in Authentic View should make content editing as easy and non-
technical as possible. It is, therefore, the task of the person who designs the SPS to produce a user-friendly
Authentic View display. For detailed information about using Authentic View, see the Authentic View
documentation in the user manual of XMLSpy or Authentic Desktop.

24

28

http://www.xmlspy.com/manual_Authentic/
http://www.xmlspy.com/manual_Authentic/

© 2017-2023 Altova GmbH

SPS and Authentic View 109Usage Overview

Altova StyleVision 2024 Professional Edition

SPSs for standard industry schemas
Altova's Authentic View package includes SPSs for a number of standard industry schemas. Users can
therefore immediately create an XML document based on a standard schema in Authentic View. The
screenshot below shows a partial Authentic View of the NCA Invoice standard.

You can easily customize any of the supplied standard industry SPSs, which are available in the
Examples/IndustryStandards folder of your application folder.

110 Usage Overview Synchronizing StyleVision and Authentic

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4.6 Synchronizing StyleVision and Authentic

Each new release of StyleVision contains features that add to the power and capability of Authentic View .
However, the following must be taken into account:

· An SPS file created with a later version of StyleVision might be incompatible with an older version of
Authentic View.

· New SPS file functionality (created using a later version of StyleVision) will be interpretable only by a
corresponding version (or later) of Authentic View.

So, if a later version of StyleVision is used to create an SPS file, all deployed Authentic View products
must be synchronized with this version of StyleVision. This means, for example, that if StyleVision 2008
release 2 was used to create an SPS file, then Authentic Desktop 2008 release 2 (or another Authentic
View product from this release) must be used to properly edit this SPS file.

Note that a later version of an Authentic View product will be able to interpret SPSs created with previous
versions of StyleVision.

Synchronization steps when a deployed SPS file is modified using a later version of
StyleVision
If an SPS is already deployed among multiple Authentic View users, and if, subsequently, new Authentic View
functionality is added to the SPS using a later version of StyleVision, then the developer should go about the
task of synchronization in the following sequence:

1. The developer obtains a license key for the new version of Authentic View for himself.
2. The developer successfully tests SPS modifications using the new StyleVision and Authentic View

pair.
3. The new version of the Authentic View product is distributed to all Authentic View users.
4. Only after all three steps above have been successfully carried out, should the modified SPS be

deployed to Authentic View users.

24

24

24

24

© 2017-2023 Altova GmbH

Generated Files 111Usage Overview

Altova StyleVision 2024 Professional Edition

4.7 Generated Files

In StyleVision, XSLT stylesheets and output files can be generated using the File | Save Generated Files
command or StyleVision Server. Alternatively, if you wish only to validate or transform XML using XSLT, you
can do this directly with RaptorXML(+XBRL) Server .

The following files can be generated from StyleVision:

· XSLT stylesheets based on the SPS design. Separate XSLT stylesheets are generated for HTML, Text,
and RTF output.

· Output files, generated by processing the Working XML File assigned in the SPS with the XSLT
stylesheets generated from the SPS.

The markup for the output is contained in the SPS. The data for the output is contained in the XML document or
DB. It is the XSLT stylesheet that brings markup and data together in the output. Both the XSLT stylesheets as
well as the actual output can be previewed in StyleVision in the Output Views .

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is
based.

Altova website: XML reporting

Output documents
Given below are important points to note about the generated documents:

· HTML output and stylesheets: (1) The formatting and layout of the generated HTML document will be
identical to the HTML Preview of StyleVision and near-identical to the Authentic View of the XML
document. (2) Data-input devices (text input fields, check boxes, etc) in the HTML file do not allow
input. These data-input devices are intended for XML data input in Authentic View and, though they are
translated unchanged into the graphical HTML equivalents, they cannot be used for data-entry in the
HTML document.

Altova website: XML to HTML

· RTF output and stylesheets: (1) The RTF design requires specifications for paged media. You can
provide these specifications (cover page design, left/right pagination, etc) in the Properties sidebar
and the Design Tree sidebar . (2) If data-input devices have been used in the SPS, then, where
possible, these are rendered as graphics on the RTF page. When a data-entry device cannot easily be
simulated as a graphic (e.g. check boxes), a substitute presentation is used.

· Text output and stylesheets: Since the plain text format does not use formatting, style properties in
the design are not passed to the text output.

RTF output
RTF output is generated from your XML file in a single step by processing the XML document with the XSLT-for-
RTF file generated from the SPS. The properties of the RTF output are defined in the SPS, and you can preview
the output in the RTF Preview window. To obtain the RTF file, you must generate it (using File | Save
Generated Files or StyleVision Server).

734

665

28

36

55

48

734

http://www.altova.com/stylevision/stylevision-server.html
https://www.altova.com/stylevision/xml-reporting
https://www.altova.com/stylevision/xml-to-html
http://www.altova.com/stylevision/stylevision-server.html

112 Usage Overview Generated Files

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: If there is a problem with an embedded preview, StyleVision will attempt to open the preview document
in an external application (usually MS Word or Adobe Reader). An error message about the embedded
preview will appear in StyleVision. If the preview document is opened in an external application, you will
need to close the external application before regenerating the temporary output document, otherwise
you will get an error message saying the file is being used by another process. You should also close
the external application before closing the SPS design, otherwise StyleVision will not be able to close
the temporary output document due to the file lock placed on the document by the external application.

Text output
Since Text output generates plain text, note the following points:

· Style and page layout properties that are defined in the design will not be applied to the Text output.
· In order to generate Text output, the XSLT version selected for the SPS must be XSLT 2.0 or XSLT 3.0.

© 2017-2023 Altova GmbH

Projects in StyleVision 113Usage Overview

Altova StyleVision 2024 Professional Edition

4.8 Projects in StyleVision

Files that are related to each other can be collected in a project in the Project sidebar (screenshot below). This
enables the files in a project to be accessed easily when designing an SPS. For example, an SPS file can be
dragged from the Project sidebar to the Design Tree sidebar and created there as a module; or an image file
can be dropped into the design as a static image; or a CSS stylesheet can be dragged to the Style Repository
sidebar as an external stylesheet.

Creating and saving a project
A new project is created using the Project | Create Project command. When it is created, a project contains
separate folders for separate types (see screenshot above). File types are assigned to a folder via the folder's
Properties dialog. A project is named when it is saved (with the extension .svp) for the first time. To
subsequently change the name of a project, you change the project file's name at its location, using an
application such as Windows File Explorer.

Project folders
Folders can be added both to the main project folder as well as to folders within the main project folder and to
sub-folders down to an unlimited number of levels. Three types of folders can be added: (i) a project folder; (ii)
an external folder (which is added by browsing and selecting); (iii) an external web folder (which is added via a
URL). Each of these three folder types is added to the main project folder using the following Project
commands, respectively: (i) Add Project Folder to Project; (ii) Add External Project Folder to Project; (iii)
Add External Web Folder to Project. To add each of these folder types to a folder or sub-folder within the
main project, select the relevant command from the context menu for that folder or sub-folder.

Each folder can be assigned one or more file types in its Properties dialog (screenshot below). To pop up the
Properties dialog, right-click the folder for its context menu, and select Properties.

114 Usage Overview Projects in StyleVision

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In the Properties dialog, you can edit the folder name and the file type extensions for that folder (each file type
extension must be separated by a semi-colon). Project folder names can also be edited by selecting the folder
in the Project sidebar, pressing F2, and editing the name. When a folder has file type extensions defined for it,
files with that extension, when added using the Add File to Project command, are added to the folder. If more
than one folder has the same file type extension defined, the file is added to the first folder in the Project
sidebar having that extension. In the Project sidebar, folders can be reordered using drag-and-drop. However, on
the first level (that is at the level immediately below the main project folder), folders are ordered as follows: (i)
project folders; (ii) external folders; (iii) external web folders.

Project files
Files can be added both to the main project folder as well as to folders and sub-folders within the main project
folder. Files can be added using the following commands in the Project menu:

· Add Files to Proj ect: One or more files are selected in a Browse window for addition. Each of the
added files goes into the first folder for which its file type extension has been defined.

· Add Global Resource to Proj ect. A file is added via a global resource.
· Add URL to Proj ect: A file is added via its URL (which is defined in the Add URL to Project dialog).
· Add Active File to Proj ect: The active (SPS) file is added to the first folder in the Project sidebar that

has .sps defined as its file type extension.
· Add Active and Related Files to Proj ect: The active (SPS) file plus related files, such as the

schema/s, Working XML Files, CSS files, static image files, etc, are added to the project, in their
respective folders as determined by the file type extensions of the folders. This is a very useful
command for quickly gathering into a project all the files relevant to a given design.

· Properties. When any project file is selected, clicking the Properties icon in the Project Window
toolbar or selecting the Properties command from the context menu pops up a window that displays
the location of the file. XML files additionally enable you to select an SPS with which the file can be
associated (see screenshot below).

When an SPS file is associated with an XML file that is in a project, double-clicking that XML file in the
Project window will open the associated SPS file with the XML file assigned as the Working XML File

© 2017-2023 Altova GmbH

Projects in StyleVision 115Usage Overview

Altova StyleVision 2024 Professional Edition

of the SPS. This is useful if multiple XML files use a single SPS. This feature helps to speed up your
work by cutting out the bother of browsing for the SPS file and/or Working XML File.

The commands listed above add files to the main project according to the file type extensions of the folders in
the main project folder. To add files to specific folders or sub-folders, right-click the required folder, and in the
context menu that pops up, select the corresponding command. Within a folder, files are listed in alphabetical
order. Note files can also be dragged to another folder. To see the location of a file, click the Properties
command in its context menu.

Global resources
A global resource of file- or folder-type can be added to a folder. A file-type global resource is an alias for a
file resource. An alias can have multiple configurations with each configuration pointing to a file resource. So if
a global resource is used in a project, it can link to any of the target resources, depending on which
configuration is currently active in StyleVision. A folder-type global resource, similarly, is an alias that can
target any one of multiple folders according to the configuration that is currently active. If a folder-type global
resource is used in the design to identify a file (say, a Working XML File or CSS file), the folder-type global
resource will identify a folder only; the path from that folder to the required file will need to be specified
additionally. For more information on how to use global resources, see Using Global Resources .

Drag-and-drop
In the Project sidebar, a folder can be dragged to another folder or to another location within the same folder. A
file can be dragged to another folder, but cannot be moved within the same folder (within which files are
arranged alphabetically). Additionally, files and folders can be dragged from Windows File Explorer to the
Project sidebar.

Using projects
Files in a project can be used in various ways depending on what kind of file it is. For each file in the Project
sidebar, the actions available are listed in its context menu (right-click to display). Additionally, dragging the file
to a location where an action can be executed pops up a menu that contains the relevant command/s; in the
case of some commands, the command is executed directly the file is dropped at the relevant location. Given
below is a list of available actions for various file types.

SPS Files

· Open Design opens the SPS in a new design window. (This command also becomes available when
you drag an SPS file from the Project sidebar into Design View.)

· Import as Module imports the SPS as a module in the currently active SPS; the imported file will be
listed under the Modules heading in the Design Tree. (You can also import the file as a module by
dragging it to the Modules heading in the Design Overview sidebar.)

XML Files

· Edit File in XMLSpy opens the XML file in XMLSpy.
· Create New Design creates a new SPS. The schema for the SPS is an XML Schema generated from

the XML document. The Working XML File of the SPS is the XML file. (You can also drag the file into
the Main Template bar of Design View to use this command.)

· Assign as Working XML File assigns the XML File as the Working XML File of the SPS. (You can also
drag the file to the Working XML entry of the Design Overview sidebar to add it as the Working XML
File.)

416

427

116 Usage Overview Projects in StyleVision

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Assign as Template XML File assigns the XML File as the Template XML File of the SPS. (You can
also drag the file to the Template XML entry of the Design Overview sidebar to add it as the Template
XML File.)

· Note: When an XML file is double-clicked, one of three actions will be executed according to what is
specified in the Project tab of the Options dialog: (i) Edit file in XMLSpy; (ii) Create a new design
based on the XML file; (iii) Ask the user which action to execute.

XML Schema / DTD Files

· Edit File in XMLSpy opens the schema file in XMLSpy.
· Create New Design creates a new SPS based on the selected schema. (You can also drag the file into

the Main Template bar of Design View to create a new SPS with the selected schema as the schema
source.)

· Assign as Schema File assigns the selected schema as the schema source of the currently active
SPS, replacing the current schema source. This command is most useful for quickly changing
schemas, for example, if the schema location has changed or to correct a wrong assignment. (To use
this command, you can also drag the file to the Schema entry of the Design Overview sidebar.)

· Note: When a schema file is double-clicked, one of three actions will be executed according to what is
specified in the Project tab of the Options dialog: (i) Edit file in XMLSpy; (ii) Create a new design
based on the schema file; (iii) Ask the user which action to execute.

CSS Files

· Edit File in XMLSpy opens the CSS file in XMLSpy.
· Import into Style Repository adds the CSS file to the External CSS files of the Style Repository

(External heading in the Styles Repository sidebar). (You can also drag the file to the External heading
in the Styles Repository sidebar to import the file into the style repository.)

HTML Files

· Edit File in XMLSpy opens the HTML file in XMLSpy.
· Open opens the HTML file in the default browser.
· Create New Design creates a new SPS, in which you can create the schema based on the HTML

document. (You can also drag the file into Design View to use this command.)

Image Files

· When you hover over an image file that has been placed in a project folder, a preview of the image is
displayed (.png, .jpeg, .gif, .bmp, .tiff, and .ico formats). Double-click the image to open it in

the system's default image viewer/editor application.
· The context menu command Open opens the image file in the default image viewer/editing application.
· The context menu command Insert Image in Design inserts the image as a static image in the SPS.

(You can also insert the image at a particular location by dragging it there.)

All file types

· Explore Containing Folder opens a Windows File Explorer window displaying the contents of the folder
in which the selected file is located.

· Cut, Copy, Paste, Delete commands work in the standard Windows way, cutting and copying the
selected file to the clipboard; pasting files from the clipboard; and deleting. These commands also work
for a selection of multiple files.

· Select All selects all the files in the project.
· Properties pops up the Properties dialog, in which the location of the file is given.

839

839

© 2017-2023 Altova GmbH

Projects in StyleVision 117Usage Overview

Altova StyleVision 2024 Professional Edition

Find in project
You can search for project files and folders using their names or a part of their name. If the search is
successful, files or folders that are located are highlighted one by one.

To start a search, select the project folder in the Project sidebar that you wish to search, then select the
command Edit | Find (or the shortcut Ctrl+F). In the Find dialog that pops up (screenshot below) enter the text
string you wish to search for and select or deselect the search options (explained below) according to your
requirements.

The following search options are available:

· Whole-word matching is more restricted since the entire string must match an entire word in the file or
folder name. In file names, the parts before and after the dot (without the dot) are also each treated as
a word.

· It can be specified that casing in the search string must exactly match the text string in the file or
folder name.

· Folder names can be included in the search. Otherwise, only file names are searched.
· External folders can be included or excluded from the search. External folders are actual folders on

the system or network, as opposed to project folders, which are created within the project and not on
the system.

If the search is successful, the first matching item is highlighted in the Project sidebar. You can then browse
through all the returned matching items by clicking the Find Next and Find Prev buttons in the Find dialog.

756

118 Usage Overview Catalogs in StyleVision

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4.9 Catalogs in StyleVision

The XML catalog mechanism enables files to be retrieved from local folders, thus increasing the overall
processing speed, as well as improving the portability of documents—since only the catalog file URIs then
need to be changed. See the section How Catalogs Work for details.

Altova's XML products use a catalog mechanism to quickly access and load commonly used files, such as
DTDs and XML Schemas. This catalog mechanism can be customized and extended by the user, and it is
described in the sections Catalog Structure in StyleVision and Customizing your Catalogs . The section
Variables for Windows System Locations list Windows variables for common system locations. These
variables can be used in catalog files to locate commonly used folders.

This section is organized into the following sub-sections:

· How Catalogs Work
· Catalog Structure in StyleVision
· Customizing your Catalogs
· Variables for Windows System Locations

For more information on catalogs, see the XML Catalogs specification.

4.9.1 How Catalogs Work

Catalogs can be used to redirect both DTDs and XML Schemas. While the concept behind the mechanisms of
both cases is the same, the details are different and are explained below.

DTDs
Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by mapping, in the
catalog file, public or system identifiers to the required local URI. So when the DOCTYPE declaration in an XML

file is read, its public or system identifier locates the required local resource via the catalog file mapping.

For popular schemas, the PUBLIC identifier is usually pre-defined, thus requiring only that the URI in the catalog

file map the PUBLIC identifier to the correct local copy. When the XML document is parsed, the PUBLIC

identifier in it is read. If this identifier is found in a catalog file, then the corresponding URL in the catalog file will
be looked up and the schema will be read from this location. So, for example, if the following SVG file is
opened in StyleVision:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="20" height="20" xml:space="preserve">

 <g style="fill:red; stroke:#000000">

 <rect x="0" y="0" width="15" height="15"/>

 <rect x="5" y="5" width="15" height="15"/>

 </g>

</svg>

118

119 120

122

118

119

120

122

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

© 2017-2023 Altova GmbH

Catalogs in StyleVision 119Usage Overview

Altova StyleVision 2024 Professional Edition

The catalog is searched for the PUBLIC identifier of this SVG file. Let's say the catalog file contains the

following entry:

<catalog>

 ...
 <public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

 ...
</catalog>

In this case, there is a match for the PUBLIC identifier. As a result, the lookup for the SVG DTD is redirected to

the URL schemas/svg/svg11.dtd (which is relative to the catalog file). This is a local file that will be used as

the DTD for the SVG file. If there is no mapping for the Public ID in the catalog, then the URL in the XML

document will be used (in the SVG fie example above, this is the Internet URL:
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd).

XML Schemas
In StyleVision, you can also use catalogs with XML Schemas. In the XML instance file, the reference to the
schema will occur in the xsi:schemaLocation attribute of the XML document's top-level element. For example,

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The value of the xsi:schemaLocation attribute has two parts: a namespace part (green above) and a URI part

(highlighted). The namespace part is used in the catalog to map to the alternative resource. For example, the
following catalog entry redirects the schema reference above to a schema at an alternative location.

<uri name="http://www.xmlspy.com/schemas/orgchart" uri="C:\MySchemas\OrgChart.xsd"/>

Normally, the URI part of the xsi:schemaLocation attribute's value is a path to the actual schema location.

However, if the schema is referenced via a catalog, the URI part need not point to an actual XML Schema but
must exist so that the lexical validity of the xsi:schemaLocation attribute is maintained. A value of foo, for

example, would be sufficient for the URI part of the attribute's value to be valid.

4.9.2 Catalog Structure in StyleVision

When StyleVision starts, it loads a file called RootCatalog.xml (structure shown in listing below), which

contains a list of catalog files that will be looked up. You can modify this file and enter as many catalog files to
look up as you like, each of which is referenced in a nextCatalog element. These catalog files are looked up

and the URIs in them are resolved according to their mappings.

Listing of RootCatalog.xml
<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd">
 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/CustomCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory level -->

 <nextCatalog spy:recurseFrom="%CommonSchemasFolder%" catalog="catalog.xml"

spy:depth="1"/>

120 Usage Overview Catalogs in StyleVision

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 <nextCatalog spy:recurseFrom="%ApplicationWritableDataFolder%/pkgs/.cache"

catalog="remapping.xml" spy:depth="0"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

</catalog>

The listing above references a custom catalog (named CustomCatalog.xml) and a set of catalogs that locate

commonly used schemas (such as W3C XML Schemas and the SVG schema).

· CustomCatalog.xml is located in your Personal Folder (located via the variable %PersonalFolder%). It

is a skeleton file in which you can create your own mappings. You can add mappings to
CustomCatalog.xml for any schema you require that is not addressed by the catalog files in the

Common Schemas Folder. Do this by using the supported elements of the OASIS catalog mechanism
(see next section).

· The Common Schemas Folder (located via the variable %CommonSchemasFolder%) contains a set of

commonly used schemas. Inside each of these schema folders is a catalog.xml file that maps public

and/or system identifiers to URIs that point to locally saved copies of the respective schemas.
· CoreCatalog.xml is located in the StyleVision application folder, and is used to locate schemas and

stylesheets used by StyleVision-specific processes, such as StyleVision Power Stylesheets which
are stylesheets used to generate Altova's Authentic View of XML documents.

Location variables
The variables that are used in RootCatalog.xml (listing above) have the following values:

%PersonalFolder%
Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder% C:\ProgramData\Altova\Common2024\Schemas

%
ApplicationWritableDataFolde
r% C:\ProgramData\Altova

Location of catalog files and schemas
Note the locations of the various catalog files.

· RootCatalog.xml and CoreCatalog.xml are in the StyleVision application folder.

· CustomCatalog.xml is located in your MyDocuments\Altova\StyleVision folder.

· The catalog.xml files are each in a specific schema folder, these schema folders being inside the

Common Schemas Folder.

4.9.3 Customizing Your Catalogs

When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by StyleVision), use

only the following elements of the OASIS catalog specification. Each of the elements below is listed with an
explanation of their attribute values. For a more detailed explanation, see the XML Catalogs specification. Note
that each element can take the xml:base attribute, which is used to specify the base URI of that element.

· <public publicId="PublicID of Resource" uri="URL of local file"/>

· <system systemId="SystemID of Resource" uri="URL of local file"/>

· <uri name="filename" uri="URL of file identified by filename"/>

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

© 2017-2023 Altova GmbH

Catalogs in StyleVision 121Usage Overview

Altova StyleVision 2024 Professional Edition

· <rewriteURI uriStartString="StartString of URI to rewrite" rewritePrefix="String to

replace StartString"/>
· <rewriteSystem systemIdStartString="StartString of SystemID"

rewritePrefix="Replacement string to locate resource locally"/>

Note the following points:

· In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element.

· A URI can be mapped to another URI using the uri element.
· The rewriteURI and rewriteSystem elements enable the rewriting of the starting part of a URI or

system identifier, respectively. This allows the start of a filepath to be replaced and consequently
enables the targeting of another directory. For more information on these elements, see the XML
Catalogs specification.

From release 2014 onwards, StyleVision adheres closely to the XML Catalogs specification (OASIS Standard
V1.1, 7 October 2005) specification. This specification strictly separates external-identifier look-ups (those with
a Public ID or System ID) from URI look-ups (URIs that are not Public IDs or System IDs). Namespace URIs
must therefore be considered simply URIs—not Public IDs or System IDs—and must be used as URI look-ups
rather than external-identifier look-ups. In StyleVision versions prior to version 2014, schema namespace URIs
were translated through <public> mappings. From version 2014 onwards, <uri> mappings have to be used.

Prior to v2014: <public publicID="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

V-2014 onwards: <uri name="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

How StyleVision finds a referenced schema
A schema is referenced in an XML document via the xsi:scemaLocation attribute (shown below). The value of

the xsi:schemaLocation attribute has two parts: a namespace part (green) and a URI part (highlighted).

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

Given below are the steps, followed sequentially by StyleVision, to find a referenced schema. The schema is
loaded at the first successful step.

1. Look up the catalog for the URI part of the xsi:schemaLocation value. If a mapping is found, including

in rewriteURI mappings, use the resulting URI for schema loading.

2. Look up the catalog for the namespace part of the xsi:schemaLocation value. If a mapping is found,

including in rewriteURI mappings, use the resulting URI for schema loading.

3. Use the URI part of the xsi:schemaLocation value for schema loading.

XML Schema specifications
XML Schema specification information is built into StyleVision and the validity of XML Schema (.xsd)
documents is checked against this internal information. In an XML Schema document, therefore, no references
should be made to any schema that defines the XML Schema specification.

The catalog.xml file in the %AltovaCommonSchemasFolder%\Schemas\schema folder contains references to

DTDs that implement older XML Schema specifications. You should not validate your XML Schema documents
against these schemas. The referenced files are included solely to provide StyleVision with entry helper info for

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

122 Usage Overview Catalogs in StyleVision

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

editing purposes should you wish to create documents according to these older recommendations.

4.9.4 Variables for Windows System Locations

Shell environment variables can be used in the nextCatalog element to specify the path to various system
locations (see RootCatalog.xml listing above). The following shell environment variables are supported:

%PersonalFolder%
Full path to the Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder
% C:\ProgramData\Altova\Common2024\Schemas

%
ApplicationWritableD
ataFolder% C:\ProgramData\Altova

%AltovaCommonFolder% C:\Program Files\Altova\Common2024

%DesktopFolder% Full path to the Desktop folder of the current user.

%ProgramMenuFolder% Full path to the Program Menu folder of the current user.

%StartMenuFolder% Full path to Start Menu folder of the current user.

%StartUpFolder% Full path to Start Up folder of the current user.

%TemplateFolder% Full path to the Template folder of the current user.

%AdminToolsFolder%

Full path to the file system directory that stores administrative tools of the current
user.

%AppDataFolder% Full path to the Application Data folder of the current user.

%CommonAppDataFolder
% Full path to the file directory containing application data of all users.

%FavoritesFolder% Full path of the Favorites folder of the current user.

%PersonalFolder% Full path to the Personal folder of the current user.

%SendToFolder% Full path to the SendTo folder of the current user.

%FontsFolder% Full path to the System Fonts folder.

%ProgramFilesFolder% Full path to the Program Files folder of the current user.

%CommonFilesFolder% Full path to the Common Files folder of the current user.

%WindowsFolder% Full path to the Windows folder of the current user.

%SystemFolder% Full path to the System folder of the current user.

%LocalAppDataFolder%

Full path to the file system directory that serves as the data repository for local
(nonroaming) applications.

%MyPicturesFolder% Full path to the MyPictures folder.

© 2017-2023 Altova GmbH

Catalogs in StyleVision 123Usage Overview

Altova StyleVision 2024 Professional Edition

124 SPS Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5 SPS Content

This section describes in detail the core procedures used to create and edit SPS document components that
are used to create locations in the document design for XML data ontent. The procedures are listed below and
described in detail in the sub-sections of this section. These mechanisms are used to design any kind of
template: main , global , or named .

· Inserting XML Content as Text . XML data can be inserted in the design by dragging the relevant
nodes (element, attribute, type, or CDATA) into the design and creating them as (contents) or
(rest-of-contents).

· Inserting MS Word Content
· User-Defined Templates
· User-Defined Elements, XML Text Blocks
· Working with Tables . Tables can be inserted by (i) the SPS designer, directly in the SPS design

(static tables) or using XML document sub-structures, and (ii) the Authentic View user.
· Creating Lists . Static lists, where the list structure is entered in the SPS design, and dynamic lists,

where an XML document sub-structure is created as a list, provide powerful data-ordering capabilities.
· Using Graphics : Graphics can be inserted in the SPS design using a variety of methods to

determine the target URI (static, dynamic, a combination of both, and unparsed entity URIs).
· Using Data-Entry Devices (or Form Controls) . XML data can be input by the Authentic View user via

data-entry devices such as input fields and combo boxes. This provides a layer of user help as well as
of input constraints. Individual nodes in the XML document can be created as data-entry devices.

· Links
· Barcodes
· Layout Modules
· The Change-To Feature . This feature enables a different node to be selected as the match for a

template and allows a node to be changed to another content type.

244 244 255

125

132

137

140

143

163

168

174

182

183

187

197

© 2017-2023 Altova GmbH

Inserting XML Content as Text 125SPS Content

Altova StyleVision 2024 Professional Edition

5.1 Inserting XML Content as Text

Data from a node in the XML document is included in the design by dragging the corresponding schema node
from the Schema Tree window and dropping it into the design. When the schema node is dropped into the
design, a menu pops up with options for how the node is to be created in the design (screenshot below).

Types of schema nodes
Schema nodes that can be dropped from the Schema Tree sidebar into the design are of three types: (i)
element nodes; (ii) attribute nodes; and (iii) datatype nodes.

Using the Insert Contents toolbar icon
The Insert Contents icon in the Insert Design Elements toolbar also enables you to insert the contents of a
node in the design. Insert contents as follows:

1. Select the Insert Contents icon.
2. Click the location in the design where you wish to insert contents. The Insert Contents Selector pops

up (screenshot below).

708

126 SPS Content Inserting XML Content as Text

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. The context of the insertion location in the design is displayed in the XPath Context field. Select the
node for which you wish to create contents.

4. Click OK. The contents placeholder is created. If the node you selected is anything other than the
context node, additional template tags with the path to the selected node will be created around the
contents placeholder.

Outputting text content of nodes
To output the text contents of the node, the node should be created as contents. When a node is created as
contents, the node will look something like this in the design document:

In the screenshot above, the Desc element has been created as contents. The output will display the text
content of Desc. If Desc has descendant elements, such as Bold and Italic, then the text content of the
descendant elements will also be output as part of the contents of Desc. Note that attribute nodes of Desc are
not considered its child nodes, and the contents of the attribute nodes will therefore not be output as part of the
contents of Desc. Attribute nodes have to be explicitly inserted in order to be processed.

© 2017-2023 Altova GmbH

Inserting XML Content as Text 127SPS Content

Altova StyleVision 2024 Professional Edition

CDATA sections
If CDATA sections are present in the XML document they will be output, and in Authentic View, are indicated
with tags when markup is switched on (using the menu command Authentic | Markup). CDATA sections
can also be inserted in the XML document when editing the document in Authentic View (via the context
menu).

Note: In Authentic View, CDATA sections cannot be inserted into input fields (that is, in text boxes and
multiline text boxes). They can only be entered within elements that are displayed in Authentic View
as text content components.

In this section
In the sub-sections of this section, we describe other aspects of inserting XML content as text:

· How the text content of a node can be marked up with a predefined format directly when the node is
inserted.

· How the structure of the source schema determines the effect of Authentic View usage .
· How descendant nodes not explicitly included within a node can be included for processing. See Rest-

of-Contents .

Note: You can create an empty template rule by deleting the (content) placeholder of a node. An empty
template rule is useful if you wish to define that some node not be processed, i.e. produce no output.

5.1.1 Inserting Content with a Predefined Format

The text content of a node can be directly inserted with the markup of one of StyleVision's predefined formats.
To do this, drag the node from the Schema Tree window and drop it at the desired location. In the menu that
pops up, select Create Paragraph (screenshot below).

The predefined format can be changed by selecting the predefined format tag and then choosing some other
predefined format from the Format combo box in the toolbar (screenshot below) or using the menu
command Insert | Format.

806

127

128

130

704

128 SPS Content Inserting XML Content as Text

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The predefined format can also be changed by changing the value of the paragraph type property of the
paragraph group of properties in the Properties window, or by changing the paragraph type via the node-
template's context menu command, Enclose With | Special Paragraph .

Each paragraph type has particular formatting features that can be used to advantage. Note that the pre format
type enables carriage returns and linefeeds to be output as such instead of them being normalized to
whitespace.

5.1.2 Adding Elements in Authentic View

When creating elements in the design, the way you create the elements determines how Authentic View will
respond to user actions like pressing the Tab key and clicking the Add... prompt. The basic issue is what
elements are created in Authentic View when an element is added by the user. For example, when the user
adds an element (say, by clicking the Insert Element icon in the Elements sidebar), what child elements are
created automatically?

The most important point to bear in mind is that Authentic View follows the structure specified in the underlying
schema. In order to ensure that Authentic View implements the schema structure correctly there are a few
design rules you should keep in mind. These are explained below.

Unambiguous content model
A content model is considered unambiguous when it consists of a single sequence (with maxOccurs=1) of child
elements (with no choices, groups, substitutions, etc). In such cases, when the element is added, the
sequence of child elements is unambiguously known, and they are automatically added. In the screenshot
example below, the three child elements are all mandatory and can occur only once.

When the element parent is added in Authentic View, its child elements are automatically inserted
(screenshot below). Pressing the tab key takes you to the next element in the sequence.

If the e2 element were optional, then, when the element parent is added in Authentic View, the elements e1
and e3 are automatically inserted, and the element e2 appears in the Elements sidebar so that it can be
inserted if desired (screenshot below). Pressing the tab key in e1 takes the user to e3.

252 252

© 2017-2023 Altova GmbH

Inserting XML Content as Text 129SPS Content

Altova StyleVision 2024 Professional Edition

The above content model scenario is the only scenario Authentic View considers unambiguous. All other cases
are considered ambiguous, and in order for Authentic View to disambiguate and efficiently display the desired
elements the design must adhere to a few simple rules. These are explained below.

Ambiguous content model
For Authentic View to correctly and efficiently display elements while an XML document is being edited, the
SPS must adhere to the following rules.

· Child elements will be displayed in the order in which they are laid out in the design.
· In order for Authentic View to disambiguate among sibling child elements, all child elements should be

laid out in the design document in the required order and within a single parent node. If the sibling
relationship is to be maintained in Authentic View, it is incorrect usage to lay out each child element of
a single parent inside multiple instances of the parent node.

These two rules are illustrated with the following example.

We consider a content model of an element parent, which consists of a single sequence of mandatory child
elements. This content model is similar to the unambiguous content model discussed above, with one
difference: the single sequence is optional, which makes the content model ambiguous—because the presence
of the sequence is not a certainty. If you create a design document as shown in the screenshot below, there
will be ambiguity in Authentic View.

The Authentic View of the parent element will look like this (since the sequence is optional):

Clicking add... pops up a menu of the three child elements:

If you select one of these elements, it will be inserted (screenshot below), but since Authentic View cannot
disambiguate the sequence it does not insert any of the remaining two elements, nor does it offer you the
opportunity of inserting them:

130 SPS Content Inserting XML Content as Text

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The correct way to design this content model (following the rules given above) would be to explicitly create the
required nodes in the desired order within the single parent node. The design document would look like this:

Note that all three child elements are placed inside a single parent node. The design shown above would
produce the following Authentic View:

The Authentic View user clicks the respective add element prompt to insert the element and its content.

Note:

· If an element can occur multiple times, and if the rules above are followed, then the element appears in
the sidebar till the number of occurrences in Authentic View equals the maximum number of
occurrences allowed by the schema (maxOccurs).

· Creating each child element inside a separate parent node (see screenshot below) not only creates
isolated child–parent relationships for each child element so instantiated; it also increases processing
time because the parent node has to be re-traversed in order to locate each child element.

5.1.3 Rest-of-Contents

The rest-of-contents placeholder applies templates to all the remaining child elements of the element for
which the template has been created. As an example consider the following:

· An element parent has 4 child elements, child1 to child4.

© 2017-2023 Altova GmbH

Inserting XML Content as Text 131SPS Content

Altova StyleVision 2024 Professional Edition

· In the template for element parent, some processing has been explicitly defined for the child1 and
child4 child elements.

This results in only the child1 and child4 child elements being processed. The elements child2 and child3
will not be processed. Now, if the rest-of-contents placeholder is inserted within the template for parent,
then, not only will child1 and child4 be processed using the explicitly defined processing rules in the
template. Additionally, templates will be applied for the child2 and child3 child elements. If global
templates for these are defined then the global templates will be used. Otherwise the built-in default
templates (for element, attribute, and text nodes) will be applied.

Important: It is important to note what nodes are selected for rest-of-contents.

· As described with the example above, all child element nodes and child text nodes are selected by the
rest-of-contents placeholder. (Even invalid child nodes in the XML document will be processed.)

· Attribute nodes are not selected; they are not child nodes, that is, they are not on the child axis of
XPath.

· If a global template of a child element is used in the parent template, then the child element does not
count as having been used locally. As a result, the rest-of-contents placeholder will also select
such child elements. However, if a global template of a child element is "copied locally", then this
usage counts as local usage, and the child element will not be selected by the rest-of-contents
placeholder.

Note: You can create an empty template rule by deleting the (content) placeholder of a node. An empty
template rule is useful if you wish to define that some node not be processed, i.e. produce no output.

244

132 SPS Content Inserting MS Word Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5.2 Inserting MS Word Content

If Microsoft Word 2007+ is installed on your machine, then content can be pasted from Word documents into
the design as static content. The Word content will be inserted within suitably corresponding design
components, and text formatting properties will be carried over from the Word content. For example, text
content that is in a Word paragraph block will be inserted within a Paragraph component , and the formatting
of the text will be preserved (see screenshots below).

Word content.

127

© 2017-2023 Altova GmbH

Inserting MS Word Content 133SPS Content

Altova StyleVision 2024 Professional Edition

Word content pasted into a design. A suitable paragraph format has been applied and text formatting has
been preserved.

Note: In addition to Word content, any content that can be pasted into a Word document can also be pasted
into a StyleVision design. This includes MS Excel tables and HTML page content.

Note: To create an SPS that contains static content from an entire Word document, create a new SPS with
the File | New | New from Word 2007+ command.

Supported Word features
The following Word structures and formats are supported when Word content is copy-pasted into a design:

· Formatted text
o Different fonts, size, weights, style, text-decoration, etc.

o Color

o Background color

o Border around text

· Paragraphs
· Page breaks
· Horizontal line
· Hyperlinks
· Bookmarks
· Tables

o Rowspans, colspans

o Formatted/rich content

o Nested tables

o Headers, footers

714

134 SPS Content Inserting MS Word Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Lists, sublists
o Bulletted: different styles

o Enumerated: different styles

· Images

© 2017-2023 Altova GmbH

Inserting MS Excel Content 135SPS Content

Altova StyleVision 2024 Professional Edition

5.3 Inserting MS Excel Content

If Microsoft Excel 2007+ is installed on your machine, then content can be pasted from Excel documents into
the design as static content. The Excel content will be inserted as static tables and other suitably
corresponding design components. Formatting properties will be preserved (see screenshots below). Each
Excel sheet is inserted as a separate static table.

Excel sheet.

136 SPS Content Inserting MS Excel Content

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Excel content imported into a design as a static table with text formatting preserved.

Note: In addition to Excel content, any content that can be pasted into an Excel document can also be
pasted into a StyleVision design. This includes MS Word content and HTML page content.

Note: To create an SPS that contains static content from an entire Excel document, create a new SPS with
the File | New | New from Excel 2007+ command.

714

© 2017-2023 Altova GmbH

User-Defined Templates 137SPS Content

Altova StyleVision 2024 Professional Edition

5.4 User-Defined Templates

User-Defined Templates are templates for items generated by an XPath expression you specify. These items
may be atomic values or nodes. In the screenshot below, which shows three User-Defined Templates, note the
User-Defined Template icon on the left-hand side of the tags (a green person symbol). User-Defined Templates
are very useful because they provide extraordinary flexibility for creating templates. Note, however, that content
generated by User-Defined Templates cannot be edited in Authentic View.

The XPath expression of each of the three User-Defined templates shown in the screenshot above do the
following:

· Selects a node in a source schema. By using an XPath expression, any node in any of the schema
sources can be reached from within any context node. If StyleVision can unambiguously target the
specified node, the template will be changed automatically from a User-Defined Template to a normal
template, enabling Authentic View editing. If it is a User-Defined Template, this will be indicated by the
green User-Defined Template icon on the left-hand side of the template tags.

· Selects a node that fulfills a condition specified by the for construct of XPath 2.0 and XPath 3.0. Such
templates can never resolve to normal templates (but will remain User-Defined Templates) because the
for construct does not allow StyleVision to unambiguously resolve the target from only the schema
information it currently has at its disposal.

· Selects a sequence of atomic values {1, 2, 3}. While it is allowed to create a template for an atomic
value, you cannot use the contents placeholder within such a template. This is because the
xsl:apply-templates instruction (which is what the contents placeholder generates) can only be
applied to node items (not atomic values). You could, however, use an Auto-Calculation in combination
with some design element such as a list. For example, the User-Defined Template at left would
generate the output at right.

Note: If the SPS uses XSLT 1.0, then the XPath expression you enter must return a node-set. Otherwise an
error is reported.

138 SPS Content User-Defined Templates

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Advantage of using XPath to select template node
The advantage of selecting a schema node via an XPath expression (User-Defined Templates) is that the power
of XPath's path selector mechanism can be used to select any node or sequence of items, as well as to filter or
set conditions for the node selection. As a result, specific XML document nodes can be targeted for any given
template. For instance, the XPath expression //Office/Department[@Location="NY"] will select only those
Department nodes that have a Location attribute with a value of NY. Also see the other examples in this
section.

Note: If an XPath expression contains multiple location path steps, then it is significant—especially for
grouping and sorting—whether brackets are placed around the multiple location path steps or not. For
example, the XPath expression /Org/Office/Dept will be processed differently than
(/Org/Office/Dept). For the former expression (without brackets), the processor loops through each
location step. For the latter expression (with brackets), all the Dept elements of all Office elements
are returned in one undifferentiated nodeset.

Brackets Underlying XSLT Mechanism Effect

No <xsl:for-each select="Org">
 <xsl:for-each select="Office">
 <xsl:for-each select="Dept">
 ...
 </xsl:for-each>
 </xsl:for-each>
</xsl:for-each>

Each Office element has its own Dept
population. So grouping and sorting can be
done within each Office.

Yes <xsl:for-each
select="/Org/Office/Dept">
 ...
</xsl:for-each>

The Dept population extends over all
Office elements and across Org.

This difference in evaluating XPath expressions can be significant for grouping and sorting.

Inserting a User-Defined Template
To insert a User-Defined Template, do the following:

1. Click the Insert User-Defined Template icon in the Insert Design Elements toolbar and then click the
design location where you wish to insert the template. Alternatively, right-click the design location
where you wish to insert the template and, from the context menu that appears, select the Insert
User-Defined Template command.

2. In the Edit XPath Expression dialog that pops up, enter the XPath expression you want, and click
OK. Note that the context node of the XPath expression will be the node within which you have clicked.
An empty node template will be created. Sometimes a joined node is created. When a node is joined,
the targeted instance nodes are selected as if at a single level, whereas if a node is not joined (that is if
it is split into multiple hierarchic levels), then the node selection is done by looping through each
instance node at every split level. The nodeset returned in both cases of selection (joined and split) is
the same unless a grouping or sorting criterion is specified. For a discussion of the effect joined nodes
have on the grouping and sorting mechanisms, see Node-Template Operations .

685

252

© 2017-2023 Altova GmbH

User-Defined Templates 139SPS Content

Altova StyleVision 2024 Professional Edition

Editing a Template Match
The node selection of any node template (user-defined or normal) can be changed by using an XPath
expression to select the new match expression. To edit the template match of a node template, right-click the
node template, then select the Edit Template Match command. This pops up the Edit XPath Expression
dialog, in which you enter the XPath expression to select the new node. Then click OK.

Adding nodes to User-Defined Templates
If a node from the schema tree is added to a User-Defined Template, the context for the new node will not be
known if the User-Defined Template has been created for a node or sequence that cannot be placed in the
context of the schema source of the SPS. You will therefore be prompted (screenshot below) about how the
new node should be referenced: (i) by its name (essentially, a relative path), or (ii) by a full path from the root of
the schema source.

Prompting for advice on how to proceed is the default behavior. This default behavior can be changed in the
Design tab of the Tool | Options dialog .839

140 SPS Content User-Defined Elements, XML Text Blocks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5.5 User-Defined Elements, XML Text Blocks

User-Defined Elements and User-Defined XML Text Blocks enable, respectively, (i) any element, and (ii)
any XML text block to be inserted into the design. The advantage of these features is that designers are not
restricted to adding XML elements and design elements from source schemas and the palette of StyleVision
design elements. They can create (i) templates for elements they define (User-Defined Elements), and (ii)
independent and self-contained XML code (User-Defined Blocks) that creates objects independently (for
example ActiveX objects).

There is one important difference between User-Defined Elements and User-Defined XML Text Blocks. A User-
Defined Element is created in the design as a template node for a single XML element (with attributes). All
content of this template must be explicitly created. This content consists of the various design elements
available to the SPS. A User-Defined XML Text Block may not contain any design element; it is an
independent, self-contained block. Since a User-Defined Element is created empty, it does not lend itself for
the creation of an object requiring a number of lines of code. For the latter purpose, User-Defined XML Text
Blocks should be used.

Note: User-Defined Elements and User-Defined Text Blocks are supported in Authentic View only in the
Enterprise Editions of Altova products.

5.5.1 User-Defined Elements

User-Defined Elements are elements that you can generate in the output without these elements needing to be
in any of the schema sources of the SPS. This means that an element from any namespace (HTML or XSL-FO
for example) can be inserted at any location in the design. SPS design elements can then be inserted within
the inserted element.

Note: User-Defined Elements are supported in Authentic View only in the Enterprise Editions of Altova
products.

Inserting User-Defined Elements
The mechanism for using User-Defined Elements is as follows:

1. Right-click at the location in the design where you wish to insert the User-Defined Element.
2. From the context menu that appears, select Insert User-Defined Item | User-Defined Element.
3. In the dialog that appears (screenshot below), enter the element name, the desired attribute-value

pairs, and, a namespace declaration for the element if the document does not contain one.

140 141

© 2017-2023 Altova GmbH

User-Defined Elements, XML Text Blocks 141SPS Content

Altova StyleVision 2024 Professional Edition

In the screenshot above an XSL-FO element called leader is created. It has been given a prefix of fo:,
which is bound to the namespace declaration xmlns:fo="http://www.w3.org/1999/XSL/Format".
The element has a number of attributes, including leader-length and rule-style, each with its
respective value. The element, its attributes, and its namespace declaration must be entered without
the angular tag brackets.

4. Click OK to insert the element in the design. The element is displayed in the design as an empty
template with start and end tags (screenshot below).

5. You can now add content to the template as for any other template. The User-Defined Element may
contain static content, dynamic content from the XML document, as well as more additional User-
Defined Elements.

Note: A User-Defined Element that is intended for a particular output should be enclosed in a suitable output-
based condition so as to avoid unexpected results in alternative outputs.

5.5.2 User-Defined XML Text Blocks

A User-Defined XML Text Block is an XML fragment that will be inserted into the XSLT code generated by the
SPS. It is placed in the SPS design as a self-contained block to which no design element may be added. Such
an XML Text Block should therefore be applicable as XSLT code at the location in the stylesheet at which it
occurs.

The usefulness of this feature is that it provides the stylesheet designer a mechanism with which to insert XSLT
fragments and customized code in the design. For example, an ActiveX obect can be inserted within an HTML
SCRIPT element.

Note: This feature will be enabled only in Enterprise editions of Authentic View (that is, in the Enterprise
editions of StyleVision, Authentic Desktop, Authentic Browser, and XMLSpy).

142 SPS Content User-Defined Elements, XML Text Blocks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Inserting User-Defined XML Text Blocks
To insert an XML Text Block, do the following:

1. Right-click at the location in the design where you wish to insert the User-Defined Block.
2. From the context menu that appears, select Insert User-Defined Item | User-Defined Block.
3. In the dialog that now appears (screenshot below), enter the XML Text Block you wish to insert. Note

that the XML text block should be well-formed XML to be accepted by the dialog.

In the screenshot above an XML Text Block is added that generates an HTML ordered list.
4. Click OK to insert the element in the design. The XML Text Block is displayed in the design as a text

box.

Note: An XML Text Block that is intended for a particular output should be enclosed in a suitable output-
based condition so as to avoid unexpected results in alternative outputs.

© 2017-2023 Altova GmbH

Tables 143SPS Content

Altova StyleVision 2024 Professional Edition

5.6 Tables

In an SPS design, two types of tables may be used: SPS tables and CALS/HTML tables. There are
differences between the two types, and it is important to understand these. This section contains a detailed
description of how to use both types of tables.

SPS tables
An SPS table is a component of an SPS design. It is structured and formatted in the design. It can be created
anywhere in the design and any number of SPS tables can be created.

SPS tables are entirely presentational devices and are represented using the presentational vocabulary of
Authentic View and the output format. The structure of an SPS table is not represented by nodes in the
XML document—although the content of table cells may come from nodes in the XML document.

There are two types of SPS tables:

· Static tables are built up, step-by-step, by the person designing the SPS. After the table structure is
created, the content of each cell is defined separately. The content of cells can come from random
locations in the schema tree and even can be of different types. Note that the rows of a static table do
not represent a repeating data structure. This is why the table is said to be static: it has a fixed
structure that does not change with the XML content.

· Dynamic tables are intended for data structures in the XML document that repeat. They can be
created for schema elements that have a substructure—that is, at least one child attribute or element.
Any element with a substructure repeats if there is more than one instance of it. Each instance of the
element would be a row in the dynamic table, and all or some of its child elements or attributes would
be the columns of the table. A dynamic table's structure, therefore, reflects the content of the XML file
and changes dynamically with the content.

CALS/HTML tables
The content model of a CALS table or HTML table is defined in the XML document—by extension in the DTD or
schema—and follows the respective specification (CALS or HTML). In the SPS design you can then specify
that CALS/HTML table/s are to be processed as tables. The XML data structure that represents the
CALS/HTML table will in these cases generate table markup for the respective output formats. The formatting of
CALS/HTML tables can be specified in the XML instance document or the SPS, or in both.

Shown below is the HTML Preview of an HTML table.

The HTML code fragment for the XML table shown in the illustration above looks like this:

<table border="1" width="40%">

 <tbody>

 <tr>

 <td>Name</td>

144 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 <td>Phone</td>

 </tr>

 <tr>

 <td>John Merrimack</td>

 <td>6517890</td>

 </tr>

 <tr>

 <td>Joe Concord</td>

 <td>6402387</td>

 </tr>

 </tbody>

</table>

The original XML document might look like this:

<phonelist border="1" width="40%">

 <items>

 <person>

 <data>Name</data>

 <data>Phone</data>

 </person>

 <person>

 <data>John Merrimack</data>

 <data>6517890</data>

 </person>

 <person>

 <data>Joe Concord</data>

 <data>6402387</data>

 </person>

 </items>

</phonelist>

Note that element names in the XML document do not need to have table semantics; the table structure,
however, must correspond to the HTML or CALS table model. Also note the following:

· Note that only one XML element can correspond to the HTML column element <td/>.

· A CALS/HTML table can be inserted at any location in the XML document where, according to the
schema, the element corresponding to the table element is allowed.

· In Authentic View, data is entered directly into table cells. This data is stored as the content of the
corresponding CALS/HTML table element.

· The formatting properties of a CALS/HTML table could come from the XML document, or they could be
specified in the SPS design.

Summary for the designer
From the document designer's perspective, the following points should be noted:

· The structure of an SPS table is defined in the SPS. The structure of a CALS/HTML table on the other
hand is specified in the schema and must follow that of the CALS/HTML table model; the element
names in the schema may, however, be different than those in the CALS or HTML table models.

· Colspans and rowspans in SPS tables are specified in the SPS. But in CALS/HTML tables, colspans
and rowspans are specified in the XML instance document.

© 2017-2023 Altova GmbH

Tables 145SPS Content

Altova StyleVision 2024 Professional Edition

· Table formatting of SPS tables is specified in the SPS. The formatting of CALS/HTML tables is
specified in the XML instance document and/or the SPS.

5.6.1 Static Tables

To create a static table, do the following:

1. Use one of the following commands: Table | Insert Table or Insert | Table, or click the Insert
Table icon in the Insert Design Elements toolbar.

2. All of these commands pop up the Create Table dialog (screenshot below).

Click Static Table.
3. The Insert Table dialog (screenshot below) pops up, in which you specify the dimensions of the table

and specify whether the table should occupy the whole available width.

4. Click OK. An empty table with the specified dimensions, as shown below, is created.

5. You can now enter content into table cells using regular StyleVision features. Cell content could be
text, or elements dragged from the schema tree, or objects such as images and nested tables. The
figure below shows a table containing nested tables.

146 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Static SPS tables are especially well-suited for organizing XML data that is randomly situated in the schema
hierarchy, or for static content (content not derived from an XML source).

Deleting columns, rows, and tables
To delete a column, row, or table, place the cursor in the column, row, or table to be deleted, and click the
menu item Table | Delete Column, Table | Delete Row, or Table | Delete Table, respectively. If you have
nested tables, these commands will apply, respectively, to the column, row, and table containing the cursor.

Toolbar table editing icons
The table editing icons, which are by default in the second row of the toolbar, are shortcuts to the Table menu
commands. These commands allow you to insert, delete, edit the structure of, and assign formatting properties
to the static table. These icons can also be used for dynamic SPS tables. They cannot be used for
CALS/HTML tables, since CALS/HTML tables are not formatted in this way.

5.6.2 Dynamic Tables

To insert a dynamic table, do the following:

1. Use one of the following commands: Table | Insert Table or Insert | Table, or click the Insert
Table icon in the Insert Design Elements toolbar.

2. All of these commands pop up the Create Table dialog (screenshot below). If you clicked the Insert
Table icon in the toolbar, the Create Table dialog will pop up when you click at the location in the
design where you want to insert the table.

Click Dynamic Table.

3. In the XPath Selector dialog (screenshot below) that pops up, notice that the XPath Context is the
context of the insertion location, and it cannot be changed in the dialog. Select the node that is to be
created as the dynamic table. In the screenshot below, the context node is n1:Department, and the
n1:Person node has been selected as the node to be created as a table.

158

© 2017-2023 Altova GmbH

Tables 147SPS Content

Altova StyleVision 2024 Professional Edition

If you select the User-defined XPath option, then you can enter an XPath expression to select the node
to be created as the dynamic table.

4. Click OK. The Create Dynamic Table dialog (screenshot below) pops up.

148 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5. The child elements and attributes of the element that has been dragged into the Design window are
displayed In the "Select rows/columns" list and can be created as columns of the table. Deselect the
child nodes that you do not want and select any attribute/element you want to include as columns. (In
the figure above, the elements Shares, LeaveTotal, LeaveUsed and LeaveLeft have been
deselected.) An explanation of the other options is given below. Click OK when done. Note that
columns are created only for child elements and attributes, and for no descendant on a lower level.

Note: If you specified a User-defined XPath to select the node to be created as the dynamic table, then
StyleVision will probably not know unambiguously which node is being targeted. Consequently, the
Create Dynamic Table will, in such cases, not display a list of child attributes/elements to select as
the fields (columns) of the table. The table that is created will therefore have to be manually populated
with node content. This node content should be child attributes/elements of the node selected to be
created as the table.

Note: Another way of creating a schema node as a table is to drag the node from the schema tree into the
design and to specify, when it is dropped, that it be created as a table.

Table grows down or right
When a table grows top-down, this is what it would look like:

When a table grows left-right it looks like this:

© 2017-2023 Altova GmbH

Tables 149SPS Content

Altova StyleVision 2024 Professional Edition

Headers and footers
Columns and rows can be given headers, which will be the names of the column and row elements. Column
headers are created at the top of each column. Row headers are created on the left hand side of a row. To
include headers, check the Create Header check-box. If the table grows top-down, creating a header, creates a
header row above the table body. If the table grows left-right, creating a header, creates a column header to the
left of the table body.

To include footers, check the Create Footer check-box. Footers, like headers, can be created both for columns
(at the bottom of columns) and rows (on the right hand side of a row). The footer of numeric columns or rows
will sum each column or row if the Summary for Numeric Fields check box is checked.

Via the Table menu, header and footer cells can be joined and split, and rows and columns can be inserted,
appended, and deleted; this gives you considerable flexibility in structuring headers and footers. Additionally,
headers and footers can contain any type of static or dynamic content, including conditional templates and
auto-calculations.

Note: Headers and footers must be created when the dynamic table is defined. You do this by checking the
Create Header and Create Footer options in the Create Dynamic Table dialog. Appending or inserting a row
within a dynamic table does not create headers or footers but an extra row. The difference is significant. With
the Create Header/Footer commands, real headers and footers are added to the top and bottom of a table,
respectively. If a row is inserted or appended, then the row occurs for each occurrence of the element that has
been created as a dynamic table.

Nested dynamic tables
You can nest one dynamic table within another dynamic table if the element for which the nested dynamic
table is to be created is a child of the element that has been created as the containing dynamic table. Do the
following:

1. Create the outer dynamic table so that the child element to be created as a dynamic table is created
as a column.

2. In the dynamic table in Design View, right-click the child element.
3. Select Change to | Table. This pops up the Create Dynamic Table dialog.
4. Define the properties of the nested dynamic table.

To nest a dynamic table in a static table, drag the element to be created as a dynamic table into the required
cell of the static table. When you drop it, select Create Table from the context menu that appears.

Tables for elements with text content
To create columns (or rows) for child elements, the element being created as a table must have a child
element or attribute node. Having a child text node does not work. If you have this kind of situation, then

150 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

create a child element called, say, Text, and put your text node in the TableElement/Text elements. Now
you will be able to create TableElement as a dynamic table. This table will have one column for Text
elements. Each row will therefore contain one cell containing the text node in Text, and the rows of the table
will correspond to the occurrences of the TableElement element.

Contents of table body cells
When you create a dynamic table, you can create the node content as any one of a number of StyleVision
components. In the examples above, the table body cells were created as contents; in the Create Dynamic
Table dialog, the option for Display Cells As is contents. They could also have been created as data-entry
devices. There are two points to note here:

· The setting you select is a global setting for all the table body cells. If you wish to have an individual
cell appear differently, edit the cell after you have created the table: right-click in the cell and, in the
context menu that appears, select "Change to" and then select the required cell content type.

· If you create cells as element contents, and if the element has descendant elements, then the content
of the cell will be a concatenation of the text strings of the element and all its descendant elements.

Deleting columns, rows, and tables
To delete a column, row, or table, place the cursor in the column, row, or table to be deleted, and click the
menu item Table | Delete Column, Table | Delete Row, or Table | Delete Table, respectively. If you have
nested tables, the table immediately containing the cursor will be deleted when the Table | Delete Table
command is used.

Toolbar table editing icons
The table editing icons in the toolbar are shortcuts to the Table menu commands. These commands allow you
to insert, delete, edit the structure of, and assign formatting properties to the dynamic table. These icons can
also be used for static tables. They cannot be used for CALS/HTML tables, since CALS/HTML tables are not
formatted in this way. CALS/HTML tables can only be enabled in StyleVision.

Creating dynamic tables in global templates
You can also create dynamic tables on elements inside global templates. The process works in the same way
as for Main Template elements (described above). The important point to note is that, in a global template, a
dynamic table can only be created for descendant elements of the global template node; it cannot be created
for the global template node itself. For example, if you wish to create a dynamic table for the element authors
within a global template, then this dynamic table must be created within the global template of the parent
element of authors, say contributors. It cannot be created within the global template of the authors
element.

5.6.3 Conditional Processing in Tables

Conditional processing can be set on individual columns and rows of static and dynamic tables, as well as on
column and row headers, to display or hide the column, row, or header depending on the truth of the condition.
If the condition evaluates to true, the column, row, or header is displayed. Otherwise it is not.

© 2017-2023 Altova GmbH

Tables 151SPS Content

Altova StyleVision 2024 Professional Edition

Adding and editing conditional processing
To add conditional processing to a column, row, or header, right click the respective design component and
select Edit Conditional Processing. (In the screenshot below, the column-header design-component at top
left is shown highlighted in blue; the second-column design-component is shown outlined in blue; the only row
component is below the column-header design-component.)

Clicking the Edit Conditional Processing command pops up the Edit XPath Expression dialog , in which
you enter the XPath expression of the condition. Here are some ways in which conditional processing could be
used.

· On a column, row, or table, enter the XPath expression false()to hide the column, true() to display
it.

· A column is output only if the sum of all the values in that column exceeds a certain integer value.
· A column or row is output only if no cell in that column or row, respectively, is empty.
· A column or row is output only if a certain cell-value exists in that column or row, respectively.

To edit an already created condition, right click the respective design component and select Edit Conditional
Processing. In the Edit XPath Expression dialog that pops up, edit the XPath expression that tests the
truth of the condition.

Removing conditional processing
To remove the conditional processing of a column, row, or header, right click the respective design component
and select Clear Conditional Processing.

5.6.4 Tables in Design View

The main components of static and dynamic SPS tables are as shown in the screenshots below with the table
markup (Table | View Table Markup) switched on.

The screenshot above shows a simple table that grows top-down and that has a header and footer.

685

685

152 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· A column is indicated with a rectangle containing a downward-pointing arrowhead. Column indicators
are located at the top of columns. To select an entire column—say, to assign a formatting property to
that entire column—click the column indicator of that column.

· A row is indicated with a rectangle containing a rightward-pointing arrow. Click a row indicator to select
that entire row.

· In tables that grow top-down (screenshot above), headers and footers are indicated with icons pointing
up and down, respectively. In tables that grow left-right, headers and footers are indicated with icons
pointing left and right, respectively (screenshot below).

· To select the entire table, click in the top left corner of the table (in the screenshots above and below,
the location where the arrow cursor points).

· When any table row or column is selected, it is highlighted with a dark blue background. In the
screenshot above, the footer is selected.

· In tables that grow top-down, the element for which the table has been created is shown at the extreme
left, outside the column-row grid (screenshot above). In tables that grow left-right, the element for which
the table has been created is shown at the top, outside the column-row grid (screenshot below).

After a column or row or table has been selected, styles and/or properties can be set for the selection in the
Styles and Properties Windows.

Drag-and-drop functionality
The columns and rows of an SPS table (static or dynamic) can be dragged to alternative locations within the
same table and dropped there.

Enclosing and removing templates on rows and columns
A row or column can be enclosed with a template by right-clicking the row or column indicator and, from the
context menu that pops up (screenshot below), selecting Enclose With | Template or Enclose With | User-
Defined Template. In the next step, you can select a node from the schema tree or enter an XPath
expression for a User-Defined Template . A template will be created around the row or column.

A template that is around a row or column can also be removed while leaving the row or column itself intact. To
do this, select the template tag and press the Delete key.

The enclosing with, and removing, templates feature is useful if you wish to remove a template without removing
the contents of a row or column, and then, if required, enclosing the row or column with another template.

248

© 2017-2023 Altova GmbH

Tables 153SPS Content

Altova StyleVision 2024 Professional Edition

Enclosing with a User-Defined Template also allows the use of interesting template-match results within the
row or column (via Auto-Calculations, for example).

5.6.5 Table Formatting

Static and dynamic tables can be formatted using:

· HTML table formatting properties (in the Properties sidebar)
· CSS (styling) properties (in the Styles sidebar).

Note: For Text output, tables will be generated using a user-selected character as the cell separator . The
default character is the semicolon. It can be changed in the XSD/XSLTtab of the Properties dialog .

Properties sidebar
The HTML table formatting properties are available in the Properties sidebar (screenshot below). These
properties are available in the HTML group of properties for the table component and its sub-components (body,
row, column, and cell).

248

738

738

154 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Styles sidebar
The CSS table formatting properties are available in the Styles sidebar (screenshot below). CSS properties are
available for the table component and its sub-components (body, row, column, and cell).

Note: If all table cells in a row are empty, Internet Explorer collapses the row and the row might therefore not
be visible. In this case, you should use the HTML workaround of putting a non-breaking space in the
appropriate cell/s.

Vertical text
Text in table cells can be rotated 90 degrees clockwise or anti-clockwise, so that the text is vertical, reading
from top-to-bottom or bottom-to-top, respectively. To do this, in the design, select the content in the table cell
that is to be rotated and, in the Properties sidebar (screenshot below), select tcell. In the Table Cell group of
properties, select the required value for the Orientation property.

© 2017-2023 Altova GmbH

Tables 155SPS Content

Altova StyleVision 2024 Professional Edition

Note the following points:

· The rotation will be applied to the output, but will not be be displayed in the design.
· This property is intended to be applied to text and should not be used for other content.
· Besides being applicable to text in table cells, the property can also be applied to text in Text

boxes .

Table formatting via Properties and Styles
Some formatting properties are available in both the Properties sidebar as well as in the Styles sidebar. The
table below lists some of the more important table properties available in both sidebars.

Table component Properties sidebar Styles sidebar

Table border, frame, rules; cellpadding,
cellspacing; bgcolor; height, width
(overriden by height, width in Styles
sidebar if the latter exist); align

borders and padding in Box styles;
height, width in Details group (they
override height and width in
Properties sidebar); color, font, and
text styles

Body align, valign height, vertical-align; color, font, and
text styles

Column align, valign width, vertical-align; color, font, and
text styles; box styles

Row align, valign height, vertical-align; color, font, and
text styles; box styles

Cell align, valign height, width, vertical-align; color,
font, and text styles; box styles

Height and width
The height and width of tables, rows, columns, and cells must be set in the Styles sidebar (in the Details group
of styles). When a table, column, or row is resized in the display by using the mouse, the altered values are
entered automatically in the appropriate style in the Styles sidebar. Note, however, that the height and width
styles are not supported for cells that are spanned (row-spanned or column-spanned).

Centering a table
To center a table, set the align property in the HTML group of table properties to center. The align property
can be accessed by selecting the table, then selecting the menu command Table | Table Properties.
Alternatively, the property is available in the HTML group of properties in the Properties sidebar.

Centering the table in the PDF output will require additional settings according to the FOP processor you are
using. According to the FO specification the correct way to center a table is to surround the fo:table element
with an fo:table-and-caption element and to set the text-align attribute of the fo:table-and-caption
element to center. Stylevision does not automatically create an fo:table-and-caption element when a
table is inserted in the design, but you can add this element as a User-Defined Element . If you are using
the Apache FOP processor, however, you should note that the fo:table-and-caption element might not be
supported, depending on which FOP version you are using. In this case there is a simple workaround: Make
the table a fixed-width table. Do this by specifying a length value, such as 4in or 120mm, as the value of the

192

140

156 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

width property of the HTML group of table properties (accessed via the menu command Table | Table
Properties).

Giving alternating rows different background colors
If you want alternating background colors for the rows of your dynamic table, do the following:

1. Select the row indicator of the row for which alternating background colors are required. Bear in mind
that, this being a dynamic table, one element is being created as a row, and the design contains a
single row, which corresponds to the element being created as a table.

2. With the row indicator selected, in the Properties sidebar, click the Properties for: trow.
3. Select the bgcolor property.
4. Click the XPath icon in the toolbar of the Properties window, and, in the Edit XPath Expression

dialog that appears, enter an XPath expression similar to this:

if (position() mod 2 = 0) then "white" else "gray"

This XPath expression specifies a bgcolor of white for even-numbered rows and a bgcolor of gray for
odd-numbered rows

You can extend the above principle to provide even more complex formatting.

Numbering the rows of a dynamic table
You can number the rows of a dynamic table by using the position()function of XPath. To do this, first

insert a column in the table to hold the numbers, then insert an Auto-Calculation in the cell of this column with
an XPath of: position(). Since the context node is the element that corresponds to the row of the dynamic

table, the position()function returns the position of each row element in the set of all row elements.

Table headers and footers in PDF output
If a table flows over on to more than one page, then the table header and footer appear on each page that
contains the table. The following points should be noted:

· If the footer contains Auto-Calculations, the footer that appears at the end of the table segment on
each page contains the Auto-Calculations for the whole table—not those for only the table segment on
that page.

· The header and footer will not be turned off for individual pages (for example, if you want a footer only at
the end of the table and not at the end of each page).

In order to omit the header or footer being displayed each time the page breaks, use the table-omit-header-
at-break and/or table-omit-footer-at-break properties (attributes) on the table element. These properties
are available in the Styles sidebar, in the XSL-FO group of properties for the table. To omit the header or footer
when the page breaks, specify a value of true for the respective attribute. (Note that the default value is

false. So not specifying these properties has the effect of inserting headers and footers whenever there is a

break.)

Hyphenating content of table cells
If you wish to hyphenate text in table cells of your PDF output, note that the XSL:FO specification uses the
hyphenate attribute of the fo:block element to do this. So, to apply hyphenation, you must explicitly, in the

FO document, set the hyphenate property of the respective fo:block elements to true.

685

© 2017-2023 Altova GmbH

Tables 157SPS Content

Altova StyleVision 2024 Professional Edition

5.6.6 Row and Column Display

For tables, the following row and column display options are available in the HTML output only. These features
are not supported in Authentic View and they require XSLT 2.0 or XSLT 3.0 to be selected as the XSLT
version of the SPS.

· Empty rows and columns can be automatically hidden.
· Each column can have a Close button, which enables the user to hide individual columns.
· Row elements with descendant relationships can be displayed with expand/collapse buttons.

Hiding empty rows and columns by default
To hide empty rows and/or columns in the HTML output, do the following:

1. In Design View, select the table or any part of it (column, row, cell).
2. In the Properties sidebar, select properties for Table, and the Table group of properties (screenshot

below).

3. Select the required value for the Hide Columns and Hide Rows properties. The options for each of these
two properties are the same: Never, If empty, and If body empty. The If empty option hides the column
or row if the entire column/row (including header and footer) is empty. If body empty requires only that
the body be empty.

Note: If a non-XBRL table has row or column spans (where cells of a row or a column have been joined), the
hiding of empty rows and columns might not work.

User interaction to hide columns expand/collapse rows
It can be specified in the design that each table column contain a Close button in the HTML output (see
screenshot below). The user can then hide individual columns by clicking the Close button. After the user hides
a column, a plus symbol appears in the first column (see screenshot below). Clicking this symbol re-displays
all hidden columns.

158 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Also, row elements that have descendant elements can be displayed in the HTML output with an
expand/collapse (plus/minus) symbol next to it (see screenshot above). Clicking these symbols in the HTML
output expands or collapses that row element. In the design, you can specify indentation for individual rows
using CSS properties.

The settings for these two features are made in the Interactive group of properties of the Table properties
(screenshot below).

The options for both properties are Yes (to add the feature) and No (to not add the feature).

5.6.7 CALS/HTML Tables

A CALS/HTML table is a hierarchical XML structure, the elements of which: (i) define the structure of a CALS or
HTML table, (ii) specify the formatting of that table, and (iii) contain the cell contents of that table. This XML
structure must correspond exactly to the CALS or HTML table model.

To create a CALS/HTML table in the design, do the following:

1. Define the XML structure as a CALS/HTML table structure
2. Specify formatting styles for the table
3. Insert the CALS/HTML table in the SPS design

159

161

161

© 2017-2023 Altova GmbH

Tables 159SPS Content

Altova StyleVision 2024 Professional Edition

Enabling CALS/HTML table structures for output
An XML document may have a data structure that defines the structure and content of a table. For example,
the following XML data structure corresponds to the HTML table model and in fact has the same element
names as those in the HTML table model:

<table>
 <tbody>
 <tr>
 <td/>
 </tr>
 </tbody>
</table>

Alternatively, the XML data structure could have a structure corresponding to the HTML table model but different
element names than in the HTML table model. For example:

<semester>
 <subject>
 <class>
 <student/>
 </class>
 </subject>
</semester>

This table structure, which is defined in the XML document, can be used to directly generate a table in the
various output formats. To do this you need to define this XML data structure as a CALS or HTML table. If the
XML data structure is not defined as a CALS or HTML (the default), the elements in the data structure will be
treated as ordinary non-table elements and no table markup will be added to the output document.

To enable CALS/HTML table markup in the output do the following:

1. Select the command Table | Edit CALS/HTML Tables.
2. In the dialog that pops up (screenshot below), add an entry for the XML data structure you wish to use

as a CALS/HTML table, according to whether the data structure follows the CALS or HTML table
model. (For information about the CALS table model, see the CALS table model at OASIS. For an
example of a table element having an HTML table structure, open HTMLTable1.sps , which is in the
Basics folder of the Examples project folder (in the Project window of the GUI).) So, if you wish to
enable an element in your schema as a CALS or an HTML table element, click the Add CALS/HTML
table button in the top left part of the dialog and then select either the Add CALS Table command or
the Add HTML Table command. (In the screenshot below, the elements table and informaltable
have been enabled as CALS tables (as well as HTML tables).) Click OK to confirm.

http://www.oasis-open.org/specs/a502.htm

160 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. A dialog (Edit CALS Table or Edit HTML table) appears showing the elements of the table type you
selected (screenshot below). The element names that are listed in this dialog are, by default, the
element names in the selected table model (CALS or HTML). If the SPS schema contains elements
with the same names as the names of the CALS/HTML table model, then the names are shown in
black (as in the screenshot below). If a listed element name is not present in the SPS schema, that
element name is listed in red. You can change a listed element name to match a schema name by
double-clicking in the relevant Element Name field and editing the name.

4. Click OK to define this XML data structure as a CALS or HTML table.
5. You can add entries for as many XML data structures as you like (see screenshot in Step 2 above).

The same main element can be used once each for CALS and HTML table types.
6. After you have finished defining the XML data structures you wish to enable as CALS/HTML tables,

click OK to finish.

If a CALS/HTML table has been defined and the XML data structure is correctly inserted as a CALS/HTML
table, then the data structure will be sent to the output as a table. To remove a CALS/HTML table

161

© 2017-2023 Altova GmbH

Tables 161SPS Content

Altova StyleVision 2024 Professional Edition

definition, in the Edit CALS/HTML table dialog select the definition you wish to delete and click the Delete
button at the top right of the Define CALS/HTML Tables pane.

Table formatting
CALS/HTML tables receive their formatting in two ways:

1. From formatting attributes in the source XML document. The CALS and HTML table models allow for
formatting attributes. If such attributes exist in the source XML document they are passed to the
presentation attributes of the output's table markup.

2. Each individual element in the table can be formatted in the Styles column of the Edit CALS Table
dialog or Edit HTML Table dialog (see screenshot below).

To assign a style to a particular element, click the Add Styles button for that element and assign the
required styles in the Styles sidebar that pops up. Each style is added as an individual CSS
attribute to the particular element. Note that a style added via the style attribute will have higher
priority than a style added as an individual CSS attribute (such as bgcolor). For example, in <thead
style="background-color: red" bgcolor="blue"/> the style="background-color: red"
attribute will have priority over the bgcolor="blue" attribute.

To remove a style that has been assigned to an element in the CALS/HTML table definition, select that
element (for example in the screenshot above the thead element has been selected) and click the
Delete button. The styles for that element will be removed.

Inserting a CALS/HTML table in the design
A CALS/HTML table structure can be inserted in the design in two ways:

1. The parent of the table element is inserted in the design as (contents). When the contents of the
parent are processed, the table element will be processed. If CALS/HTML table output is enabled, then
the element is output as a table. Otherwise it is output as text.

2. The table element can be dragged from the Schema Tree. When it is dropped at the desired location in
the design, it can be created as a CALS/HTML table (with the Create CALS/HTML Table command).

54

162 SPS Content Tables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If the element has not been defined as a CALS/HTML table , the Insert CALS/HTML Tables dialog
(screenshot below) pops up and you can define the element as a CALS or HTML table.

If the element has been created in the design as a CALS/HTML table, a placeholder for the
CALS/HTML table design element is inserted at the location (screenshot below).

Global templates of table elements
If global templates of the following table elements are created they will be used in the CALS/HTML table
output. For CALS tables: title and entry. For HTML tables: caption, th, and td.

Example files
Example files are in the the Examples project folder (in the Project window of the GUI).

159

244

© 2017-2023 Altova GmbH

Lists 163SPS Content

Altova StyleVision 2024 Professional Edition

5.7 Lists

There are two types of lists that can be created in the SPS:

· Static lists , which are lists, the contents of which are entered directly in the SPS. The list structure
is not dynamically derived from the structure of the XML document.

· Dynamic lists , which are lists that derive their structure and contents dynamically from the XML
document.

How to create these two list types are described in detail in the sub-sections of this section.

5.7.1 Static Lists

A static list is one in which list item contents are entered directly in the SPS. To create a static list, do the
following:

1. Place the cursor at the location in the design where you wish to create the static list and select the
Insert | Bullets and Numbering menu command (or click the Bullets and Numbering icon in the
Insert Design Elements toolbar). This pops up a dialog asking whether you wish to create a static
list or dynamic list (screenshot below).

2. Click Static List. This pops up the Bullets and Numbering dialog (screenshot below).

163

165

773

708

164 SPS Content Lists

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Select the desired list item marker and click OK. An empty list item is created.
4. Type in the text of the first list item.
5. Press Enter to create a new list item.

To create a nested list, place the cursor inside the list item that is to contain the nested list and click the
Insert | Bullets and Numbering menu command. Then use the procedure described above once again.

Note: You can also create a static list by placing the cursor at the location where the list is to be created
and clicking either the Bullets icon or Numbering icon in the Bullets or Numbering icons in the
Formatting toolbar . The first list item will be created at the cursor insertion point.

Changing static text to a list
To change static text to a list, do the following:

Highlight the text you wish to change to a list, select the command Enclose With | Bullets and
Numbering , choose the desired marker type, and click OK. If the text contains a CR-LF, carriage-return
and/or linefeed (inserted by pressing the Enter key), then separate list items are created for each text fragment
separated by a CR-LF. If a text fragment within a line is highlighted, then that text is created as the list-item of
a single-item list; you can add an unlimited number of additional list items by clicking Enter as many times as
required. Note that the Enclose With | Bullets and Numbering command can also be accessed via the
context menu.

Lists in Text output
When a list is generated in Text output, each list item is indicated by a minus symbol at the start of the list
item.

773

704

789

789

© 2017-2023 Altova GmbH

Lists 165SPS Content

Altova StyleVision 2024 Professional Edition

5.7.2 Dynamic Lists

Dynamic lists display the content of a set of sibling nodes of the same name, with each node represented as a
single list item in the list. The element, the instances of which are to appear as the list items of the list, is
created as the list. The mechanism and usage are explained below.

General usage mechanism

· Any element can be created as a list.
· When an element is created as a list, the instances of that element are created as the items of the

list. For example, if in a department element, there are several person elements (i.e. instances), and
you wanted to create a list of all the persons in the department, then you must create the person
element as the list.

· Once the list has been created for the element, you can modify the appearance or content of the list or
list item by inserting additional static or dynamic content such as text, Auto-Calculations, dynamic
content, etc.

Creating a dynamic list
Create a dynamic list as follows:

1. Place the cursor at the location in the design where you wish to create the dynamic list and select the
Insert | Bullets and Numbering menu command. This pops up a dialog asking whether you wish
to create a static list or dynamic list (screenshot below).

2. Click Dynamic List. This pops up the XPath Selector dialog (screenshot below).
3. In the XPath Selector dialog, notice that the XPath Context is the context of the insertion location, and

that it cannot be changed in the dialog. Select the node that is to be created as the dynamic list. In the
screenshot below, the context node is n1:Department, and the n1:Person node has been selected as
the node to be created as a list. This means that the content of each n1:Person node will be created
as an item in the list.

773

166 SPS Content Lists

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If you select the User-defined XPath option, then you can enter an XPath expression to select the node
to be created as the dynamic table. Clicking OK pops up the Bullets and Numbering dialog described
in the next step.

4. In the the Bullets and Numbering dialog, select the kind of list you wish to create. You can choose
from a bulleted list (with a bullet, circle, or square as the list item marker), or a numbered list. Clicking
OK creates the list with the type of list item marker you selected.

© 2017-2023 Altova GmbH

Lists 167SPS Content

Altova StyleVision 2024 Professional Edition

Lists in Text output
When a list is generated in Text output, each list item is indicated by a minus symbol at the start of the list
item.

168 SPS Content Graphics

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5.8 Graphics

There are two ways in which graphics are used in an SPS:

· As images in the design document , and
· As Authentic View toolbar icons for applying markup to the XML document (custom toolbar buttons

).

Note: Graphics are not rendered in Text output.

When inserting images in the design document, the location of the image can be specified directly in the SPS
(by the SPS designer) or can be taken or derived from a node in the XML document. How to specify the
location of the image is described in the section Image URIs . What type of images are supported in the
various outputs are listed in the section Image Types and Output . The section Reference | Autnetic Menu |
Custom toolbar buttons describes how toolbar icons for Authentic View can be defined.

Image properties
Images can be set in the Properties window. Do this as follows. Select the image in the design. Then, in the
Properties window, (i) select image in the Properties for column, (ii) select the required property group, and (iii)
within the selected property group, select the the required property. For example, to set the height and width of
the image, set the height and width properties in the HTML group of properties.

5.8.1 Images: URIs and Inline Data

Images can be inserted at any location in the design document. These images will be displayed in Authentic
View and the output documents; in Design View, inserted images are indicated with thumbnails or
placeholders.

To insert an image, click the Insert | Image menu command, which pops up the Insert Image dialog
(screenshot below).

 Images can be accessed in two ways:

· The image is a file, which is accessed by entering its URI in the Insert Image dialog.

168

800

168

170

800

770

© 2017-2023 Altova GmbH

Graphics 169SPS Content

Altova StyleVision 2024 Professional Edition

· The image is encoded as Base-16 or Base-64 text in an XML file.

Inserting an image file
An image file is inserted in the design by specifying its URI. This file is accessed at runtime and placed in the
document. There are three ways in which the URI of the image can be entered in the Insert Image dialog
(screenshot above):

· In the Static tab, the URI is entered directly as an absolute or relative URI. For example,
nanonull.gif (relative URI; see section below), and C:/images/nanonull.gif (absolute URI).

· In the Dynamic tab, as an XPath expression that selects a node containing either (i) a URI (absolute or
relative), or (ii) an unparsed entity name . For example, the entry image/@location would select the
location attribute of the image element that is the child of the context node (that is, the node within
which the image is inserted). The location node in the XML document would contain the image URI.
How to use unparsed entities is described in the section Unparsed Entity URIs .

· In the Static and Dynamic tab, an XPath expression in the Dynamic part can be prefixed and/or
suffixed with static entries (text). For example, the static prefix could be
C:/XYZCompany/Personnel/Photos/; the dynamic part could be concat(First, Last); and the
static suffix could be .png. This would result in an absolute URI something like:
C:/XYZCompany/Personnel/Photos/JohnDoe.png.

Inserting an image that is encoded text
An image can be stored in an XML file as Base-16 or Base-64 encoded text. The advantage of this is that the
image does not have to be accessed from a separate file (linked to it), but is present as text in the source XML
file. To insert an image that is available as encoded text in the XML source, use the Inline Data tab of the Insert
Image dialog (see screenshot below).

Use an XPath expression to locate the node in the XML document that contains the encoded text of the image.
Select an option from the Image Format combo box to indicate in what format the image file must be
generated. (An image file is generated from the encoded text data, and this file is then used in the output
document.) In the Encoding combo box, select the encoding that has been used in the source XML. This
enables StyleVision to correctly read the encoded text (by using the encoding format you specify).

The Image File Settings dialog (accessed by clicking the Image File Settings button) enables you to give a
name for the image file that will be created. You can choose not to provide a name, in which case StyleVision
will, by default, generate a name.

170

440

440

170 SPS Content Graphics

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If you wish to embed an inline image in HTML output, select the Image Embedding with Data URI Scheme
option in the Properties dialog of the SPS.

Accessing the image for output
The image is accessed in different ways and at different times in the processes that produce the different
output documents. The following points should be noted:

· Note the output formats available for your edition: (i) HTML in Basic Editiion; (ii) HTML and RTF in
Professional; (iii) HTML, RTF, PDF, and Word 2007+ in Enterprise Edition.

· For Design View and Authentic View in StyleVision, as well as for Authentic View in Altova products,
you can set, in the Properties dialog , whether relative paths to images should be relative to the
SPS or to the XML file.

· For HTML output, the URI of the image is passed to the HTML file and the image is accessed by the
browser. So, if the path to the image is relative, it must be relative to the location of the HTML file. For
the HTML Preview in StyleVision, a temporary HTML file is created in the same folder as the SPS file,
so, for rendition in HTML Preview, relative paths must be relative to this location.

· For RTF output, the URI of the image is passed as an object link to the RTF file and is accessed by
the RTF application (typically MS Word) when the file is opened. If the URI is relative, it must be
relative to the location of the RTF file. For the RTF Preview in StyleVision, a temporary RTF file is
created in the same folder as the SPS file, so, for rendition in RTF Preview, relative paths must be
relative to this location.

· Whether the URI is relative or absolute, the image must be physically accessible to the process that
renders it.

Editing image properties
To edit an image, right-click the image placeholder in Design View, and select Edit URL from the context
menu. This pops up the Edit Image dialog, which is the same as the Insert Image dialog (screenshot above)
and in which you can make the required modifications. The Edit Image dialog can also be accessed via the URL
property of the image group of properties in the Properties window. The image group of properties also includes
the alt property, which specifies alternative text for the image.

Deleting images
To delete an image, select the image and press the Delete key.

5.8.2 Image Types and Output

The table below shows the image types supported by StyleVision in the various output formats supported by
StyleVision. Note that different editions of StyleVision support different sets of output formats: Enterprise
Edition, HTML, Authentic, RTF, PDF, and Word 2007+; Professional Edition, HTML, Authentic, RTF; Basic
Edition, HTML.

Image Type Authentic HTML RTF PDF Word 2007+

JPEG Yes Yes Yes Yes Yes

GIF Yes Yes Yes Yes Yes

738

738

© 2017-2023 Altova GmbH

Graphics 171SPS Content

Altova StyleVision 2024 Professional Edition

PNG Yes Yes Yes Yes Yes

BMP Yes Yes Yes Yes Yes

TIFF Yes* Yes* Yes Yes Yes

SVG Yes* Yes* No Yes No

JPEG XR Yes Yes No No No

* See notes immediately below

Note the following points:

· In Design View, images will be displayed only if their location is a static URL (i.e. directly entered in
the SPS).

· For the display of TIFF and SVG images in Authentic View and HTML View, Internet Explorer 9 or
higher is required.

· In RTF output, TIFF images can only be linked, not embeded. So re-sizing is not possible.
· SVG documents must be in XML format and must be in the SVG namespace.
· FOP reports an error if an image file cannot be located and does not generate a PDF.
· If FOP is being used to produce PDF, rendering PNG images requires that the JIMI image library be

installed and accessible to FOP.
· For more details about FOP's graphics handling, visit the FOP website.

Example file
An example file, Images.sps, is located in the folder:

 C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples/Tutorial/Images

Image resizing in RTF output
Resizing an image in the RTF output is only supported for JPG and PNG images. The following points should
be noted:

· Resizing is supported only in designs that use XSLT 2.0 or XSLT 3.0, not XSLT 1.0
· The height and width attributes of the image must be set in the Details group of the Styles

sidebar . The height and width attributes in the HTML group of the Properties sidebar are not
used.

· Only absolute units (px, cm, in, etc) are supported. Percentage values and auto are not supported.
· JPG and PNG images are embedded in the RTF file. This embedding is implemented using a

proprietary Altova XSLT 2.0 extension functionality.

Image embedding in RTF
In the RTF output, images can either be embedded (when XSLT 2.0 or XSLT 3.0 is used) or linked. This setting
is made for each SPS individually.To embed images, do the following:

1. With the required SPS active, open the Properties dialog (File | Properties).
2. Check the Embed Images check box (default setting is checked). Note that images will only be

embedded if XSLT 2.0 or XSLT 3.0 is set as the XSLT version of the active SPS.

54

http://xmlgraphics.apache.org/fop/

172 SPS Content Graphics

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Click OK and save the SPS. The setting is saved for the active SPS.

To make this setting for another SPS, make this SPS active and repeat the steps listed above.

If the Embed Images check box is not checked, images will be linked according to the image file path specified
in the images properties (select the image and select URL in the Properties sidebar). For information about
how paths are resolved, see the section Image URIs .

Note: The RTF format supports embedded images only for EMF, JPG, and PNG files.

SVG images in HTML
When an external SVG file with code for mouse events is used as an image, the SVG file is rendered within the
image and will no longer be interactive. This limitation can be overcome by using the external SVG image file
as an object or by including the SVG code fragment as a User-Defined XML Block.

Given below are the three ways in which SVG images can be included in a web page.

1. External SVG inserted as image : This generates an in the generated HTML file, and
interactivity will be lost.

2. External SVG inserted as an object via the User-Defined Element feature (see screenshot below).
Be sure to insert the type attribute correctly: ke type=”image/svg+xml”. When inserted in this way,
the SVG object is still interactive and the mouse hover-functionality will work.

3. Inline SVG inserted via a User-Defined XML Block . See screenshot below for an example of an
SVG code fragment. In this case, interactivity will work. Note that the svg element does not need to be
in the SVG namespace if the output method is HTML 4.0 or 5.0, but the namespace is required if the
output method is XHTML.

55

168

168

140

141

© 2017-2023 Altova GmbH

Graphics 173SPS Content

Altova StyleVision 2024 Professional Edition

5.8.3 Example: A Template for Images

The StyleVision package contains an SPS file that demonstrates the use of images in StyleVision. This file is
in the (My) Documents folder : C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Images\Images.sps. The Images
document (Images.xml and Images.sps) consists of three parts:

· The first part shows how text state icons can be used in Authentic View (can be created in Enterprise
and Professional editions only). When you open the file Images.xml in the Authentic View of XMLSpy,
Authentic Desktop, or Authentic Browser, you can try out the use of text state icons. Note that text
state icons are not available in the Authentic Preview of StyleVision, so you cannot try out this feature
in StyleVision. How to create text state icons is described in the Reference | Autnetic Menu | Custom
toolbar buttons section of this user manual.

· The second part contains a table showing which image formats are supported in the various
StyleVision output formats. In Design View, only images with static URIs will be displayed. All the
image formats listed in the table are displayed in Part 3 of the Images document.

· In Part 3, all the popular image formats supported by StyleVision are displayed one below the other.
After opening the file Images.sps in StyleVision, you can switch among the various previews of
StyleVision to see how each image is displayed in that preview. Since the location of the image is in
an XML node, you can also enter the location of your own images in Authentic View and test their
appearances in the preview windows.

29

800

174 SPS Content Form Controls

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5.9 Form Controls

Nodes in the XML document can be created as data-entry devices (such as input fields and combo boxes).
Data-entry devices are intended for easier editing in Authentic View. For example, an input field makes it clear
to the Authentic View user that input is expected in this location while a combo box lists, as well as restricts,
the values a user can enter. When data is entered into a data-entry device, the data is inserted into the XML
document as element content or as an attribute's value. In the HTML, Text, and RTF output, the data-entry
device is rendered as an object that is the same as that displayed in Authentic View, or a near-equivalent. Note
that data-entry devices accept input to the XML document and, therefore, will not work in the HTML output.

General mechanism
Given below is a list of the data-entry devices available in StyleVision, together with (i) an explanation of how
data is entered in the XML document for each device and (ii) how the data-entry devices will be output in plain
text format.

Data-Entry Device Data in XML File Output to Plain Text Format

Input Field (Text Box) Text entered by user Text entered by user

Multiline Input Field Text entered by user Text entered by user

Combo box User selection is mapped to a value. Selected value

Check box User selection is mapped to a value. [] (unselected); [x] (selected)

Radio button User selection is mapped to a value. () (unselected); (o) (selected)

Button User selection is mapped to a value. Button text

The text values entered in the input fields are entered directly into the XML document as XML content. For the
other data-entry devices, the Authentic View user's selection is mapped to a value. StyleVision enables you to
define the list of options the user will see and the XML value to which each option is mapped. Typically, you will
define the options and their corresponding values in a dialog.

General usage
To create a data-entry device, do the following:

1. Drag a node from the Schema Tree window into Design View and drop it at the desired location.
2. From the context menu that appears, select the data-entry device you wish to create the node as.
3. For some data-entry devices, a dialog pops up. In these cases, enter the required information in the

dialog, and click OK.

To reopen and edit the properties of a data-entry device, select the data-entry device (not the node containing
it), and edit its properties in the Properties sidebar.

Note:
· Data can be entered in data-entry devices only in Authentic View.
· Data-entry devices can also be created by changing the current component type of a node to a data-

entry device. To do this right-click the node and select Change to.

© 2017-2023 Altova GmbH

Form Controls 175SPS Content

Altova StyleVision 2024 Professional Edition

· In the HTML and RTF output, the entry selected by the user is displayed in the output. Changing the
value of a data-entry device in the HTML document does not change the text value in either the XML
document or HTML document.

· In the case of some data-entry devices, such as check boxes, where the device cannot correctly be
rendered in print, an alternative rendition is implemented.

5.9.1 Input Fields, Multiline Input Fields

You can insert an Input Field or a Multiline Input Field in your SPS when you drop a node from the Schema
Sources window into Design View. The text that the Authentic View user enters into these fields is entered into
the XML node for which the field was created. The content of that node is displayed in the input field or multiline
input field.

Editing the properties of input fields
You can modify the HTML properties of input fields by selecting the input field and then modifying its HTML
properties in the Properties sidebar (see screenshot below).

For example, with the input field selected, in the Properties window select editfield, select the HTML group
of properties and the maxlength property. Then double-click in the Value field of maxlength and enter a value.

Note: CDATA sections cannot be inserted into input fields (that is, in text boxes and multiline text boxes).
CDATA sections can only be entered within elements that are displayed in Authentic View as text
content components.

5.9.2 Check Boxes

You can create a check box as a data-entry device. This enables you to constrain user input to one of two
choices. In the Edit Check Box dialog (shown below), you specify the XML values to map to the checked and
unchecked events.

176 SPS Content Form Controls

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In the above screenshot, an element called Name has been created as a check box. If the Authentic View user

checks the check box, a value of true will be entered as the value of the element Name. If the value is

unchecked, then the value false is entered as the XML value of Name (as defined in the dialog).

Note: When a new Name (or check box) element is created in Authentic View, its XML value is empty (it is

not the Unchecked Value). The Unchecked Value is entered only after the check box has first been
checked, and then unchecked. To have a default value in a node, create a Template XML file that
contains the default value.

Note: Check boxes in Text output are displayed as square brackets: [] for unselected check boxes; [x] for

selected check boxes.

Accessing the Edit Check Box dialog
If you are creating a new check box, when you create the node as a check box, the Edit Check Box dialog
pops up. To access the Edit Check Box dialog afterwards, do the following:

1. Select the check box in the design.
2. In the Properties sidebar, select the checkbox item and then the checkbox group of properties (see

screenshot below).

© 2017-2023 Altova GmbH

Form Controls 177SPS Content

Altova StyleVision 2024 Professional Edition

3. Click the Edit button of the check values property. This pops up the Edit Check Box dialog.

Note: You can modify the HTML properties of a check box by selecting it and then modifying its HTML
properties in the Properties sidebar.

5.9.3 Combo Boxes

A combo box presents the Authentic View user with a list of options entries in a dropdown list. The selected
option is mapped to a value that is entered in the XML document. The mapping of drop-down list entry to XML
value is specified in the SPS.

Mappings can be made in the Edit Combo Box dialog in one of three ways:

· From the schema enumerations for the selected node. In this case, the visible entry (in the dropdown
list) will be the same as the XML value.

· From a list defined in the Edit Combo Box dialog. You enter the visible entry and the corresponding
XML value, which may be different.

· From the result sequence of an XPath expression relative to the current node. The items in the result
sequence are displayed as the entries of the drop-down list, and the list entry selected by the
Authentic View user is entered as the value of the node. This is a powerful method of using dynamic
entries in the combo box. The node that you create as the combo box is important. For example, say
you have a NameList element that may contain an unlimited number of Name elements, which
themselves have First and Last children elements. If you create the Name element as a combo box,
and select the Last child element for the list values, then, in Authentic View, you will get as many
combo boxes as there are Name elements and each combo box will have the Last child as its
dropdown menu entry. In order to get a single combo box with all the Last elements in the dropdown
menu list, you must create the single NameList element as the combo box, and select the Last
element in the XPath expression.

Accessing the Edit Combo Box dialog
If you are creating a new combo box, when you create the node as a combo box, the Edit Combo Box dialog
pops up. You can also insert a combo box with the (Insert | Insert Form Controls | Combo Box) menu
command. To access the Edit Combo Box dialog afterwards, do the following:

1. Select the combo box in the design.
2. In the Properties sidebar, select the combo box item and then the combo box group of properties (see

screenshot below).

178 SPS Content Form Controls

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Click the Edit button of the the content origin property. This pops up the Edit Combo Box
dialog.

Using the Edit Combo Box dialog
The Edit Combo Box dialog is shown below.

© 2017-2023 Altova GmbH

Form Controls 179SPS Content

Altova StyleVision 2024 Professional Edition

To define the entries and values for the combo box, do the following:

1. Select the method with which you wish to define the entries and values by clicking the appropriate
radio button: (i) schema enumerations, (ii) list of values, or (iii) XPath expressions to select values.

2. If you select Schema Enumerations, the enumerations assigned to that node in the schema are
entered automatically as (i) the visible entries of the drop-down list of the combo box, and (ii) the
corresponding XML values (screenshot below). Visible Entries are the entries in the drop-down list of
the combo box. Each drop-down list entry has a corresponding XML value. The XML value
corresponding to the visible entry that the Authentic user selects will be the XML value that is entered
in the XML file. Both visible entries and XML values are grayed out in the list of values because they are
both obtained from the schema enumerations and cannot be edited.

180 SPS Content Form Controls

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If you select Use List of Values, you can insert, append, edit, and delete any number of entries for the
drop-down list of the combo box as well as for the corresponding XML values. These edits are carried
out in the pane below the Use List of Values radio button. You could also use an XPath expression to
create the visible entries and XML values. The items in the sequence returned by the XPath expression
will be used for visible entries and XML values. You can specify: (i) that the same XPath expression be
used for visible entries and XML values, or (ii) that different XPath expressions be used. In the latter
case, a one-to-one index mapping between the items of the two sequences determines the
correspondence of visible entry to XML value. If the number of items in the two sequences are not
equal, an error is reported.

3. If you wish to have the items that appear in the drop-down list of the combo box in Authentic View
sorted, check the Sort Values in Authentic check box.

4. Click OK to finish.

Note
· Using an XPath expression to select the items of the combo box drop-down list enables you to create

combo boxes with dynamic entries from the XML file itself.
· If the items in the drop-down list of the combo box are obtained from schema enumerations, they will

be sorted alphabetically by default. If the items are obtained from an XML data file, they will appear in
document order by default. If the items are obtained from a DB, the DB schema must be set as the
main schema. If items are obtained from a DB that is not the main schema, a template for the DB row
targeted by the XPath expression must be included in the design, even if the template must be empty.
Additionally, in such cases, make sure that all instances of the targeted row are fetched .

· Combo boxes in Text output displayed the selected value.

5.9.4 Radio Buttons, Buttons

There are two types of button: radio buttons and buttons. Radio buttons allow the Authentic View user to enter
data into the XML file. Buttons do not allow data-entry in Authentic View, but are useful for triggering events in
the HTML output.

Radio buttons
Inserting radio buttons in the SPS allows you to give the user a choice among multiple alternatives. Each radio
button you insert maps to one XML value. The user selects one radio button. The radio buttons for a node are
mutually exclusive; only one may be selected at a time, and the associated XML value is entered as the value
of the node. The way to use this feature is to create the node for which the data-entry is required multiple times
as a radio button. For each radio button enter (i) some static text to indicate its value to the user, and (ii) an
XML value for each radio button. To edit the XML value of a radio button, in the Properties sidebar, select the

594

© 2017-2023 Altova GmbH

Form Controls 181SPS Content

Altova StyleVision 2024 Professional Edition

radio button item, then click the Edit button of the radio button property. This pops up the Edit Radio Button
dialog.

Buttons
The button option allows you to insert a button and specify the text on the button. This is useful if you wish to
associate scripts with button events in the generated HTML output. Note, however, that a button does not map
to any XML value and does not allow data entry in Authentic View. However, the value of the parent node of a
button can be selected by the Authentic View user , and the SPS can be designed to modify presentation
based on what the Authentic View user selects.

Note: You can modify the HTML properties of a radio button or button by selecting it and then modifying its
HTML properties in the Properties sidebar.

Note: Radio buttons in Text output are displayed as parentheses: () for unselected radio buttons; (o) for

selected radio buttons. Buttons generate only the button text in Text output.

435

182 SPS Content Links

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5.10 Links

Links (or hyperlinks) can be created to bookmarks located in the document as well as to external resources
like Web pages. Links can also be created to dynamically generated anchors. StyleVision offers considerable
flexibility in the way target URIs for hyperlinks can be built.

The section, Bookmarks and Hyperlinks , describes how to create static and dynamic bookmarks in the
document and how to link to bookmarks as well as to external documents.

Note: Links are not rendered in Text output.

339

© 2017-2023 Altova GmbH

Barcodes 183SPS Content

Altova StyleVision 2024 Professional Edition

5.11 Barcodes

The Barcode design element is supported in XSLT 2.0 or XSLT 3.0 mode (not XSLT 1.0) and enables
barcodes (screenshot below) to be generated in the output document. At the location in the design document
where you wish to enter the barcode, insert the Barcode design element and specify its properties .

Important: For barcodes to work, a Java Runtime Environment must be installed. This must be version 1.4 or
later in a bit version that corresponds to the bit version of the StyleVision package installed on your system:
32-bit or 64-bit.

Important: For barcodes to be generated in the output, you must use Altova's XSLT processor to generate
the output. This is because the barcodes in an SPS are generated by calling special Java extension functions
that are not part of the XSLT standard. Altova's XSLT processors support these specific extension functions,
whereas other XSLT processors very probably do not. As a result, barcodes will not be generated if processed
with a non-Altova XSLT processor. The Altova XSLT processor is packaged with StyleVision, and is
automatically called when you generate output via the Generate commands in the File menu. Alternatively,
you can use RaptorXML Server, which is a Altova's standalone XSLT processor.

Note: Barcodes are not rendered in Text output.

Inserting a barcode
To insert a barcode in your design, do the following:

1. At the location where you wish to insert the barcode, right-click and select the command Insert
Barcode. Alternatively, select the command Insert | Insert Barcode or click the Barcode icon in the
toolbar and click the location in the design where you wish to insert the barcode. You can also drag
and drop an element from the Schema Tree into the Design View and then select 'Create Barcode'. The
Insert Barcode dialog pops up (screenshot below).

183 185

https://www.altova.com/raptorxml

184 SPS Content Barcodes

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Two properties, Type and Text, are mandatory; the others are optional and/or have appropriate default
values. The Type property, the value of which can be selected from a dropdown list (see screenshot
above), specifies the type of the barcode, for example EAN-13 (which includes ISBN barcodes) and
UPC-A. The Text property specifies the value that will generate the barcode, for example, an ISBN
number. The various barcode properties are described below . Set the required properties and any
other properties that you want. Note that, if you wish to use a value in the XML file as the value of a
property, you can enter an XPath expression to locate the XML node you wish to access. Do this
as follows: Select the property, toggle on the XPath button in the toolbar of the Properties dialog, and
then enter the XPath expression in the Edit XPath Expression dialog . The XPath expression will be
evaluated within the current context node.

3. After setting the properties, click OK. The barcode image will be inserted. The generated barcode (see
screenshot below) can be immediately viewed in any of the output previews.

Note: Barcode images are generated as PNG files.

185

58

685

© 2017-2023 Altova GmbH

Barcodes 185SPS Content

Altova StyleVision 2024 Professional Edition

Barcode properties
The following barcode properties can be specified. The Type and Text properties must be set; the other
properties are optional. Note that different properties are available for different barcode types.

· Type: The barcode system under which the message will be interpreted, such as EAN and UPC.
· Text: The value that will be used to generate the barcode pattern.
· SetModuleWidth: The width of the bars in the code.
· SetBarHeight: The height of the bars.
· SetHeight: The height of the barcode graphic.
· DoQuietZone: Yes or No values determine whether the "quiet zone" (or padding) around the barcode,

which is specified in the SetQuietZone and SetVerticalQuietZone properties, will be implemented.
· SetQuietZone: Sets the "quiet zone" (or padding) around the barcode. In the case of one-dimensional

barcodes, the value specified here is applied to the horizontal dimension. In the case of two-
dimensional barcodes, the value is applied to both horizontal and vertical dimensions. The value of the
vertical dimension can be overridden by the value specified in the SetVerticalQuietZone property. A
length unit of millimeters (mm) is required. Example: 2mm.

· SetVerticalQuietZone: Sets the "quiet zone" (or padding) for the vertical dimension on two-dimensional
barcodes. A length unit of millimeters (mm) is required. Example: 2mm.

· SetMsgPosition: Specifies where the message text appears relative to the barcode. Values are top,
bottom, and none (no mesage is generated).

· SetPattern: Sets a pattern for the message text so that the text is readable. A long string of numbers,
for example, would be difficult to read. The syntax for patterns is given below.

· SetFontName: The font in which text should appear.
· SetFontSize: The font-size in which text should appear.
· SetChecksumMode: The following values are available: (i) Add: the checksum is automatically added

to the message; (ii) Check: the checksum is checked while rendering the barcode (assumes the
checksum is present); (iii) Ignore: no checksum processing is done; (iv) Auto: enables the barcode
type's default behaviour.

· Orientation: Whether the barcode should be rotated. The options are in steps of 90 degrees counter-
clockwise.

· PixelDensity: Specifies the density of the pixels in the barcode image. Higher pixel density provides
sharper images.

· GeneratedImageSettings: Enables you to set a name for the generated barcode image file. If no name
is specified, a name is generated automatically by StyleVision.

Pattern syntax
Patterns are used to make the input message string more readable in the barcode. In the pattern, each
character of the input message text is represented by the underscore "_". Any other characters included in the
pattern are inserted at the corresponding locations in the output message text. The backslash "\" is an escape
symbol. So, the combination of '\?' will insert the character '?' in the output message text, where '?' can be any
character. The character '#' can be used to delete a character from the original message. These points of
pattern syntax are illustrated with the examples below.

Input message text Pattern Output message text

123456 __ __ __ 12 34 56

186 SPS Content Barcodes

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

15032011094655 ________ __:__:__ UTC 15\03\2011 09:46:55 UTC

15-03-2011 __#/__#/____ 15/03/2011

Generating output files
The barcode image files that are generated for the output are saved to locations that are specified in the Paths
tab of the Properties dialog (screenshot below), which is accessed with the menu command File | Properties.

Barcode image files for previews may be created in the same directory as the SPS file or as the Working XML
File. These are temporary files, which are deleted when the SPS is closed. Barcode image files that are
created when output is generated using the File | Save Generated File command can be created at any
location. Their target location is specified in the pane, Location of Additionally Generated Files (see screenshot
above).

© 2017-2023 Altova GmbH

Layout Modules 187SPS Content

Altova StyleVision 2024 Professional Edition

5.12 Layout Modules

Layout Modules are objects containing a layout. The module as a whole is inserted in the SPS design and
occurs as a block within the document flow. Within a Layout Module, multiple Layout Boxes, each containing
standard SPS design elements, can be placed according to design requirements. Using Layout Modules,
therefore, designers can create a layout just as they would using an artboard-based graphical design
application.

The steps for creating a Layout Module are as follows:

1. Insert a Layout Container . The Layout Container can occupy the entire width of a page or can have
any other dimensions you want. It can contain a blueprint of the design to serve as design guide and it
can be formatted (in the Styles sidebar) using styles for the Layout Container.

2. Insert one or more Layout Boxes in the Layout Container. Layout Boxes can contain multiple
design elements (including static text, schema nodes, Auto-Calculations, images, lists, etc), and they
can be formatted (in the Styles sidebar) using styles for the Layout Box. Layout Boxes can also be
moved relative to each other within the Layout Container and can be positioned in front of or behind
each other.

3. Lines can be drawn, formatted, positioned and moved to the front or back of the stack of layout
objects (Layout Boxes and other Lines).

Note: Layout Modules are not rendered in Text output.

Form-based designs
When you create a new SPS you are offered the choice of creating a free-flowing design or a form-based
design. A form-based design is essentially an SPS design consisting of a Layout Container.

Note: Layout Modules are supported in Authentic View only in the Enterprise Editions of Altova products.

5.12.1 Layout Containers

A Layout Container has the following properties:

· It can be inserted within the flow of a document, that is, within a template. Or it can be inserted as
the container within which the document design is created.

· It can have the same dimensions as the page dimensions defined for that section (the Auto-Fit to Page
property of Layout Containers). Or it can have any other dimensions you specify. See the Layout
Container size section below for details.

· A layout grid and a zoom feature make the positioning of objects in the Layout Container easier.
· It can have style properties , such as borders, background colors, font-properties for the whole

container, etc.
· It can contain Layout Boxes and Lines , but no other design element. (All design elements must be

placed within Layout Boxes.)
· It can contain a blueprint , which is an image placed on the artboard to serve as a reference

template for the designer. The design can then be built to match the blueprint exactly.

Note: Layout Containers are supported in Authentic View only in the Enterprise Editions of Altova products.

187

190

194

714

188

188

188 189

189

189

190

188 SPS Content Layout Modules

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Inserting a Layout Container
To insert a Layout Container, click the Insert Layout Container icon in the Insert Design Elements toolbar
and click the location in the design where the Layout Container is to be inserted. A dialog appears asking
whether you wish to auto-fit the Layout Container to the page. If you click Yes, the Layout Container will have
the same size as the page dimensions defined in the page layout properties of that particular document
section. If you click No, then a Layout Container with a default size of 3.5in x 5.0in is created.

Note that a Layout Container can also be created at the time you create an SPS.

Layout Container size
There are two sets of properties that affect the size of the Layout Container:

· The Auto-Fit Page Size property (Properties sidebar, screenshot below) can be set to yes to create a
Layout Container having the same dimensions as those specified for pages in that document section.
A value of no for this property creates a Layout Container with a customizable size.

· The height and width properties of the Details group of Layout Container styles (in the Styles sidebar)
specify the dimensions of the Layout Container. The dimensions can also be modified directly in the
design by dragging the right and bottom margins of the Layout Container. Note that the height and
width properties will take effect only when the Auto-Fit Page Size property has a value of no.

Layout Container Grid
The Layout Container has a grid to aid in spacing items in the layout. The following settings control usage of
the grid:

· Show/Hide Grid: A toggle command in the Insert Design Elements toolbar switches the display of the
grid on and off.

· Grid Size: In the Design tab of the Options dialog (Tools | Options) units for horizontal and vertical
lengths can be specified. Note that if very large length units are selected, the grid might not be clearly
visible.

· Snap to Grid: A toggle command in the Insert Design Elements toolbar enables or disables the Snap
to Grid function. When the Snap to Grid feature is enabled, the top and left edges of Layout Boxes and
the endpoints of Layout Lines align with grid lines and points, respectively.

708

839

© 2017-2023 Altova GmbH

Layout Modules 189SPS Content

Altova StyleVision 2024 Professional Edition

Zooming
To help position objects more accurately, you can magnify the view. Do this by changing the Zoom factor in the
Zoom combo box (in the Standard toolbar), or by pressing the Ctrl key and scrolling with the mouse.

Layout Container style properties
There are two types of style properties that can be applied to Layout Containers:

· Those applied to the Layout Container alone and which are not inheritable, such as the border and
background-color properties.

· Those that are inheritable by the Layout Boxes in the Layout Container, such as font properties.

The style properties of a Layout Container are set in the Layout Container styles in the Styles sidebar
(screenshot above).

Layout Container contents
The only design items that can be contained in a Layout Container are Layout Boxes and Lines. Additionally, a
blueprint (which is not a design element) can be placed in the Layout Container as a design aid. All design
elements must be placed in a Layout Box.

190 SPS Content Layout Modules

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Blueprints
One blueprint can be placed in a Layout Container at a time to aid the designer in creating the SPS. The
blueprint is an image file that can be placed to exactly fit the size of the Layout Container. Alternatively, if the
blueprint image is smaller than the Layout Container, it can be offset to the desired location in the design (see
Blueprint image properties screenshot below). The designer can use the blueprint by reproducing the SPS
design over the blueprint design. In this way the designer will be able to place design elements in the layout
exactly as in the blueprint. The blueprint will appear only in Design View, but not in any output view: this is
because its purpose is only to aid in the design of the SPS.

The blueprint's properties can be controlled via the Blueprint image group of properties of the Layout Container
properties (in the Properties sidebar, screenshot below).

The opacity of the blueprint in the Layout Container can be specified so that the blueprint does not interfere with
the viewing of the design. The display of the blueprint image can also be switched off with the Show Image
property if required.

5.12.2 Layout Boxes

Every design element in a layout (such as static text, schema nodes, Auto-Calculations, images, lists, etc)
must be placed in a Layout Box. The Layout Boxes containing design elements are laid out as required in the
Layout Container. Note that a design element cannot be placed directly in a Layout Container; it must be
placed in a Layout Box.

This section describes how Layout Boxes are used and is organized into the following sub-sections:

· Inserting Layout Boxes
· Selecting and moving Layout Boxes
· Modifying the size of the Layout Box
· Defining Layout Box style properties

191

191

191

192

© 2017-2023 Altova GmbH

Layout Modules 191SPS Content

Altova StyleVision 2024 Professional Edition

· Inserting content in the Layout Box
· Stacking order of Layout Boxes

Inserting a Layout Box
A Layout Box can be inserted only in a Layout Container . To add a Layout Box, first click the Insert Layout
Box icon in the Insert Design Elements toolbar, then click on the location inside the Layout Container where
you wish to insert the Layout Box. A Layout Box will be inserted, with its top left corner positioned at the point
where you clicked. The box will be transparent, will have no borders, and will have default text.

Selecting and moving a Layout Box
To select a Layout Box, place the cursor over the left border or top border of the Layout Box so that the cursor
becomes a crossed double arrow. When this happens, click to select the Layout Box. If you keep the mouse
button depressed, you can move the Layout Box to another location within its Layout Container. You can also
move a Layout Box left, right, up, or down by selecting it, and then pressing the cursor key for the required
direction. When the Layout Box is selected, its properties and styles are displayed in the respective sidebars.

Layout Box size
Each Layout Box has a property called Auto-Resize (see screenshot below). When the value of this property is
set to yes, the Layout Box automatically resizes to exactly accommodate any static content (including
markup) that is inserted in it in the Design View. When the value of Auto-Resize is set to no, the size of the
Layout Box does not automatically change when content is inserted in it.

To change the size of the Layout Box manually, drag its right border and bottom border. You can also the
change the size of a Layout Box by using the cursor keys to move the right and bottom borders of the box. To
do this first select the Layout Box . Then do the following: (i) to move the right border, keep the Shift key
depressed and press the right or left cursor key till the required size is obtained; (ii) to move the bottom border,
keep the Shift key depressed and press the top or bottom cursor key.

The Additional Height and Additional Width properties give the lengths that are additional to the optimal
dimensions as determined by auto-resizing. The additional lengths are obtained when a Layout Box is manually
resized. Conversely, by changing the values of these two properties, the size of the Layout Box can be
changed.

192

193

187

708

191

192 SPS Content Layout Modules

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: In a Layout Box a linefeed is obtained by pressing the Enter key. This is significant, because if content
is added that does not contain a linefeed, then the length of the current line increases, thus increasing
the optimal width of the Layout Box and—incidentally—affecting the Additional Width value, which is
calculated with reference to the optimal width.

Layout Box style properties
The style properties of a Layout Box are set in the Layout Box styles in the Styles sidebar (screenshot below).
The styles are displayed when the Layout Box is selected, and can then be edited.

Note: The background-color value of transparent can be selected in the dropdown list of the property's
combo box (it is not available in the color palette). The significance of this value in a situation where the
Layout Box is part of a stack is explained below.

Inserting content in a Layout Box
Any type of design element can be inserted in a Layout Box, and is inserted just as it normally would be in an
SPS. Note, however, that neither a Layout Container nor a Layout Line can be inserted in a Layout Box.
The following points should be noted:

· When design elements are inserted that require a context node, the current node will be taken as the
context node. The current node is the node within which the Layout Module has been created.

· Text content in a layout box can be rotated 90 degrees clockwise or anti-clockwise, so that the text is
vertical, reading from top-to-bottom or bottom-to-top, respectively. To do this, in the design, select the
text that is to be rotated and, in the Properties sidebar (screenshot below), select LayoutBox. In the
Layout Box group of properties, select the required value for the Orientation property.

187 194

© 2017-2023 Altova GmbH

Layout Modules 193SPS Content

Altova StyleVision 2024 Professional Edition

Note the following points:

· The rotation will be applied to the output, but will not be be displayed in the design.
· This property can also be applied to text in table cells .

Stacking order of Layout Boxes
Layout Boxes can be placed one over the other. When one Layout Box is placed on top of another, then, if it is
opaque, it hides that part of the Layout Box which it covers. This behavior can be extended to a stack of several
Layout Boxes. In such a stack, only the topmost Layout Box will be fully visible; the others will be partially or
fully covered.

Layout Boxes can be sent backward or brought forward using the Order menu commands in the context menu
of the selected Layout Box. Using these commands a Layout Box can be ordered: (i) relative to its nearest
neighbor on the stack (the Bring Forward and Send Backward commands), or (ii) relative to the entire stack
(the Bring to Front and Send to Back commands). In the screenshot above, the stacking order from front to
back is as follows:

· Left stack: orange, green, blue
· Right stack: blue, green, orange

Note that Layout Boxes with transparent backgrounds (the default background of Layout Boxes) might appear
to not move relative to each other, especially if more than one box in the stack is transparent and if boxes have
no borders. The screenshot below presents some ways in which transparency affects stacking.

153

194 SPS Content Layout Modules

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: Layout Lines can also be added to a stack of Layout Boxes, and each Line can be moved relative
to other items in the stack.

5.12.3 Lines

Lines can be inserted in a Layout Container (but not in Layout Boxes), then selected, re-sized and
moved around within the Layout Container, assigned properties , and moved backwards and forwards in a
stack of layout items consisting of Layout Boxes and other Lines.

Inserting a Line
To add a Line to a Layout Container, do the following:

1. Click the Insert Line icon in the Insert Design Elements toolbar.
2. Click on the location inside the Layout Container where you wish to locate the start point of the line.
3. Without releasing the mouse button, draw the line from the start point to the desired end point. Then

release the mouse button.

A black line will be inserted, with a dot at each end indicating the start and end points respectively.

Selecting, moving, and sizing a Line
In the Main Window, you can carry out the following-drag-and-drop functions:

· To select a Line, click any part of the Line (the cursor becomes a crossed double arrow when it is over
the Line). Once a Line is selected, its properties are displayed in the Properties sidebar and can be
edited there (see below).

· To move a Line, select it and drag it to the desired location. You can also move a line left, right, up, or
down by selecting it, and then pressing the cursor key for the required direction.

· To graphically re-size or re-orient a Line, select either the start point or end point and re-position it to
obtain a new size and/or orientation. You can also re-size or re-orient a Line by pressing Shift and the
cursor keys: the right and left cursor keys move the right-hand endpoint right and left, the up and down
cursor keys move the right-hand endpoint up and down, respectively.

194

194

194 195

195

708

© 2017-2023 Altova GmbH

Layout Modules 195SPS Content

Altova StyleVision 2024 Professional Edition

Line properties
When a Line is selected its properties are displayed in the Properties sidebar (screenshot below), and the
properties (listed below) can be edited in the sidebar. You can also right-click a Line to pop up the Properties
sidebar with the properties of the Line in it.

The following Line properties can be edited in the Properties sidebar:

· Color: Specifies a color for the Line. The default is black.
· Size and position: The location of the start and end points of the Line can be specified using an x-y

(horizontal-vertical) coordinate system. The reference frame is created with the top left corner of the
Layout Container having the coordinates (x=0, y=0).

· Width: Specifies the thickness of the Line.

Lines and stacking order
When a Line is in a stack consisting of Layout Boxes and other Lines, it can be sent backward or brought
forward using the Order menu commands in the context menu of the selected Line. Using these commands a
Line can be ordered: (i) relative to its nearest neighbor on the stack (the Bring Forward and Send Backward
commands), or (ii) relative to the entire stack (the Bring to Front and Send to Back commands).

196 SPS Content Layout Modules

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In the screenshot above, the stacking order from front to back is as follows: green box, red line, black line, blue
box.

© 2017-2023 Altova GmbH

The Change-To Feature 197SPS Content

Altova StyleVision 2024 Professional Edition

5.13 The Change-To Feature

The Change-To feature is available when a template or the contents of a template are selected, and enables
you to change: (i) the node for which that template applies, or (ii) how the node is created in the design.

What can be changed with the Change-To feature
Either a node or its contents can be changed. In the image below left, the node is selected. In the image at
right, the node's contents are selected.

The n1:Name element in the screenshot above has been created as (contents), and so the node's contents
are represented by the (contents) placeholder. Alternatively, the node could have been created as another
type of content, for example, as an input field or combo box. Other types of content can also be selected.

The Change-To command
Access the change to comannd by right-clicking your selection. In the context menu that pops up, select
Change To (screenshot below).

198 SPS Content The Change-To Feature

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Changing template matches
If a template is selected, you can change the node for which that template applies. This is useful if, for
instance, the name of an element has been changed in the schema. When you mouse over the Change To
command and select Template from the sub-menu that pops up, you are presented with a list off all the nodes
that may be inserted as a child of the selected node's parent element. Click one of these nodes to make the
template apply to that node.

If the selected node has a content model that does not match that described in the template, there will be
structural inconsistencies. Such inconsistencies are errors and are indicated with red strikethroughs in the tags
of nodes that are invalid.

You can also change the template-match to match, not a node, but a variable template .

Changing the content type of the node
If a template or its contents are selected, then you can change the type of content the node is created as. On
hovering over the Change To command in the context menu, the type of content that the selected node can be
changed to is displayed as options in the sub-menu that pops up (screenshot below).

251

© 2017-2023 Altova GmbH

The Change-To Feature 199SPS Content

Altova StyleVision 2024 Professional Edition

The screenshot above has been taken with a combo box selected.

200 SPS Structure

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6 SPS Structure

The structure of an SPS document is both input- as well as output-driven, and it is controlled by:

· Schema sources
· Modular SPSs
· Templates and Design Fragments

Input-driven structure: schemas and modular SPS files
By input-driven, we mean that the source schemas of SPS files specify the structure of the input document/s
and that this structure is the structure on which the SPS document is based. For example, if a source schema
specifies a structure that is a sequence of Office elements, then SPS design could have a template for the
Office element. At processing time this template will be applied in turn to each Office element in the source
data document.

Another example of how the source document structure drives the design of the SPS file can be seen in the
use of tables. Say that an Office element contains multiple Person element children, and that each Person
element contains a set of child elements such as Name, Address, Telephone, etc. Then a template in the form
of a table can be created for the Person element. Each Person element can be presented in a separate row of
the table (screenshot below), in which the columns are the details of the Person (the child elements of the
Person element).

Such a template is possible because of the structure of the Person element and because the Person elements
are siblings. In the table template a single row is designed for the Person element, and this processing (the row
design) is applied in turn to each Person element in the source document, creating a new row for each Person
element, with the child elements forming the columns of the table.

How to use various kinds of schema sources is described in the section, Schema Sources .

Additionally, StyleVision allows SPSs to be re-used as modules within other SPSs. In this way, modules can
be included within a structure and can modify it. However, a schema structure contained in a module must fit in
with the structure of the underlying schema of the containing SPS. How to work with modular SPSs is
described in the section, Modular SPSs .

Output-driven structure: templates and design fragments
While the schema sources provide the structure of the input data document, the actual design of the output
document is what is specified in the SPS document. This design is contained in one document template called
the main template. The main template typically contains several component templates and can reference global
templates. Templates are described in the section, Templates and Design Fragments .

202

230

244

202

230

244

© 2017-2023 Altova GmbH

 201SPS Structure

Altova StyleVision 2024 Professional Edition

This composability (of multiple templates) is further enhanced by a StyleVision feature called Design
Fragments, which enables specific processing to be assigned to a document fragment that can be re-used. A
Design Fragment is different than a global template in that: (i) it can be composed of multiple templates; and (ii)
identical content with different processing can be created in separate design fragments, either of which can be
used in a template according to the situation. For example, in some processing situations, an Email node
might be required as a link that opens an empty email; in other cases the Email element could be required in
bold and in red. Two separate design fragments could provide the respective processing, and both can be re-
used as required.

Design fragments are described in detail in the section, Design Fragments .255

202 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6.1 Schema Sources

The schema sources are the starting point of the design, and design structure can be influenced by: (i) choices
you make during schema selection, and (ii) the root elements you select in the schema.

Schema selection
The selection of the schema for a new SPS file can be done in the following ways:

1. Click File | New and directly select a schema source to add via one of the methods (except New
(empty)) available in the menu that pops up.

2. Click File | New, select New (empty) from the menu that pops up. After the new SPS is created and
displayed in the GUI, in the Design Overview sidebar , select the Add New Schema command.
This pops up a a menu listing the methods you can use to add different types of schemas (screenshot
below). Each command in this menu is described in the sub-sections of this section.

The schema source can be selected from a file, from a DB, or be user-defined. An important point to consider
is whether you will be using global templates, and whether elements you wish to create as global templates are
defined as global elements in the schema. When adding a DTD from file, remember that all elements defined in
the DTD are global elements. When adding an XML Schema from file, it is worth checking what elements are
defined as global elements and, should you wish to make any change to the schema, whether this is permitted
in your XML environment. When a DB is selected, during the import process, you can select what tables from
the DB to import. This selection determines the structure of the XML Schema that will be generated from the
DB.

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is
based.

Root elements
If a schema source has multiple global elements , then multiple root elements (document elements) can
be selected for use in the design. This enables the SPS design to have templates that match multiple
document elements. The advantage of this is that if an SPS, say UniversalSPS.sps, based on
UniversalSchema.xsd has one template each for its two root elements, Element-A and Element-B, then this
one SPS can be used with an XML instance document which has Element-A as its document element as well
as with another XML instance document which has Element-B as its document element. For each XML
instance, the relevant template is used, while the other is not used. This is because for the document element
of each XML instance document, there is only one template in the SPS which matches that document element.
For example, the document element /Element-A will be matched by the template which selects /Element-A
but not by that which selects /Element-B. In this connection, it is important to remember that if multiple global
elements are defined in the schema, an XML document with any one of these global elements as its document
element is valid (assuming of course that its substructure is valid according to the schema).

42

27 27

© 2017-2023 Altova GmbH

Schema Sources 203SPS Structure

Altova StyleVision 2024 Professional Edition

To set up the SPS to use multiple root elements (document elements), click the button to the right of
the /Root elements entry of the schema. The following dialog pops up.

The dialog lists all the global elements in the schema. Select the global elements that you wish to use as root
elements (document elements) and click OK. The selected element/s will be available as root document
elements and will be displayed in the Root Elements list. A template can now be created for each of these
document elements. Each of these templates serves as an alternative root element template. When an XML
document is processed with this SPS, only one of the alternative root element templates will be used: the one
that matches the root (or document) element of the XML document.

So, when an XML document having Element-A as its document element is processed with this SPS, then the
root template in the SPS that matches Element-A is triggered, while all the other root element templates in the
SPS are ignored. If an XML document having Element-B as its document element is processed, then the root
template in the SPS that matches Element-B is triggered, while all other root element templates in the SPS
are ignored. In this way a single SPS can be used to process two or more XML documents, each of which has
a different root (or document) element.

6.1.1 DTDs and XML Schemas

An SPS can be based on an XML Schema or DTD. An XML Schema or DTD can be created as a schema
source in one of the following ways:

· The XML Schema or DTD is is created as a schema source directly when the SPS is created (File |
New | New from XML Schema / DTD / XML).

· The XML Schema or DTD is added to an empty SPS (in the Design Overview sidebar).

The respective commands prompt you to browse for the XML Schema or DTD. If the schema is valid, it is
created as a schema source in the Schema Sources tree of the Schema Tree sidebar. Alternatively, an XML

27

27

42

204 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

file can be selected. If an XML Schema (.xsd) or DTD file is associated with the XML file, then the XML
Schema or DTD file is loaded as the source schema and the XML file is loaded as the Working XML File. If no
schema is associated with the XML file, a dialog pops up asking whether you wish to generate an XML Schema
based on the structure and contents of the XML file or browse for an existing schema. If you choose to
generate a schema, the generated schema will be loaded as the source schema, and the XML file will be
loaded as the Working XML File.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog

© 2017-2023 Altova GmbH

Schema Sources 205SPS Structure

Altova StyleVision 2024 Professional Edition

(the screenshot below shows the Open dialog).

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

206 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

© 2017-2023 Altova GmbH

Schema Sources 207SPS Structure

Altova StyleVision 2024 Professional Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

208 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section, Using Global Resources .
For a general description of Global Resources, see the Global Resources section in this
documentation.

The anyType datatype of XML Schema
If an element in the XML Schema has been assigned the anyType datatype of XML Schema or if it has not
been assigned any datatype, then the schema tree in the Schema Tree will show this element as having all the
global elements of that schema as possible children. For example, if an element called email has not been
assigned any datatype, then it will be displayed in the schema tree with all global elements as possible
children, such as, for example: person, address, city, tel, etc. To avoid this, assign the email element a
datatype such as xs:string.

6.1.2 DB Schemas

An SPS can be based on a schema that is generated from a DB or have a DB-based schema (DB schema) as
one of its schema sources. A DB schema can be created as a schema source in one of the following ways:

· The DB schema is generated for a new SPS when the SPS is created directly from a DB (File | New |
New from DB or File | New | New from XML Column in DB Table).

· The DB schema is added to a new empty SPS that has no schema sources (in the Design Overview
sidebar).

The respective DB-schema-generation commands generate a temporary XML Schema from the selected DB
and creates the schema as a schema source in the Schema Tree sidebar , or the command loads a DB-
based schema (DB schema) from an XML DB. An element extraneous to the DB, called DB, is created as the

document element, and the DB structure is created within this document element. During the schema creation
process, you will be prompted to select which tables or data from the database you wish to import. These
database tables will be created in the XML Schema as children of the DB element and also as items in the

Global Templates list.

Creating the XML Schema from a DB
Creating the XML Schema from a DB consists of two steps:

· Connecting to a Database . This consists essentially of browsing for the DB file (if it is a MS Access
DB), or building a connection string (all other DBs except MS Access).

427

416

42

44

492

© 2017-2023 Altova GmbH

Schema Sources 209SPS Structure

Altova StyleVision 2024 Professional Edition

· DB Data Selection . In this step, the table or data structure from the database is selected. In the
case of non-XML DBs, the temporary XML Schema that is generated and the XML file that is created
will be based on the selected data tables.

After the schema source appears in the Schema Tree window, you can start designing the SPS. A temporary
XML File is created each time an output preview tab is clicked. The XML file is structured according to the
generated XML Schema and contains data from the selected DB tables.

6.1.3 User-Defined Schemas

You can quickly create a user-defined schema in the Schema Tree sidebar . This is useful if you have an
XML document that is not based on any schema and you wish to create an SPS for this XML document.

To add and create a user-defined schema, in the Schema Tree sidebar, do the following:

1. Click File | New | New (empty). In the Design Overview sidebar , click the Add New Source
command (under the Sources heading), and select Add User-Defined Schema (screenshot below).

The new schema is created and is indicated with the parameter $USER (screenshot below).

2. In the Root Elements tree, there is a single root element (document element) called UserRoot.
3. Double-click UserRoot and rename it to match the document element of the XML document for

which you are building this schema.
4. To assign a child element or an attribute to the document element, select the document element

(UserRoot), and click, respectively, (i) the drop-Append New Element icon in the toolbar of the
Schema Tree sidebar ; and (ii) the dropdown arrow of the Append New Element icon | the Append
New Attribute command. Alternatively, you can right-click and select the required command from the
context menu. When an element is selected, appending and inserting an element, adds the new
element as a sibling element, respectively, after and before the selected element. You can also add a

575

44

42

27

27

44

210 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

child element and a child attribute. When an attribute is selected, you can append or insert another
attribute, respectively, after and before the selected attribute. After the new element or attribute is
added to the tree, type in the desired name. You can also drag nodes to the desired location
(described in the next step). In the screenshot below, the Article element is the document element.
The elements Title, Para, Bold, and Italic, and the attributes ID and Author have been added at
the child level of Article.

5. To move the elements Bold and Italic, and the attribute ID to the level of children of Para, select

each individually and drag to the Para element. When a bent downward-pointing arrow appears,
drop the dragged node. It will be created as a "child" of Para (screenshot below).

© 2017-2023 Altova GmbH

Schema Sources 211SPS Structure

Altova StyleVision 2024 Professional Edition

6. When any element other than the document element is selected, adding a new element or attribute
adds the new node at the same level as the selected element. Drag a node (element or attribute) into
an element node to create it as a "child" of the element node.

Editing node names and deleting nodes
To edit the name of an element or attribute, double-click in the name and edit the name. To delete a node,

select it and click the Remove icon in the toolbar. Alternatively, select Remove from the context menu.

6.1.4 Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML schemas
(DTDs for XML and XML Schemas) for use across all Altova's XML-Schema-aware applications, including
StyleVision.

· On Windows, Schema Manager has a graphical user interface (screenshot below) and is also available
at the command line. (Altova's desktop applications are available on Windows only; see list below.)

· On Linux and macOS, Schema Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

212 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Altova applications that operate with Schema Manager

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

XMLSpy (all editions) RaptorXML Server, RaptorXML+XBRL Server

© 2017-2023 Altova GmbH

Schema Sources 213SPS Structure

Altova StyleVision 2024 Professional Edition

MapForce (all editions) StyleVision Server

StyleVision (all editions)

Authentic Desktop Enterprise Edition

Installation and de-installation of Schema Manager
Schema Manager is installed automatically when you first install a new version of Altova Mission Kit or of any
of Altova's XML-schema-aware applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XML-schema-aware application from
your computer.

Schema Manager features
Schema Manager provides the following features:

· Shows XML schemas installed on your computer and checks whether new versions are available for
download.

· Downloads newer versions of XML schemas independently of the Altova product release cycle. (Altova
stores schemas online, and you can download them via Schema Manager.)

· Install or uninstall any of the multiple versions of a given schema (or all versions if necessary).
· An XML schema may have dependencies on other schemas. When you install or uninstall a particular

schema, Schema Manager informs you about dependent schemas and will automatically install or
remove them as well.

· Schema Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XML schemas, processing will therefore be faster than if the schemas were at a remote
location.

· All major schemas are available via Schema Manager and are regularly updated for the latest versions.
This provides you with a convenient single resource for managing all your schemas and making them
readily available to all of Altova's XML-schema-aware applications.

· Changes made in Schema Manager take effect for all Altova products installed on that machine.
· In an Altova product, if you attempt to validate on a schema that is not installed but which is available

via Schema Manager, then installation is triggered automatically. However, if the schema package
contains namespace mappings, then there will be no automatic installation; in this case, you must
start Schema Manager, select the package/s you want to install, and run the installation. If, after
installation, your open Altova application does not restart automatically, then you must restart it
manually.

How it works
Altova stores all XML schemas used in Altova products online. This repository is updated when new versions of
the schemas are released. Schema Manager displays information about the latest available schemas when
invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall schemas via
Schema Manager.

Schema Manager also installs schemas in one other way. At the Altova website
(https://www.altova.com/schema-manager) you can select a schema and its dependent schemas that you want
to install. The website will prepare a file of type .altova_xmlschemas for download that contains information

about your schema selection. When you double-click this file or pass it to Schema Manager via the CLI as an
argument of the install command, Schema Manager will install the schemas you selected.222

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
https://www.altova.com/schema-manager

214 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Local cache: tracking your schemas
All information about installed schemas is tracked in a centralized cache directory on your computer, located
here:

Windows C:\ProgramData\Altova\pkgs\.cache

Linux /var/opt/Altova/pkgs\.cache

macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of schemas at Altova's online storage. These
updates are carried out at the following times:

· Every time you start Schema Manager.
· When you start StyleVision for the first time on a given calendar day.
· If StyleVision is open for more than 24 hours, the cache is updated every 24 hours.
· You can also update the cache by running the update command at the command line interface.

The cache therefore enables Schema Manager to continuously track your installed schemas against the
schemas available online at the Altova website.

Do not modify the cache manually!
The local cache directory is maintained automatically based on the schemas you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Schema Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset command, and (ii) run the
initialize command. (Alternatively, run the reset command with the --i option.)

6.1.4.1 Run Schema Manager

Graphical User Interface
You can access the GUI of Schema Manager in any of the following ways:

· During the installation of StyleVision: Towards the end of the installation procedure, select the check
box Invoke Altova XML-Schema Manager to access the Schema Manager GUI straight away. This will
enable you to install schemas during the installation process of your Altova application.

· After the installation of StyleVision: After your application has been installed, you can access the
Schema Manager GUI at any time, via the menu command Tools | XML Schema Manager.

· Via the .altova_xmlschemas file downloaded from the Altova website: Double-click the downloaded file

to run the Schema Manager GUI, which will be set up to install the schemas you selected (at the
website) for installation.

After the Schema Manager GUI (screenshot below) has been opened, already installed schemas will be shown
selected. If you want to install an additional schema, select it. If you want to uninstall an already installed
schema, deselect it. After you have made your selections and/or deselections, you are ready to apply your
changes. The schemas that will be installed or uninstalled will be highlighted and a message about the

225

223

221

https://www.altova.com/schema-manager

© 2017-2023 Altova GmbH

Schema Sources 215SPS Structure

Altova StyleVision 2024 Professional Edition

upcoming changes will be posted to the Messages pane at the bottom of the Schema Manager window (see
screenshot).

216 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Command line interface
You can run Schema Manager from a command line interface by sending commands to its executable file,
xmlschemamanager.exe.

The xmlschemamanager.exe file is located in the following folder:

· On Windows: C:\ProgramData\Altova\SharedBetweenVersions
· On Linux or macOS (server applications only): %INSTALLDIR%/bin, where %INSTALLDIR% is the

program's installation directory.

You can then use any of the commands listed in the CLI command reference section .

To display help for the commands, run the following:

· On Windows: xmlschemamanager.exe --help
· On Linux or macOS (server applications only): sudo ./xmlschemamanager --help

6.1.4.2 Status Categories

Schema Manager categorizes the schemas under its management as follows:

· Installed schemas. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked and blue versions of the EPUB and HL7v3 NE schemas are installed schemas). If
all the versions of a schema are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed schema
to uninstall it; (in the screenshot below, the DocBook DTD is installed and has been deselected,
thereby preparing it for de-installation).

· Uninstalled available schemas. These are shown in the GUI with their check boxes unselected. You
can select the schemas you want to install.

220

© 2017-2023 Altova GmbH

Schema Sources 217SPS Structure

Altova StyleVision 2024 Professional Edition

· Upgradeable schemas are those which have been revised by their issuers since they were installed.

They are indicated in the GUI by a icon. You can patch an installed schema with an available
revision.

Points to note

· In the screenshot above, both CBCR schemas are checked. The one with the blue background is
already installed. The one with the yellow background is uninstalled and has been selected for
installation. Note that the HL7v3 NE 2010 schema is not installed and has not been selected for
installation.

· A yellow background means that the schema will be modified in some way when the Apply button is
clicked. If a schema is unchecked and has a yellow background, it means that it will be uninstalled
when the Apply button is clicked. In the screenshot above the DocBook DTD has such a status.

· When running Schema Manager from the command line, the list command is used with different
options to list different categories of schemas:

xmlschemamanager.exe list Lists all installed and available schemas; upgradeables are also
indicated

xmlschemamanager.exe list

-i
Lists installed schemas only; upgradeables are also indicated

xmlschemamanager.exe list

-u
Lists upgradeable schemas

222

218 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: On Linux and macOS, use sudo ./xmlschemamanager list

6.1.4.3 Patch or Install a Schema

Patch an installed schema
Occasionally, XML schemas may receive patches (upgrades or revisions) from their issuers. When Schema
Manager detects that patches are available, these are indicated in the schema listings of Schema Manager and
you can install the patches quickly.

In the GUI

Patches are indicated by the icon. (Also see the previous topic about status categories .) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each schema that will be patched changes from to , and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a schema marked for
patching, you will actually be uninstalling that schema.

On the CLI
To apply a patch at the command line interface:

1. Run the list -u command. This lists any schemas for which upgrades are available.
2. Run the upgrade command to install all the patches.

Install an available schema
You can install schemas using either the Schema Manager GUI or by sending Schema Manager the install
instructions via the command line.

Note: If the current schema references other schemas, the referenced schemas are also installed.

In the GUI
To install schemas using the Schema Manager GUI, select the schemas you want to install and click Apply.

You can also select the schemas you want to install at the Altova website and generate a downloadable
.altova_xmlschemas file. When you double-click this file, it will open Schema Manager with the schemas you

wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install schemas via the command line, run the install command:

xmlschemamanager.exe install [options] Schema+

where Schema is the schema (or schemas) you want to install or a .altova_xmlschemas file. A schema is

referenced by an identifier of format <name>-<version>. (The identifiers of schemas are displayed when

you run the list command.) You can enter as many schemas as you like. For details, see the
description of the install command.

216

222

225

222

222

222

https://www.altova.com/schema-manager

© 2017-2023 Altova GmbH

Schema Sources 219SPS Structure

Altova StyleVision 2024 Professional Edition

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Installing a required schema
When you run an XML-schema-related command in StyleVision and StyleVision discovers that a schema it
needs for executing the command is not present or is incomplete, Schema Manager will display information
about the missing schema/s. You can then directly install any missing schema via Schema Manager.

In the Schema Manager GUI, you can view all previously installed schemas at any time by running Schema
Manager from Tools | Schema Manager.

6.1.4.4 Uninstall a Schema, Reset

Uninstall a schema
You can uninstall schemas using either the Schema Manager GUI or by sending Schema Manager the
uninstall instructions via the command line.

Note: If the schema you want to uninstall references other schemas, then the referenced schemas are also
uninstalled.

In the GUI
To uninstall schemas in the Schema Manager GUI, clear their check boxes and click Apply. The selected
schemas and their referenced schemas will be uninstalled.

To uninstall all schemas, click Deselect All and click Apply.

On the CLI
To uninstall schemas via the command line, run the uninstall command:

xmlschemamanager.exe uninstall [options] Schema+

where each Schema argument is a schema you want to uninstall or a .altova_xmlschemas file. A schema

is specified by an identifier that has a format of <name>-<version>. (The identifiers of schemas are

displayed when you run the list command.) You can enter as many schemas as you like. For details,
see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Reset Schema Manager
You can reset Schema Manager. This removes all installed schemas and the cache directory.

· In the GUI, click Reset Selection.
· On the CLI, run the reset command.

224

222

224

223

220 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

After running this command, make sure to run the initialize command in order to recreate the cache
directory. Alternatively, run the reset command with the -i option.

Note that reset -i restores the original installation of the product, so it is recommended to run the
update command after performing a reset. Alternatively, run the reset command with the -i and -u
options.

6.1.4.5 Command Line Interface (CLI)

To call Schema Manager at the command line, you need to know the path of the executable. By default, the
Schema Manager executable is installed here:

C:\ProgramData\Altova\SharedBetweenVersions\XMLSchemaManager.exe

Note: On Linux and macOS systems, once you have changed the directory to that containing the
executable, you can call the executable with sudo ./xmlschemamanager. The prefix ./ indicates that

the executable is in the current directory. The prefix sudo indicates that the command must be run with

root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]

In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []

indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --
version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

6.1.4.5.1 help

This command provides contextual help about commands pertaining to Schema Manager executable.

Syntax
<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

· You can invoke help for a command by typing the command followed by -h or --help, for example:

<exec> list -h

· If you type -h or --help directly after the executable and before a command, you will get general help

(not help for the command), for example: <exec> -h list

221

223

223

225 223

© 2017-2023 Altova GmbH

Schema Sources 221SPS Structure

Altova StyleVision 2024 Professional Edition

Example
The following command displays help about the list command:

xmlschemamanager help list

6.1.4.5.2 info

This command displays detailed information for each of the schemas supplied as a Schema argument. This
information for each submitted schema includes the title, version, description, publisher, and any referenced
schemas, as well as whether the schema has been installed or not.

Syntax
<exec> info [options] Schema+

· The Schema argument is the name of a schema or a part of a schema's name. (To display a schema's

package ID and detailed information about its installation status, you should use the list
command.)

· Use <exec> info -h to display help for the command.

Example
The following command displays information about the latest DocBook-DTD and NITF schemas:

xmlschemamanager info doc nitf

6.1.4.5.3 initialize

This command initializes the Schema Manager environment. It creates a cache directory where information
about all schemas is stored. Initialization is performed automatically the first time a schema-cognizant Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

222

222 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Example
The following command initializes Schema Manager:

xmlschemamanager initialize

6.1.4.5.4 install

This command installs one or more schemas.

Syntax
<exec> install [options] Schema+

To install multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas you want, run the list command. You can also use an
abbreviated identifier if it is unique, for example docbook. If you use an abbreviated identifier, then the

latest version of that schema will be installed.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The install command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command installs the CBCR 2.0 (Country-By-Country Reporting) schema and the latest DocBook
DTD:

xmlschemamanager install cbcr-2.0 docbook

6.1.4.5.5 list

This command lists schemas under the management of Schema Manager. The list displays one of the
following

222

211

© 2017-2023 Altova GmbH

Schema Sources 223SPS Structure

Altova StyleVision 2024 Professional Edition

· All available schemas
· Schemas containing in their name the string submitted as a Schema argument

· Only installed schemas
· Only schemas that can be upgraded

Syntax
<exec> list | ls [options] Schema?

If no Schema argument is submitted, then all available schemas are listed. Otherwise, schemas are listed as

specified by the submitted options (see example below). Note that you can submit the Schema argument

multiple times.

Options
The list command takes the following options:

--installed, --i List only installed schemas. The default is false.

--upgradeable, --u List only schemas where upgrades (patches) are available. The default is
false.

--help, --h Display help for the command.

Examples

· To list all available schemas, run: xmlschemamanager list

· To list installed schemas only, run: xmlschemamanager list -i

· To list schemas that contain either "doc" or "nitf" in their name, run: xmlschemamanager list doc

nitf

6.1.4.5.6 reset

This command removes all installed schemas and the cache directory. You will be completely resetting your
schema environment. After running this command, be sure to run the initialize command to recreate the
cache directory. Alternatively, run the reset command with the -i option. Since reset -i restores the original

installation of the product, we recommend that you run the update command after performing a reset and
initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --i Initialize Schema Manager after reset. The default is false.

--update, --u Updates the list of available schemas in the cache. The default is false.

221

225

224 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Examples

· To reset Schema Manager, run: xmlschemamanager reset

· To reset Schema Manager and initialize it, run: xmlschemamanager reset -i

· To reset Schema Manager, initialize it,and update its schema list, run: xmlschemamanager reset -i

-u

6.1.4.5.7 uninstall

This command uninstalls one or more schemas. By default, any schemas referenced by the current one are
uninstalled as well. To uninstall just the current schema and keep the referenced schemas, set the option --k.

Syntax
<exec> uninstall [options] Schema+

To uninstall multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas that are installed, run the list -i command. You can also use

an abbreviated schema name if it is unique, for example docbook. If you use an abbreviated name, then

all schemas that contain the abbreviation in its name will be uninstalled.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced schemas. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command uninstalls the CBCR 2.0 and EPUB 2.0 schemas and their dependencies:

xmlschemamanager uninstall cbcr-2.0 epub-2.0

222

211

© 2017-2023 Altova GmbH

Schema Sources 225SPS Structure

Altova StyleVision 2024 Professional Edition

The following command uninstalls the eba-2.10 schema but not the schemas it references:
xmlschemamanager uninstall --k cbcr-2.0

6.1.4.5.8 update

This command queries the list of schemas available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset and
initialize .

Syntax
<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command updates the local cache with the list of latest schemas:

xmlschemamanager update

6.1.4.5.9 upgrade

This command upgrades all installed schemas that can be upgraded to the latest available patched version.
You can identify upgradeable schemas by running the list -u command.

Note: The upgrade command removes a deprecated schema if no newer version is available.

Syntax
<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

223

221

222

226 SPS Structure Schema Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

--help, --h Display help for the command.

© 2017-2023 Altova GmbH

Merging XML Data from Multiple Sources 227SPS Structure

Altova StyleVision 2024 Professional Edition

6.2 Merging XML Data from Multiple Sources

XML data from multiple source XML files can be merged when XSLT 2.0 or 3.0 is used as the XSLT version of
the SPS.

Typically, the merging of data will be based on a common piece of data, such as an ID. For example, an
employee in a company, who is identified by a personal ID number, can have his or her personal data stored in
multiple XML files held by the personnel department: (i) personal details, (ii) payroll, (iii) work and leave, (iv)
courses attended, etc. Data from these different files can be merged in a single output document using the
personal ID number as a key.

Note: The Enterprise Edition enables you to include multiple schema sources, so XML nodes from other
schemas can be selected using the parameter name for the corresponding schema (as is the case in
the example below). In the Professional and Basic Editions, the doc() function of XPath 2.0 can be
used to locate the required XML file and the XML node within that file. The doc() function of XPath 2.0
provides access to the document root of external XML documents, and thus enables node content from
external XML documents to be inserted in the output. An Auto-Calculation that uses the doc()
function can, therefore, also be used to merge XML data (see example below).

Example
The (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples, contains an example SPS file
(MergeData_2_Files.sps) that shows how data from different source XML files can be merged. The SPS
selects data from an order (MergeOrder.xml, listed below) that a fictitious customer places.

<?xml version="1.0" encoding="UTF-8"?>
<Order xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MergeOrder.xsd">
 <Item partNum="238-KK" quantity="3" shipDate="2000-01-07" comment="With no inclusions,
please."/>
 <Item partNum="748-OT" quantity="1" shipDate="2000-02-14" comment="Valentine's day
packaging."/>
 <Item partNum="229-OB" quantity="1" shipDate="1999-12-05"/>
 <Item partNum="833-AA" quantity="2" shipDate="1999-12-05" comment="Need this for the
holidays!"/>
</Order>

The value of the /Order/Item/@partNum attribute in this file (see above) is used to select the ordered products
from the catalog of articles stored in another file, MergeArticles.xml (see listing below).

<?xml version="1.0" encoding="UTF-8"?>
<Articles xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MergeArticles.xsd">
 <Article PartNum="833-AA">
 <ProductName>Lapis necklace</ProductName>
 <Price>99.95</Price>
 </Article>
 <Article PartNum="748-OT">
 <ProductName>Diamond heart</ProductName>
 <Price>248.90</Price>
 </Article>
 <Article PartNum="783-KL">

270

29

228 SPS Structure Merging XML Data from Multiple Sources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 <ProductName>Uncut diamond</ProductName>
 <Price>79.90</Price>
 </Article>
 <Article PartNum="238-KK">
 <ProductName>Amber ring</ProductName>
 <Price>89.90</Price>
 </Article>
 <Article PartNum="229-OB">
 <ProductName>Pearl necklace</ProductName>
 <Price>4879.00</Price>
 </Article>
 <Article PartNum="128-UL">
 <ProductName>Jade earring</ProductName>
 <Price>179.90</Price>
</Article>

...
</Articles>

The way the merging of the data is done is to set up a User-defined template within the /Order/Item
template (see screenshot below) that selects the corresponding Article element in the MergeArticles.xml
file by using the part number of the ordered item to identify the article. The XPath expression (which is in
the /Order/Item context) is: $Articles//Article[@PartNum=current()/@partNum]

This template will produce output something like that shown in the screenshot below.

Notice that while the quantity ordered of each item is taken from the file MergeOrder.xml, the name of the
ordered article is taken from the file MergeArticles.xml. Also notice how the ProductName node is selected
within the context of the /Articles/Article template.

The same result as that obtained above could also be achieved using an Auto-Calculation (see screenshot
below). Drag the quantity attribute from the Schema Tree window and create it as contents. Then add an
Auto-Calculation as shown in the screenshot and give the Auto-Calculation an XPath expression as described
below.

248

270

© 2017-2023 Altova GmbH

Merging XML Data from Multiple Sources 229SPS Structure

Altova StyleVision 2024 Professional Edition

The XPath expression of the Auto-Calculation could target the required node using either the parameter of
another schema source or the doc() function:

$Articles//Article[@PartNum=current()/@partNum]/ProductName

or

doc('MergeArticles.xml')//Article[@PartNum=current()/@partNum]/ProductName

Notice that, while the first XPath expression above uses a parameter to refer to another XML Schema (a feature
available only in the Enterprise Edition), the second expression uses the doc() function of XPath 2.0 (a feature
available in the Professional and Basic editions as well).

230 SPS Structure Modular SPSs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6.3 Modular SPSs

The global templates of an SPS, as well as Design Fragments, JavaScript functions, and page layout items
can be used in the design of another SPS. This enables:

1. The re-use of global templates and other components across multiple SPSs, the main advantages of
which are single-source editing and consistency of output.

2. SPSs to be modularized, and thus to be more flexibly structured.

In any given SPS, one or more SPSs can be added as modules. Some types of components (or objects) in
these modules are then available to the importing (or referring) SPS.

Available module objects
The section, Available Module Objects , not only describes the extent to which, and conditions under which,
the various components of an SPS are available to an importing SPS. It also lists those components that are
not available to the importing SPS. You should note that if an added module itself contains modules, then
these are added recursively to the referring SPS. In this way, modularization can be extended to several levels
and across a broad design structure.

Creating a modular SPS
To build a modularized SPS, first add the required SPS to the main SPS as a module. All the JavaScript
functions, global templates, Design Fragments, and XPath functions in the added module are available to the
referring SPS. Each of the available objects is listed in the Design Tree, under its respective heading
(screenshot below), and can be activated or deactivated, respectively, by checking or unchecking its check
box.

231

234

© 2017-2023 Altova GmbH

Modular SPSs 231SPS Structure

Altova StyleVision 2024 Professional Edition

These objects can then be re-used in the referring SPS according to their respective inclusion mechanisms.
Global templates typically would need merely to be activated in order for them to be applied in the referring
SPS. Design fragments have to be dragged from the Design Tree to the required location. JavaScript functions
are assigned via the Property window as event handlers for the selected design component. And available
(activated) XPath functions can be used in Xpath expressions.

How to create and work with a modular SPS is described in the section, Creating a Modular SPS .

Terminology
When an SPS is used within another module it is said to be added to the latter, and we call the process
adding. The two SPSs are referred to, respectively, as the added SPS module and the referring SPS
module. When an SPS module is added, its objects are added to the referring SPS module. These objects
are called module obj ects, and are of the following types: global templates; Design Fragments; JavaScript
functions; and page layout items.

6.3.1 Available Module Objects

This section lists the objects in added SPS modules that are available to the referring SPS module . The
listing explains in what way each object is available to the referring SPS module and how it can be used there.
For a step-by-step approach to creating modular SPSs, see the next section, Creating a Modular SPS . The
section ends with a list of objects in the added SPS that are not available to the referring SPS module; this will
help you to better understand how modular SPSs work.

234

231 231

234

232 SPS Structure Modular SPSs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Namespace declarations
· Global templates
· Design fragments
· Added modules
· Scripts
· CSS styles
· Page layouts
· Unavailable module objects

Namespace declarations
Each SPS stores a list of namespace URIs and their prefixes. When an SPS is added as a module, the
namespaces in it are compared to the namespaces in the schema source/s of the referring SPS. If a
namespace URI in the added SPS matches a namespace URI in the schema source/s of the referring SPS,
then the prefix used in the schema source of the referring SPS is adopted as the prefix for that namespace in
the added SPS. If a namespace URI in the added SPS cannot be matched with any namespace URI in the
schema source/s of the referring SPS, then an error message indicating this is displayed.

The screenshot above shows the various namespaces in an SPS, together with their prefixes, in the Schema
Tree sidebar. These namespaces come from the source schema/s and cannot be edited.

Global templates
The global templates of the added SPS module are available to the referring SPS module and are displayed
in the Design Tree sidebar (screenshot below). They are, by default, activated or deactivated (checked or
unchecked), according to the respective activation status in the added module. If you wish to create a global
template to override a global template from an added module, create the new global template by clicking the

 icon next to the Global Templates entry. In the Add New Global Template that pops up, select an element
or attribute for which you wish to create the global template. Alternatively, enter an XPath expression that
selects the required node in the schema. On clicking OK, you will be prompted as to whether the new global

232

232

233

233

234

234

234

234

244

48

© 2017-2023 Altova GmbH

Modular SPSs 233SPS Structure

Altova StyleVision 2024 Professional Edition

template should be activated in preference to the global template in the added module. The response you
select activates either the newly created global template or the global template in the added module. You can
switch your selection at any time by checking the other of the two global templates.

Note that the main template of added modules are not available. This means that if you plan to re-use a
template via the modular approach, you must create it as a global template. If no global template is defined for
a particular element and processing is invoked for that element, then the default processing for that element
(XSLT's built-in templates) will be used.

Design fragments
Design fragments in the added SPS module are available to the referring SPS and are displayed in the
Design Tree sidebar (screenshot above). When inserting a design fragment in the design, care should be
taken to place the design fragment within the correct context node in the design.

Added modules
Each added SPS module also makes available to the referring SPS its own added modules, and their added
modules, and so on. In this way, adding one module recursively makes available all modules that have been
added to it, down multiple levels. Needless to say, these modules must together construct a content model
that is valid according to the source schema/s of the referring SPS module. Modules are displayed and can be
managed in the Design Overview sidebar .

255

48

42

234 SPS Structure Modular SPSs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Scripts
The scripts in all the added SPS modules are available for use in the referring SPS and are displayed in the
Design Tree sidebar . In effect, the scripts of all the added modules are collected in a library that is now—in
the referring SPS—available for selection in the Properties dialog.

CSS styles
The global styles present in added SPS modules are carried over to the referring SPS as global styles and the
style rules are displayed in the Style Repository sidebar . The CSS files are also listed in the Design
Overview sidebar . Similarly, external CSS files that were available to the added SPS module, are available
to the referring SPS module.

Page layouts
The page layouts of an added module are available to the referring SPS and are displayed in the Design Tree
sidebar .

Module objects that are not available to the referring SPS
The following objects of the added module are not available to the referring SPS:

· Parameter definitions: are ignored.
· Schema sources: The schema source on which the added SPS is based is ignored. Bear in mind that

the content model of the document element of the added SPS must be contained within the content
model of the referring SPS; otherwise it would not be possible to correctly use the added SPS as a
module. If you wish, you could always add a user-defined schema to the referring SPS. The additional
schema could accommodate the content model of the added global template/s.

· Working XML File and Template XML File: References to these files are ignored. The referring SPS
uses its own Working XML and Template XML Files.

· XPath default namespaces: If they have been set on a module that is imported then they are not
carried through to the importing SPS.

6.3.2 Creating a Modular SPS

Creating a modular SPS consists of four broad parts:

1. Design and save the SPS module to be added .
2. Add the module to the SPS in which it is to be used (that is, to the referring SPS module).
3. Activate or deactivate the added object/s as required.
4. Apply the required object wherever required.

The SPS module to be added
There are two points to bear in mind when creating an SPS that will be added to another:

1. The templates that can be used in the referring SPS module can only be global templates . This
means that the templates you wish to re-use must be created as global templates in the SPS module
that is to be added .

467

365

42

48

234

235

237

231 244

231

© 2017-2023 Altova GmbH

Modular SPSs 235SPS Structure

Altova StyleVision 2024 Professional Edition

2. The document structure defined in the SPS module to be added must be valid within the content model
defined by the source schema/s of the referring SPS . If an added template is not contained in the
content model defined by the main schema of the SPS, its content model, however, can still be defined
in a user-defined schema.

When creating the SPS module to be added, the schema on which you base the SPS could be one of the
following:

· The main source schema of the referring SPS. In this case, when the SPS is added, the added global
templates will be part of the content model of the referring SPS's main schema. The output of these
global templates in Authentic View is, therefore, editable.

· A schema which defines a content model that is part of the content model defined by the main schema
of the referring SPS. In this case, when the global templates are added, they will fit into the content
model of the main schema of the referring SPS. The output of these global templates is editable in
Authentic View.

· A schema which defines a content model that is not part of the content model defined by the main
schema of the referring SPS. When this SPS module is added, its global templates will not be part of
the content model of the main schema of the referring SPS. They can, however, be used to produce
output if a user-defined schema is used that defines a content model that contains the content model
of the global template/s. In Authentic View, however, the output of these global templates cannot be
edited.

When defining the content models in your schemas, you should pay close attention to the namespaces
used since these determine the expanded names of nodes.

You could use a Working XML File to test the output of the SPS module to be added. The reference to this
Working XML File will be ignored by the referring SPS .

Adding the SPS module
To add a module to an SPS, in the Design Overview (screenshot below), click the Add New Module
command, browse for the required SPS file in the dialog that appears, select it, and click Open.

234

232

28

234

42

236 SPS Structure Modular SPSs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The module is added to the SPS and is listed under the Modules heading in the Design Overview. In the
screenshot above, the BusinessAddressBook.sps and PersonalAddressBook.sps modules have been added
to the AddressBook.sps module (the active SPS). All the added module objects are listed in the Design Tree
sidebar; added CSS files, though, are also also listed in the Design Overview. If the added modules themselves
refer to modules, these latter, indirectly imported modules are listed under the Modules heading, but in gray.
Information about which modules import an indirectly imported module is available in a pop-up that appears
when you mouseover the indirectly imported module.

To open one of the added modules or indirectly imported modules quickly in StyleVision, right-click that
module, and select Open Defining Module from the context menu that pops up.

Order of added modules
The order in which modules are added and listed is significant for the prioritizing of CSS styles. In keeping with
the CSS cascade order, CSS style rules in a relatively later module (lower down the list) have priority over style
rules defined in a relatively earlier module (higher up the list). CSS styles in the referring SPS module have
priority over those in any added module. To change the relative position of an added module, right-click it in the
Design Overview and click, as required, the Move Up or Move Down command in the context menu.

The module order is not significant for resolving conflicts among scripts, global templates, design fragments,
and page layout items.

File modification alerts
If any added file (whether an SPS module, schema, or Working XML File) is modified after the referring SPS
module has been opened, then a file modification pop-up will alert you to the change and ask whether the
referring SPS module should be refreshed with the changes.

© 2017-2023 Altova GmbH

Modular SPSs 237SPS Structure

Altova StyleVision 2024 Professional Edition

Activating/deactivating the added object
All module objects in all added modules (whether added directly or indirectly) are added to the referring SPS
and are listed under the corresponding headings in the Design Tree: Scripts; Global Templates; Design
Fragments; XSLT Templates; and XPath Functions. Next to each of these objects is a check box (see
screenshot below), which you can check or uncheck to, respectively, activate or deactivate that object. When
an object is deactivated, it is effectively removed from the SPS.

In the screenshot above, all the global templates used in the AddressBook.sps module are listed under the
Global Templates heading. Those that have been added via other modules (whether directly or indirectly) are
displayed in gray. Those that have been created directly in AddressBook.sps are displayed in black. The
screenshot shows that only one global template, addr:Email, has been created in AddressBook.sps itself. All
the other global templates have been added via other modules, and the file in which each of these is defined is
listed next to its name.

Notice that there are two global templates for addr:Email, one created in the referring SPS
(AddressBook.sps) itself, and the other created in the added module ContactPoints.sps. If more than one
global template has the same (namespace-) expanded name, then only one of these will be active at a time.
You can select which one by checking its check box. (Alternatively, you activate the global template from its
context menu in Design View.) This mechanism is useful if you: (i) wish to override an added global template
with one that you create in the referring SPS module, or (ii) wish to resolve a situation where a global template
for one element is defined in more than one added module.

A global template that has been defined in the current SPS can be deleted by selecting it and clicking the
Remove button. However, global templates that have been defined in an added module cannot be removed

238 SPS Structure Modular SPSs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

from the referring SPS. They must be removed by opening the added SPS and removing the global template
there.

Individual scripts, Design Fragments, and page layout items can be activated and deactivated in the same way.

Applying or using modular objects
In the referring SPS module , you design your templates as usual. Each different type of added object is
used or applied differently. You should, of course, ensure that each module object you wish to apply has been
activated .

Global templates
When you wish to use a global template from any of the added SPS modules, you must make sure that
this global template is indeed applied. This can be done in one of two ways, according to which one is
appropriate for your design:

· In the main template, specify that the element template either uses the global template for that
element or copies that global template locally. These two commands are available in the context menu
that appears when you right-click the element tag in the design.

· In the main template, the contents or rest-of-contents placeholders cause templates to be applied,
leading to the relevant global templates being processed.

Design Fragments
To use a Design Fragment, drag it from the Design Tree to the desired location in the main template or a global
template. Make sure that the location where the Design Fragment is dropped is the correct context node for
that Design Fragment. For details, see Design Fragments .

Scripts
All JavaScript functions (whether in an added module or created in the referring SPS) are available as event
handlers, and can be set for a particular event via the Properties sidebar .

6.3.3 Example: An Address Book

The (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\ModularSPS, contains examples of
modular SPSs. The example files in this folder comprise a project in which an address book containing
business and personal contacts is modularized. The example not only demonstrates the mechanisms in which
modularization is implemented, but also illustrates the main reasons why one would modularize.

· The complete address book is composed of two modules: (i) a business address book, and (ii) a
personal address book, each of which has a separate SPS defining different designs. The two modules
together make up the composite address book. Modularization in this case is used to compose: the
modules are the components of a larger unit.

· Although the content model of each module (business and personal address books) differs slightly from
the other, both have a common module, which is the ContactPoints module, consisting of the core
contact details: address, telephone, fax, and email. The ContactPoints module can therefore be shared
between the two address books (business and personal). Modularization in this case enables a single
module to be used as a common unit within multiple other units.

· Further, the ContactPoints module can be modularized to provide more flexibility. In the example
project, we have created a separate Address module to contain the postal address, which may have

231

237

244

255

469

29

© 2017-2023 Altova GmbH

Modular SPSs 239SPS Structure

Altova StyleVision 2024 Professional Edition

one of three content models, depending on whether the address is in the EU, US, or elsewhere. The
output for all three content models is defined in a single SPS. However, they could have been defined
in separate SPSs, which would have provided finer granularity. In this case, modularization would
provide more flexibility as modules could be re-used more easily.

The description of this project is organized into the following parts:

· The schema files
· The XML data sources
· The SPS files

The schema files
When creating schemas for modular SPSs, the most important thing to bear in mind is to create the elements
that you wish to re-use as global elements. The schema for the address book is AddressBook.xsd. This
schema has been constructed by importing the schemas for the business address book
(BusinessAddressBook.xsd) and personal address book (PersonalAddressBook.xsd). The
BusinessAddressBook.xsd schema provides a content model for companies, while the
PersonalAddressBook.xsd schema provides a content model for persons (see screenshot below).

Both schemas import the ContactPoints.xsd schema (see screenshot below), which defines a content model
for contact details.

239

240

241

240 SPS Structure Modular SPSs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Finally, the ContactPoints.xsd schema (screenshot below) includes the Address.xsd schema, which defines
the three address-type content models: for EU, US, and other addresses.

Imports are used when the imported schema belongs to a different namespace than the importing schema.
Includes are used when the included schema belongs to the same namespace as the including schema.

Note: The screenshots above are of the schema in the Schema View of Altova's XMLSpy.

The XML data sources
The XML data is contained in the file AddressBook.xml. This file is structured so that the AddressBook
element contains the companies and persons elements as its children. The content models of these two
elements are defined in the schema files, BusinessAddressBook.xsd and PersonalAddressBook.xsd,
respectively.

© 2017-2023 Altova GmbH

Modular SPSs 241SPS Structure

Altova StyleVision 2024 Professional Edition

There are two additional XML data files, which correspond to the BusinessAddressBook.xsd and
PersonalAddressBook.xsd schemas. These two XML files, BusinessAddressBook.xml and
PersonalAddressBook.xml, are used as the Working XML Files of the corresponding SPS files.

The three XML files are the Working XML Files of the following SPS modules:

· AddressBook.xml => AddressBook.sps, ContactPoints.sps, Address.sps
· BusinessAddressBook.xml => BusinessAddressBook.sps
· PersonalAddressBook.xml => PersonalAddressBook.sps

The SPS modules
 The description of the SPS modules starts with the most basic module (Address.sps) and progresses in
compositionally incremental steps to the complete address book (AddressBook.sps). All the SPS modules
use AddressBook.xsd as its schema.

Address.sps
The key points to note are the use of the schema and the Working XML File.

· Address.sps uses AddressBook.xsd as its schema, but the schema could equally well have been
Address.xsd, ContactPoints.xsd, BusinessAddressBook.xsd, or PersonalAddressBook.xsd—
since the Address element is present in all these schemas and would be available as a global
element. When the SPS module is added to another SPS module, the schema of the imported module
is ignored, so which one is used is not important when the SPS is added as a module.

· The Working XML File is AddressBook.xml. Note that the main template in Address.sps specifies
that only the Address element should be processed, and that global templates for Address-EU,
Address-US, and Address-Other have been defined.

Because only the Address element is processed, the output previews show only the output of
Address. When Address.sps is used as a module, the global templates are added and the main
template is ignored.

ContactPoints.sps
This SPS imports one module. Note the use of global templates within other global templates and the main
template.

· ContactPoints.sps uses AddressBook.xsd as its schema and AddressBook.xml as its Working
XML File.

· Address.sps is added as a module, thus making the global templates of the Address-EU, Address-
US, and Address-Other elements available.

· Global templates for the ContactPoints and Email elements are defined. Note that the
ContactPoints definition uses the global template of Email (screenshot below).

28

242 SPS Structure Modular SPSs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· The main template—required for the previews—uses the global template of the ContactPoints
element, thus enabling previews of the ContactPoints output.

BusinessAddressBook.sps and PersonalAddressBook.sps
These SPSs each import one module, which in turn imports another. Note that the main template simply
applies global templates.

· Each of these two modules uses AddressBook.xsd as its schema. The Working XML Files are,
respectively, BusinessAddressBook.xml and PersonalAddressBook.xml.

· ContactPoints.sps is added as a module. This causes Address.sps to be indirectly imported. All the
global templates in these two modules are available to the referring SPS module.

· In BusinessAddressBook.sps, global templates are defined for the Companies and Company elements.
Note that the Company definition uses the global template of ContactPoints.

· In PersonalAddressBook.sps, global templates are defined for the Person and Persons elements.
The Person definition uses the global template of ContactPoints.

AddressBook.sps
There are two global templates for the Email element; any one can be activated..

· AddressBook.sps uses AddressBook.xsd as its schema. The Working XML File is AddressBook.xml.
· BusinessAddressBook.sps and PersonalAddressBook.sps are added as modules, and this causes

ContactPoints.sps and Address.sps to be indirectly imported.
· A global template is defined for the Email element. This means that there are now two global

templates for Email, one in ContactPoints.sps and the other in AddressBook.sps (see screenshot
below).

© 2017-2023 Altova GmbH

Modular SPSs 243SPS Structure

Altova StyleVision 2024 Professional Edition

· In the Global Templates list in the Design Tree (screenshot above), you can select which of the two
global templates should be active. StyleVision allows only one to be active at a time. Whichever is
active is used within the ContactPoints global template.

· The main template contains some static content for the output header.

244 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6.4 Templates and Design Fragments

The design document is composed of templates, and it is important to recognize the various types of templates
that can be used.

· Main templates and global templates: The design document consists of one main template and,
optionally, one or more global templates . Global templates can be referenced via the main
template.

· Node-templates and variable iterators: These are the templates that constitute the main template and
global templates. A node-template matches a node in a schema source.

· Design fragments: These are templates that are designed separately and re-used in various parts of
the design (main template or global templates).

In this section, we describe the role that templates and design fragments play in the structure of the design.
We are not concerned here with the presentation properties in the design, only the structure. In this section,
we also do not consider additional structural items for paged media, such as cover pages, headers and footers.
These are described in the section, Designing Print Output .

Note: In Design View, the SPS can have several templates: the main template, global templates, page layout
templates, and Design Fragments. You can control which of these template types is displayed in
Design View by using Template Display Filters , which are available as toolbar icons . These
display filters will help you optimize and switch between different displays of your SPS.

6.4.1 Main Template

The main template determines the structure of the output. This means that the sequence in which the main
template is laid out in the design is the sequence in which Authentic View and the output is laid out. In
programming jargon, this is procedural processing. Processing starts at the beginning of the template and
proceeds in sequence to the end. Along the way, nodes from the XML document are processed. The templates
which process these nodes are called local templates . After a local template is processed, the processor
moves to the next component in the main template, and so on. Occasionally, a node may reference a global
template for its processing. In such cases, after the global template is executed for that node, the
processor returns to the position in the main template from which it branched out and continues in sequence
from the next component onwards.

The entry point for the main template is the document node of the schema. StyleVision offers the option of
selecting multiple root elements (document elements). This means that within the main template, there can
be local templates for each of the active document elements. The one that is executed during processing
will be that for the element which is the document element of the XML instance document being processed.

6.4.2 Global Templates

A global template can be defined for any node or type in the schema, or for a node specified in an XPath
pattern.

244

244

252

349

392

711 711

27

27

27

27

27

27

27

© 2017-2023 Altova GmbH

Templates and Design Fragments 245SPS Structure

Altova StyleVision 2024 Professional Edition

A global template specifies instructions for the selected node or type, and it is invoked by a call from the main
template , design fragments , or other global templates. The processing model is similar to that of
declarative programming languages, in that a single template is defined and invoked multiple times. In this way
a single definition can be re-used multiple times. Global templates are invoked in two situations:

· When a node or type in the main template has been set to reference its global template (done by
right-clicking the component in the design and selecting Make Global Template).

· When a (contents) or (rest-of-contents) is inserted within an element or type in a local
template , and the rest of the content of that element or type includes a node or type for which a
global template exists.

Global templates are useful if a node (or type) occurs within various elements or in various locations, and a
single set of instructions is required for all occurrences. For example, assume that a para element must be
formatted the same no matter whether it occurs in a chapter, section, appendix, or blockquote element. An
effective approach would be to define a global template for para and then ensure, that in the main template
the global template for the para element is processed wherever required (for example, by
including //chapter/para in the main template and specifying that para reference its global template; or by
including //chapter/title and then including (contents) or (rest-of-contents) so that the rest of
the content of the chapter element is processed with the available global templates and default templates).
Also, a global template can be defined for a complex type (for example, one that defines an address model) or
even for a simple type (for example, xs:decimal). In such cases, all occurrences of the type (complex or
simple) that invoke the global template for that type will be processed according to the rules in the global
template.

Creating a global template
Global templates can be created for any node or type in the schema, or for a node specified in an XPath
pattern., and are created from the Schema Tree sidebar (screenshot below).

A global template can be created in any of the following ways:

· Click the Add New Global Template button located at the right of the Global Templates item in the
Schema Tree (see screenshot above). This pops up the Add New Global Template dialog (screenshot
below). You can select an element, an attribute, or a type from the schema tree shown in the dialog, or

27 255

27

125 130

27

27

27

125 130

246 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

you can enter an XPath pattern. (Note that global templates created for nodes selected with an XPath
pattern are not supported in Authentic.) This selects the node that must be created as the global
template. Click OK to finish. The template will be created and appended to the already existing
templates in Design View and can then be edited. In the Schema Tree, the schema node or type will
be marked with a plus sign icon in front of it.

· Right-click the schema node or type component in the Schema Tree (under Root Elements, All Global
Elements, or All Global Types, as appropriate), and select the command Make/Remove Global
Template. The template will be created and appended to the already existing templates in Design
View and can then be edited. In the Schema Tree, the schema node or type will be marked with a plus
sign icon in front of it.

· Global templates can also be created from templates in the main template in Design View. Right-click
the template (either in Design View or the Schema Tree sidebar) and select the command Make
Global Template. A global template is created from the selected template (it is appended to the
templates in Design View) and the template in the main template is automatically defined to use this
global template (see below for an explanation of how global templates are used).

A global template is located in Design View below the main template. It is indicated by a mauve bar containing
the name of the node for which the global template has been created, followed by its type: (simple) or
(complex). A global template is shown in the screenshot below.

© 2017-2023 Altova GmbH

Templates and Design Fragments 247SPS Structure

Altova StyleVision 2024 Professional Edition

Note that the processing of the global template is user-defined and could include both static and dynamic
components, as well as the whole range of processing options available for processing of the main template.

Using a global template
After a global template has been created, it can be used when a node having the same qualified name is
inserted into the document (When the node is dropped in the design, select the command Use Global
Template from the menu that pops up.) by dropping . Alternatively, if a local template is present in the design
and a global template exists for a node having the same qualified name, then the global template can be used
instead of the local template. To use a global template for a local template, right-click the local template in
Design View and select the command Use Global Template. When a global template is used, its processing
instructions are called and used by the local template at runtime.

Wherever a global template is used in the design, an XPath pattern can be created on the global template to
filter the nodeset it addresses. To create such a filter, right-click the global template tag in the design, and
select Edit XPath Filter in the context menu that appears. This pops up the Edit XPath Expression
dialog , in which the required expression can be entered.

Recursive global templates
Global templates can be recursive, that is, a global template can call itself. However, to guard against an
endless loop in Authentic View, a property to limit the call-depth can be set. This property, the Maximum
Template-Call-Depth property, is available in the Authentic tab of the Properties dialog of the SPS (File |
Properties). It specifies the maximum number of template calls that may be made recursively when
processing for the Authentic View output. If the number of template calls exceeds the number specified in the
Maximum Template-Call-Depth property, an error is returned.

Copying a global template locally
After a global template has been created, its processing instructions can be copied directly to a template of the
same qualified name in the main template. To do this, right-click the local template and select the command
Copy Global Template Locally. Copying the global template locally is different than using the global
template (at runtime) in that the processing instructions are merely copied in a one-time action. The global
template has no further influence on the local template. Either, or both, the global template and local template
can subsequently be modified independently of each other, without affecting the other. On the other hand, if it is
specified that a global template should be used (at runtime) by a local template, then any modifications to the
global template will be reflected in the local template at runtime.

Activating and deactivating global templates
A global template can be activated by checking its entry in the global templates listing in the Schema Tree
sidebar. It can be deactivated by unchecking the entry. If a global template has been activated (the default
setting when the global template was created), it is generated in the XSLT stylesheet. If it has been
deactivated, it is not generated in the XSLT stylesheet but is still saved in the SPS design.

Any local template that uses a deactivated global template will then—since it is not able to reference the
missing global template—fall back on the default templates of XSLT, which have the collective effect of
outputting the contents of descendant text nodes.

The advantages of the activation/deactivation feature are: (i) Global templates do not have to be deleted if they
are temporarily not required; they can be reactivated later when they are required; (ii) If there are name conflicts
with templates from imported stylesheets, then the global template that is not required can be temporarily
deactivated.

253

685

738

248 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Removing a global template
To remove a global template, right-click the global template to be removed, either in Design View or the
Schema Tree sidebar, and select the command Make/Remove Global Template.

Simple global templates and complex global templates
Global templates are of two types: simple and complex. Complex global templates are available for reasons of
backward-compatibility. If a global template in an SPS created with a version of StyleVision prior to version
2006 contains a table or list, then that global template will typically be opened in StyleVision 2006 and later
versions as a complex global template.

A complex global template is different than a simple global template in the way the node for which the global
template was created is processed. When the first instance of the node is encountered in the document, the
complex global template processes all subsequent instances of that node immediately afterwards. A simple
global template, on the other hand, processes each node instance only when that node instance is individually
encountered.

It is important to note that a simple global template will be automatically converted to a complex global
template if a predefined format or newline is created around the element node for which the global template
was created. This will result in the processing behaviour for complex global templates (described in the previous
list item). To revert to the simple global template, the predefined format should be removed (by dragging the
node outside the predefined format and then deleting the predefined format), or the newline should be removed
(by deleting the item in the Design Tree sidebar), as the case may be. To avoid the automatic conversion
from simple global template to complex global template, make sure that the predefined format or newline is
added within the node tags of the element for which the simple global template was created.

Global templates in modular SPSs
When an SPS module is added to another SPS module , the global templates in the added module are
available for use within the referring SPS. For more information about using modular SPSs, see the section
Modular SPSs .

6.4.3 User-Defined Templates

User-Defined Templates are templates for items generated by an XPath expression you specify. These items
may be atomic values or nodes. In the screenshot below, which shows three User-Defined Templates, note the
User-Defined Template icon on the left-hand side of the tags (a green person symbol). User-Defined Templates
are very useful because they provide extraordinary flexibility for creating templates. Note, however, that content
generated by User-Defined Templates cannot be edited in Authentic View.

350

350

48

350

230

230

© 2017-2023 Altova GmbH

Templates and Design Fragments 249SPS Structure

Altova StyleVision 2024 Professional Edition

The XPath expression of each of the three User-Defined templates shown in the screenshot above do the
following:

· Selects a node in a source schema. By using an XPath expression, any node in any of the schema
sources can be reached from within any context node. If StyleVision can unambiguously target the
specified node, the template will be changed automatically from a User-Defined Template to a normal
template, enabling Authentic View editing. If it is a User-Defined Template, this will be indicated by the
green User-Defined Template icon on the left-hand side of the template tags.

· Selects a node that fulfills a condition specified by the for construct of XPath 2.0 and XPath 3.0. Such
templates can never resolve to normal templates (but will remain User-Defined Templates) because the
for construct does not allow StyleVision to unambiguously resolve the target from only the schema
information it currently has at its disposal.

· Selects a sequence of atomic values {1, 2, 3}. While it is allowed to create a template for an atomic
value, you cannot use the contents placeholder within such a template. This is because the
xsl:apply-templates instruction (which is what the contents placeholder generates) can only be
applied to node items (not atomic values). You could, however, use an Auto-Calculation in combination
with some design element such as a list. For example, the User-Defined Template at left would
generate the output at right.

Note: If the SPS uses XSLT 1.0, then the XPath expression you enter must return a node-set. Otherwise an
error is reported.

Advantage of using XPath to select template node
The advantage of selecting a schema node via an XPath expression (User-Defined Templates) is that the power
of XPath's path selector mechanism can be used to select any node or sequence of items, as well as to filter or
set conditions for the node selection. As a result, specific XML document nodes can be targeted for any given
template. For instance, the XPath expression //Office/Department[@Location="NY"] will select only those
Department nodes that have a Location attribute with a value of NY. Also see the other examples in this
section.

Note: If an XPath expression contains multiple location path steps, then it is significant—especially for
grouping and sorting—whether brackets are placed around the multiple location path steps or not. For
example, the XPath expression /Org/Office/Dept will be processed differently than
(/Org/Office/Dept). For the former expression (without brackets), the processor loops through each
location step. For the latter expression (with brackets), all the Dept elements of all Office elements
are returned in one undifferentiated nodeset.

Brackets Underlying XSLT Mechanism Effect

250 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

No <xsl:for-each select="Org">
 <xsl:for-each select="Office">
 <xsl:for-each select="Dept">
 ...
 </xsl:for-each>
 </xsl:for-each>
</xsl:for-each>

Each Office element has its own Dept
population. So grouping and sorting can be
done within each Office.

Yes <xsl:for-each
select="/Org/Office/Dept">
 ...
</xsl:for-each>

The Dept population extends over all
Office elements and across Org.

This difference in evaluating XPath expressions can be significant for grouping and sorting.

Inserting a User-Defined Template
To insert a User-Defined Template, do the following:

1. Click the Insert User-Defined Template icon in the Insert Design Elements toolbar and then click the
design location where you wish to insert the template. Alternatively, right-click the design location
where you wish to insert the template and, from the context menu that appears, select the Insert
User-Defined Template command.

2. In the Edit XPath Expression dialog that pops up, enter the XPath expression you want, and click
OK. Note that the context node of the XPath expression will be the node within which you have clicked.
An empty node template will be created. Sometimes a joined node is created. When a node is joined,
the targeted instance nodes are selected as if at a single level, whereas if a node is not joined (that is if
it is split into multiple hierarchic levels), then the node selection is done by looping through each
instance node at every split level. The nodeset returned in both cases of selection (joined and split) is
the same unless a grouping or sorting criterion is specified. For a discussion of the effect joined nodes
have on the grouping and sorting mechanisms, see Node-Template Operations .

Editing a Template Match
The node selection of any node template (user-defined or normal) can be changed by using an XPath
expression to select the new match expression. To edit the template match of a node template, right-click the
node template, then select the Edit Template Match command. This pops up the Edit XPath Expression
dialog, in which you enter the XPath expression to select the new node. Then click OK.

Adding nodes to User-Defined Templates
If a node from the schema tree is added to a User-Defined Template, the context for the new node will not be
known if the User-Defined Template has been created for a node or sequence that cannot be placed in the
context of the schema source of the SPS. You will therefore be prompted (screenshot below) about how the
new node should be referenced: (i) by its name (essentially, a relative path), or (ii) by a full path from the root of
the schema source.

685

252

© 2017-2023 Altova GmbH

Templates and Design Fragments 251SPS Structure

Altova StyleVision 2024 Professional Edition

Prompting for advice on how to proceed is the default behavior. This default behavior can be changed in the
Design tab of the Tool | Options dialog .

6.4.4 Variable Templates

A Variable Template is a template that targets a variable and, by default outputs its content. It is inserted
with the Insert | Variable Template or Enclose with | Variable command, which inserts, at the cursor
insertion point, a template for a variable defined in the SPS. The variable template (screenshot below) contains
a content placeholder by default, and this serves to output the contents of the variable. You can insert
additional content (static as well as dynamic) in the variable template as required, or modify it as you would
any other template. A variable template is indicated with a dollar symbol in its start and end tags.

To insert a variable template, do the following:

1. Place the cursor in the design at the location where the template is to be inserted.
2. Click the Insert | Variable Template command. This pops up the Insert Variable Template dialog

(screenshot below).

3. The dialog contains a list of all the user-declared parameters and variables defined in the SPS.
Select the variable for which you wish to add a variable template.

4. Click OK to finish.

839

302

252 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6.4.5 Node-Template Operations

A node-template is a template in the design that specifies the processing for a node. In the design, node-
templates are displayed with beige start and end tags (screenshot below). The type of node is indicated by a
symbol inside the tags (For example: angular brackets for element nodes and equal-to signs for attribute
nodes). The screenshot below contains two node-templates, both for elements: metainfo and relevance. Also
see, Nodes in the XML document .

The operations that can be carried out on a node-template are accessible via the context menu of that node-
template (accessed by right-clicking either the start or end tag of a node-template, see screenshot below).

681

© 2017-2023 Altova GmbH

Templates and Design Fragments 253SPS Structure

Altova StyleVision 2024 Professional Edition

The commands in this context menu are described below:

· Global templates
· Template match
· XPath filters
· Group by, Sort by, Define variables, Template serves as level
· Create Design Fragment
· Remove Tag Only
· Edit, Enclose with, Change to
· Authentic properties

These menu commands are described below. Note that for a given node-template, some commands might not
be available; these are grayed out in the context menu.

Global templates: make, use, copy locally
A node-template in the main template can be changed to or associated with a global template via the following
commands:

· Make global template: This option is available if the node-template represents an element that is
defined as a global element in the schema. A global template will be created from the node-template.
The node-template in the main template will use this global template and its tags will then be displayed
in gray (indicating its use of the global template).

· Use global template: If a global template of the same qualified name as the node-template has been
defined, the node-template will use the processing of the global template. The tags of the node-
template will become gray.

· Copy global template locally: The processing instructions of a global template of the same qualified
name as the node-template are copied physically to the node-template. The node-template is
independent of the global template. Subsequently, both it and the global template can be modified
independently of each other. Since the node-template does not reference a global template, it retains
its beige color.

For more information, see the section Global Templates .

Editing the template match
The node for which a template has been created can be changed by using this command. The Edit Template
Match command pops up the Edit XPath Expression dialog , in which you can enter an XPath expression
that selects another node in the schema. You can also enter any XPath expression to change the template to
a User-Defined Template .

Edit/Clear XPath Filter
An XPath filter enables you to filter the nodeset on which a node-template is applied. XPath filters can also be
applied to global templates .

By default, a node-template will be applied to nodes (elements or attributes) corresponding to the node for
which the node-template was created (having the same name and occurring at that point in the schema
hierarchy). For example, a node-template for the /Personnel/Office node will select all
the /Personnel/Office elements. If an XPath filter with the expression 1 is now created on the Office
element (by right-clicking the Office element and editing its XPath Filter), this has the effect of adding a
predicate expression to the Office element, so that the entire XPath expression would

253

253

253

254

254

255

255

255

244

685

137

244

254 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

be: /Personnel/Office[1]. This XPath expression selects the first Office child of the Personnel element,
effectively filtering out the other Office elements.

A filter can be added to any node-template and to multiple node-templates in the design. This enables you to
have selections corresponding to such XPath expressions
as: /Personnel/Office[@country='US']/Person[Title='Manager'] to select all managers in the US
offices of the company. In this example, a filter each has been created on the Office and on the Person node-
templates, respectively.

Wherever a global template is used—that is, called—an XPath filter can be applied to it. So, for every instance
of a global template that is used, an XPath filter can be applied to the global template in order to restrict the
targeted nodeset.

To add an XPath Filter to a node-template, right-click the node-template and select Edit XPath Filter. Enter
the XPath filter expression without quotes, square brackets, or delimiters of any kind. Any valid XPath
expression can be entered. For example:

· 1
· @country='US'
· Title='Manager'

After an XPath Filter has been created for a node-template, this is indicated by a filter symbol in the start tag of
the node-template. In the screenshot below, the synopsis node-template has a filter.

Note: Each node-template supports one XPath Filter.

Group by, Sort by, Define variables, Template Serves as Level
The mechanisms behind these commands are described in detail in their respective sections:

· The Group by command enables instances of the node represented by the selected node-template to
be grouped. The grouping mechanism is described in the section, Grouping .

· The Sort by command enables instances of the node represented by the selected node-template to be
sorted. The sorting mechanism is described in the section, Sorting .

· The Define Variables command enables you to define variables that are on scope on the selected
node-template. How to work with variables is described in the section, Variables .

· The Template Serves as Level command is a toggle command that creates/removes a level on the
node-template. Levels can be specified at various levels in order to structure the document into a
hierarchy. This structure can then be used to generate a table of contents (TOC), automatic
numbering, and text references. These features are described in detail in the section, Table of Contents
(TOC) and Referencing .

Create Design Fragment
Creates a Design Fragment template from the selected template. The resulting Design Fragment template is
added to the Design Fragment templates at the bottom of the design, and added to the Design Tree and
Schema Tree. The Design Fragment is also applied at that point in the design where it was created.

288

296

307

312

© 2017-2023 Altova GmbH

Templates and Design Fragments 255SPS Structure

Altova StyleVision 2024 Professional Edition

Remove (Template or Formatting) Tag Only
This command removes the selected template or formatting tag only. It does not remove any descendant nodes
or formatting tags. This command is useful for removing a formatting tag or a parent element tag without
removing all that is contained within the tag (which is what would happen if the Delete operation is carried out
with a tag selected). Note, however, that removing a parent element might render descendant nodes of the
deleted element invalid. In such cases, the invalid nodes are indicated with a red strike-through.

Edit, Enclose with, Change to
These commands are described below:

· Edit: Pops out a submenu with the familiar Windows commands: cut, copy, paste, and delete.
· Enclose with: The node-template can be enclosed within the following design components, each of

which is described in a separate section of this documentation: paragraph , special paragraph ,
Bullets and Numbering , Hyperlink , Condition , TOC Bookmark and Level .

· Change to: The Change-To feature enables you to change: (i) the node for which that template applies,
or (ii) how the node is created in the design. It is described in detail in the section, The Change-To
Feature .

Edit Authentic Properties
Selecting this command pops up the Properties sidebar, in which certain properties (Authentic Properties) of
the instantiated node in Authentic View can be defined. Authentic Properties are described in detail in the
section, Authentic Node Properties .

6.4.6 Design Fragments

Design Fragments are useful for creating parts that can be re-used at different locations in the document,
similar to the way functions are re-used.The usage mechanism is as follows:

1. Create the Design Fragment in the design
2. Fill out the contents of the Design Fragment
3. Insert the Design Fragment at a location in a template .

Creating a Design Fragment
To create a Design Fragment do the following:

1. In the Design Tree or Schema Tree, click the Add New Design Fragment icon , which is located to
the right of the Design Fragments item in the tree (see screenshot below). This adds a Design
Fragment item in the Design Fragments list of the tree. (Also see note below.)

125 127

163 339 280 312

197

433

255

256

257

256 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Notice that a Design Fragment template is created in the SPS design. This template is appended to
the templates already in the design and indicated with a green header. (If you wish to see only the
Design Fragments that are in the design, hide the main template and global templates by clicking their
Show/Hide icons in StyleVision's Design Filter toolbar.) Additionally, the Design Fragment
templates are also listed in the schema tree for ready access from there.

2. Double-click the Design Fragment item (either in the design tree or the schema tree) so as to edit its
name. Name the Design Fragment as required and press Enter. The edited name is entered in the
Design Tree (screenshot below) and in the template in the design.

3. In the design, create the contents of the Design Fragment template. How to do this is described in the
next section.

Note: If you wish to create a Design Fragment from an already existing template, right-click that template
and select the command Create Design Fragment from the context menu that pops up. This creates
a Design Fragment template from the selected template at that point in the design. The Design
Fragment template is also appended to the existing Design Fragment templates at the bottom of the
design and added to the Design Tree and Schema Tree. Creating a Design Fragment in this way also
applies it directly at the point where it was created, there is no need to insert it from the Design Tree or
Schema Tree .

Creating the contents of a Design Fragment
The contents of the Design Fragment template are created as for any other template . To insert static
content, place the cursor in the Design Fragment template and insert the required static content. To insert
dynamic content, drag the required schema node into the Design Fragment template.

When dragging a node from the schema source you can drag the node either: (i) from the Global Elements
tree, or (ii) from the Root Elements tree. The difference is significant. If a node is dragged from the Global
Elements tree, it is created without its ancestor elements (in the screenshot below, see the EmailPerson
Design Fragment) and, therefore, when used in a template, it will have to be used within the context of its
parent. On the other hand, if a node is dragged from the Root Elements tree, it is created within a structure
starting from the document node (in the screenshot below, see the EmailDocNode Design Fragment), and can
therefore be used anywhere in a template.

711 711

257

124

© 2017-2023 Altova GmbH

Templates and Design Fragments 257SPS Structure

Altova StyleVision 2024 Professional Edition

The screenshot above shows two Design Fragment templates that produce identical output for the Person
element. In the EmailPerson Design Fragment template, the Person node has been created by dragging the
global element Person into the EmailPerson template. In the EmailDocNode Design Fragment template, the
Person node has been dragged from the Root Elements tree, and is created with an absolute path (from $XML,
the document node).

When these Design Fragment templates are inserted in the main template, care must be taken that the
EmailPerson template is called from within a context that is the parent of the Person node. You can
experiment with these Design Fragments. They are in the example file Email.sps, which is in the (My)
Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\DesignFragments.

You can also define a parameter with a default value on the Design Fragment. The parameter can be assigned
a different value in every Design Fragment instance. See Parameters for Design Fragments for details.

After you have completed the design, notice that the components of the design are also graphically depicted in
the Design Tree.

Inserting a Design Fragment in a template
To insert a Design Fragment, drag the Design Fragment from the Design Tree or Schema Tree to the required
location. The location at which the Design Fragment is dropped should be such that it provides a correct
context. If the contents of the Design Fragment were created from a global element, then the correct context in
the main template would be the parent of the node dragged into the Design Fragment. See Creating the
contents of a Design Fragment above.

Alternatively, right-click at the location where the Design Fragment is to be inserted and select Insert Design
Fragment from the context menu.

Note: If a Design Fragment is referenced in the main template and if the name of the Design Fragment is
changed subsequently, then the reference in the main template will no longer be correct and an XSLT

29

304

256

258 SPS Structure Templates and Design Fragments

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

error will result. In order to correct this, delete the original reference in the main template and create a
fresh reference to the newly named Design Fragment.

Recursive design fragments
Design fragments can be recursive, that is, a design fragment can call itself. However, to guard against an
endless loop in Authentic View, a property to limit the call-depth can be set. This property, the Maximum Call-
Depth property, is available in the Authentic tab of the Properties dialog of the SPS (File | Properties). It
specifies the maximum number of template calls that may be made recursively when processing for the
Authentic View output. If the number of template calls exceeds the number specified in the Maximum Call-
Depth property, an error is returned.

Deleting a Design Fragment
To delete a Design Fragment, select it in the Design Tree and click the Remove toolbar icon of the Design

Tree .

Design Fragments in modular SPSs
When an SPS module is added to another SPS module , the Design Fragments in the added module are
available for use within the referring SPS. For more information about using modular SPSs, see the section
Modular SPSs .

Example file
For an example SPS, go to the (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\DesignFragments.

738

230

230

29

© 2017-2023 Altova GmbH

XSLT Templates 259SPS Structure

Altova StyleVision 2024 Professional Edition

6.5 XSLT Templates

XSLT files can be imported into an SPS, and XSLT templates in them will be available to the stylesheet as
global templates. If, during the processing of the XML document, one of the XML nodes matches a node in an
imported XSLT template, then the imported XSLT template is applied to that node. If the imported XSLT file
contains named templates, these are available for placement in the design.

Note the following points:

· Imported XSLT templates cannot be modified in StyleVision.
· XSLT templates are not supported in Authentic View.

Importing the XSLT file
To import an XSLT File, do the following:

1. In the Design Overview sidebar (screenshot below), click the Add New XSLT File link.

2. In the Open dialog that appears, browse for the required XSLT file, select it, and click Open. The XSLT
file is imported. An xsl:import statement is added to the XSLT stylesheet, and, in the Design Tree
sidebar (screenshot below), the XSLT Templates contained in the imported XSLT file are displayed
under the XSLT Templates heading.

260 SPS Structure XSLT Templates

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

There are two types of imported XSLT templates: (i) match templates (indicated by Match), and (ii) named
templates (indicated by Name). In the Design Tree, these two types are listed with (i) the value of the select
attribute of match templates, and (ii) by the value of the name attribute of named templates, respectively.

Match templates
Match templates will be used when a template, in the course of processing, applies templates to a node in the
XML document instance, and the match template is selected to be applied. This will happen when the qualified
name of the XML node matches the qualified name of the imported match template. If a global template has
been created in the SPS that has the same qualified name, then it has precedence over an imported template
and will be used. If there are several imported XSLT files, the file imported first (and listed first in the XSLT code)
has the lowest precedence, followed by the second lowest precedence for the file imported second, and so on.

Named templates
A named template can be dragged from the Design Tree to any location in the design. At this location, it will be
created as an xsl:call-template element (screenshot below) that calls the named template.

The effect of this in the output is to implement the named template at that location in the design. This can be
useful for inserting content that is independent of both the XML instance document as well as of the XSLT
stylesheet.

© 2017-2023 Altova GmbH

Multiple Document Output 261SPS Structure

Altova StyleVision 2024 Professional Edition

6.6 Multiple Document Output

You can design an SPS to produce multiple output-documents: a main output-document and one or more
additional documents. This is particularly useful if you wish to modularize the output. Output-documents are
created in the design by inserting a New Document template (see screenshot below). Content for each output-
document is placed within its New Document template.

New Document templates can be created anywhere in the document design, thus allowing the output to be
modularized at any level. So, for example, a report about the various branch offices of a global organization can
have separate output-documents at each of the following levels: (i) world, (ii) continent, (iii) country, (iv) state,
and/or (v) branch office. Each branch office, for example, can be presented in a separate output-document or all
the branch offices in a country can appear together in a single country report. In the design, a New Document
template would have to be created at each of the hierarchical levels for which separate output-documents are
required. How to set up the correct document structure is described in the section, New Document Templates
and Design Structure .

The multiple output-document feature is available in HTML, RTF, and Text formats. In Authentic View, which is
intended as an editing view, content is displayed in a single document.

This description of multiple output-documents is organized into the following sub-sections:

· Inserting a New Document Template
· New Document Templates and Design Structure
· URLs of New Document Templates
· Preview and Output Document Files
· Document Properties and Styles

263

262

263

263

265

268

262 SPS Structure Multiple Document Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

6.6.1 Inserting a New Document Template

A New Document template can be placed in an SPS design in one of two ways:

· A new output-document template can be inserted at any location in the design. In this case the
content of the New Document is added to the template after inserting the template. To insert a New
Document template, place the cursor at the desired location in the design and select the command
Insert | Insert New Document or right-click the location and, from the context menu that pops up,
select Insert New Document.

· A new output-document can be placed in the design by enclosing content with a New Document
template. The New Document template will, in this case, contain the enclosed content when it is
created. You can add to or modify this content in the design. To place a New Document template so
that it encloses content, highlight the content to be enclosed and then select the command Enclose
With | New Document. Alternatively, you can select the content to be enclosed, then right-click it,
and, from the context menu that pops up, select the command Enclose With | New Document.

A New Document template with content is shown in the screenshot below.

Notice the following from the screenshot above:

1. The New Document template tags contain the URL (path and name) of the output-document it will
generate. The filename suffix will be generated automatically according to the file type of the output
format. For example, for the HTML output format, the filename suffix .html will be appended to the
filename in the URL. Issues relevant to the assigning of URLs are discussed in the section, URLs of
New Document Templates .

2. The New Document Template contains one Initial Document Section. Additional document sections
can be added to the initial document section as described in the section, Document Sections .

263

393

© 2017-2023 Altova GmbH

Multiple Document Output 263SPS Structure

Altova StyleVision 2024 Professional Edition

6.6.2 New Document Templates and Design Structure

When creating multiple output-documents, you must create the different New Document templates on the
appropriate nodes of the source document. Therefore, you must consider both the output structure as well
as the input (source XML document) structure when designing multiple output-documents.

Main output document and additional output documents (output structure)
When the first New Document template is added to the design, all design content outside this New Document
template is automatically assigned to a separate document. This separate document is considered to be the
main output document, and, in the output previews of StyleVision, it is referred to as Main Output Document.

In the generated output-documents (created using the command File | Save Generated Files), the name of
the main output document will be the name you assign it when generating the output-document files using the
Save Generated Files command. The names of the additional output-document files will be the names
assigned in the URLs of the respective New Document templates.

New Document templates and source document structure
When a New Document template is created, the hierarchical location where it is created is significant. Two
possibilities exist:

1. The node within which the New Document template is created is processed only once. In this case the
New Document template is also processed only once. The filename in the URL property of the New
Document template can therefore be a static name.

2. The node within which the New Document template is created is processed multiple times. As a result,
the New Document template will be processed as many times as the node is processed. An example
of such a situation would be the following. An Office element has multiple Department element
children (for its various departments). If a New Document template is created within the Department
node in the design, then, since the Department node will be processed multiple times (for all the
different Department elements in that Office element), the New Document template also will be
processed multiple times, once for each Department element in the source XML document. The
filename in the URL property of the New Document template must therefore be a dynamic name.
Otherwise, the output-documents created for the Department elements will each have the same
filename.

6.6.3 URLs of New Document Templates

In this section we describe how the URLs of New Document templates relate to design structure , how URLs
are edited , and how multiple output-documents can be linked among each other.

URLs of New Document templates
If the New Document template is processed only once (see preceding section), then the template's URL
property can be a static URL. In the screenshot below, since the New Document template is immediately
within the document element ($XML), it will be processed only once. The URL has been given a static value of
TableOfContents. This value will therefore be the filename of the output-document. Since no path has been
prefixed to the filename, the file will be generated in the same directory as the Main Document File (see

263

263

263

265 265

263

264 SPS Structure Multiple Document Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Multiple Document Outputs and Previews for details). Alternatively, if the URL contained a path, the output-
document will be saved to the location specified in the path.

If, on the other hand, a New Document template will be processed multiple times to generate multiple output-
documents (see preceding section), then the template's URL property must be a dynamic URL that is
selected with an XPath expression. In the screenshot below, the URL of the New Document template is the
XPath expression: body/header/para. The New Document template is within the topic element, so it will be
processed each time the topic element is processed. On every iteration through the topic element, the
content of that topic element's body/header/para element will be assigned as the URL of the New Document
template. This creates a new document for every topic element. Each of these documents has a different
name, that of its body/header/para element (which is the text of the topic's header).

265

263

© 2017-2023 Altova GmbH

Multiple Document Output 265SPS Structure

Altova StyleVision 2024 Professional Edition

Editing the URL
When a New Document template is added to the design, it is created with a default URL. This is a static text
string: DocumentX (where X is an integer). If you wish to edit the URL, right-click the New Document template
and select the command Edit URL. This pops up the Properties dialog (screenshot below), in which you can
edit the Value field of the URL without file ext property.

If you wish to enter a static URL, edit the Value field to contain the required URL text. If you wish to enter a
dynamic URL, click in the Value field, click the XPath button in the toolbar of the Properties dialog, and enter
the XPath expression you want. Note the following: (i) The context node for the XPath expression is the node
within which the New Document template has been inserted. (ii) To prefix a path to the XPath location
expression, use the concat() function of XPath. For example: concat('C:\MyOutput\',
body\header\para). This example expression will generate the URL string: C:\MyOutput\filename. The
appropriate file extension will be generated automatically according to the output format.

Linking the documents
Multiple output-documents can be linked to one another using bookmarks and hyperlinks . A bookmark
can be placed at the head of a New Document Template or anywhere within the New Document Template.
Hyperlinks can then be created in other documents to link back to the bookmark. If bookmarks are required
on a node that is processed multiple times, then make sure that the name of the bookmark is generated
dynamically. Otherwise (if a static bookmark name is given) multiple nodes in the output will have the same
bookmark name.

A Table of Contents (TOC) can also be used to link documents. The TOC could be in a separate document
(for example, the main document) and link to the various output-documents, while the output-documents could
link back to the TOC.

6.6.4 Preview Files and Output Document Files

The output previews of a design document show each of the multiple output-documents that have been
specified in the design as separate documents (see screenshot below).

339 339

341

312

266 SPS Structure Multiple Document Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The screenshot above shows the HTML Preview of an SPS document that has been designed to generate
multiple output-documents. Each output document can be called up in the view window by either: (i) navigating
through the available documents using the arrow buttons at top left, or (ii) selecting the required document from
the dropdown list of the combo box (see screenshot above). Notice that the items of the dropdown list show
the entire URL (path plus filename).

Location of preview files
The preview files are created by default in the directory in which the SPS file is created. This default setting can
be changed in the Paths tab of the SPS file's Properties dialog (screenshot below), which is accessed with the
File | Properties command. In this tab you can specify the directory of the Working XML File as an alternative
location. If the URL of a New Document template contains a path, the location specified in this path will be
used as the location of the respective preview files. If the location cannot be found, an error is returned. You
should be aware of where the output-documents will be saved if you are setting up output-documents to link to
each other.

© 2017-2023 Altova GmbH

Multiple Document Output 267SPS Structure

Altova StyleVision 2024 Professional Edition

In the Paths tab of the Properties dialog (see screenshot above), you can also specify where temporary
additional files for previews, such as output-document files, and image and chart-image files, will be saved.
Note that, if the URL of a New Document template contains a path, then the location specified in this path will
be used.

Generating output (paths etc)
To generate the output-document files, do the following:

1. Mouse over the menu command File | Save Generated Files and click the required output format.
2. In the Save Generated File dialog that pops up browse for the folder in which you wish to save the

generated file.
3. Enter the name of the Main Document File and click Save.

The location of all output-document files as well as other additionally generated files, such as image files and
chart-image files, will be displayed in a pop-up window for your information.

The Main Document File will be saved to the folder location you selected in the Save Generated File dialog. All
the multiple output-documents that were created with New Document templates and whose URLs have no path
information will be saved to the same folder as the Main Document File. If a path was prefixed to the filename in

268 SPS Structure Multiple Document Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

a New Document template's URL, the output document will be saved to the location specified in the URL. If that
folder location does not exist an error will be generated.

6.6.5 Document Properties and Styles

In an SPS design, you can split the output into multiple documents. Each of these documents can be assigned
separate document properties and document styles. These are specified in the Document Properties and
Document Styles tabs, respectively (see screenshot below), of the Properties dialog of the document's Initial
Document Section. To access the Properties dialog, click the Edit Properties link in the title bar of the Initial
Document Section of the document for which you wish to set these properties. Document properties and
document styles apply to the entire output document.

In the Document Properties tab, the Document Properties group of properties enable meta-information to be
entered for the document. This meta-information will be saved to the respective output document and to the
respective properties according to output format. For example, in the HTML output format, the properties are
stored in the respective META tags of the HEAD element.

Document styles are described in the section Setting CSS Property Values .
373

© 2017-2023 Altova GmbH

 269Advanced Features

Altova StyleVision 2024 Professional Edition

7 Advanced Features

How to create the basic content and structure of the SPS design is described in the sections, SPS File
Content and SPS File Structure . Very often, however, you will also need to modify or manipulate the
content and/or structure of source data in particular ways. For example, you might wish to sort a group of
nodes, say nodes containing personnel information, on a particular criterion, say the alphabetical order of
employee last names. Or you might wish to group all customers in a database by city. Or add up a product's
sales turnover in a particular city. Such functionality is provided in StyleVision's advanced features, and these
are described in this section.

Given below is a list of StyleVision's SPS file advanced features:

· Auto-Calculations . Auto-Calculations are a powerful XPath-based mechanism to manipulate data
and (i) present the manipulated data in the output as well as (ii) update nodes in the XML document
with the result of the Auto-Calculation.

· Conditions . Processing of templates and the content of templates can be conditional upon data
structures or values in the XML, or upon the result of an XPath expression

· Grouping . Processing can be defined for a group of elements that are selected with an XPath
expression.

· Sorting . A set of XML elements can be sorted on multiple sort-keys.
· Parameters and Variables . Parameters are declared at the global SPS level with a default value.

These values can then be overridden at runtime by values passed to the stylesheet from the command
line. Variables can be defined in the SPS and these variables can be referenced for use in the SPS.

· Table of Contents (TOC) and Referencing . Tables of Contents (TOCs) can be constructed at various
locations in the document output, for all output formats. The TOC mechanism works by first selecting
the items to be referenced in the TOC and then referencing these marked items in the TOC. Other
features which use referencing are: (i) Auto-Numbering (repeating nodes in the document can be
numbered automatically and the numbers formatted); (ii) Text References (text in the document can
be marked for referencing and then referenced from elsewhere in the document); and (iii) Bookmarks
and Hyperlinks (bookmarks mark key points in the output document, which can then be targeted by
hyperlinks. Hyperlinks can also link to external resources using a variety of methods to determine the
target URI (static, dynamic, a combination of both, and unparsed entity URIs).) All these referencing
mechanisms are described in this section.

124 200

270

280

288

296

302

312

334

338

339

270 Advanced Features Auto-Calculations

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.1 Auto-Calculations

The Auto-Calculation feature (i) displays the result of an XPath evaluation at any desired location in the output
document, and (ii) optionally updates a node in the main XML document (the XML document being edited in
Authentic View) with the result of the XPath evaluation.

The Auto-Calculation feature is a useful mechanism for:

· Inserting calculations involving operations on dynamic data values. For example, you can count the
number of Employee elements in an Office element (with count(Employee)), or sum the values of all
Price elements in each Invoice element (with sum(Price)), or join the FirstName and LastName
elements of a Person element (with concat(FirstName, ' ', LastName)). In this way you can
generate new data from dynamically changing data in the XML document, and send the generated data
to the output.

· Displaying information derived from the structure of the document. For example, you can use the
position() function of XPath to dynamically insert row numbers in a dynamic table, or to

dynamically number the sections of a document. This has the advantage of automatically generating
information based on dynamically changing document structures.

· Inserting data from external XML documents. The doc() function of XPath 2.0 provides access to the
document root of external XML documents, and thus enables node content from the external XML
document to be inserted in the output.

· Updating the value of nodes in the main XML document. For example, the node Addressee could be
updated with an XPath expression like concat(Title, ' ', FirstName, ' ', LastName).

· Presenting the contents of a node at any location in the design.

7.1.1 Editing and Moving Auto-Calculations

Creating Auto-Calculations
To create an Auto-Calculation, do the following:

1. Place the cursor as an insertion point at the location where the Auto-Calculation result is to be
displayed and click Insert | Auto-Calculation. In the submenu that appears, select Value if the result
is to appear as plain text, select Input Field if it is to appear within an input field (i.e. a text box), or
select Multiline Input Field if it is to appear in a multiline text box. (Note that the output of the Auto-
Calculation is displayed as a value, or in an Input Field. It is an output in Authentic View, and cannot
be edited there.) The Edit XPath Expression dialog pops up (screenshot below).

© 2017-2023 Altova GmbH

Auto-Calculations 271Advanced Features

Altova StyleVision 2024 Professional Edition

2. In the Expression pane, enter the XPath expression for the Auto-Calculation via the keyboard.
Alternatively, enter the expression by double-clicking nodes, operators, and/or functions in the
respective panes of the dialog. It is important to be aware of the context node at the insertion point; the
context node is highlighted in the schema source tree (in the screenshot above the context node,
newsitems, is highlighted). If you have selected XSLT 1.0 as the version of the XSLT language for your
SPS, then you must use XPath 1.0 expressions; if you have selected XSLT 2.0 or XSLT 3.0, then you
must use, respectively, XPath 2.0 or XPath 3.0 expressions. For a detailed description of the Edit
XPath Expression dialog, see the section Edit XPath Expression .

3. Optionally, if you wish to copy the value of the Auto-Calculation to a node in the XML document, you
can select that node via an XPath expression. How to update nodes with the result of the Auto-
Calculation is described in the section, Updating Nodes with Auto-Calculations .

Click the OK button finish. In the Design tab, the Auto-Calculation symbol is displayed. To see the result of the
Auto-Calculation, change to Authentic View or an Output View.

Editing Auto-Calculations
To edit the XPath expression of the Auto-Calculation, select the Auto-Calculation and, in the Properties
sidebar, click the Edit button of the XPath property in the AutoCalc group of properties (screenshot below). This
pops up the Edit XPath Expression dialog (screenshot above), in which you can edit the XPath expression.

685

272

685

272 Advanced Features Auto-Calculations

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Formatting Auto-Calculations
You can apply predefined formats and CSS styles to Auto-Calculations just as you would to normal text: select
the Auto-Calculation and apply the formatting. Additionally, input formatting of an Auto-Calculation that is a
numeric or date datatype can be specified via the Input Formatting property in the AutoCalc group of properties
in the Properties window.

Note also that you can include carriage returns and/or linefeeds (CR/LFs) in the XPath expression. If the Auto-
Calculation is enclosed in the pre special paragraph type, the output of a CR/LF will produce a new line in the
output (except in the RTF output). An example of such an XPath expression is:

translate('a;b;c', ';', codepoints-to-string(13))

Moving Auto-Calculations
You can move an Auto-Calculation to another location by clicking the Auto-Calculation (to select it) and
dragging it to the new location. You can also use cut/copy-and-paste to move/copy an Auto-Calculation. Note,
however, that the XPath expression will need to be changed if the context node in the new location is not the
same as that in the previous location.

Summary of important points
Note the following points:

· An Auto-Calculation can be inserted anywhere in the Design Document.
· The point at which you insert the Auto-Calculation determines the context node for the XPath

evaluation.
· In Authentic View, an Auto-Calculation is re-evaluated each time any value relevant to the calculation

(that is, any node included in the XPath expression) changes.
· An Auto-Calculation result is non-editable in Authentic View or any other output view.
· Any node in the XML document can be updated with the result of the Auto-Calculation.

7.1.2 Updating Nodes with Auto-Calculations

You can copy the value (or result) of an Auto-Calculation to a node in the main XML document (the document
being edited in Authentic View). You do this as follows:

354

© 2017-2023 Altova GmbH

Auto-Calculations 273Advanced Features

Altova StyleVision 2024 Professional Edition

1. Create the Auto-Calculation as described in Editing and Moving Auto-Calculations .
2. Select the Auto-Calculation and, in the Properties sidebar, click the Edit button of the Update XML

node in Authentic property in the Authentic group of properties (screenshot below).

3. In the XPath Selector dialog that pops up (screenshot below), select the node to update and click OK
to finish. If you wish the XPath expression to be absolute (that is, starting at the document root), check
the Absolute XPath check box.

270

274 Advanced Features Auto-Calculations

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Alternatively, if you select the User-Defined XPath radio button, you can enter any XPath expression
you like to select the node to be updated.

The XPath expression must select a single node. If the XPath expression selects multiple nodes, no node will
be updated.

IMPORTANT!
For a node in the main XML document to be updated two conditions must be fulfilled:

1. The XPath expression for the Auto-Calculation must include at least one value that is related to an XML
node, i.e. a dynamic value. For example, Price*1.2. This expression involves the element Price, and
is therefore dynamic. If the XPath expression contains a static value (for example, string("Nanonull,
Inc.")), then the Update XML Node feature will not work.

2. Any one of the nodes used in the XPath expression must be modified in Authentic View. So, if the
XPath expression is Price*1.2, and the Auto-Calculation is set to update the VATPrice node, then
the Price element must be modified in Authentic View in order for the VATPrice node to be updated.

© 2017-2023 Altova GmbH

Auto-Calculations 275Advanced Features

Altova StyleVision 2024 Professional Edition

Changing the node to update, cancelling the update
To change the node to update, click the Edit button of the Update XML Node property in the Authentic group of
properties of the Auto-Calculation (in the Properties window) and then select the required node from the
Schema Selector dialog box that pops up. To delete the Update XML Node property, click the Remove button
in the toolbar of the Properties window.

Should you use the Auto-Calculation or the updated node contents for display?
If there are no conditional templates involved, you can use either the Auto-Calculation or the contents of the
updated node for display. It is immaterial which one you choose because the node update happens
immediately after the Auto-Calculation is evaluated and there is no factor to complicate the update. You should,
however, be aware that there is a different source for the content displayed in each of the two cases.

Hiding the Auto-Calculation
You may find yourself in the situation where you wish to use an Auto-Calculation to make a calculation in order
to update a node with the value of the Auto-Calculation. In this case, one of the following scenarios arises:

· You wish to display the result just once. You cannot hide the Auto-Calculation since it would then not
be evaluated. If there is no conditional template involved, it is best to display the Auto-Calculation and
not display the contents of the updated node.

· You wish not to display the result, merely to update the node. The best way to handle this scenario is
to apply text formatting to the Auto-Calculation, so that it is invisible on the output medium (for
example, by applying a white color to an Auto-Calculation on a white background).

7.1.3 Auto-Calculations Based on Updated Nodes

If you wish to create an Auto-Calculation (second Auto-Calculation) that uses a node updated by another Auto-
Calculation (first Auto-Calculation), there are two possible situations:

· The two Auto-Calculations are in the same template.
· The two Auto-Calculations are in different templates.

Auto-Calculations in the same template
When two Auto-Calculations are in the same template, the SPS applies the following procedure:

1. A node used in the XPath expression of the first Auto-Calculation is modified.
2. All node values in the XML document are read and all Auto-Calculations are executed.
3. Assuming that the first Auto-Calculation is executed correctly, it updates the specified XML node (call

it Node-A). The second Auto-Calculation, which is based on Node-A, will be executed but will use the
value of Node-A before Node-A was updated. This is because the value of Node-A was read before it
was updated, and has not been read since then.

4. If the document is now edited in any way or if document views are changed (from and to Authentic
View), then the values of nodes are read afresh and Auto-Calculations are executed.

5. The second Auto-Calculation is now carried out. (If this Auto-Calculation is intended to update a node,
then, as is usual for node updates, a node used in the XPath expression will have to be changed before
the update takes place.)

276 Advanced Features Auto-Calculations

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The time lag between the updating of Node-A and the evaluation of the second Auto-Calculation with the
updated value of Node-A could be confusing for the Authentic View user. To ensure that this situation does not
occur, it is best that the XPath expression of the second Auto-Calculation contain the XPath expression of the
first Auto-Calculation—not the updated node itself. As a result, the second Auto-Calculation will execute with
the input to the first Auto-Calculation and perform that Auto-calculation as part of its own Auto-Calculation. This
enables it to be evaluated independently of the contents of Node-A.

Example
The first Auto-Calculation calculates the VAT amount of a product using the nodes for (i) the net price, and (ii)
the VAT rate; it updates the VAT-amount node. The second Auto-Calculation calculates the gross price, which
is the sum of net price and VAT amount; it updates the gross price node.

· The Auto-Calculation to calculate the VAT amount is: NetPrice * VATRate div 100. When the VAT
rate of the product is entered, the Auto-Calculation is executed and updates the VATAmount node.

· If the Auto-Calculation to calculate the gross price is: NetPrice + VATAmount, then the Auto-
Calculation will execute with the value of VATAmount that was read in before VATAmount was updated.

· If, however, the Auto-Calculation to calculate the gross price is: NetPrice + (NetPrice * VATRate
div 100), then the Auto-Calculation will execute with the value of VATRate and will update the
GrossPrice node. The updated VatAmount node has been left out of the second Auto-Calculation.

For a detailed example, see Example: An Invoice .

Auto-Calculations in different templates
When two Auto-Calculations are in different templates, a node updated by the first Auto-Calculation can be
used by the second Auto-Calculation. This is because Auto-Calculations are calculated and nodes updated for
each template separately. For an example of how this would work, see Example: An Invoice .

7.1.4 Example: An Invoice

The Invoice.sps example in the (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Auto-Calculations\,
demonstrates how Auto-Calculations can be used for the following purposes:

· Counting nodes
· Selecting a node based on input from the Authentic View user
· Updating the content of a node with the result of an Auto-Calculation
· Using the result of one Auto-Calculation in another Auto-Calculation

In the example file, the Auto-Calculations have been highlighted with a yellow background color (see
screenshot below).

Counting nodes
In the Invoice example, each product in the list is numbered according to its position in the list of products that
a customer has ordered (Product 1, Product 2, etc). This numbering is achieved with an Auto-Calculation
(screenshot below).

276

276

29

© 2017-2023 Altova GmbH

Auto-Calculations 277Advanced Features

Altova StyleVision 2024 Professional Edition

In this particular case, the XPath expression position() would suffice to obtain the correct numbering.
Another useful way to obtain the position of a node is to count the number of preceding siblings and add one.
The XPath expression would be: count(preceding-sibling::Product)+1. The latter approach could prove
useful in contexts where using the position() function is difficult to use or cannot be used. You can test this
Auto-Calculation in the example file by deleting products, and/or adding and deleting new products.

Selecting a node based on user input
In the Invoice example, the user selects the category of product (Book, CD, DVD, or Electronics) via a combo
box. This selection is entered in the //Product/Category node in the XML document. An Auto-Calculation
then uses this value to reference a "lookup table" in the XML document and identify the node holding the VAT
percentage for this product category. The XPath expression of this Auto-Calculation is:

for $i in Category return /Invoice/Categories/Category[. = $i]/@rate.

The VAT percentage is displayed at the Auto-Calculation location in the output. In the Invoices example, the
lookup table is stored in the same XML document as the invoice data. However, such a table can also be
stored in a separate document, in which case it would be accessed using the doc() function of XPath 2.0. To
test this Auto-Calculation, change the product type selection in any product's Category combo box; the VAT
value will change accordingly (Book=10%; CD=15%; DVD=15%; Electronics=20%).

Updating content of a node with the result of an Auto-Calculation
The VAT percentage obtained by the Auto-Calculation from the lookup is dynamic and stored temporarily in
memory (for use in Authentic View). The result of the Auto-Calculation can, however, be stored in the VAT node
in the XML document. This has two advantages: (i) the content of the VAT node does not have to be entered by
the user; it is entered automatically by the Auto-Calculation; (ii) each time the lookup table is modified, the
changes will be reflected in the VAT node when Invoice.xml is opened in Authentic. To cause an Auto-
Calculation to update a node, select the Auto-Calculation in Design View, and in the Properties window
(screenshot below), click the Authentic | Update XML Node button. In the dialog that pops up, select the VAT
node, and then click OK.

278 Advanced Features Auto-Calculations

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In Authentic View, when the user selects a different product category in the combo box, the Auto-Calculation
obtains the VAT percentage by referencing the lookup table, displays the VAT percentage, and updates the
VAT node.

Using an Auto-Calculation-updated node in another Auto-Calculation
The VAT percentage, obtained by the Auto-Calculation described above, is required to calculate the gross price
(net price + VAT amount) of each product. The formula to use would be derived as follows:

Gross Price = Net Price + VAT-amount

Since VAT-amount = Net Price * VAT-percentage div 100
Gross Price = Net Price + (Net Price * VAT-percentage div 100)

The net price of a product is obtained from the PriceNet node. The VAT percentage is calculated by an Auto-
Calculation as described above, and this Auto-Calculation updates the VAT node. The content of the VAT node
can now be used in an Auto-Calculation to generate the gross price. The XPath expression to do this would be:

PriceNet + (PriceNet * (VAT div 100))

The XPath expression can be viewed and edited in the Properties window . You can test the Auto-
Calculation for the gross price by changing either the price or product category of any product. Notice that the
gross price (price including VAT) of the product also changes.

270

© 2017-2023 Altova GmbH

Auto-Calculations 279Advanced Features

Altova StyleVision 2024 Professional Edition

In the Invoice SPS, the gross price Auto-Calculation updates the PriceGross node in the XML document.

The updated PriceGross nodes can now be used in an Auto-Calculation that sums up the prices of all
purchased products. The XPath expression would be: sum(Order/Product/PriceGross). In the Invoice SPS,
this Auto-Calculation updates the PriceTotal node. You can test this Auto-Calculation by modifying the prices
of individual products and seeing the effect on the price total.

An Auto-Calculation Exercise
Now add two Auto-Calculation components to the SPS yourself.

1. Create an Auto-Calculation that calculates a volume discount for the entire invoice. If the order amount
(price total) exceeds Euro 100, Euro 300, or Euro 600, discounts of 5%, 10%, and 12% apply,
respectively. Display the discount amount (see screenshot below) and update the DiscountAmount
node in the XML document.

2. Create an Auto-Calculation that calculates the discounted bill amount. This amount would be the price
total less the discount amount (as calculated in the previous Auto-Calculation). Display the bill amount
(see screenshot below) and update the BillAmount node in the XML document.

Set up these components so that the Authentic View output is as shown in the screenshot below.

You can see these two additional Auto-Calculations in the file InvoiceWithDiscounts.sps, which is in the
(My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Auto-Calculations folder.

29

280 Advanced Features Conditions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.2 Conditions

You can insert conditions anywhere in the design, in both the main template and global templates. A condition
is an SPS component that is made up of one or more branches, with each branch being defined by an XPath
expression. For example, consider a condition composed of two branches. The XPath expression of the first
branch tests whether the value of the Location attribute of the context node is "US". The XPath expression of
the second branch tests whether the value of the Location attribute is "EU". Each branch contains a template
—a condition template. When a node is processed with a condition, the first branch with a test that evaluates
to true is executed, that is, its condition template is processed, and the condition is exited; no further branches
of that condition are evaluated. In this way, you can use different templates depending on the value of a node. In
the example just cited, different templates could be used for US and EU locations.

This section consists of the following topics:

· Setting Up the Conditions , which describes how to create a condition and its branches.
· Editing Conditions , about how to edit the XPath expressions of condition branches after they have

been created.
· Conditions for Specific Outputs , which shows how conditions are used to produce different output

for different output formats.
· Conditions and Auto-Calculations , explains usage issues when conditions and Auto-Calculations

are used in combination.

7.2.1 Setting Up the Conditions

Setting up the condition consists of the following steps:

1. Create the condition with its first branch.
2. Create additional branches for alternative processing.
3. Create and edit the templates within the various branches of the condition.

Creating the condition with its first branch
Set up a condition as follows:

1. Place the cursor anywhere in the design or select a component and then select the menu command
Insert | Condition.The Edit XPath Expression dialog pops up (screenshot below).

280

283

284

285

685

© 2017-2023 Altova GmbH

Conditions 281Advanced Features

Altova StyleVision 2024 Professional Edition

2. In the Expression pane, enter the XPath expression for the condition branch via the keyboard.
Alternatively, enter the expression by double-clicking nodes, operators, and/or functions in the panes of
the dialog. It is important to be aware of the context node at the insertion point; the context node is
highlighted in the schema sources tree when the dialog pops up.

3. Click OK to finish. The condition is created with its first branch; the XPath expression you entered is
the XPath expression of the first branch. If the condition was inserted at a text insertion point, the first
branch is empty (there is no template within it; see screenshot below). If the condition was inserted
with a component selected, the condition is created around the component, and that component
becomes the template of the first branch.

To select the entire condition, click the cell with the question mark. To select the first branch, click the
cell with the number one.

After creating a condition with one branch (which may or may not have a template within it), you can create as
many additional branches as required.

282 Advanced Features Conditions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Creating additional branches
Additional branches are created one at a time. An additional branch is created via the context menu
(screenshot below) and can be created in two ways: (i) without any template within it (Add New Branch); and
(ii) with a copy of an existing template within the new branch (Copy Branch).

To create a new branch, right-click any branch of the condition and select Add New Branch from the context
menu. The Edit XPath Expression dialog will pop up. After entering an XPath expression and clicking OK, a
new empty branch is added to the condition. This is indicated in the design by a new cell being added to the
condition; the new cell has a number incremented by one over the last branch prior to the addition.

To create a copy of an existing branch, right-click the branch of the condition you wish to copy and select
Copy Branch. The Edit XPath Expression dialog will pop up, containing the XPath expression of the branch
being copied. After modifying the XPath expression and clicking OK, a new branch is added to the condition.
The new branch contains a copy of the template of the branch that was copied. The new branch is indicated in
the design by a new cell with a number incremented by one over the last branch prior to the addition.

The Otherwise branch
The Otherwise branch is an alternative catch-all to specify a certain type of processing (template) in the event
that none of the defined branches evaluate to true. Without the Otherwise branch, you would either have to
create branches for all possible eventualities or be prepared for the possibility that the conditional template is
exited without any branch being executed.

To insert an Otherwise branch, use either the Add New Branch or Copy Branch commands as described
above, and in the Edit XPath Expression dialog click the Otherwise check box (see screenshot below).

685

685

685

© 2017-2023 Altova GmbH

Conditions 283Advanced Features

Altova StyleVision 2024 Professional Edition

Moving branches up and down
The order of the branches in the condition is important, because the first branch to evaluate to true is executed
and the condition is then exited. To move branches up and down relative to each other, select the branch to be
moved, then right-click and select Move Branch Up or Move Branch Down.

Deleting a branch
To delete a branch, select the branch to be deleted, then right-click and select Delete Branch.

7.2.2 Editing Conditions

To edit the XPath expression of a condition branch, do the following:

1. Select the condition branch (not the condition).
2. In the Properties sidebar, select condition branch in the Properties For column (screenshot below).

284 Advanced Features Conditions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Click the Edit button of the XPath property in the When group of properties. This pops up the Edit
XPath Expression dialog , in which you can edit the XPath expression for that branch of the
condition.

7.2.3 Output-Based Conditions

Individual components in the document design can be processed differently for StyleVision's different output
formats (Authentic View, RTF, Text and HTML). For example, consider the case where you wish to create a
link, which, in Authentic View should point to a file on a local system, but in the HTML output should point to a
Web page. In this case, you can create one condition to process content for Authentic View output and a
second condition to process content for HTML output. Or consider the case where you want some text to be
included in the Authentic View output but not in the HTML output. A condition could be created with a branch
for processing Authentic View output, and no branch for HTML output.

Note: Conditions for specific output can be placed around individual parts or components of the document,
thus providing considerable flexibility in the way the different output documents are structured.

Creating conditions for specific output
To create conditions for specific output, do the following:

1. In Design View, select the component (or highlight the document part) which you wish to create
differently for different output formats.

2. Right-click, and, from the context menu that pops up, select Enclose with | Output-Based
Condition. This inserts the output condition with four branches, each having the same content (the
selected component). Each branch represents a single output (Authentic View, RTF, Text, or HTML).
To determine which branch represents which output, mouseover the branch tag or check the XPath
expression of the selected branch (in the Properties sidebar, in the Condition Branch entry, click the
Edit button).

3. Within each branch, define the required processing. If you wish not to have any processing for a
particular output format, then delete the branch for that format (select the branch and press Delete, or
select the branch and in the (right-click) context menu select Delete Branch).

Note: The output-based condition can also be created first and (static and/or dynamic) content for each
branch inserted later. First insert the output-based condition at a cursor insertion point in the design.
Then within the respective branches, insert the required static and/or dynamic content.

685

283

© 2017-2023 Altova GmbH

Conditions 285Advanced Features

Altova StyleVision 2024 Professional Edition

Editing the branches of an Output-Based Condition
The XPath expression of a branch of an output-based condition is $SV_OutputFormat = 'format', where
format is one of the values: Authentic, RTF, Text, or HTML. You can edit the XPath expression of a condition
branch (in the Properties sidebar, in the Condition Branch entry, click the Edit button). For example, you
could combine the Authentic View and HTML output formats in one condition branch (using the XPath
expression: $SV_OutputFormat = 'Authentic' or $SV_OutputFormat = 'HTML').

You can also (a) delete one or more branches; (b) create an otherwise branch in a condition; and (c) move the
branches up or down relative to each other, thus changing the relative priority of the branches. For information
on how to carry out these actions, see Setting Up the Conditions and Editing Conditions .

Using the $SV_OutputFormat parameter
In the XSLT file generated for each output, $SV_OutputFormat is created as a global parameter and assigned
the value appropriate to that output format (that is, Authentic, RTF, Text, or HTML). This parameter can be
overridden by passing another value for it to the processor at runtime. This could be useful, if, for example, you
wish to create two alternative HTML output options, one of which will be selected at runtime. You could then
create condition branches $SV_OutputFormat = 'HTML-1' and $SV_OutputFormat = 'HTML-2'. At runtime
you could pass the required parameter value (HTML-1 or HTML-2) to the processor.

7.2.4 Conditions and Auto-Calculations

When using Conditions and Auto-Calculations together, there are a few issues to bear in mind. The two most
fundamental points to bear in mind are:

· Only Auto-Calculations in visible conditions—that is the branch selected as true—are evaluated.
· Auto-Calculations are evaluated before Conditions.

Here are a few guidelines that summarize these issues.

1. If an Auto-Calculation updates a node, and if that node is involved in a Condition (either by being in the
XPath expression of a branch or in the content of a conditional template), then keep the Auto-
Calculation outside the condition if possible. This ensures that the Auto-Calculation is always visible—
no matter what branch of the condition is visible—and that the node will always be updated when the
Auto-Calculation is triggered. If the Auto-Calculation were inside a branch that is not visible, then it
would not be triggered and the node not updated.

2. If an Auto-Calculation must be placed inside a condition, ensure (i) that it is placed in every branch of
the condition, and (ii) that the various branches of the condition cover all possible conditions. There
should be no eventuality that is not covered by a condition in the Conditional Template; otherwise there
is a risk (if the Auto-Calculation is not in any visible template) that the Auto-Calculation might not be
triggered.

3. If you require different Auto-Calculations for different conditions, ensure that all possible eventualities for
every Auto-Calculation are covered.

4. Remember that the order in which conditions are defined in a conditional template is significant. The
first condition to evaluate to true is executed. The otherwise condition is a convenient catch-all for
non-specific eventualities.

283

280 283

286 Advanced Features Conditional Presence

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.3 Conditional Presence

The Conditional Presence feature enables you to create certain design components if a specified condition is
fulfilled. The design components that can be created conditionally are:

· Hyperlinks
· Bookmarks
· New Documents
· User-Defined Elements
· TOC Levels

Specifying conditional presence
To specify that one of these design components be created conditionally and to set the required condition, do
the following:

1. Select the design component.
2. In the Common group of properties in the Properties sidebar of that design component (screenshot

below), click the Edit XPath icon of the Conditional Presence property.

3. In the Edit XPath Expression dialog that pops up, enter the XPath expression that is required as the
condition to be fulfilled in order for the design component to be implemented in the output.

4. Click OK to finish.

Note: When the condition is fulfilled, the design component is implemented. Otherwise it is not, but all
content of the design component is output—without the presence of that design component. For
example, in the screenshot above, a hyperlink is created to be conditionally present. The condition
tests whether the current node is not empty. If the node is not empty, then the condition test evaluates
to true and the hyperlink is created. The text of the hyperlink text is derived from the content of the
Hyperlink design component. (The URL of the hyperlink is specified elsewhere, in the Hyperlink group
of properties.) If the condition test evaluates to false, then the Hyperlink text (derived from the Hyperlink
design component) is output, but as plain text and not as a hyperlink.

341

339

262

140

315

685

© 2017-2023 Altova GmbH

Conditional Presence 287Advanced Features

Altova StyleVision 2024 Professional Edition

In the same way, in the case of the other design components that can be conditionally created, it is
the design component itself that is conditionally created or not. The content of the design component
is created in either event (whether the condition test evaluates to true or false).

288 Advanced Features Grouping

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.4 Grouping

The grouping functionality is available in XSLT 2.0 and 3.0 SPSs and for HTML,Text, and RTF output.
Grouping is not supported for Authentic View output.

Grouping enables items (typically nodes) to be processed in groups. For example, consider an inventory of
cars, in which the details of each car is held under a car element. If, for example, the car element has a brand
attribute, then cars can be grouped by brand. This can be useful for a variety of reasons. For example:

· All cars of a single brand can be presented together in the output, under the heading of its brand name.
· Operations can be carried out within a group and the results of that operation presented separately for

each group. For example, the number of models available for each brand can be listed.

Additionally, a group can be further processed in sub-groups. For example, within each brand, cars can be
grouped by model and then by year.

Grouping criteria
Items can be grouped using two general criteria: (i) a grouping key, which typically tests the value of a node,
and (ii) the relative position of items. The following specific grouping criteria are available:

· group-by, which groups items on the basis of an XPath-defined key. For example, car elements can
be grouped on the basis of their brand attributes. The grouping is set on the car element, and an
XPath expression selects the brand attribute.

· group-adj acent uses a combination of grouping-key and position criteria. All adjacent items that have
the same value for the grouping key are included in one group. If the grouping-key value of an item is
different from that of the previous item, then this item starts a new group.

· group-starting-with starts a new group when a node matches a defined XPath pattern. If a node does
not match the defined XPath pattern, then it is assigned to the current group.

· group-ending-with ends a group when a node matches a defined XPath pattern; the matching node is
the last in that group. The next node starts a new group. If a node subsequent to that which starts a
group does not match the defined XPath pattern it is assigned to the current group.

Creating groups
Groups can be created on either a node or a current-group template via the context menu. To create a group,
right-click the node or current-group template, and in the context menu that appears, select the Group by
command. This pops up the Define Output Grouping dialog (screenshot below).

© 2017-2023 Altova GmbH

Grouping 289Advanced Features

Altova StyleVision 2024 Professional Edition

In the dialog, check the Enable Grouping check box, then select the required Grouping Type and, in the Match
text box, enter the XPath expression that defines the grouping key (for the group-by and group-adjacent
options) or the desired match pattern (for the group-starting-with and group-ending-with options). When you
click OK, a dialog pops up asking whether you wish to sort the group-set alphabetically (in ascending order).
You can always sort group-sets subsequently or remove such sorting subsequently. The screenshot below
shows nodes and current-group templates which have had grouping added to them.

290 Advanced Features Grouping

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In the screenshot above, the person node has been grouped and the resulting groups sorted. For example if
the person elements have been grouped by department, then the various departments can be sorted in
alphabetically ascending order. The groups thus created have been further grouped by creating grouping on the
current-group() template. In this way person elements can be grouped, say, first by department, and then by
employment grade.

Sorting groups
After confirming a grouping definition, a pop-up asks you to confirm whether the groups should be sorted in
ascending order or not. You can set sorting subsequently at any time, or modify or delete, at any time, the
sorting set at this stage.

To set, modify, or delete sorting subsequently, right-click the required grouping template and select Sort by.
This pops up the Define Output Sort Order dialog . How to use this dialog is described in the section
Sorting . The important point to note is that to sort groups on the basis of their grouping-key, you must
select the XPath function current-grouping-key() as the sorting key. For examples, see the files described
in the following sections.

Viewing and editing grouping and sorting settings
To view and edit the grouping and sorting settings on a template, right-click the template and select Group by
or Sort by, respectively. This pops up the respective dialog, in which the settings can be viewed or modified.

User-defined templates
User-defined templates are templates that are applied to items selected by an XPath expression you
specify. The nodes selected by the XPath expression of a user-defined template can also be grouped. In this
case, the grouping is applied on the user-defined template.

7.4.1 Example: Group-By (Persons.sps)

The Persons.sps example is based on the Persons.xsd schema and uses Persons.xml as its Working XML
File. It is located in the (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Grouping\Persons\. The XML
document structure is as follows: an employees document element can contain an unlimited number of person
employees. Each person employee is structured according to this example:

<person first="Vernon" last="Callaby" department="Administration" grade="C"/>

In the design we group persons according to department. Each department is represented by a separate table
and the departments are sorted in ascending alphabetical order. Within each department table, persons are
grouped according to grade (sorted in ascending alphabetical order) and, within each grade, persons are listed
on in ascending alphabetical order of their last names.

Strategy
The strategy for creating the groups is as follows. The grouping is created on the person element with the
department attribute being the grouping-key. This causes the person elements to be ordered in groups based
on the value of the department attribute. (If sorting is specified, then the department groups can be organized in
alphabetical order, for example, Administration first, and so on.) Since the departments are to be created as

296

296

248

29

© 2017-2023 Altova GmbH

Grouping 291Advanced Features

Altova StyleVision 2024 Professional Edition

separate tables, the current-grouping (which is based on the department grouping-key) is created as a table.
Now, within this grouped order of Person elements, we specify that each group must be further ordered with the
grade attribute as the grouping-key.

Creating the SPS
The design was created as follows:

1. Drag the person element from the schema tree and create it as contents.
2. Right-click the person element tag and, in the context menu, select Group by.
3. In the Define Output Grouping dialog, select group-by, set the XPath expression in the Match text box

to @department, and click Yes.
4. A dialog pops up asking whether the groups should be sorted. Since we wish the groups to be sorted

according to the default ascending alphabetical sorting, click OK. (Sorting can always be set, modified,
or deleted subsequently.)

5. Since each group (which is a department) is to be created in a separate table, create the current group
as a table. Do this by right-clicking the current-group() tag (screenshot below), and selecting
Change to | Table, selecting the child attributes @last and @grade as the columns of the table.

6. Re-organize the contents of the columns and cells of the table so that the first column contains @grade
and the second column contains the @first and @last nodes (see screenshot below).

7. Within the current group, which is grouped by department, we wish to group by grade. So on the
current-group() template, create a grouping for the grade attribute. Confirm the default sorting. A
new current-group() template is created (see screenshot below).

8. Sort this current group (which is the sub-group of persons and grouped by grade), on the last
attribute.

9. Set formatting for the table.

292 Advanced Features Grouping

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10. Above the table provide a heading for the table. Since each table represents a department, the name of
the department can be dynamically obtained from the current context by using an Auto-Calculation
with an XPath expression that calls the current-grouping-key() function of XPath 2.0/3.0.

11. Repeat the entire process, to create similar output, but this this time grouping persons by grade and
then by department.

To view or modify the grouping or sorting of a template, right-click that template and select Group by or Sort
by from the context menu. This pops up the respective dialog, in which the settings can be viewed or modified.

7.4.2 Example: Group-By (Scores.sps)

The Scores.sps example is based on the Scores.xsd schema and uses Scores.xml as its Working XML File.
It is located in the (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Grouping\Scores\. The XML
document structure is as follows: a results document element contains one or more group elements and one
or more match elements. A group element contains one or more team elements, and a match element is
structured according to this example:

<match group="A" date="2007-10-12">

<team name="Brazil" for="2" points="3"/>

<team name="Germany" for="1" points="0"/>
</match>

The design consists of three parts (screenshot below): (i) the match results presented by day (grouped
on //match/@date); (ii) the match results presented by group (grouped on //match/@group); and (iii) group
tables providing an overview of the standings by group (a dynamic table of the group element, with Auto-
Calculations to calculate the required data).

29

© 2017-2023 Altova GmbH

Grouping 293Advanced Features

Altova StyleVision 2024 Professional Edition

Strategy
For the two sections containing the match results, we group matches by date and tournament-group. For
members of each group (date and tournament group), we create borderless tables (for alignment purposes). So
matches played on a single date will be in a separate table, and all the match results of a single tournament

294 Advanced Features Grouping

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

group will be in a separate table (for example, Group A matches). For the group-tables section, the group
element is created as a dynamic table, with Auto-Calculations providing the value of the required data.

Creating the SPS
The design was created as follows:

1. Drag the /results/match element from the schema tree and create it as contents.
2. Right-click the match element tag and, in the context menu, select Group by.
3. In the Define Output Grouping dialog, select group-by, set the XPath expression in the Match text box

to @date, and click OK.
4. A dialog pops up asking whether the groups should be sorted. Since we wish the groups to be sorted

according to the default ascending alphabetical sorting, click Yes. (Sorting can always be set,
modified, or deleted subsequently.)

5. Since each group (which is a date) is to be created in a separate table, create the current group as a
table. Do this by right-clicking the current-group() tag, selecting Change to | Table, and then
selecting the descendant nodes team/@name and team/@for as the columns of the table (see
screenshot below).

6. Set a hyphen in each cell that will be output if the match is not the last in the current group. Do this by
using a conditional template with a condition set to position() != last(). This provides output such
as: Brazil - Germany or 2 - 1.

7. Put an Auto-Calculation in the header that outputs the current grouping key for the respective group
(XPath expression: current-grouping-key()).

8. Format the table as required.
9. To group the matches by tournament group, repeat the entire process, but group matches this time on

the group attribute of match.
10. For the group tables (in the third section of the design), which contain the standings of each team in

the group, create the /results/group element as a dynamic table. Add columns as required (using
the Table | Append Column or Table | Insert Column commands). Set up Auto-Calculations in
each column to calculate the required output (3 point for a win; 1 point for a draw; 0 points for a loss).

© 2017-2023 Altova GmbH

Grouping 295Advanced Features

Altova StyleVision 2024 Professional Edition

And, finally, sort the table in descending order of total points obtained. To see the XPath expressions
used to obtain these results, right-click the Auto-Calculation or sorted template, and select,
respectively, the Edit XPath and Sort by commands.

296 Advanced Features Sorting

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.5 Sorting

The sorting functionality is available for HTML, Text, and RTF output. Sorting is not supported for Authentic
View output.

A set of sibling element nodes of the same qualified name can be sorted on one or more sort-keys you select.
For example, all the Person elements (within, say, a Company element) can be sorted on the LastName child
element of the Person element. The sort-key must be a node in the document, and is typically a descendant
node (element or attribute) of the element node being sorted. In the example mentioned, LastName is the sort-
key.

If there are two elements in the set submitted for sorting that have sort-key nodes with the same value, then an
additional sort-key could provide further sorting. In the Person example just cited, in addition to a first sort-key
of LastName, a second sort-key of FirstName could be specified. So, for Person elements with the same
LastName value, an additional sort could be done on FirstName. In this way, in an SPS, multiple sort
instructions (each using one sort-key) can be defined for a single sort action.

The template is applied to the sorted set and the results are sent to the output in the sorted order. Sorting is
supported in the HTML, Text, and RTF output.

User-defined templates
User-defined templates are templates that are applied to items selected by an XPath expression you
specify. The nodes selected by the XPath expression of a user-defined template can also be sorted. In this
case, the sorting is applied on the user-defined template.

In this section

· The sorting mechanism is described.
· An example demonstrates how sorting is used.

7.5.1 The Sorting Mechanism

Setting up a schema element node for sorting consists of two steps:

1. In Design View, select the schema element node that is to be sorted. Note that it is the instances of
this element in the XML document that will be sorted. Often it might not immediately be apparent
which element is to be sorted. For example, consider the structure shown in the screenshot below.

Each newsitem has a dateline containing a place element with a city attribute. The @city nodes of
all newsitem elements are to be output in alphabetical order. In the design, should the @city node be

248

296

298

© 2017-2023 Altova GmbH

Sorting 297Advanced Features

Altova StyleVision 2024 Professional Edition

selected for sorting, or the place, dateline, or newsitem elements? With @city selected, there will
be only the one city node that will be sorted. With place or dateline selected, again there will be
just the one respective element to sort, since within their parents they occur singly. With newsitem
selected, however, there will be multiple newsitem elements within the parent newsitems element. In
this case, it is the newsitem element that should be sorted, using a sort-key of
dateline/place/@city.

2. After selecting the element to sort, in the context menu (obtained by right-clicking the element
selection), click the Sort Output command. This pops up the Define Output Sort Order dialog
(screenshot below), in which you insert or append one or more sort instructions.

Each sort instruction contains: (i) a sort-key (entered in the Match column); (ii) the datatype that the
sort-key node should be considered to be (text or number); (iii) and the order of the sorting (ascending
or descending). The order in which the sort instructions are listed is significant. Sorting is carried out
using each sort instruction in turn, starting with the first, and working down the list when multiple items
have the same value. Any number of sort instructions are allowed.

For an example of how sorting is used, see Example: Sorting on Multiple Sort-Keys .

User-defined templates
User-defined templates are templates that are applied to items selected by an XPath expression you
specify. The nodes selected by the XPath expression of a user-defined template can also be sorted. In this
case, the sorting is applied on the user-defined template.

A note about sort-keys
The XPath expression you enter for the sort-key must select a single node for each element instance—not a
nodeset (XPath 1.0) or a sequence of items (XPath 2.0 and XPath 3.0); the key for each element should be
resolvable to a string or number value.

In an XSLT 2.0 or 3.0 SPS, if the sort-key returns a sequence of nodes, an XSLT processing error will be
returned. So, in the Person example cited above, with a context node of Person, an XPath expression such

298

248

298 Advanced Features Sorting

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

as: ../Person/LastName would return an error because this expression returns all the LastName elements
contained in the parent of Person (assuming there is more than one Person element). The correct XPath
expression, with Person as the context node, would be: LastName (since there is only one LastName node for
each Person element).

In XSLT 1.0, the specification requires that when a nodeset is returned by the sort-key selector, the text value
of the first node is used. StyleVision therefore returns no error if the XPath expression selects multiple nodes
for the sort-key; the text of the first node is used and the other nodes are ignored. However, the first node
selected might not be the desired sort-key. For example, the XPath expression ../Person/LastName of the
example described above would not return an error. But neither would it sort, because it is the same value for
each element in the entire sort loop (the text value of the first LastName node). An expression of the kind:
location/@*, however, would sort, using the first attribute of the location child element as the sort-key. This
kind of expression, however, is to be avoided, and a more precise selection of the sort-key (selecting a single
node) is advised.

7.5.2 Example: Sorting on Multiple Sort-Keys

In the simple example below (available in the (My) Documents folder , C:\Documents and
Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Sorting\SortingOnTwoTextKeys.

sps), team-members are listed in a table. Each member is listed with first name, last name, and email address
in a row of the table. Let us say we wish to sort the list of members alphabetically, first on last name and then
on first name. This is how one does it.

When the list is unsorted, the output order is the order in which the member elements are listed in the XML
document (screenshot below, which is the HTML output).

In Design View, right-click the member element (highlighted blue in screenshot below), and from the context
menu that appears, select the Sort Output command.

29

© 2017-2023 Altova GmbH

Sorting 299Advanced Features

Altova StyleVision 2024 Professional Edition

This pops up the Define Output Sort Order dialog (screenshot below). Notice that the element selected for
sorting, member, is named at the Sort Nodes entry. This node is also the context node for XPath expressions to
select the sort-key. Click the Add Row button (at left of pane toolbar) to add the first sort instruction. In the row
that is added, enter an XPath expression in the Match column to select the node last. Alternatively, click the

Build button to build the XPath expression. The Datatype column enables you to select how the sort-key
content is to be evaluated: as text or as a number. The Order column lists the order of the sort: ascending or
descending. Select Text and Ascending. Click OK to finish.

In Design View, the member tag displays an icon indicating that it contains a sort filter . The HTML
output of the team-member list, sorted on last name, is shown below. Notice that the two Edwards are not
alphabetically sorted (Nadia is listed before John, which is the order in the XML document). A second sort-key
is required to sort on first name.

300 Advanced Features Sorting

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In Design View, right-click the member tag and select the Sort Output command from the context menu. The
Define Output Sort Order dialog pops up with the last sort instruction listed. To add another sort instruction,
append a new row and enter the first element as its sort-key (screenshot below). Click OK to finish.

In the HTML output, the list is now sorted alphabetically on last name and then first name.

© 2017-2023 Altova GmbH

Sorting 301Advanced Features

Altova StyleVision 2024 Professional Edition

302 Advanced Features Parameters and Variables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.6 Parameters and Variables

Parameters and variables can be declared and referenced in the SPS. The difference between the two is that
while a variable's value is defined when it is declared, a parameter can have a value passed to it (at run-time via
the command line) that overrides the optional default value assigned when the parameter was declared.

In this section, we describe the functionality available for parameters and variables:

· User-Declared Parameters explains how user-defined parameters can be used in an SPS.
· Parameters for Design Fragments describes how parameters can be used with design fragments.
· SPS Parameters for Sources are a special type of parameter. They are automatically defined by

StyleVision for schema sources (specifically, the Working XML Files of schemas). Since the name and
value of such a parameter are known to the user, the parameter can be referenced within the SPS and
a value passed to it at run-time from the command line.

· Variables enable you to: (i) declare a variable with a certain scope and define its value, and (ii) to
reference the value of declared variables and create a template on a node or nodes selected by the
variable.

7.6.1 User-Declared Parameters

In an SPS, user-declared parameters are declared globally with a name and a default string value. Once
declared, they can be used in XPath expressions anywhere in the SPS. The default value of the parameter can
be overridden for individual XSLT transformations by passing the XSLT stylesheet a new global value via
StyleVision Server.

Use of parameters
User-declared parameters are useful in the following situations:

· If you wish to use one value in multiple locations or as an input for several calculations. In this case,
you can save the required value as a parameter value and use the parameter in the required locations
and calculations.

· If you wish to pass a value to the stylesheet at processing time. In the SPS (and stylesheet), you use
a parameter with a default value. At processing time, you pass the desired value to the parameter via
StyleVision Server.

Usage mechanism
Working with user-declared parameters in the SPS consists of two steps:

1. Declaring the required parameters .
2. Referencing the declared parameters .

Declaring parameters
All user-defined parameters are declared and edited in the Edit Parameters dialog (screenshot below). The Edit
Parameters dialog is accessed via: the Edit | Stylesheet Parameters command and the Parameters
button in the Edit Database Filters dialog (Edit | Edit DB Filter).

302

304

306

307

302

303

750

810

http://www.altova.com/stylevision/stylevision-server.html
http://www.altova.com/stylevision/stylevision-server.html

© 2017-2023 Altova GmbH

Parameters and Variables 303Advanced Features

Altova StyleVision 2024 Professional Edition

Declaring a parameter involves giving it a name and a string value—its default value. If no value is specified, the
default value is an empty string.

To declare a parameter, do the following:

1. In the Edit Parameters dialog, append or insert a new parameter by clicking the Append or Insert
buttons. A new line appears.

2. Enter the name of the parameter. Parameter names must begin with a letter, and can contain the
characters A to Z, a to z, 0 to 9, and the underscore.

3. Enter a default value for that parameter. The value you enter is accepted as a text string.

You can insert any number of parameters and modify existing parameters at any time while editing either the
SPS or Authentic View.

Note:

· The Edit Parameters dialog contains all the user-defined parameters in an SPS.
· Parameters can also be declared in the Design Overview sidebar .

Referencing declared parameters
Parameters can be referenced in XPath expressions by prefixing a $ character before the parameter name. For
example, you could reference a parameter in the XPath expression of an Auto-Calculation (e.g.
concat('www.', $company, '.com')). If your SPS is DB-based, then you can also use parameters as

the values of DB Filter criteria. The DB parameters, however, are declared and edited in the Edit Parameters
dialog .

Note: While it is an error to reference an undeclared parameter, it is not an error to declare a parameter and
not reference it.

42

302

750

304 Advanced Features Parameters and Variables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.6.2 Parameters for Design Fragments

Parameters for Design Fragments enable you to define a parameter on a design fragment you have created and
to give this parameter a default value. At each location where this design fragment is used in the design, you
can enter a different parameter value, thus enabling you to modify the output of individual design fragments.

For example, a design fragment named EMailAddresses can be created with a parameter named Domain that
has a default value of altova.com. Now, say this parameter is used in an Auto-Calculation in the design
fragment to generate the email addresses of company employees. For the EU addresses, we could use the
design fragment EmailAddresses and edit the value of the Domain parameter to be altova.eu. In the same
way, in the template for Japanese employees, we could edit the value of the Domain parameter to be
altova.jp. For the US employees of the company, we could leave the parameter value of Domain unchanged,
thus generating the default value of altova.com.

Using parameters for design fragments consists of two parts:

1. Defining the parameter with a default value on the design fragment where it is created.
2. Editing the parameter value where the design fragment is used.

These parts are explained in detail below.

Note: Parameters for Design Fragments are supported in Authentic View only in the Enterprise Editions of
Altova products.

Defining the parameter
Each design fragment can be assigned any number of parameters. To do this, click the Define Parameters link
in the title bar of the design fragment (see screenshot below).

This pops up the Define Parameters for Design Fragments dialog (screenshot below). Click the Append or
Insert icon at top left to add a parameter entry line. Enter or select the name, datatype, number of
occurrences, and default value of the parameter. The Occurrence attribute of the parameter specifies the
number of items returned by evaluating the XPath expression specified as the default value of the parameter.
The Occurrence attribute is optional and is, by default, none or one. You can add as many parameters as you
like.

304

305

© 2017-2023 Altova GmbH

Parameters and Variables 305Advanced Features

Altova StyleVision 2024 Professional Edition

There are two types of Delete icon. The Delete icon to the right of each parameter entry deletes the default
value of that parameter. The Delete icon at the top right of the pane deletes the currently highlighted
parameter.

Note: If the SPS uses XSLT 1.0, then the XPath expression you enter must return a node-set. Otherwise an
error is reported.

Using the parameter
After a design fragment has been created, it can be inserted at multiple locations in the design (by dragging it
from the Design Tree or Schema Tree). The screenshot below shows the design fragment EmailPerson,
inserted after the n1:Name element.

If a parameter has been defined for this design fragment, then its value can be edited for this particular usage
instance of the design fragment. Do this by right-clicking the design fragment and selecting the command Edit
Parameters. This pops up the Edit Parameters for Design Fragments dialog (screenshot below).

306 Advanced Features Parameters and Variables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

You can edit the value of the parameter in this dialog. Click OK to finish. The new parameter value will be used
in this usage instance of the design fragment. If the parameter value is not edited, the original (or default)
parameter value will be used.

Note: If XSLT 1.0 is being used, then the XPath expression must return a node-set. Otherwise an error is
reported.

7.6.3 SPS Parameters for Sources

An SPS can have multiple schema sources, where a schema could be a DTD or XML Schema on which an
XML document is based, or an XML Schema that is generated from a DB and on which the DB is based.

In each SPS, there is one main schema, and, optionally, one or more additional schemas. When you add a
new schema source, StyleVision automatically declares a parameter for that schema and assigns the
parameter a value that is the URI of the Working XML File you assign to that schema. In the case of DBs,
StyleVision generates a temporary XML file from the DB, and sets the parameter to target the document node
of this temporary XML file.

Referencing parameters for sources
Each SPS parameter for a schema source addresses the document node of an XML file corresponding to that
schema. In StyleVision, the XML file for each schema is the Working XML File or the XML file generated from a
DB. SPS parameters for sources can therefore be used in two ways:

1. In XPath expressions within the SPS, to locate nodes in various documents. The parameter is used to
identify the document, and subsequent locator steps in the XPath expression locate the required node
within that document. For example, the expression: count($XML2//Department/Employee) returns
the number of Employee elements in all Department elements in the XML document that is the
Working XML File assigned to the schema source designated $XML2.

2. On the command line, the URI of another XML file can be passed as the value of an SPS parameter for
sources. Of course, the new XML file would have to be based on the schema represented by that
parameter. For example, if FileA.xml and FileB.xml are both valid according to the same schema,
and FileA.xml is the Working XML File assigned to a schema $XML3 used in an SPS, then when an

© 2017-2023 Altova GmbH

Parameters and Variables 307Advanced Features

Altova StyleVision 2024 Professional Edition

XSLT transformation for that SPS is invoked from the command line, FileB.xml can be substituted for
FileA.xml by using the parameter $XML3="FileB.xml". You should also note that, on the command
line, values should be entered for all SPS parameters for sources except the parameter for the main
schema. The XML file corresponding to the main schema will be the entry point for the XSLT
stylesheet, and will therefore be the XML file on which the transformation is run.

7.6.4 Variables

Using variables consists of two parts: (i) declaring the variable , and (ii) using the variable .

Note: Variables are supported in Authentic View only in the Enterprise Editions of Altova products.

Declaring a variable
A variable can be declared on any template included in the design. It is given a name, a datatype, and a value.
Additionally, you can specify whether it is to be editable in the Enterprise editions of Authentic View. The
variable will then be in scope on this template and can be used within it. To declare a variable so that it is in
scope for the entire document, declare the variable on the root template. A major advantage of declaring a
variable only on the template where it is needed is that XPath expressions to locate a descendant node will be
simpler.

Declare a variable as follows:

1. Right-click the node template on which the variable is to be created and select the command Define
Variables.

2. In the Define Variables dialog that appears (screenshot below), click the Append Variable icon in the
top left of the Variables pane, then enter a variable name. The value of the variable is given via an XPath
expression. If you wish to enter a string as the value of the variable (as in the first variable in the
screenshot below), then enclose the string in quotation marks. In the screenshot below, the value of
the SelectGroup variable is the empty string. Otherwise, the text will be read as a node name or a
function-call.

307 309

308 Advanced Features Parameters and Variables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Setting a variable to Editable (by checking the Editable check box) enables the variable to be edited in
Authentic View . In this case, you must also set the datatype value to the correct type, such as
xs:string. When a variable is editable, the original value set by the SPS designer can be edited when
the Authentic View user makes changes to the document in Authentic View. Such changes can be the
explicit editing of the variable (such as when the variable value is created as editable (contents) or an
editable text box and this is edited by the Authentic View user), or when a node or value used in the
variable's XPath expression is modified by the Authentic View user.

4. If the variable is set to Editable, then two more options relevant to Authentic View are enabled:
Undoable and Calc. Checking the Undoable option generates an Undo step for every change made to
the variable. The Authentic View user can therefore click through the Undo cycle to retrieve an earlier
value of the variable.The Calc value can be either Once or Auto. If this option is set to Once, the variable
value is calculated once, when the template containing the variable is evaluated. The value can only be
changed when the user explicitly edits the variable (for example, if the variable is created as editable
(contents) or an editable text box). On the other hand, if this option is set to Auto, the variable will be
re-calculated also each time a node or value used in the variable's XPath expression is modified.

5. You can add as many variables as you like, but the name of a variable must not be the name of an
already declared in-scope variable. To delete a variable click the Delete icon in the top right of the
pane.

6. Click OK when done. The template tag will now have a $ icon to indicate that one or more variables
have been declared on it.

In this way, variables can be created for each node template that is present in the design. Each of these
variables will have a name and a value, and will be in scope within the template on which it was declared. To
edit a variable subsequently, right-click the node template on which the variable was created and select the
command Define Variables to access the Define Variables dialog.

309

© 2017-2023 Altova GmbH

Parameters and Variables 309Advanced Features

Altova StyleVision 2024 Professional Edition

Using a variable
For a variable to be used at any location, it must be in scope at that location. This means that a variable can
only be used within the template on which it was defined. Variables can also be edited in Authentic View so
that users can control the display. The edited value is discarded when the SPS is closed.

A variable can be used in any XPath expression, and is referenced in the XPath expression by prefixing its
name with a $ symbol. For example, the XPath expression $VarName/Name selects the Name child element of
the node selected by the variable named VarName.

When you enter an XPath expression in the Edit XPath Expression dialog , in-scope variables appear in a
pop-up (see screenshot above). Selecting a variable in the pop-up and pressing Enter inserts the variable
reference in the expression.

7.6.5 Editable Variables in Authentic

Variables that are in scope can be edited in Authentic View by the Authentic View user to control the display in
Authentic View. For example, if a very large XML document containing, say the personnel data of several
branches of a company, is being used, the Authentic View user can be given the option of selecting one
particular company branch. The Authentic View display of the XML document could in this way be restricted to
the branch selected by the Authentic View user.

How it works
Three steps are involved in setting up editable variables in Authentic View (also see screenshot below):

1. The required variable is defined on the template within which it will be used. This template delimits the
scope of the variable. The variable can only be used within the template on which it is in scope.

2. A User-Defined Template is created with the name of the variable. The dynamic content of this User-
Defined Template will contain the value of the variable. If the (contents) placeholder or an input field is
inserted in the design as the content of the User-Defined Template, then the Authentic View user can
enter any content as the value of the variable. The options available to the Authentic View user can
however be restricted by inserting a form control, such as a combo box, as the content of the User-
Defined Template.

3. The variable can be used in an XPath expression to control the Authentic View display. For example,
the variable can be used in a condition. Depending on the value of each branch of the condition, a

685

310 Advanced Features Parameters and Variables

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

different display can be specified. Another mechanism where a variable can be well used is in a
template match expression or template filter.

Note: Note the following points:

· Since grouping and sorting are not supported in Authentic View, editable variables in Authentic View
cannot be used in an SPS containing any of these features.

· Since the editable variables feature applies only to Authentic View, the design for Authentic View will
need to be different than that for the other outputs. This can be designed easily using the Output-
Based Conditions feature.

Example file
The file AuthenticVariables.sps in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Grouping\Scores\, shows how
editable variables in Authentic View can be used. The XML file contains the results of matches in a tournament.
The teams participating in the tournament are divided into two groups. The editable variable enables the
Authentic View user to select the group to be viewed and restrict the display to that group.

The screenshot below displays the entire SPS design. One editable variable is created and the different steps
required to set it up are labeled in the screenshot below. A description of the actual steps is given below the
screenshot.

The key steps in setting up the editable variable were as follows:

· On the $XML template (the root template), an editable variable called SelectGroup is defined with a
type of xs:string. This variable will be in scope for the entire template

284

29

© 2017-2023 Altova GmbH

Parameters and Variables 311Advanced Features

Altova StyleVision 2024 Professional Edition

· On the $XML template, a non-editable variable called Groups is defined with a type of <auto>. Its
purpose is to dynamically collect the distinct values of all the results/group/@id attributes. These
distinct values are planned to be displayed in the dropdown list of the combo box from which the
Authentic View user will select the group he or she wishes to have displayed.

· A User-Defined Template is created and given the name $SelectGroup (the name of the editable
variable). The location of the User-Defined template does not matter as long as it is within the scope of
the editable variable.

· Within this User-Defined Template , a combo box is inserted. The combo box uses the XPath
expression $Groups, 'All' to select the entry values of the dropdown list. This XPath expression
returns the sequence of items contained in the variable $Groups (which dynamically collects all the
available groups), and adds an item All to the sequence returned by $Groups. The All entry item of
the combo box will be used to display all groups.

· The User-Defined Template is enclosed in an output-based conditional template with the output set
for Authentic View. This is because the editable variable can only be used in Authentic View.

· The next step is to use the value of the editable variable that the Authentic View user selects. This will
be used to filter the display down to the group that the Authentic View user selects. It is done by
specifying a filter on the results/group template. The XPath expression of this filter is:

if ($SelectGroup != 'All') then @id=$SelectGroup else @id

This filter expression sets up a predicate step on the group element. If the $SelectGroup variable has
a value not equal to All, then the predicate step will be [@id=X], where X is the value of the
$SelectGroup variable (that the Authentic View user selected in the combo box). This filter has the
effect of selecting the group that has an id attribute with the value the Authentic View user selected. If
the $SelectGroup variable has a value of All, then the predicate expression will select groups with
any id attribute value, that is, all groups.

· The group template is enclosed within an output-based condition , each branch of which selects a
different output. Only in the Authentic View branch does the group template have the filter applied.

The Authentic View output will look like this:

Notice the entries in the combo box, the combo box selection of Group B, and the display limited to Group B.

307

177

248

248

284

252

284

312 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.7 Table of Contents, Referencing, Bookmarks

The Table of Contents (TOC) and other referencing mechanisms work by creating anchors at the required points
in the design document and then referring back to these references from TOCs, text references, auto-
numbering sequences, and hyperlinks.

We will look briefly at the anchoring (or bookmarking) mechanism first and then look at the overall TOC
mechanism. We do this because understanding the bookmarking mechanism first will provide a better
understanding of the overall TOC mechanism.

The bookmarking mechanism
Two types of bookmarking mechanism are used: simple and complex. The complex bookmarking mechanism
is the one used for creating TOCs.

· A simple bookmark is created at a point in the design document. The bookmark is given a unique
name which is used as the target of links that point to it. This simple bookmarking mechanism is the
mechanism used for the Bookmarks and Hyperlinks feature. (Note that hyperlinks can additionally
point to URLs outside the document.)

· For more complex referencing, such as for TOCs and for the auto-numbering of document sections,
building the bookmark involves two parts.

1. The design document is structured into a hierarchy of levels required for the TOC. These levels are
known as TOC levels. The structuring is achieved by assigning TOC levels to different points in the
document structure. TOC levels can be nested within other TOC levels so as to give the document
a hierarchical TOC structure. (For example, a TOC level can be assigned to a book chapter, and
another TOC level can be assigned within that level to the sections of the chapter.)

2. TOC bookmarks are created within the various TOC levels. These TOC bookmarks identify the
document sections at various levels that are to go into the TOC. Additionally, each TOC bookmark
must be defined to provide the text that will appear in the referencing component.

After the TOC levels and the TOC bookmarks' reference texts have been defined, the TOC template containing
the referencing components can be designed.

The overall TOC mechanism is broadly described below, under The TOC mechanism . The various
referencing features are explained in detail in the rest of this section.

The TOC mechanism
If you have selected XSLT 2.0 or XSLT 3.0 (not XSLT 1.0) as the XSLT version of your SPS, you can
create a table of contents (TOC)—essentially a template for the TOC—at any location in the design.

· It is recommended that the items from the design that are to be included in and linked to from the TOC
are bookmarked in the design first. These items can be static content or dynamic content. In the

bottom half of the screenshot below, yellow TOC bookmark tags within
the header tag indicates that the header item has been bookmarked (for inclusion in the TOC
template).

· A template is created for the TOC (highlighted in screenshot below). The TOC template contains
the design of the TOC; it can be located anywhere in the design. In the example shown in the
screenshot below, the TOC template is located near the top of the document.

339

312

105

315

322

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 313Advanced Features

Altova StyleVision 2024 Professional Edition

Note: Either of these two parts can be created first, or both parts can be created concomitantly. We
recommend, however, that the TOC bookmarks are created before the TOC template.

The TOC is displayed in Authentic View and in the HTML, Text, and RTF output. Also note that: (i) TOCs can
be created with a flat or a hierarchical structure (with corresponding numbering), and (ii) multiple TOCs can be
created within a design. As a result, a stylesheet designer can create a document with, say, one (hierarchical)
TOC at the book level and others (also hierarchical) at the chapter level, plus (flat) lists of figures and tables.

Procedure for creating TOCs
Given below is one step-by-step way of creating a TOC. Items are first bookmarked for inclusion. The TOC
template is constructed after that. (Alternatively, you can create the TOC template first, and then bookmark
items for inclusion. Or you can create the TOC template and select items for inclusion in parallel.)

1. Make sure that XSLT 2.0 is the selected XSLT version.105

314 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Structure the document in TOC levels . If the TOC is to have multiple levels, structure the document
design in a hierarchy of nested TOC levels. If the TOC is to have a flat structure (that is, one level only),
then create at least one TOC level (in the document design) that will enclose the TOC bookmarks.

3. Create one or more TOC bookmarks within each level in the document design. The TOC
bookmarks identify the components within each TOC level that are to appear in the TOC.

4. Create a TOC template containing TOC level references (levelrefs) . The TOC template should have
the required number of TOC level references (levelrefs). In the case of a multi-level TOC, the levelrefs in
the TOC template should be nested (see screenshot above).

5. Create TOC references (TOCrefs) in the TOC template . In the TOC template, set up a TOCref for
each levelref. Each TOCref will reference, by name, the TOC bookmarks within the corresponding TOC
level in the document. Alternatively, the TOCref can reference TOC bookmarks in other levels.

6. Format the TOC items . Each text item in the TOC output is generated by a TOCref in the TOC
template. TOCref definitions can specify item numbering (including hierarchical), the TOC item text, a
leader, and, for paged media, a page number. Each TOCref and its individual parts can be formatted
separately as required. (Note that automatic numbering can also be defined within a TOC bookmark in
the main body of the document. See the section, Auto-Numbering , for details.)

Updating TOC page numbers in DOCX and RTF documents
When a user edits a DOCX or RTF output document in MS Word in such a way that the page count
changes, it may happen that the TOC is not updated with the new page references. This is an MS Word
issue. To update the page references in the TOC, press Ctrl+A to select everything, and then press F9.
For more information, see here.

Terminology
The names of the main TOC-related components used in the interface are given in the table below. Components
have been put in two different columns according to where they occur: in the document body, or in the TOC
template (which is the template that specifies the design of the actual Table of Contents and typically occurs
at the beginning of the document).

· The TOC components in the document body mark out items that will be used in the TOC template.
· The TOC components in the TOC template reference the marked items in the document body.

Components in the TOC template have the word 'reference' in their names.

Document body TOC template

TOC level: The TOC levels structure the
document in a nested hierarchy.

Level references (levelrefs): Correspond to the
TOC-level structure defined in the document
body. Enables TOCrefs in a given level to target
TOC bookmarks at the corresponding level.

TOC bookmark: Has a name, with which it
identifies a node in the document as a TOC item.

TOC references (TOCrefs): References a TOC
bookmark by its name.

316

319

322

325

325

334

https://support.office.com/en-us/article/Update-fields-7339a049-cb0d-4d5a-8679-97c20c643d4e#_updateallfields

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 315Advanced Features

Altova StyleVision 2024 Professional Edition

7.7.1 Bookmarking Items for TOC Inclusion

Bookmarking an item in the design for inclusion in a TOC consists of two steps, which can be done in any
order:

1. Structuring the design document in a hierarchy of nested TOC levels . A TOC level can be created in
the design either on a template or around a design component. In the screenshot below, a TOC level

has been created on the topic template .

When a level is created on a template, this is indicated by the level icon inside the start tag of the

template, for example, . When a level is created around a component it is indicated by TOC

level tags . In the screenshot above, the topics template component is
enclosed by a level. The difference between the two ways of marking levels is explained in the section
Structuring the Design in Levels . When the TOC template is created , it must be structured in a
hierarchy of levels, with the levels in the TOC template corresponding to the levels you have created in
the design. Even for TOCs with a flat structure (one level), the design must have a corresponding level.

2. Creating a TOC bookmark in the design with a name and TOC-item text. The TOC bookmark can
either enclose or not enclose a design component; in the latter case it is empty. In the screenshot
below, the TOC bookmark does not enclose a design component.

The TOC bookmark serves as an anchor in the document. In the screenshot above, the TOC bookmark
(and anchor) is located at the start of para element instances. The TOC bookmark has two attributes:
(i) a name that will be used to reference the TOC bookmark when creating the TOC item in the TOC
template, and (ii) a text string that will be used as the text of the corresponding TOC item. How these
two attributes are assigned is described in the section, Creating TOC Bookmarks .

How bookmarked items are referenced in the TOC template
The TOC template is structured in nested levels (called level references (levelrefs) to differentiate them from

the levels created in the main body of the design template). Within each levelref , a TOC reference

(TOCref) is inserted (see screenshot below). The TOCref within a levelref references TOC
bookmarks using the TOC bookmark's name. Each TOC bookmark with that name and in the corresponding

316

316 322

319

319

322

316 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

level in the XML document will be created as a TOC item at this level in the TOC. For example, the TOCref

indicated with the tag references all TOC bookmarks named chapters in the corresponding
level in the XML document (when the scope of the TOCref has been set to current). The text attribute of the
respective instantiated TOC bookmarks will be output as the text of the TOC item.

In the screenshot above of a TOC template, there are three nested levelrefs, within each of which is a TOCref
that contains the template for the TOC item of that level. For example, in the first levelref, there is a TOCref that

references TOC bookmarks that have a name of MyTOC . As a result, all TOC bookmarks in the
first level (as structured in the design) and named MyTOC will be accessed for output at this level in the TOC.
The TOCref within the second levelref also references TOC bookmarks having a name of MyTOC. As a result, all
TOC bookmarks in the second level of the document and that are named MyTOC will be used for second-level
items in the TOC. The third levelref works in the same way: TOC bookmarks named MyTOC that occur within the
document's third level are referenced for third-level items in the TOC.

In the sub-sections of this section, we describe: (i) how the design is structured into levels , and (ii) how
bookmarks are created . How the TOC template is created is described in the section, Creating the TOC
Template .

7.7.1.1 Structuring the Design in TOC Levels

The hierarchical structure you wish to design for the TOC is specified as a set of nested levels. As such it is a
hierarchical structure which, although related to the XML document structure, is separate from it. This structure
is specified in the SPS document design. The TOC template that you construct will use a structure
corresponding to this hierarchical structure. In the case of a TOC with a flat structure (one level only), the
design document must have at least one level. If more than one level exists in the document, a flat TOC can
then be created for any of these levels or for multiple levels (aggregated together as one level).

In the design, levels can be created in the main template, in global templates, or in a combination of main
template and global templates. The important thing to note is that, wherever created, these levels must
together, in combination, define a clear hierarchical structure.

Creating levels
Each level in the design is created separately. A level can be created on a template or around a component. In

the screenshot below, one level has been created on the topic template (indicated by) and

316

319 322

322

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 317Advanced Features

Altova StyleVision 2024 Professional Edition

another around the topics element (indicated by). The essential difference

between these two ways of creating levels is that the enclose-within-a-level option
enables levels to be created around components other than templates.

To create a level, do the following:

1. Select the component (template or other).
2. Right-click, and from the context menu select Template Serves As Level (enabled when a template

is selected) or Enclose With | TOC Level. Both these options are also available in the Insert | Insert
Table of Contents menu: TOC Level or Template Serves as Level.

Levels in global templates
Levels can also be set in global templates. In these cases, care must be taken to ensure that the levels
created in various global templates, as well as those in the main template, together define a hierarchical
structure when the SPS is executed. The screenshot below shows two levels, one in the main template (on the
topic template) and one in the global template for topic (on the topic template).

318 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In the content model represented by the screenshot above, topic is a recursive element, that is, a topic
element can itself contain a descendant topic element. In the main template (the end of which is indicated by

the tag), a level has been set on the first level of topic . The rest-of-contents instruction
in the main template specifies that templates will be applied for all child elements of topic/body except
header. This means that the global template for topic children of topic/body will be processed.

In the global template for topic, a level has been set on the topic template (indicated by). This
second level of the TOC hierarchy, which occurs on the second level of topic elements, is nested within the
first level of the TOC hierarchy. Since this global template also has a rest-of-contents instruction, the global
template for topic will be applied to all recursive topic elements, thus creating additional nested levels in the
TOC hierarchy: third level, fourth level, and so on.

As a designer, you should be aware of the number of levels created in the design, because when the TOC
template is constructed, you will need to explicitly specify how TOC items for each level will be selected and
formatted.

Levels in flat TOCs
In a flat TOC hierarchy, TOC items will be output at a single level: for example, a simple list of the images in a
document.

A flat hierarchy can be obtained in a number of ways.

· The design document can be structured with just a single TOC level. The TOC template will then have a
single levelref with a single TOC reference (TOCref) within it.

· If the design document has more than one TOC level, then the TOC template could have a number of
levelrefs equal to the sequential position of the TOC level being referenced. The levelref corresponding
to the targeted TOC level will contain the single TOCref in the TOC template.

· If the design document has more than one TOC level, then the single TOCref in the TOC template must
have a scope that covers all the targeted document levels, which, in effect, will be flattened into a
single level.

Let us say that we wish to gather all the images in a document in a single flat-hierarchy TOC. The document
design must therefore contain at least one level, and this level must contain all the required TOC bookmarks. In
the TOC template, the images to be listed are referenced in the usual way: (i) by creating a corresponding
number of levelrefs; and (ii) creating a TOCref within the levelref corresponding to the targeted TOC level. The
TOCref will have the name of TOC bookmarks in the targeted TOC level.

In the TOC template shown below, there is one levelref containing a TOCref that references TOC bookmarks
named images. The scope of the TOCref has been set to Current level and below. As a result, all TOC
bookmarks named images in the first level and below (that is, in the whole document) will be referenced.

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 319Advanced Features

Altova StyleVision 2024 Professional Edition

If the design contains more than one level, and a flat TOC is required, say, for items in the second level, then
the TOC template could have two levelrefs with a TOCref only within the second level (no TOCref within the first
level). Alternatively, the scope property of TOCrefs can be used to specify what level/s in the design document
should be looked up for bookmarks of a given name.

7.7.1.2 Creating TOC Bookmarks

TOC bookmarks are created within a TOC level in the document design. They can be created in the main
template and/or in global templates. A TOC bookmark serves two purposes:

· It marks a (static or dynamic) component in the design with a static name you assign. It can either
enclose or not enclose a design component; in the latter case it is empty. In the output, the TOC
bookmark is instantiated as an anchor identified by a name. This named anchor can be referenced by
items in the TOC (template).

· A TOC bookmark also defines the text string that will be used as the text of a TOC item. This text
string can be the content of child elements of the node where the marker is located, or it can be the
output of an XPath expression.

You can create a TOC bookmark in two ways:

· By using the Create TOC Bookmark Wizard , which enables you to specify the TOC bookmark's
name, its text entry, whether auto-numbering should be used, and the level within which it appears.

· By inserting an empty TOC bookmark , the properties of which will be defined subsequently.

Creating the TOC bookmark with the Create TOC Bookmark Wizard
To create a TOC bookmark using the TOC Bookmark Wizard, do the following:

1. Place the cursor at the point in the design where you wish to insert the TOC bookmark. Alternatively,
select the design component around which you wish to insert the TOC bookmark.

2. From the context menu (obtained by right-clicking) or from the Insert menu, select Insert Table of
Contents | TOC Bookmark (Wizard). If you are enclosing an a node with a TOC Bookmark, use the
command Enclose with | TOC Bookmark (Wizard). This pops up the Create Marker Wizard
(screenshot below).

316

319

321

320 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. In the wizard's first screen (screenshot above) you: (i) define the text for the TOC item; (ii) set the TOC
bookmark name; and (iii) specify whether this TOC bookmark should be numbered in the output. For
the text entry you can select whether the text of child elements should be used, or an XPath
expression. For the name of the TOC bookmark, you can enter text directly or select from a dropdown
list containing the names of already specified TOC bookmark names. When you are done, click Next.

4. In the wizard's second screen (screenshot below), you can create a TOC level on a template if you
wish to do so. Ancestor templates of the insertion point location are shown in a tree. If a template has
already been created as a TOC level, this is indicated with a symbol. In the screenshot below, the
symbol next to the topic template indicates that it has already been created as a level. If you wish to
create an additional level on any of the ancestor templates, select that template. Alternatively, you can
choose to define the level later by checking the Define Level Later check box. When you have
completed making your selection, click Finish. (Note that, if a TOC level already exists on a template,
selecting such a template and clicking Finish will not create a new TOC level on that template.)

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 321Advanced Features

Altova StyleVision 2024 Professional Edition

On clicking Finish, a TOC bookmark will be created at the insertion point and, if it was specified in the
second screen of the wizard, a TOC level will be created on one template. The TOC bookmark that has
been created will be in the TOC level that immediately contains it. For example, if that TOC level is the
third TOC level in the TOC level hierarchy, then the inserted TOC bookmark will be in the third TOC
level.

Creating a TOC bookmark
To create a TOC bookmark without attributes (TOC bookmark name, TOC item text, etc), do the following:

1. Place the cursor at the point in the design document where you wish to insert the TOC bookmark, or
select the design component around which you wish to insert the TOC bookmark.

2. From the context menu (obtained by right-clicking) or from the Insert menu, select Insert Table of
Contents | TOC Bookmark. A TOC bookmark is inserted. This TOC bookmark has neither a name nor
a text entry. These can be defined subsequently using the Edit commands (see below).

Inserting hierarchical or sequential numbering for a component
Hierarchical or sequential numbering within the main body of the output document (not within the TOC) can be
inserted within (but also outside) a TOC bookmark's tags. Right-click at the location where you wish to insert
the numbering, then select Insert Table Of Contents | Hierarchical Numbering / Sequential Numbering.
For example, an auto-numbering TOC bookmark that is placed around the chapter heading template will
generate numbering for all the chapter headings generated by the chapter heading template.

Note that numbering is based on the structure of TOC levels. So, for example, if a chapter heading element is
in the first TOC level, then the fourth chapter heading will be numbered 4 because it is the fourth instance of a
chapter heading within the first TOC level. If the sections of a chapter occur within the second TOC level, then
the third section of the fourth chapter will be numbered 4.3. This is because, within the first (chapter) TOC
level, it is the fourth instance of a chapter, and within the second (section) TOC level (of the fourth chapter), it is
the third instance of a section.

322

322 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Editing the name and text entry of a TOC bookmark
The name and text entry of the TOC bookmark can be edited in the Properties window (screenshot below). To
edit these properties, select the TOC bookmark, and either directly edit the property in the Property window
or right-click the TOC bookmark and select the property you wish to edit.

The TOC bookmark has the following properties: (i) the name of the TOC bookmark group (Group); (ii) a unique
ID; (iii) an option to remove the bookmark if it is not referenced; and (iv) an option (Text From) to specify the
text entry, which could come from the bookmark's content or from an XPath expression.

7.7.2 Creating the TOC Template

The TOC template is the template that produces the table of contents in the output. It can be created anywhere
within the SPS design, and multiple TOC templates can be created in a single SPS design.

The steps to create a TOC template are as follows:

1. Place the cursor at the location where the TOC template is to be inserted.
2. Click the menu command Insert | Insert Table of Contents | Table of Contents. This pops up the

Create TOC Page dialog (screenshot below). (Alternatively, this command can be accessed via the
context menu, which appears when you right-click.)

55

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 323Advanced Features

Altova StyleVision 2024 Professional Edition

3. Enter the information requested in the dialog: (i) The name of the generated TOC page is the (TOCref)
name that will be used to reference the TOC bookmarks in the design document. If you select
multiple levels for the TOC (level references, to be more accurate; next option), the same TOCref name
will be used in all level references (though individual TOCref names can be edited subsequently). (ii)
 The number of TOC level references (levelrefs) specifies how many level references the TOC is to
have. (iii) For printed media, the option to output page references (i.e. page numbers) is available. (iv)
The text entries in the TOC can be used as links to the TOC bookmarks.

4. Click OK to finish. The TOC template is created with the specified number of levelrefs (screenshot
below; the formatting of the TOC template has been modified from that which is created initially).

Within each levelref is a TOCref having a name that identifies TOC bookmarks that are to be the TOC
items for that levelref. Within each TOCref is a default template for the TOC item, which you can edit at
any time .

Editing the TOC template
The following editing options are available:

· The TOC template can be dragged to another location in the SPS. Note, however, that a change of
context node could affect XPath expressions within the TOC template.

· Levelrefs can be added to or deleted from the structure of the TOC template.
· The properties of individual TOC references (TOCrefs) can be edited. The name and scope of a

TOCref can be changed, and you can choose whether the TOC item corresponding to the TOCref is
created as a hyperlink or not.

319

325

316

325

324

325

324 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· TOCrefs can be added to or deleted from any levelref in the TOC template.
· The TOC item within a TOCref can be formatted with CSS properties using the standard StyleVision

mechanisms .
· Standard SPS features (such as images, Auto-Calculations, and block-formatting components) can be

inserted anywhere in the TOC template.

7.7.2.1 Levelrefs in the TOC Template

The TOC template is structured in level references (or levelrefs); see screenshot below. These levels are
initially created when the TOC template is created, and the number of levelrefs are the number you specify in
the Create TOC Page dialog .

Notice that the levelrefs are nested. For the purposes of the TOC design there is a one-to-one correspondence
between the levelrefs in the TOC template and the levels in the SPS design. Thus, the first levelref of the TOC
template corresponds to the first level in the SPS design, the second levelref in the TOC template to the
second level in the SPS design, and so on. The TOCrefs within a given levelref of the TOC template identify
TOC bookmarks within a specified scope in the SPS design. For example, a TOCref can specify that the
TOCref target TOC bookmarks in the corresponding document level, or target TOC bookmarks in all document
levels, or those in the current document level and lower document levels.

Inserting and removing levelrefs
Levelrefs can be inserted in or deleted from the TOC template after the TOC template has been created.

To insert a levelref around content, select the content in the TOC template around which the levelref is to be
created, then, from the context menu or via the menu bar, select the command Enclose With | TOC Level
Reference. You can also insert an empty levelref at the cursor insertion point with the menu command Insert |
Insert Table of Contents | TOC Level Reference (also available in the context menu).

To remove a levelref from the TOC template, select the levelref to be removed and either press the Delete key
or select Remove from the context menu. Note that only the levelref will be removed—not its contents.

325

325

364

322

322

319 325

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 325Advanced Features

Altova StyleVision 2024 Professional Edition

7.7.2.2 TOC References: Name, Scope, Hyperlink

TOC references (TOCrefs) occur within level references (levelrefs) and have four properties (see screenshot
below):

· A hyperlink property which can be toggled between yes and no to specify whether the corresponding
TOC items are created as hyperlinks or not.

· A group property, which is the name of the TOCref and identifies TOC bookmarks of the same name
that occur within the specified scope (see below). The TOC bookmarks so identified provide the items
to be included at that levelref of the TOC.

· An id to uniquely identify the TOCref.
· A scope, which specifies to which corresponding levels in the SPS design the TOCref applies. Three

options are available: (i) global, (ii) current level, (iii) current level and descendant levels (see
screenshot below).

To insert a TOCref, place the cursor within a levelref and, from the Insert menu or context menu, select Insert
Table of Contents | TOC Reference.

To edit a TOCref property, right-click the TOCref tag in the TOC template and select the property you wish to
edit (Create Hyperlink, Edit ID, Edit Group, or Edit Scope). This pops up the Properties window with the
specified property selected for editing (screenshot below).

Alternatively, with the TOCref tag selected, go directly to the required property in the Properties window (TOC
reference group of properties).

7.7.2.3 Formatting TOC Items

The TOC item can contain up to four standard components, plus optional user-specified content. The four
standard components are (see also screenshot below):

· the text entry of the TOC item, indicated in the TOC template by (text ref)

326 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· the leader between the text entry and the page number (for paged media output), indicated by (.....)

· the page reference of the TOC item (for paged media output), indicated by (page ref)
· hierarchical or sequential numbering, indicated by (num-lvl) and (num-seq), respectively

When the TOC template is initially created, the text entry is automatically inserted within TOCrefs. If the
Include Page Reference option was selected, then the leader and page reference components are also
included. Subsequently, components can be inserted and deleted from the TOC item. To insert a component,
place the cursor at the desired insertion point within the TOC item, and in the context menu, select Insert
Table Of Contents | TOC Reference | Entry Text / Leader / Page Reference or Insert Table Of Contents
| Hierarchical Numbering / Sequential Numbering as required. (Hierarchical numbering should be inserted
when the design is structured into nested levels, sequential numbering when there is no hierarchy, that is, just
one flat TOC level. See the note below on flat TOCs) To delete a component, select it and press the Delete
key.

Additionally, you can insert static content (e.g. text) and dynamic content (e.g. Auto-Calculations) within the
TOC item.

Levels in flat TOCs
In a flat TOC hierarchy, TOC items will be output at a single level: for example, a simple list of the images in a
document.

A flat hierarchy can be obtained in a number of ways.

· The design document can be structured with just a single TOC level. The TOC template will then have a
single levelref with a single TOC reference (TOCref) within it.

· If the design document has more than one TOC level, then the TOC template could have a number of
levelrefs equal to the sequential position of the TOC level being referenced. The levelref corresponding
to the targeted TOC level will contain the single TOCref in the TOC template.

· If the design document has more than one TOC level, then the single TOCref in the TOC template must
have a scope that covers all the targeted document levels, which, in effect, will be flattened into a
single level.

Let us say that we wish to gather all the images in a document in a single flat-hierarchy TOC. The document
design must therefore contain at least one level, and this level must contain all the required TOC bookmarks. In
the TOC template, the images to be listed are referenced in the usual way: (i) by creating a corresponding
number of levelrefs; and (ii) creating a TOCref within the levelref corresponding to the targeted TOC level. The
TOCref will have the name of TOC bookmarks in the targeted TOC level.

In the TOC template shown below, there is one levelref containing a TOCref that references TOC bookmarks
named images. The scope of the TOCref has been set to Current level and below. As a result, all TOC
bookmarks named images in the first level and below (that is, in the whole document) will be referenced.

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 327Advanced Features

Altova StyleVision 2024 Professional Edition

If the design contains more than one level, and a flat TOC is required, say, for items in the second level, then
the TOC template could have two levelrefs with a TOCref only within the second level (no TOCref within the first
level). Alternatively, the scope property of TOCrefs can be used to specify what level/s in the design document
should be looked up for bookmarks of a given name.

Formatting the TOC item
The TOC item can be formatted with CSS styles via the Styles sidebar . Individual TOC item components
can be separately formatted by selecting the component and assigning it style properties in the Styles
sidebar.

7.7.3 Example: Simple TOC

An example SPS file to demonstrate the basic use of TOCs, called ChaptersSimple.sps, is in the (My)
Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\TOC. This SPS is based on a
schema that defines the content model of a large chapter-based document. The schema structure is shown in
the screenshot below and can be viewed in the Schema Tree window of StyleVision when you open
ChaptersSimple.sps. (A more complex TOC example based on the same schema is described in the next
section of this documentation, Example: Hierarchical and Sequential TOCs .)

364 371

371

29

331

328 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The document element is helpproject, which contains a child topics element. The topics element can
contain an unlimited number of topic elements, each of which can in turn contain descendant topic elements.
The first level of topic elements can be considered to be the chapters of the document, while descendant
topic elements are sections, sub-sections, and so on.

This SPS creates a TOC, located at the top of the document, which lists the names of each chapter (the first-
level topics). Creating the TOC involves three steps:

1. Structuring the design in TOC levels : One or more levels are inserted in the design document to
structure the (output) document hierarchically. This hierarchic structure will be the one that the TOC
reflects. In our current example, to keep things simple, only one TOC level has been created—on the
Topic template. Because there is only one level in the design, the TOC template—when it is created
subsequently—can have only one level in its structure (i.e. one level reference).

2. Creating TOC bookmarks : A TOC bookmark is created within the TOC level that was created in
Step 1 (in the design document). This enables TOC references in the TOC template (which will be
created in the next step) to point back to this TOC bookmark. The TOC bookmark also specifies the
text that will appear in the TOC item that points to it.

3. Creating the TOC template : This is the template that creates the TOC in the document. It is
structured into level references (levelrefs), which must correspond to the structure of TOC levels in
the design document. For example if there are three nested levelrefs in the TOC template, then the
design document must have at least three nested levels. In this example we have a single levelref to

316

319

322

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 329Advanced Features

Altova StyleVision 2024 Professional Edition

correspond to the single TOC level in the design document. It is within the levelref that the TOC
reference (TOCref) is placed. It is this TOCref that generates the TOC items for this level in the TOC.

SPS structure and levels
Look at the structure of the design in the SPS. Notice that the main template (with the green $XML tags)
contains the TOC. The rest of the main template specifies, through the rest-of-contents instruction, that
global and default templates are to be applied. The rest of the SPS design—outside the main template and
after it—consists of global templates.

The TOC definitions (TOC levels and TOC bookmarks in the design) are in the global template for topic
(screenshot below). In this global template a condition has been inserted to separate topic elements
according to how many ancestor topic elements each has, thus providing separate processing (within different
conditional branches) for chapters, sections, and sub-sections.

The screenshot above shows the contents of the first conditional branch, for first-level, chapter-type topic
elements. Note that a TOC level has been created on the template start-tag of this topic element. In the other
two conditional branches no TOC level has been created on the topic template. As a result, the document has
been assigned only one TOC level, and this is at the level of the first-level (chapter-type) topic element.

Creating the TOC bookmark
A TOC bookmark (yellow tags in screenshot below) has been created within the header descendant element of
topic (but outside the para element). This TOC bookmark serves as an anchor for every top-level, chapter-type
topic element..

The properties of the TOC bookmark can be edited in the Properties sidebar (screenshot below).

330 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The Group property sets the TOC bookmark group (and is the name of the TOC bookmark). In our example, we
have specified the value MyTOC for this property. The bookmark group will be referenced in the TOC when it is
created, and it enables different TOC groups to be specified within the same level. The ID property enables
unique IDs to be specified for the bookmark instances created. The Remove if not referenced property is an
option to remove the bookmark if it is not referenced. The Text From property specifies the text entry that will
be used as the text of the TOC item in the TOC. The text could come from the bookmark's content (the content
between the start and end tags of the bookmark in the design) or from an XPath expression. In our example, an
XPath expression is used which returns the header text, respectively, of each first-level topic element.

TOC template

Inside the TOC template (screenshot below), a single Level Reference (levelref) has been inserted. This
levelref corresponds to the TOC Level assigned on the first-level, chapter-type topic element in the design (see
'SPS Structure and Levels' above).

Within this levelref, a TOC reference (TOCref) has been inserted. This TOCref has been set to
select bookmarks (i) that are in the bookmark group named MyTOC (see 'Creating the TOC bookmark' above),
and (ii) that are within the scope of the current level only. These settings can be made in the Properties sidebar
when the TOCref is selected, or by right-clicking the TOCref in the design and selecting the relevant editing
command from the context menu..

The appearance of the TOC item is specified within the TOCref tags of the TOC. The numbering format, the
text, the leader, and the page reference can be inserted by right-clicking within the TOCref tags and selecting
the component to insert from the context menu. Each of these components can be edited by selecting it in the
design and modifying its properties in the Properties sidebar.

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 331Advanced Features

Altova StyleVision 2024 Professional Edition

7.7.4 Example: Hierarchical and Sequential TOCs

An example SPS file to demonstrate the use of TOCs, called Chapters.sps, is in the (My) Documents
folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\TOC. This SPS is based on a
schema that defines the content model of a large chapter-based document. The schema structure is shown in
the screenshot below and can be viewed in the Schema Tree window of StyleVision when you open
Chapters.sps.

The document element is helpproject, which contains a child topics element. The topics element can
contain an unlimited number of topic elements, each of which can in turn contain descendant topic elements.
The first level of topic elements can be considered to be the chapters of the document, while descendant
topic elements are sections, sub-sections, and so on.

The SPS contains three TOCs, located at the top of the document, in the following order:

1. Chapters at a glance , which lists the names of each chapter (the first-level topics).
2. Chapters and their sections , which lists each chapter with its descendants sections (first-level

topics, plus each topic's hierarchy of sub-topics down to the lowest-level topic, which in the
accompanying XML document, chapters.xml, is the third-level topic)

29

332

333

332 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. List of images , which is a flat list of all images in the document (except the first), listed by file
name.

SPS structure
Before considering the TOCs in detail, take a look at the structure of the design. Notice that the main template
(with the green $XML tags) contains the TOCs. The rest of the main template specifies, through the rest-of-
contents instruction, that global and default templates are to be applied.

The TOC definitions are in the global templates for topic and image. In the global template for topic
(screenshot below), a TOC level has been created on the topic element, and a TOC bookmark has been
created within the header child element (but outside the para element).

Since the topic element is recursive, the TOC level and the TOC bookmark will also recurse. This means that,
at the first recursion, a new hierarchically subordinate TOC level and and a new TOC bookmark is created. This
process continues for each descendant topic, thus creating a hierarchy of descendant TOC levels, each with a
corresponding TOC bookmark. Since the formatting of the header (the topic title) for each TOC level is to be
different, we have enclosed each level within a separate branch of a condition with three branches. Each branch
tests for the TOC level at which a topic occurs: first, second, or third level.

Notice that hierarchical numbering (num-lvl) has been inserted within the level. This is done by right-clicking
at the required location and selecting Insert Table of Contents | Hierarchical Numbering. The effect is to
insert the correct hierarchical number before each topic title in the document's text flow, for example, 3.1 or
4.2.3.

TOC descriptions
Given below is a brief description of each TOC and the points to note about them.

Chapters at a glance: Select the TOC bookmark in the global template for topic. In the Properties sidebar
(screenshot below), notice that the entry text has been set to be constructed using an XPath expression.
When you click the Edit button in the value field of the Text from property, you will see that the XPath
expression has been defined as para. This means that the contents of the para child of header (since the TOC
bookmark has been inserted within the header element) will be used as the text of the TOC item.

333

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 333Advanced Features

Altova StyleVision 2024 Professional Edition

The TOC template itself (screenshot below) contains one level reference (levelref) , and the TOCref within

that levelref has been set to select TOC bookmarks named MyTOC within the scope of the current
level only—which is the first level. As a result, TOC items will be created only for first-level topics.

Notice also that the numbering has been defined as hierarchical numbering.

Chapters and their sections: In this TOC (screenshot below), notice that three nested levelrefs have been
defined, each containing a TOCref for which the scope is the current level.

Since each TOC item is contained in a div block, formatting properties (including indentation) can be set for
the block.

List of images: The list of images is a flat list. First of all, consider within which levels images will occur in the
instantiated document. The image element is a child of the para element. Since levels have been created on

334 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

topic elements, image elements will occur within the first, second, and/or third levels of the document. There
is therefore no need to create any level for the image element.

In the global template for image, the condition (see screenshot below) enables separate processing for (i) the
first image (which is presented in this example), and (ii) the other images (which, for purposes of economy, are
not presented in this example).

Notice that the TOC bookmark is placed only within the second branch of the condition; this means that the
images selected in the first branch are not bookmarked. Also, the sequential numbering (num-seq) of the
images, inserted with Insert Table of Contents | Sequential Numbering, will start with the second image
(because the first image is selected in the first branch of the condition). Another feature to note is that the
numbering can be formatted, as has been done in this case. To see the formatting, right-click (num-seq), and
select Edit Format. In the dialog box that pops up, you will see that the formatting has been set to 01,
indicating that a 0 will be inserted in front of single-digit numbers.

In the TOC template for images (screenshot below), notice that there is a single TOCref identifying bookmarks
named images, and that this TOCref is within a single levelref. The scope of the TOCref (editable in the
Properties window when the TOCref is selected) has been set to: current level and below. The current
level, determined by the levelref, is the first level. The levels below will be the second, third, and so on. In this
way, all images from the first level downward are selected as items in the TOC.

Since the selected numbering is sequential, the images are numbered sequentially in a flat list.

7.7.5 Auto-Numbering in the Document Body

Repeating instances of a node can be numbered automatically in the main body of the document using the
Auto-Numbering feature. For example, in a Book element that contains multiple Chapter elements, each
Chapter element can be numbered automatically using the Auto-Numbering feature. This is an easy way to
insert numbering based on the structure of the XML document.

Note: The Auto-Numbering feature refers to numbering within the main body of the document. It does not
refer to numbering within tables of contents (TOCs), where numbering is considered to be a property of
the TOC item.

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 335Advanced Features

Altova StyleVision 2024 Professional Edition

Auto-Numbering can be either sequential (flat) or hierarchical. Sequential numbering provides ordinary
numbering on a single level. Hierarchical numbering is based on the TOC-level hierarchy created in the
document and creates numbering according to the element's position in the TOC-level hierarchy.

A wide variety of formatting is available for the numbers. In the case of hierarchical numbers, individual number
tokens can be formatted separately. For example, a three-token number could be given the format: A.1.i.,
where each of the three tokens has a different number format. Number formatting is assigned differently for
sequential and hierarchical numbering, and therefore have separate descriptions, each in their respective
sections below.

Sequential numbering (num-seq)
Sequential (or flat) numbering can be inserted within a TOC Bookmark in the document design (see
screenshot below). Create sequential numbering as follows:

1. Place the cursor within the node that has to be numbered and create the TOC bookmark (right-click,
and select Insert Table of Contents | TOC Bookmark). The TOC bookmark will be created. In the
screenshot below, we wish to number the topic element, so the TOC bookmark has been created
within the topic element. The exact location within the topic element depends on where in the layout
you want the numbering. (In the screenshot below, the numbering is placed immediately to the left of
the chapter header (title).)

2. Place the cursor within the tags of the TOC bookmark, right-click, and select Insert Table of
Contents | Sequential Numbering. This inserts the Auto-Numbering placeholder for sequential
numbering, (num-seq) (highlighted within the TOC bookmark 'TopicHeader' in the screenshot below).

3. If the TOC bookmark is going to be referenced from within a TOC template, then you can enter TOC
bookmark properties as required. However, if the TOC bookmark is going to be used only for sequential
numbering, there is no need to name it. If you wish to name it, right-click it and select the Edit Group
command.

In the example shown in the screenshot above, sequential numbering has been set on the topic node. The
result is that each topic element receives a sequential number, as shown in the screenshot below. Note that
the numbering is essentially the position of each topic element within the sequence of all sibling topic
elements at that level of the XML document hierarchy.

319

336 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: If sequential numbering must be continued on another set of nodes, then use a TOC bookmark with the
same name on both nodesets.

To format the sequential numbering, right-click the num-seq placeholder and select the Edit Format command.
This pops up the Format Sequential Auto-Number dialog (screenshot below).

Select the format you want from the dropdown box of the Available numbering styles combo box (see
screenshot above) and click OK to apply the selected format.

Hierarchical numbering (num-lvl)
Hierarchical numbering can be inserted within a TOC level in the design . To create hierarchical numbering in
a document, you must therefore first structure the document in TOC levels. Do this as described in the section
Structuring the Design in Levels . The following points should be borne in mind:

· Levels must be created either on the node to be numbered or within it.
· Levels must be nested according to the hierarchy of the numbering required (see screenshot below).
· The hierarchical numbering placeholder must be inserted within the corresponding level in the design

(see screenshot below).

In the screenshot above, there are two levels. The topic element is recursive, and a level has been created on
two topic elements (by right-clicking the node tag and selecting Template Serves as Level). One topic
element (highlighted in the screenshot above) is nested within the other. As a result, the levels also are nested.
Within each level, a hierarchical numbering placeholder (num-lvl) has been inserted (right-click within the
level and select Insert Table of Contents | Hierarchical Numbering).

316

316

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 337Advanced Features

Altova StyleVision 2024 Professional Edition

The result of the design shown in the screenshot above will look like this.

The first level is shown in bold, the second in normal.

To format hierarchical numbering, right-click the num-lvl placeholder and select the Edit Format command.
This pops up the Format Hierarchical Auto-Number dialog (screenshot below).

First select the number of tokens in the Token combo box. This number should be the same as the number of
TOC levels in the document. Each token can then be separately formatted. In the lower of the two display
boxes, select the token to be formatted. (In the screenshot above, the second token has been selected.) Next,
in the Formatting combo box, select the formatting style you want. In the screenshot above, lowercase
formatting has been selected for the second token, and this is reflected in the display box at the top of the
dialog. Additionally, levels can be omitted by entering the required number of levels to be omitted in the Omit
Levels box.

Note that formatting is defined on hierarchical numbering one level at a time. So the hierarchical numbering
placeholder num-lvl at each level must be separately formatted.

Click OK when done.

338 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.7.6 Cross-referencing

A cross-reference is a reference to another part of the document. In an SPS a cross-reference is created in two
parts: First, by setting the target of the cross-reference. Second, by defining the link to the target. Setting a
target consists of creating a TOC bookmark within a TOC level. The link to the target is a Text Reference within
a TOC reference (TOCref). The Text Reference generates the output text and serves as the link. Building a
cross-reference therefore consists of the following three steps:

Step 1: Levels
The document is structured into TOC levels as described in the section Structuring the Design in Levels .
TOC levels will be used during referencing to specify the scope of the referencing. Only those TOC bookmarks
having the specified name and falling within the specified scope will be targeted. In the screenshot below, a
level has been created on the n1:Office element.

Step 2: Creating TOC bookmarks
Within a level, a TOC bookmark is created by placing the cursor at the required location, right-clicking, and
selecting Insert Table of Contents | TOC Bookmark. The TOC bookmark is given a name and an XPath
expression that generates the output text. The XPath expression will typically identify a node in the document,
the contents of which is the required text.

In the screenshot below, the TOC bookmark within the n1:Name element has a name of
toc3 and an XPath expression that locates the current node. This means that the output text will be the
contents of the n1:Name node.

When the XML document is processed, an anchor is created for every n1:Name element. This anchor will have
a text reference (the text of the cross-reference) that is the value of the n1:Name element.

Step 3: Creating TOC references
A TOC reference (TOCref) is inserted (context menu, Insert Table of Contents | TOC Reference) to create a
link to the anchors generated by a TOC Bookmark.

In the screenshot above, the TOCref named toc3 (screenshot above) is within the same TOC level as the TOC
bookmark it references (the Office level). You must also specify the scope of the TOCref. The scope specifies
what TOC levels must be searched for TOC bookmarks of the same name as the TOCref. In the example
shown above, the scope is the current level. This means that TOC bookmarks within the current level that have
a name of toc3 are targeted by this reference.

316

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 339Advanced Features

Altova StyleVision 2024 Professional Edition

The screenshot above shows an n1:Office template. When an n1:Office node is processed, an anchor is
created with output text that is the content of the n1:Name node. This is because the TOC bookmark specifies
in an XPath expression (via the Text from property of the TOC bookmark) that the contents of this node will be
the output text. The TOCref in the next line identifies the anchor with the name toc3, and the Text reference
component generates the output text of the link to the anchor (purple text in the screenshot below). The output
will look something like this:

In the example above, the scope was set to the current level. There are two other possibilities for the scope: (i)
a global scope, (ii) scope for the current level and below. With these options, it is possible to also target TOC
Bookmarks in other levels of the design.

7.7.7 Bookmarks and Hyperlinks

In the SPS document, bookmarks can be inserted anywhere within the design. These bookmarks are
transformed into anchors in the output, which can be linked to from hyperlinks. Hyperlinks can not only link to
bookmarks, but also to external resources like Web pages. StyleVision offers considerable flexibility in the way
target URIs for hyperlinks can be built.

In this section, we describe:

· How bookmarks can be inserted in the SPS.
· How hyperlinks can be inserted in the SPS and how they link to the target pages.

Note: Links to external documents are supported in the FO spec but might not be supported by the FO
processor you are using. You should check support for this feature if you are planning to use it.

7.7.7.1 Inserting Bookmarks

A bookmark (or anchor) can be inserted anywhere in the SPS, at a cursor insertion point or around an SPS
component.

Bookmarks are created in the SPS via the Insert Bookmark dialog (screenshot below). In this dialog you define
the name of the bookmark. The name can be a static name, or it can be a dynamic name that is (i) derived
from XML document content, or (ii) generated arbitrarily with an XPath expression.

Creating a bookmark
To insert a bookmark, do the following:

1. Place the cursor at the location where you wish to create the bookmark.

339

341

340 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Select the menu command Insert | Insert Bookmark , or right-click and select Insert | Bookmark.
3. In the Insert Bookmark dialog (screenshot below), select a tab according to whether the name of the

bookmark should be static (Static tab), dynamically obtained from the XML document or arbitrarily
generated from an XPath expression (Dynamic), or composed of both static and dynamic parts (Static
and Dynamic). In the screenshot below a dynamic bookmark is created, which has a name that is a
unique ID for each Name child of the context node.

4. Click OK. The bookmark is defined.

After a bookmark has been created, it can be linked to by a hyperlink .

Note: Bookmarks are created at the location specified in the design. If that location is within an element that
repeats, a bookmark is created within each instance of that repeating element. If a static name is
given, then each bookmark will have the same name. Therefore, it is better in such cases (of repeating
elements) to give a dynamic name, which can be, for example, the name of a child element of the
context node (the element within which the bookmark is created). If the node selected for the dynamic
name might have the same content across multiple instances, then the uniqueness of the bookmark
name can be ensured by using the generate-id() function to generate the name (see screenshot
above). To reference such a bookmark, the same ID can be generated as the href value of a
hyperlink . In this case make sure you use the fragment-identifier # in front of the generate-id()
function. The XPath expression would be: concat('#', generate-id(nodeXXX)).

Modifying a bookmark
After a bookmark has been created, its name can be modified via the Edit Bookmarks dialog. This dialog is
accessed as follows:

1. Select the bookmark in the design.
2. In the Properties sidebar, click the Edit button of the Bookmark Name property (screenshot below) in

the Bookmark group of properties. This pops up the Edit Bookmark dialog, which is identical to the
Insert Bookmark dialog described above (see screenshot above).

775

341

344

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 341Advanced Features

Altova StyleVision 2024 Professional Edition

3. In the Edit Bookmark dialog, edit the name of the bookmark in either the Static, Dynamic, or Static
and Dynamic tab.

Deleting a bookmark
To delete a bookmark, select it in the design and press the Delete key.

7.7.7.2 Defining Hyperlinks

Hyperlinks can be created around SPS components such as text or images. The targets of hyperlinks can be:
(i) bookmarks in the SPS design, or (ii) external resources, such as web pages or email messages. In this
section, we first discuss the content of the hyperlink (text, image, etc) and then the target of the hyperlink.

Creating hyperlinks
A hyperlink can be created in the following ways:

· Around text (static or dynamic), nodes, images, conditional templates, Auto-Calculations, and blocks
of content or nodes; it cannot be created around a data-entry device such as an input field or combo
box—though it can be created around a node or conditional template in which that data-entry device is.
This is the content of the link, which, when clicked, jumps to the target of the link. To create a
hyperlink around a component in the SPS, select that component and use the Enclose With |
Hyperlink menu command.

· A new hyperlink can be inserted via the Insert | Hyperlink menu command. The content of the link will
need to be subsequently added within the tags of the newly created hyperlink.

Defining the target of the hyperlink
The target of the hyperlink is created in the Insert Hyperlink dialog (screenshot below), which is accessed via
the Enclose With | Hyperlink or Insert | Hyperlink .

790 776

342 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The target of a link can be either:

· A bookmark in the same SPS design (in which case the target URI must be a fragment identifier),
· Dynamically generated to match bookmark anchors (these URIs are also fragment identifiers),
· An external resource ; the URI can be static (directly entered), dynamic (taken from a node in an

XML document), a combination of static and dynamic parts, or the value of an unparsed entity.

How these targets are defined is explained below. After the URI has been defined in the Insert/Edit Hyperlink
dialog, click OK to finish.

Linking to bookmarks
To link to a bookmark, do the following:

1. In the Static tab of the Insert Hyperlink dialog, click the Bookmark button. This pops up the Select
Bookmark in Document dialog (screenshot below). The screenshot below shows two bookmarks: one
static, one dynamic.

342

344

344

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 343Advanced Features

Altova StyleVision 2024 Professional Edition

2. To select a static bookmark as the target URI, double-click the static bookmark and click OK. If you
double-click a dynamic bookmark, you will be prompted to enter an XPath expression to match the
selected dynamic bookmark (see screenshot below).

The dynamic bookmark is actually an XPath expression that generates the name of the bookmark;
it is not itself the name of the bookmark. The Create Hyperlink to Dynamic Bookmark dialog, displays
the XPath expression of the dynamic bookmark and enables you to construct an XPath expression that
will generate a name to match that of the targeted bookmark. Click OK when done.

339

344 Advanced Features Table of Contents, Referencing, Bookmarks

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Linking to dynamically generated ID bookmarks
Bookmarks can have dynamically generated ID anchors . If one wishes to link back to such a bookmark, the
problem then is this: Since the names of dynamically generated anchors are generated at runtime and therefore
unknown at design time, how is one to set the href value of a hyperlink that targets such an anchor? The
answer is to use the generate-id() function once again, this time within the href value of the hyperlink .
The key to understanding why this works lies in a property of the generate-id() function. In a single
transformation, each time the generate-id() function is evaluated for a specific node, it always generates the
same ID. Because of this the IDs generated in the bookmark and the hyperlink will be the same.

Two points should be borne in mind:

· Since the generate-id() function must be evaluated as an XPath expression, use the Dynamic tab of
the Insert Hyperlink dialog (see screenshot below) to set the target of the hyperlink.

· The evaluated value of the href attribute must start with # (the fragment identifier). Consequently the
XPath expression will be: concat('#', generate-id(nodeXXX)). Alternatively, in the Static and
Dynamic tab, enter # in the static part of the address and generate-id(nodeXXX) in the dynamic part.

Linking to external resources
URIs that locate external resources can be built in the following ways:

· By entering the URI directly in the Static tab of the Insert Hyperlink dialog. For example, a link to the
Altova home page (http://www.altova.com) can be entered directly in the Address input field of the
Static tab.

· By selecting a node in the XML document source in the Dynamic tab of the Insert Hyperlink dialog. The
node in the XML source can provide a text string that is either: (i) the URI to be targeted, or (ii) the
name of an unparsed entity which has the required URI as its value. For example, the Altova
website address can be contained as a text string in a node.

· By building a URI that has both static and dynamic parts in the Static and Dynamic tab of the Insert
Hyperlink dialog. This can be useful for adding static prefixes (e.g. a protocol) or suffixes (e.g. a
domain name). For example, email addresses could be created by using a static part of mailto: and a
dynamic part that takes the string content of the //Contact/@email node (the screenshot below
creates a link on the contents placeholder of the //Contact/@email node, which is why the
abbreviated self::node() selector has been used). The Edit XPath button opens the Edit XPath
Expression dialog to help you build the dynamic part of the hyperlink.

How to use unparsed entities is described in the section Unparsed Entity URIs .

339

776

776

440

697

440

© 2017-2023 Altova GmbH

Table of Contents, Referencing, Bookmarks 345Advanced Features

Altova StyleVision 2024 Professional Edition

Note: While linking to external documents is supported in the FO specification, an FOP limitation could
result in external links not working in PDF documents created with FOP.

Authentic View modification of parent node's content
The value of the parent node of a hyperllink can be selected by the Authentic View user . The SPS can be
designed to modify presentation based on what the Authentic View user selects.

Editing hyperlink properties
To edit a hyperlink, right-click either the start or end hyperlink (A) tag, and select Edit URL from the context
menu. This pops up the Edit Hyperlink dialog (screenshot above). The Edit Hyperlink dialog can also be
accessed via the URL property of the Hyperlink group of properties in the Properties window.

Removing and deleting hyperlinks
To delete a hyperlink, select the hyperlink (by clicking either the start or end hyperlink (A) tag), and press the
Delete key. The hyperlink and its contents are deleted.

435

346 Advanced Features Example: Multiple Languages

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7.8 Example: Multiple Languages

Very often, documents and Authentic Forms will need to contain content in multiple languages or will require
the user to choose a preferred language. StyleVision offers a range of features that can be used to achieve
these goals. Given below are some possibilities, all of which which are demonstrated in the Multiple Language
examples in the Examples project delivered with StyleVision. (The Examples project should load automatically
by default when you first start StyleVision. It can also be loaded by selecting the menu command Project |
Open, and then browsing for the Examples.svp file in the folder: C:\Documents and
Settings\<username>\My Documents\Altova\StyleVision2024\StyleVisionExamples.)

Using variables and conditions
The user's preferred language is entered in an editable variable . A condition with multiple branches maps
each language to the correct language content. The user's language choice is used to select the correct
conditional branch.

In the screenshot above, notice that the user's choice is entered as the value of the editable variable. The
conditions in the table have two branches for the two language choices and test for the value of the editable
variable. The Authentic View output is as in the screenshot below.

309 280

© 2017-2023 Altova GmbH

Example: Multiple Languages 347Advanced Features

Altova StyleVision 2024 Professional Edition

The above strategy is well-suited for forms in which the user selects the required language. For details, see the
file, MultiLangByCondition.sps, which is in the Examples project.

Using parameters and Auto-Calculations
Another scenario would be one in which the same data is required to be output in different languages. A
possible strategy for this requirement would be to use a parameter , the value of which triggers the required
language output. The appropriate language output can be determined, for example, by means of an Auto-
Calculation . The Auto-Calculation could output the appropriate content according to the value of the
parameter.

In the screenshot above, the Auto-Calcs have XPath expressions of the form:

if ($Language = 'E') then 'First' else
if ($Language = 'G') then 'Vorname' else ''

The value of the $Language global parameter can be modified in the SPS design or can be supplied via the
command line at runtime. Multiple transformation runs can be made to output the same data in multiple
languages.

For details, see the file, MultiLangByAutoCalcs.sps, which is in the Examples project.

302

270

348 Advanced Features Example: Multiple Languages

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Example files
For more examples, open the Examples project file, Examples.svp, which is in the folder: C:\Documents and
Settings\<username>\My Documents\Altova\StyleVision2024\StyleVisionExamples.

© 2017-2023 Altova GmbH

 349Presentation and Output

Altova StyleVision 2024 Professional Edition

8 Presentation and Output

In the SPS design, a single set of styling features is defined for components. These styles are converted to the
corresponding style markup in the respective outputs (Authentic View, HTML, RTF, PDF, Word 2007+ and Text
in the Enterprise Edition; Authentic View, HTML, RTF, and Text in the Professional Edition; HTML in the Basic
Edition). Some presentation effects, notably interactive Web presentation effects (such as combo boxes and
JavaScript event handlers), will by their nature not be available in paged media output (RTF). In these cases,
the paged media will use a suitable print rendition of the effect. For print output, however, StyleVision offers
essential page definition options . These paged media options , such as page size, page layout, and
headers and footers, are defined additionally to the styling of components, and will be used for RTF output
alone.

Note: Since plain text cannot be formatted, text styling properties and page layouts in the design will be
ignored when generating Text output.

Styling of SPS components
All styling of SPS components is done using CSS2 principles and syntax. Styles can be defined in external
stylesheets, globally for the SPS, and locally on a component. The cascading order of CSS2 applies to the
SPS, and provides considerable flexibility in designing styles. How to work with CSS styles is described in
detail in the Working with CSS Styles sub-section of this section.

The values of style properties can be entered directly in the Styles or Properties sidebars, or they can be set
via XPath expressions . The benefits of using XPath expressions are: (i) that the property value can taken
from an XML file, and (ii) that a property value can be assigned conditionally according to a test contained in
the XPath expression.

Additionally, in the SPS design, certain HTML elements are available as markup for SPS components. These
predefined formats are passed to the HTML output. The formatting inherent in such markup is therefore also
used to provide styling to SPS components. When CSS styles are applied to predefined formats, the CSS
styles get priority over the inherent style of the predefined format. Predefined formats are described in the
Predefined Formats sub-section of this section. Note that the inherent styles of predefined formats are
converted to equivalent markup for RTF output.

Note: When defining CSS styles for an SPS component be aware that some styles may not, by their nature,
be applicable to paged media output (RTF). Also, when HTML selectors are used (in external
stylesheets and global style rules), these will not be applicable to paged media output (RTF). When
such selectors are used, a comment is displayed next to the selector to the effect that the style will
not be applied to Text, RTF output.

Designing for paged media output
For StyleVision's paged media support (RTF outputs and XSLT stylesheets for RTF), page definition and layout
options are available. These options are used additionally to the component styling mechanism, and are
described in the Designing Print Output sub-section of this section.

392 392

364

375

350

350

392

392

350 Presentation and Output Predefined Formats

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.1 Predefined Formats

StyleVision provides a number of pre-defined formats, each of which corresponds to an HTML element
(screenshot below). When you apply a Predefined Format to a component in the Design, that component is
marked up as a component having the corresponding HTML semantics. This has two effects:

· Formatting inherent to the selected predefined format is applied.
· The component is contained in the component type, paragraph, which makes it available for local

styling by component type.

Assigning Predefined Formats
Predefined formats can be assigned by clicking Insert | Special Paragraph, and then the required format, or
by selecting the required format from the Format drop-down list in the Toolbar (shown below).

Inherent styles
The predefined formats used in StyleVision have either one or both of the following two styling components:

· a text-styling component
· a spacing component.

For example, the predefined para (p) format has a spacing component only; it puts vertical space before and

after the selected component, and does not apply any text styling. On the other hand, the predefined Heading

 1 (h1) format has both a text-styling component and a spacing component.

The following styling points about predefined formats should be noted:

· The spacing component of a predefined format applies for any type of SPS component, but the text
styling only if it can be applied. For example, if you select an image and apply a predefined format of
Heading 1 (h1) to it, then the spacing component will take effect, but the text-styling component will

not.
· The text-styling component of predefined formats does not apply to data-entry devices.
· Only one predefined format applies to a component at any given time.
· The Preformatted predefined format (pre) applies formatting equivalent to that applied by the pre tab

of HTML: linebreaks and spacing in the text are maintained and a monospaced font (such as Courier)
is used for the display. In the case of run-on lines with no linebreaks, such as in a paragraph of text,
the Preformatted (pre) predefined format will display lines of text without wrapping. If you wish to
wrap the text, use the predefined format Preformatted, wrapping (pre-wrap).

371

© 2017-2023 Altova GmbH

Predefined Formats 351Presentation and Output

Altova StyleVision 2024 Professional Edition

Defining additional styling for a predefined format
Styles additional to the inherent styling can be defined for a predefined format by selecting it and applying a
local style via the Styles sidebar .

The Return key and predefined formats
In Authentic View, when the Return key is pressed within the contents of an element having a predefined
format, the current element instance and its block are terminated, and a new element instance and block are
inserted at that point. This property is useful, for example, if you want the Authentic View user to be able to
create a new element, say a paragraph-type element, by pressing the Return key.

371

352 Presentation and Output Output Escaping

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.2 Output Escaping

A character in a text string is said to be escaped when it is written as a character reference or entity reference.
Both types of references (character and entity) are delimited by an ampersand at the start and a semicolon at
the end. For example:

· the hexadecimal (or Unicode) character reference of the character A is A
· the decimal character reference of the character A is A
· the HTML (and XML) entity reference of the character & is &
· the hexadecimal (or Unicode) character reference of the character & is &
· the decimal character reference of the character & is &
· the HTML (and XML) entity reference of the character < is <

Output escaping
Output escaping refers to the way characters that are escaped in the input are represented in the output. A
character is said to be output-escaped when it is represented in the output as a character or entity reference.
Note that a character can only be output-escaped when it is escaped in the input (see table below for
examples). In an SPS, output-escaping can be enabled or disabled for:

· Fragments of static text,
· The contents placeholder, and
· Auto-Calculations

This is done with the disable-output-escaping attribute of the Text group of properties. The default value of
this property is no, which means that output-escaping will not be disabled. So characters that are escaped in
the input will be escaped in the output by default (see table below for examples).

To disable output escaping, do the following:

1. Select the (i) static text, or (ii) fragment of static text, (iii) contents placeholder, or (iv) Auto-
Calculation for which you wish to disable output escaping.

2. In the Properties sidebar, select the Text group of properties for the Text item, and set the disable-
output-escaping attribute to yes for the various outputs individually or for all outputs. The available
values are:

· For HTML (to set disable-output-escaping to yes for HTML output).
· For Authentic (to set disable-output-escaping to yes for Authentic output). Note that disabling

output escaping for Authentic View is enabled only in Enterprise editions of Authentic View (that
is, in the Enterprise editions of StyleVision, Authentic Desktop, Authentic Browser, and XMLSpy).

· For RTF (to set disable-output-escaping to yes for RTF output).
· For all (to set disable-output-escaping to yes for all outputs except Text).

Note: Output escaping does not apply to Text output. (It is neither enabled or disabled.)

When output escaping is disabled for a particular output format (for example, HTML output), the selected text
will not be escaped in that output format, but will be escaped in the other output formats.

Given below are some examples of text with output escaping disabled and/or enabled.

Static text disable-output-escaping Output text

© 2017-2023 Altova GmbH

Output Escaping 353Presentation and Output

Altova StyleVision 2024 Professional Edition

& no &

& yes &

& no &

& yes &

< no <

< yes <

A no A

A yes A

&lt; no &lt;

&lt; yes <

&amp;lt; yes <

&< yes &<

Note: Disable-Output-Escaping is supported in Authentic View only in the Enterprise Editions of Altova
products.

Using disabled output-escaping across output formats
If output-escaping is disabled, the text string can have significance in one output but no significance at all in
another output. For example, consider the following input text, which has escaped characters (highlighted):

This text is bold.

If output-escaping is disabled, this text will be output as:

This text is bold.

If output-escaping is disabled for HTML output and this output is viewed in a browser (as opposed to a text
editor), the markup will be significant for the HTML browser and the text will be displayed in bold, like this:

This text is bold.

However, if viewed in another output format, such as PDF, the markup that was significant in HTML will not
necessarily be of significance in this other output format. In the particular case cited above, the unescaped text
(output escaping disabled) will be output in PDF format as is, like this:

This text is bold.

As the example above demonstrates, the output text obtained by disabling output-escaping might be
interpretable as code in one output format but not in another. This should be clearly borne in mind when using
the Disable-Output-Escaping property.

354 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.3 Value Formatting (Formatting Numeric Datatypes)

Value Formatting enables the contents of numeric XML Schema datatype nodes (see list below) to be
displayed in a format other than the lexical representation of that datatype. (For example, the lexical
representation of an xs:date datatype node is YYYY-MM-DD, with an optional timezone component, such as
+02:00.) The Value Formatting is displayed in Authentic View and, depending on the formatting definition, may
also be available for display in the HTML, Text, and RTF output. Value Formatting can also be used to format
the result of an Auto-Calculation if the result of the Auto-Calculation is in the lexical format of one of the
numeric datatypes (see list below) for which Value Formatting is available.

In the sub-sections of this section, we describe:

· how the Value Formatting mechanism works , and
· the syntax for defining the Value Formatting.

Note: Value Formatting does not change the format in which the data is stored in the XML document. In the
valid XML document, the data is always stored in the lexical format appropriate to the datatype of the
node. Value Formatting is applied to the display in Authentic View and, optionally (if available), to the
display in the output.

Numeric datatypes for which Value Formatting is available
Value Formatting is available for the following datatypes:

· xs:decimal; xs:integer; the 12 built-in types derived from xs:integer
· xs:double and xs:float when values are between and including 0.000001 and 1,000,000. Values

outside this range are displayed in scientific notation (for example: 1.0E7), and cannot have Value
Formatting applied to them.

· xs:date; xs:dateTime: xs:duration
· xs:gYear; xs:gYearMonth; xs:gMonth; xs:gMonthDay; xs:gDay

8.3.1 The Value Formatting Mechanism

Value Formatting can be applied to:

· A numeric datatype node , such as xs:decimal or xs:date that is present in the SPS as

contents or an input field.
· An Auto-Calculation that evaluates to a value which has the lexical format of a numeric datatype .

Defining Value Formatting
To define Value Formatting for a node or Auto-Calculation in the SPS, do the following:

1. Select the contents placeholder or input field of the node, or the Auto-Calculation.
2. In the Properties sidebar, select the item, and then the Content group (or AutoCalc group) of

properties. Now click the Edit button of the Value Formatting property. Alternatively, right-click

354

354

354

357

354

354

© 2017-2023 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 355Presentation and Output

Altova StyleVision 2024 Professional Edition

and select Edit Value Formatting from the context menu. The Value Formatting dialog appears
(screenshot below). It is different according to whether the selected component was a node or an Auto-
Calculation. If the selected component was a node, then a dialog like the one below appears. The node
represented in the screenshot below is of the xs:date datatype.

Note that the screenshot above contains the line: Formats for type 'date' and that the standard format
for the xs:date datatype is given alongside the Unformatted check box. For a node of some other
datatype, this information would be correspondingly different.

If the selected component was an Auto-Calculation, the following dialog appears.

356 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. You now specify whether the display of the component's value is to be unformatted or formatted. If you
wish to leave the output unformatted, select the Unformatted radio button. Otherwise select the Format
as XML Schema Value radio button. (If the value is unformatted, the output has the standard formatting
for the datatype of the selected node or the datatype of the Auto-Calculation result. If you specify
Formatting as XML Schema Value for an Auto-Calculation, you have to additionally select (from a
dropdown list) the datatype of the expected Auto-calculation result.

4. Enter the Value Formatting definition. This definition can be entered in three ways: (i) by selecting from
a dropdown list of available options for that datatype (see the 'Format in Output Documents' input field
in the screenshots above); (ii) by entering the definition directly in the input field; and (iii) by using the
Insert Field and Field Options buttons to build the definition correctly. See Value Formatting
Syntax for a full description of the various formatting options.

Errors in syntax
If there is an error in syntax, the following happens:

· The definition is displayed in red.
· An error message, also in red, is displayed below the input field.
· The OK button in the Value Formatting dialog is disabled.
· The Go to Error button in the Value Formatting dialog is enabled. Clicking it causes the cursor to be

placed at the point in the format definition where the syntax error is.

Mismatch of data and datatype formats
If the data entered in an XML node does not match the lexical format of that node's datatype, or if the result of
an Auto-Calculation does not match the lexical format of the expected datatype, then the formatting will be
undefined and will not be displayed correctly in the output.

357

© 2017-2023 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 357Presentation and Output

Altova StyleVision 2024 Professional Edition

Applying Value Formatting to the output
The Value Formatting that you define applies to Authentic View, which is supported in the Enterprise and
Professional editions.

Some Value Formatting definitions—not all—can also, additionally, be applied to HTML, Text, RTF output. To
do this, check the Apply Same Format to XSLT Output check box. If this option is not checked, or if it is not
available, then only Authentic View will display the Value Formatting, while the output will display the value in
the standard format for the datatype of the component (the lexical format).

8.3.2 Value Formatting Syntax

The syntax for Value Formatting is:

([prefix character/s]field[suffix character/s][{field-option1,field-
option2,...}])+

where prefix character/s and suffix character/s are optional specifiers used to control

alignment and the display of positive/negative symbols;
field can be any datatype-specific formatting or text; and

{field-option(s)} is an optional qualifier, that enables additional formatting options.

Explanation of definition syntax
The Value Formatting definition is constructed as follows:

· The definition is composed of one or more fields. For example, the definition DD Month YYYY has three
fields.

· Fields can be run together, or they can be separated by the following characters: space, hyphen,
comma, colon, period, or by a text string in single or double quotes. For example, in the definition: DD-
Month' in the year 'YYYY, the fields DD and Month are separated by a hyphen, and the fields Month
and YYYY are separated by a text string enclosed in single quotes.

· A field can have optional prefix and/or suffix character/s. For example: <+###,##0.00.
· A field can have one or more optional field-options. The field-option/s for each field must be contained in

a single set of curly braces, and must follow the field without any intervening space. Multiple field-
options for a single field are separated by "," (comma). For example, in the definition: DD

Month{uc,ro} YYYY, the curly-brace-enclosed uc and ro are field-options for the field Month.

Examples
Example of Value Formatting for an xs:decimal datatype:

"$"(##0.00)

Examples of the output would be:

$ 25.00
$ 25.42
$267.56

358 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Example of Value Formatting for an xs:date datatype:

DD Month{uc,ro} YYYY

where uc and ro are field-options for making the Month field uppercase and read-only, respectively

An example of the output would be:

24 SEPTEMBER 2003

Field types
A field type represents a component of the data and the way that component is to be formatted. The formatting
inherent in the field type can be modified further by prefix and suffix modifiers as well as by field options. The
following tables list the available field types. Note that, in the drop-down menu of the Value Formatting dialog,
there are type-specific and field-only Value Formatting definitions. You can select one of these and modify
them as required by adding prefix modifiers, suffix modifiers, and/or field options.

Field Type Explanation

Space if no digit at position

0 Zero if no digit at position

. Decimal mark

, Digit group separator

Y Year

y year (base = 1930); see Note below

MM Month, must have length of 2

DD Day, must have length of 2

W Week number

d Weekday number (1 to 7)

i Day in the year (1 to 366)

hh Hour (0 to 23), must have length of 2

HH Hour (1 to 12), must have length of 2

mm Minute, must have length of 2

ss Second, must have length of 2

AM AM or PM

am am or pm

AD AD or BC

© 2017-2023 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 359Presentation and Output

Altova StyleVision 2024 Professional Edition

ad ad or bc

CE CE or BCE

ce ce or bce

360 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Field Type Explanation

Weekday Weekday (Sunday, Monday...)

WEEKDAY Weekday (SUNDAY, MONDAY...)

weekday Weekday (sunday, monday...)

Wkd Weekday (Sun, Mon...)

WKD Weekday (SUN, MON...)

wkd Weekday (sun, mon...)

Month Month (January, February...)

MONTH Month (JANUARY, FEBRUARY...)

month Month (january, february...)

Mon Month (Jan, Feb...)

MON Month (JAN, FEB...)

mon Month (jan, feb...)

Notes on field length and entry length
The following points relating to the length of data components should be noted:

Length of date fields: When fields such as MM, DD, HH, hh, mm, and ss are used, they must have a length of 2
in the definition. When the y or Y fields are used, the number of y or Y characters in the definition determines
the length of the output. For example, if you specify YYY, then the output for a value of 2006 would be 006; for a
definition of YYYYYY, it would be 002006. See also Base Year below.

Extending field length: The * (asterisk) symbol is used to extend the length of a non-semantic numeric field
(integers, decimals, etc). In the case of decimals, it can be used on either or both sides of the decimal point.
For example, the Value Formatting *0.00* ensures that a number will have zeroes as specified in the
formatting if these digit locations are empty, as well as any number of digits on both sides of the decimal point.

Entry lengths in Authentic View: The display in Authentic View of the contents of a node is based on the
Value Formatting definition for that node. Therefore, the Authentic View user will not be able to insert more
characters than are allowed by the Value Formatting definition. This is a useful way to restrict input in
Authentic View. Note, however, that if the length of a pre-existing value in the XML document exceeds the
length specified in the formatting definition, then the entire value is displayed.

Note: If a field does not render any text, this might be because of your region setting in Windows. For
example, Windows returns an empty string for the AM/PM field if the regional language setting is
German.

Prefix and suffix modifiers
Prefix and suffix modifiers are used to modify the textual alignment and positive/negative representations of
fields. The following table lists the available prefix and suffix modifiers.

© 2017-2023 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 361Presentation and Output

Altova StyleVision 2024 Professional Edition

Prefix Suffix Explanation

< Left aligned; default for text. For numbers, which are aligned right
by default, this is significant if there are a fixed number of leading
spaces.

> Right aligned; default for numbers.

? Minus symbol adjacent to number if negative; nothing otherwise.
This is the default for numbers.

<? Minus symbol left-aligned if negative; nothing otherwise. Number
left-aligned, follows minus sign.

<?> Minus symbol left-aligned if negative; nothing otherwise. Number
right-aligned.

- - Minus symbol adjacent to number if negative; space otherwise.
Located before number (prefix), after number (suffix).

<- >- Minus symbol if negative; space otherwise. Number and sign
adjacent. Left-aligned (prefix); right-aligned (suffix).

<-> Minus symbol left-aligned if negative; space otherwise. Number
right-aligned.

+ + Plus or minus sign always, located adjacent to number; before
number (prefix), after number (suffix).

<+ >+ Plus or minus sign always, located adjacent to number; left-
aligned (prefix), right-aligned (suffix).

<+> Plus or minus sign always, left-aligned; number right-aligned.

() Parentheses if negative; space otherwise. Adjacent to number.

<(Parentheses if negative; space otherwise. Adjacent to number.
Left-aligned.

<(> Parentheses if negative; space otherwise. Left parentheses left-
aligned; number and right parentheses adjacent and right-aligned.

[] Parentheses if negative; nothing otherwise. Adjacent to number.

* * Extendable number of digits to left (prefix) or to right (suffix)

_ _ Space

^ ^ Fill character (defined in options)

th Ordinality of number in EN (st, nd, rd, or th)

TH Ordinality of number in EN (ST, ND, RD, or TH)

Field options
Field options enable advanced modifications to be made to fields. The following options are available:

362 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Option Explanation

uc Make uppercase

lc Make lowercase

left Left aligned

right Right aligned

ro Read (XML) only; no editing allowed

edit The field is editable (active by default)

dec=<char> Specify a character for the decimal point (default is point)

sep=<char> Specify a character for the digit separator (default is comma)

fill=<char> Specify fill character

base=<year> Base year for year fields (see note below)

pos Show only positive numbers; input of negative numbers allowed

Field options should be used to generate number formatting for European languages, which interchange the
commas and periods of the English language system: for example, 123.456,75.

The Value Formatting to use to obtain the formatting above would be: ###,###.##{dec=,,sep=.}

Notice that the field retains the English formatting, while it is the field options dec and sep that specify the
decimal symbol and digit separator. If the decimal symbol and digit separator are not specified, these
characters will default to decimal symbol and digit separator of the regional settings of the Windows OS
(Control Panel | All Items | Region | Format).

Note on Base Year
When using short year formats (such as yy and YY), the base year specifies a cut-off for a century. For
example, the base year field option could be used in the definition DD-MM-YY{base=1940}. If the user

enters a value that is equal to or greater than the last two digits of the base year, which are considered together
as a two-digit positive integer, then the century is the same as that of the base year. If the value entered by the
user is less than the integer value of the last two digits, then the century is the century of the base year plus
one. For example if you set base=1940, then if the Authentic View user enters 50, the value entered in the

XML document will be 1950; if the user enters 23, the value entered in the XML document will be 2023.

Note the following points:

· Although two digits are commonly used as the short year format, one-digit and three-digit short year
formats can also be used with a base year.

· Datatypes for which short year formats can be used are: xs:date, xs:dateTime, xs:gYear, and
xs:gYearMonth.

· If the Value Formatting is being set for an Auto-Calculation component, make sure that the correct
datatype is selected in the Value Formatting dialog. (The selected date datatype should be that of the
result to which the Auto-Calculation evaluates.)

© 2017-2023 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 363Presentation and Output

Altova StyleVision 2024 Professional Edition

· If the yy field type is used, the default base year is 1930. Explicitly setting a base year overrides the
default.

· If the YY field type is used without any base year being set, then the Authentic View user will be able to
modify only the last two digits of the four-digit year value; the first two digits remain unchanged in the
XML document.

364 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.4 Working with CSS Styles

The SPS design document is styled with CSS rules. Style rules can be specified:

· In external CSS stylesheets . External CSS stylesheets can be added via the Design Overview
sidebar and via the Style Repository sidebar.

· In global styles for the SPS, which can be considered to be defined within the SPS and at its start.
(In the HTML output these global styles are defined within the style child element of the head
element.) Global styles are defined in the Style Repository sidebar.

· Locally , on individual components of the document. In the HTML output, such rules are defined in
the style attribute of individual HTML elements. Local style rules are defined in the Styles sidebar.

Each of the above methods for creating styles is described in detail in the sub-sections of this section (links
above).

Note: Since CSS styles cannot be applied to plain text, they will not be applied to Text output.

Terminology
A CSS stylesheet consists of one or more style rules. A rule looks like this:

H1 { color: blue }

or

H1 { color: blue;

 margin-top: 16px; }

Each rule has a selector (in the examples above, H1) and a declaration (color: blue). The declaration is a list
of properties (for example, color) with values (blue). We will refer to each property-value pair as a style
definition. In StyleVision, CSS styles can be defined in the Styles sidebar (local styles) and Style
Repository sidebar (global styles).

Cascading order
The cascading order of CSS applies. This means that precedence of rules are evaluated on the basis of:

1. Origin. External stylesheets have lower precedence than global styles, and global styles have lower
precedence than local styles. External stylesheets are considered to be imported, and the import order
is significant, with the latter of two imported stylesheets having precedence.

2. Specificity. If two rules apply to the same element, the rule with the more specific selector has
precedence.

3. Order. If two rules have the same origin and specificity, the rule that occurs later in the stylesheet has
precedence. Imported stylesheets are considered to come before the rule set of the importing
stylesheet.

CSS styles in modular SPSs
When an SPS module is added to another SPS, then the CSS styles in the referring SPS have priority over
those in the added module. When multiple modules are added, then CSS styles in those modules located

365 42

51

369

51

371

54

54

51

© 2017-2023 Altova GmbH

Working with CSS Styles 365Presentation and Output

Altova StyleVision 2024 Professional Edition

relatively lower in the module list have priority. For more information about modular SPSs, see the section,
Modular SPSs .

CSS support in Internet Explorer
Versions of Internet Explorer (IE) prior to IE 6.0 interpret certain CSS rules differently than IE 6.0 and later. As a
designer, it is important to know for which version of IE you will be designing. IE 6.0 and later offers support for
both the older and newer interpretations, thus enabling you to use even the older interpretation in the newer
versions (IE 6.0 and later). Which interpretation is used by IE 6.0 and later is determined by a switch in the
HTML document code. In an SPS, you can specify whether the HTML and Authentic View output
documents should be styled according to Internet Explorer's older or newer interpretation . You should then
set CSS styles according to the selected interpretation. For more details, see Properties: CSS Support .

Note: For more information about the CSS specification, go to http://www.w3.org/TR/REC-CSS2/.

8.4.1 External Stylesheets

This section describes how external CSS stylesheets can be managed from within the StyleVision GUI. It
consists of the following parts:

· Adding an external CSS stylesheet to the SPS
· Viewing the contents of an external CSS stylesheet and modifying the media applicability
· Changing the precedence
· Switching between the full CSS stylesheet set and a single CSS stylesheet

External CSS stylesheets can be managed from two sidebars: the Style Repository sidebar and the Design
Overview sidebar . If an aspect of the external stylesheets is viewable in both sidebars (for example, the
relative precedence of multiple stylesheets), then changes made in one sidebar will automatically be reflected
in the other.

Adding an external CSS stylesheet to the SPS
To assign an external CSS stylesheet to the SPS, do the following:

1. In Design View, select the External item in the Style Repository window (screenshot below).

2. Click the Add button at the top left of the Style Repository toolbar (see screenshot above).
3. In the Open dialog that pops up, browse for and select the required CSS file, then click Open. The

CSS file is added to the External item as part of its tree structure (see tree listing and screenshot
below).

4. To add an additional external CSS stylesheet, repeat steps 1 to 3. The new CSS stylesheet will be
added to the External tree, below all previously added external CSS stylesheets.

230

738

106

740

365

366

367

367

51

42

http://www.w3.org/TR/REC-CSS2/

366 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: You can also add an external CSS stylesheet via the Design Overview sidebar.

Viewing and modifying the tree of external CSS stylesheets
The tree of external CSS stylesheets is structured as follows (also see screenshot below):

- CSS-1.css (File location appears on mouseover)
 - Media (can be defined in Style Repository window)
 - Rules (non-editable; must be edited in CSS file)
 - Selector-1
 - Property-1
 - ...
 - Property-N
 - ...
 - Selector-N
+ ...
+ CSS-N.css

The media to which that particular stylesheet is applicable can be edited in the Style Repository window. Do
this by clicking the down arrow to the right of the item and selecting the required media from the dropdown list.
The rules defined in the external CSS stylesheet are displayed in the Style Repository window, but cannot be
edited. The Stylesheet, Rules, and individual Selector items in the tree can be expanded and collapsed by
clicking the + and - symbols to the left of each item (see screenshot below).

To delete an external stylesheet, select the stylesheet and click the Reset button in the Style Repository
toolbar.

42

© 2017-2023 Altova GmbH

Working with CSS Styles 367Presentation and Output

Altova StyleVision 2024 Professional Edition

Changing the precedence of the external CSS stylesheets
The external CSS stylesheets that are assigned in the Style Repository window will be imported into the HTML
output file using the @import instruction. In the HTML file, this would look something like this:

<html>
<head>

<style>
<!--
@import url("ExternalCSS-1.css");

@import url("ExternalCSS-2.css")screen;

@import url("ExternalCSS-3.css")print;

-->
</style>

</head>
<body/>

</html>

The order in which the files are listed in the HTML file corresponds to the order in which they are listed in the
External tree of the Style Repository and in the CSS Files tree of the Design Overview sidebar. To change the
order of the CSS stylesheets in the Style Repository, select the stylesheet for which the precedence has to be

changed. Then use the Move Up or Move Down buttons in the Style Repository toolbar to reposition
that stylesheet relative to the other stylesheets in the tree. In the Design Overview sidebar, click the Edit button
of a CSS stylesheet and select the Move Up or Move Down command as required.

Important: Note that it is the lowermost stylesheet that has the highest import precedence, and that the
import precedence decreases with each stylesheet higher in the listing order. The order of import precedence in
the listing shown above is: (i) ExternalCSS-3.css; (ii) ExternalCSS-2.css; (iii) ExternalCSS-1.css. When
two CSS rules, each in a different stylesheet, use the same selector, the rule in the stylesheet with the higher
import precedence applies.

Switching between all CSS files and a single CSS file
You can choose to either: (i) let rules in all CSS files apply with the cascading rules determining precedence,
or (ii) let rules in a single selected CSS file apply. You can select the option you want in the Design Overview
sidebar (see screenshot below). Click the Edit button of any of the listed CSS files and select either the Mix
Styles command or Select One command. This option is also available in the Style Repository (on any of the
external stylesheets).

368 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If you click the Select One CSS File with XPath command, a dialog pops up in which you can enter the
XPath expression (screenshot below). The XPath expression must evaluate to the name of one of the CSS files
in the SPS, exactly as these names are listed in the top pane of the dialog. If you enter the filename as a
string, note that, like all strings in XPath expressions, the string must be entered within single quotes.

Note the following:

· When a single CSS file is selected: In the Authentic and HTML outputs, all rules from the selected
CSS file are applied and these rules are supported on all design components. In the RTF output, only
class selector rules from the selected CSS file are applied. Non-class rules are applied from all CSS
files, with conflicts being resolved on the basis of the priority of the CSS file. In the RTF output, these

© 2017-2023 Altova GmbH

Working with CSS Styles 369Presentation and Output

Altova StyleVision 2024 Professional Edition

rules can be applied to the following design components: Auto-Calculations , the (contents)
placeholder , paragraph (block) components , and table cells .

· When styles are mixed from all CSS files: In the Authentic and HTML outputs, all rules from all the
CSS file are applied and are supported on all design components. Conflicts are resolved on the basis of
the priority of the CSS file. In the RTF output, only non-class selector rules are applied, with conflicts
being resolved on the basis of priority.

8.4.2 Global Styles

Global styles are defined for the entire SPS design in the Style Repository and are listed in the Style
Repository under the Global heading. They are passed to Authentic View and the HTML output document as
CSS rules. In the HTML document, these CSS rules are written within the /html/head/style element.

In the Style Repository, a global style is a single CSS rule consisting of a selector and CSS properties for that
selector. Creating a global style, therefore, consists of two parts:

· Adding a new style and declaring the CSS selector for it
· Defining CSS properties for the selector

Supported selectors
The following selectors are supported:

· Universal selector: written as *
· Type selectors: element names, such as h1
· Attribute selectors: for example, [class=maindoc]
· Class selectors: for example, .maindoc
· ID selectors: for example, #header

Adding a global style
To add a global style to the SPS design, do the following:

1. In Design View, select the Global item in the Style Repository window (screenshot below).

2. Click the Add button at the top left of the Style Repository toolbar (see screenshot above). A global
style is inserted in the Global tree with a * selector (which selects all HTML elements); the universal
selector is the default selector for each newly inserted global style.

3. To change the selector from the default universal selector, double-click the selector and edit it.

270

125 127 143

http://www.w3.org/TR/CSS21/selector.html

370 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4. Now set the CSS property values for the selector. How to do this is explained in the section Setting
Style Values .

5. To add another global style, repeat steps 1 to 4. The new global style will be added to the Global tree,
below all previously added global styles.

Note:

· Global styles can also be inserted before a selected global style in the Global tree by clicking the
Insert button in the Style Repository window. The Add and Insert buttons are also available via the
context menu that appears when you right-click a global selector.

· A global style with a selector that is an HTML element can be inserted by right-clicking an item in the
Global tree, then selecting Add Selector | HTML | HTMLElementName.

Editing and deleting global styles
Both a style's selector as well as its properties can be edited in the Style Repository window.

· To edit a selector, double-click the selector name, then place the cursor in the text field, and edit.
· For information about defining and editing a style's property values, see Setting Style Values . (The

style properties can be displayed in three possible views. These views and how to switch between
them are described in Views of Definitions .

To delete a global style, select the style and click the Reset button in the Style Repository toolbar.

Changing the precedence of global styles
Global styles that are assigned in the Style Repository window are placed as CSS rules in
the /html/head/style element. In the HTML file, they would look something like this:

<html>
<head>

<style>
<!--
h1 { color:blue;

 font-size:16pt;

}

h2 { color:blue;

 font-size:14pt;

}

.red { color:red;}

.green { color:green;}

.green { color:lime;}

-->

373

373

54

© 2017-2023 Altova GmbH

Working with CSS Styles 371Presentation and Output

Altova StyleVision 2024 Professional Edition

</style>
</head>
<body/>

</html>

The order in which the global styles are listed in Authentic View and the HTML document corresponds to the
order in which they are listed in the Global tree of the Style Repository. The order in Authentic View and the
HTML document has significance. If two selectors select the same node, then the selector which occurs lower
down the list of global styles has precedence. For example, in the HTML document having the partial listing
given above, if there were an element <h1 class="green">, then three global styles match this element: that
with the h1 selector and the two .green class selectors. The color property of the .green selector with the
color lime will apply because it occurs after the .green selector with the color green and therefore has a
higher precedence. (Class selectors always have a higher precedence than node selectors, so both .green
selectors will have a higher precedence than the h1 selector regardless of their respective positions relevant to
the h1 selector.) The font-size of the h1 style will, however, apply to the <h1> element because there is no
selector with a higher precedence that matches the <h1> element and has a font-size property.

To change the precedence of a global style, select that style and use the Move Up and Move Down buttons
in the Style Repository toolbar to reposition that global style relative to the other global styles in the tree. For
example, if the .green global style were moved to a position before the .red style, then the color property of
the .red style would have precedence over that of the .green style.

Note, however, that class selectors always have precedence over type selectors. So, if the selector order were
changed to .red .green h1 h2, then h1 and h2 would still be green.

8.4.3 Local Styles

When styles are defined locally, the style rules are defined directly on the component. These local rules have
precedence over both global style rules and style rules in external CSS stylesheets that select that
component. Locally defined styles are CSS styles and are defined either via the Format toolbar or in the
Styles sidebar. (This is as opposed to global styles, which are defined in the Style Repository sidebar.)

Local styles via the Format toolbar
You can select content in the design and apply local styles via the Format toolbar (screenshot below).

You can apply predefined HTML formatting (such as div, h1, pre, etc), text styling, background color, text
alignment, lists, and hyperlinks. See the section, Format toolbar , for details.

Local styles via the Styles sidebar
Defining a style locally via the Styles sidebar consists of three parts:

1. The component to be styled is selected in Design View. Any component in the design except node
tags can be styled. The component selected in Design View then appears in the Styles-For column of

704

54 51

704

372 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

the Styles sidebar (see screenshot below). In the screenshot below, a content component was
selected in Design View and consequently appears in the Styles-For column.

Very often, the component selected in Design View might contain other components. In this case all
the components in the selection are displayed, organized by component-type, in the Styles-For column
of the Styles sidebar. The screenshot below shows the different component-types contained in the
Design View selection. To the left of each component-type is the number of instances of that
component-type in the selection. For example, in the screenshot below, there are 16 text components
and two Auto-Calculation components (among others) in the Design View selection. You can also
select a range of components by keeping the Shift key pressed while selecting the second, end-of-
range component.

2. After making the selection in Design View, you select, in the Styles-For column, the component-type
you wish to style. If there is more than one instance of the component-type you select, then the styles
you define will be applied to all these instances. So, for example, if you select the 16-texts item of the

© 2017-2023 Altova GmbH

Working with CSS Styles 373Presentation and Output

Altova StyleVision 2024 Professional Edition

screenshot above, then the styles you define (see Step 3 below) will be applied to all 16 text
components. If you wish to style, say, four of these text components differently, then you must select
and style each of the four components separately. If two components of the same component-type
have been styled differently and both are selected in Design View, then the styles of both instances are
displayed in the Style Definitions pane. In the screenshot above, for example, while one Auto-
Calculation has a normal font-weight, the other has a bold font-weight. When the 2-Autocalcs item is
selected in the Styles-For pane, both font-weights are displayed.

3. After selecting, in the Styles-For column, the component-type to style, styles are defined in the Style
Definitions pane . How to do this is described in the section Setting Style Values .

8.4.4 Setting Style Values

For the component-type selected in the Styles-For column, style properties are defined in the Style Definitions
pane of the Styles sidebar (screenshot below) . You can select more than one component-type in the
Styles-For column if you like—by selecting additional component-types with the Ctrl-key pressed, or by
selecting a range of component-types in the Styles-For column with the Shift-key pressed. When multiple
component-types are selected, any style value you define in the Style-Definitions pane is applied to all
instances of all the selected component-types.

Style property groups
The available style properties in the Style-Definitions column are organized into groups as shown in the
screenshot below.

54 373

54

374 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The display of properties can be modified using the List Non-Empty , Expand All , and Collapse
All toolbar buttons . Each group of style properties can be expanded to access style properties or sub-
groups of style properties (see screenshot below).

Entering style values
Style property values (style values for short) can be entered in the following ways, all of which are show in the
screenshot below:

· Entered directly in the Value column. To do this, select a property, double-click in its Value column,
enter the value using the keyboard, and press Enter or click anywhere in the GUI.

· By selecting a value from the dropdown list of the combo box for that property. Click the down arrow of
the combo box to drop down the list of style-value options. In the screenshot below, the options for the
(background-)repeat property are displayed. Select the required value from the dropdown list.

· By using the icon on the right-hand side of the Value column for that style property. Two types of icon
are available, and these are available only for properties to which they are relevant: (i) a color palette for
selecting colors (in the screenshot below, see the (background-)color property), and (ii) a dialog for
browsing for files (in the screenshot below, see the (background-)image property).

54 54 54 54

54 54

© 2017-2023 Altova GmbH

Working with CSS Styles 375Presentation and Output

Altova StyleVision 2024 Professional Edition

· Values for styles can also be assigned via an XPath expression .

Modifying or deleting a style value
If a style value is entered incorrectly or is invalid, it is displayed in red. To modify the value, use any of the
applicable methods described in the previous section, Entering Property Values .

To delete a style value (or, in other words, to reset a style value), click the Reset button in the toolbar of the
Styles sidebar. Alternatively, you can double-click in the Value column of the property, and delete the value
using the Delete and/or Backspace key, and then pressing Enter.

8.4.5 Style Properties Via XPath

Styles can be assigned to design components via XPath expressions. This enables style property values to be
taken from XML data or from the XPath expression itself. Also, by using the doc() function of XPath 2.0/3.0,
nodes in any accessible XML document can be addressed. Not only can style definitions be pulled from XML
data; this feature also enables style choices to be made that are conditional upon the structure or content of
the XML data. For example, using the if...else statement of XPath 2.0/3.0, two different background colors
can be selected depending on the position of an element in a sequence. Thus, when these elements are
presented as rows in a table, the odd-numbered rows can be presented with one background color while the
even-numbered rows are presented with another (see below for example). Also, depending on the content of a
node, the presentation can be varied.

Style properties for which XPath expressions are enabled
XPath expressions can be entered for the following style properties:

· All properties available in the Styles sidebar

375

374

376 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· The Common, Event, and HTML groups of properties in the Properties sidebar

Static mode and dynamic (XPath) mode for property values
For those properties where XPath expressions are enabled , two mode are available:

· Static mode, where the value of the property is entered directly in the Value column of the sidebar. For
example, for the background-color of a design component, the value red can be entered directly in the
sidebar.

· Dynamic, or XPath mode, where an XPath expression is entered. The expression is evaluated at
runtime, and the result is entered as the value of the property. For example, for the background color of
a design component, the following XPath expression can be entered: /root/colors/color1. At
runtime, the content of the node /root/colors/color1 will be retrieved and entered as the value of the
background-color property.

Switching between static and dynamic (XPath) modes
For each property for which XPath expressions are enabled, static mode is selected by default. To switch a
property to dynamic (XPath) mode, select that property and click the XPath icon in the toolbar of the sidebar
(screenshot below).

 If a static value was present for that property, it is now cleared and the mode is switched to dynamic. The Edit
XPath Expression dialog appears. It is in this dialog that you enter the XPath expression for the property.
Click OK when finished.

After you enter an XPath expression for the property, an Edit XPath expression button appears in the Value
column for that property (screenshot above). Click this button to subsequently edit the XPath expression. If you
wish to switch back to static mode, click the XPath icon in the toolbar. This will clear the XPath expression and
switch the property to static mode.

375

685

© 2017-2023 Altova GmbH

Working with CSS Styles 377Presentation and Output

Altova StyleVision 2024 Professional Edition

Note: There are two important points to note. First, only one mode (static or dynamic), and the
value/expression for that mode, is active at any time. Any value/expression that previously existed for
the other mode is cleared; so switching to the other mode will present that mode with an empty entry
field. (In order to go back to a previous value/expression, use the Undo command .) Second, if you
reselect a property after further editing the SPS, then that property will be opened in the mode it was in
previously.

Creating and editing the XPath definition
The XPath definition is created and edited in the Edit XPath Expression dialog . This dialog is accessed in
two ways:

· Each time you switch to the dynamic mode of a property from static mode (by clicking the XPath icon
in the toolbar of the sidebar), the Edit XPath Expression dialog appears. You can now create the
XPath expression. (Note that clicking the toolbar icon when already in dynamic mode switches the
mode to static mode; it does not pop up the Edit XPath Expression dialog.)

· The Edit XPath Expression dialog also pops up when you click the Edit XPath Expression button
in the Value field of a property that already has an XPath expression defined for it. The dialog will
contain the already defined XPath expression for that property, which you can now edit.

After you enter or edit the XPath expression in the entry field, click OK to finish.

Values returned by XPath expressions
The most important benefits of using XPath expressions to set a property value are that: (i) the property value
can be taken from an XML file (instead of being directly entered); and/or (ii) an XPath expression can test some
condition relating to the content or structure of the XML document being processed, and accordingly select a
value. XPath expressions return values in the following two categories:

· XML node content
The XPath expression can address nodes in: (i) the XML document being processed by the SPS, or (ii)
any accessible XML document. For example the expression Format/@color would access the color
attribute of the Format child of the context node. The value of the color attribute will be set as the
value of the property for which the XPath expression was defined. A node in some other XML document
can be accessed using the doc() function of XPath 2.0. For example, the expression
doc('Styles.xml')//colors/color-3 would retrieve the value of the element color-3 in the XML
document Styles.xml and set this value as the value of the property for which the XPath expression
was defined.

· XPath expression
The value of the property can come from the XPath expression itself, not from the XML document. For
example, the background color of an element that is being output as a row can be made to alternate
depending on whether the position of the row is odd-numbered or even-numbered. This could be
achieved using the XPath 2.0/3.0 expression: if (position() mod 2 = 0) then 'red' else
'green'. Note that the return value of this expression is either the string red or the string green, and it
will be set as the value of the property for which the XPath expression was defined. In the example just
cited, the property values were entered as string literals. Alternatively, they could come from an XML
document, for example: if (position() mod 2 = 0) then doc('Styles.xml')//colors/color-1
else doc('Styles.xml')//colors/color-2. Conversely, the XPath expression could be a
straightforward string, for example: 'green'. However, this is the same as entering the static value
green for the property.

745

685

685

685

378 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.4.6 Composite Styles

A Composite Style is a group of CSS text-styling properties that have been associated with an attribute of an
XML instance document node. Additionally, any group of CSS text-styling properties stored in the stylesheet is
also considered to be a Composite Style. Composite Styles can then be specified on the following design
components:

· Auto-Calculations
· The (contents) placeholder
· Paragraph (block) design elements
· Table cells

Advantages of Composite Styles
Composite Styles offer the following advantages:

· Styling properties are in the XML data and can therefore be edited by the user. In Authentic View, the
RichEdit feature enables a toolbar-based, graphical editing of Composite Styles. See the section,
Composite Styles in Authentic , for more information about setting up RichEdit for Composite
Styles.

· The styling properties of the design components listed above can be a combination of properties stored
in the XML data and properties assigned in the SPS.

· In the SPS design phase, the SPS designer can quickly switch between the multiple Composite
Styles associated with an element.

Entering the Composite Style in the XML attribute
A Composite Style (composed of multiple styling properties) is entered as the attribute-value of an element in
the source XML document. For example, the desc-style attribute in the XML source document listing below
contains a default Composite Style:

<Desc desc-style="font-family:Verdana; font-size:12pt; color:blue">

You can also set more than one Composite Style on an element. In this case, each Composite Style must be
entered in a separate attribute:

<Desc styleBlue="font-family:Verdana; font-size:12pt; color:blue"
 styleRed ="font-family:Verdana; font-size:12pt; color:red">

When multiple Composite Styles are available on an element, you can switch among Composite Styles when
setting a value for the Composite Style property of a design component (see below).

Note: The attributes that will be used to access the Composite Styles must be defined in the source schema
in order for the XML document to be valid.

Supported CSS text-styling properties
The following CSS styles can be used in Composite Styles:

font-family font-size font-weight font-style

270

125

127

143

381

© 2017-2023 Altova GmbH

Working with CSS Styles 379Presentation and Output

Altova StyleVision 2024 Professional Edition

color background-color text-align text-decoration

Setting an attribute as the Composite Style value
If you set the Composite Style of a design component to be an attribute, then the Authentic View user can edit
this Composite Style. The Authentic View user can place the cursor anywhere within the text output of the
design component and use the RichEdit toolbar of Authentic View to edit the Composite Style of that design
component.

To set an attribute as the Composite Style of a design component, do the following:

1. In Design View, select the design component to which you wish to assign an attribute as Composite
Style. In the screenshot below, the (contents) placeholder of the Desc element has been selected.

2. In the combo box of the Composite Style property of the Content component (see Properties sidebar
at bottom right of screenshot above), the attributes of the context element are displayed. Select the
attribute you wish to set as the Composite Style of the design component. (Note that there is also an
empty entry in the combo box should you wish to apply no Composite Style. In this case, the RichEdit
feature of Authentic View will not be enabled in the output of this design component.)

In Authentic View the user can now use the RichEdit toolbar to modify the Composite Style of this design
component.

Setting an XPath expression as the Composite Style value
You can also enter an XPath expression as the value of the Composite Style property. In this case, however,
since the Composite Style is stored in the SPS (not in the XML source document), the Authentic View will not
be able to edit the Composite Style.

380 Presentation and Output Working with CSS Styles

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To set an XPath expression as the value of the Composite Style property, click the XPath icon in the toolbar of
the Properties sidebar, and then enter the XPath expression in the XPath dialog that pops up. The XPath
expression will be evaluated as an attribute value template; the returned value will be the value of an HTML
style attribute (and its equivalent in non-HTML output formats).

For example, consider the following XPath expression created on the (contents) placeholder of the
n1:Person element.

if (number(n1:Shares) gt 1000) then 'color:red' else 'color:green'

What this expression will do is this: If the n1:Person element has a child element n1:Shares with a number
value greater than 1000, then the contents of the n1:Person element is output in red; otherwise, all n1:Person
elements are output in green. The value returned by the XPath expression is passed to the output document as
the value of an HTML style attribute (or its equivalent in non-HTML output formats).

In the XSLT stylesheet generated from the SPS, this XPath expression will be evaluated as an attribute value
template, something like this:

<span style="{if (number(n1:Shares) gt 1000) then 'color:red' else

'color:green'}">

In the HTML output, one of the following lines would be generated depending on how the condition is evaluated:

or

Note: Attribute value templates are XSLT constructs that allow the value of an attribute to be read as an
XPath expression. They are delimited by curly braces and allow the value of the attribute to be
assigned dynamically.

© 2017-2023 Altova GmbH

Text-Styling Flexibility in Authentic 381Presentation and Output

Altova StyleVision 2024 Professional Edition

8.5 Text-Styling Flexibility in Authentic

An SPS can be set up so that Authentic View users can also style text. They do this by selecting a text
fragment in Authentic View and setting styling properties for the selected text. These styling properties can be
pre-defined by you (the SPS designer) or they can be defined by the Authentic View user. In either case, the
Authentic View user can be given the option of styling text in Authentic View.

The following text-styling options are available:

· Composite Styles : A set of CSS style properties (the Composite Style) is defined on the attribute of
an element in the source XML document. By setting this attribute as the Composite Style property-
value of a design component, the Composite Style becomes editable with the RichEdit feature of
Authentic View. See the section Composite Styles for a description of how this mechanism works.

· RichEdit : If an element is created in the SPS design as a RichEdit component, then the Authentic
View user can select text fragments within that element and style it using the RichEdit styling
properties of Authentic View. RichEdit enables the Authentic View user to specify the font, font-weight,
font-style, font-decoration, font-size, color, background color and alignment of text. See the section
RichEdit for details.

· Text State Icons : You (the SPS designer) can create an Authentic View toolbar button and
associate this button with an element name. We call such a toolbar button a Text State Icon. When
the Authentic View user selects a text fragment in Authentic View and clicks a Text State Icon, the
element associated with the Text State Icon is created around the highlighted text (a Text State Icon is
enabled only if the schema allows it around the selected text). Consequently, the text formatting
defined for this element (in a global template for this element) will be applied to the selected text
fragment.

You can use a combination of all three text-styling options in your SPS.

You should note the following points:

· All three text-styling options depend on and require styling-related elements and/or attributes to be
present in the XML document. Consequently, the schema on which the SPS is based must allow the
required elements and/or attributes at the hierarchical levels on which they are required.

· Text styling applied by the Authentic View user will appear in both Authentic View as well as the
output formats.

Note: The styling options listed above are derived from styling properties stored in the XML file and are
additional to styling properties assigned in the SPS.

8.5.1 Composite Styles

The Composite Styles feature gives Authentic View users the ability to style the entire output of the following
design components:

· Auto-Calculations
· The (contents) placeholder
· Paragraph (block) design elements
· Table cells

381

383

381

383

383

387

270

125

127

143

382 Presentation and Output Text-Styling Flexibility in Authentic

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The mechanism for doing this is explained below.

Note: For a further more general description of Composite Styles, see the section Composite Styles . The
description in this section describes how Composite Styles can be set up so that the Authentic View
user can edit them.

Entering the Composite Style in the XML attribute
A default Composite Style (composed of multiple styling properties) is entered as the attribute-value of an
element in the source XML document. For example, the desc-style attribute in the XML source document
listing below contains a default Composite Style:

<Desc desc-style="font-family:Verdana; font-size:12pt; color:blue">

You, the SPS designer, can now allow the Authentic View user to edit these styling properties. This gives the
Authentic View user control over the styling of the design component's text output. You enable user-editing of a
Composite Style by setting the Composite Style of the design component to be the attribute containing the
default Composite Style (see below).

Note: The attributes that will be used to access the Composite Styles must be defined in the source schema
in order for the XML document to be valid.

Supported CSS text-styling properties
The following CSS styles can be used in Composite Styles:

font-family font-size font-weight font-style

color background-color text-align text-decoration

Setting the attribute as the Composite Style of a design component
If you set the Composite Style of a design component to be an attribute, then the Authentic View user can edit
this Composite Style. The Authentic View user can place the cursor anywhere within the text output of the
design component and use the RichEdit toolbar of Authentic View to edit the Composite Style of that design
component.

To set an attribute as the Composite Style of a design component, do the following:

1. In Design View, select the design component to which you wish to assign an attribute as Composite
Style. In the screenshot below, the (contents) placeholder of the Desc element has been selected.

378

© 2017-2023 Altova GmbH

Text-Styling Flexibility in Authentic 383Presentation and Output

Altova StyleVision 2024 Professional Edition

2. In the combo box of the Composite Style property of the Content component (see Properties sidebar
at bottom right of screenshot above), the attributes of the context element are displayed. Select the
attribute you wish to set as the Composite Style of the design component. (Note that there is also an
empty entry in the combo box should you wish to apply no Composite Style. In this case, the RichEdit
feature of Authentic View will not be enabled in the output of this design component.)

In Authentic View the user can now use the RichEdit toolbar to modify the Composite Style of this design
component.

8.5.2 RichEdit

If an element is created in the SPS design as a RichEdit component, then the Authentic View user can mark
text fragments within that element and style it using the RichEdit styling properties of Authentic View, as well
as set paragraph-level formatting, such as text aliognment.

RichEdit enables the Authentic View user to specify the following:

· Character styles: font, font-weight, font-style, font-decoration, font-size, color, background color.
· Paragraph styles: text alignment.

This description of the RichEdit feature given below is organized as follows:

· The RichEdit mechanism
· Creating an element in the SPS design as a RichEdit component
· Using RichEdit in Authentic View

384

384

386

384 Presentation and Output Text-Styling Flexibility in Authentic

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The RichEdit mechanism
When an Authentic View user selects a text fragment in Authentic View and applies RichEdit styling to it, the
RichEdit styling element and the attribute that holds the styling information is created around the selected text
fragment. The RichEdit style properties that the Authentic View user selects are inserted as the value of this
styling attribute.

So, if there is a text fragment in the source XML document like this:

<p> ... Altova StyleVision 2012 features a unique graphical design interface ...

</p>

and a part of this text fragment is given a RichEdit style property of bold, then the text fragment in the source
XML will look like this:

<p> ... Altova StyleVision 2012 features a

unique graphical design interface ... </p>

The RichEdit styling element in the example above is span and its attribute that is to contain the RichEdit

styling properties is style. They could be called anything. For example, instead of calling the styling element

span, you could call it Style, and instead of calling the styling attribute style, you could call it css. In this
case, the text fragment would then be marked up like this:

<p> ... <Style css="font-weight: bold">Altova StyleVision 2012</Style> features a

unique graphical design interface ... </p>

The important thing is that whatever name you choose for the styling element and attribute, this styling
element and attribute must be defined in the schema and must be allowed within every element
containing the text that is to be styled.

When the text is processed with an XSLT stylesheet, the style properties are passed to the output as markup
appropriate to the output format.

RichEdit also enables Authentic View users to apply block-level formatting (such as text-alignment). You can
select the element and attribute that will contain the block-level formatting, similarly to how this is done for text
fragments as described above. Certain block-level formatting properties, such as block-level text alignment, will
then become available to the Authentic View user when the user edits an element that contains the element
that has been defined for paragraph styles in the RichEdit Configuration dialog. As with character styles, the
schema must be defined to allow the RichEdit paragraph-styling element inside any element in which you wish
to make this paragraph styling available.

Creating an element as a RichEdit component
To create an element as a RichEdit component, do the following:

1. Drag the element from the Schema Tree and drop it at the desired location in the design.
2. From the menu that pops up, select Create RichEdit. The RichEdit Configuration dialog (screenshot

below) pops up. (If a RichEdit character style has already been created for the document, you must
right-click a RichEdit component in the design and select Configure RichEdit Elements/Attributes to
pop up the RichEdit Configuration dialog.)

© 2017-2023 Altova GmbH

Text-Styling Flexibility in Authentic 385Presentation and Output

Altova StyleVision 2024 Professional Edition

3. In the RichEdit Configuration dialog, and in the Character Styles pane, enter the name of the styling
element and its attribute that is to contain the RichEdit styling properties for text fragments. You can
also select the required element and attribute from the schema tree. Click the respective Select
buttons to open the schema tree.

4. To enable block-level formatting (text alignment), do the following. In the Paragraph Styles pane, select
the element and attribute that will contain the block-level formatting. In the Create Paragraph Type
combo box, you can select the predefined format of the paragraph; this predefined format will be
passed to the output.

5. When done, click OK. The element is created as a RichEdit component (see screenshot below), and
an uneditable RichEdit global template for character styles that has the name of the styling element
(Style in the screenshot below) is created in the design. If paragraph styles have also been specified,
then an uneditable RichEdit global template for paragraph styles is also created.

386 Presentation and Output Text-Styling Flexibility in Authentic

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note the following:

· The uneditable RichEdit global template is created when the first RichEdit component is created in the
SPS. No additional RichEdit global templates are created subsequently.

· When elements are created as RichEdit components subsequent to the creation of the first RichEdit
component, the RichEdit Configuration dialog does not appear. All RichEdit components are indicated
by having within them a RichEdit text box (see the overview element in the screenshot above). This
RichEdit text box appears instead of the usual contents placeholder.

· The RichEdit global template can be reconfigured in that the styling element and attribute for character
styles and paragraph styles can be changed. Do this by right-clicking a RichEdit component, selecting
Configure RichEdit Element/Attribute, and entering the desired element and attribute names. The
new element names (for character styles and paragraph styles) will appear in the title bar of the
RichEdit global templates.

All schema elements that have been created as RichEdit components can now be styled with RichEdit
properties in Authentic View.

Using RichEdit in Authentic View
In Authentic View, when the cursor is placed inside an element that has been created as a RichEdit
component, the buttons and controls in the RichEdit toolbar (screenshot below) become enabled. Otherwise
they are grayed out.

To apply character styles, select the text to be styled. To apply paragraph styles, place the cursor within the
paragraph to be styled. Then specify the required styling via the buttons and controls of the RichEdit toolbar. If
the selected text is not already enclosed within the tags of the styling element, it will be enclosed now.

© 2017-2023 Altova GmbH

Text-Styling Flexibility in Authentic 387Presentation and Output

Altova StyleVision 2024 Professional Edition

8.5.3 Text State Icons

A Text State Icon is an Authentic View toolbar button that is associated with an element name. In Authentic
View, when a Text State Icon is clicked, the selected text fragment is enclosed by the element associated with
the Text State Icon. The text formatting defined for this element (in the element's global template) will therefore
be applied to the selected text fragment. In this way, the Authentic View user can apply text styles using Text
State Icons.

As the SPS designer, you will create the Text State Icons and define the styles of the elements associated
with the Text State Icons.

Creating a Text State Icon
To create a Text State Icon for the Authentic toolbar, first select the command Authentic | Custom Toolbar
Buttons, then click the Add button at the top right of the Authentic Custom Buttons dialog (see screenshot
below) and select Add Text State Icon.

Text State Icons take the following parameters:

· Element Name: This is the element that will enclose the selected text fragment when the Text State
Icon is clicked in Authentic View.

· Bitmap: The location of an image for the Text State Icon. The file path is relative to the SPS.
· Text: If no bitmap is available, the text entered in this field will be used as the button text of the Text

State Icon.
· Tooltip: This is an optional guide for the Authentic View user on mouseover.

388 Presentation and Output Text-Styling Flexibility in Authentic

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In the example above, we have used familiar bitmaps as the Text State Icons to mark up text with the bold and
italic elements. If you wish, you could use any bitmap or button text that you think might be easier for the
Authentic View user to relate to. For example, important text fragments could be associated with the bold
element, while comments could be associated with the italic element. The Text State Icons could then be
created as shown in the screenshot below.

In the above screenshot, note that the Comment Text State Icon is associated with the italic element. So,
when text is selected in Authentic View and then the Comment Text State Icon is clicked, that text fragment
will be enclosed by the italic element and will be processed in the way defined for the italic element
(described in the next section).

Defining a style rule for the element associated with a Text State Icon
The style properties of an element associated with a Text State Icon can be defined in a global template (see
screenshot below).

© 2017-2023 Altova GmbH

Text-Styling Flexibility in Authentic 389Presentation and Output

Altova StyleVision 2024 Professional Edition

This screenshot shows the global templates of two elements (bold and italic), each of which has been
associated with a Text State Icon. The styling has been done by selecting the (contents) component and
defining the desired font style in the Styles sidebar.

Consequently, whenever the Authentic View user creates these elements around text fragments, the respective
global template (with its text styles) is applied to that text fragment.

390 Presentation and Output HTML Document Properties

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.6 HTML Document Properties

Properties of the output HTML document can be specified either in the Document Properties tab in the
Properties dialog of the Initial Document Section or in Properties View when the Main Template in the
Design Tree window is selected.

Via properties of the Initial Document Section
Click the Edit Properties hyperlink in the Initial Document Section title bar and then select the Document
Properties tab.

Here you can set various properties of the HTML output document that will be generated. Note the following
points:

· These are HTML properties that will be applied at the document level, for example, the class and id

properties of the Common properties section.
· The Document Properties and HTML sections contain generic properties that relate to the HTML

document as a whole, such as link colors, and information that goes into the meta tags of the HTML

document.
· The metadata property of the HTML section enables you to enter any text that you want to go into the

HEAD element of the HTML document (see screenshots above and below). The text you enter could, for

example, be a script or meta element, or several such elements. You can enter these HTML

elements directly as text (without quotes) or, as in the screenshots, as an XPath expression. In the
screenshot example, the XPath expression sets a meta tag for the revision date of a document.

395

48

395

© 2017-2023 Altova GmbH

HTML Document Properties 391Presentation and Output

Altova StyleVision 2024 Professional Edition

Via the properties of the Main Template
In the Design Tree sidebar, select the Main Template. In the Properties sidebar (screenshot below), you can
now set the properties of the output HTML document.

The properties in this dialog are exactly the same as those in the Document Properties tab described above.

48

392 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.7 Designing Print Output

Properties for paged media output (PDF, RTF, and Word 2007+ in the Enterprise Edition; and RTF in the
Professional Edition) can be defined in the Page Layout group of properties in the Properties sidebar . The
following can be designed for print media:

· The document can be divided into sections, each of which can have separate page definitions. The
properties that can be defined are listed below.

· Page dimensions (height and width) and and a page orientation (portrait or landscape) can be defined.
· The margins for the body of the page and the available vertical space for headers and footers can be

defined. Also, multiple pages can be defined to be facing (that is, with mirror margins) or to have the
same let and right margins repeating for each page.

· Headers and footers can be defined for each section.
· Numbering styles and numbering starts can be defined for each section separately, or page numbering

can run on from one section to the next.
· For each section, the number and width of columns on a page can be specified.

Note: Since page layouts cannot be applied to plain text output, the features for designing print output that
are described in this section will not be applied to Text output.

Properties sidebar
Page properties can be defined individually for each section of the document in the Page Layout group of
properties in the Properties sidebar (see screenshot below). These properties for a given section are accessed
via the Edit Properties link of the Initial Section and Document Section items in the design (screenshot below).

Clicking the Edit Properties link pops up the Properties window, with the Page Layout properties active within it
(screenshot below).

55

© 2017-2023 Altova GmbH

Designing Print Output 393Presentation and Output

Altova StyleVision 2024 Professional Edition

How to set the values of these properties is discussed in the section, Page Properties .

8.7.1 Document Sections

An SPS can be designed to have multiple document sections, with each document section having its own page
definition settings. For example, a report which contains tables of data and text that summarizes this data can
be divided into two document sections: one document section can contain the descriptive text and have portrait
orientation, while the other document section with the tables of data can have landscape orientation. For each
document section, the whole range of page properties (see screenshot below) can be defined. Additionally,
each document section can also have different headers and footers .

398

398

403

394 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

When an SPS is created, it is created with one document section, called the Initial Document Section. This
document section is the first document section of the document (whether a single-sectioned or multiple-
sectioned document) and cannot be deleted. Initial Document Section properties include properties and styles
for the entire document; these are described in the subsection, Initial Document Section .

Inserting document sections
To add a new document section, do the following:

1. Place the cursor at the location in the document where you want the new document section to start.
2. In the context menu (right-click), select Insert Page / Column / Document Section | New

Document Section. Alternatively, select this command from the Insert menu. A new document
section will be inserted in the design and is indicated by a document section title bar (see screenshot
below; the Hide/Show Headers/Footers hyperlink shown in the screenshot below appears after a
Header or Footer has been added to a document section). In the output, a new document section will
start on a new page.

395

© 2017-2023 Altova GmbH

Designing Print Output 395Presentation and Output

Altova StyleVision 2024 Professional Edition

3. The new document section will have the page layout properties that were assigned to the Initial
Document Section at the time the new document section was created. These page layout
properties for the document section can be edited via the Edit Properties hyperlink of the Document
Section. If required, separate headers and footers can be added for the document section (via the
Add Header/Footer hyperlink). How to define page layout properties and headers and footers are
described in the respective subsections of this section. When a header or footer is added, it is shown
in the design within that document section. The display of headers and footers in the design can be
toggled on and off with the Hide/Show Headers/Footers hyperlink; this hyperlink appears after a Header
or Footer has been added to a document section.

4. If you wish to create a new page for the section immediately after the Initial Document Section, go to
the page layout definitions of the Initial Document Section and give the Render a Section Break
property a value of Yes. This starts the first non Initial Document Section on a new page. Note the
converse effect also, that is, when the property has a value of No. In this case, the first non Initial
Document Section starts directly after the Initial Document Section, without rendering a page break.
This is useful if the Initial Document Setting is blank—for example, if it contains only design processing
templates that produce no output. A property value of No ensures that the first page of the print output
document will not be blank (which would have been the case if a blank page with a break after it were
to be rendered for the Initial Document Section).

Notes
Note the following points:

· In the RTF output generated by XSLT 1.0 SPSs, only document sections that are immediate children of
the Main Template are allowed. This restriction does not apply to RTF output generated by XSLT 2.0 or
XSLT 3.0 SPSs.

· In the output document, every document section starts on a new page.
· Page margin properties are also applied to the HTML page.
· When multiple document sections are present in a design, values of the mirror margins property and

the associated margin-left and margin-right properties are taken from the initial document section. The
values of these properties in subsequent document sections are ignored.

Deleting a document section
To delete a document section, in the title bar of the document section, right-click the words Document Section,
and in the menu that pops up select the command Edit | Delete. The document section will be deleted, and
this will be indicated by the deletion of the title bar. By deleting the document section you will be deleting the
page layout properties and headers and footers created for the document section. The content of the document
section, however, will not be deleted.

8.7.1.1 Initial Document Section

Whether the document has one document section or more, properties for the document as a whole are defined
in those of the Initial Document Section (the first document section of the document, screenshot of title bar
below). Cover pages are also created in Initial Document Sections.

398

403

398 403

397

396 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To edit the properties of the document, click the Edit Properties hyperlink in the Initial Document Section title
bar. This pops up the Properties dialog of the Initial Document Section (screenshot below). This dialog has
three tabs, for: (i) basic page layout properties, (ii) (HTML) document properties, and (iii) document styles.

Page layout properties
Page layout properties for the initial document section apply to the first document section of the document; in
single-section documents, they apply to the entire document. When a new document section is created, it is
created with the page layout properties of the Initial Document Section at that time. The properties of the new
document section can be edited subsequently. If a property of the Initial Document Section is changed, this
change will not be passed to other document sections that already exist. New document sections will be

© 2017-2023 Altova GmbH

Designing Print Output 397Presentation and Output

Altova StyleVision 2024 Professional Edition

created with the latest values of the Initial Document Section. The various page layout properties are described
in the section Page Layout Properties . The Watermarks button brings up the Watermarks dialog in which
you can define a watermark for the section's pages. A different watermark can be defined for each section.

Document properties
Properties of the output HTML document are specified in the Document Properties tab .

Document styles
The styles that are defined in the Document Styles tab apply to the entire document. If a document has more
than one document section, design elements within each document section inherit style properties from the
Initial Document Section. To over-ride inherited styles on a given design element, specify the required style
values on the individual design elements. To do this click the design element, and, in the Styles sidebar,
specify the desired styles.

Cover pages
If a cover page is required, it should be designed at the beginning of the Initial Document Section. To ensure
that the rest of the document starts on a new page, insert a page break (Insert | Insert Page / Column /
Document Section | New Page) below the cover page template. If the page layout properties of the cover
page are to be different than those of the following pages, then the entire Initial Document Section should be
used for the cover page. The following pages should then start with a new document section.

An example is shown below.

Click the Preview RTF tab to see the result in the preview window.

398

411

390

398 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8.7.1.2 Page Layout Properties

Page properties are assigned individually for each document section of a document design, in the Page Layout
group of properties of that document section. If a design has only one document section, then the page
properties of that document section are the page properties of the entire document.

Note: Due to a limitation of FOP, Page Layout properties are available only for the Initial Document Section
when FOP is used to generate output.

Accessing the page properties of a document section
To access the page properties of a document section, click the Edit Properties link of the Initial Document
Section or Document Section item in the design (see screenshot below).

This pops up the Properties window, with the Page Layout properties active within it (screenshot below).

393

© 2017-2023 Altova GmbH

Designing Print Output 399Presentation and Output

Altova StyleVision 2024 Professional Edition

Alternatively, clicking the Document Section title bar makes the Page Layout group of properties of that
document section active in the Properties window.

Page size
Three properties determine the size of pages of a document section: (i) page height, (ii) page width, and (iii)
size. Page size can be set in one of two ways:

· You can select a predefined page size from the combo box in the Paper Format property field. In this
case, values for the Page height and Page width fields are automatically filled in depending on what
value has been selected in the combo box.

· You can specify your own values for the Page height and Page width properties. In this case, the Paper
Format field will contain the value custom size.

Valid length dimensions (for the Page height and Page width properties) are inches (in), centimeters (cm),

millimeters (mm), picas (pc), points (pt), pixels (px) , and ems (em). Note that (i) a unit is mandatory; (ii)
409

400 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

there must be no space between the number and the unit; (iii) there is no default unit. Entering an invalid unit or
no unit causes the property value to be displayed in red.

Page margins
The top, bottom, left and right margins of a page can be defined with the four margin properties, Margin body
from page top, Margin body from page bottom, Margin body from page left, and Margin body from page right,
respectively. To specify a margin, enter the required number in the relevant margin property field followed by
any of the valid length units: inches (in), centimeters (cm), millimeters (mm), picas (pc), points (pt), pixels

(px) , and ems (em). Note that (i) a unit is mandatory; (ii) there must not be a space between the number

and the unit; (iii) there is no default unit. Entering an invalid unit or no unit causes the property value to be
displayed in red.

The body area is defined by the page margins you set (see screenshot below).

Header and footer margins
The Margin header from page top and Margin footer from page bottom properties specify the distance from the
top of the page to the top of the header and from the bottom of the page to the bottom of the footer, respectively
(see screenshot below).

The vertical extents of headers and footers are determined by the actual content of the headers and footers.
You should ensure that the vertical extent of a header plus the header margin does not exceed the Margin body
from page top. Otherwise, the header will be too large to be contained in the space defined for it. Similarly,
ensure that the sum of the vertical extent of the footer and footer margin does not exceed the value of the
Margin body from page bottom.

409

© 2017-2023 Altova GmbH

Designing Print Output 401Presentation and Output

Altova StyleVision 2024 Professional Edition

If the actual header or footer is too large for the space assigned for it, then the value of the Oversized
Headers/Footers property comes into play and can modify the treatment of headers and footers in RTF output.
If the Oversized Headers/Footers property has been set to Overlap Body Text, then the oversized header or
footer will superimpose, or be superimposed by, body text. If the option Reduce Body Height has been set,
then the vertical extent of the body text is reduced so as to accommodate the oversized header or footer.

The Multiple Pages setting
The Multiple Pages setting has two options:

· If you set Multiple Pages to Normal, then all pages in the output will have the same value for all left
margins and the same value for all right margins (see screenshot below).

· If, on the other hand, you set Multiple Pages to Mirror Margins, then the document pages are treated
as facing pages (see screenshot below). This means that for even-numbered pages (left-hand-side
pages), the left margin (Margin body left property) is the outer margin while the right margin (Margin
body right property) is the inner margin. For odd-numbered pages (right-hand-side pages), the left
margin (Margin body left property) is the inner margin while the right margin (Margin body right property)
is the outer margin.

The settings made for the Margin body left and Margin body right properties are applied by StyleVision
to the odd-numbered pages; these margins will be reversed for even-numbered pages; the inner-margin
value of odd-numbered pages becomes the outer-margin value of the even-numbered pages.

Note: If an SPS design has multiple document sections, then the value of the mirror margins setting is taken
from the initial document section. The left and right margin values are also taken from the initial
document section. The values of these properties in subsequent document sections will be ignored.

Page orientation
Page orientation can be set to portrait or landscape.

Columns
Columns and their widths are specified with two properties: Column count and Column gap, which specify,
respectively, the number of columns and the space between two columns. The width of a column is thus the
width of the page body minus the sum of the column gaps, divided by the number of columns.

Text will fill the columns on a page one by one. Only after all the columns have been filled will a new page be
started. A column break can be forced by inserting a new column at the desired point in the design. To do this,

402 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

right-click at the location where the column break is required and select the context menu command Insert
Page / Column/ Document Section | New Column.

Page numbering
There are two relevant properties: Numbering format and Numbering starts at. These work as follows:

· The required page number format is set by selecting one of the pre-defined options from the drop-down
menu for Numbering format. (The Numbering format selection also applies to the page total , if this
is inserted.)

· The page numbering for a document section can be set to start with any positive integer. This integer is
specified in the Numbering starts at property. If the numbering is to continue from the previous
document section, then this field should be left blank or set to auto.

Note: Page numbers can be inserted in a document by inserting a page number placeholder (with the
command Insert Page / Column / Document Section | Page Number). The total number of pages
in the output document is inserted with the command Insert Page / Column / Document Section |
Page Total.

Note: MS Word does not always update page numbers automatically. To manually update page numbers in
MS Word, press Ctrl+A and F9.

Page numbering in the RTF output
In order to display page numbering in the RTF output in MS Word, you must select, in MS Word, the entire
contents of the document (with Edit | Select All or Ctrl+A), and then press F9. This will cause the page
numbering to be displayed—if you have inserted page numbering.

Page totals
To output the total number of pages at various locations in your document, use the page total feature.

Page starts for document sections
For each document section that is not the Initial Document Section, the Section Starts On property specifies
whether the document section should start on the next page (irrespective of whether it is odd-numbered or
even-numbered), or whether it should specifically start on an odd-numbered or even-numbered page. For
example, if the previous document section ends on an odd-numbered page and the current document section is
specified to start on an odd-numbered page, then the even.numbered page that occurs directly after the end of
the previous document section will be left blank. Note that it is the underlying document page-numbering that
determines whether a page is odd-numbered or even-numbered. The page numbering that the user specifies is
irrelevant for determining the document section start-page.

Page break after the Initial Document Section
If you wish to start the section immediately after the Initial Document Section on a new page, give the Render a
Section Break property (of the Initial Document Section's page layout properties) a value of Yes. This starts the
second document section (that is the first section after the Initial Document Section) on a new page. Note that
this property is available only for the Initial Document Section, not for any other section.

Note the converse effect also, that is, when the property has a value of No. In this case, the first non-Initial-
Document-Section starts directly after the Initial Document Section—without rendering a page break. This is
useful if the Initial Document Setting is blank—for example, if it contains a set of templates that produces no

785

785

© 2017-2023 Altova GmbH

Designing Print Output 403Presentation and Output

Altova StyleVision 2024 Professional Edition

output. A property value of No (for Render a Section Break) ensures that the first page of the print output
document will not be blank (which would have been the case if a page break were to be rendered after an Initial
Document Section that produced no output).

8.7.1.3 Headers and Footers: Part 1

Headers and footers can be added for each document section of the document, including the Initial
Document Section.

Adding a header or footer for a document section
To add a header or footer for a document section, click the Add Header/Footer link of the Initial Document
Section or the Document Section title bar (see screenshot below).

From the menu that pops up (screenshot below), select the required item. A header or footer can be added
separately for odd or even pages, or a single header or footer can be added for all pages. Additionally, a
separate header/footer template can be created for the first page (Add Header First, Add Footer First) and/or
for the last page of a document section (Add Header Last, Add Footer Last, PDF output only). This is useful
if the first and/or last page of a document section must have a different header/footer: for example, when the
first page is a cover page (an empty header/footer template could be created in this case).

On clicking the required header or footer, a template for the header or footer is created within that document
section in Design View . The Design View display of header/s and footer/s in a document section can be
toggled on and off by clicking the Hide Headers/Footers link in the Initial Document Section or Document
Section item (see screenshot above).

Note: Headers and footers for the last page are supported for PDF output only.

393

33

393

404 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Designing the header/footer in Design View
The header/footer template is designed just like any other template. Components can be dragged from the
schema tree or entered statically, and then styled. An example is shown below. When a header is added, the
template will look something like this:

Change the header as required. Note that you can use both static and dynamic content, and even images.

Click the Preview RTF tab to see the results in the Preview windows. The illustration below shows Page 2 of the
Organization Chart document in the PDF Preview window, with the header as defined above. To display page
numbering in the RTF output, you must select Edit | Select All (or Ctrl+A) in MS Word, and then press F9.
Also see displaying page-numbering in RTF output .

The following points should be noted:

402

© 2017-2023 Altova GmbH

Designing Print Output 405Presentation and Output

Altova StyleVision 2024 Professional Edition

· The vertical extent of the header and footer should not exceed the respective margin body (top or
bottom) less the extent of the margin header or margin footer, respectively (see Page Layout
Properties for details). The vertical extent of the header or footer, consequently, is determined by
the top/bottom body margins and margin header/footer.

· You can define a header/footer either (i) for all pages in the document section, or for (ii) for even and
odd pages in the document section separately. Additionally, separate first page and last page
headers/footers can be inserted. (See Headers and Footers: Part 2 for more information.)

· Page numbering in a document section starts with the number you specify in the Page Layout
Properties .

Deleting a header or footer
To delete a header or footer, right-click the header/footer title bar and, from the menu that pops up, click Edit |
Remove.

8.7.1.4 Headers and Footers: Part 2

In this section, we describe how to create the following types of headers and footers:

· Different headers/footers for odd-numbered and even-numbered pages
· Different headers/footers for different document sections
· Simulating headers/footers inside a page
· Headers/footers with subtotals

Different headers/footers for odd-numbered and even-numbered pages
For each document section, odd-numbered and even-numbered pages can be assigned different
headers/footers.

To create different headers for odd-numbered and even-numbered pages, click the Add Header/Footer link in the
title bar of the respective document section, and select Add Header Odd and Add Header Even from the
menu that pops up (screenshot below). This creates two header templates, one for odd-numbered pages, the
other for even-numbered pages. Enter the content of the two headers in the templates.

400

405

400

405

406

406

406

406 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Separate footers for odd-numbered and even-numbered pages can be created in a similar way to that described
above for headers.

Different headers/footers for different document sections
Different headers/footers can be created for each document section of the document. To do this, click the Add
Header/Footer link of the Initial Document Section or the Document Section title bar . This pops up the Add
Header/Footer menu shown in the screenshot above. Note the following points:

· Headers/footers for odd-numbered and even-numbered pages can be added separately, or a common
header/footer can be added for all pages in the document section.

· An additional first-page and/or last page header/footer can be added. These headers/footers will be
used on the first and/or last page of the document section instead of other headers/footers that might
be defined for that document section.

· Page numbering for the document section can either run on from the previous document section or
start at a designated number .

· The Page Total is the page count of the entire document not that of the current document section.

Simulating headers/footers inside a page
Headers and footers can be designed manually inside a layout container . The approach would be to design
a single page as a layout container. The header and footer are created within static tables located,
respectively, at the top and bottom of the page. If more than one page is to be designed, then multiple layout
containers can be used, each separated from the next by a page break (Insert | Page / Column /
Document Section | New Page).

Headers/footers with subtotals and running totals
When a document contains a list of numerical items that must be totalled and the list extends over multiple
pages, subtotals of each page and/or running totals might be required to appear in the headers and/or footers of
each page. The Subtotals.sps example, which is in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2024\StyleVisionExamples\Tutorial\Subtotals\, demonstrates how
running totals can be created and included in headers and footers.

The following strategy was used to design this SPS:

· Because the listing is in a table and because a table cannot be made to auto-fit a printed page, the
number of rows that must be accommodated on a page must be specified. These numbers are given in
two variables that have been defined on the top level template, that for the $XML template; they are
named RowsOnFirstPage and RowsPerPage.

· The page count is derived by dividing the total number of list items by the number of rows per page
(adjusted to take account of the different number of rows on the first page). The page count is stored in
a variable called CountOfPages (defined on the $XML template).

· A user-defined template is created for the sequence 1 to $CountOfPages, and a static table is
created within this template. Defined on this template are two variables that calculate the which row is
to be the first row ($RowFrom) and the last row ($RowTill) on each page. The rows in the table are
generated by a user-defined template, which selects the items in the XML file (file elements) on the
basis of their position with respect to the $RowFrom and $RowTill values. If the position of the file
element is an integer value that lies in the range delimited by values of the $RowFrom and $RowTill
variables of the current page, then a row will be generated for the current file element.

393

402

402

187

145

785

29

© 2017-2023 Altova GmbH

Designing Print Output 407Presentation and Output

Altova StyleVision 2024 Professional Edition

· The running totals are generated with Auto-Calculations and inserted into rows at the top and bottom of
the tables. Note that the XPath expressions to generate running totals at the top and bottom of pages
are different from each other.

· Headers and footers are created in tables, respectively, above and below the main table on the page.
The Auto-Calculations to generate the running totals are inserted in the header and footer templates.

· A page break is inserted at the end of each page.

8.7.2 Keeps and Breaks

In PDF documents (Enterprise edition only), keeps and breaks for pages and columns can be set in the XSL-
FO group of styles (Styles sidebar, screenshot below). This group of styles enables you to specify whether the
current design document block (the block within which the cursor is currently placed) should have a
page/column break placed before or after it, or whether it should be kept with adjacent blocks. Whether table
headers and footers are omitted (or repeated) at page breaks can also be set using the table-omit properties.
For more information about these properties, see the XSL-FO specification.

For the printed version of HTML pages, settings for page breaks and widows/orphans (leading/trailing lines on a
page) can be made via the relevant properties in the Paged Media group of styles (see screenshot above).

8.7.3 Footnotes

You can insert footnotes in a document by adding the Footnote component (Insert | Insert Footnote) at the
location where you want the footnote number to be. Footnotes are available in paged media output (PDF, RTF,
and Word 2007+ in the Enterprise Edition; and RTF in the Professional Edition).

Note the following points:

· The text of the footnote must be placed within the tags of the footnote component, and the footnote

408 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

text can be formatted.
· In the output, the footnote number appears at the location where the footnote was added. The footnote

text appears at the bottom of the page, together with the corresponding footnote number.
· In the output, footnote text will be formatted according to the formatting of the text within the footnote

component in the design.
· In the output, footnotes are numbered automatically through to the end of the document.
· In the case of multiple output documents, numbering is re-started for each output document.

In the screenshot below, two footnote components (Insert | Insert Footnote) have been inserted. The footnote
text has been placed within the tags of the component, and the text has been formatted.

The screenshots below show the output. The screenshot at left shows the complete page, while the
screenshots at right show closeups of the footnote numbers (top) and footnote texts (bottom).

Note: Formatting of footnote numbers is not supported.

© 2017-2023 Altova GmbH

Designing Print Output 409Presentation and Output

Altova StyleVision 2024 Professional Edition

8.7.4 Pixel Resolution

If you use pixels as a unit of length in your SPS, you should be aware that pixel-defined lengths are a function
of screen resolution. The corresponding absolute lengths in print could be very different from what you see on
screen. In this section, we do the following:

1. Discuss why pixel-defined sizes have two forms: (i) an abstract form, defined in pixels; (ii) an actual
size, obtained by resolving the abstract form in terms of a specific screen resolution.

2. Explain StyleVision functionality to deal with this issue.

From pixels to points
A few key points are essential to understanding the factors that affect the abstract and actual dimensions of
pixel-defined lengths:

· The pixel is a relative unit: its size depends on screen resolution. The higher the resolution, the smaller
the pixel. Screen resolution is given with dpi (dots per inch). A dot in the case of screens is a pixel.
So, if screen resolution is 72 dpi, then there are 72 pixels (dots) in one inch of a line of pixels. If screen
resolution is 96 dpi, then there are 96 pixels in an inch. How many pixels there are in an inch of screen
length depends on the screen resolution. The most commonly available screen resolutions today are
72 dpi, 96 dpi, and 120 dpi. The higher the dpi, the smaller will be the pixels.

· The length unit known as the point is an absolute unit of length, used most commonly in the printing
industry: 72 points make up an inch.

· From the above it can be seen that only when screen resolution is 72 dpi will one pixel be equal to one
point. For other screen resolutions, the absolute length can be calculated. The table below lists the
absolute length (in points) of 100px at various screen resolutions.

Resolution Pixels Points Factor

72 dpi 100 100 1.00

96 dpi 100 75 0.75

120 dpi 100 60 0.60

To convert pixels to points for each screen resolution, we can use a factor given by the ratio of points in
one inch (72) to pixels in one inch (dpi), that is, 72 divided by dpi. The conversion factors for various
resolutions are given in the table above. For example: 72 div 96 = 0.75 and 72 div 120 = 0.60.
Multiplying the length in pixels by the appropriate conversion factor gives the absolute length in points.
So 100px on a 96 dpi screen is 75pt.

Since 72 points make an inch, you can obtain the length in inches by dividing the length in points by
72. For example, 100 points is equal to 100 div 72 inches = 1.389in.

Screen resolution and absolute length
In the previous section we have seen that only when the screen resolution is 72 dpi will the absolute length in
points be the same as the number of pixels used to define that length. Screen resolutions on Windows
systems, however, are typically not 72 dpi but 96 dpi. This means that the number of points of a pixel-defined
length on such a screen will be 75% the number of pixels. For example, in the StyleVision Design View
screenshot below, the two characters measure 100px and 75pt, respectively.

410 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The reason they are the same height is that the screen resolution in which they appear is 96 dpi. At this
resolution 100px is equal to 75pt in absolute terms.

The point to note is that when specifying pixels as a unit of length, be aware of your monitor's screen resolution
(normally 96 dpi on Windows systems); it determines the absolute length of the pixel-defined length that you
see on screen.

Print output resolution
When an SPS is transformed into a print format, such as PDF, RTF, or Word 2007+, non-absolute pixel
lengths must be converted to absolute lengths, such as points or inches (because lengths on paper cannot be
defined in terms of pixels). The question is: What factor (or screen resolution) should be used to convert from
pixels to points?

In StyleVision, you can select the output dpi for each SPS individually. So, for example, if you select 96 dpi,
then a 100px character will be rendered in print output as a 75pt character (see the table above). If you select
72 dpi, then the same character will be rendered in print output as a 100pt character. This system applies to all
lengths defined in pixels.

Note: Conversion to an absolute measure is not carried out for HTML output. For HTML, the original pixel
units are passed to the HTML file unchanged.

Setting print output resolution of an SPS
To set the print output resolution of an SPS, click File | Properties. In the Properties dialog that pops up, click
the Resolution tab (screenshot below).

© 2017-2023 Altova GmbH

Designing Print Output 411Presentation and Output

Altova StyleVision 2024 Professional Edition

In the Resolution tab, select the required print resolution. The conversion factor for each listed dpi option is
given in the conversion table above (in the section, From Pixels to Points). Multiplying the pixel count by the
conversion factor gives the absolute length in points. Note that the conversion to absolute units is applied only
to print output formats. The HTML output format will retain the original pixel definitions. Note also that this
setting does not change the screen resolution of your monitor.

8.7.5 Watermarks

A watermark is an image or text that is displayed on the background of each page of a document section.

The following options are available:

· Watermarks must be defined separately for each document section. Each section can therefore have a
different watermark.

· For each document section, you must define (with XPath) some condition to be fulfilled in order for that
section's watermarks to be enabled. For example, the condition could be, say, that the drafts
attribute of some element must have the value true. If the condition is not fulfilled, or if the condition
evaluates to false(), that watermark is disabled.

· A watermark can be a text that you customize in StyleVision or it can be an image you select.
· In the design, you can specify the location and appearance of watermarks on the page.

412 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: Watermarks are available only for print-output media, not for HTML or Authentic View.

Creating a watermark
A watermark can be created separately for each document section. To create (or to edit) a watermark, click the
Edit Properties link of the Initial Section or Document Section items in the design (screenshot below).

In the Properties dialog that pops up (screenshot below), click the Watermark button at the bottom of the
dialog.

This pops up the Edit Watermark dialog (screenshots below), in which you specify the properties of the
watermark/s of that document section. According to whether you wish to use an image or text as the
watermark, select either the Image or Text tab. (If you wish to define both an image as well as a text as the
watermarks of that section, enter the details of each type in their respective tabs. In this case, both types of
watermark will be created in the output.)

© 2017-2023 Altova GmbH

Designing Print Output 413Presentation and Output

Altova StyleVision 2024 Professional Edition

Parameters for image watermarks
The Image tab (see screenshot above) contains the parameters for defining an image watermark for that
section. An XPath expression specifies the condition for enabling the image watermark. If you do not wish to
specify any condition, then enter true() in the Condition text box. This causes the condition to evaluate to
true(). If the condition evaluates to false(), or if no condition is specified, then the image watermark is not
enabled. Next, browse for the image, so that the filepath to the image is entered in the Image text box.

You can then set the transparency of the image and its size and position on the page. The Fill the entire page
option expands the image till one dimension (height or width) is filled. Click OK when done.

Parameters for text watermarks
The Text tab (see screenshot below) contains the parameters for defining a text watermark for that section. An
XPath expression specifies the condition for enabling the text watermark. If you do not wish to specify any
condition, then enter true()in the Condition text box. This causes the condition to evaluate to true(). If the
condition evaluates to false(), or if no condition is specified, then the text watermark is not enabled.

414 Presentation and Output Designing Print Output

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Next, enter the text you wish to use as the watermark, then specify its formatting (font family, font size,
transparency, and color) and orientation. Note that the text will be stretched to extend across the page in all
orientations. Click OK when done.

Removing or disabling a watermark
To remove or disable a watermark, in the Edit Watermark dialog (see screenshots above), either delete the
condition or set the XPath expression of the condition to false(). Note that the Image tab and Text tab each
have a separate condition, for their respective watermarks.

© 2017-2023 Altova GmbH

 415Additional Functionality

Altova StyleVision 2024 Professional Edition

9 Additional Functionality

Additional to the content editing , structure , advanced , and presentation procedures described in
this documentation, StyleVision provides a range of miscellaneous additional features. These are listed below
and described in detail in the sub-sections of this section.

· Global Resources . Global resources provide flexibility in selecting resources. For example, multiple
resources (such as files and databases), can be assigned to an alias. When an alias is used as a
source (XML, XSD, etc) of an SPS, the resource can be switched among the multiple resources
assigned to the alias.

· Authentic Node Properties . Individual nodes in the XML document have Authentic View-specific
properties. Nodes can be defined to be non-editable, to be displayed with markup tags, to display user
information on mouseover, etc.

· Replace Parent Node OnClick With . The value of the parent node of a button or hyperlink can be
selected by the Authentic View user. The SPS can be designed to modify presentation based on what
the Authentic View user selects.

· Additional Validation . A node can be tested using an XPath expression to return a Boolean value
that determines whether user input for that node is valid. This test is in addition to document validation
against a schema.

· Working with Dates . In Authentic View, a graphical date-picker ensures that dates are entered in
the correct XML Schema format. Furthermore, dates can be manipulated and formatted as required.

· Unparsed Entity URIs . URIs can be stored in unparsed entities in the DTD on which an XML
document is based. The Unparsed Entity URI feature enables images and hyperlinks to use these
URIs as target URIs.

· Using Scripts . StyleVision contains a JavaScript Editor in which JavaScript functions can be
defined. These functions are then available for use as event handlers anywhere within the SPS, and will
take effect in the output HTML document.

· HTML Import . An HTML file can be imported into StyleVision and an XML, XSD, and SPS files can
be created from it.

· New from XSLT . An SPS can be created from an XSLT-for-HTML or an XSLT-for-FO. Template
structure and styling in the XSLT will be created in the SPS. You can then modify the SPS
components and add content and formatting to the SPS.

See also

· Properties sidebar
· Authentic View

124 200 269 349

416

433

435

438

461

440

467

472

442

55

613

416 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.1 Altova Global Resources

Altova Global Resources is a collection of aliases for file, folder, and database resources. Each alias can have
multiple configurations, and each configuration maps to a single resource (see screenshot below). Therefore,
when a global resource is used as an input, the global resource can be switched among its configurations. This
is done easily via controls in the GUI that let you select the active configuration. For example, if an XSLT
stylesheet for transforming an XML document is assigned via a global resource (an alias), then we can set up
multiple configurations for the global resource, each of which points to a different XSLT file. After setting up the
global resource in this way, switching the configuration would switch the XSLT file used for the transformation.

A global resource can not only be used to switch resources within an Altova application, but also to generate
and use resources from other Altova applications. So, files can be generated on-the-fly in one Altova application
for use in another Altova application. All of this tremendously eases and speeds up development and testing.
For example, an XML file can be generated by an Altova MapForce mapping and used in StyleVision as an
XML Working File in an SPS.

Using Altova Global Resources involves two processes:

· Defining Global Resources : Resources are defined and the definitions are stored in an XML file.
These resources can be shared across multiple Altova applications.

· Using Global Resources : Within StyleVision, files can be located via a global resource instead of
via a file path. The advantage is that the resource can be switched by changing the active configuration
in StyleVision.

Global resources in other Altova products
Currently, global resources can be defined and used in the following individual Altova products: XMLSpy,
StyleVision, MapForce, Authentic Desktop, MobileTogether Designer, and DatabaseSpy.

9.1.1 Defining Global Resources

Altova Global Resources are defined in the Manage Global Resources dialog, which can be accessed in two
ways:

· Click the menu command Tools | Global Resources.
· Click the Manage Global Resources icon in the Global Resources toolbar (screenshot below).

416

427

© 2017-2023 Altova GmbH

Altova Global Resources 417Additional Functionality

Altova StyleVision 2024 Professional Edition

The Global Resources Definitions file
Information about global resources is stored in an XML file called the Global Resources Definitions file. This file
is created when the first global resource is defined in the Manage Global Resources dialog (screenshot below)
and saved.

When you open the Manage Global Resources dialog for the first time, the default location and name of the
Global Resources Definitions file is specified in the Definitions File text box (see screenshot above):

C:\Users\<username>\My Documents\Altova\GlobalResources.xml

This file is set as the default Global Resources Definitions file for all Altova applications. So a global resource
can be saved from any Altova application to this file and will be immediately available to all other Altova
applications as a global resource. To define and save a global resource to the Global Resources Definitions file,
add the global resource in the Manage Global Resources dialog and click OK to save.

To select an already existing Global Resources Definitions file to be the active definitions file of a particular
Altova application, browse for it via the Browse button of the Definitions File text box (see screenshot above).

Note: You can name the Global Resources Definitions file anything you like and save it to any location
accessible to your Altova applications. All you need to do in each application, is specify this file as the
Global Resources Definitions file for that application (in the Definitions File text box). The resources
become global across Altova products when you use a single definitions file across all Altova
products.

Note: You can also create multiple Global Resources Definitions files. However, only one of these can be
active at any time in a given Altova application, and only the definitions contained in this file will be

418 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

available to the application. The availability of resources can therefore be restricted or made to overlap
across products as required.

Managing global resources: adding, editing, deleting, saving
In the Manage Global Resources dialog (screenshot above), you can add a global resource to the selected
Global Resources Definitions file, or edit or delete a selected global resource. The Global Resources Definitions
file organizes the global resources you add into groups: of files, folders, and databases (see screenshot
above).

To add a global resource, click the Add button and define the global resource in the appropriate Global
Resource dialog that pops up (see the descriptions of files , folders , and databases in the sub-
sections of this section). After you define a global resource and save it (by clicking OK in the Manage Global
Resources dialog), the global resource is added to the library of global definitions in the selected Global
Resources Definitions file. The global resource will be identified by an alias.

To edit a global resource, select it and click Edit. This pops up the relevant Global Resource dialog, in which
you can make the necessary changes (see the descriptions of files , folders , and databases in the
sub-sections of this section).

To delete a global resource, select it and click Delete.

After you finish adding, editing, or deleting, make sure to click OK in the Manage Global Resources dialog to
save your modifications to the Global Resources Definitions file.

Relating global resources to alias names via configurations
Defining a global resource involves mapping an alias name to a resource (file, folder, or database). A single
alias name can be mapped to multiple resources. Each mapping is called a configuration. A single alias name
can therefore be associated with several resources via different configurations (screenshot below).

In an Altova application, you can then assign aliases instead of files. For each alias you can switch between
the resources mapped to that alias simply by changing the application's active Global Resource configuration
(active configuration). For example, in Altova's XMLSpy application, if you wish to run an XSLT transformation
on the XML document MyXML.xml, you can assign the alias MyXSLT to it as the global resource to be used for
XSLT transformations. In XMLSpy you can then change the active configuration to use different XSLT files. If
Configuration-1 maps First.xslt to MyXSLT and Configuration-1 is selected as the active configuration,
then First.xslt will be used for the transformation. In this way multiple configurations can be used to access
multiple resources via a single alias. This mechanism can be useful when testing and comparing resources.

419 424 416

419 424 425

© 2017-2023 Altova GmbH

Altova Global Resources 419Additional Functionality

Altova StyleVision 2024 Professional Edition

Furthermore, since global resources can be used across Altova products, resources can be tested and
compared across multiple Altova products as well.

9.1.1.1 Files

The Global Resource dialog for Files (screenshot below) is accessed via the Add | File command in the
Manage Global Resources dialog . In this dialog, you can define configurations of the alias that is named in
the Resource Alias text box. After specifying the properties of the configurations as explained below, save the
alias definition by clicking OK.

After saving an alias definition, you can add another alias by repeating the steps given above (starting with the
Add | File command in the Manage Global Resources dialog).

Global Resource dialog
An alias is defined in the Global Resource dialog (screenshot below).

416

416

420 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Global Resource dialog icons

Add Configuration: Pops up the Add Configuration dialog in which you enter the name of the
configuration to be added.

Add Configuration as Copy: Pops up the Add Configuration dialog in which you can enter the name of
the configuration to be created as a copy of the selected configuration.

Delete: Deletes the selected configuration.

Open: Browse for the file to be created as the global resource.

Defining the alias
Define the alias (its name and configurations) as follows:

1. Give the alias a name: Enter the alias name in the Resource Alias text box.
2. Add configurations: The Configurations pane will have, by default, a configuration named Default (see

screenshot above), which cannot be deleted or renamed. You can add as many additional
configurations as you like by: (i) clicking the Add Configuration or Add Configuration as Copy
icons, and (ii) giving the configuration a name in the dialog that pops up. Each added configuration will
be shown in the Configurations list. In the screenshot above, two additional configurations, named Long
and Short, have been added to the Configurations list. The Add Configuration as Copy command
enables you to copy the selected configuration and then modify it.

3. Select a resource type for each configuration: Select a configuration from the Configurations list, and,
in the Settings for Configuration pane, specify a resource for the configuration: (i) File, (ii) Output of an
Altova MapForce transformation, or (iii) Output of an Altova StyleVision transformation. Select the
appropriate radio button. If a MapForce or StyleVision transformation option is selected, then a
transformation is carried out by MapForce or StyleVision using, respectively, the .mfd or .sps file and
the respective input file. The result of the transformation will be the resource.

4. Select a file for the resource type: If the resource is a directly selected file, browse for the file in the
Resource File Selection text box. If the resource is the result of a transformation, in the File Selection
text box, browse for the .mfd file (for MapForce transformations) or the .sps file (for StyleVision
transformations). Where multiple inputs or outputs for the transformation are possible, a selection of
the options will be presented. For example, the output options of a StyleVision transformation are
displayed according to what edition of StyleVision is installed (the screenshot below shows the outputs
for Enterprise Edition).

Select the radio button of the desired option (in the screenshot above, 'HTML output' is selected). If the
resource is the result of a transformation, then the output can be saved as a file or itself as a global

resource. Click the icon and select, respectively, Global Resource (for saving the output as a global
resource) or Browse (for saving the output as a file). If neither of these two saving options is selected,
the transformation result will be loaded as a temporary file when the global resource is invoked.

© 2017-2023 Altova GmbH

Altova Global Resources 421Additional Functionality

Altova StyleVision 2024 Professional Edition

5. Define multiple configurations if required: You can add more configurations and specify a resource for
each. Do this by repeating Steps 3 and 4 above for each configuration. You can add a new
configuration to the alias definition at any time.

6. Save the alias definition: Click OK to save the alias and all its configurations as a global resource. The
global resource will be listed under Files in the Manage Global Resources dialog .

Result of MapForce transformation
Altova MapForce maps one or more (existing) input document schemas to one or more (new) output document
schemas. This mapping, which is created by a MapForce user, is known as a MapForce Design (MFD). XML
files, text files, databases, etc, that correspond to the input schema/s can be used as data sources. MapForce
generates output data files that correspond to the output document schema. This output document is the
Result of MapForce Transformation file that will become a global resource.

If you wish to set a MapForce-generated data file as a global resource, the following must be specified in the
Global Resource dialog (see screenshot below):

· A .mfd (MapForce Design) file. You must specify this file in the Resource will point to generated

output of text box (see screenshot above).
· One or more input data files. After the MFD file has been specified, it is analyzed and, based on the

input schema information in it, default data file/s are entered in the Inputs pane (see screenshot
above). You can modify the default file selection for each input schema by specifying another file.

· An output file. If the MFD document has multiple output schemas, all these are listed in the Outputs
pane (see screenshot above) and you must select one of them. If the output file location of an

416

422 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

individual output schema is specified in the MFD document, then this file location is entered for that
output schema in the Outputs pane. From the screenshot above we can see that the MFD document
specifies that the Customers output schema has a default XML data file (CustomersOut.xml), while
the Text file output schema does not have a file association in the MFD file. You can use the default
file location in the Outputs pane or specify one yourself. The result of the MapForce transformation will
be saved to the file location of the selected output schema. This is the file that will be used as the
global resource

Note: The advantage of this option (Result of MapForce transformation) is that the transformation is carried
out at the time the global resource is invoked. This means that the global resource will contain the
most up-to-date data (from the input file/s).

Note: Since MapForce is used to run the transformation, you must have Altova MapForce installed for this
functionality to work.

Result of StyleVision transformation
Altova StyleVision is used to create StyleVision Power Stylesheet (SPS) files. These SPS files generate XSLT
stylesheets that are used to transform XML documents into output documents in various formats (HTML, PDF,
RTF, Word 2007+, etc). If you select the option Result of StyleVision Transformation, the output document
created by StyleVision will be the global resource associated with the selected configuration.

For the StyleVision Transformation option in the Global Resource dialog (see screenshot below), the following
files must be specified.

© 2017-2023 Altova GmbH

Altova Global Resources 423Additional Functionality

Altova StyleVision 2024 Professional Edition

· A .sps (SPS) file. You must specify this file in the Resource will point to generated output of text box

(see screenshot above).
· Input file/s. The input file might already be specified in the SPS file. If it is, it will appear automatically

in the Inputs pane once the SPS file is selected. You can change this entry. If there is no entry, you
must add one.

· Output file/s. Select the output format in the Outputs pane, and specify an output file location for that
format.

Note: The advantage of this option (Result of StyleVision transformation) is that the transformation is carried
out when the global resource is invoked. This means that the global resource will contain the most up-
to-date data (from the input file/s).

Note: Since StyleVision is used to run the transformation, you must have Altova StyleVision installed for this
functionality to work.

424 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.1.1.2 Folders

In the Global Resource dialog for Folders (screenshot below), add a folder resource as described below.

Global Resource dialog icons

Add Configuration: Pops up the Add Configuration dialog in which you enter the name of the
configuration to be added.

Add Configuration as Copy: Pops up the Add Configuration dialog in which you can enter the name of
the configuration to be created as a copy of the selected configuration.

Delete: Deletes the selected configuration.

Open: Browse for the folder to be created as the global resource.

Defining the alias
Define the alias (its name and configurations) as follows:

1. Give the alias a name: Enter the alias name in the Resource Alias text box.
2. Add configurations: The Configurations pane will have a configuration named Default (see screenshot

above). This Default configuration cannot be deleted nor have its name changed. You can enter as
many additional configurations for the selected alias as you like. Add a configuration by clicking the
Add Configuration or Add Configuration as Copy icons. In the dialog which pops up, enter the

© 2017-2023 Altova GmbH

Altova Global Resources 425Additional Functionality

Altova StyleVision 2024 Professional Edition

configuration name. Click OK. The new configuration will be listed in the Configurations pane. Repeat
for as many configurations as you want.

3. Select a folder as the resource of a configuration: Select one of the configurations in the Configurations
pane and browse for the folder you wish to create as a global resource. If security credentials are
required to access a folder, then specify these in the Username and Password fields.

4. Define multiple configurations if required: Specify a folder resource for each configuration you have
created (that is, repeat Step 3 above for the various configurations you have created). You can add a
new configuration to the alias definition at any time.

5. Save the alias definition: Click OK in the Global Resource dialog to save the alias and all its
configurations as a global resource. The global resource will be listed under Folders in the Manage
Global Resources dialog .

9.1.1.3 Databases

In the Global Resource dialog for Databases (screenshot below), you can add a database resource as follows:

416

426 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Global Resource dialog icons

Add Configuration: Pops up the Add Configuration dialog in which you enter the name of the
configuration to be added.

Add Configuration as Copy: Pops up the Add Configuration dialog in which you can enter the name of
the configuration to be created as a copy of the selected configuration.

Delete: Deletes the selected configuration.

Defining the alias
Define the alias (its name and configurations) as follows:

1. Give the alias a name: Enter the alias name in the Resource Alias text box.
2. Add configurations: The Configurations pane will have a configuration named Default (see screenshot

above). This Default configuration cannot be deleted nor have its name changed. You can enter as
many additional configurations for the selected alias as you like. Add a configuration by clicking the
Add Configuration or Add Configuration as Copy icons. In the dialog which pops up, enter the
configuration name. Click OK. The new configuration will be listed in the Configurations pane. Repeat
for as many configurations as you want.

3. Start selection of a database as the resource of a configuration: Select one of the configurations in the
Configurations pane and click the Choose Database icon. This pops up the Create Global Resources
Connection dialog.

4. Connect to the database: Select whether you wish to create a connection to the database using the
Connection Wizard, an existing connection, an ADO Connection, an ODBC Connection, or JDBC
Connection. Complete the definition of the connection method as described in the section Connecting
to a Database . If a connection has already been made to a database from StyleVision, you can
click the Existing Connections icon and select the DB from the list of connections that is displayed.

5. Select the root object: If you connect to a database server where a root object can be selected, you
will be prompted, in the Choose Root Object dialog (screenshot below), to select a root object on the
server. Select the root object and click Set Root Object. The root object you select will be the root
object that is loaded when this configuration is used.

If you choose not to select a root object (by clicking the Skip button), then you can select the root
object at the time the global resource is loaded.

493

© 2017-2023 Altova GmbH

Altova Global Resources 427Additional Functionality

Altova StyleVision 2024 Professional Edition

6. Define multiple configurations if required: Specify a database resource for any other configuration you
have created (that is, repeat Steps 3 to 5 above for the various configurations you have created). You
can add a new configuration to the alias definition at any time.

7. Save the alias definition: Click OK in the Global Resource dialog to save the alias and all its
configurations as a global resource. The global resource will be listed under databases in the Manage
Global Resources dialog.

9.1.2 Using Global Resources

There are several types of global resources (file-type, folder-type , and database-type). Particular scenarios in
StyleVision allow the use of particular types of global resources. For example, you can use file-type or folder-
type global resources for a Working XML File or a CSS file. Or you can use a database-type resource to create
a new DB-based SPS. Some scenarios in which you can use global resources in StyleVision are listed here:
Files and Folders and Databases .

Selections that determine which resource is used
There are two application-wide selections that determine what global resources can be used and which global
resources are actually used at any given time:

· The active Global Resources XML File is selected in the Global Resource dialog . The global-
resource definitions that are present in the active Global Resources XML File are available to all files
that are open in the application. Only the definitions in the active Global Resources XML File are
available. The active Global Resources XML File can be changed at any time, and the global-resource
definitions in the new active file will immediately replace those of the previously active file. The active
Global Resources XML File therefore determines: (i) what global resources can be assigned, and (ii)
what global resources are available for look-up (for example, if a global resource in one Global
Resource XML File is assigned but there is no global resource of that name in the currently active
Global Resources XML File, then the assigned global resource (alias) cannot be looked up).

· The active configuration is selected via the menu item Tools | Active Configuration or via the
Global Resources toolbar . Clicking this command (or drop-down list in the toolbar) pops up a list of
configurations across all aliases. Selecting a configuration makes that configuration active application-
wide. This means that wherever a global resource (or alias) is used, the resource corresponding to the
active configuration of each used alias will be loaded. The active configuration is applied to all used
aliases. If an alias does not have a configuration with the name of the active configuration, then the
default configuration of that alias will be used. The active configuration is not relevant when assigning
resources; it is significant only when the resources are actually used.

9.1.2.1 Assigning Files and Folders

File-type and folder-type global resources are assigned differently. In any one of the usage scenarios below,
clicking the Switch to Global Resources button displays the Open Global Resource dialog (screenshot
below).

427 430

416

818

712

428

428 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Manage Global Resources: Displays the Manage Global Resources dialog.

Selecting a file-type global resource assigns the file. Selecting a folder-type global resource causes an Open
dialog to open, in which you can browse for the required file. The path to the selected file is entered relative to
the folder resource. So if a folder-type global resource were to have two configurations, each pointing to different
folders, files having the same name but in different folders could be targeted via the two configurations. This
could be useful for testing purposes.

You can switch to the file dialog or the URL dialog by clicking the respective button at the bottom of the dialog.
The Manage Global Resources icon in the top right-hand corner pops up the Manage Global Resources
dialog.

Usage scenarios
File-type and folder-type global resources can be used in the following scenarios:

· Adding and modifying schema sources and Working XML Files and Template XML Files
· Saving as Global Resource
· Adding modules and CSS files
· Adding global resources to a project

Schema, Working XML File, Template XML File
In the Design Overview sidebar (screenshot below), the context menus for the Schema, Working XML File,
Template XML File contains an entry that pops up the Open dialog in which you can assign the schema or
Working XML File via a global resource. Clicking the Switch to Global Resources button pops up a dialog
with a list of all file-type global resources that are defined in the Global Resources XML File currently active in

416

416

427 427

429

429

430

42

42

© 2017-2023 Altova GmbH

Altova Global Resources 429Additional Functionality

Altova StyleVision 2024 Professional Edition

StyleVision. (How to set the currently active Global Resources XML File is described in the section Defining
Global Resources .)

If a global resource has been selected as the file source, it is displayed in the relevant entry in the Design
Overview sidebar (screenshot below).

Adding modules and CSS files from a global resource
In the Design Overview sidebar , the Add New Module and Add New CSS File commands pop up the
Open dialog, in which you can click Switch to Global Resources to select a Global Resource to be used.
Modules and CSS files can then be changed by changing the configuration.

Saving as global resource
A newly created file can be saved as a global resource. Also, an already existing file can be opened and then
saved as a global resource. When you click the File | Save or File | Save As commands, the Save dialog
appears. Click the Switch to Global Resource button to access the available global resources (screenshot
below), which are the aliases defined in the current Global Resources XML File.

416

42

430 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Select an alias and then click Save. If the alias is a file alias , the file will be saved directly. If the alias is a
folder alias , a dialog will appear that prompts for the name of the file under which the file is to be saved. In
either case the file will be saved to the location that was defined for the currently active configuration .

Note: Each configuration points to a specific file location, which is specified in the definition of that
configuration. If the file you are saving as a global resource does not have the same filetype extension
as the file at the current file location of the configuration, then there might be editing and validation
errors when this global resource is opened in StyleVision. This is because StyleVision will open the file
assuming the filetype specified in the definition of the configuration.

Global Resources in projects
Global resources can also be added to the currently active project via the Project | Add Global Resource to
Project command. This pops up a dialog listing the file-type global resources in the currently active Global
Resources XML File . Select a global resource and click OK to add it to the project. The global resource
appears in the Project sidebar and can be used like any other file.

9.1.2.2 Assigning Databases

When an SPS is created from a database (DB) with the File | New from DB command, you can select the
option to use a global resource (screenshot below). Other commands where a database-type global resource
can be used are database-related commands in the menu.

419

424

431

416

© 2017-2023 Altova GmbH

Altova Global Resources 431Additional Functionality

Altova StyleVision 2024 Professional Edition

In the Connection dialog (screenshot above), all the database-type global resources that have been defined in
the currently active Global Resources XML File are displayed. Select the required global resource and click
Connect. If the selected global resource has more than one configuration, then the database resource for the
currently active configuration is used (check Tools | Active Configuration or the Global Resources toolbar),
and the connection is made.

9.1.2.3 Changing the Active Configuration

One configuration of a global resource can be active at any time. This configuration is called the active
configuration, and it is active application-wide. This means that the active configuration is active for all global
resources aliases in all currently open files and data source connections. If an alias does not have a
configuration with the name of the active configuration, then the default configuration of that alias will be used.
As an example of how to change configurations, consider the case in which a file has been assigned via a
global resource with multiple configurations. Each configuration maps to a different file. So, which file is
selected depends on which configuration is selected as the application's active configuration.

Switching the active configuration can be done in the following ways:

416

432 Additional Functionality Altova Global Resources

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Via the menu command Tools | Active Configuration. Select the configuration from the command's
submenu.

· In the combo box of the Global Resources toolbar (screenshot below), select the required
configuration.

In this way, by changing the active configuration, you can change source files that are assigned via a global
resource.

© 2017-2023 Altova GmbH

Authentic Node Properties 433Additional Functionality

Altova StyleVision 2024 Professional Edition

9.2 Authentic Node Properties

Authentic node properties are properties you set for the display of a node in Authentic View. For example, a
node can be displayed with XML markup tags, be defined to be non-editable, and/or to have user information
displayed when the cursor is placed over the node. Authentic node properties can be set on various SPS
components. What properties are available for a component depends upon the type of component it is.

To assign Authentic node properties, select the required component in the design. Then, in the Authentic group
of properties in the Properties sidebar (screenshot below), specify the required Authentic node settings.
Alternatively, you can right-click the node-template and select Edit Authentic Properties.

Defining Authentic Properties
The following node settings can be made to control the behavior of individual nodes in the Authentic View
display.

Add children
This setting is available when the selected node is an element. It allows you to define what child elements of
the selected element are inserted when the selected element is added. The options are: all child elements,
mandatory child elements, and no child element.

Additional validation
In addition to validation of the XML document against a schema, additional validation can be specified for
individual nodes and Auto-Calculations. You can set an XPath expression to define the validity range of the XML
content of the node or Auto-Calculation. If the XML value of the node is invalid, this is made known to the
Authentic View user by means of an error message when the XML document is validated (F8). See Additional
Validation for details.

DB rows displayed and fetched
The DB Rows Displayed and DB Rows Fetched properties define, respectively, how many DB rows will be
displayed in Authentic View and how many DB records are originally loaded. The DB Records Fetched property
thus enables you to speed up the loading and display time.

438

434 Additional Functionality Authentic Node Properties

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Content is editable
Defines whether the node is editable or not. By default the node is editable. This setting is available when the
selected node is an element, attribute, or contents. Auto-Calculation results cannot be edited because the
value is computed with the XPath expression you enter for the Auto-Calculation; this option is therefore not
available for Auto-Calculations.

Mixed markup
This setting is available when the selected node is an element or attribute, and enables you to specify how
individual nodes will be marked up in the mixed markup mode of Authentic View. The following options exist:
large markup (tags with node names); small markup (tags without node names); and no markup.

Show "add Name" when XML Element is missing
Determines whether a prompt ("Add [element/attribute name]") will appear in Authentic View when the selected
element or attribute is missing. By default, the prompt will be displayed. This setting is available when the
selected node is an element or an attribute.

User info
Text entered in this text box appears as a tooltip when the mouse pointer is placed over the node. It is available
when the selected node is an element, attribute, contents, or an Auto-Calculation. If both the element/attribute
node as well as the contents node has User Info, then the User Info for the contents node is displayed as the
tooltip when the mouse is placed over the node.

© 2017-2023 Altova GmbH

Replace Parent Node OnClick With 435Additional Functionality

Altova StyleVision 2024 Professional Edition

9.3 Replace Parent Node OnClick With

With the Replace Parent Node OnClick With property (in the Authentic group of properties, assignable in the
Properties sidebar, see screenshot below), you can specify text content of the parent node of a button or
hyperlink .

When the Authentic View user clicks the design component (a button or hyperlink), the text you, the SPS
designer, have specified will be inserted as the XML content of the design component's parent node. This
enables you to allow the Authentic View user to make certain selections (by clicking a button or hyperlink) that
will alter the presentation of the XML document in Authentic View.

Usage mechanism
This feature can be used as follows:

1. In the design, insert the design component (button or hyperlink) within the node for which you wish to
insert text content.

2. Select the design component in the design, and, in the Properties sidebar, select that design
component (in the Properties For column), and enter a value for the Replace Parent Node OnClick
With property (which is in the Authentic group of properties; see screenshot above). This value can be
entered as a text value directly or via an XPath expression. (Click the XPath icon in the toolbar of the
Properties sidebar to enter the value as an XPath expression). In the screenshot above, the value is an
XPath string expression 'default'. Now, if the Authentic View user clicks the design component in
Authentic View, the text default will be entered as the text content of the parent node of the design
component. This result can also be obtained if you enter a text value (not an XPath expression) of
default directly as the value of the Replace Parent Node OnClick With property.

3. Now that you know what content the parent node will have when the Authentic View user clicks the
design component, you can set up processing based on the text content of the parent node. For
example, using a condition , you can specify that when the content of the parent node is default,
then some default formatting is applied; or, when the content is hide, the text of a node is hidden. In
this way you can use this feature to achieve powerful effects that might otherwise have required the
deployment of scripts .

Note: For this feature to work correctly, in the schema, the parent node must be defined to allow text
content.

180

341

280

467

436 Additional Functionality Replace Parent Node OnClick With

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Usage with variables
The parent node can also be a variable that has been defined on an ancestor node. The value of the variable
can then be set up by the SPS designer using the Replace Parent Node OnClick With property. When the
Authentic View user clicks the design component (button or hyperlink), the value defined for the Replace
Parent Node OnClick With property of the design component is assigned to the variable. You can now set up
alternative processing options based on the value of the variable.

A simple example is shown below. When the value of the variable Var2 is set to Boolean true(), a button
enabling the value to be changed to Boolean false() is displayed (see screenshot below). This processing is
specified in the first branch of a condition .

The Otherwise branch of the condition specifies processing that displays a button enabling the value of the
variable to be changed to Boolean true() (screenshot below). You can define additional processing according
to the value of the variable Var2 (true() or false()).

302

180 341

280

© 2017-2023 Altova GmbH

Replace Parent Node OnClick With 437Additional Functionality

Altova StyleVision 2024 Professional Edition

In this way you, the SPS designer, can allow Authentic View users to select from a range of options that then
produce specific and corresponding processing of the document.

438 Additional Functionality Additional Validation

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.4 Additional Validation

The Additional Validation setting is available when the selected component is an element or attribute node,
contents (contents placeholder), a data-entry device, or an Auto-Calculation. You can set an XPath expression
to define the validity range of the XML content of the node or Auto-Calculation. An XML value that falls outside
this defined range is invalid. If the XML value of the node is invalid, this is made known to the Authentic View
user by means of an error message when the XML document is validated (F8). The error message that is
displayed is the text you enter into the Error message field of the Additional Validation setting.

Setting Additional Validation
To set additional validation, do the following:

1. Select the component for which additional validation is required.

2. In the Properties sidebar, select the Authentic group of properties, and click the Edit button of the
Additional Validation property (screenshot below). This pops up the Additional Validation dialog.

3. In the Additional Validation dialog (screenshot below), add a row for an Additional Validation entry by
clicking the Add button near the top left of the pane.

© 2017-2023 Altova GmbH

Additional Validation 439Additional Functionality

Altova StyleVision 2024 Professional Edition

4. In the XPath expression column, enter an XPath expression to define the validity range of the XML data
in that component.

5. Enter an error message to display when the data is invalid.
6. Click OK to finish.

440 Additional Functionality Unparsed Entity URIs

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.5 Unparsed Entity URIs

If you are using a DTD and have declared an unparsed entity in it, you can use the URI associated with that
entity for image and hyperlink targets in the SPS. This is useful if you wish to use the same URI multiple times
in the SPS. This feature makes use of the XSLT function unparsed-entity-uri to pass the URI of the

unparsed entity from the DTD to the output, and is therefore only available in the outputs (HTML, RTF); not in
Authentic View. Note that unparsed entity URIs are not processed for Text output.

Using this feature requires that the DTD, XML document, and SPS documents be appropriately edited, as
follows:

1. In the DTD, the unparsed entities must be declared , with (i) the URI, and (ii) the notation (which
indicates to StyleVision the resource type of the entity).

2. In the XML document, the unparsed entity must be referenced . This is done by giving the names of
the required unparsed entities.

3. In the SPS, unparsed entities can be used to target images and hyperlinks by correctly
accessing the relevant dynamic node values as unparsed entities .

Declaring and referencing unparsed entities
Given below is a cut-down listing of an XML document. It has an internal DTD subset which declares two
unparsed entities, one with a GIF notation (indicating a GIF image) and the other with an LNK notation
(indicating a hyperlink). The img/@src and link/@href nodes in the XML code reference the unparsed entities
by giving their names.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE document SYSTEM "UEURIDoc.dtd" [

<!ENTITY Picture SYSTEM "nanonull.gif" NDATA GIF>

<!ENTITY AltovaURI SYSTEM "http://www.altova.com" NDATA LNK>

]>

<document>

 <header>Example of How to Use Unparsed Entity URIs</header>

 <para>...</para>

 <link href="AltovaURI">Link to the Altova Website.</link>

</document>

SPS images and hyperlinks that use unparsed entities
Images and hyperlinks in the SPS that reference unparsed entity URIs are used as follows:

1. Insert the image or hyperlink via the Insert menu.
2. In the object's Edit dialog, select the Dynamic tab properties (screenshot below), and enter an XPath

expression that selects the node containing the name of the unparsed entity. In the XML document
example given above, these nodes would be, respectively, the //img/@src and //link/@href nodes.

440

440

168 341

440

© 2017-2023 Altova GmbH

Unparsed Entity URIs 441Additional Functionality

Altova StyleVision 2024 Professional Edition

3. Then check the Treat as Unparsed Entity check box at the bottom of the dialog. This causes the
content of the selected node to be read as an unparsed entity. If an unparsed entity of that name is
declared, the URI associated with that unparsed entity is used to locate the resource (image or
hyperlink).

When the stylesheet is processed, the URI associated with the entity name is substituted for the entity name.

Note: If the URI is a relative URI, then the XSLT processor expands it to an absolute URI applying the base
URI of the DTD. For example, if the unparsed entity is associated with the relative URI
"nanonull.gif", then this URI will be expanded to file:///c:/someFolder/nanonull.gif, where
the DTD is in the folder someFolder.

442 Additional Functionality New from XSLT, XSL-FO or FO File

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.6 New from XSLT, XSL-FO or FO File

An SPS design can be based on existing XSLT files that were designed for HTML output or XSLT files with XSL-
FO commands for output in PDF or FO files. This means that SPS files do not have to be designed from
scratch, but can take an already existing XSLT file as a starting point.

Steps for creating an SPS from XSLT
The steps for creating an SPS file from an XSLT, XSLT-for-FO, or FO file are as follows.

1. Select the command File | New | New from XSLT, XSL-FO or FO File.
2. In the Open dialog that appears, browse for the file you want.
3. In the next dialog you will be prompted to select a schema on which the SPS is to be based. Select

the schema you want.
4. An SPS based on the structure and formatting in the XSLT or FO file will be created and displayed in

Design View .
5. You can now modify the SPS in the usual way. For example, you could drag in nodes from the

Schema Tree , modify the styling and presentation or add additional styling, and use StyleVision
functionality such as Auto-Calculations and Conditional Templates .

6. You can save the SPS and use a Working XML File to preview various output formats .
Subsequently you can generate stylesheets and output files using the Save Generated Files
command.

Example
The example discussed below is located in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2024\StyleVisionExamples/Tutorial/NewFromXSLT. This folder contains
the files: SimpleExample.xslt, SimpleExample.xsd, and SimpleEample.xml.

The XML file is shown below.

XML file used in charts example: YearlySales.xml

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<ChartType>Pie Chart 2D</ChartType>

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

33

44

270 280

42 36

734 734

29

© 2017-2023 Altova GmbH

New from XSLT, XSL-FO or FO File 443Additional Functionality

Altova StyleVision 2024 Professional Edition

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

The XSLT file is as follows:

Follow the steps 1 to 4 listed above to obtain the SPS in Design View. The SPS will look something like this:

444 Additional Functionality New from XSLT, XSL-FO or FO File

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Notice that the two templates in the XSLT have been created in the SPS. Now switch to the HTML Preview
(screenshot below), and notice that the h1 element's styling (color:red) has been also passed to the SPS.

In Design View select the h1 element and change its color to black (in the Styles sidebar, in the Color group of
properties). Then, from the Schema Tree, drag the Year element and create it as a table at the location shown
in the screenshot below. Reverse the contents of the two columns so that the Year ID is in the first column.

© 2017-2023 Altova GmbH

New from XSLT, XSL-FO or FO File 445Additional Functionality

Altova StyleVision 2024 Professional Edition

You can make additional changes in the content, structure, and presentation properties of the document, then
preview the output and save files using the Save Generated Files command.734

446 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.7 User-Defined XPath Functions

The SPS designer can define customized XPath 2.0/3.0 functions. A user-defined XPath function can be re-
used in any design component that accepts an XPath expression, for example, in Auto-Calculations,
conditions, and combo boxes.

Defining and editing user-defined XPath functions
User-defined XPath functions are created (and subsequently accessed for editing) in either the Schema Tree
sidebar or the Design Tree sidebar (see screenshot below). All the user-defined XPath functions in an SPS are
listed under the XPath Functions item in both the Schema Tree and Design Tree sidebars and can be accessed
via either sidebar.

To create a user-defined XPath function, click the icon of the XPath Functions item. This pops up the XPath
Functions dialog (screenshot below). If you wish to edit a function that has already been created, double-click
its entry in the list of XPath functions. The XPath Functions dialog (screenshot below) will appear and the
function definition can be edited.

© 2017-2023 Altova GmbH

User-Defined XPath Functions 447Additional Functionality

Altova StyleVision 2024 Professional Edition

After a user-defined XPath function is created, it is available for use anywhere in the design.

Namespace of user-defined XPath functions
User-defined XPath functions are created in the namespace: http://www.altova.com/StyleVision/user-
xpath-functions. This namespace is bound to the prefix sps:, so user-defined XPath functions must be
called using this namespace prefix. For example, sps:MyFunction().

Enabling and disabling user-defined XPath functions
Each user-defined XPath function can be enabled or disabled by, respectively, checking or unchecking the
check box to the left of the function's entry in the list of user-defined XPath functions (see screenshot below).

448 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

This feature is useful if two functions have the same name. Such a situation could arise, for example, when an
imported SPS module contains a function having the same name.

Calling a user-defined XPath function
A user-defined XPath function can be called in an XPath expression at any location in the design. For example,
the user-defined XPath function sps:MyFunction defined above can be called, for example, with the following
XPath expression in an Auto-Calculation:

sps:MyFunction()/@name.

This XPath expression would be evaluated as follows:

1. The sps:MyFunction() function is evaluated. Let's say the function is defined as follows:
$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock]. When the function is evaluated it
returns the /Trades/Stock element that has a name attribute with a value that matches the content of
the /Trades/Selection/Stock element.

2. The result of Step 1 is returned to the XPath expression in the function call. Now the value of the name
attribute of this /Trades/Stock element is returned as the value of the Auto-Calculation.

Deleting a function
To delete a function, select it in the XPath Functions list in the Schema Tree or Design Tree sidebar and then
click the Remove Item icon in the toolbar of the sidebar. Alternatively, you can right-click the XPath function
and select Remove Item from the context menu.

9.7.1 Defining an XPath Function

A user-defined XPath function requires: (i) a name (a text string), and (ii) a definition (an XPath expression).

© 2017-2023 Altova GmbH

User-Defined XPath Functions 449Additional Functionality

Altova StyleVision 2024 Professional Edition

Additionally, you can specify one or more parameters for the function. A user-defined XPath function can also
have an optional return type (specified by selecting a type from the dropdown list of the Return Type combo
box). A return type is useful if you wish to check that the datatype of the returned value conforms to the
selected datatype. Note that the return value is not converted to the selected datatype. If there is a type
mismatch, an error is returned. If no return type is specified, no datatype check is carried out.

After a user-defined XPath function is created, it is available for use anywhere in the design. In the XSLT
stylesheet, it is created as an xsl:function element that is a child of the xsl:stylesheet element, as
shown in the listing below.

<xsl:stylesheet>
 ...
 <xsl:function name="sps:Stock">

<xsl:sequence select="$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock]"/>
 </xsl:function>
 <xsl:function name="sps:Average" as="xs:decimal">

<xsl:param name="a" as="xs:integer"/>
<xsl:param name="b" as="xs:integer"/>
<xsl:param name="c" as="xs:integer"/>
<xsl:sequence select="avg(($a, $b, $c))"/>

 </xsl:function>
</xsl:stylesheet>

The sps:Stock function shown in the screenshot below and listed above returns the /Trades/Stock element
that has a name attribute with a value that matches the content of the /Trades/Selection/Stock element. The
sps:Average function listed above returns the average of three input parameter-values. The function definition
uses the avg() function of XPath 2.0/3.0. The return datatype is specified to be of the xs:decimal type, which
is the datatype returned by the avg() function when evaluating input values of datatype xs:integer. If the
return type is specified, then the datatype of the return value is checked to see if it conforms with the specified
type. If it doesn't, an error is returned.

450 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Defining the function

To define a function, click the icon of the XPath Functions item in the Schema Tree or Design Tree. This
pops up the XPath Functions dialog (screenshot above). If you wish to edit a function that has already been
created, double-click its entry in the list of XPath functions. Then enter a name for the function and a definition
in the Function Body pane. Parameter definitions can be entered if required (see the next two sections,
Parameters and Sequences and Parameters and Nodes , for details). A return type for the function can
also be specified (see above).

The most important point to bear in mind when writing the XPath expression that defines XPath function is that
there is no context node for the XPath expression. If the XPath expression must locate a node then the
context node for the expression can be provided in one of the following ways:

1. The XPath expression starts with the document root. The document root is specified in the first location
step of the XPath expression as $XML. For example, the XPath expression $XML/Trades/Stock[1]
locates the first Stock child element of the /Trades element. The variable $XML (which locates the
document root of the main schema) is defined globally by StyleVision in all SPS designs.

2. The context node can be passed as a parameter. See the section Parameters and Nodes below for
an explanation.

In the following cases, errors are returned:

· If a parameter is defined but is not used in the body of the definition.

454 459

459

© 2017-2023 Altova GmbH

User-Defined XPath Functions 451Additional Functionality

Altova StyleVision 2024 Professional Edition

· If the datatype of the value returned by the function does not match the return type defined for the
function.

· If any function in the SPS contains an error, an XSLT error is generated for the whole design, even if the
function containing the error is not called. Note, however, that a function can be disabled by
unchecking its check box in the list of user-defined XPath functions. When disabled in the design, the
function is not included in the XSLT document generated from the design. In this way, an XPath
expression containing an error can be excluded from the XSLT and no XSLT error will be generated.

9.7.2 Reusing Functions to Locate Nodes

In the previous section we saw how an XPath function can be built to locate a node. The sps:Stock function
which is defined as shown in the screenshot below returns the /Trades/Stock element that has a name
attribute with a value that matches the content of the /Trades/Selection/Stock element.

We could modularize the location steps of the XPath expression
$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock] into separate XPath functions. For example as
follows:

· The function sps:Stocks(), with the definition: $XML/Trades/Stock
· The function sps:SelectedStock(), with the definition: $XML/Trades/Selection/Stock

452 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The whole XPath expression can then be written in another XPath expression as:

sps:Stocks()[@name=sps:SelectedStock()]

When XPath functions are created in this way to locate a node or nodeset, these functions can be re-used in
other XPath expressions across the SPS design, thus considerably simplifying the writing of complex XPath
expressions.

9.7.3 Parameters in XPath Functions

A user-defined XPath function can be assigned any number of parameters. The function's parameters are
defined in the Parameters pane of the XPath Functions dialog (see screenshot below). These parameters can
then be used in the definition of the user-defined XPath function (in the Function Body pane).

User-defined XPath function mechanism
The steps below explain how an XPath function works.

1. In a function call (for example, in an Auto-Calculation), the number of arguments in the function call
must match the number of parameters defined for the user-defined function (as defined in the
Parameters pane of the user-defined function; see screenshot below). Additionally, the number of items
submitted by each argument (in the function call) must match the Occurrence definition of the
corresponding parameter. If a datatype restriction has been specified for a parameter (in the Type
column of the Parameters pane), the value/s submitted by the argument must match this datatype.

2. The arguments passed to the function's parameters are then used in the XPath function (as defined in
the Function Body pane; see screenshot below). The result obtained by evaluating the XPath
expression is then checked against the optional Return Type definition (see screenshot below). If the
datatype is as expected, the result is used in the XPath expression from which the function was called.

Order of parameters
The order of the user-defined function's parameters is important because, when the function is called, the
arguments submitted in the function call will be assigned to the parameters according to the order in which
they are defined in the Parameters pane (see screenshot below).

© 2017-2023 Altova GmbH

User-Defined XPath Functions 453Additional Functionality

Altova StyleVision 2024 Professional Edition

So if the sps:Stock user-defined XPath function is defined as in the screenshot above and if it is called with the
following XPath expression:

sps:Stock($XML, Node1, Node2)

then these three arguments—$XML, Node1, Node2— will be assigned, in that order, respectively, to the
parameters $ContextStock, $Selection, and $StockInfo.

Note that each argument in the function call is separated from the next by a comma. So, each argument, as
delimited by the commas in the function call, will be passed to the corresponding parameter (as ordered in the
Parameters pane; see screenshot above).

The order of parameters in the Parameters pane can be controlled with the Append, Insert, and Delete icons
of the Parameters pane.

Datatype of parameters
Optionally, the datatypes of parameters of the user-defined function can be defined. If a datatype is specified,
then the datatype of the incoming argument will be checked against the parameter's datatype, and an error will
be returned if the types do not match. This feature enables the input data (from the function call's arguments) to
be checked.

454 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Occurrence
Each parameter of the user-defined XPath function can be considered to be a sequence. The Occurrence
property of a parameter specifies how many items must be submitted for that parameter by the corresponding
argument of the function-call.

In both function definitions and in function calls, commas are used to separate one parameter or argument from
another as well as to separate items within a sequence. It is important, therefore, to note the context in which a
comma is used: to separate parameters/arguments or to separate sequence items.

· In parameters/arguments, if required, parentheses are used to delimit sequences—in the function
definition (parameters) or in the function call (arguments).

· In sequences, parentheses are ignored.

In this context, the following examples and points should be noted:

· Parentheses in parameters/arguments: Several XPath functions take a single sequence as an
argument, for example, the avg() and count() functions. If this sequence is enumerated using
comma separators or range operators, the sequence must be enclosed in parentheses to
unambiguously show that it is a single sequence—and not multiple comma-separated sequences. For
example, in the function avg((count($a), $b, $c)), the XPath 2.0 avg() function takes the single
sequence (count($a),$b,$c) as its argument. Since the items of the sequence are enumerated,
making up a sequence of three items, the sequence must be enclosed in parentheses and submitted
as a single argument to the avg() function: avg((count($a),$b,$c)). Without the inner pair of

parentheses, the definition of the avg() function would have three parameters, and that would be an
error (since the avg() function expects one argument consisting of a single sequence).

· No parentheses in parameters/arguments: Similarly, the count() function also takes a single
sequence as its one-parameter argument. However, since in our example count($a) the single
sequence is not a comma-separated enumerated list, but is fetched instead by the variable/parameter
$a, the argument does not need to be enclosed by an inner set of parentheses: So the expression
count($a) is correct.

· Parentheses and commas in function calls: In a function call, parentheses must be correctly used
so that each argument corresponds to a parameter (as defined in the Parameters pane of the XPath
Functions dialog). For example, if a user-defined XPath function named MyAverage() is defined with
the XPath 2.0 expression: avg((count($a),$b,$c)), then the following function call would be valid:
MyAverage((1,2,3),4,5). The values corresponding to the three parameters $a, $b, and $c would be,
respectively, the sequence (1,2,3), the singleton-sequence 4, and the singleton sequence 5.
Singleton-sequences can, optionally, be enclosed in parentheses. The value returned by MyAverage()
in this case would be 4.

9.7.3.1 Parameters and Sequences

It is important to note the relationship between parameters and sequences, and how parameters and
sequences are used in XPath expressions. We use the following definitions to make these relationships
clearer:

· A sequence consists of items that are either atomic values or nodes. A comma can be used to
construct a sequence, by placing it between the items of a sequence and so allowing the sequence to
be built.

© 2017-2023 Altova GmbH

User-Defined XPath Functions 455Additional Functionality

Altova StyleVision 2024 Professional Edition

· An XPath function can be defined to take parameters. For example, in the XPath 2.0 expression
count($a), the part within the function's parentheses is the parameter of the function and it must be a
sequence of items.

· An argument consists of one or more items in a function call. For example, the function
count(//Person) has one argument: //Person. This argument is valid because it returns one
sequence of nodes, which corresponds to the signature of the count() function. (The signature of a
function specifies the number of parameters and the expected datatype of each parameter. It also
specifies what the function will return and the datatype of the returned object)

· The function substring('StyleVisionExamples', 6, 6)—which returns the string Vision—has
three arguments. This is valid according to the signature of the substring() function, and is specified
by it. When a function call has multiple arguments, these are separated by commas.

Parentheses as sequence delimiters
A key point to note when constructing XPath expressions is this: Parentheses are used to delimit sequences
that use the comma separator or range operator to enumerate sequences. As a result, each parentheses-
delimited sequence is read as one parameter (in function definitions) or one argument (in function calls).

Parentheses are not necessary around a path (or locator) expression (example of a path
expression: //Person/@salary), because a path expression can be read unambiguously as one parameter or
one argument. It is in fact a one-sequence parameter/argument.

Here are some examples to illustrate the points made above:

· avg((10, 20, 30)) The avg function of XPath 2.0 takes one sequence of items as its single

argument. Since this sequence is a comma-separated enumeration, the inner pair of parentheses are
necessary in order to delimit the mandatory single sequence. Without the inner parentheses, the
argument would have three arguments and therefore be invalid. (The outer pair of parentheses are the
parentheses of the function.)

· avg(//Person/@salary) This path expression selects the salary attribute nodes of all Person

elements and returns their attribute-values as the sequence to be evaluated (that is, to be averaged).
No parentheses are required because the sequence is not enumerated before the argument is read.
The argument is the single path (or locator) expression. The path expression is evaluated and the
returned values are submitted to the function as the items of a sequence.

· count((10 to 34)) This is an enumeration via the range operator. The range operator 'to' generates

 a sequence of comma-separated items (the integers from 10 to 34) before the argument is read. As a
result, the count() function has within its argument a comma-separated sequence of 25 items. To
read this as one single-sequence argument, delimiting parentheses are required. Without such
parentheses, the function call would have 25 arguments instead of one—thus invalidating the function
call, since the count() function must, according to its signature, have only one argument.

· count((10 to 34, 37)) The inner parentheses indicate that everything within them is the one

argument of the function call—a single sequence consisting of 26 items.
· count(//Person) No sequence-delimiter parentheses are required around the single argument. The

arguent is a path expression that collects the //Person nodes in the XML document and returns these
nodes as the items of the sequence to be counted.

Using XPath parameters in XPath functions
When parameters are used in the definition of a user-defined XPath function, ensure (i) that the number of
arguments in a function call to this user-defined XPath function is correct, and (ii) that the arguments evaluate
correctly to the expected type and occurrence.

456 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The screenshot above defines three parameters (in the Parameters pane) and then uses these parameters (in
the Function Body pane) to define an XPath function.

Each parameter that is defined in the Parameters can be considered to be a single sequence. The number of
items allowed within the single sequence is specified with the Occurrence property. In the definition above,
each parameter is defined (in its Occurrence property) as a singleton-sequence (that is, a sequence of exactly
one item). Each argument of the function call must therefore be a sequence of one item. The Type property
specifies the datatype of the items of the sequence.

In the definition of our example XPath function (in the Function Body pane), each parameter provides one item
of the sequence that is to be averaged. Since the XPath parameters together constitute a sequence, the
sequence must be enclosed in parentheses to ensure that the entire sequence is read as the one parameter of
the avg() function. If, at runtime, any of the arguments in the function call (corresponding to the three
parameters) is not a singleton-sequence, an error is returned.

Given below are examples of XPath parameter usage in calls to the XPath function ThreeAverage() shown in
the screenshot above. In Design View, you can insert an Auto-Calculation and give it the XPath expressions
listed below to see the results. The function has been defined to take a sequence of three integers and average
them.

· sps:ThreeAverage(10,20,30) returns 20. There are three valid arguments in the function call,
corresponding to the three XPath parameters.

© 2017-2023 Altova GmbH

User-Defined XPath Functions 457Additional Functionality

Altova StyleVision 2024 Professional Edition

· sps:ThreeAverage((10),(20),(30)) returns 20. There are three valid input arguments,
corresponding to the three XPath parameters. Each input argument has been enclosed with
parentheses (which are redundant, since each sequence is a singleton-sequence; however, this
redundancy is not an error).

· sps:ThreeAverage((10),20,30) returns 20. There are three valid input arguments, corresponding
to the three XPath parameters. The first argument has been enclosed with parentheses (redundant, but
not an error).

· sps:ThreeAverage((10,20),(30),(40)) returns an error because the first argument is not valid. It
is not a singleton-sequence, as required by the property definition of the first $a parameter ('Exactly
one').

· sps:ThreeAverage((10,20,30)) returns an error because only one input argument is submitted,
inside the parentheses. Additionally, the argument is invalid because the sequence is not a singleton-
sequence.

If the Occurrence property of a parameter is set to At-least-one (as in the definition shown in the screenshot
below), then that parameter is defined as a sequence of one-or-more items.

In the definition above, the first parameter has been defined as a sequence of one or more items, the next two
parameters as singleton-sequences. The function has been defined to count the number of items submitted by
the first parameter, add the result to the sum of the two integers submitted by the other two parameters, and
then divide the result by three to obtain the average. Notice the following:

458 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· The sequence that is the parameter of the avg() function is enclosed in parentheses. This is to specify
that the avg() function takes a single sequence consisting of three items as its parameter. The single
sequence consists of three integers: the first submitted by the count() function; the second and third
are the two parameters b and c.

· The argument of the count() function is not enclosed in sequence-delimiter parentheses because the
argument is unambiguously a single sequence.

Here are examples of parameter usage in calls to the XPath function Average() shown in the screenshot
above.

· sps:Average((1,2),3,4) returns 3. There are three valid input arguments, corresponding to the three
parameters. The first argument is enclosed in parentheses to delimit it. When the count() function
operates on it, the function will return the value 2, which will be the first item of the sequence submitted
to the avg() function.

· sps:Average(4,4,4) returns 3. There are three valid input arguments. The first argument is allowed
to be a sequence of one item (see the Occurrence property of its corresponding parameter). No
parentheses are required to indicate separate arguments.

Additional points of interest
The following additional points should be noted:

· If an parameter is defined as having At-least-one occurrence, then a function such as MyAverage()
could be defined with an XPath expression such as avg(($a)). This function would accept an
argument that is a single sequence of one-or-more items. The function could be called as follows:
sps:MyAverage((2,3,4)), and it would return the value 3. The input argument must be enclosed in
parentheses to ensure that the input is being read as a single sequence rather than as three singleton-
sequences (which would be the case if there were no enclosing parentheses).

· If an XPath parameter $a is defined as having None-or-one occurrence, then a function such as
MyAverage() could be defined with an XPath expression such as avg(($a, $b, $c)). This function
would accept as its argument three sequences, with the possibility of the first sequence being empty.
If the first sequence is to be empty, then an empty sequence must be explicitly submitted as the first
input argument. Otherwise an error is reported. If the function were called as follows:
sps:MyAverage(30,20,10), it would return the value 20. The function could also be called with:
sps:MyAverage((),20,10), returning 15 (note that the empty sequence does count: as an input value
of empty; for a return value of 10, the first item would have to be 0). The following, however, would
generate an error: sps:MyAverage(20,10), because no first empty sequence is supplied and, as a
consequence, the third input argument is considered to be absent.

Complex examples
Besides providing the benefit of being able to re-use an XPath expression, user-defined XPath functions also
enable the construction of complex customized XPath functions that are not available in the XPath 2.0 function
set. For example, a factorial function could easily be constructed with an XPath expression that takes a
singleton-sequence as its single parameter. If the parameter $num is the number to be factorialized, then the
XPath expression to create the function would be:

if ($num < 2) then 1 else $num * sps:Factorial($num - 1)

If this function were called Factorial(), then the factorial of, say 6, could be obtained by calling the function
with: sps:Factorial(6).

© 2017-2023 Altova GmbH

User-Defined XPath Functions 459Additional Functionality

Altova StyleVision 2024 Professional Edition

9.7.3.2 Parameters and Nodes

When using parameters in XPath functions that locate nodes, it is important to bear in mind that the function
has no context node, no matter from where in the design it is called. The context node can be supplied either in
the XPath expression that is used to define the function (that is, in the Function Body pane) or in the XPath
expression that is used to call the XPath function. In the latter case, the context can be supplied via arguments
in the function call.

Consider the user-defined XPath function Stock(), which is defined with three parameters as shown in the
screenshot below.

The definition in the function body is $ContextStock[@name=$Selection]/$StockInfo, which uses the three
parameters but contains no context node information. The context node information can be supplied in the
XPath expression that calls the function, for example in this way:

sps:Stock($XML/Trades/Stock, $XML/Trades/Selection/Stock, @name)

The function call has three arguments, the value of each of which supplies either context or node-locator
information. Alternatively, the following XPath expressions can be used as the function-call and give the same
results:

sps:Stock(/Trades/Stock, /Trades/Selection/Stock, @name)

460 Additional Functionality User-Defined XPath Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

sps:Stock(/Trades/Stock, //Selection/Stock, @name)

The $XML variable, which returns the document root, can be left out in function calls from design components
because in the XPath expressions of design components the context node is known.

Notice that in the function-call listed above there are three input arguments corresponding respectively to the
three parameters defined for the user-defined XPath function:

· $ContextStock = $XML/Trades/Stock (the /Trades/Stock element)
· $Selection = $XML/Trades/Selection/Stock (the /Trades/Selection/Stock element)
· $StockInfo = @name

The XPath expression in the function definition is:

$ContextStock[@name=$Selection]/$StockInfo

When the input arguments are substituted, the XPath expression in the function definition becomes:

$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock]/@name

It is important to note that it is the nodesets that are passed to the function, not the text strings.

It is in this way that the context node and location steps are passed to the function via parameters. The
function can then be evaluated to locate and return the required nodes.

© 2017-2023 Altova GmbH

Working with Dates 461Additional Functionality

Altova StyleVision 2024 Professional Edition

9.8 Working with Dates

If the source document contains nodes that take date values, using the xs:date or xs:dateTime datatypes in
the underlying XML Schema makes available the powerful date and time manipulation features of XPath 2.0/3.0
(see examples below). StyleVision supports the xs:date or xs:dateTime datatypes by providing:

1. A graphical date picker to help Authentic View users enter dates in the correct lexical format of the
datatype for that node. The date picker, since it is intended for data input, is available only in Authentic
View.

2. A wide range of date formatting possibilities via the Input Formatting feature.

These StyleVision features are described in the sub-sections of this section: Using the Date-Picker and
Formatting Dates . In the rest of the introduction to this section, we show how XPath 2.0 can be used to
make calculations that involve dates.

Note: Date and time data cannot be manipulated with XPath 1.0. However, with XPath 1.0 you can still use
the Date Picker to maintain data integrity and use Input Formatting to provide date formatting .

Date calculations with XPath 2.0
Data involving dates can be manipulated with XPath 2.0 expressions in Auto-Calculations . Given below are a
few examples of what can be achieved with XPath 2.0 expressions.

· The XPath 2.0 functions current-date() and current-dateTime() can be used to obtain the current
date and date-time, respectively.

· Dates can be subtracted. For example: current-date() - DueDate would return an
xdt:dayTimeDuration value; for example, something like P24D, which indicates a positive difference of
24 days.

· Time units can be extracted from durations using XPath 2.0 functions. For example: days-from-
duration(xdt:dayTimeDuration('P24D')) would return the integer 24.

Here is an XPath 2.0 expression in an Auto-Calculation. It calculates a 4% annual interest on an overdue
amount on a per-day basis and returns the sum of the principal amount and the accumulated interest:

if (current-date() gt DueDate)
then (round-half-to-even(InvoiceAmount +

(InvoiceAmount*0.04 div 360 *
days-from-duration((current-date() - DueDate))), 2))

else InvoiceAmount

Such a calculation would be possible with XPath 2.0 only if the DueDate element were defined to be of a date
type such as xs:date and the content of the element is entered in its lexically correct form, that is, YYYY-MM-
DD[±HH:MM], where the timezone component (prefixed by ±) is optional. Using the Date Picker ensures that the
date is entered in the correct lexical form.

461

462

463 354

462

463

462 463

270

462 Additional Functionality Working with Dates

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.8.1 Using the Date-Picker

The Date Picker (screenshot below) is a graphical calendar in Authentic View for entering dates in the correct
lexical format for nodes of xs:date and xs:dateTime datatype.

The lexical format is entered appropriately according to the datatype.

· For xs:date, the format of the entry is YYYY-MM-DD[±HH:MM], where the timezone component
(prefixed by ±) is optional according to the XML Schema specification. A value for the timezone
component can be selected in the Date Picker.

· For xs:dateTime, the format of the entry is YYYY-MM-DDTHH:MM:SS[±HH:MM]. The timezone
component (prefixed by ±) is optional according to the XML Schema specification. A value for the
timezone component can be selected by the user.

Inserting and deleting a Date Picker in the design
A Date Picker can be inserted in the SPS design: (i) for any node that is of datatype xs:date or xs:dateTime,
and (ii) when that node is created either as contents or as an input field. A Date Picker can be inserted in one
of two ways:

· By default when a node of datatype xs:date or xs:dateTime is created in the SPS. To set this
default, toggle the Auto-Add Date Picker feature ON. Do this by selecting/de-selecting the command
Authentic | Auto-add Date Picker. When the Auto-Addition of the Date Picker is switched on, the
Date Picker is inserted when any element of datatype xs:date or xs:dateTime is created as either
contents or an input field, or changed to either of these two components.

· By clicking the menu command Insert | Date Picker when the cursor is at the desired location within
the xs:date or xs:dateTime node in the SPS. This command can be accessed via the Insert menu,
or via the context menu when the cursor is within the xs:date or xs:dateTime node.

When the Date Picker is inserted, the Date Picker icon appears at that location. To delete a Date Picker,
use the Delete or Backspace buttons.

Using the Date Picker in Authentic View
In Authentic View, the Date Picker appears as an icon (screenshot below).

© 2017-2023 Altova GmbH

Working with Dates 463Additional Functionality

Altova StyleVision 2024 Professional Edition

To modify the date, click the icon. This pops up the Date Picker (screenshot below). To enter a new date,
select the required date in the Date Picker. The date will be entered in the correct lexical format according to
that node's datatype.

To enter a timezone, click the Timezone button, which is set to a default of No Timezone. The timezone will be
entered in the lexical format appropriate to the node's datatype (screenshot below).

9.8.2 Formatting Dates

A date in an XML document is saved in the format specific to the datatype of its node. For example, the value
of an xs:date node will have the format YYYY-MM-DD[±HH:MM], while the value of an xs:dateTime node will

464 Additional Functionality Working with Dates

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

have the format YYYY-MM-DDTHH:MM:SS[±HH:MM]. These formats are said to be the lexical representations of
that data. By default, it is the lexical representation of the data that is displayed in Authentic View and the
output. However, in the SPS, the Value Formatting feature can be used to display dates in alternative formats
in Authentic View and, in some cases, optionally in the output.

Value Formatting for dates can be used to define custom formats for nodes and Auto-Calculations of the
following datatypes:

· xs:date
· xs:dateTime
· xs:duration
· xs:gYear
· xs:gYearMonth
· xs:gMonth
· xs:gMonthDay
· xs:gDay

Using Value Formatting to format date nodes
To format dates alternatively to the lexical format of the date node, do the following:

1. Select the contents placeholder or input field of the node. Note that value formatting can only be

applied to nodes created as contents or an input field.
2. In the Properties sidebar, select the autocalc item, and then the AutioCalc group of properties. Now

click the Edit button of the Value Formatting property. This displays the Value Formatting dialog
(screenshot below).

© 2017-2023 Altova GmbH

Working with Dates 465Additional Functionality

Altova StyleVision 2024 Professional Edition

By default, the Unformatted radio button (the standard lexical format for the node's datatype) is
selected.

3. To define an alternative format, select the Format radio button.
4. You can now select a predefined date format from the drop-down list of the combo box (screenshot

below), or define your own format in the input field of the combo box. See Value Formatting Syntax
for details about the syntax to use when defining your own format.

Using Value Formatting to format Auto-Calculations
When Auto-Calculations evaluate to a value that is a lexical date format, Value Formatting can be used to
format the display of the result. Do this as follows:

1. Select the Auto-Calculation in the design.
2. In the Properties sidebar, select the content item, and then the AutoCalc group of properties. Now

click the Edit button of the Value Formatting property. This pops up the Value Formatting dialog
(screenshot below).

By default, the Unformatted radio button is selected.
3. To define an alternative format, select the Format radio button.
4. In the Options for XML Schema value pane, in the Datatype combo box, select the date datatype to

which the Auto-Calculation will evaluate. In the Format combo box, you can then select a predefined
date format from the drop-down list (available options depend on the selected datatype), or define your
own format in the input field of the combo box. See Value Formatting Syntax for details about the
syntax to use when defining your own format.

357

357

466 Additional Functionality Working with Dates

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Applying Value Formatting to the output
The Value Formatting that you define applies to Authentic View. Additionally, some Value Formatting
definitions—not all—can also be applied to HTML, Text, and RTF output. To do this, check the Apply Same
Format to XSLT Output check box. If this option is not checked or if it is not available, then only Authentic View
will display the Value Formatting; the output will display the value in its lexical format (for nodes) or, in the case
of Auto-Calculations, in the format to which the Auto-Calculation evaluates.

© 2017-2023 Altova GmbH

Using Scripts 467Additional Functionality

Altova StyleVision 2024 Professional Edition

9.9 Using Scripts

In StyleVision, you can define JavaScript functions for each SPS in a JavaScript editor (available as a tab in the
Design View). The function definitions created in this way are stored in the header of the HTML document and
can be called from within the body of the HTML document. Such functions are useful when:

· You wish to achieve a complex result using multiple script statements. In this case it is convenient to
write all the required scripts, as separate functions, in one location (the header) and refer to the
functions subsequently in the design document.

· You wish to use a particular script at multiple locations in the design document.

How to define functions in the JavaScript Editor is described in the sub-section Defining JavaScript
Functions .

In the GUI, all JavaScript functions which are defined for a given SPS in the JavaScript Editor are listed in the
Design Tree window under the Scripts entry (screenshot below). The screenshot below indicates that four
JavaScript functions, Average, ImageOut, ImageOver, and Buttons, are currently defined in the active SPS.

The functions defined in the JavaScript Editor are available as event handler calls within the GUI. When a
component in the design document is selected, any of the defined functions can be assigned to an event
handler property in the Event property group in the Properties sidebar (screenshot below). How to assign a
JavaScript function to an event handler is described in the section Assigning Function to Event Handlers .

468

469

468 Additional Functionality Using Scripts

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: Scripts are applicable in the HTML output only. They are not applicable in Authentic View.

Scripts in modular SPSs
When an SPS module is added to another SPS module , the scripts in the added module are available
within the referring SPS, and can be used as event handlers via the Properties sidebar for components in the
referring SPS. For more information about using modular SPSs, see the section Modular SPSs .

9.9.1 Defining JavaScript Functions

To define JavaScript functions, do the following:

1. In Design View, switch to the JavaScript Editor by clicking the Design View tab and selecting
JavaScript (screenshot below).

2. In the JavaScript Editor, type in the function definitions (see screenshot below).

230

230

© 2017-2023 Altova GmbH

Using Scripts 469Additional Functionality

Altova StyleVision 2024 Professional Edition

The screenshot above shows the definitions of two JavaScript functions: DisplayTime and
ClearStatus. These have been described for the active SPS. They will be entered in the header of the
HTML file as follows:

<script language="javascript">

<!-- function DisplayTime()
{

now = new Date();
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
result = hours + "." + mins + "." + secs;
alert(result)

}

function ClearStatus()
{

window.status="";
}
-->

</script>

These functions can now be called from anywhere in the HTML document. In StyleVision, all the
defined functions are available as options that can be assigned to an event handler property in the
Event property group in the Properties sidebar. See Assigning Function to Event Handlers for
details.

9.9.2 Assigning Functions as Event Handlers

In the StyleVision GUI, you can assign JavaScript functions as event handlers for events that occur on the
HTML renditions of SPS components. These event handlers will be used in the HTML output. The event handler
for an available event—such as onclick—is set by assigning a global function as the event handler. In the
Properties sidebar, global functions defined in the JavaScript Editor are available as event handlers in the
dropdown boxes of each event in the Events property group for the selected component (screenshot below).

469

470 Additional Functionality Using Scripts

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To assign a function to an event handler, do the following:

1. Select the component in the SPS for which the event handler is to be defined. The component can be a
node or content of any kind, dynamic or static.

2. In the Properties sidebar select the Event group. This results in the available events being displayed in
the Attribute column (screenshot above).

3. In the Value column of the required event, click the down arrow of the combo box. This drops down a
list of all the functions defined in the JavaScript Editor.

4. From the dropdown list, select the required function as the event handler for that event.

In the HTML output, when that event is triggered on the component for which the event handler is defined, the
JavaScript function is executed.

9.9.3 External JavaScript Files

An SPS can access external JavaScript files in two ways:

1. By creating a User-Defined Element or User-Defined XML Block . These design objects can contain
a SCRIPT element that accesses the external JavaScript file. Note that location of the User-Defined
Element or User-Defined XML Block is within the BODY element of the design (and therefore within the
BODY element of the HTML output, not within the HEAD element).

2. By adding a script in the Javascript Editor that accesses the external file. A script that is added in
this way will be located in the HEAD element of the HTML output.

User-Defined Elements and User-Defined XML Blocks
External JavaScript files can be accessed by means of User-Defined Elements and User-Defined XML
Blocks . Using these mechanisms, a SCRIPT element that accesses the external JavaScript file can be
inserted at any location within the BODY element of the output HTML document.

A User-Defined Element could be inserted as follows:

470

471

140

141

140

© 2017-2023 Altova GmbH

Using Scripts 471Additional Functionality

Altova StyleVision 2024 Professional Edition

1. Place the cursor at the location in the design where the SCRIPT element that accesses the JavaScript
file is to be inserted.

2. From the Insert menu or context menu, select the command for inserting a User-Defined Element .

3. In the dialog that pops up (see screenshot above), enter the SCRIPT element as shown above, giving
the URL of the JavaScript file as the value of the src attribute of the SCRIPT element: for example,
script type="text/javascript" src="file:///c:/Users/mam/Desktop/test.js"

4. Click OK to finish.

You can also use a User-Defined XML Block to achieve the same result. To do this use the same procedure
as described above for User-Defined Elements, with the only differences being (i) that a User-Defined XML
Block is inserted instead of a User-Defined Element , and (ii) that the SCRIPT element is inserted as a
complete XML block, that is, with start and end tags.

JavaScript Editor
The JavaScript Editor enables you to insert an external script in the HEAD element of the HTML output. Do
this by entering, in the JavaScript Editor, the following script fragment, outside any other function definitions
that you create.

var script = document.createElement('script');
script.type = 'text/javascript';
script.src = 'file:///c:/Users/Desktop/test.js';

var head = document.getElementsByTagName('head')[0];
head.appendChild(script)

The external JavaScript file that is located by the URL in script.src is accessed from within the HEAD element
of the output HTML document.

140

141

141 140

468

472 Additional Functionality HTML Import

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.10 HTML Import

In StyleVision you can import an HTML file and create the following documents based on it:

· An SPS document based on the design and structure of the imported HTML file.
· An XML Schema, in which HTML document components are created as schema elements or

attributes. Optionally, additional elements and attributes that are not related to the HTML document
can be created in the user-defined schema.

· An XML document with: (i) a structure based on the XML Schema you have created, and (ii) content
from the HTML file.

· XSLT stylesheets based on the design in Design View.

HTML-to-XML: step-by-step
The HTML Import mechanism, which enables the creation of XML files based on the imported HTML file,
consists of the following steps:

1. Creating New SPS via HTML Import . When an HTML file is imported into StyleVision, a new SPS
document is created. The HTML document is displayed in Design View with HTML markup tags. A
user-defined XML Schema with a document element called UserRoot is created in the Schema Tree

window. This is the schema on which the SPS is based. The HTML document content and markup that
is displayed in Design View at this point is included in the SPS as static content.

2. Creating the Schema and SPS Design . Create the schema by (i) dragging components from the
HTML document to the required location in the schema tree (in the Schema Tree window); and,
optionally, (ii) adding your own nodes to the schema tree. In the Design Window, HTML content that
has been used to build nodes in the schema tree will now be displayed with schema node tags around
the content. HTML content that has no corresponding schema node will continue to be displayed
without schema node tags.

3. In the Design Document, assign formatting to nodes, refine processing rules, or add static content as
required. These modifications will have an effect only on the SPS and the generated XSLT. It will not
have an effect on either the generated schema or XML file.

4. After you have completed the schema tree and the design of the SPS, you can generate and save
the following:

· an XML Schema corresponding to the schema tree you have created;
· an XML data file with a structure based on the schema and content for schema nodes that are

created with the (content) placeholder in the SPS design;
· a SPS (.sps file) and/or XSLT stylesheet based on your design.

9.10.1 Creating New SPS via HTML Import

To create a new SPS file from an HTML document, do the following:

1. Select the menu command File | New | New from HTML File.
2. In the Open dialog that pops up, browse for the HTML file you wish to import. Select it and click Open.
3. You will be asked whether relative paths should be converted to absolute paths. Make your choice by

clicking either Yes or No.

472

474

478

© 2017-2023 Altova GmbH

HTML Import 473Additional Functionality

Altova StyleVision 2024 Professional Edition

A new SPS document is created. The document is displayed in Design View and is marked up with the
predefined HTML formats available in StyleVision (screenshot below).

Note that the HTML document is displayed within the main template. There is no global template.

In the Schema Tree sidebar, a user-defined schema is created (screenshot below) with a root element
(document element) called UserRoot.

Note that there is no global element in the All Global Elements list.

SPS structure and design
The SPS contains a single template—the main template—which is applied to the document node of a
temporary internal XML document. This XML document has the structure of the user-defined schema which was
created in the Schema Tree window. In Design View, at this point, the HTML document components within the
main template are included in the SPS as static components. The representation of these HTML components

474 Additional Functionality HTML Import

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

in Authentic View will be as non-editable, non-XML content. The XSLT stylesheets will contain these HTML
components as literal result elements. The schema, at this point, has only the document element Root;
consequently, the temporary internal XML document contains only the document element Root with no child
node.

When you create HTML selections as elements and attributes in the user-defined schema, you can do this in
either of two ways:

1. By converting the selection to an element or attribute. In the design, the node tags are inserted with a
(content) placeholder within the tag. In the schema, an element or attribute is created. In the XML
document, the selection is converted to the text content of the schema node which is created in the
XML document. The contents of the node created in the XML document will be inserted dynamically
into the output obtained via the SPS.

2. By surrounding the selection with an element or attribute. In the design, the selection is surrounded
by the node tags; no (content) placeholder is inserted. This means that the selection is present in
the SPS design as static content. In the schema, an element or attribute is created. In the XML
document, the node is created, but is empty. The static text which is within the schema node tags in
the design will be output; no dynamic content will be output for this node unless a (content)
placeholder for this node is explicitly inserted in the design.

The significance of the (content) placeholder is that it indicates locations in the design where data from the
XML document will be displayed (in the output) and can be edited (in Authentic View).

9.10.2 Creating the Schema and SPS Design

The schema is created by dragging selections from Design View into the user-defined schema. You do this one
selection at a time. The selection is dropped on a node in the schema tree (relative to which the new node will
be created, either as a child or sibling). You select the type of the node to be created (element or attribute) and
whether the selection is to be converted to the new node or surrounded by it.

The selection
The selection in Design View can be any of the following:

· A node in the HTML document.
· A text string within a node.
· Adjacent text strings across nodes.
· An image.
· A link.
· A table.
· A list.
· A combination of any of the above.

In this section we explain the process in general for any selection. The special cases of tables and lists are
discussed in more detail in the section Creating Tables and Lists as Elements/Attributes .

To make a selection, click an HTML document component or highlight the required text string. If multiple
components are to be selected, click and drag over the desired components to highlight the selection. Note
that StyleVision extends the selection at the beginning and end of the selection to select higher-level elements
till the first and last selected elements belong to the same parent.

476

© 2017-2023 Altova GmbH

HTML Import 475Additional Functionality

Altova StyleVision 2024 Professional Edition

The location in the schema tree
On dragging the selection over the desired schema tree node, the mouse pointer will be changed to one of the
following symbols.

· Dropping the node when the Create as Sibling symbol appears, creates the selection as a sibling
node of the node on which the selection is dropped.

· Dropping the node when the Create as Child symbol appears, creates the selection as a child
node of the node on which the selection is dropped.

You should select the node on which the selection is to be dropped according to whether the selection is to be
created as a sibling or child of that node.

Selecting how the node is created
When you drop the selection (see previous section), a context menu pops up (screenshot below) in which you
make two choices: (i) whether the node is to be created as an element or attribute; (ii) whether the selection is
to be converted to the node or whether the node is to simply surround the selection.

The following points should be noted:

· When a selection is converted to a node (element or attribute), the node tags, together with a
contained (content) placeholder, replace the selection in the design. In the design and the output the
text content of the selection is removed from the static content. In the output, the text of the selection
appears as dynamic content of the node in the XML document.

· If an HTML node is converted to an XML node, the XML node tags are inserted within the HTML node
tags.

· When a selection (including HTML node selections) is surrounded by an XML node, the XML node tags
are inserted before and after the selection. In the design and the output, the text content of the
selection is retained as static text.

· The inserted node tags are inserted with the necessary path (that is, with ancestor node tags that
establish a path relative to the containing node). The path will be absolute or relative depending on the
context of the node in the design.

· How to create nodes from table and list selections are described in Creating Tables and Lists as
Elements/Attributes .

476

476 Additional Functionality HTML Import

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Adding and deleting nodes in the schema
You can add additional nodes (which are not based on an HTML selection) to the user-defined schema. Do this
by right-clicking on a node and selecting the required command from the context menu. Alternatively, you can
use the toolbar icons of the Schema Tree sidebar.

To delete a node, select the node and then use either the context menu or the toolbar icon. Note, however, that
when a node is deleted, some paths in the design could be invalidated.

Modifying the design
You can modify the structure of the design by dragging components around and by inserting static and
dynamic components. Styles can also be modified using the various styling capabilities of StyleVision.

9.10.3 Creating Tables and Lists as Elements/Attributes

Tables and lists in the HTML document can be converted to element or attribute nodes in the XML Schema so
that they retain the table or list structure in the schema.

Converting a table to elements/attributes
To convert a table to schema nodes, do the following:

1. Select the HTML table by highlighting some text in it.
2. Drag it to the node in the schema tree as a sibling or child of which you want to create it.

3. Drop the node when the Create as Sibling symbol or Create as Child symbol appears.
4. In the context menu that now pops up (screenshot below), select the command Convert selected

table/list to elements or Convert selected table/list to attributes according to whether you wish to
create the contents of table cells as elements or attributes, respectively.

5. In the Convert Table dialog that pops up (screenshot below), select whether the table created in the
SPS should be a static table or dynamic table.

© 2017-2023 Altova GmbH

HTML Import 477Additional Functionality

Altova StyleVision 2024 Professional Edition

If the static table option is selected, then for each cell in the table, a schema node is created. In the
design, each node is inserted with the (content) placeholder. The data in the table cells is copied to
the temporary internal XML document (and to the generated XML document). The dynamic table
option is available when the structure of all rows in the table are identical. When created in the SPS,
the rows of the dynamic table are represented by a single row in the design (because each row has the
same structure). The table data will be copied to the XML file. The dynamic table can grow top/down
(rows are arranged vertically relative to each other) or left/right (rows become columns and extend from
left to right). If you indicate that the first row/column is a header, then (i) a header row containing the
column headers as static text is included in the design; and (ii) the schema element/attribute nodes
take the header texts as their names. If the first row/column is not indicated as a header, then no
header row is included in the design.

6. After you have selected the required option/s, click Convert to finish.

Converting a list to elements/attributes
To convert a list to schema nodes, do the following:

1. Select the HTML list by highlighting some text in it.
2. Drag it to the node in the schema tree as a sibling or child of which you want to create it.

3. Drop the node when the Create as Sibling symbol or Create as Child symbol appears.
4. In the context menu that now pops up (screenshot below), select the command Convert selected

table/list to elements or Convert selected table/list to attributes according to whether you wish to
create the contents of table cells as elements or attributes, respectively.

5. In the Convert List dialog that pops up (screenshot below), select whether the list created in the SPS
should be a static list or dynamic list.

478 Additional Functionality HTML Import

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If the static list option is selected, then for each list item, a schema node is created. In the design,
each node is inserted with the text of the HTML list item included as static content of the list item. If
the dynamic list option is selected, then each list item is represented by a single list item node in the
design. In the design, the list item element is inserted with the (content) placeholder.

6. After you have selected the required option, click Convert to finish.

9.10.4 Generating Output

After completing the SPS, you can generate the following output using the File | Save Generated Files
command:

· Generated user-defined schema, which is the schema you have created in the Schema Tree sidebar.
· Generated user-defined XML data, which is an XML document based on the schema you have created

and containing data imported from the HTML file.
· XSLT stylesheets for HTML, Text, and RTF output.
· HTML, Text, and RTF output.

© 2017-2023 Altova GmbH

ASPX Interface for Web Applications 479Additional Functionality

Altova StyleVision 2024 Professional Edition

9.11 ASPX Interface for Web Applications

If an HTML report of DB or XML data for the Internet is to be created with an SPS, then the usual procedure for
creating the report with StyleVision would be as follows:

1. If the source data is in a DB, then, with the finished SPS active in StyleVision, generate an XML file
from the DB. (If the source data is in an XML file, then this step is not required.)

2. Also from the SPS, generate the XSLT-for-HTML file.
3. Transform the XML file using the generated XSLT-for-HTML file.
4. Place the resulting HTML file on the server.

For a web application, the HTML file could become outdated if the source (DB or XML) data is modified.
Updating the HTML file on the Web server with the new data would require: (i) for DB-based data, the re-
generation of the XML file, (ii) transforming the new XML file using the XSLT-for-HTML, and (iii) placing the result
HTML file on the server.

StyleVision provides a solution to quickly update HTML web pages. This is a feature for automatically
generating an ASPX application. All the required ASPX application files (the .aspx file, XSLT file, and the code
files) are generated by StyleVision. These files can then be placed on the server together with the source DB
file or XML file and the XSLT-for-HTML file. Each time the .aspx file—which is the web interface file—is
refreshed, the following happens: (i) for DB-based data, a new XML file is generated from the DB; for XML-based
data, this step is not required; (ii) the XML file is transformed using the XSLT-for-HTML file that is on the server;
and (iii) the output of the transformation is displayed in the web interface page. In this way, the web interface
page will quickly display the latest and up-to-date DB or XML data.

Generating files for an ASPX solution
After creating the DB-based SPS or XML-based SPS, do the following to create an ASPX solution:

1. With the SPS active in StyleVision, generate the ASPX files by clicking the command, File | Web
Design | Generate ASPX Web Application. The ASPX application files will be created in the folder
location you specify. The folder in which you generate the ASPX application will contain the following
files among others:

· Readme.doc
· SPSFilename.aspx
· SPSFilename.xslt
· SPSFilename.cs

2. Place the DB file or XML file on the server, in the same folder as the ASPX application. The .aspx file
is the entry point of the application. Refreshing this file will cause the DB or XML data that is displayed
in it to be updated.

Note: You will need to have Altova's RaptorXML application installed in order for the XSLT transformation to
run correctly. If you have problems with the transformation, see the ReadMe.doc file for details about
setting up RaptorXML.

How it works
The folder in which you generate the ASPX application will contain the following files among others:

http://www.altova.com/download-current.html

480 Additional Functionality ASPX Interface for Web Applications

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Readme.doc
· SPSFilename.aspx
· SPSFilename.xslt
· SPSFilename.cs

SPSFilename.aspx is the URL of the output document. SPSFilename.aspx executes C# code stored in the file
SPSFilename.cs. This C# code reads the XML content (from files or a database as required) and passes it to
RaptorXML, together with the SPSFilename.xslt file. (RaptorXML contains Altova’s XSLT transformation
engine. It can be downloaded from the Altova website.) RaptorXML performs a transformation of the XML
content, using the provided XSLT file. The result is an HTML document, which the web application then displays
in the browser. When the XML content changes, for example because of changes made to the database,
browsing to SPSFilename.aspx (or refreshing the page in the browser) will automatically fetch the most recent
data from the database or XML file and render an updated document.

9.11.1 Example: Localhost on Windows 7

The procedure outlined below sets up your local host to serve an ASPX application. For more information, see
the file Readme.doc in the ASPX application folder. This folder and file are generated when you select the
command File | Web Design | Generate ASPX Web Application with an SPS file active.

Install RaptorXML
Make sure that the latest version of RaptorXML is installed. RaptorXML contains Altova's transformation engine.
It will be used to transform the (DB-generated) XML file.

Activate Internet Information Services (Microsoft’s web server)
If Internet Information Services (IIS) is not activated, carry out the steps below to activate it. Step 5 shows how
to test whether IIS has been activated.

1. Go to Control Panel | Programs and Features | Turn Windows features on or off.
2. Set the Internet Information Services checkbox. The tri-state checkbox will change to Partly checked.
3. Additionally, set the Internet Information Services | World Wide Web Services | Application

Development Features | ASP.NET checkbox.
4. Click OK. When the process is complete, you will have a folder named C:/inetpub/wwwroot. This is

the web server’s root folder.
5. As a test, go to localhost in a browser. This will display the IIS welcome screen

In StyleVision, generate the ASPX application
Generate the ASPX application as follows:

1. It is recommended that the database and the SPS file be in the same folder.
2. After the SPS file has been completed, issue the command Files | Web Design | Generate ASPX Web

Application.
3. In the dialog that opens, create a folder below C:/inetpub/wwwroot and select that folder, for

example: C:/inetpub/wwwroot/Test1.

© 2017-2023 Altova GmbH

ASPX Interface for Web Applications 481Additional Functionality

Altova StyleVision 2024 Professional Edition

4. On confirming your folder selection, StyleVision will generate the following files in it: <FileName>.aspx,
<FileName>_AltovaDataBaseExtractor.cs, Web.config, and a folder App_Code containing the
various files.

Note: In order to save files to C:/inetpub/wwwroot you will need to run StyleVision as an administrator. Do
this by restarting StyleVision. Right-click the StyleVision executable file or a shortcut to it and select
Run as Administrator.

Make ASPX aware of the generated application
Carry out the following steps to make ASPX aware of the application you have generated with StyleVision:

1. Go to Control Panel | Administrative Tools | Internet Information Services (IIS) Manager.
2. In the Connections panel, expand the tree to display the folder (for example, Test1). The folder’s icon

will be a standard yellow folder at this point.
3. In the folder’s context menu, issue the command Convert to Application, then click OK in the dialog.

The folder’s icon will now be a globe.
4. In the Connections panel, expand the tree to display Application Pool and select this.
5. In the context menu for DefaultAppPool (available in the main pane when you select the Application

Pools item in the Connections pane), select the command Advanced Settings.
6. For the Identity property, select Custom account and enter your Windows user name and password.
7. For the Enable 32-Bit Applications property, enter True. (This is so the database drivers have access).

This step applies only to 64-bit versions of Windows 7.

Run the application
In the browser, go to localhost/Test1/<FileName>.aspx (assuming Test1 is the name of the folder in which
the ASPX application has been saved). The transformed HTML will be displayed in the browser. Refreshing this
ASPX page will cause the latest data from the database or XML file to be displayed.

Note: If the browser hangs at this point, make sure that the RaptorXML is correctly licensed.

482 Additional Functionality PXF File: Container for SPS and Related Files

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

9.12 PXF File: Container for SPS and Related Files

An SPS design that uses XSLT 2.0 or 3.0 can be saved as a Portable XML Form (PXF) file. The PXF file format
has been specially developed by Altova to package the SPS design with related files (such as the schema file,
source XML file, image files used in the design, and XSLT files for transformation of the source XML to an
output format). The benefit of the PXF file format is that all the files required for Authentic View editing and for
the generation of output from Authentic View can be conveniently distributed in a single file.

This section describing the use of PXF files is organized in two parts:

· Creating a PXF file
· Editing a PXF File
· Deploying a PXF file

Note: PXF files can be created only from SPSs designed with XSLT 2.0 or 3.0.

9.12.1 Creating a PXF File

To create a PXF file that will contain an SPS design plus related files, open the SPS design in StyleVision and
select the command File | Save As. This pops up the Save Design dialog (screenshot below).

The SPS format is the standard Altova format for StyleVision designs. In this section we are concerned with
the PXF format and so will not consider the SPS format here. Saving a file as an SPS is described in detail in
the User Reference section .

Save as PXF
Selecting the PXF option causes the familiar Save As dialog of Windows systems to pop up. Saving works
exactly as described for the Save Design command —with the additional step of selecting the files you
wish to include in the PXF file. After you specify the PXF filename, the Configure PXF dialog (screenshot below)
will appear, in which you can select/deselect the files you wish to embed.

482

485

486

730

725 725

© 2017-2023 Altova GmbH

PXF File: Container for SPS and Related Files 483Additional Functionality

Altova StyleVision 2024 Professional Edition

In the Global Configuration pane of the Design-time Files tab, you can select/deselect the design-related
source files to be embedded/omitted. You can additionally choose to embed XSLT files generated from the
design. In the XSLT files pane, select the output formats for which you wish to generate and embed XSLT files.
If an XSLT file is included in the PXF file and the PXF file is opened in the Authentic View of an Altova product,
then the toolbar button to generate and view that output format is enabled in Authentic View (screenshot
below).

Note: If XSLT files for outputs supported only in a higher edition of StyleVision (high to low: Enterprise,
Professional, Basic) were created in a PXF file and if that PXF file is then opened in a lower edition,
then on saving the PXF file the XSLT files for outputs not supported in the lower edition will not be
saved. A prompt appears, asking whether you wish to continue saving the PXF file. You can then save

484 Additional Functionality PXF File: Container for SPS and Related Files

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

without the unsupported formats, or abort the save and retain the unsupported formats.

In the Additional Files tab (screenshot below), you can specify any additional files you wish to include that are
not design-time files. These could be, for example, image files referenced in the design by a URL generated
with an XPath expression. In the screenshot below, the image file NewsItems.bmp located in the Images folder
is selected for inclusion in the PXF file.

To include an additional file in the PXF file, click the Add Document button and then browse for the file you
want. The Open dialog (in which you browse for the required file) opens the folder in which the SPS is located.
Files from this folder or any descendant folder may be selected. After an additional file has been added to the
PXF file, it and the folder structure leading to it are displayed. The screenshot above indicates that the
additional file NewsItems.bmp is in a folder named Images, which is itself contained in the folder in which the
SPS file is located.

If a file is selected from a folder located in any level above the folder containing the SPS file, an error is
reported.

© 2017-2023 Altova GmbH

PXF File: Container for SPS and Related Files 485Additional Functionality

Altova StyleVision 2024 Professional Edition

In the SPS design, any reference to an additional file must be made with a relative path and must use the folder
structure shown in the Additional Files pane. For example, NewsItems.bmp in the screenshot above must be
referenced with the relative path: Images/NewsItems.bmp.

Note: In order to save PXF files, the option Embed Images for RTF and Word 2007+ (File | Properties |
Images) must be selected.

9.12.2 Editing a PXF File

A PXF file can be opened in StyleVision via the File | Open command and edited. These edits can be of
two types:

· The configuration of the PXF file can be edited
· The content of individual component files such as the SPS and Authentic XML can be edited in

StyleVision, while other component files (such as image and CSS files) can be edited in external
applications. All component files must however be explicitly updated in StyleVision.

Entry point for PXF editing
The entry point for editing the PXF configuration and for updating the PXF file is the PXF item in the Design
Overview sidebar (screenshot below).

Configure embedded files
Clicking the Configure Embedded Files link in Design Overview (see screenshot above) opens the Configure
Portable XML Form (PXF) dialog. The configuration options are exactly the same as described in the section,
Creating a PXF File .

Updating embedded files
Clicking the Update Embedded Files link in Design Overview (see screenshot above) opens the Portable XML
Form (PXF) Update dialog (screenshot below).

720

482

486 Additional Functionality PXF File: Container for SPS and Related Files

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

First, select whether the source files should be retrieved relative to their current PXF locations or from their
original locations. Then check the files you wish to update and click Update. A new PXF file will be created
and will overwrite the existing PXF file. Therefore, before you update, it is highly recommended that you back up
the original PXF file.

9.12.3 Deploying a PXF File

After a PXF file has been created, it can be transported, downloaded, copied, and saved like any other data file.
Since the PXF file can contain all the files required to edit an XML file in Authentic View and to generate output
reports, it is the only file an Authentic user needs in order to get started and to generate output.

A PXF file can be opened in the Authentic View of Altova products . To give you an idea of how a PXF file
may be used, here is a list of some usage scenarios in XMLSpy:

· The PXF file is opened via the File | Open command. The embedded XML file will be displayed in
Authentic View using the embedded SPS, and can be edited in Authentic View. The File | Save
command saves changes to the PXF (the embedded XML is modified).

· The PXF file contains no embedded XML file and is opened via the File | Open command. If no XML file
is included, then a Template XML file based on the SPS design is opened in Authentic View. The File |
Save command will save this XML file as an embedded file in the PXF file.

24

© 2017-2023 Altova GmbH

PXF File: Container for SPS and Related Files 487Additional Functionality

Altova StyleVision 2024 Professional Edition

· In the Altova product XMLSpy, an XML file can be associated with a PXF file so that the embedded
SPS of the PXF file is used for Authentic View editing. The association is done via the menu command
Authentic | Assign a StyleVision Stylesheet. When changes are saved, they will be saved to the
XML file; the PXF file will be unchanged.

· If an XSLT stylesheet for one of the output formats has been embedded in the PXF file, then the
Authentic View user will be able to generate output in that format. This is done with the appropriate
output-generation toolbar button (screenshot below). In Authentic View, individual output-generation
toolbar buttons will be enabled only if the PXF file was configured to contain the XSLT stylesheet for
that output. For example, if the PXF file was configured to contain the XSLT stylesheets for HTML and
PDF, then only the toolbar buttons for HTML and PDF output will be enabled while those for RTF and
DocX (Word 2007+) output will be disabled.

Note: If a PXF file is located on a web server and will be used with the Authentic Browser Plug-in, you must
ensure that the server does not block the file. You can do this by adding (via the IIS administration
panel, for example) the following MIME type for PXF (.pxf) file extensions: application/x-zip-
compressed.

488 Databases

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10 Databases

When a DB is used as the basis of an SPS—that is, as the main schema of an SPS—the SPS can be used in
the following ways:

· To edit the DB in Authentic View .
· To generate an XML Schema having a structure based on the DB (if the DB does not contain a

schema; only XML DBs, such as IBM DB2 version 9 upwards, contain schemas).
· To generate an XML file with data from the DB (if the required DB data is not already in XML format).
· To design and generate XSLT stylesheets for HTML, Text, and RTF output.
· To generate DB reports (based on the SPS design) in HTML, Text, and RTF format. These reports can

be previewed in StyleVision

When a DB is the source of a subsidiary schema in an SPS, then data from the DB can be included in the
design document, but the DB itself cannot be edited in Authentic View. It is the XML document or DB
associated with the main schema that can be edited.

General procedure
This section describes the procedure for working with DBs in StyleVision. After an introductory sub-section ,
which provides an overview of how DBs work in StyleVision , the sub-sections of this section describe the
various steps in the work procedure. Note that we distinguish between two broad types of DBs: non-XML DBs
and XML DBs. The term DB is used in two senses: generically, it refers to all DBs; specifically, to non-XML
DBs. XML DBs are always referred to as XML DBs. The distinction should be borne in mind because the
method of selecting the DB data that provides the schema and XML data for the SPS is different for these two
types of DB.

· Connecting to a DB : Describes how to connect to non-XML DBs, including IBM DB2 versions below
9..

· DB Data Selection : Describes how the schema and XML data for the SPS is selected from the
DB's table structure, for non-XML and XML DBs separately.

· The DB Schema and DB XML file : When DB tables (from non-XML DBs) are loaded, StyleVision
generates and works with temporary XML Schema and XML data files based, respectively, on the DB
structure and data. For XML DBs, the schema and XML files are not generated by StyleVision but
referenced directly from the DB or, in the case of schemas, from another file location.

· DB Filters: Filtering DB Data : DB data that is loaded into the temporary XML file can be filtered.
· SPS Design Features for DB : In the SPS, special DB functionality, such as DB controls and DB

Queries, are available.
· Generating Output Files : A wide range of DB report-related files can be generated by StyleVision.

Supported databases
The table below lists all the supported databases. If your Altova application is a 64-bit version, ensure that you
have access to the 64-bit database drivers needed for the specific database you are connecting to.

Database Notes

Firebird 2.x, 3.x, 4.x

IBM DB2 8.x, 9.x, 10.x, 11.x

24

490

490

492

575

586

589

594

598

© 2017-2023 Altova GmbH

 489Databases

Altova StyleVision 2024 Professional Edition

Database Notes

IBM Db2 for i 6.x, 7.4, 7.5 Logical files are supported and shown as views.

IBM Informix 11.70 and later

MariaDB 10 and later MariaDB supports native connections. No separate drivers are
required.

Microsoft Access 2003 and later At the time of writing (early September 2019), there is no
Microsoft Access Runtime available for Access 2019. You can
connect to an Access 2019 database from Altova products only
if Microsoft Access 2016 Runtime is installed and only if the
database does not use the "Large Number" data type.

Microsoft Azure SQL Database SQL Server 2016 codebase

Microsoft SQL Server 2005 and later
Microsoft SQL Server on Linux

MySQL 5 and later MySQL 5.7 and later supports native connections. No separate
drivers are required.

Oracle 9i and later

PostgreSQL 8 and later PostgreSQL connections are supported both as native
connections and driver-based connections through interfaces
(drivers) such as ODBC or JDBC. Native connections do not
require any drivers.

Progress OpenEdge 11.6

SQLite 3.x SQLite connections are supported as native, direct connections
to the SQLite database file. No separate drivers are required.

In Authentic view, data coming from a SQLite database is not
editable. When you attempt to save SQLite data from the
Authentic view, a message box will inform you of this known
limitation.

Sybase ASE 15, 16

Teradata 16

See also

· What Is an SPS?

Altova website: Database Reporting

23

http://www.altova.com/stylevision/database-reporting.html

490 Databases DBs and StyleVision

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.1 DBs and StyleVision

In StyleVision, you can create DB-based SPSs. These stylesheets enable you to do two things:

· Edit DBs in Authentic View, and
· Generate reports from DBs.

After you have created the SPS, you can view reports in StyleVision and generate report files in HTML and RTF
format. You can also save the following DB-related XML files that StyleVision generates:

· XML Schema based on DB structure (not applicable for XML DBs, where a schema is already
available)

· XML file having structure defined in the generated schema and content from the DB (not applicable for
XML DBs, where the data is already available in XML format)

· SPS that you design, and which is based on the generated schema
· XSLT stylesheet for HTML output (based on design of SPS)
· XSLT stylesheet for Text output (based on design of SPS)
· XSLT stylesheet for RTF output (based on design of SPS)
· HTML output
· Text output
· RTF output

The saved XML file can then be processed with the required XSLT stylesheet/s. This provides more flexible
report-generating capabilities.

Note: The XML Schema and XML files are generated from non-XML DBs by StyleVision, and you cannot alter
their structure or content for use in Authentic View. This is because the structure of these files is related to the
structure of the non-XML DB. Editing the DB and creating reports from the DB depend on the unique XML
structure generated by StyleVision from the DB.

© 2017-2023 Altova GmbH

DBs and StyleVision 491Databases

Altova StyleVision 2024 Professional Edition

Broad mechanism for working with DB-based SPSs
Given below are the steps involved in creating and using DB-based SPSs. These steps cover the two uses of
DB-based StyleVision Power Stylesheets: editing the DB and creating HTML, Text, and RTF reports from the
DB.

· Connect to the DB with StyleVision. During the connection process you can specify what data
tables in the DB should be filtered out from the XML Schema..

· When the connection is made, a temporary XML Schema is generated based on the structure of
the DB and that schema is displayed in the Schema Window of StyleVision in tree form. In the case of
XML DBs, a pre-existing schema (either in the DB or at a file location) is referenced.

· Temporary StyleVision-internal XML files are also created . One is non-editable (see diagram above)
and is used for the previews and as the source of the generated XML data file. The other is an editable
XML file, which is displayed in Authentic View (see screenshot above). When changes made to this
file in Authentic View are saved (with the File | Save Authentic XML Data command), the
modifications are written back to the DB. The non-editable XML file is updated if necessary each time
an output view is newly accessed or when the XML data is saved.

· In StyleVision, you can define top-level filters to restrict the data imported into the non-editable XML
File, i.e. for the output views and the reports.

· A DB Query is used within Authentic View to restrict the list of records displayed in Authentic
View. It is used only during editing.

· If editing changes have been saved to the DB, then the next time an output view window is accessed,
the non-editable XML file is updated with the modified contents of the DB and the refreshed file is
displayed in the preview.

· A DB-based SPS is created in the same way as the standard schema-based SPS: by dragging-and-
dropping nodes into the Design Window, inserting static stylesheet components, assigning display
properties, etc. These mechanisms are described in this documentation.

492

586

586

589

594

492 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2 Connecting to a Data Source

In the most simple case, a database can be a local file such as a Microsoft Access or SQLite database file. In
a more advanced scenario, a database may reside on a remote or network database server which does not
necessarily use the same operating system as the application that connects to it and consumes data. For
example, while StyleVision runs on a Windows operating system, the database from which you want to access
data (for example, MySQL) might run on a Linux machine.

To interact with various database types, both remote and local, StyleVision relies on the data connection
interfaces and database drivers that are already available on your operating system or released periodically by
the major database vendors. In the constantly evolving landscape of database technologies, this approach
caters for better cross-platform flexibility and interoperability.

The following diagram illustrates, in a simplified way, data connectivity options available between StyleVision
(illustrated as a generic client application) and a data store (which may be a database server or database file).

* Direct native connections are supported for SQLite, PostgreSQL, CouchDB and MongoDB databases. To
connect to such databases, no additional drivers are required to be installed on your system.

As shown in the diagram above, StyleVision can access any of the major database types through the following
data access technologies:

· ADO (Microsoft® ActiveX® Data Objects), which, in its turn, uses an underlying OLE DB (Object
Linking and Embedding, Database) provider

· ADO.NET (A set of libraries available in the Microsoft .NET Framework that enable interaction with
data)

© 2017-2023 Altova GmbH

Connecting to a Data Source 493Databases

Altova StyleVision 2024 Professional Edition

· JDBC (Java Database Connectivity)
· ODBC (Open Database Connectivity)

Note: Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .

About data access technologies
The data connection interface you should choose largely depends on your existing software infrastructure. You
will typically choose the data access technology and the database driver which integrates tighter with the
database system to which you want to connect. For example, to connect to a Microsoft Access 2013
database, you would build an ADO connection string that uses a native provider such as the Microsoft Office
Access Database Engine OLE DB Provider. To connect to Oracle, on the other hand, you may want to
download and install the latest JDBC, ODBC, or ADO.NET interfaces from the Oracle website.

While drivers for Windows products (such as Microsoft Access or SQL Server) may already be available on
your Windows operating system, they may not be available for other database types. Major database vendors
routinely release publicly available database client software and drivers which provide cross-platform access to
the respective database through any combination of ADO, ADO.NET, ODBC, or JDBC. In addition to this,
several third party drivers may be available for any of the above technologies. In most cases, there is more than
one way to connect to the required database from your operating system, and, consequently, from StyleVision.
The available features, performance parameters, and the known issues will typically vary based on the data
access technology or drivers used.

10.2.1 Start Database Connection Wizard

StyleVision provides a Database Copnnection Wizard that guides you through the steps required to set up a
connection to a data source. Before you go through the wizard steps, be aware that for some database types it
is necessary to install and separately configure several database prerequisites, such as a database driver or
database client software. These are normally provided by the respective database vendors, and include
documentation tailored to your specific Windows version. For a list of database drivers grouped by database
type, see Database Drivers Overview .

To start the Database Connection Wizard (see screenshot below), do the following:

· On the File menu, click New, and then click New From DB.

The Database Connection Wizard (screenshot below) is started. On the left hand side of the window, you can
select the most suitable from the following ways to connect to your database:

· Connection Wizard, which prompts you to choose your database type and then guides you through the
steps for connecting to a database of that type

· Select a data access technology: ADO, ADO.NET, ODBC, or JDBC
· Use an Altova global resource in which database connection is stored
· A native PostgreSQL connection

In the Connection Wizard pane (see screenshot below) databases can be sorted alphabetically by the name of
the database type or by recent usage. Select the option you want in the Sort By combo box. After you have
selected the database type to which you want to connect, click Next.

509

495

494 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The wizard will take you through the next steps according to the database type, connection technology (ADO,
ADO.NET, ODBC, JDBC), and driver that will be used. For examples applicable to each database type, see
Database Connection Examples .

Alternatively to using Connection Wizard, you can use one of the following database access technologies:

· Setting up an ADO Connection
· Setting up an ADO.NET Connection
· Setting up an ODBC Connection
· Setting up a JDBC Connection

521

498

503

510

513

© 2017-2023 Altova GmbH

Connecting to a Data Source 495Databases

Altova StyleVision 2024 Professional Edition

10.2.2 Database Drivers Overview

The following table lists common database drivers you can use to connect to a particular database through a
particular data access technology. Note that this list does not aim to be either exhaustive or prescriptive; you
can use other native or third party alternatives in addition to the drivers shown below.

Even though a number of database drivers might be already available on your Windows operating system, you
may still need to download an alternative driver. For some databases, the latest driver supplied by the database
vendor is likely to perform better than the driver that shipped with the operating system.

Database vendors may provide drivers either as separate downloadable packages, or bundled with database
client software. In the latter case, the database client software normally includes any required database drivers,
or provides you with an option during installation to select the drivers and components you wish to install.
Database client software typically consists of administration and configuration utilities used to simplify
database administration and connectivity, as well as documentation on how to install and configure the
database client and any of its components.

Configuring the database client correctly is crucial for establishing a successful connection to the database.
Before installing and using the database client software, it is strongly recommended to read carefully the
installation and configuration instructions of the database client; these may vary for each database version and
for each Windows version.

To understand the capabilities and limitations of each data access technology with respect to each database
type, refer to the documentation of that particular database product and also test the connection against your
specific environment. To avoid common connectivity issues, note the following:

· Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes .
· When installing a database driver, it is recommended that it has the same platform as the Altova

application (32-bit or 64-bit). For example, if you are using a 32-bit Altova application on a 64-bit
operating system, install the 32-bit driver, and set up your database connection using the 32-bit driver,
see also Viewing the Available ODBC Drivers .

· When setting up an ODBC data source, it is recommended to create the data source name (DSN) as
System DSN instead of User DSN. For more information, see Setting up an ODBC Connection .

· When setting up a JDBC data source, ensure that JRE (Java Runtime Environment) or Java
Development Kit (JDK) is installed and that the CLASSPATH environment variable of the operating
system is configured. For more information, see Setting up a JDBC Connection .

· For the installation instructions and support details of any drivers or database client software that you
install from a database vendor, check the documentation provided with the installation package.

Database Interface Drivers

Firebird ADO.NET Firebird ADO.NET Data Provider (https://www.firebirdsql.org/en/additional-
downloads/)

JDBC Firebird JDBC driver (https://www.firebirdsql.org/en/jdbc-driver/)

ODBC Firebird ODBC driver (https://www.firebirdsql.org/en/odbc-driver/)

IBM DB2 ADO IBM OLE DB Provider for DB2

ADO.NET IBM Data Server Provider for .NET

509

512

510

513

https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/jdbc-driver/
https://www.firebirdsql.org/en/odbc-driver/

496 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Database Interface Drivers

JDBC IBM Data Server Driver for JDBC and SQLJ

ODBC IBM DB2 ODBC Driver

IBM DB2 for i ADO · IBM DB2 for i5/OS IBMDA400 OLE DB Provider
· IBM DB2 for i5/OS IBMDARLA OLE DB Provider
· IBM DB2 for i5/OS IBMDASQL OLE DB Provider

ADO.NET .NET Framework Data Provider for IBM i

JDBC IBM Toolbox for Java JDBC Driver

ODBC iSeries Access ODBC Driver

IBM Informix ADO IBM Informix OLE DB Provider

JDBC IBM Informix JDBC Driver

ODBC IBM Informix ODBC Driver

Microsoft
Access

ADO · Microsoft Jet OLE DB Provider
· Microsoft Access Database Engine OLE DB Provider

ADO.NET .NET Framework Data Provider for OLE DB

ODBC · Microsoft Access Driver

MariaDB ADO.NET In the absence of a dedicated .NET connector for MariaDB, use
Connector/NET for MySQL
(https://dev.mysql.com/downloads/connector/net/).

JDBC MariaDB Connector/J (https://downloads.mariadb.org/)

ODBC MariaDB Connector/ODBC (https://downloads.mariadb.org/)

Native
connection

Available. No drivers are required.

Microsoft SQL
Server

ADO · Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

ADO.NET · .NET Framework Data Provider for SQL Server
· .NET Framework Data Provider for OLE DB

JDBC · Microsoft JDBC Driver for SQL Server (https://docs.microsoft.com/en-
us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server)

ODBC · ODBC Driver for Microsoft SQL Server (https://docs.microsoft.com/en-
us/SQL/connect/odbc/download-odbc-driver-for-sql-server)

MySQL ADO.NET · Connector/NET (https://dev.mysql.com/downloads/connector/net/)

JDBC Connector/J (https://dev.mysql.com/downloads/connector/j/)

https://dev.mysql.com/downloads/connector/net/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/j/

© 2017-2023 Altova GmbH

Connecting to a Data Source 497Databases

Altova StyleVision 2024 Professional Edition

Database Interface Drivers

ODBC Connector/ODBC (https://dev.mysql.com/downloads/connector/odbc/)

Native
connection

Available for MySQL 5.7 and later. No drivers are required.

Oracle ADO · Oracle Provider for OLE DB
· Microsoft OLE DB Provider for Oracle

ADO.NET Oracle Data Provider for .NET
(http://www.oracle.com/technetwork/topics/dotnet/index-085163.html)

JDBC · JDBC Thin Driver
· JDBC Oracle Call Interface (OCI) Driver
These drivers are typically installed during the installation of your Oracle
database client. Connect through the OCI Driver (not the Thin Driver) if you
are using the Oracle XML DB component.

ODBC · Microsoft ODBC for Oracle
· Oracle ODBC Driver (typically installed during the installation of your

Oracle database client)

PostgreSQL JDBC PostgreSQL JDBC Driver (https://jdbc.postgresql.org/download.html)

ODBC psqlODBC (https://odbc.postgresql.org/)

Native
connection

Available. No drivers are required.

Progress
OpenEdge

JDBC JDBC Connector (https://www.progress.com/jdbc/openedge)

ODBC ODBC Connector (https://www.progress.com/odbc/openedge)

SQLite Native
connection

Available. No drivers are required.

Sybase ADO Sybase ASE OLE DB Provider

JDBC jConnect™ for JDBC

ODBC Sybase ASE ODBC Driver

Teradata ADO.NET .NET Data Provider for Teradata
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-
teradata)

JDBC Teradata JDBC Driver
(https://downloads.teradata.com/download/connectivity/jdbc-driver)

ODBC Teradata ODBC Driver for Windows
(https://downloads.teradata.com/download/connectivity/odbc-driver/windows)

https://dev.mysql.com/downloads/connector/odbc/
http://www.oracle.com/technetwork/topics/dotnet/index-085163.html
https://jdbc.postgresql.org/download.html
https://odbc.postgresql.org/
https://www.progress.com/jdbc/openedge
https://www.progress.com/odbc/openedge
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/jdbc-driver
https://downloads.teradata.com/download/connectivity/odbc-driver/windows

498 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2.3 ADO Connection

Microsoft ActiveX Data Objects (ADO) is a data access technology that enables you to connect to a variety of
data sources through OLE DB. OLE DB is an alternative interface to ODBC or JDBC; it provides uniform
access to data in a COM (Component Object Model) environment. ADO is a precursor of the newer
ADO.NET and is still one of the possible ways to connect to Microsoft native databases such as Microsoft
Access or SQL Server, although you can also use it for other data sources.

Importantly, you can choose between multiple ADO providers, and some of them must be downloaded and
installed on your workstation before you can use them. For example, for connecting to SQL Server, the
following ADO providers are available:

· Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL)
· Microsoft OLE DB Provider for SQL Server (SQLOLEDB)
· SQL Server Native Client (SQLNCLI)

From the providers listed above, the recommended one is MSOLEDBSQL; you can download it from
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15.
Note that it must match the platform of StyleVision (32-bit or 64-bit). The SQLOLEDB and SQLNCLI providers
are considered deprecated and thus are not recommended.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To set up an ADO connection:

1. Start the database connection wizard .
2. Click ADO Connections.

503

493

https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2017-2023 Altova GmbH

Connecting to a Data Source 499Databases

Altova StyleVision 2024 Professional Edition

3. Click Build.

4. Select the data provider through which you want to connect. The table below lists a few common
scenarios.

500 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To connect to this database... Use this provider...

Microsoft Access · Microsoft Office Access Database Engine OLE DB
Provider (recommended)

· Microsoft Jet OLE DB Provider

If the Microsoft Office Access Database Engine OLE DB
Provider is not available in the list, make sure that you have
installed either Microsoft Access or the Microsoft Access
Database Engine Redistributable (https://www.microsoft.com/en-
us/download/details.aspx?id=54920) on your computer.

SQL Server · Microsoft OLE DB Driver for SQL Server
(MSOLEDBSQL) - this is the recommended OLE DB
provider. In order for this provider to appear in the list, it
must be downloaded from https://docs.microsoft.com/en-
us/sql/connect/oledb/download-oledb-driver-for-sql-
server?view=sql-server-ver15 and installed.

· Microsoft OLE DB Provider for SQL Server
(OLEDBSQL)

· SQL Server Native Client (SQLNCLI)

Other database Select the provider applicable to your database.

If an OLE DB provider to your database is not available, install the
required driver from the database vendor (see Database Drivers
Overview). Alternatively, set up an ADO.NET, ODBC, or JDBC
connection.

If the operating system has an ODBC driver to the required
database, you could also use the Microsoft OLE DB Provider
for ODBC Drivers, or preferably opt for an ODBC connection .

5. Having selected the provider of choice, click Next and complete the wizard.

The subsequent wizard steps are specific to the provider you chose. For SQL Server, you will need to provide or
select the host name of the database server, the authentication method, the database name, as well as the
database username and password. For an example, see Connecting to Microsoft SQL Server (ADO) . For
Microsoft Access, you will be asked to browse for or provide the path to the database file. For an example, see
Connecting to Microsoft Access (ADO) .

The complete list of initialization properties (connection parameters) is available in the All tab of the connection
dialog box—these properties vary depending on the chosen provider and may need to be set explicitly in order
for the connection to be possible. The following sections provide guidance on configuring the basic initialization
properties for Microsoft Access and SQL Server databases:

· Setting up the SQL Server Data Link Properties
· Setting up the Microsoft Access Data Link Properties

495

510

543

540

501

502

https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

© 2017-2023 Altova GmbH

Connecting to a Data Source 501Databases

Altova StyleVision 2024 Professional Edition

10.2.3.1 Connecting to an Existing Microsoft Access Database

This approach is suitable when you want to connect to a Microsoft Access database which is not password-
protected. If the database is password-protected, set up the database password as shown in Connecting to
Microsoft Access (ADO) .

To connect to an existing Microsoft Access database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select Microsoft Access (ADO), and then click Next.
3. Browse for the database file, or enter the path to it (either relative or absolute).
4. Click Connect.

10.2.3.2 Setting up the SQL Server Data Link Properties

When you connect to a Microsoft SQL Server database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

540

493

498

502 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Property Notes

Integrated Security If you selected the SQL Server Native Client data provider on the
Provider tab, set this property to a space character.

Persist Security Info Set this property to True.

10.2.3.3 Setting up the Microsoft Access Data Link Properties

When you connect to a Microsoft Access database through ADO , you may need to set the following
connection properties in the All tab of the Data Link Properties dialog box.

Data Link Properties dialog box

Property Notes

Data Source This property stores the path to the Microsoft Access database file. To
avoid database connectivity issues, it is recommended to use the UNC
(Universal Naming Convention) path format, for example:

\\anyserver\share$\filepath

498

© 2017-2023 Altova GmbH

Connecting to a Data Source 503Databases

Altova StyleVision 2024 Professional Edition

Property Notes

Jet OLEDB:System Database This property stores the path to the workgroup information file. You
may need to explicitly set the value of this property before you can
connect to a Microsoft Access database.

If you cannot connect due to a "workgroup information file" error, locate
the workgroup information file (System.MDW) applicable to your user
profile, and set the property value to the path of the System.MDW file.

Jet OLEDB:Database Password If the database is password-protected, set the value of this property to
the database password.

10.2.4 ADO.NET Connection

ADO.NET is a set of Microsoft .NET Framework libraries designed to interact with data, including data from
databases. To connect to a database from StyleVision through ADO.NET, Microsoft .NET Framework 4 or later
is required. As shown below, you connect to a database through ADO.NET by selecting a .NET provider and
supplying a connection string.

A .NET data provider is a collection of classes that enables connecting to a particular type of data source (for
example, a SQL Server, or an Oracle database), executing commands against it, and fetching data from it. In
other words, with ADO.NET, an application such as StyleVision interacts with a database through a data
provider. Each data provider is optimized to work with the specific type of data source that it is designed for.
There are two types of .NET providers:

1. Supplied by default with Microsoft .NET Framework.

504 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Supplied by major database vendors, as an extension to the .NET Framework. Such ADO.NET
providers must be installed separately and can typically be downloaded from the website of the
respective database vendor.

Note: Certain ADO.NET providers are not supported or have limited support. See ADO.NET Support
Notes .

To set up an ADO.NET connection:

1. Start the database connection wizard .
2. Click ADO.NET Connections.
3. Select a .NET data provider from the list.

The list of providers available by default with the .NET Framework appears in the "Provider" list.
Vendor-specific .NET data providers are available in the list only if they are already installed on
your system. To become available, vendor-specific .NET providers must be installed into the GAC
(Global Assembly Cache), by running the .msi or .exe file supplied by the database vendor.

4. Enter a database connection string. A connection string defines the database connection information,
as semicolon-delimited key/value pairs of connection parameters. For example, a connection string
such as Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User

ID=dbuser;Password=dbpass connects to the SQL Server database ProductsDB on server

DBSQLSERV, with the user name dbuser and password dbpass. You can create a connection string by
typing the key/value pairs directly into the "Connection String" dialog box. Another option is to create it
with Visual Studio (see Creating a Connection String in Visual Studio).

The syntax of the connection string depends on the provider selected from the "Provider" list. For
examples, see Sample ADO.NET Connection Strings .

509

493

505

508

© 2017-2023 Altova GmbH

Connecting to a Data Source 505Databases

Altova StyleVision 2024 Professional Edition

5. Click Connect.

10.2.4.1 Creating a Connection String in Visual Studio

In order to connect to a data source using ADO.NET, a valid database connection string is required. The
following instructions show you how to create a connection string from Visual Studio.

To create a connection string in Visual Studio:

1. On the Tools menu, click Connect to Database.
2. Select a data source from the list (in this example, Microsoft SQL Server). The Data Provider is filled

automatically based on your choice.

506 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Click Continue.

© 2017-2023 Altova GmbH

Connecting to a Data Source 507Databases

Altova StyleVision 2024 Professional Edition

4. Enter the server host name and the user name and password to the database. In this example, we are
connecting to the database ProductsDB on server DBSQLSERV, using SQL Server authentication.

5. Click OK.

If the database connection is successful, it appears in the Server Explorer window. You can display the Server
Explorer window using the menu command View | Server Explorer. To obtain the database connection string,
right-click the connection in the Server Explorer window, and select Properties. The connection string is now
displayed in the Properties window of Visual Studio. Note that, before pasting the string into the "Connection
String" box of StyleVision, you will need to replace the asterisk (*) characters with the actual password.

508 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2.4.2 Sample ADO.NET Connection Strings

To set up an ADO.NET connection, you need to select an ADO.NET provider from the database connection
dialog box and enter a connection string (see also Setting up an ADO.NET Connection). Sample ADO.NET
connection strings for various databases are listed below under the .NET provider where they apply.

.NET Data Provider for Teradata
This provider can be downloaded from Teradata website
(https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata). A sample connection
string looks as follows:

Data Source=ServerAddress;User Id=user;Password=password;

.NET Framework Data Provider for IBM i
This provider is installed as part of IBM i Access Client Solutions - Windows Application Package. A sample
connection string looks as follows:

DataSource=ServerAddress;UserID=user;Password=password;DataCompression=True;

For more information, see the ".NET Provider Technical Reference" help file included in the installation package
above.

.NET Framework Data Provider for MySQL
This provider can be downloaded from MySQL website (https://dev.mysql.com/downloads/connector/net/). A
sample connection string looks as follows:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

See also: https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-
string.html

.NET Framework Data Provider for SQL Server
A sample connection string looks as follows:

Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User ID=dbuser;Password=dbpass

See also: https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

IBM DB2 Data Provider 10.1.2 for .NET Framework 4.0

Database=PRODUCTS;UID=user;Password=password;Server=localhost:50000;

503

https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

© 2017-2023 Altova GmbH

Connecting to a Data Source 509Databases

Altova StyleVision 2024 Professional Edition

Note: This provider is typically installed with the IBM DB2 Data Server Client package. If the provider is
missing from the list of ADO.NET providers after installing IBM DB2 Data Server Client package, refer
to the following technical note: https://www-01.ibm.com/support/docview.wss?uid=swg21429586.

See also:
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/d
oc/DB2ConnectionClassConnectionStringProperty.html

Oracle Data Provider for .NET (ODP.NET)
The installation package which includes the ODP.NET provider can be downloaded from the Oracle website
(see http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html). A sample connection string
looks as follows:

Data Source=DSORCL;User Id=user;Password=password;

Where DSORCL is the name of the data source which points to an Oracle service name defined in the
tnsnames.ora file, as described in Connecting to Oracle (ODBC) .

To connect without configuring a service name in the tnsnames.ora file, use a string such as:

Data Source=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=host)(PORT=port)))

(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID)));User

Id=user;Password=password;

See also: https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

10.2.4.3 ADO.NET Support Notes

The following table lists known ADO.NET database drivers that are currently not supported or have limited
support in StyleVision.

Database Driver Support notes

All databases .Net Framework Data Provider
for ODBC

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ODBC direct
connections instead.

.Net Framework Data Provider
for OleDb

Limited support. Known issues exist with
Microsoft Access connections. It is
recommended to use ADO direct connections
instead.

Firebird Firebird ADO.NET Data Provider Limited support. It is recommended to use
ODBC or JDBC instead.

Informix IBM Informix Data Provider for Not supported. Use DB2 Data Server

555

https://www-01.ibm.com/support/docview.wss?uid=swg21429586
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html
https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

510 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Database Driver Support notes

.NET Framework 4.0 Provider instead.

IBM DB2 for i (iSeries) .Net Framework Data Provider
for i5/OS

Not supported. Use .Net Framework Data
Provider for IBM i instead, installed as part
of the IBM i Access Client Solutions -
Windows Application Package.

Oracle .Net Framework Data Provider
for Oracle

Limited support. Although this driver is
provided with the .NET Framework, its usage
is discouraged by Microsoft, because it is
deprecated.

PostgreSQL - No ADO.NET drivers for this vendor are
supported. Use a native connection instead.

Sybase - No ADO.NET drivers for this vendor are
supported.

10.2.5 ODBC Connection

ODBC (Open Database Connectivity) is a widely used data access technology that enables you to connect to
a database from StyleVision. It can be used either as primary means to connect to a database, or as an
alternative to native, OLE DB, or JDBC-driven connections.

To connect to a database through ODBC, first you need to create an ODBC data source name (DSN) on the
operating system. This step is not required if the DSN has already been created, perhaps by another user of
the operating system. The DSN represents a uniform way to describe the database connection to any ODBC-
aware client application on the operating system, including StyleVision. DSNs can be of the following types:

· System DSN
· User DSN
· File DSN

A System data source is accessible by all users with privileges on the operating system. A User data source is
available to the user who created it. Finally, if you create a File DSN, the data source will be created as a file
with the .dsn extension which you can share with other users, provided that they have installed the drivers used
by the data source.

Any DSNs already available on your machine are listed by the database connection dialog box when you click
ODBC connections on the ODBC connections dialog box.

© 2017-2023 Altova GmbH

Connecting to a Data Source 511Databases

Altova StyleVision 2024 Professional Edition

ODBC Connections dialog box

If a DSN to the required database is not available, the StyleVision database connection wizard will assist you
to create it; however, you can also create it directly on your Windows operating system. In either case, before
you proceed, ensure that the ODBC driver applicable for your database is in the list of ODBC drivers available to
the operating system (see Viewing the Available ODBC Drivers).

To connect by using a new DSN:

1. Start the database connection wizard .
2. On the database connection dialog box, click ODBC Connections.
3. Select a data source type (User DSN, System DSN, File DSN).

To create a System DSN, you need administrative rights on the operating system, and StyleVision
must be run as administrator.

4. Click Add .
5. Select a driver, and then click User DSN or System DSN (depending on the type of the DSN you want

to create). If the driver applicable to your database is not listed, download it from the database vendor
and install it (see Database Drivers Overview).

6. On the dialog box that pops up, fill in any driver specific connection information to complete the setup.

For the connection to be successful, you will need to provide the host name (or IP address) of the database
server, as well as the database username and password. There may be other optional connection parameters—
these parameters vary between database providers. For detailed information about the parameters specific to

512

493

495

512 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

each connection method, consult the documentation of the driver provider. Once created, the DSN becomes
available in the list of data source names. This enables you to reuse the database connection details any time
you want to connect to the database. Note that User DSNs are added to the list of User DSNs whereas
System DSNs are added to the list of System DSNs.

To connect by using an existing DSN:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Choose the type of the existing data source (User DSN, System DSN, File DSN).
4. Click the existing DSN record, and then click Connect.

To build a connection string based on an existing .dsn file:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string, and then click Build.
4. If you want to build the connection string using a File DSN, click the File Data Source tab. Otherwise,

click the Machine Data Source tab. (System DSNs and User DSNs are known as "Machine" data
sources.)

5. Select the required .dsn file, and then click OK.

To connect by using a prepared connection string:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select Build a connection string.
4. Paste the connection string into the provided box, and then click Connect.

10.2.5.1 Available ODBC Drivers

You can view the ODBC drivers available on your operating system in the ODBC Data Source Administrator.
You can access the ODBC Data Source Administrator (Odbcad32.exe) from the Windows Control Panel,
under Administrative Tools. On 64-bit operating systems, there are two versions of this executable:

· The 32-bit version of the Odbcad32.exe file is located in the C:\Windows\SysWoW64 directory
(assuming that C: is your system drive).

· The 64-bit version of the Odbcad32.exe file is located in the C:\Windows\System32 directory.

Any installed 32-bit database drivers are visible in the 32-bit version of ODBC Data Source Administrator, while
64-bit drivers—in the 64-bit version. Therefore, ensure that you check the database drivers from the relevant
version of ODBC Data Source Administrator.

493

493

493

© 2017-2023 Altova GmbH

Connecting to a Data Source 513Databases

Altova StyleVision 2024 Professional Edition

ODBC Data Source Administrator

If the driver to your target database does not exist in the list, or if you want to add an alternative driver, you will
need to download it from the database vendor (see Database Drivers Overview). Once the ODBC driver is
available on your system, you are ready to create ODBC connections with it (see Setting up an ODBC
Connection).

10.2.6 JDBC Connection

JDBC (Java Database Connectivity) is a database access interface which is part of the Java software platform
from Oracle. JDBC connections are generally more resource-intensive than ODBC connections but may provide
features not available through ODBC.

Prerequisites
· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either

Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC drivers from the database vendor must be installed. These may be JDBC drivers installed as

part of a database client installation, or JDBC libraries (.jar files) downloaded separately, if available
and supported by the database, see also Database Connection Examples .

495

510

521

514 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· The CLASSPATH environment variable must include the path to the JDBC driver (one or several .jar files)
on your Windows operating system. When you install some database clients, the installer may
configure this variable automatically. See also Configuring the CLASSPATH .

Connecting to SQL Server via JDBC with Windows credentials
If you connect to SQL Server through JDBC with Windows credentials (integrated security), note the following:

· The sqljdbc_auth.dll file included in the JDBC driver package must be copied to a directory that is on
the system PATH environment variable. There are two such files, one for the x86 and one for x64
platform. Make sure that you add to the PATH the one that corresponds to your JDK platform.

· The JDBC connection string must include the property integratedSecurity=true.

For further information, refer to Microsoft JDBC driver for SQL Server documentation,
https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url.

Setting up a JDBC connection
1. Start the database connection wizard .
2. Click JDBC Connections.
3. Optionally, enter a semicolon-separated list of .jar file paths in the "Classpaths" text box. The .jar

libraries entered here will be loaded into the environment in addition to those already defined in the
CLASSPATH environment variable. When you finish editing the "Classpaths" text box, any JDBC drivers
found in the source .jar libraries are automatically added to the "Driver" list (see the next step).

516

493

https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url

© 2017-2023 Altova GmbH

Connecting to a Data Source 515Databases

Altova StyleVision 2024 Professional Edition

4. Next to "Driver", select a JDBC driver from the list, or enter a Java class name. Note that this list
contains any JDBC drivers configured through the CLASSPATH environment variable (see Configuring the
CLASSPATH), as well as those found in the "Classpaths" text box.

The JDBC driver paths defined in the CLASSPATH variable, as well as any .jar file paths entered
directly in the database connection dialog box are all supplied to the Java Virtual Machine (JVM).
The JVM then decides which drivers to use in order to establish a connection. It is recommended
to keep track of Java classes loaded into the JVM so as not to create potential JDBC driver
conflicts and avoid unexpected results when connecting to the database.

5. Enter the username and password to the database in the corresponding boxes.
6. In the Database URL text box, enter the JDBC connection URL (string) in the format specific to your

database type. The following table describes the syntax of JDBC connection URLs (strings) for
common database types.

Database JDBC Connection URL

Firebird jdbc:firebirdsql://<host>[:<port>]/<database path or

alias>

IBM DB2 jdbc:db2://hostName:port/databaseName

IBM DB2 for i jdbc:as400://[host]

IBM Informix jdbc:informix-
sqli://hostName:port/databaseName:INFORMIXSERVER=myserver

MariaDB jdbc:mariadb://hostName:port/databaseName

Microsoft SQL Server jdbc:sqlserver://hostName:port;databaseName=name

MySQL jdbc:mysql://hostName:port/databaseName

Oracle jdbc:oracle:thin:@hostName:port:SID

jdbc:oracle:thin:@//hostName:port/service

Oracle XML DB jdbc:oracle:oci:@//hostName:port:service

PostgreSQL jdbc:postgresql://hostName:port/databaseName

Progress OpenEdge jdbc:datadirect:openedge://host:port;databaseName=db_name

Sybase jdbc:sybase:Tds:hostName:port/databaseName

Teradata jdbc:teradata://databaseServerName

Note: Syntax variations to the formats listed above are also possible (for example, the database URL may
exclude the port or may include the username and password to the database). Check the
documentation of the database vendor for further details.

7. Click Connect.

516

516 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2.6.1 Configuring the CLASSPATH

The CLASSPATH environment variable is used by the Java Runtime Environment (JRE) or the Java Development
Kit (JDK) to locate Java classes and other resource files on your operating system. When you connect to a
database through JDBC, this variable must be configured to include the path to the JDBC driver on your
operating system, and, in some cases, the path to additional library files specific to the database type you are
using.

The following table lists sample file paths that must be typically included in the CLASSPATH variable.
Importantly, you may need to adjust this information based on the location of the JDBC driver on your system,
the JDBC driver name, as well as the JRE/JDK version present on your operating system. To avoid connectivity
problems, check the installation instructions and any pre-installation or post-installation configuration steps
applicable to the JDBC driver installed on your operating system.

Database Sample CLASSPATH entries

Firebird C:\Program Files\Firebird\Jaybird-2.2.8-JDK_1.8\jaybird-full-
2.2.8.jar

IBM DB2 C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc.jar;C:\Program
Files (x86)\IBM\SQLLIB\java\db2jcc_license_cu.jar;

IBM DB2 for i C:\jt400\jt400.jar;

IBM Informix C:\Informix_JDBC_Driver\lib\ifxjdbc.jar;

Microsoft SQL Server C:\Program Files\Microsoft JDBC Driver 4.0 for SQL
Server\sqljdbc_4.0\enu\sqljdbc.jar

MariaDB <installation directory>\mariadb-java-client-2.2.0.jar

MySQL <installation directory>\mysql-connector-java-version-bin.jar;

Oracle ORACLE_HOME\jdbc\lib\ojdbc6.jar;

Oracle (with XML DB) ORACLE_HOME\jdbc\lib\ojdbc6.jar;ORACLE_HOME\LIB\xmlparserv2.jar;

ORACLE_HOME\RDBMS\jlib\xdb.jar;

PostgreSQL <installation directory>\postgresql.jar

Progress OpenEdge %DLC%\java\openedge.jar;%DLC%\java\pool.jar;

Note: Assuming the Progress OpenEdge SDK is installed on the machine, %
DLC% is the directory where OpenEdge is installed.

Sybase C:\sybase\jConnect-7_0\classes\jconn4.jar

Teradata <installation directory>\tdgssconfig.jar;<installation

directory>\terajdbc4.jar

© 2017-2023 Altova GmbH

Connecting to a Data Source 517Databases

Altova StyleVision 2024 Professional Edition

· Changing the CLASSPATH variable may affect the behavior of Java applications on your machine. To
understand possible implications before you proceed, refer to the Java documentation.

· Environment variables can be user or system. To change system environment variables, you need
administrative rights on the operating system.

· After you change the environment variable, restart any running programs for settings to take effect.
Alternatively, log off or restart your operating system.

To configure the CLASSPATH on Windows 7:

1. Open the Start menu and right-click Computer.
2. Click Properties.
3. Click Advanced system settings.
4. In the Advanced tab, click Environment Variables,
5. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
6. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

To configure the CLASSPATH on Windows 10:

1. Press the Windows key and start typing "environment variables".
2. Click the suggestion Edit the system environment variables.
3. Click Environment Variables.
4. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If

the CLASSPATH variable does not exist, click New to create it.
5. Edit the variable value to include the path on your operating system where the JDBC driver is located.

To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable,
use the semi-colon separator (;).

10.2.7 SQLite Connection

SQLite is a file-based, self-contained database type, which makes it ideal in scenarios where portability and
ease of configuration is important. Since SQLite databases are natively supported by StyleVision, you do not
need to install any drivers to connect to them.

SQLite database support notes
· On Linux, statement execution timeout for SQLite databases is not supported.
· Full text search tables are not supported.
· SQLite allows values of different data types in each row of a given table. All processed values must be

compatible with the declared column type; therefore, unexpected values can be retrieved and run-time
errors may occur if your SQLite database has row values which are not the same as the declared
column type.

Important

https://www.sqlite.org/index.html

518 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

It is recommended to create tables with the STRICT keyword to ensure more predictable behavior of your
data. Otherwise, the data may not be read or written correctly when values of different types are mixed in one
column. To find out more about STRICT tables, see the SQLite documentation.

10.2.7.1 Connect to an Existing SQLite Database

To connect to an existing SQLite database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select SQLite, and then click Next.
3. Browse for the SQLite database file, or enter the path (either relative or absolute) to the database. The

Connect button becomes enabled once you enter the path to a SQLite database file.

4. Optionally, select the Disable Foreign Keys check box, see Foreign Key Constraints .
5. Click Connect.

10.2.7.2 Foreign Key Constraints

When you connect to an existing SQLite database from StyleVision, foreign key constraints are enabled by
default. Foreign key constraints help preserve the integrity of data in your database. For example, when foreign
keys are enabled, it is not possible to delete a record from a table if it has dependencies in another table.

In certain cases, you may want to temporarily override this behavior and disable foreign keys, perhaps, in order
to update or insert multiple rows of data without getting data validation errors. To explicitly disable foreign keys
before connecting to the SQLite database, select the Disable Foreign Keys option available on the database
connection wizard.

493

518

https://www.sqlite.org/stricttables.html

© 2017-2023 Altova GmbH

Connecting to a Data Source 519Databases

Altova StyleVision 2024 Professional Edition

"Connect to SQLite" wizard page

When foreign keys are disabled, you will be able to perform operations against data that would otherwise not be
possible due to validation checks. At the same time, however, there is also the risk of introducing incorrect
data into the database, or creating "orphaned" rows. (An example of an "orphaned" row would be an address in
the "addresses" table not linked to any person in the "person" table, because the person was deleted but its
associated address was not.)

10.2.8 Native Connection

Native connections are direct connections to the DB that do not need drivers to be installed. Also, if you intend
to deploy files for execution on a Linux or macOS server, you do not need to instally drivers on the target server
either.

You can set up native connections for the following DBs:

· MariaDB
· MySQL
· SQLite
· PostgrreSQL

If you prefer to establish a connection by means of a driver, see the following topics:

· Setting up a JDBC Connection
· SQLite Connection
· Connecting to PostgreSQL (ODBC)

513

517

559

520 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Connection setup
To set up a native connection, follow the steps below. You will need the following information: host name, port,
database name, username, and password.

1. Start the database connection wizard .
2. Select the DB you want to connect to (MariaDB, MySQL, PostgreSQL, or SQLite).
3. In the dialog that appears, enter the host (for example, localhost), optionally the port (typically 5432),

SSL Mode in the case of MySQL, the database name, username, and password in the corresponding
boxes.

4. Click Connect.

SQLite conections
For detailed information about SQLite connections, see the topic SQLite Connection .

Notes for PostrgreSQL
If the PostgreSQL database server is on a different machine, note the following:

· The PostgreSQL database server must be configured to accept connections from clients. Specifically,
the pg_hba.conf file must be configured to allow non-local connections. Secondly, the
postgresql.conf file must be configured to listen on specified IP address(es) and port. For more
information, check the PostgreSQL documentation (https://www.postgresql.org/docs/9.5/static/client-
authentication-problems.html).

· The server machine must be configured to accept connections on the designated port (typically, 5432)
through the firewall. For example, on a database server running on Windows, a rule may need to be
created to allow connections on port 5432 through the firewall, from Control Panel > Windows
Firewall > Advanced Settings > Inbound Rules.

10.2.9 Global Resources

After you have created a database as a global resource, its connection details are stored and can be used
across all Altova products installed on your machine.

Create a database as a global resource
To create a database as a global resource, do the following

1. On the Tools menu of StyleVision, click Global Resources.
2. Click Add, and then click Database.
3. Type in a name for the global resource in the Resource Alias field.
4. Click Choose Database. The Connection Wizard appears.
5. Use the Connection Wizard to add a database connection as described above.

Use a global-resource database
To use a database that has been created as a global resource (see above), do the following:

493

517

493

https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html
https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html

© 2017-2023 Altova GmbH

Connecting to a Data Source 521Databases

Altova StyleVision 2024 Professional Edition

1. Start the Connection Wizard as described above.
2. Select Global Resources. All the databases that have been created as global resources will be listed

by their names in the Global Resources pane (see screenshot below).

3. Select the global resource that you want. Tip: Move the mouse cursor over a global resource in the list
to see information about the database.

10.2.10 Database Connection Examples

This section includes examples for connecting to a database from StyleVision through ADO, ODBC, or JDBC.
The ADO.NET connection examples are listed separately, see Sample ADO.NET Connection Strings . For
instructions about establishing a native connection to PostgreSQL and SQLite, see Setting up a PostgreSQL
Connection and Setting up a SQLite Connection , respectively.

Note the following:

· The instructions may differ if your Windows configuration, network environment and the database client
or server software are not the same as the ones described in each example.

· For most database types, it is possible to connect using more than one data access technology
(ADO, ADO.NET, ODBC, JDBC) or driver. The performance of the database connection, as well as its
features and limitations will depend on the selected driver, database client software (if applicable), and
any additional connectivity parameters that you may have configured outside StyleVision.

10.2.10.1 Firebird (JDBC)

This example illustrates how to connect to a Firebird database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK.

508

519 517

522 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· The Firebird JDBC driver must be available on your operating system (it takes the form of a .jar file
which provides connectivity to the database). The driver can be downloaded from the Firebird website
(https://www.firebirdsql.org/). This example uses Jaybird 2.2.8.

· You have the following database connection details: host, database path or alias, username, and
password.

To connect to Firebird through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\firebird\jaybird-full-2.2.8.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select org.firebirdsql.jdbc.FBDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:firebirdsql://<host>[:<port>]/<database path or alias>

493

516

https://www.firebirdsql.org/

© 2017-2023 Altova GmbH

Connecting to a Data Source 523Databases

Altova StyleVision 2024 Professional Edition

7. Click Connect.

10.2.10.2 Firebird (ODBC)

This example illustrates how to connect to a Firebird 2.5.4 database running on a Linux server.

Prerequisites:

· The Firebird database server is configured to accept TCP/IP connections from clients.
· The Firebird ODBC driver must be installed on your operating system. This example uses the Firebird

ODBC driver version 2.0.3.154 downloaded from the Firebird website (https://www.firebirdsql.org/).
· The Firebird client must be installed on your operating system. Note that there is no standalone

installer available for the Firebird 2.5.4 client; the client is part of the Firebird server installation
package. You can download the Firebird server installation package from the Firebird website
(https://www.firebirdsql.org/), look for "Windows executable installer for full Superclassic/Classic or
Superserver". To install only the client files, choose "Minimum client install - no server, no tools"
when going through the wizard steps.

Important:

· The platform of both the Firebird ODBC driver and client (32-bit or 64-bit) must correspond
to that of StyleVision.

· The version of the Firebird client must correspond to the version of Firebird server to which
you are connecting.

· You have the following database connection details: server host name or IP address, database path (or
alias) on the server, user name, and password.

To connect to Firebird via ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .

493

https://www.firebirdsql.org/
https://www.firebirdsql.org/

524 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4. Select the Firebird driver, and then click User DSN (or System DSN, depending on what you selected
in the previous step). If the Firebird driver is not available in the list, make sure that it is installed on
your operating system (see also Viewing the Available ODBC Drivers).

5. Enter the database connection details as follows:

Data Source Name (DSN) Enter a descriptive name for the data source you are creating.

Database Enter the server host name or IP address, followed by a colon,
followed by the database alias (or path). In this example, the host
name is firebirdserv, and the database alias is products, as
follows:

firebirdserv:products

Using a database alias assumes that, on the server side, the
database administrator has configured the alias products to point to
the actual Firebird (.fdb) database file on the server (see the Firebird
documentation for more details).

You can also use the server IP address instead of the host name,
and a path instead of an alias; therefore, any of the following sample
connection strings are valid:

512

© 2017-2023 Altova GmbH

Connecting to a Data Source 525Databases

Altova StyleVision 2024 Professional Edition

firebirdserver:/var/Firebird/databases/butterflies.fdb
127.0.0.1:D:\Misc\Lenders.fdb

If the database is on the local Windows machine, click Browse and
select the Firebird (.fdb) database file directly.

Client Enter the path to the fbclient.dll file. By default, this is the bin
subdirectory of the Firebird installation directory.

Database Account Enter the database user name supplied by the database
administrator (in this example, PROD_ADMIN).

Password Enter the database password supplied by the database
administrator.

6. Click OK.

10.2.10.3 IBM DB2 (JDBC)

This example illustrates how to connect to an IBM DB2 database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK. This example
uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of StyleVision.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the JDBC driver available after installing the IBM Data
Server Client version 10.1 (64-bit). For the JDBC drivers to be installed, choose a Typical installation,
or select this option explicitly on the installation wizard.

526 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If you did not change the default installation path, the required .jar files will be in the C:\Program
Files\IBM\SQLLIB\java directory after installation.

· You need the following database connection details: host, port, database name, username, and
password.

To connect to IBM DB2 through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. This

examples refers to C:\Program Files\IBM\SQLLIB\java\db2jcc.jar. You may need to refer to the
db2jcc4.jar driver, depending on the database server version. For driver compatibility, refer to IBM
documentation (http://www-01.ibm.com/support/docview.wss?uid=swg21363866). Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.db2.jcc.DB2Driver. This entry becomes available only if a valid
.jar file path was found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

493

516

http://www-01.ibm.com/support/docview.wss?uid=swg21363866

© 2017-2023 Altova GmbH

Connecting to a Data Source 527Databases

Altova StyleVision 2024 Professional Edition

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace the connection

details with the ones applicable to your database server.

jdbc:db2://hostName:port/databaseName

7. Click Connect.

10.2.10.4 IBM DB2 (ODBC)

This example illustrates how to connect to an IBM DB2 database through ODBC.

Prerequisites:

· IBM Data Server Client must be installed and configured on your operating system (this example uses
IBM Data Server Client 9.7). For installation instructions, check the documentation supplied with your
IBM DB2 software. After installing the IBM Data Server Client, check if the ODBC drivers are available
on your machine (see Viewing the Available ODBC Drivers).

· Create a database alias. There are several ways to do this:
o From IBM DB2 Configuration Assistant

o From IBM DB2 Command Line Processor

o From the ODBC data source wizard (for this case, the instructions are shown below)

· You have the following database connection details: host, database, port, username, and password.

To connect to IBM DB2:

1. Start the database connection wizard and select IBM DB2 (ODBC/JDBC).
2. Click Next.

512

493

528 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Select ODBC, and click Next. If prompted to edit the list of known drivers for the database, select the
database drivers applicable to IBM DB2 (see Prerequisites), and click Next.527

© 2017-2023 Altova GmbH

Connecting to a Data Source 529Databases

Altova StyleVision 2024 Professional Edition

4. Select the IBM DB2 driver from the list, and then click Connect. (To edit the list of available drivers,
click Edit Drivers, and then check or uncheck the IBM DB2 drivers you wish to add or remove,
respectively.)

530 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5. Enter a data source name (in this example, DB2DSN), and then click Add.

6. On the Data Source tab, enter the user name and password to the database.

© 2017-2023 Altova GmbH

Connecting to a Data Source 531Databases

Altova StyleVision 2024 Professional Edition

7. On the TCP/IP tab, enter the database name, a name for the alias, the host name and the port
number, and then click OK.

532 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8. Enter again the username and password, and then click OK.

© 2017-2023 Altova GmbH

Connecting to a Data Source 533Databases

Altova StyleVision 2024 Professional Edition

10.2.10.5 IBM DB2 for i (JDBC)

This example illustrates how to connect to an IBM DB2 for i database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK. This example
uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of StyleVision.

· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on
your operating system. This example uses the open source Toolbox for Java/JTOpen version 9.8
(http://jt400.sourceforge.net/). After you download the package and unpack to a local directory, the
required .jar files will be available in the lib subdirectory.

· You need the following database connection details: host, username, and password.

To connect to IBM DB2 for i through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. In this

example, the required .jar file is at the following path: C:\jdbc\jtopen_9_8\jt400.jar. Note that you can
leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ibm.as400.access.AS400JDBCDriver. This entry becomes available
only if a valid .jar file path was found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace host with the

host name or IP address of your database server.

jdbc:as400://host

493

516

http://jt400.sourceforge.net/

534 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7. Click Connect.

10.2.10.6 IBM DB2 for i (ODBC)

This example illustrates how to connect to an IBM DB2 for i database through ODBC.

Prerequisites:

· IBM System i Access for Windows must be installed on your operating system (this example uses
IBM System i Access for Windows V6R1M0). For installation instructions, check the documentation
supplied with your IBM DB2 for i software. After installation, check if the ODBC driver is available on
your machine (see Viewing the Available ODBC Drivers).

· You have the following database connection details: the I.P. address of the database server, database
user name, and password.

· Run System i Navigator and follow the wizard to create a new connection. When prompted to specify a
system, enter the I.P. address of the database server. After creating the connection, it is
recommended to verify it (click on the connection, and select File > Diagnostics > Verify
Connection). If you get connectivity errors, contact the database server administrator.

To connect to IBM DB2 for i:

1. Start the database connection wizard .
2. Click ODBC connections.

512

493

© 2017-2023 Altova GmbH

Connecting to a Data Source 535Databases

Altova StyleVision 2024 Professional Edition

3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent
instructions will be similar).

4. Click Add .
5. Select the iSeries Access ODBC Driver from the list, and click User DSN (or System DSN, if

applicable).

6. Enter a data source name and select the connection from the System combo box. In this example, the
data source name is iSeriesDSN and the System is 192.0.2.0.

7. Click Connection Options, select Use the User ID specified below and enter the name of the
database user (in this example, DBUSER).

536 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8. Click OK. The new data source becomes available in the list of DSNs.
9. Click Connect.
10. Enter the user name and password to the database when prompted, and then click OK.

10.2.10.7 IBM Informix (JDBC)

This example illustrates how to connect to an IBM Informix database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on

your operating system. In this example, IBM Informix JDBC driver version 3.70 is used. For the driver's
installation instructions, see the documentation accompanying the driver or the "IBM Informix JDBC
Driver Programmer's Guide").

· You have the following database connection details: host, name of the Informix server, database, port,
username, and password.

© 2017-2023 Altova GmbH

Connecting to a Data Source 537Databases

Altova StyleVision 2024 Professional Edition

To connect to IBM Informix through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\Informix_JDBC_Driver\lib\ifxjdbc.jar. Note that
you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the
CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH
).

4. In the "Driver" box, select com.informix.jdbc.IfxDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:informix-sqli://hostName:port/databaseName:INFORMIXSERVER=myserver;

7. Click Connect.

493

516

538 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2.10.8 MariaDB (ODBC)

This example illustrates how to connect to a MariaDB database server through ODBC.

Prerequisites:

· The MariaDB Connector/ODBC (https://downloads.mariadb.org/connector-odbc/) must be installed.
· You have the following database connection details: host, database, port, username, and password.

To connect to MariaDB through ODBC:

1. Start the database connection wizard .
2. Select MariaDB (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and choose MariaDB ODBC 3.0
Driver. If no such driver is available in the list, click Edit Drivers, and select any available MariaDB
drivers (the list contains all ODBC drivers installed on your operating system).

4. Click Connect.

493

https://downloads.mariadb.org/connector-odbc/

© 2017-2023 Altova GmbH

Connecting to a Data Source 539Databases

Altova StyleVision 2024 Professional Edition

5. Enter name and, optionally, a description that will help you identify this ODBC data source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click Test DSN. Upon successful connection, a message box appears:

540 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

7. Click Next and complete the wizard. Other parameters may be required, depending on the case (for
example, SSL certificates if you are connecting to MariaDB through a secure connection).

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address.

10.2.10.9 Microsoft Access (ADO)

A simple way to connect to a Microsoft Access database is to follow the wizard and browse for the database
file, as shown in Connecting to an Existing Microsoft Access Database . An alternative approach is to set up
an ADO connection explicitly, as shown in this topic. This approach is useful if your database is password-
protected.

It is also possible to connect to Microsoft Access through an ODBC connection, but it has limitations, so it is
best to avoid it.

To connect to a password-protected Microsoft Access database:

1. Start the database connection wizard .
2. Click ADO Connections.
3. Click Build.

501

493

© 2017-2023 Altova GmbH

Connecting to a Data Source 541Databases

Altova StyleVision 2024 Professional Edition

4. Select the Microsoft Office 15.0 Access Database Engine OLE DB Provider, and then click Next.

542 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5. In the Data Source box, enter the path to the Microsoft Access file in UNC format, for example, \
\myserver\\mynetworkshare\Reports\Revenue.accdb, where myserver is the name of the server
and mynetworkshare is the name of the network share.

6. On the All tab, double click the Jet OLEDB:Database Password property and enter the database
password as property value.

Note: If you are still unable to connect, locate the workgroup information file (System.MDW) applicable to
your user profile, and set the value of the Jet OLEDB: System database property to the path of the
System.MDW file.

10.2.10.10 Microsoft Azure SQL (ODBC)

In order to connect properly to an Azure SQL database, you must install the latest SQL Server Native Client.

https://learn.microsoft.com/en-us/sql/relational-databases/native-client/applications/installing-sql-server-native-client?view=sql-server-ver16&redirectedfrom=MSDN

© 2017-2023 Altova GmbH

Connecting to a Data Source 543Databases

Altova StyleVision 2024 Professional Edition

For information about connecting to an Azure SQL database in the cloud, see this Altova blog entry.

10.2.10.11 Microsoft SQL Server (ADO)

This example illustrates how to connect to a SQL Server database through ADO. These instructions are
applicable when you use the recommended Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL),
which is available for download at https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-
sql-server?view=sql-server-ver15.

Before following these instructions, make sure that you have downloaded and installed the provider above
on your workstation. The ADO provider must match the platform of StyleVision (32-bit or 64-bit).

If you would like to use other ADO providers such as SQL Server Native Client (SQLNCLI) or Microsoft OLE
DB Provider for SQL Server (SQLOLEDB), the instructions are similar, but these providers are deprecated
and thus not recommended. Also, for the connection to be successful with a deprecated provider, you may
need to set additional connection properties as described in Setting up the SQL Server Data Link Properties
.

The Microsoft OLE DB Provider for SQL Server (SQLOLEDB) is known to have issues with parameter
binding of complex queries like Common Table Expressions (CTE) and nested SELECT statements.

To connect to SQL Server:

1. Start the database connection wizard .
2. Select Microsoft SQL Server (ADO), and then click Next. The list of available ADO providers is

displayed. In this example, the Microsoft OLE DB Driver for SQL Server is used. If it's not in the list,
make sure that it is installed on your computer, as mentioned above.

3. Click Next. The Data Link Properties dialog box appears.

501

493

https://www.altova.com/blog/connecting-databasespy-to-a-sql-azure-database-in-the-cloud/
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/oledb/download-oledb-driver-for-sql-server?view=sql-server-ver15

544 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4. Select or enter the name of the database server, for example, SQLSERV01. If you are connecting to a
named SQL Server instance, the server name looks like SQLSERV01\SOMEINSTANCE.

5. If the database server was configured to allow connections from users authenticated on the Windows
domain, select Windows Authentication. Otherwise, select SQL Server Authentication, clear the
Blank password check box, and enter the database credentials in the relevant boxes.

6. Select the Allow saving password check box and the database to which you are connecting (in this
example, "Nanonull").

© 2017-2023 Altova GmbH

Connecting to a Data Source 545Databases

Altova StyleVision 2024 Professional Edition

7. To test the connection at this time, click Test Connection. This is an optional, recommended step.
8. Click OK.

10.2.10.12 Microsoft SQL Server (ODBC)

This example illustrates how to connect to a SQL Server database through ODBC.

Prerequisites:

· Download and install the Microsoft ODBC Driver for SQL Server from the Microsoft website, see
https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server. This example
uses Microsoft ODBC Driver 17 for SQL Server to connect to a SQL Server 2016 database. You
might want to download a different ODBC driver version, depending on the version of SQL Server where
you want to connect. For information about ODBC driver versions supported by your SQL Server
database, refer to the driver's system requirements.

https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server

546 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To connect to SQL Server using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.

3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add .
4. Select the driver from the list. Note that the driver appears in the list only after it has been installed.

5. Click User DSN (or System DSN if you are creating a System DSN).

Creating a System DSN requires that StyleVision be run as an administrator. Therefore, in order to
create a System DSN, cancel the wizard, make sure that you run StyleVision as an administrator,
and perform the steps above again.

6. Enter a name and, optionally, a description to identify this connection, and then select from the list the
SQL Server to which you are connecting (SQLSERV01 in this example).

493

© 2017-2023 Altova GmbH

Connecting to a Data Source 547Databases

Altova StyleVision 2024 Professional Edition

7. If the database server was configured to allow connections from users authenticated on the Windows
domain, select With Integrated Windows authentication. Otherwise, select one of the other
options, as applicable. This example uses With SQL Server authentication... , which requires that
the user name and password be entered in the relevant boxes.

548 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8. Optionally, select the Change the default database to check box and enter the name of the
database to which you are connecting (in this example, Sandbox).

© 2017-2023 Altova GmbH

Connecting to a Data Source 549Databases

Altova StyleVision 2024 Professional Edition

9. Click Next and, optionally, configure additional parameters for this connection.

550 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10. Click Finish. A confirmation dialog box listing the connection details opens.

© 2017-2023 Altova GmbH

Connecting to a Data Source 551Databases

Altova StyleVision 2024 Professional Edition

11. Click OK. The data source now appears in the list of User or System data sources, as configured, for
example:

10.2.10.13 MySQL (ODBC)

This example illustrates how to connect to a MySQL database server from a Windows machine through the
ODBC driver. The MySQL ODBC driver is not available on Windows, so it must be downloaded and installed
separately. This example uses MySQL Connector/ODBC 8.0.

552 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Prerequisites:

· MySQL ODBC driver must be installed on your operating system. Check the MySQL documentation
for the driver version recommended for your database server version (see
https://dev.mysql.com/downloads/connector/odbc/).

· You have the following database connection details: host, database, port, username, and password.

If you installed MySQL Connector/ODBC for 64-bit platform, make sure to install StyleVision for 64-bit
platform as well.

To connect to MySQL via ODBC:

1. Start the database connection wizard .
2. Select MySQL (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and select a MySQL driver. If no
MySQL driver is available in the list, click Edit Drivers, and select any available MySQL drivers (the
list contains all ODBC drivers installed on your operating system).

If you installed StyleVision 64-bit, then the 64-bit ODBC drivers are shown in the list. Otherwise,
the 32-bit ODBC drivers are shown. See also Viewing the Available ODBC Drivers .

4. Click Connect.

493

512

https://dev.mysql.com/downloads/connector/odbc/

© 2017-2023 Altova GmbH

Connecting to a Data Source 553Databases

Altova StyleVision 2024 Professional Edition

5. In the Data Source Name box, enter a descriptive name that will help you identify this ODBC data
source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and
then click OK.

Note: If the database server is remote, it must be configured by the server administrator to accept remote
connections from your machine's IP address. Also, if you click Details>>, there are several additional
parameters available for configuration. Check the driver's documentation before changing their default
values.

10.2.10.14 Oracle (JDBC)

This example shows you how to connect to an Oracle database server from a client machine, using the JDBC
interface. The connection is created as a pure Java connection, using the Oracle Instant Client Package
(Basic) available from the Oracle website. The advantage of this connection type is that it requires only the Java
environment and the .jar libraries supplied by the Oracle Instant Client Package, saving you the effort to install
and configure a more complex database client.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you

554 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK.
· The Oracle Instant Client Package (Basic) must be available on your operating system. The

package can be downloaded from the official Oracle website. This example uses Oracle Instant Client
Package version 12.1.0.2.0, for Windows 32-bit and, consequently, Oracle JDK 32-bit.

· You have the following database connection details: host, port, service name, username, and
password.

To connect to Oracle through the Instant Client Package:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file is located at the following path: C:\jdbc\instantclient_12_1\ojdbc7.jar. Note that you
can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select either oracle.jdbc.OracleDriver or oracle.jdbc.driver.OracleDriver. Note
that these entries are available if a valid .jar file path is found either in the "Classpaths" text box, or in
the operating system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.

6. Enter the connection string to the database server in the Database URL text box, by replacing the
highlighted values with the ones applicable to your database server.

493

516

© 2017-2023 Altova GmbH

Connecting to a Data Source 555Databases

Altova StyleVision 2024 Professional Edition

jdbc:oracle:thin:@//host:port:service

7. Click Connect.

10.2.10.15 Oracle (ODBC)

This example illustrates a common scenario where you connect from StyleVision to an Oracle database server
on a network machine, through an Oracle database client installed on the local operating system.

The example includes instructions for setting up an ODBC data source (DSN) using the database connection
wizard in StyleVision. If you have already created a DSN, or if you prefer to create it directly from the ODBC
Data Source administrator in Windows, you can do so, and then select it when prompted by the wizard. For
more information about ODBC data sources, see Setting up an ODBC Connection .

Prerequisites:

· The Oracle database client (which includes the ODBC Oracle driver) must be installed and configured
on your operating system. For instructions on how to install and configure an Oracle database client,
refer to the documentation supplied with your Oracle software.

· The tnsnames.ora file located in Oracle home directory contains an entry that describes the database
connection parameters, in a format similar to this:

ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = server01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SID = orcl)
 (SERVER = DEDICATED)
)
)

The path to the tnsnames.ora file depends on the location where Oracle home directory was installed.
For Oracle database client 11.2.0, the default Oracle home directory path could be as follows:

C:\app\username\product\11.2.0\client_1\network\admin\tnsnames.ora

You can add new entries to the tnsnames.ora file either by pasting the connection details and saving
the file, or by running the Oracle Net Configuration Assistant wizard (if available). If you want these
values to appear in dropdown lists during the configuration process, then you may need to add the path
to the admin folder as a TNS_ADMIN environment variable.

To connect to Oracle using ODBC:

1. Start the database connection wizard .
2. Select Oracle (ODBC / JDBC), and then click Next.

510

493

556 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Select ODBC.

4. Click Edit Drivers.

© 2017-2023 Altova GmbH

Connecting to a Data Source 557Databases

Altova StyleVision 2024 Professional Edition

5. Select the Oracle drivers you wish to use (in this example, Oracle in OraClient11g_home1). The list
displays the Oracle drivers available on your system after installation of Oracle client.

6. Click Back.
7. Select Create a new data source name (DSN) with the driver, and then select the Oracle driver

chosen in step 4.

558 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Avoid using the Microsoft-supplied driver called Microsoft ODBC for Oracle driver. Microsoft
recommends using the ODBC driver provided by Oracle (see http://msdn.microsoft.com/en-
us/library/ms714756%28v=vs.85%29.aspx)

8. Click Connect.

http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx

© 2017-2023 Altova GmbH

Connecting to a Data Source 559Databases

Altova StyleVision 2024 Professional Edition

9. In the Data Source Name text box, enter a name to identify the data source (in this example, Oracle
DSN 1).

10. In the TNS Service Name box, enter the connection name as it is defined in the tnsnames.ora file (see
prerequisites). In this example, the connection name is ORCL. Note: If you wish to have the
dropdown list of the combo box populated with the values of the tnsnames.ora file, then you may need
to add the path to the admin folder as a TNS_ADMIN environment variable.

11. Click OK.

12. Enter the username and password to the database, and then click OK.

10.2.10.16 PostgreSQL (ODBC)

This example illustrates how to connect to a PostgreSQL database server from a Windows machine through
the ODBC driver. The PostgreSQL ODBC driver is not available on Windows, so it must be downloaded and

555

560 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

installed separately. This example uses the psqlODBC driver (version 11.0) downloaded from the official website
(see also Database Drivers Overview).

Note: You can also connect to a PostgreSQL database server directly (without the ODBC driver), see Setting
up a PostgreSQL Connection .

Prerequisites:

· psqlODBC driver must be installed on your operating system.
· You have the following database connection details: server, port, database, user name, and password.

To set up a connection to PostgreSQL using ODBC:

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Select the User DSN option.

4. Click Create a new DSN and select the driver from the drop-down list. If no PostgreSQL driver is
available in the list, make sure that the PostgreSQL ODBC driver is installed on your operating system,
as mentioned in the prerequisites above.

5. Click User DSN.

495

519

493

© 2017-2023 Altova GmbH

Connecting to a Data Source 561Databases

Altova StyleVision 2024 Professional Edition

6. Fill in the database connection credentials (these must be supplied by the database owner), and then
click Save.

The connection is now available in the list of ODBC connections. To connect to the database, you can either
double-click the connection or select it, and then click Connect.

562 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2.10.17 Progress OpenEdge (JDBC)

This example illustrates how to connect to a Progress OpenEdge 11.6 database server through JDBC.

Prerequisites

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK.
· The operating system's PATH environment variable must include the path to the bin directory of the

JRE or JDK installation directory, for example C:\Program Files (x86)\Java\jre1.8.0_51\bin.
· The Progress OpenEdge JDBC driver must be available on your operating system. In this example,

JDBC connectivity is provided by the openedge.jar and pool.jar driver component files available in C:
\Progress\OpenEdge\java as part of the OpenEdge SDK installation.

· You have the following database connection details: host, port, database name, username, and
password.

Connecting to OpenEdge through JDBC

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file paths are: C:\Progress\OpenEdge\java\openedge.jar;C:

\Progress\OpenEdge\java\pool.jar;. Note that you can leave the "Classpaths" text box empty if

you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system
(see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ddtek.jdbc.openedge.OpenEdgeDriver. Note that this entry is
available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

493

516

© 2017-2023 Altova GmbH

Connecting to a Data Source 563Databases

Altova StyleVision 2024 Professional Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:datadirect:openedge://host:port;databaseName=db_name

7. Click Connect.

10.2.10.18 Progress OpenEdge (ODBC)

This example illustrates how to connect to a Progress OpenEdge database server through the Progress
OpenEdge 11.6 ODBC driver.

Prerequisites:

· The ODBC Connector for Progress OpenEdge driver must be installed on your operating system. The
Progress OpenEdge ODBC driver can be downloaded from the vendor's website (see also Database
Drivers Overview). Make sure to download the 32-bit driver when running the 32-bit version of
StyleVision, and the 64-bit driver when running the 64-bit version. After installation, check if the ODBC
driver is available on your machine (see also Viewing the Available ODBC Drivers).

495

512

564 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· You have the following database connection details: host name, port number, database name, user ID,
and password.

Connecting to Progress OpenEdge through ODBC

1. Start the database connection wizard .
2. Click ODBC Connections.
3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent

instructions will be similar).

4. Click Add .
5. Select the Progress OpenEdge Driver from the list, and click User DSN (or System DSN, if

applicable).

493

© 2017-2023 Altova GmbH

Connecting to a Data Source 565Databases

Altova StyleVision 2024 Professional Edition

6. Fill in the database connection credentials (Database, Server, Port, User Name, Password), and then
click OK. To verify connectivity before saving the entered data, click Test Connect.

7. Click OK. The new data source now appears in the list of ODBC data sources.

566 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8. Click Connect.

10.2.10.19 Sybase (JDBC)

This example illustrates how to connect to a Sybase database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK.
· Sybase jConnect component must be installed on your operating system (in this example, jConnect

7.0 is used, installed as part of the Sybase Adaptive Server Enterprise PC Client installation). For the
installation instructions of the database client, refer to Sybase documentation.

· You have the following database connection details: host, port, database name, username, and
password.

© 2017-2023 Altova GmbH

Connecting to a Data Source 567Databases

Altova StyleVision 2024 Professional Edition

To connect to Sybase through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the
required .jar file path is: C:\sybase\jConnect-7_0\classes\jconn4.jar. Note that you can leave the
"Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment
variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.sybase.jdbc4.jdbc.SybDriver. Note that this entry is available if a
valid .jar file path is found either in the "Classpaths" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted values with the ones applicable to your database server.

jdbc:sybase:Tds:hostName:port/databaseName

7. Click Connect.

493

516

568 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2.10.20 Teradata (JDBC)

This example illustrates how to connect to a Teradata database server through JDBC.

Prerequisites:

· JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either
Oracle JDK or an open source build such as Oracle OpenJDK. StyleVision will determine the path to
the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options; b) The JVM path found in the Windows registry; c) The
JAVA_HOME environment variable.

· Make sure that the platform of StyleVision (32-bit, 64-bit) matches that of the JRE/JDK.
· The JDBC driver (one or more .jar files that provide connectivity to the database) must be available on

your operating system. In this example, Teradata JDBC Driver 16.20.00.02 is used. For more
information, see https://downloads.teradata.com/download/connectivity/jdbc-driver.

· You have the following database connection details: host, database, port, username, and password.

To connect to Teradata through JDBC:

1. Start the database connection wizard .
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If

necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the .jar files
are located at the following path: C:\jdbc\teradata\. Note that you can leave the "Classpaths" text box
empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating
system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.teradata.jdbc.TeraDriver. Note that this entry is available if a valid .jar
file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH
environment variable (see the previous step).

493

516

https://downloads.teradata.com/download/connectivity/jdbc-driver

© 2017-2023 Altova GmbH

Connecting to a Data Source 569Databases

Altova StyleVision 2024 Professional Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the

highlighted value with the one applicable to your database server.

jdbc:teradata://databaseServerName

7. Click Connect.

570 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.2.10.21 Teradata (ODBC)

This example illustrates how to connect to a Teradata database server through ODBC.

Prerequisites:

· The Teradata ODBC driver must be installed (see
https://downloads.teradata.com/download/connectivity/odbc-driver/windows. This example uses
Teradata ODBC Driver for Windows version 16.20.00.

· You have the following database connection details: host, username, and password.

To connect to Teradata through ODBC:

1. Press the Windows key, start typing "ODBC", and select Set up ODBC data sources (32-bit) from
the list of suggestions. If you have a 64-bit ODBC driver, select Set up ODBC data sources (64-bit)
and use 64-bit StyleVision in the subsequent steps.

2. Click the System DSN tab, and then click Add.

https://downloads.teradata.com/download/connectivity/odbc-driver/windows

© 2017-2023 Altova GmbH

Connecting to a Data Source 571Databases

Altova StyleVision 2024 Professional Edition

3. Select Teradata Database ODBC Driver and click Finish.

572 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4. Enter name and, optionally, a description that will help you identify this ODBC data source in future.
Also, enter the database connection credentials (Database server, User, Password), and, optionally,
select a database.

5. Click OK. The data source now appears in the list.

© 2017-2023 Altova GmbH

Connecting to a Data Source 573Databases

Altova StyleVision 2024 Professional Edition

6. Run StyleVision and start the database connection wizard .
7. Click ODBC Connections.

493

574 Databases Connecting to a Data Source

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

8. Click System DSN, select the data source created previously, and then click Connect.

Note: If you get the following error: "The driver returned invalid (or failed to return) SQL_DRIVER_ODBC_VER:

03.80", make sure that the path to the ODBC client (for example, C:\Program
Files\Teradata\Client\16.10\bin, if you installed it to this location) exists in your system's PATH

environment variable. If this path is missing, add it manually.

© 2017-2023 Altova GmbH

DB Data Selection 575Databases

Altova StyleVision 2024 Professional Edition

10.3 DB Data Selection

Selecting the schema and XML data that will be used in the SPS involves selecting one or more tables, or a
cell. or a specific schema, depending on whether the database (DB) being used is a non-XML DB (such as MS
Access) or an XML DB (IBM DB2 version 9.0, etc). We refer to the selection of the schema and XML data as
DB data selection, and it is carried out immediately after connecting to the DB.

How the DB data is selected depends upon the type of DB to which the connection is being made:

· In the case of non-XML databases , you select the table/s for which the SPS is being created.
StyleVision automatically generates: (i) a schema based on the structure of the table/s, and (ii)
temporary XML files based on this schema and containing the data in the selected table/s. How to
select the tables is described in the section DB Data Selection | Non-XML Databases .

· In the case of XML databases , you must do two things. First, select the XML cell of the DB in
which the required XML data is stored. This XML data is loaded as the Working XML File of the
SPS. Second, select the schema on which the SPS will be based. How to select the XML data and
schema is explained in the section, DB Data Selection | XML Databases .

10.3.1 Non-XML Databases

After a connection has been made to a non-XML database, the Insert Database Objects dialog appears. This
dialog consists of two parts. In the upper Source pane, which contains a graphical representation of the tables
in the DB, you select the tables required for the SPS. An XML Schema and XML data files will be generated by
StyleVision on the basis of the tables selected. In the lower Preview pane of the Insert Database Objects
dialog, you can preview the contents of the selected table.

The Source pane
In the Source pane, the DB tables are displayed graphically (see screenshot below). Select the tables required
for the SPS by checking the respective check boxes.

575

575

582 582

28

582

582

576 Databases DB Data Selection

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The toolbar of the Source pane (screenshot below) contains three icons, respectively, from left to right: Filter
Folder Contents, Checked Objects Only, and Object Locator. The Checked Objects Only icon toggles the
display between all tables and checked tables.

Filtering folder contents
To filter objects in the Source pane, do the following:

1. Click the Filter Folder Contents icon in the toolbar of the Source pane. The Filter icon appears next
to the Tables folder.

2. Click the Filter icon next to the Tables folder, and select the filtering option from the popup menu
(screenshot below), for example, Starts with.

3. In the entry field that appears, enter the filter string (in the screenshot below, the filter string on the
Tables folder is A). The filter is applied as you type.

The object locator
To find a specific database item by its name, you can use the Source pane's Object Locator. This works as
follows:

© 2017-2023 Altova GmbH

DB Data Selection 577Databases

Altova StyleVision 2024 Professional Edition

1. In the toolbar of the Source pane, click the Object Locator icon. A combo box appears at the bottom of
the Source pane.

2. Enter the search string in the entry field of this list, for example Altova (screenshot below). Clicking
the drop-down arrow displays all objects that contain the search string.

3. Click the object in the list to see it in the Source pane.

Adding and editing SELECT statements for local views
You can create SELECT statements in SQL to create local views. When the schema is generated from a DB
connection which has local views (or SELECT statements) defined for it, the schema that is generated for the DB
will contain a table for each SELECT statement.

To create a SELECT statement, do the following:

1. Click the Add/Edit SELECT Statement tab. This pops up the Enter a SQL Select Statement dialog
(screenshot below).

578 Databases DB Data Selection

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Enter the SELECT statement. If you connect to an Oracle or IBM DB2 database using JDBC, then the
SELECT statement must have no final semicolon. If you wish to create a SELECT statement for an entire
table, right-click the table in the Insert Database Objects dialog and select the context menu command
Generate and Add a SELECT Statement.

3. Click Add Select Statement. The SELECT statement is added to the list of SELECT statements in the
Insert Database Objects dialog (screenshot below).

Note: If you connect to an Oracle or IBM DB2 database using JDBC and use a SELECT statement with the
Add/Remove Table command to retrieve data, then the SELECT statement must have no final
semicolon.

When you click Finish in the Insert Database Objects dialog, a table is created for each SELECT statement
(screenshot below).

© 2017-2023 Altova GmbH

DB Data Selection 579Databases

Altova StyleVision 2024 Professional Edition

Local relations between tables
You can create local relations between two tables, similar to the primary-key/foreign-key kind of relationship.
The relation is local, in StyleVision, which means that the database itself does not have to be modified. The
local relationship will be represented in the generated schema.

To create a local relation, do the following:

1. In the Insert Database Objects dialog, click the Add/Edit Relations tab. This pops up the Add/Edit
Table Relations dialog (see screenshot below).

2. Click the Add Relation button, and in the Primary/Unique Key column, click the dropdown button of
the Select Table combo box (screenshot below). Select a table for the Foreign Key column also. The
relationship that will be generated eventually will select rows in which the selected Primary/Unique Key
column matches the selected Foreign Key column.

3. Select the Primary/Unique Key table column that must match the Foreign Key table column, and then
select the Foreign Key column. Once again, use the combo boxes in the respective columns (see
screenshot below). Notice that if there is a type mismatch, an error sign will be displayed.

4. Add more local relations, if required, by repeating steps 2 and 3 above.

580 Databases DB Data Selection

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

5. Click OK to complete the relation. When the schema is generated, it will reflect the newly created
relations.

Look at the two screenshots above and see how, in the generated schema, Altova and Department
each contain Address. Those Department rows with PrimaryKey values equal to the ForeignKey
value of the Address row will be output. And those Altova rows with PrimaryKey values equal to the
zip value of the Address row will be output.

Note: Local relations between SQL SELECT statements are not supported.

© 2017-2023 Altova GmbH

DB Data Selection 581Databases

Altova StyleVision 2024 Professional Edition

Previews and the Preview pane
To preview the structure and contents of a table, select the table in the Source pane and then click the
Preview button or Reload button—according to which of the two is displayed—in the Preview pane
(screenshot below). The contents of the table are displayed in a table format in the Preview pane (screenshot
below).

Generating the XML Schema and Working XML File from the DB
After you have selected the tables for which you wish to use in the SPS, click Finish to generate and load the
XML Schema. An XML Schema with a structure corresponding to that of the DB with the selected tables is
displayed in the Schema Tree Window. A Working XML File having a structure corresponding to that defined in
the generated schema and containing data from the selected tables is also generated and is used for the
output previews.

582 Databases DB Data Selection

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note that all the selected DB tables are created in the XML Schema as children of the DB document element

and as items in the Global Elements list. For a complete description of the structure of the generated XML
schema, see The DB Schema and DB XML files . Note that the XML Schema generated from the DB will not
be altered by any DB Filter that may be built subsequently.

After you have connected to the DB and generated the XML Schema, you can use the full range of StyleVision
features to design an SPS for the DB.

10.3.2 XML Databases

After having made the connection to the XML database (currently only IBM DB2 XML databases are supported)
via the Open Database dialog (via the File | New | New from XML Column in DB Table command; see
previous sections), you will need to do two things:

· Select the cell in the DB that contains the required XML document. The XML document will be loaded
automatically as the Working XML File.

· Select the XML Schema for the SPS.

Selecting the XML Cell and Working XML File
After making the connection to the IBM DB2 database, the Select XML Table dialog (screenshot below)
appears.

1. In the Select XML Table dialog, select the table that contains the XML data you wish to create as the
Working XML File. In the screenshot below, the table NHE_TEST has been selected.

586

© 2017-2023 Altova GmbH

DB Data Selection 583Databases

Altova StyleVision 2024 Professional Edition

2. Click Next. This pops up the Choose XML Field dialog (screenshot below). If you wish to filter the
selection displayed in the pane, enter an SQL WHERE clause and click Update. Note that the WHERE
clause should be just the condition (without the WHERE keyword, for example: NHE_TEST_TEXT= 'Two')

3. Select the cell containing the XML data you wish to create as the Working XML File. In the screenshot
above, the selected cell is highlighted in blue.

4. Click Next. This pops up the Choose XML Schema dialog, in which you select the schema to be used
for the SPS. See next section.

584 Databases DB Data Selection

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: If you connect to an Oracle or IBM DB2 database using JDBC and use a SELECT statement with the
Add/Remove Table command to retrieve data, then the SELECT statement must have no final
semicolon.

Selecting the XML Schema for the SPS
The schema that will be used for the SPS can be either an XML Schema contained in the DB or a schema at a
file location that can be accessed by StyleVision. To select the schema, do the following:

1. In the Choose XML Schema dialog (screenshot below), select the appropriate radio button according to
whether you wish to select the schema from among those stored in the DB or from a file location. Note
that if a non-DB schema is selected—that is, a schema from an external file—then no DB validation
will be carried out.

2. Select the schema. Schemas stored in the DB are listed in the dropdown list of the Schemas from
Database combo box, and can be selected from there. An external schema can be selected by
browsing for it.

3. Click Finish to complete.

The schema tree
After completing the process to select the XML data and the schema, the selected XML data is created as the
Working XML File and the schema is loaded into the SPS. Both are displayed in the Schema Tree window
(screenshot below).

© 2017-2023 Altova GmbH

DB Data Selection 585Databases

Altova StyleVision 2024 Professional Edition

The SPS can now be built using the usual StyleVision mechanisms. Note that the data in the Working XML
File can be edited in Authentic View and saved to the DB.

Note: The Working XML File should be valid against the schema selected for the SPS. Also ensure that the
schema's root element (document element) corresponds to the root element of the XML document.202

586 Databases The DB Schema and DB XML files

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.4 The DB Schema and DB XML files

The DB XML Schema
When you load a non-XML database (non-XML DB) into StyleVision, an XML Schema with a structure based on
that of the DB is generated by StyleVision and displayed in the Schema Tree window. (In the case of XML DBs,
an existing schema (either stored in the DB or at a file location) is specified as the schema to be used in the
SPS.) This section on schemas, therefore, refers only to non-XML DBs.

The XML Schema is created with a document element called DB. The DB element contains child elements

which correspond to the top-level tables in the DB. These top-level table elements are also created as entries in
the Global Elements list in the Schema Tree Window. The top-level elements in the screenshot below are:
Address, Altova, Department, Office, and Person; they correspond to tables in the DB.

Each top-level table element may have an unlimited number of rows (see screenshot below). Each row
corresponds to a record in the DB. In the schema tree the rows are represented by a single Row element. Each

Row element has attributes which correspond to the fields of the table. One of these attributes is generated by

StyleVision for every row of every table: AltovaRowStatus, which holds the current status of the row: added,

updated, and/or deleted. The remaining attributes are the fields of the respective DB table.

© 2017-2023 Altova GmbH

The DB Schema and DB XML files 587Databases

Altova StyleVision 2024 Professional Edition

Note: The structure of the generated XML Schema is as outlined above. Whatever tables are selected during
the connection step are included in the structure. The construction of a DB Filter does not affect the structure
of the XML Schema.

New DB Schema Structure

The structure of the XML Schema generated from DBs starting with the 2005 version of StyleVision
is different than the structure generated in previous versions of StyleVision. The new structure
enables the editing of databases in the Authentic View of Altova products—a feature which was not
available with earlier versions. As a result, any SPS generated with earlier versions of StyleVision
will generate an error when opened in versions of StyleVision starting from the 2005 version. To be
able to use the DB editing and reporting features of StyleVision, you should recreate the SPS in the
current version of StyleVision.

588 Databases The DB Schema and DB XML files

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

DB XML data files
After a connection to the XML DB has been made, the XML schema and column with XML data selected, the
Schema Tree window (screenshot below) will list the selected schema and the column that will be used for the
Working XML File.

Two temporary XML files are generated from the DB (see DBs and StyleVision for an illustration):

· A temporary editable XML file, which can be edited in Authentic View
· A temporary non-editable XML File, which is used as the Working XML File (for previews and output

generation)

The temporary editable XML file is generated when the DB is loaded into StyleVision. It can be edited in
Authentic View after the SPS has been created. The display in Authentic View can be filtered by using the
Query mechanism available in Authentic View. Any modification made in Authentic View to the editable data is
written to this temporary XML File. Clicking File | Save Authentic XML Data saves the information in the
temporary editable XML file to the DB.

The temporary non-editable XML file is generated when the DB is loaded into StyleVision. It is used as the
Working XML File and for generating HTML and RTF output. The editable XML file must be saved before
changes made in Authentic View can be viewed in a preview.

Note:
· In the Authentic View of other Authentic View products only one temporary (editable) XML file is

created when a DB-based SPS is opened. Modifications made in Authentic View are written to this file.
When the file is saved, the information in the XML file is written to the DB.

· You can filter the data that goes into the non-editable temporary XML File for report-generation. (See
Edit DB Filter for details.)

· You do not have to specifically assign a Working XML File in order to see HTML, Text, and RTF
previews. The automatically generated (non-editable) temporary XML file is used for this purpose.

490

24

810

© 2017-2023 Altova GmbH

DB Filters: Filtering DB Data 589Databases

Altova StyleVision 2024 Professional Edition

10.5 DB Filters: Filtering DB Data

The data that is imported into the temporary non-editable XML file from the database (DB) can be filtered.
(Note that the non-editable XML file is used for report generation, and the effect of a DB filter will therefore be
seen only in the HTMLText, and RTF preview; not in Authentic Preview, which displays the temporary editable
XML file, and not in Authentic View.) The DB filter (DB Filter) can be created either within the DB itself (if this is
supported in your DB application), or it can be created within the SPS (SPS file). In the SPS, one DB Filter can
be created for each top-level data table in the XML Schema (i.e. for the data tables that are the children of the
DB element). Each time a DB Filter is created or modified, the data from the DB is re-loaded into the temporary

non-editable XML file that is generated for the DB. In this way, DB Filters help you to keep the XML file down to
an optimal size and to thus make processing for report generation more efficient.

Note: Using a DB Filter modifies the data that is imported into the temporary non-editable XML File. If you
save an SPS with a DB Filter and then generate an XML File from the SPS, the generated XML File will
be filtered according to the criteria in the DB Filter.

Creating a DB Filter

1. In the Design Document or Schema Tree, select the data table element for which you wish to create a
DB Filter (either by clicking the start or end tag of the element, or by selecting the element in the
schema tree).

2. Select Database | Edit DB Filters or click the icon in the toolbar. The following dialog is
displayed:

3. Click the Append AND or Append OR button. This appends an empty criterion for the filter (shown
below).

810

590 Databases DB Filters: Filtering DB Data

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4. Enter the expression for the criterion. An expression consists of: (i) a field name (available from the
associated combo-box); (ii) an operator (available from the associated combo-box); and (iii) a value (to
be entered directly). For details of how to construct expressions see the Expressions in criteria
section below.

5. If you wish to add another criterion, click the Append AND or Append OR button according to which
logical operator (AND or OR) you wish to use to join the two criteria. Then add the new criterion. For
details about the logical operators, see the section Re-ordering criteria in DB Filters .

Expressions in criteria
Expressions in DB Filter criteria consist of a field name, an operator, and a value. The available field names
are the columns of the selected top-level data table; the names of these fields are listed in a combo-box (see
screenshot above). The operators you can use are listed below:

= Equal to

<> Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

LIKE Phonetically alike

NOT LIKE Phonetically not alike

IS NULL Is empty

NOT NULL Is not empty

If IS NULL or NOT NULL is selected, the Value field is disabled. Values must be entered without quotes (or any
other delimiter). Values must also have the same formatting as that of the corresponding DB field; otherwise
the expression will evaluate to FALSE. For example, if a criterion for a field of the date datatype in an MS

590

592

© 2017-2023 Altova GmbH

DB Filters: Filtering DB Data 591Databases

Altova StyleVision 2024 Professional Edition

Access DB has an expression StartDate=25/05/2004, the expression will evaluate to FALSE because the

date datatype in an MS Access DB has a format of YYYY-MM-DD.

Using parameters with DB Filters
You can also enter the name of a parameter as the value of an expression. This causes the parameter to be
called and its value to be used as the value of that expression. The parameter you enter here can be a
parameter that has already been declared for the stylesheet, or it can be a parameter that you declare
subsequently. Note, however, that when a parameter that has not been declared is typed into the value field,
the OK button is disabled.

Parameters are useful if you wish to use a single value in multiple expressions, or if you wish to pass a value to
a parameter from the command line (see StyleVision Server for details).

To enter the name of a parameter as the value of an expression, type $ into the value input field followed

(without any intervening space) by the name of the parameter. If the parameter has already been declared (see
Parameters), then the entry will be colored green. If the parameter has not been declared, the entry will be
red, and you must declare it.

Declaring parameters from the Edit DB Filter dialog
To access the Edit Parameters dialog (in order to declare parameters), do the following:

1. Click the Parameters... button in the Edit DB Filters dialog. This pops up the Edit Parameters dialog
shown below.

2. Type in the name and value of the parameter in the appropriate fields.

Alternatively, you can access the Edit Parameters dialog and declare or edit a DB Parameter by selecting Edit
| Stylesheet Parameters.

Note: The Edit Parameters dialog contains all the parameters that have been defined for the stylesheet. While
it is an error to use an undeclared parameter in the SPS, it is not an error to declare a parameter and not use
it.

663

302

592 Databases DB Filters: Filtering DB Data

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

After a DB Filter is created for a data table element, that element in the Schema Tree is displayed with the filter
symbol, as shown for the Addresses element in the screenshot below.

Re-ordering criteria in DB Filters
The logical structure of the DB Filter and the relationship between any two criteria or sets of criteria is indicated
graphically. Each level of the logical structure is indicated by a square bracket. Two adjacent criteria or sets of
criteria indicate the AND operator, whereas if two criteria are separated by the word OR then the OR operator is

indicated. The criteria are also appropriately indented to provide a clear overview of the logical structure of the
DB Filter.

The DB Filter shown in the screenshot above may be represented in text as:

State=CA AND (City=Los Angeles OR City=San Diego OR (City=San Francisco AND
CustomerNr=25))

You can re-order the DB Filter by moving a criterion or set of criteria up or down relative to the other criteria in
the DB Filter. To move a criterion or set of criteria, do the following:

1. Select the criterion by clicking on it, or select an entire level by clicking on the bracket that represents
that level.

2. Click the Up or Down arrow button in the dialog.

The following points should be noted:

· If the adjacent criterion in the direction of movement is at the same level, the two criteria exchange
places.

· A set of criteria (i.e. criteria within a bracket) changes position within the same level; it does not
change levels.

© 2017-2023 Altova GmbH

DB Filters: Filtering DB Data 593Databases

Altova StyleVision 2024 Professional Edition

· An individual criterion changes position within the same level. If the adjacent criterion is further
outward/inward (i.e. not on the same level), then the selected criterion will move outward/inward, one
level at a time.

To delete a criterion in a DB Filter, select the criterion and click Delete.

Modifying a DB Filter
To modify a DB Filter, select Database | Edit DB Filters . This pops up the Edit DB Filters dialog box. You
can now edit the expressions in any of the listed criteria, add new criteria, re-order criteria, or delete criteria in
the DB Filter. After you have completed the modifications, click OK. The data from the DB is automatically re-
loaded into StyleVision so as to reflect the modifications to the DB Filter.

Clearing (deleting) a DB Filter
To clear (or delete) a DB Filter, select the element for which the DB Filter has to be cleared either in the Design
Window or the Schema Tree. (There is one DB Filter for each (top-level) data table element.) Then click
Database | Clear DB Filter . The filter will be cleared, and the filter symbol will no longer appear alongside
the name of the element in the Schema Tree.

810

810

594 Databases SPS Design Features for DB

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.6 SPS Design Features for DB

You can design a DB-based SPS just as you would design any other schema-based SPS, that is by dragging-
and-dropping schema nodes from the schema window into the design document; by inserting static content
directly in the design document; and by applying suitable formatting to the various design components. The
following points, however, are specific to DB-based SPSs.

Creating a dynamic table for a DB table
To create a dynamic table for a DB table, do the following:

1. In the schema tree, select the top-level DB table to be created as a dynamic table, drag it into the
design.

2. When you drop it, create is as contents and delete the contents placeholder. If the Auto-Add DB
Controls feature is on, your design will look something like this:

3. In the schema tree, select the Row element of the DB table you wish to create as a dynamic table.

4. Drag it to a location inside the Addresses element.
5. When you release the element, select Create Table from the menu that pops up, and select the DB

fields you wish to create as columns of the dynamic table. The DB table is created as a dynamic table.

Note: You can also create a DB table in any other format, such as (contents).

Auto-add DB Controls

The Authentic | Auto-add DB Controls menu command or the toolbar icon toggles the auto-insertion of
navigation controls for DB tables on and off. When the toggle is switched on, this toolbar icon has a black
border; when the toggle is off, the toolbar icon has no border. If the Auto-insert toggle is on, DB Controls (see
screenshot below) are automatically inserted when a DB table is dropped into the Design document. It is
dropped, by default, immediately after the start tag of the table.

These controls enable the Authentic View user to navigate the records of the DB table in Authentic View. The
first (leftmost) button navigates to the first record; the second button navigates to the previous record; the third
button is the Goto Record button, which pops up the Goto Record dialog (screenshot below); it pops up a
dialog that prompts you for the number of the record to which you wish to go; the fourth button navigates to the
next record; and the fifth button navigates to the last record.

© 2017-2023 Altova GmbH

SPS Design Features for DB 595Databases

Altova StyleVision 2024 Professional Edition

To manually insert the navigation controls in the Design document—which is useful if you wish to insert the
controls at some other location than the default location—then do the following:

1. Turn the Auto-insert DB Controls toggle off.
2. Place the cursor at the location where you wish the navigation controls to appear (but within the DB

table element's start and end tags).
3. Right-click, and from the popup menu, select Insert DB Control | Navigation or Insert DB Control |

Navigation+Goto. Alternatively, these commands can be accessed via the Insert menu.

Inserting a DB Query button for

The DB Query button enables the Authentic View user to submit a DB query. This helps the user to build
conditions for the records to be displayed in Authentic View. Query buttons can be inserted for individual DB
tables anywhere between:

· The start tag of the DB table element and the start tag of the DB table element's (child) Row element.
· The end tag of the DB table element and the end tag of that table element's (child) Row element.

To insert a DB Query button in your Design document, do the following:

1. Place the cursor at the allowed location (see above) where you wish the Query button to appear.
2. Right-click, and from the context menu (or Insert menu), select Insert | DB Control | Query Button.

The Query Button is inserted at that point in the Design document.

When it is clicked in Authentic View, the Query button will pop up the Edit Database Query dialog. This dialog
is described in the Authentic View documentation .

Records displayed and records fetched
You can control the number of records displayed in Authentic View and the number of records fetched when the
file is loaded. To make these settings, do the following:

1. In Design View, select the Row element that corresponds to the records to be displayed/fetched.

2. In the Properties sidebar, select template in the Properties For column, and the Authentic group of
properties.

639

596 Databases SPS Design Features for DB

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. For the property DB Rows Displayed, select all from the dropdown list or enter the number of rows to
be displayed.

4. For the property DB Rows Fetched, select all or all displayed from the dropdown list, or enter the
number of rows to be fetched. The value all displayed is the default. This property determines how
many rows are fetched when the DB data is loaded. If the value is less than that of the DB Rows
Displayed property, then the value of DB Rows Displayed is used as the value of DB Rows Fetched.
The DB Rows Fetched property enables you to reduce the number of rows initially loaded, thus
speeding up the loading and display time. Additional rows (records) are loaded and displayed when the
row navigation buttons in Authentic View are used.

Note:

· The number of rows displayed is applied to Authentic View.
· If a large number of tables is open in Authentic View, then the user will get an error message saying

that too many tables are open. On the design side, you can reduce the number of tables that are open
by reducing the number of rows displayed (because a row can contain tables). On the user side, the
user can use queries to reduce the number of tables loaded into Authentic View.

AltovaRowStatus
In the XML Schema that is created from a DB, each table has an AltovaRowStatus attribute. The value of

this attribute is automatically determined by StyleVision and consists of three characters, which are initialized
to ---. If a row is modified, or a new row is added, the value is changed using the following characters.

A The row has been added (but not yet saved to the DB).

U,u The row has been updated (but not yet saved to the DB).

D,d, X The row has been deleted (but not yet saved to the DB).

These values can be used to provide users with information about rows being edited. The status information
exists up to the time when the file is saved. After the file is saved, the status information is initialized (indicated
by ---).

© 2017-2023 Altova GmbH

SPS Design Features for DB 597Databases

Altova StyleVision 2024 Professional Edition

Formatting design document components
When records are added, modified, or deleted, StyleVision formats the added/modified/deleted records in a
certain way to enable users to distinguish them from other records. Datatype errors are also flagged by being
displayed in red. If you wish to maintain this differentiation, make sure that the formatting you assign to rows in
a table do not have the same properties as those assigned by StyleVision. The formatting assigned by
StyleVision is as follows:

Added A Bold, underlined

Modified (Updated) U, u Underlined

Deleted D, d, X Strikethrough

Datatype error Red text

598 Databases Generating Output Files

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

10.7 Generating Output Files

After you have created a DB-based SPS, you can generate files related to it and save them. The following files
can be generated and saved:

· The XML Schema based on the DB structure
· The XML file having the structure of the generated XML Schema and content from the DB
· The XSLT file for HTML output
· The HTML output file
· The XSLT file for RTF output
· The RTF output file

The files can be generated and saved from within the GUI or from the command line.

From within the StyleVision GUI

1. In the File menu, select the Save Generated Files item. This pops up the following submenu.

2. Select the file you wish to generate. This pops up the Save As dialog.
3. Browse for the desired folder, enter the desired filename, and click OK.

From the command line
From the command line, you can call StyleVision so that it generates and saves files associated with a DB-
based SPS. You can save not only the XML Schema and XSLT files, but also an XML file with data from the
DB, and HTML and RTF output files based on the design in the SPS.

© 2017-2023 Altova GmbH

Query Database 599Databases

Altova StyleVision 2024 Professional Edition

10.8 Query Database

The Query Database command in the Database menu opens the Database Query window (screenshot
below). Once the Query Window is open, its display can be toggled on and off by clicking either the Database

| Query Database command or the Query Database toolbar icon .

Overview of the Database Query window
The Database Query window consists of three parts:

· A Browser pane at top left, which displays connection info and database tables.
· A Query pane at top right, in which the query is entered.
· A tabbed Results/Messages pane . The Results pane displays the query results in what we call

the Result Grid. The Messages pane displays messages about the query execution, including
warnings and errors.

The Database Query window has a toolbar at the top. At this point, take note of the two toolbar icons below.
The other toolbar icons are described in the section, Query Pane: Description and Features .

Toggles the Browser pane on and off.

603

607

610

607

600 Databases Query Database

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Toggles the Results/Messages pane on and off.

Overview of the Query Database mechanism
The Query Database mechanism is as follows. (It is described in detail in the sub-sections of this section.)

1. A connection to the database is established via the Database Query | Connect to a Data Source
window.

2. The connected database or parts of it are displayed in the Browser pane , which can be configured
to suit viewing requirements.

3. A query written in a syntax appropriate to the database to be queried is entered in the Query
pane , and the query is executed.

4. The results of the query can be viewed through various filters.

10.8.1 Data Sources

In order to query a database, you have to first connect to the required database This section describes how to:

· Connect to a database, and
· Select the required data source and root object from among multiple existing connections.

Connecting to a database
When you click the Query Database command in the Database menu for the first time in a session (and
when no database connection exists), the Connect to a Data Source dialog (screenshot below) pops up to

enable you to connect to a database. To make connections subsequently, click the Quick Connect icon in
the Database Query window. If connections already exist, you can select the required connection from
among these.

600

603

609

609

610

602

© 2017-2023 Altova GmbH

Query Database 601Databases

Altova StyleVision 2024 Professional Edition

How to connect to a database via the Connect to a Data Source dialog is described in the section Connecting
to a Data Source .

Supported databases
The table below lists all the supported databases. If your Altova application is a 64-bit version, ensure that you
have access to the 64-bit database drivers needed for the specific database you are connecting to.

Database Notes

Firebird 2.x, 3.x, 4.x

IBM DB2 8.x, 9.x, 10.x, 11.x

IBM Db2 for i 6.x, 7.4, 7.5 Logical files are supported and shown as views.

IBM Informix 11.70 and later

MariaDB 10 and later MariaDB supports native connections. No separate drivers are
required.

492

602 Databases Query Database

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Database Notes

Microsoft Access 2003 and later At the time of writing (early September 2019), there is no
Microsoft Access Runtime available for Access 2019. You can
connect to an Access 2019 database from Altova products only
if Microsoft Access 2016 Runtime is installed and only if the
database does not use the "Large Number" data type.

Microsoft Azure SQL Database SQL Server 2016 codebase

Microsoft SQL Server 2005 and later
Microsoft SQL Server on Linux

MySQL 5 and later MySQL 5.7 and later supports native connections. No separate
drivers are required.

Oracle 9i and later

PostgreSQL 8 and later PostgreSQL connections are supported both as native
connections and driver-based connections through interfaces
(drivers) such as ODBC or JDBC. Native connections do not
require any drivers.

Progress OpenEdge 11.6

SQLite 3.x SQLite connections are supported as native, direct connections
to the SQLite database file. No separate drivers are required.

In Authentic view, data coming from a SQLite database is not
editable. When you attempt to save SQLite data from the
Authentic view, a message box will inform you of this known
limitation.

Sybase ASE 15, 16

Teradata 16

Selecting the required data source
All the existing connections and the root objects of each are listed, respectively, in two combo boxes in the
toolbar of the Database Query window (screenshot below). After selecting the required data source in the left-
hand combo box, you can select the required root object from the right-hand combo box.

© 2017-2023 Altova GmbH

Query Database 603Databases

Altova StyleVision 2024 Professional Edition

In the screenshot above, the database with the name StyleVision DB has been selected. Of the available root
objects for this database, the root object ALTOVA_USER has been selected. The database and the root object
are then displayed in the Browser pane .

10.8.2 Browser Pane: Viewing the DB Objects

The Browser pane provides an overview of objects in the selected database. This overview includes database
constraint information, such as whether a column is a primary or foreign key. In IBM DB2 version 9 databases,
the Browser additionally shows registered XML schemas in a separate folder (see screenshot below).

This section describes the following:

· The layouts available in the Browser pane.
· How to filter database objects.
· How to find database objects.
· How to refresh the root object of the active data source.

Browser pane layouts
The default Folders layout displays database objects hierarchically. Depending on the selected object, different
context menu options are available when you right-click an item.

603

603

605

606

607

604 Databases Query Database

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To select a layout for the Browser, click the Layout icon in the toolbar of the Browser pane (screenshot below)
and select the layout from the drop-down list. Note that the icon changes with the selected layout.

The available layouts are:

· Folders: Organizes database objects into folders based on object type in a hierarchical tree, this is the
default setting.

· No Schemas: Similar to the Folders layout, except that there are no database schema folders; tables
are therefore not categorized by database schema.

· No Folders: Displays database objects in a hierarchy without using folders.
· Flat: Divides database objects by type in the first hierarchical level. For example, instead of columns

being contained in the corresponding table, all columns are displayed in a separate Columns folder.

© 2017-2023 Altova GmbH

Query Database 605Databases

Altova StyleVision 2024 Professional Edition

· Table Dependencies: Categorizes tables according to their relationships with other tables. There are
categories for tables with foreign keys, tables referenced by foreign keys and tables that have no
relationships to other tables.

To sort tables into User and System tables, switch to Folders, No Schemas or Flat layout, then right-click the
Tables folder and select Sort into User and System Tables. The tables are sorted alphabetically in the User
Tables and System Tables folders.

Filtering database objects
In the Browser pane (in all layouts except No Folders and Table Dependencies), schemas, tables, and views
can be filtered by name or part of a name. Objects are filtered as you type in the characters, and filtering is
case-insensitive by default.

To filter objects in the Browser, do the following:

1. Click the Filter Folder Contents icon in the toolbar of the Browser pane. Filter icons appear next to the
Tables and Views folders in the currently selected layout (screenshot below).

2. Click the filter icon next to the folder you want to filter, and select the filtering option from the popup
menu, for example, Contains.

3. In the entry field that appears, enter the filter string (in the screenshot below, the filter string on the
Tables folder is NHE). The filter is applied as you type.

606 Databases Query Database

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Finding database objects
To find a specific database item by its name, you can use the Browser pane's Object Locator. This works as
follows:

1. In the toolbar of the Browser pane, click the Object Locator icon. A drop-down list appears at the
bottom of the Browser pane.

2. Enter the search string in the entry field of this list, for example name (screenshot below). Clicking the
drop-down arrow displays all objects that contain the search string.

3. Click the object in the list to see it in the Browser pane.

© 2017-2023 Altova GmbH

Query Database 607Databases

Altova StyleVision 2024 Professional Edition

Refreshing the root object
The root object of the active data source can be refreshed by clicking the Refresh button of the Browser pane's
toolbar.

10.8.3 Query Pane: Description and Features

The Query pane is an intelligent SQL editor for entering queries to the selected database. After entering the
query, clicking the Execute command of the Database Query window executes the query and displays the
result and execution messages in the Results/Messages pane . How to work with queries is dscribed in the
next section, Query Pane: Working with Queries . In this section, we describe the main features of the
Query pane:

· SQL Editor icons in the Database Query toolbar
· SQL Editor options
· Auto-completion of SQL statements
· Definition of regions in an SQL script
· Insertion of comments in an SQL script
· Use of bookmarks

SQL Editor icons in the Database Query toolbar
The following icons in the toolbar of the Database Query window are used when working with the SQL Editor:

Execute Executes currently selected SQL statement. If script contains
multiple statements and none is selected, then all are executed.

Import SQL File Opens an SQL file in the SQL Editor.

Export SQL File Saves SQL queries to an SQL file.

Undo Undoes an unlimited number of edits in SQL Editor.

Redo Redoes an unlimited number of edits in SQL Editor.

Options Open the Options dialog of SQL Editor.

Open SQL Script
in DatabaseSpy

Opens the SQL script in Altova's DatabaseSpy product.

SQL Editor options
Clicking the Options icon in the Database Query toolbar pops up the Options dialog (screenshot below). A
page of settings can be selected in the left-hand pane, and the options on that page can be selected. Click the
Reset to Page Defaults button to reset the options on that page to their original settings.

607

610

609

607

607

608

609

609

609

608 Databases Query Database

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The key settings are as follows:

· General | Encoding: Options for setting the encoding of new SQL files, of existing SQL files for which
the encoding cannot be detected, and for setting the Byte Order Mark (BOM). (If the encoding of
existing SQL files can be detected, the files are opened and saved without changing the encoding.)

· SQL Editor: Options for toggling syntax coloring and data source connections on execution on/off. A
timeout can be set for query execution, and a dialog to change the timeout can also be shown if the
specified time is exceeded. Entry helpers refer to the entry helpers that appear as part of the auto-
completion feature. When you type in an SQL statement, the editor displays a list of context-sensitive
auto-completion suggestions. These suggestions can be set to appear automatically. If the automatic
display is switched off, then you can ask for an auto-completion suggestion in SQL Editor at any point
in the SQL query by pressing Ctrl+Spacebar. The buffer for the entry helper information can be filled
either on connection to the data source or the first time it is needed. The Text View settings button
opens a dialog in which you can specify settings such as indentation and tab size of text in the SQL
Editor.

· SQL Editor | SQL Generation: The application generates SQL statements when you drag objects
from the Browser pane into the Query pane. Options for SQL statement generation can be set in the
SQL generation tab. Use the Database list box to select a database kind and set the statement
generation options individually for the different database kinds you are working with. Activating the
Apply to all databases check box sets the options that are currently selected for all databases.
Options include appending semi-colons to statements and surrounding identifiers with escape
characters.

· SQL Editor | Result View: Options to configure the Result tab.
· SQL Editor | Fonts: Options for setting the font style of the text in the Text Editor and in the Result

View.

© 2017-2023 Altova GmbH

Query Database 609Databases

Altova StyleVision 2024 Professional Edition

Definition of regions in an SQL script
Regions are sections in SQL scripts that are marked and declared to be a unit. Regions can be collapsed and
expanded to hide or display parts of the script. It is also possible to nest regions within other regions. Regions
are delimited by --region and --endregion comments, respectively, before and after the region. Regions can

optionally be given a name, which is entered after the --region delimiter (see screenshot below).

To insert a region, select the statement/s to be made into a region, right-click, and select Insert Region. The
expandable/collapsible region is created. Add a name if you wish. In the screenshot above, also notice the line-
numbering. To remove a region, delete the two --region and --endregion delimiters.

Insertion of comments in an SQL script
Text in an SQL script can be commented out. These portions of the script are skipped when the script is
executed.

· To comment out a block, mark the block, right-click, and select Insert/Remove Block Comment. To
remove the block comment, mark the comment, right-click and select Insert/Remove Block
Comment.

· To comment out a line or part of a line, place the cursor at the point where the line comment should
start, right-click, and select Insert/Remove Line Comment. To remove the line comment, mark the
comment, right-click and select Insert/Remove Line Comment.

Use of bookmarks
Bookmarks can be inserted at specific lines, and you can then navigate through the bookmarks in the
document. To insert a bookmark, place the cursor in the line to be bookmarked, right-click, and select
Insert/Remove Bookmark. To go to the next or previous bookmark, right-click, and select Go to Next
Bookmark or Go to Previous Bookmark, respectively. To remove a bookmark, place the cursor in the line for
which the bookmark is to be removed, right-click, and select Insert/Remove Bookmark. To remove all
bookmarks, right-click, and select Remove All Bookmarks.

10.8.4 Query Pane: Working with Queries

After connecting to a database, an SQL script can be entered in the SQL Editor and executed. This section
describes:

· How an SQL script is entered in the SQL Editor.
· How the script is executed in the Database Query window.

610 Databases Query Database

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The following icons are referred to in this section:

Execute Query Executes currently selected SQL statement. If script contains
multiple statements and none is selected, then all are executed.

Import SQL
File

Opens an SQL file in the SQL Editor.

Creating SQL statements and scripts in the SQL Editor
The following GUI methods can be used to create SQL statements or scripts:

· Drag and drop: Drag an object from the Browser pane into the SQL Editor. An SQL statement is
generated to query the database for that object.

· Context menu: Right-click an object in the Browser pane and select Show in SQL Editor | Select.
· Manual entry: Type SQL statements directly in SQL Editor. The Auto-completion feature can help with

editing.
· Import an SQL script: Click the Import SQL File icon in the toolbar of the Database Query window.

Executing SQL statements
If the SQL script in the SQL Editor has more than one SQL statement, select the statement to execute and
click the Execute icon in the toolbar of the Database Query window. If no statement in the SQL script is
selected, then all the statements in the script are executed. The database data is retrieved and displayed as a
grid in the Results tab . Messages about the execution are displayed in the Messages tab .

10.8.5 Results and Messages

The Results/Messages pane has two tabs:

· The Results tab shows the data that is retrieved by the query.
· The Messages tab shows messages about the query execution.

Results tab
The data retrieved by the query is displayed in the form of a grid in the Results tab(screenshot below).

610 611

610

611

© 2017-2023 Altova GmbH

Query Database 611Databases

Altova StyleVision 2024 Professional Edition

The following operations can be carried out in the Results tab, via the context menu that pops up when you
right-click in the appropriate location in the Results tab:

· Sorting on a column: Right-click anywhere in the column on which the records are to be sorted, then
select Sorting | Ascending/Descending/Restore Default.

· Copying to the clipboard: This consists of two steps: (i) selecting the data range; and (ii) copying the
selection. Data can be selected in several ways: (i) by clicking a column header or row number to
select the column or row, respectively; (ii) selecting individual cells (use the Shift and/or Ctrl keys to
select multiple cells); (iii) right-clicking a cell, and selecting Selection | Row/Column/All. After
making the selection, right-click, and select Copy Selected Cells. This copies the selection to the
clipboard, from where it can be pasted into another application. To copy the header together with the
cells, use the command Copy Selected Cells with Header.

The Results tab has the following toolbar icons:

Go to Statement Highlights the statement in the SQL Editor that produced the
current result.

Find Finds text in the Results pane. XML document content is also
searched.

Messages tab
The Messages tab provides information on the previously executed SQL statement and reports errors or
warning messages.

612 Databases Query Database

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The toolbar of the Messages tab contains icons that enable you to customize the view, navigate it, and copy
messages to the clipboard. The Filter icon enables the display of particular types of messages to be toggled
on or off. The Next and Previous icons lets you step through the list, downwards and upwards, respectively.
Messages can also be copied with or without their child components to the clipboard, enabling them to be
pasted in documents. The Find function enables you to specify a search term and then search up or down the
listing for this term. Finally, the Clear icon clears the contents of the Report pane.

Note: These toolbar icon commands are also available as context menu commands.

© 2017-2023 Altova GmbH

 613Authentic View

Altova StyleVision 2024 Professional Edition

11 Authentic View

Authentic View (screenshot below) is a graphical representation of your XML document. It enables XML
documents to be displayed without markup and with appropriate formatting and data-entry features such as
input fields, combo boxes, and radio buttons. Data that the user enters in Authentic View is entered into the
XML file.

Authentic Preview
In StyleVision, while editing an SPS, you are able to preview the Authentic View of the assigned Working XML
File. If you click the Authentic View tab when no Working XML File has been assigned to the SPS, you are
prompted to assign a Working XML File. In Authentic Preview, you can edit the XML document, similarly to
standard Authentic View, and the editing changes can be saved to the Working XML File. This section
describes Authentic View and how to edit documents in Authentic View .614 626

614 Authentic View Authentic View Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

11.1 Authentic View Interface

Authentic Preview is enabled by clicking the Authentic tab of the active document. If no Working XML File has
been assigned to the SPS, you are prompted to assign one.

This section provides:

· An overview of the interface
· A description of the toolbar icons specific to Authentic View
· A description of viewing modes available in the main Authentic Preview window
· A description of the context menus available at various points in the Authentic View of the XML

document

Additional sources of Authentic View information are:

· An Authentic View Tutorial, which shows you how to use the Authentic View interface. This tutorial is
available in the documentation of the Altova XMLSpy and Altova Authentic Desktop products (see the
Tutorials section), as well as online.

· For a detailed description of Authentic View menu commands, see the User Reference section of your
product documentation.

Altova website: XML content editing, XML authoring

11.1.1 Overview of the GUI

The Authentic Preview provides you with menu commands, toolbar icons, and context menus with which to edit
the XML document that is displayed in the Main Window.

Menu bar
The menus available in the menu bar are described in detail in the User Reference section of your product
documentation.

Toolbar
The symbols and icons displayed in the toolbar are described in the section, Authentic View toolbar icons .

Main window
This is the window in which the Working XML document is displayed and edited. It is described in the section,
Authentic View main window .

Status Bar
The Status Bar displays the XPath to the currently selected node. In the Authentic Preview of StyleVision, the
XPath to the currently selected node is indicated in the Schema Tree, where the currently selected node is
highlighted in gray. The XPath in Authentic Preview is not displayed in a status bar.

615

617

http://www.altova.com/manual_Authentic/
https://www.altova.com/authentic
https://www.altova.com/authentic

© 2017-2023 Altova GmbH

Authentic View Interface 615Authentic View

Altova StyleVision 2024 Professional Edition

Context menus
These are the menus that appear when you right-click in the Main Window. The available commands are
context-sensitive editing commands, i.e. they allow you to manipulate structure and content relevant to the
selected node. Such manipulations include inserting, appending, or deleting a node, adding entities, or cutting
and pasting content.

11.1.2 Authentic View Toolbar Icons

Icons in the Authentic View toolbar are command shortcuts. Some icons will already be familiar to you from
other Windows applications or Altova products, others might be new to you. This section describes icons
unique to Authentic View. In the description below, related icons are grouped together.

Show/hide XML markup
In Authentic View, the tags for all, some, or none of the XML elements or attributes can be displayed, either
with their names (large markup) or without names (small markup). The four markup icons appear in the toolbar,
and the corresponding commands are available in the Authentic menu.

Hide markup. All XML tags are hidden except those which have been collapsed. Double-
clicking on a collapsed tag (which is the usual way to expand it) in Hide markup mode will
cause the node's content to be displayed and the tags to be hidden.

Show small markup. XML element/attribute tags are shown without names.

Show large markup. XML element/attribute tags are shown with names.

Show mixed markup. In the StyleVision Power Stylesheet, each XML element or attribute can
be specified to display (as either large or small markup), or not to display at all. This is called
mixed markup mode since some elements can be specified to be displayed with markup and
some without markup. In mixed markup mode, therefore, the Authentic View user sees a
customized markup. Note, however, that this customization is created by the person who has
designed the StyleVision Power Stylesheet. It cannot be defined by the Authentic View user.

Editing dynamic table structures
Rows in a dynamic SPS table are repetitions of a data structure. Each row represents an occurrence of a
single element. Each row, therefore, has the same XML substructure as the next.

The dynamic table editing commands manipulate the rows of a dynamic SPS table. That is, you can modify the
number and order of the element occurrences. You cannot, however, edit the columns of a dynamic SPS table,
since this would entail changing the substructure of individual element occurrences.

616 Authentic View Authentic View Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The icons for dynamic table editing commands appear in the toolbar, and are also available in the Authentic
menu.

Append row to table

Insert row in table

Duplicate current table row (i.e. cell contents are duplicated)

Move current row up by one row

Move current row down by one row

Delete the current row

Note: These commands apply only to dynamic SPS tables. They should not be used inside static SPS
tables.

DB Row Navigation icons

The arrow icons are, from left to right, Go to First Record; Go to Previous Record; Open the Go to Record #
dialog; Go to Next Record; and Go to Last Record.

This icon opens the Edit Database Query dialog in which you can enter a query. Authentic
View displays the queried record/s.

XML database editing
The Select New Row with XML Data for Editing command enables you to select a new row from the
relevant table in an XML DB, such as IBM DB2. This row appears in Authentic View, can be edited there, and
then saved back to the DB.

XML File commands
The following icons, from left to right, correspond to the commands listed below:

· Save Authentic XML Data: Saves the XML data file.
· Save Authentic XML Data As: Saves the XML data file as another file.

© 2017-2023 Altova GmbH

Authentic View Interface 617Authentic View

Altova StyleVision 2024 Professional Edition

· Reload Authentic View: Reloads the saved XML data file. Any unsaved changes will be lost.
· Validate: Validates the XML data file.

11.1.3 Authentic View Main Window

There are four viewing modes in Authentic View: Large Markup; Small Markup; Mixed Markup; and Hide All
Markup. These modes enable you to view the document with varying levels of markup information. To switch
between modes, use the commands in the Authentic menu or the icons in the toolbar (see the previous
section, Authentic View toolbar icons).

Large markup
This shows the start and end tags of elements and attributes with the element/attribute names in the tags:

The element Name in the figure above is expanded, i.e. the start and end tags, as well as the content of the
element, are shown. An element/attribute can be contracted by double-clicking either its start or end tag. To
expand the contracted element/attribute, double-click the contracted tag.

In large markup, attributes are recognized by the equals-to symbol in the start and end tags of the attribute:

Small markup
This shows the start and end tags of elements/attributes without names:

615

618 Authentic View Authentic View Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Notice that start tags have a symbol inside them while end tags are empty. Also, element tags have an
angular-brackets symbol while attribute tags have an equals sign as their symbol (see screenshot below).

To collapse or expand an element/attribute, double-click the appropriate tag. The example below shows a
collapsed element (highlighted in blue). Notice the shape of the tag of the collapsed element and that of the
start tag of the expanded element to its left.

Mixed markup
Mixed markup shows a customized level of markup. The person who has designed the StyleVision Power
Stylesheet can specify either large markup, small markup, or no markup for individual elements/attributes in the
document. The Authentic View user sees this customized markup in mixed markup viewing mode.

© 2017-2023 Altova GmbH

Authentic View Interface 619Authentic View

Altova StyleVision 2024 Professional Edition

Hide all markup
All XML markup is hidden. Since the formatting seen in Authentic View is the formatting of the printed
document, this viewing mode is a WYSIWYG view of the document.

Content display
In Authentic View, content is displayed in two ways:

· Plain text. You type in the text, and this text becomes the content of the element or the value of the
attribute.

· Data-entry devices. The display contains either an input field (text box), a multiline input field, combo
box, check box, or radio button. In the case of input fields and multiline input fields, the text you enter
in the field becomes the XML content of the element or the value of the attribute.

In the case of the other data-entry devices, your selection produces a corresponding XML value, which
is specified in the StyleVision Power Stylesheet. Thus, in a combo box, a selection of, say, "approved"
(which would be available in the dropdown list of the combo box) could map to an XML value of "1", or
to "approved", or anything else; while "not approved" could map to "0", or "not approved", or anything
else.

Optional nodes
When an element or attribute is optional (according to the referenced schema), a prompt of type add
[element/attribute] is displayed:

Clicking the prompt adds the element, and places the cursor for data entry. If there are multiple optional nodes,
the prompt add... is displayed. Clicking the prompt displays a menu of the optional nodes.

11.1.4 Authentic View Entry Helpers

There are three entry helpers in Authentic View: for Elements, Attributes, and Entities. They are displayed as
windows down the right side of the Authentic View interface (see screenshot below).

620 Authentic View Authentic View Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The Elements and Attributes Entry Helpers are context-sensitive, i.e. what appears in the entry helper depends
on where the cursor is in the document. The entities displayed in the Entities Entry Helper are not context-
sensitive; all entities allowed for the document are displayed no matter where the cursor is.

Each of the entry helpers is described separately below.

Elements Entry Helper
The Elements Entry Helper consists of two parts:

· The upper part, containing an XML tree that can be toggled on and off using the Show XML tree
check box. The XML tree shows the ancestors up to the document's root element for the current
element. When you click on an element in the XML tree, elements corresponding to that element (as
described in the next item in this list) appear in the lower part of the Elements Entry Helper.

© 2017-2023 Altova GmbH

Authentic View Interface 621Authentic View

Altova StyleVision 2024 Professional Edition

· The lower part, containing a list of the nodes that can be inserted within, before, and after; removed;
applied to or cleared from the selected element or text range in Authentic View. What you can do with
an element listed in the Entry Helper is indicated by the icon to the left of the element name in the
Entry Helper. The icons that occur in the Elements Entry Helper are listed below, together with an
explanation of what they mean.

To use a node from the Entry Helper, click its icon.

 Insert After Element
The element in the Entry Helper is inserted after the selected element. Note that it is appended at the correct
hierarchical level. For example, if your cursor is inside a //sect1/para element, and you append a sect1
element, then the new sect1 element will be appended not as a following sibling of //sect1/para but as a
following sibling of the sect1 element that is the parent of that para element.

 Insert Before Element
The element in the Entry Helper is inserted before the selected element. Note that, just as with the Insert After
Element command, the element is inserted at the correct hierarchical level.

 Remove Element
Removes the element and its content.

 Insert Element
An element from the Entry Helper can also be inserted within an element. When the cursor is placed within an
element, then the allowed child elements of that element can be inserted. Note that allowed child elements can
be part of an elements-only content model as well as a mixed content model (text plus child elements).

An allowed child element can be inserted either when a text range is selected or when the cursor is placed as
an insertion point within the text.

· When a text range is selected and an element inserted, the text range becomes the content of the
inserted element.

· When an element is inserted at an insertion point, the element is inserted at that point.

After an element has been inserted, it can be cleared by clicking either of the two Clear Element icons that
appear (in the Elements Entry Helper) for these inline elements. Which of the two icons appears depends on
whether you select a text range or place the cursor in the text as an insertion point (see below).

 Apply Element
If you select an element in your document (by clicking either its start or end tag in the Show large markup view)
and that element can be replaced by another element (for example, in a mixed content element such as para,
an italic element can be replaced by the bold element), this icon indicates that the element in the Entry
Helper can be applied to the selected (original) element. The Apply Element command can also be applied to
a text range within an element of mixed content; the text range will be created as content of the applied
element.

· If the applied element has a child element with the same name as a child of the original element
and an instance of this child element exists in the original element, then the child element of the
original is retained in the new element's content.

· If the applied element has no child element with the same name as that of an instantiated child of
the original element, then the instantiated child of the original element is appended as a sibling of any
child element or elements that the new element may have.

622 Authentic View Authentic View Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· If the applied element has a child element for which no equivalent exists in the original element's
content model, then this child element is not created directly but Authentic View offers you the option
of inserting it.

If a text range is selected rather than an element, applying an element to the selection will create the applied
element at that location with the selected text range as its content. Applying an element when the cursor is an
insertion point is not allowed.

 Clear Element
This icon appears when text within an element of mixed content is selected. Clicking the icon clears the
element from around the selected text range.

 Clear Element (when insertion point selected)
This icon appears when the cursor is placed within an element that is a child of a mixed-content element.
Clicking the icon clears the inline element.

Attributes Entry Helper
The Attributes Entry Helper consists of a drop-down combo box and a list of attributes. The element that you
have selected (you can click the start or end tag, or place the cursor anywhere in the element content to select
it) appears in the combo box. The Attributes Entry Helper shown in the figures below has a para element in the
combo box. Clicking the arrow in the combo box drops down a list of all the para element's ancestors up to
the document's root element, which in this case is OrgChart.

Below the combo box, a list of valid attributes for that element is displayed, in this case for para. If an attribute
is mandatory on a given element, then it appears in bold. (In the example below, there are no mandatory
attributes except the built-in attribute xsi:type.)

To enter a value for an attribute, click in the value field of the attribute and enter the value. This creates the
attribute and its value in the XML document.

© 2017-2023 Altova GmbH

Authentic View Interface 623Authentic View

Altova StyleVision 2024 Professional Edition

Note the following:

· In the case of the xsi:nil attribute, which appears in the Attributes Entry Helper when a nillable
element has been selected, the value of the xsi:nil attribute can only be entered by selecting one of
the allowed values (true or false) from the dropdown list for the attribute's value.

· The xsi:type attribute can be changed by clicking in the value field of the attribute and then either (i)
selecting a value from the dropdown list that appears, or (ii) entering a value. Values displayed in the
dropdown list are the available abstract types defined in the XML Schema on which the Authentic View
document is based.

Entities Entry Helper
The Entities Entry Helper allows you to insert an entity in your document. Entities can be used to insert special
characters or text fragments that occur often in a document (such as the name of a company). To insert an
entity, place the cursor at the point in the text where you want to have the entity inserted, then double-click the
entity in the Entities Entry Helper.

Note: An internal entity is one that has its value defined within the DTD. An external entity is one that has its
value contained in an external source, e.g. another XML file. Both internal and external entities are
listed in the Entities Entry Helper. When you insert an entity, whether internal or external, the entity—
not its value—is inserted into the XML text. If the entity is an internal entity, Authentic View displays
the value of the entity. If the entity is an external entity, Authentic View displays the entity—and not
its value. This means, for example, that an XML file that is an external entity will be shown in the
Authentic View display as an entity; its content does not replace the entity in the Authentic View
display.

You can also define your own entities in Authentic View and these will also be displayed in the entry helper:
see Define Entities in the Editing in Authentic View section.

11.1.5 Authentic View Context Menus

Right-clicking on some selected document content or node pops up a context menu with commands relevant to
the selection or cursor location.

Inserting elements
The figure below shows the Insert submenu, which is a list of all elements that can be inserted at that current
cursor location. The Insert Before submenu lists all elements that can be inserted before the current element.
The Insert After submenu lists all elements that can be inserted after the current element. In the figure below,
the current element is the para element. The bold and italic elements can be inserted within the current
para element.

646

624 Authentic View Authentic View Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

As can be seen below, the para and Office elements can be inserted before the current para element.

The node insertion, replacement (Apply), and markup removal (Clear) commands that are available in the
context menu are also available in the Authentic View entry helpers and are fully described in that section.

Insert entity
Positioning the cursor over the Insert Entity command rolls out a submenu containing a list of all declared
entities. Clicking an entity inserts it at the selection. See Define Entities for a description of how to define
entities for the document.

Insert CDATA Section
This command is enabled when the cursor is placed within text. Clicking it inserts a CDATA section at the
cursor insertion point. The CDATA section is delimited by start and end tags; to see these tags you should
switch on large or small markup. Within CDATA sections, XML markup and parsing is ignored. XML markup
characters (the ampersand, apostrophe, greater than, less than, and quote characters) are not treated as
markup, but as literals. So CDATA sections are useful for text such as program code listings, which have XML
markup characters.

Remove node
Positioning the mouse cursor over the Remove command pops up a menu list consisting of the selected node
and all its removable ancestors (those that would not invalidate the document) up to the document element.
Click the element to be removed. This is a quick way to delete an element or any removable ancestor. Note
that clicking an ancestor element will remove all its descendants, including the selected element.

Clear
The Clear command clears the element markup from around the selection. If the entire node is selected, then
the element markup is cleared for the entire node. If a text segment is selected, then the element markup is
cleared from around that text segment only.

Apply
The Apply command applies a selected element to your selection in the main Window. For more details, see
Authentic View entry helpers .

619

646

619

© 2017-2023 Altova GmbH

Authentic View Interface 625Authentic View

Altova StyleVision 2024 Professional Edition

Copy, Cut, Paste
These are the standard Windows commands. Note, however, that the Paste command pastes copied text
either as XML or as Text, depending on what the designer of the stylesheet has specified for the SPS as a
whole. For information about how the Copy as XML and Copy as Text commands work, see the description of
the Paste As command immediately below.

Paste As
The Paste As command offers the option of pasting as XML or as text an Authentic View XML fragment (which
was copied to the clipboard). If the copied fragment is pasted as XML it is pasted together with its XML markup.
If it is pasted as text, then only the text content of the copied fragment is pasted (not the XML markup, if any).
The following situations are possible:

· An entire node together with its markup tags is highlighted in Authentic View and copied to the
clipboard. (i) The node can be pasted as XML to any location where this node may validly be placed. It
will not be pasted to an invalid location. (ii) If the node is pasted as text, then only the node's text
content will be pasted (not the markup); the text content can be pasted to any location in the XML
document where text may be pasted.

· A text fragment is highlighted in Authentic View and copied to the clipboard. (i) If this fragment is
pasted as XML, then the XML markup tags of the text—even though these were not explicitly copied
with the text fragment—will be pasted along with the text, but only if the XML node is valid at the
location where the fragment is pasted. (ii) If the fragment is pasted as text, then it can be pasted to
any location in the XML document where text may be pasted.

Note: Text will be copied to nodes where text is allowed, so it is up to you to ensure that the copied text
does not invalidate the document. The copied text should therefore be: (i) lexically valid in the new
location (for example, non-numeric characters in a numeric node would be invalid), and (ii) not
otherwise invalidate the node (for example, four digits in a node that accepts only three-digit numbers
would invalidate the node).

Note: If the pasted text does in any way invalidate the document, this will be indicated by the text being
displayed in red.

Delete
The Delete command removes the selected node and its contents. A node is considered to be selected for this
purpose by placing the cursor within the node or by clicking either the start or end tag of the node.

626 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

11.2 Editing in Authentic View

This section describes important features of Authentic View in detail. Features have been included in this
section either because they are frequently used or because the mechanisms or concepts involved require
explanation.

The section explains the following:

· The Date Picker is a graphical calendar that enters dates in the correct XML format when you click a
date. See Date Picker .

· An entity is shorthand for a special character or text string. You can define your own entities, which
allows you to insert these special characters or text strings by inserting the corresponding entities.
See Defining Entities for details.

· What image formats can be displayed in Authentic View.

To learn how to use all the features of Authentic View, please do the Authentic View Tutorial using either
XMLSpy or Authentic Desktop. The Authentic View Tutorial is available with these products.

Altova website: XML content editing, XML authoring

11.2.1 Basic Editing

When you edit in Authentic View, you are editing an XML document. Authentic View, however, can hide the
structural XML markup of the document, thus displaying only the content of the document (first screenshot
below). You are therefore not exposed to the technicalities of XML, and can edit the document as you would a
normal text document. If you wish, you could switch on the markup at any time while editing (second
screenshot below).

An editable Authentic View document with no XML markup.

645

646

648

https://www.altova.com/authentic
https://www.altova.com/authentic

© 2017-2023 Altova GmbH

Editing in Authentic View 627Authentic View

Altova StyleVision 2024 Professional Edition

An editable Authentic View document with XML markup tags.

Inserting nodes
Very often you will need to add a new node to the Authentic XML document. For example, a new Person
element might need to be added to an address book type of document. In such cases the XML Schema would
allow the addition of the new element. All you need to do is right-click the node in the Authentic View document
before which or after which you wish to add the new node. In the context menu that appears, select Insert
Before or Insert After as required. The nodes available for insertion at that point in the document are listed in a
submenu. Click the required node to insert it. The node will be inserted. All mandatory descendant nodes are
also inserted. If a descendant node is optional, a clickable link, Add NodeName, appears to enable you to add
the optional node if you wish to.

If the node being added is an element with an abstract type, then a dialog (something like in the screenshot
below) appears containing a list of derived types that are available in the XML Schema.

628 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The screenshot above pops up when a Publication element is added. The Publication element is of type
PublicationType, which is an abstract complex type. The two complex types BookType and MagazineType
are derived from the abstract PublicationType. Therefore, when a Publication element is added to the XML
document, one of these two concrete types derived from Publication's abstract type must be specified. The
new Publication element will be added with an xsi:type attribute:

<Publication xsi:type="BookType"> ... </Publication>

<Publication xsi:type="MagazineType"> ... </Publication>

 ...
<Publication xsi:type="MagazineType"> ... </Publication>

Selecting one of the available derived types and clicking OK does the following:

· Sets the selected derived type as the value of the xsi:type attribute of the element
· Inserts the element together with the descendant nodes defined in the content model of the selected

derived type.

The selected derived type can be changed subsequently by changing the value of the element's xsi:type
attribute in the Attributes Entry Helper. When the element's type is changed in this way, all nodes of the
previous type's content model are removed and nodes of the new type's content model are inserted.

Text editing
An Authentic View document will essentially consist of text and images. To edit the text in the document,
place the cursor at the location where you wish to insert text, and type. You can copy, move, and delete text
using familiar keystrokes (such as the Delete key) and drag-and-drop mechanisms. One exception is the
Enter key. Since the Authentic View document is pre-formatted, you do not—and cannot—add extra lines or
space between items. The Enter key in Authentic View therefore serves to append another instance of the
element currently being edited, and should be used exclusively for this purpose.

© 2017-2023 Altova GmbH

Editing in Authentic View 629Authentic View

Altova StyleVision 2024 Professional Edition

Copy as XML or as text
Text can be copied and pasted as XML or as text.

· If text is pasted as XML, then the XML markup is pasted together with the text content of nodes. The
XML markup is pasted even if only part of a node's contents has been copied. For the markup to be
pasted it must be allowed, according to the schema, at the location where it is pasted.

· If text is pasted as text, XML markup is not pasted.

To paste as XML or text, first copy the text (Ctrl+C), right-click at the location where the text is to be pasted,
and select the context menu command Paste As | XML or Paste As | Text. If the shortcut Ctrl+V is used, the
text will be pasted in the default Paste Mode of the SPS. The default Paste Mode will have been specified by
the designer of the SPS. For more details, see the section Context Menus .

Alternatively, highlighted text can be dragged to the location where it is to be pasted. When the text is dropped,
a pop-up appears asking whether the text is to be pasted as text or XML. Select the desired option.

Text formatting
A fundamental principle of XML document systems is that content be kept separate from presentation. The
XML document contains the content, while the stylesheet contains the presentation (formatting). In Authentic
View, the XML document is presented via the stylesheet. This means that all the formatting you see in
Authentic View is produced by the stylesheet. If you see bold text, that bold formatting has been provided by
the stylesheet. If you see a list or a table, that list format or table format has been provided by the stylesheet.
The XML document, which you edit in Authentic View contains only the content; it contains no formatting
whatsoever. The formatting is contained in the stylesheet. What this means for you, the Authentic View user, is
that you do not have to—nor can you—format any of the text you edit. You are editing content. The formatting
that is automatically applied to the content you edit is linked to the semantic and/or structural value of the data
you are editing. For example, an email address (which could be considered a semantic unit) will be formatted
automatically in a certain way because it is an email. In the same way, a headline must occur at a particular
location in the document (both a structural and semantic unit) and will be formatted automatically in the way
the stylesheet designer has specified that headlines be formatted. You cannot change the formatting of either
email address or headline. All that you do is edit the content of the email address or headline.

In some cases, content might need to be specially presented; for example, a text string that must be
presented in boldface. In all such cases, the presentation must be tied in with a structural element of the
document. For example, a text string that must be presented in boldface, will be structurally separated from
surrounding content by markup that the stylesheet designer will format in boldface. If you, as the Authentic
View user, need to use such a text string, you would need to enclose the text string within the appropriate
element markup. For information about how to do this, see the Insert Element command in the Elements Entry
Helper section of the documentation.

Using RichEdit in Authentic View
In Authentic View, when the cursor is placed inside an element that has been created as a RichEdit
component, the buttons and controls in the RichEdit toolbar (screenshot below) become enabled. Otherwise
they are grayed out.

623

620

630 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Select the text you wish to style and specify the styling you wish to apply via the buttons and controls of the
RichEdit toolbar. RichEdit enables the Authentic View user to specify the font, font-weight, font-style, font-
decoration, font-size, color, background color and alignment of text. The text that has been styled will be
enclosed in the tags of the styling element.

Inserting entities
In XML documents, some characters are reserved for markup and cannot be used in normal text. These are the
ampersand (&), apostrophe ('), less than (<), greater than (>), and quote (") characters. If you wish to use
these characters in your data, you must insert them as entity references, via the Entities Entry Helper
(screenshot below).

XML also offers the opportunity to create custom entities. These could be: (i) special characters that are not
available on your keyboard, (ii) text strings that you wish to re-use in your document content, (iii) XML data
fragments, or (iv) other resources, such as images. You can define your own entities within the Authentic
View application. Once defined, these entities appear in the Entities Entry Helper and can then be inserted
as in the document.

Inserting CDATA sections
CDATA sections are sections of text in an XML document that the XML parser does not process as XML data.
They can be used to escape large sections of text if replacing special characters by entity references is
undesirable; this could be the case, for example, with program code or an XML fragment that is to be
reproduced with its markup tags. CDATA sections can occur within element content and are delimited by <!
[CDATA[and]]> at the start and end, respectively. Consequently the text string]]> should not occur within a
CDATA section as it would prematurely signify the end of the section. In this case, the greater than character
should be escaped by its entity reference (>). To insert a CDATA section within an element, place the
cursor at the desired location, right-click, and select Insert CDATA Section from the context menu. To see the
CDATA section tags in Authentic View, switch on the markup display . Alternatively, you could highlight the
text that is to be enclosed in a CDATA section, and then select the Insert CDATA section command.

Note: CDATA sections cannot be inserted into input fields (that is, in text boxes and multiline text boxes).
CDATA sections can only be entered within elements that are displayed in Authentic View as text
content components.

623

646

623

615

© 2017-2023 Altova GmbH

Editing in Authentic View 631Authentic View

Altova StyleVision 2024 Professional Edition

Editing and following links
A hyperlink consists of two parts: the link text and the target of the link. You can edit the link text by clicking in
the text and editing. But you cannot edit the target of the link. (The target of the link is set by the designer of
the stylesheet (either by typing in a static target address or by deriving the target address from data contained
in the XML document).) From Authentic View, you can go to the target of the link by pressing Ctrl and clicking
the link text. (Remember: merely clicking the link will set you up for editing the link text.)

11.2.2 Tables in Authentic View

The three table types fall into two categories: SPS tables (static and dynamic) and CALS/HTML Tables.

SPS tables are of two types: static and dynamic. SPS tables are designed by the designer of the StyleVision
Power Stylesheet to which your XML document is linked. You yourself cannot insert an SPS table into the XML
document, but you can enter data into SPS table fields and add and delete the rows of dynamic SPS tables.
The section on SPS tables below explains the features of these tables.

CALS/HTML tables are inserted by you, the user of Authentic View. Their purpose is to enable you to insert
tables at any allowed location in the document hierarchy should you wish to do so. The editing features of
CALS/HTML Tables and the CALS/HTML Table editing icons are described below.

11.2.2.1 SPS Tables

Two types of SPS tables are used in Authentic View: static tables and dynamic tables.

Static tables
Static tables are fixed in their structure and in the content-type of cells. You, as the user of Authentic View,
can enter data into the table cells but you cannot change the structure of these tables (i.e. add rows or
columns, etc) or change the content-type of a cell. You enter data either by typing in text, or by selecting from
options presented in the form of check-box or radio button alternatives or as a list in a combo-box. After you
enter data, you can edit it.

Note: The icons or commands for editing dynamic tables must not be used to edit static tables.

631

632 636

632 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Dynamic tables
Dynamic tables have rows that represent a repeating data structure, i.e. each row has an identical data
structure (not the case with static tables). Therefore, you can perform row operations: append row, insert row,
move row up, move row down, and delete row. These commands are available under the Authentic menu and
as icons in the toolbar (shown below).

To use these commands, place the cursor anywhere in the appropriate row, and then select the required
command.

To move among cells in the table, use the Up, Down, Left, and Right arrow keys. To move forward from one cell
to the next, use the Tab key. Pressing the Tab key in the last cell of the last row creates a new row.

11.2.2.2 CALS/HTML Tables

CALS/HTML tables can be inserted by you, the user of Authentic View, for certain XML data structures that
have been specified to show a table format. There are three steps involved when working with CALS/HTML
tables: inserting the table; formatting it; and entering data. The commands for working with CALS/HTML tables
are available as icons in the toolbar (see CALS/HTML table editing icons).

Inserting tables
To insert a CALS/HTML table do the following:

1. Place your cursor where you wish to insert the table, and click the icon. (Note that where you can
insert tables is determined by the schema.) The Insert Table dialog (screenshot below) appears. This

636

© 2017-2023 Altova GmbH

Editing in Authentic View 633Authentic View

Altova StyleVision 2024 Professional Edition

dialog lists all the XML element data-structures for which a table structure has been defined. For
example, in the screenshot below, the informaltable element and table element have each been
defined as both a CALS table as well as an HTML table.

2. Select the entry containing the element and table model you wish to insert, and click OK.
3. In the next dialog (screenshot below), select the number of columns and rows, and specify whether a

header and/or footer is to be added to the table and whether the table is to extend over the entire
available width. Click OK when done.

For the specifications given in the dialog box shown above, the following table is created.

By using the Table menu commands, you can add and delete columns, and create row and column
joins and splits. But to start with, you must create the broad structure.

634 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Formatting tables and entering data
The table formatting will already have been assigned in the document design. However, you might, under
certain circumstances, be able to modify the table formatting. These circumstances are as follows:

· The elements corresponding to the various table structure elements must have the relevant CALS or
HTML table properties defined as attributes (in the underlying XML Schema). Only those attributes that
are defined will be available for formatting. If, in the design, values have been set for these attributes,
then you can override these values in Authentic View.

· In the design. no style attribute containing CSS styles must have been set. If a style attribute
containing CSS styles has been specified for an element, the style attribute has precedence over any
other formatting attribute set on that element. As a result, any formatting specified in Authentic View
will be overridden.

To format a table, row, column, or cell, do the following:

1. Place the cursor anywhere in the table and click the (Table Properties) icon. This opens the Table
Properties dialog (see screenshot), where you specify formatting for the table, or for a row, column, or
cell.

2. Set the cellspacing and cellpadding properties to "0". Your table will now look like this:

3. Place the cursor in the first row to format it, and click the (Table Properties) icon. Click the Row
tab.

© 2017-2023 Altova GmbH

Editing in Authentic View 635Authentic View

Altova StyleVision 2024 Professional Edition

Since the first row will be the header row, set a background color to differentiate this row from the other
rows. Note the Row properties that have been set in the figure above. Then enter the column header
text. Your table will now look like this:

Notice that the alignment is centered as specified.
4. Now, say you want to divide the "Telephone" column into the sub-columns "Office" and "Home", in

which case you would need to split the horizontal width of the Telephone column into two columns.
First, however, we will split the vertical extent of the header cell to make a sub-header row. Place the

cursor in the "Telephone" cell, and click the (Split vertically) icon. Your table will look like this:

5. Now place the cursor in the cell below the cell containing "Telephone", and click the (Split
horizontally) icon. Then type in the column headers "Office" and "Home". Your table will now look like
this:

636 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Now you will have to split the horizontal width of each cell in the "Telephone" column.

You can also add and delete columns and rows, and vertically align cell content, using the table-editing icons.
The CALS/HTML table editing icons are described in the section titled, CALS/HTML Table Editing Icons .

Moving among cells in the table
To move among cells in the CALS/HTML table, use the Up, Down, Right, and Left arrow keys.

Entering data in a cell
To enter data in a cell, place the cursor in the cell, and type in the data.

Formatting text
Text in a CALS/HTML table, as with other text in the XML document, must be formatted using XML elements or
attributes. To add an element, highlight the text and double-click the required element in the Elements Entry
Helper. To specify an attribute value, place the cursor within the text fragment and enter the required attribute
value in the Attributes Entry Helper. After formatting the header text bold, your table will look like this.

The text above was formatted by highlighting the text, and double-clicking the element strong, for which a

global template exists that specifies bold as the font-weight. The text formatting becomes immediately visible.

Note: For text formatting to be displayed in Authentic View, a global template with the required text
formatting must have been created in StyleVision for the element in question.

11.2.2.3 CALS/HTML Table Editing Icons

The commands required to edit CALS/HTML tables are available as icons in the toolbar, and are listed below.
Note that no corresponding menu commands exist for these icons. For a full description of when and how
CALS/HTML Tables are to be used, see CALS/HTML Tables .

Insert table

The "Insert Table" command inserts a CALS/HTML table at the current cursor position.

636

632

© 2017-2023 Altova GmbH

Editing in Authentic View 637Authentic View

Altova StyleVision 2024 Professional Edition

Delete table

The "Delete table" command deletes the currently active table.

Append row

The "Append row" command appends a row to the end of the currently active table.

Append column

The "Append column" command appends a column to the end of the currently active table.

Insert row

The "Insert row" command inserts a row above the current cursor position in the currently active table.

Insert column

The "Insert column" command inserts a column to the left of the current cursor position in the currently
active table.

Join cell left

The "Join cell left" command joins the current cell (current cursor position) with the cell to the left. The
tags of both cells remain in the new cell, the column headers remain unchanged and are concatenated.

Join cell right

The "Join cell right" command joins the current cell (current cursor position) with the cell to the right.
The contents of both cells are concatenated in the new cell.

Join cell below

The "Join cell below" command joins the current cell (current cursor position) with the cell below. The
contents of both cells are concatenated in the new cell.

Join cell above

The "Join cell above" command joins the current cell (current cursor position) with the cell above. The
contents of both cells are concatenated in the new cell.

Split cell horizontally

The "Split cell Horizontally" command creates a new cell to the right of the currently active cell. The
size of both cells, is now the same as the original cell.

Split cell vertically

The "Split cell Vertically" command creates a new cell below the currently active cell.

Align top

This command aligns the cell contents to the top of the cell.

Center vertically

This command centers the cell contents.

638 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Align bottom

This command aligns the cell contents to the bottom of the cell.

Table properties

The "Table properties" command opens the Table Properties dialog box. This icon is only made active
for HTML tables, it cannot be clicked for CALS tables.

11.2.3 Editing a DB

In Authentic View, you can edit database (DB) tables and save data back to a DB. This section contains a full
description of interface features available to you when editing a DB table. The following general points need to
be noted:

· The number of records in a DB table that are displayed in Authentic View may have been deliberately
restricted by the designer of the StyleVision Power Stylesheet in order to make the design more
compact. In such cases, only that limited number of records is initially loaded into Authentic View.
Using the DB table row navigation icons (see Navigating a DB Table), you can load and display the
other records in the DB table.

· You can query the DB to display certain records.
· You can add, modify, and delete DB records, and save your changes back to the DB. See Modifying a

DB Table .

Note: In Authentic View, data coming from a SQLite database is not editable. When you attempt to save
SQLite data in Authentic View, a message box will inform you of this known limitation.

639

639

643

© 2017-2023 Altova GmbH

Editing in Authentic View 639Authentic View

Altova StyleVision 2024 Professional Edition

11.2.3.1 Navigating a DB Table

The commands to navigate DB table rows are available as buttons in the Authentic View document. Typically,
one navigation panel with either four or five buttons accompanies each DB table.

The arrow icons are, from left to right, Go to First Record in the DB Table; Go to Previous Record; Open the Go
to Record dialog (see screenshot); Go to Next Record; and Go to Last Record.

To navigate a DB table, click the required button.

XML Databases
In the case of XML DBs, such as IBM DB2, one cell (or row) contains a single XML document, and therefore a
single row is loaded into Authentic View at a time. To load an XML document that is in another row, use the
Authentic | Select New Row with XML Data for menu command.

11.2.3.2 DB Queries

A DB query enables you to query the records of a table displayed in Authentic View. A query is made for an
individual table, and only one query can be made for each table. You can make a query at any time while
editing. If you have unsaved changes in your Authentic View document at the time you submit the query, you
will be prompted about whether you wish to save all changes made in the document or discard all changes.
Note that even changes made in other tables will be saved/discarded. After you submit the query, the table is
reloaded using the query conditions.

Note: If you get a message saying that too many tables are open, then you can reduce the number of tables
that are open by using a query to filter out some tables.

To create and submit a query:

1. Click the Query button for the required table in order to open the Edit Database Query dialog (see
screenshot). This button typically appears at the top of each DB table or below it. If a Query button is
not present for any table, the designer of the StyleVision Power Stylesheet has not enabled the DB
Query feature for that table.

805

640 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Click the Append AND or Append OR button. This appends an empty criterion for the query (shown
below).

3. Enter the expression for the criterion. An expression consists of: (i) a field name (available from the
associated combo-box); (ii) an operator (available from the associated combo-box); and (iii) a value (to
be entered directly). For details of how to construct expressions see the Expressions in criteria
section.

4. If you wish to add another criterion, click the Append AND or Append OR button according to which
logical operator (AND or OR) you wish to use to join the two criteria. Then add the new criterion. For
details about the logical operators, see the section Re-ordering criteria in DB Queries .

641

642

© 2017-2023 Altova GmbH

Editing in Authentic View 641Authentic View

Altova StyleVision 2024 Professional Edition

Expressions in criteria
Expressions in DB Query criteria consist of a field name, an operator, and a value. The available field names
are the child elements of the selected top-level data table; the names of these fields are listed in a combo-box
(see screenshot above). The operators you can use are listed below:

= Equal to

<> Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

LIKE Phonetically alike

NOT LIKE Phonetically not alike

IS NULL Is empty

NOT NULL Is not empty

If IS NULL or NOT NULL is selected, the Value field is disabled. Values must be entered without quotes (or any
other delimiter). Values must also have the same formatting as that of the corresponding DB field; otherwise
the expression will evaluate to FALSE. For example, if a criterion for a field of the date datatype in an MS
Access DB has an expression StartDate=25/05/2004, the expression will evaluate to FALSE because the
date datatype in an MS Access DB has a format of YYYY-MM-DD.

Using parameters with DB Queries
You can enter the name of a parameter as the value of an expression when creating queries. Parameters are
variables that can be used instead of literal values in queries. When you enter it in an expression, its value is
used in the expression. Parameters that are available have been defined by the SPS designer in the SPS and
can be viewed in the View Parameters dialog (see screenshot below). Parameters have been assigned a default
value in the SPS, which can be overridden by passing a value to the parameter via the command line (if and
when the output document is compiled via the command line).

To view the parameters defined for the SPS, click the Parameters button in the Edit Database Query dialog.
This opens the View Parameters dialog (see screenshot).

642 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The View Parameters dialog contains all the parameters that have been defined for the stylesheet in the SPS
and parameters must be edited in the stylesheet design.

Re-ordering criteria in DB Queries
The logical structure of the DB Query and the relationship between any two criteria or sets of criteria is
indicated graphically. Each level of the logical structure is indicated by a square bracket. Two adjacent criteria
or sets of criteria indicate the AND operator, whereas if two criteria are separated by the word OR then the OR

operator is indicated. The criteria are also appropriately indented to provide a clear overview of the logical
structure of the DB Query.

The DB Query shown in the screenshot above may be represented in text as:

© 2017-2023 Altova GmbH

Editing in Authentic View 643Authentic View

Altova StyleVision 2024 Professional Edition

State=CA AND (City=Los Angeles OR City=San Diego OR (City=San Francisco AND
CustomerNr=25))

You can re-order the DB Query by moving a criterion or set of criteria up or down relative to the other criteria in
the DB Query. To move a criterion or set of criteria, do the following:

1. Select the criterion by clicking on it, or select an entire level by clicking on the bracket that represents
that level.

2. Click the Up or Down arrow button in the dialog.

The following points should be noted:

· If the adjacent criterion in the direction of movement is at the same level, the two criteria exchange
places.

· A set of criteria (i.e. criterion within a bracket) changes position within the same level; it does not
change levels.

· An individual criterion changes position within the same level. If the adjacent criterion is further
outward/inward (i.e. not on the same level), then the selected criterion will move outward/inward, one
level at a time.

To delete a criterion in a DB Query, select the criterion and click Delete.

Modifying a DB Query

To modify a DB Query:

1. Click the Query button . The Edit Database Query dialog box opens. You can now edit the
expressions in any of the listed criteria, add new criteria, re-order criteria, or delete criteria in the DB
Query.

2. Click OK. The data from the DB is automatically re-loaded into Authentic View so as to reflect the
modifications to the DB Query.

11.2.3.3 Modifying a DB Table

Adding a record
To add a record to a DB table:

1. Place the cursor in the DB table row and click the icon (to append a row) or the icon (to insert
a row). This creates a new record in the temporary XML file.

2. Click the File | Save Authentic XML Data... command to add the new record in the DB. In Authentic
View a row for the new record is appended to the DB table display. The AltovaRowStatus for this
record is set to A (for Added).

When you enter data for the new record it is entered in bold and is underlined. This enables you to differentiate
added records from existing records—if existing records have not been formatted with these text formatting
properties. Datatype errors are flagged by being displayed in red.

644 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The new record is added to the DB when you click File | Save Authentic XML Data.... After a new record is
saved to the DB, its AltovaRowStatus field is initialized (indicated with ---) and the record is displayed in
Authentic View as a regular record.

Modifying a record
To modify a record, place the cursor at the required point in the DB table and edit the record as required. If the
number of displayed records is limited, you may need to navigate to the required record (see Navigating a DB
Table).

When you modify a record, entries in all fields of the record are underlined and the AltovaRowStatus of all
primary instances of this record is set to U (for Updated). All secondary instances of this record have their

AltovaRowStatus set to u (lowercase). Primary and secondary instances of a record are defined by the
structure of the DB—and correspondingly of the XML Schema generated from it. For example, if an Address
table is included in a Customer table, then the Address table can occur in the Design Document in two types of
instantiations: as the Address table itself and within instantiations of the Customer table. Whichever of these
two types is modified is the type that has been primarily modified. Other types—there may be more than one
other type—are secondary types. Datatype errors are flagged by being displayed in red.

The modifications are saved to the DB by clicking File | Save Authentic XML Data.... After a modified record
is saved to the DB, its AltovaRowStatus field is initialized (indicated with ---) and the record is displayed in
Authentic View as a regular record.

Note the following points:

· If even a single field of a record is modified in Authentic View, the entire record is updated when the
data is saved to the DB.

· The date value 0001-01-01 is defined as a NULL value for some DBs, and could result in an error
message.

Deleting a record
To delete a record:

1. Place the cursor in the row representing the record to be deleted and click the icon. The record to
be deleted is marked with a strikethrough. The AltovaRowStatus is set as follows: primary instances
of the record are set to D; secondary instances to d; and records indirectly deleted to X. Indirectly
deleted records are fields in the deleted record that are held in a separate table. For example, an
Address table might be included in a Customer table. If a Customer record were to be deleted, then its
corresponding Address record would be indirectly deleted. If an Address record in the Customer table
were deleted, then the Address record in the Customer table would be primarily deleted, but the same
record would be secondarily deleted in an independent Address table if this were instantiated.

2. Click File | Save Authentic XML Data to save the modifications to the DB.

Note: Saving data to the DB resets the Undo command, so you cannot undo actions that were carried out
prior to the save.

11.2.4 Working with Dates

There are two ways in which dates can be edited in Authentic View:

639

© 2017-2023 Altova GmbH

Editing in Authentic View 645Authentic View

Altova StyleVision 2024 Professional Edition

· Dates are entered or modified using the Date Picker .
· Dates are entered or modified by typing in the value .

The method the Authentic View user will use is defined in the SPS. Both methods are described in the two
sub-sections of this section.

Note on date formats
In the XML document, dates can be stored in one of several date datatypes. Each of these datatypes requires
that the date be stored in a particular lexical format in order for the XML document to be valid. For example, the
xs:date datatype requires a lexical format of YYYY-MM-DD. If the date in an xs:date node is entered in
anything other than this format, then the XML document will be invalid.

In order to ensure that the date is entered in the correct format, the SPS designer can include the graphical
Date Picker in the design. This would ensure that the date selected in the Date Picker is entered in the correct
lexical format. If there is no Date Picker, the Authentic View should take care to enter the date in the correct
lexical format. Validating the XML document could provide useful tips about the required lexical format.

11.2.4.1 Date Picker

The Date Picker is a graphical calendar used to enter dates in a standard format into the XML document.
Having a standard format is important for the processing of data in the document. The Date Picker icon appears
near the date field it modifies (see screenshot).

To display the Date Picker (see screenshot), click the Date Picker icon.

645

646

646 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To select a date, click on the desired date, month, or year. The date is entered in the XML document, and the
date in the display is modified accordingly. You can also enter a time zone if this is required.

11.2.4.2 Text Entry

For date fields that do not have a Date Picker (see screenshot), you can edit the date directly by typing in the
new value.

Errors
The following types of error will be flagged:

· If you edit a date and change it such that it is out of the valid range for dates, the date turns red to alert
you to the error. If you place the mouse cursor over the invalid date, an error message appears (see
screenshot).

· If you try to change the format of the date, the date turns red to alert you to the error. (In the
screenshot below, slashes are used instead of hyphens).

11.2.5 Defining Entities

About entities
You can define entities for use in Authentic View, whether your document is based on a DTD or an XML
Schema. Once defined, these entities are displayed in the Entities Entry Helper and in the Insert Entity
submenu of the context menu. When you double-click on an entity in the Entities Entry Helper, that entity is
inserted at the cursor insertion point.

© 2017-2023 Altova GmbH

Editing in Authentic View 647Authentic View

Altova StyleVision 2024 Professional Edition

An entity is useful if you will be using a text string, XML fragment, or some other external resource in multiple
locations in your document. You define the entity, which is basically a short name that stands in for the
required data, in the Define Entities dialog. After defining an entity you can use it at multiple locations in your
document. This helps you save time and greatly enhances maintenance.

Types of entity
There are two broad types of entityyou can use in your document: a parsed entity, which is XML data (either a
text string or a fragment of an XML document), or an unparsed entity, which is non-XML data such as a binary
file (usually a graphic, sound, or multimedia object). Each entity has a name and a value. In the case of parsed
entities the entity is a placeholder for the XML data. The value of the entity is either the XML data itself or a URI
that points to a .xml file that contains the XML data. In the case of unparsed entities, the value of the entity is

a URI that points to the non-XML data file.

Defining entities
To define an entity:

1. Click Authentic | Define XML Entities. This opens the Define Entities dialog (screenshot below).

2. Enter the name of your entity in the Name field. This is the name that will appear in the Entities Entry
Helper.

3. Enter the type of entity from the drop-down list in the Type field. The following types are possible: An
Internal entity is one for which the text to be used is stored in the XML document itself. Selecting
PUBLIC or SYSTEM specifies that the resource is located outside the XML file, and will be located
with the use of a public identifier or a system identifier, respectively. A system identifier is a URI that
gives the location of the resource. A public identifier is a location-independent identifier, which enables
some processors to identify the resource. If you specify both a public and system identifier, the public
identifier resolves to the system identifier, and the system identifier is used.

4. If you have selected PUBLIC as the Type, enter the public identifier of your resource in the PUBLIC
field. If you have selected Internal or SYSTEM as your Type, the PUBLIC field is disabled.

5. In the Value/Path field, you can enter any one of the following:

· If the entity type is Internal, enter the text string you want as the value of your entity. Do not enter
quotes to delimit the entry. Any quotes that you enter will be treated as part of the text string.

· If the entity type is SYSTEM, enter the URI of the resource or select a resource on your local
network by using the Browse button. If the resource contains parsed data, it must be an XML file
(i.e., it must have a .xml extension). Alternatively, the resource can be a binary file, such as a GIF
file.

648 Authentic View Editing in Authentic View

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· If the entity type is PUBLIC, you must additionally enter a system identifier in this field.

6. The NDATA entry tells the processor that this entity is not to be parsed but to be sent to the
appropriate processor. The NDATA field must therefore contain some value to indicate that the entity is
an unparsed entity.

Dialog features
You can do the following in the Define Entities dialog:

· Append entities
· Insert entities
· Delete entities
· Sort entities by the alphabetical value of any column by clicking the column header; clicking once

sorts in ascending order, twice in descending order.
· Resize the dialog box and the width of columns.
· Locking. Once an entity is used in the XML document, it is locked and cannot be edited in the Define

Entities dialog. Locked entities are indicated by a lock symbol in the first column. Locking an entity
ensures that the XML document is valid with respect to entities. (The document would be invalid if an
entity is referenced but not defined.)

· Duplicate entities are flagged.

Limitations of entities

· An entity contained within another entity is not resolved, either in the dialog, Authentic View, or XSLT
output, and the ampersand character of such an entity is displayed in its escaped form, i.e. &.

· External unparsed entities that are not image files are not resolved in Authentic View. If an image in the
design is defined to read an external unparsed entity and has its URI set to be an entity name (for
example: 'logo'), then this entity name can be defined in the Define Entities dialog (see screenshot
above) as an external unparsed entity with a value that resolves to the URI of the image file (as has
been done for the logo entity in the screenshot above).

11.2.6 Images in Authentic View

Authentic View allows you to specify images that will be used in the final output document (HTML, RTF, PDF
and Word 2007+). You should note that some image formats might not be supported in some formats or by
some applications. For example, the SVG format is supported in PDF, but not in RTF and would require a
browser add-on for it to be viewed in HTML. So, when selecting an image format, be sure to select a format that
is supported in the output formats of your document. Most image formats are supported across all the output
formats (see list below).

Authentic View is based on Internet Explorer, and is able to display most of the image formats that your version
of Internet Explorer can display. The following commonly used image formats are supported:

· GIF
· JPG
· PNG
· BMP
· WMF (Microsoft Windows Metafile)

© 2017-2023 Altova GmbH

Editing in Authentic View 649Authentic View

Altova StyleVision 2024 Professional Edition

· EMF (Enhanced Metafile)
· SVG (for PDF output only)

Relative paths
Relative paths are resolved relative to the SPS file.

11.2.7 Keystrokes in Authentic View

The Enter key
In Authentic View the Enter key is used to append additional elements when it is in certain cursor locations.
For example, if the chapter of a book may (according to the schema) contain several paragraphs, then pressing
Enter inside the text of the paragraph causes a new paragraph to be appended immediately after the current
paragraph. If a chapter can contain one title and several paragraphs, pressing Enter inside the chapter but
outside any paragraph element (including within the title element) causes a new chapter to be appended after
the current chapter (assuming that multiple chapters are allowed by the schema).

Note: The Enter key does not insert a new line. This is the case even when the cursor is inside a text node,
such as paragraph.

Using the keyboard
The keyboard can be used in the standard way, for typing and navigating. Note the following special points:

· The Tab key moves the cursor forward, stopping before and after nodes, and highlighting node
contents; it steps over static content.

· The add... and add Node hyperlinks are considered node contents and are highlighted when tabbed.
They can be activated by pressing either the spacebar or the Enter key.

650 Authentic Scripting

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

12 Authentic Scripting

The Authentic Scripting feature provides more flexibility and interactivity to SPS designs. These designs can
be created or edited in StyleVision Enterprise and Professional editions, and can be viewed in the Authentic
View of the Enterprise and Professional editions of Altova products. A complete listing of support for this feature
in Altova products is given in the table below. Note, however, that in the trusted version of Authentic Browser
plug-in, internal scripting is turned off because of security concerns.

Altova Product Authentic Scripts Creation Authentic Scripts Enabled

StyleVision Enterprise Yes Yes

StyleVision Professional Yes Yes

StyleVision Basic * No No

XMLSpy Enterprise No Yes

XMLSpy Professional No Yes

Authentic Desktop Enterprise No Yes

Authentic Browser Ent Trusted ** No Yes

Authentic Browser Ent Untrusted No Yes

* No AuthenticView
** Scripted designs displayed. No internal macro execution or event handling. External events fired.

Authentic Scripts behave in the same way in all Altova products, so no product-specific code or settings are
required.

Authentic Script Warning Dialog
If a PXF file, or an XML file linked to an SPS, contains a script and the file is opened or switched to Authentic
View (in Altova products other than StyleVision), then a warning dialog (screenshot below) pops up.

You can choose one of the following options:

· Click Yes. to add the folder containing the file to the Trusted Locations list for Authentic scripts.
Subsequently, all files in the trusted folder will be opened In Authentic View without this warning dialog
being displayed first. The Trusted Locations list can be accessed via the menu command Authentic |
Trusted Locations, and modified.

© 2017-2023 Altova GmbH

 651Authentic Scripting

Altova StyleVision 2024 Professional Edition

· Click No to not add the folder containing the file to the Trusted Locations list. The file will be displayed
in Authentic View with scripts disabled. The Authentic Script Warning dialog will appear each time this
file is opened in Authentic View. To add the file's folder to the Trusted Locations list subsequently,
open the Trusted locations dialog via the menu command Authentic | Trusted Locations, and add the
folder or modify as required.

Note: When StyleVision is accessed via its COM interface (see Programmers' Reference to see how this
can be done), the security check is not done and the Authentic Script Warning dialog is not
displayed. The warning dialog described above appears in the Authentic View of Altova products other
than StyleVision. You, as an SPS designer, should be aware of this.

How Authentic Scripting works
The designer of the SPS design can use Authentic Scripting in two ways to make Authentic documents
interactive:

· By assigning scripts for user-defined actions (macros) to design elements, toolbar buttons, and
context menu items.

· By adding to the design event handlers that react to Authentic View events.

All the scripting that is required for making Authentic documents interactive is done within the StyleVision GUI
(Enterprise and Professional editions). Forms, macros and event handlers are created within the Scripting
Editor interface of StyleVision and these scripts are saved with the SPS. Then, in the Design View of
StyleVision, the saved scripts are assigned to design elements, toolbar buttons, and context menus. When an
XML document based on the SPS is opened in an Altova product that supports Authentic Scripting (see table
above), the document will have the additional flexibility and interactivity that has been created for it.

In this section
In this section we explain how Authentic Scripting works. The section is organized into the following sub-
sections:

· Scripting Editor , which describes the interface in which a scripting project containing the scripts for
the SPS are saved

· Macros , which shows how macros can be associated with design elements, Authentic toolbar
buttons, and Authentic context menus

· Event Handlers , which shows how event handler scripts are created and used
· Scripting Options , which documents the options

Example files
Example SPS files with Authentic Scripting are in the Authentic\Scripting folder of the Examples project in
the Project window of StyleVision.

853

652

653

659

660

652 Authentic Scripting Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

12.1 Scripting Editor

StyleVision's Scripting Editor (screenshot below) enables you to add scripts for forms, macros, and event
handlers to the SPS.

The Scripting Editor can be started either with the menu command Authentic | Edit Authentic Scripts or by
clicking the Authentic Script item in the view switcher menu of the Design View tab .

The scripting language can be changed by doing the following:

1. Right-click the Project item, which is at the top of the Project Tree (see screenshot above).
2. In the context menu that pops up, select Project Settings.
3. In the Project Settings dialog that appears, select either JScript or VBScript as the scripting language

and specify the target .NET framework. The user can then access and use classes and extensions of
the selected Microsoft .NET framework: for example, for creating forms.

The Scripting Editor and its features are described in detail in the Programmers' Reference .

Every SPS has a single scripting project, which is saved in the SPS. Clicking the Save button in Scripting
Editor does not save the script to the SPS; it merely saves changes to the scripting project in memory.
Changes in the scripting project are saved to the SPS only when the SPS is saved.

33

854 853

© 2017-2023 Altova GmbH

Macros 653Authentic Scripting

Altova StyleVision 2024 Professional Edition

12.2 Macros

Macros are single programs that are executed when a user action occurs. Macros do not take a parameter, do
not return a value, and do not call other macros directly. However, code that needs to be reused by multiple
macros or event handlers can be put in a function in the Global Declarations area.

A macro that is not assigned to a specific user action will not be executed. Valid user actions may be an
interaction with a specific design element , a toolbar button click , or the selection of a user-defined
context menu item .

The EventContext property

An SPS design element can appear in multiple places. To determine in which context a macro is executed, the
AuthenticView interface has a property called EventContext to hold the context. Via the EventContext
property, a macro can query the XPath location where the macro was started, evaluate XPath expressions in
the current node, and access variables defined in the scope of the location. For more details, see the section
AuthenticView API.

Checking macro references
The designer might accidentally rename a macro or delete it from the script project, though it is still referenced
in the design. To help prevent or correct such errors, the command Authentic | Check Macro References
checks for invalid references. A dialog will pop up to help the user replace or delete the reference.

In this section
In this section we look at how macros can be associated with valid user actions:

· Macros on Design Elements
· Macros on Toolbar Buttons
· Macros on Context Menu Items

12.2.1 Macros on Design Elements

Macros can be assigned to design elements via the Authentic Properties window. In the screenshot below the
macro named OnResetAll has been selected from a list of available macros and assigned to a button’s
OnClick event:

653 656

655

653

656

655

654 Authentic Scripting Macros

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Different design elements support different user actions for which macros can be assigned. The table below
gives a complete list.

User action Supported design element Can cancel event

OnClick Button, Image No

OnBeforeLinkClick Link Yes

OnBeforeChange Content, Rest-of-Content, Input Field, Multiline Input
Field, Checkbox, Radiobutton, Combobox

Yes

OnAfterChange Content, Rest-of-Content, Input Field, Multiline Input
Field, Checkbox, Radiobutton, Combobox

No

OnSetFocus Content, Rest-of-Content, Input Field, Multiline Input
Field, Checkbox, Radiobutton, Combobox

No

OnKillFocus Content, Rest-of-Content, Input Field, Multiline Input
Field, Checkbox, Radiobutton, Combobox

No

Macros assigned to these user actions will be called only on primary user input. They are not called on an
undo action, or when the action was from outside Authentic View (for example, from a COM API call). If a
macro is to be used to cancel further event processing, the user needs to place a COM API call
AuthenticView.DoNotPerformStandardAction() in the macro where it is required. For example, it can be
put in the macro BeforeChangeToEU (listing below) which has been assigned to a OnBeforeChange event for a
radio button:

if (!confirm("Are you sure to change address data to EU?\nAll existing address data will
be deleted!"))
 AuthenticView.DoNotPerformStandardAction();

This will prevent the changing of the radio button value if the user canceled the confirm dialog. This example is
in the file OnChange.sps is in the Authentic\Scripting folder of the Examples project in the Project window.
You can open this file and see how the macro works.

© 2017-2023 Altova GmbH

Macros 655Authentic Scripting

Altova StyleVision 2024 Professional Edition

Useful features
After a macro has been assigned in the Properties window (screenshot below), it can be quickly accessed for
editing in the Scripting Editor by clicking the Edit Macro button to the right of its name (see screenshot below).

12.2.2 Macros on Context Menu Items

Macros can also be used to customize Authentic context menus. This enables the SPS designer to add
custom menu items that each execute a macro.

There is no GUI to aid in this process. The SPS designer must add an event handler for the
On_AuthenticContextMenuActivated event, and then manipulate the menu via the AuthenticView API .
This can be seen in the example file OnContextMenu.sps which is in the Authentic\Scripting folder of the
Examples project in the Project window. The screenshot below shows the
On_AuthenticContextMenuActivated event handler script in the Scripting Editor.

877

656 Authentic Scripting Macros

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The event handler for the On_AuthenticContextMenuActivated event creates two menu items and assigns
macros to them. This example file also contains an event handler for the On-AuthenticLoad event, which
disables entry helpers and markup buttons when AuthenticView is loaded.

12.2.3 Custom Buttons

In the SPS design you can create a custom button to add to the Authentic toolbar and specify what macro it
will trigger. To add a custom button to the Authentic toolbar, first select the command Authentic | Custom
Toolbar Buttons, then click the Add button at the top right of the Authentic Custom Buttons dialog (see
screenshot below) and select the type of custom button you want.

There are two types of custom buttons:

· Text State Icons are buttons that change the style of text (say, to bold or italic) and are associated
with a particular element. Such elements would typically occur within elements of mixed-content type
(that is, in elements that can contain both text and child elements). For example, a para element
would be of mixed context because it can contain text, and, say, bold child elements, and italic
child elements. In such a case, you can associate a Text State Icon (which is a bitmap image) to a
child element of the mixed-content element. So, the bold element, for example, could be assigned a
specific button image (its Text State Icon). A global template for the bold element is then defined to

© 2017-2023 Altova GmbH

Macros 657Authentic Scripting

Altova StyleVision 2024 Professional Edition

provide the bold formatting of the bold element. In Authentic View, the Text State Icon for the bold
element will appear as a toolbar button. When the Authentic View user selects text within a para
element of the example cited above and clicks the bold element's toolbar button, the selected text will
be enclosed with the bold element tags and the bold formatting of the bold element's global template
will be applied to the text.

· Custom toolbar buttons are associated with a particular macro.

Custom buttons take the following parameters:

· The location of an image for the button (in the Bitmap field) or text for the button (in the Text field).
· In the Element Name field (available for Text State Icons), enter the name of the element with which

you wish to associate the Text State Icon,
· In the Macro Name combo box (available for Custom Toolbar Buttons), select the macro from the

dropdown list that you wish to associate with the Custom Toolbar Button. The macros listed here are
those that have been saved with the SPS. When you click the Create button, the Scripting Editor
of StyleVision opens in its own window, enabling you to quickly and easily create a macro. Clicking
the Edit button opens the selected macro for editing in the Scripting Editor .

· You can optionally enter a tooltip (in the Tooltip field) as a guide for the Authentic View user when he
or she mouses over the custom button.

· In the Identifier field enter a text string that will be used as the identifier of the custom button. This
identifier can then be used in scripting code if the designer wishes to control the button state via the
AuthenticView API .

854

854

877

658 Authentic Scripting Macros

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The screenshot above shows the the custom button US has the ChangeAddressToUS macro assigned to it.
This custom button uses an image named US.bmp. Text for the button can be entered as a fallback. A tooltip
has been entered and the custom button has the identifier Address_US. This example is from the file
ToolbarButtons.sps is in the Authentic\Scripting folder of the Examples project in the Project window.

© 2017-2023 Altova GmbH

Event Handlers 659Authentic Scripting

Altova StyleVision 2024 Professional Edition

12.3 Event Handlers

Authentic Scripting offers the possibility to define event handlers to react to general—not design-element-
specific—user actions. They represent the same mechanism as adding COM listeners for AuthenticView
events in external applications, but they can be more conveniently edited and stored within the design.

To add an event handler script, start the Scripting Editor (Authentic | Edit Authentic Scripts). The available
event handlers are displayed in the Project pane under the AuthenticView Events node.

Double-click an event to access its script template in the scripting window. In the scripting window, edit the
event handler script template as required. See the section Macros on Context Menu Items for an example of
how event handlers can be used.

655

660 Authentic Scripting Scripting Options

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

12.4 Scripting Options

To show interactive documents with Authentic Scripting, Authentic Scripting must be turned on in the SPS file
properties. Do this by selecting the command File | Properties. In the Properties dialog that pops up
(screenshot below) select the Authentic tab and check Enable Authentic Scripts.

Additionally, you can specify whether macros can be run in debug mode from outside StyleVision (that is, in
the Authentic View of other Altova products) or not. This feature is useful if you wish to test and debug a macro
outside the StyleVision environment.

© 2017-2023 Altova GmbH

 661Automated Processing

Altova StyleVision 2024 Professional Edition

13 Automated Processing

The functionality of StyleVision together with the various XSLT and output files generated by StyleVision provide
powerful automation possibilities. This section describes these capabilities.

StyleVision's file-generation functionality
After you have created an SPS design with StyleVision, you can generate several kinds of XSLT and output
files from within the GUI, depending on which edition of StyleVision you are using (Enterprise, Professional, or
Basic). The following files can be generated with the File | Save Generated Files command:

· XSLT files for HTML, Text, and RTF output.
· HTML, Text, and RTF output.

As you will notice from the list above, the files that can be saved with StyleVision are of two types:

1. The XSLT files generated by the SPS design, and
2. The final output files (such as HTML).

Note: Additionally, if database sources are used, XML Schema and XML data files can be generated based
on the database structure and content.

The processes to generate the final HTML, Text, and RTF output files are all one-step processes in which the
XML document is transformed by an XSLT stylesheet to the output format.

StyleVision Server and RaptorXML: generating files from outside the GUI
Additionally to generating XSLT stylesheets and the required output formats via the StyleVision GUI (File |
Save Generated Files command), you can generate output files using two other methods:

1. With StyleVision Server, which calls StyleVision's file generation functionality without opening the GUI,
you can produce various kinds of output.

2. With RaptorXML , a standalone Altova application that contains Altova's XML(+XBRL) Validator, and
XSLT and XQuery Engines. The XSLT Engines in RaptorXML can be used for transformations of XML to
an output format by processing XML documents with XSLT stylesheets. The XSLT file will have to be
created in advance so that it can be used by RaptorXML. (RaptorXML does not take an SPS as an
input parameter.) The advantages of using RaptorXML are: (i) speed, as a result enabling fast
transformations of large files; and (ii) in addition to a command line interface, RaptorXML provides
interfaces for COM, Java, and .NET, and can therefore be easily called from within these environments.
How to use RaptorXML for transformations is explained in the sub-section RaptorXML .

3. Multiple transformations can be carried out according to pre-set triggers (such as a daily time) using
Altova StyleVision Server within an Altova FlowForce Server workflow. This is described in the section
Automation with FlowForce Server .

734

734

665

665

667

662 Automated Processing Command Line Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

13.1 Command Line Interface

StyleVision functionality can be called from the command line in two ways:

· By calling the StyleVision executable . This provides a access to StyleVision's XSLT-file-generation
functionality. The XSLT files are generated from the SPS file.

· By using StyleVision Server to generate output files (HTML, etc). The output files are generated
from a PXF file, which is a package of an SPS file with its related files (XML, XSD, image files, etc).
The PXF file is generated from StyleVision.

How to use the command line
There are two ways you can use the command line:

· Commands can be entered singly on the command line and be executed immediately. For example, in
a command prompt window, you can enter a command for StyleVision or StyleVision Server , and
press Enter to execute the command.

· A series of commands can be entered in a batch file for batch processing. For example:

@ECHO OFF
CLS
StyleVision TestEN.sps -outxslt=HTML-EN.xslt
StyleVision TestDE.sps -outxslt=HTML-DE.xslt
StyleVision TestES.sps -outxslt=HTML-ES.xslt

When the batch file is processed, the commands are executed and the files are generated.

StyleVision functionality in scheduled tasks
Using the Scheduled Tasks tool of Windows, StyleVision commands can be set to execute according to a
predefined schedule. Either a single command or a batch file can be specified as the task to be executed. How
to create such commands is described in How to Automate Processing .

13.1.1 StyleVision

The syntax for command line use is:

StyleVision [<SPS File>] [<options>]

where

StyleVision calls StyleVision, which is located in the StyleVision application folder
<SPS File> specifies the SPS file
<options> One or more of the options listed below.

When a command is executed StyleVision runs silently (i.e. without the GUI being opened), generates the
required output files, and closes. If an error or warning is encountered, the GUI is opened and the corresponding
message is displayed in a message box.

662

663

663

669

© 2017-2023 Altova GmbH

Command Line Interface 663Automated Processing

Altova StyleVision 2024 Professional Edition

Note: For the SPS to load correctly in StyleVision, the XSD and Working XML files that the SPS uses must
be at the locations specified for them in the SPS.

Options
Options may be entered in any order. Note that FO, PDF, and Word 2007+output-related options are available
in the Enterprise edition only; these options are indicated with the words Enterprise edition in the list below.

· XSLT file output

-OutXSLT=<file> Writes XSLT-for-HTML to the specified file

-OutXSLRTF=<file> Writes XSLT-for-RTF to the specified file

-OutXSLText=<file> Writes XSLT-for-Text to the specified file

-OutXSLFO=<file> Writes XSLT-for-FO to the specified file (Enterprise edition
only)

-OutXSLWord2007=<file> Writes XSLT-for-Word 2007+ to the specified file (Enterprise
edition only)

· DB data output

-OutDBXML=<file> Writes XML generated from DB to the specified file.

-OutDBSchema=<file> Writes XML Schema generated from DB to the specified file.

Examples

StyleVision "QuickStart.sps" -outxslt="QuickStartHTML.xslt"

StyleVision "C:\Test\QuickStart.sps" -outxslt="C:\Test\QuickStartHTML.xslt"

Points to note
Note the following points:

· Paths may be absolute or relative and should use backslashes.
· If the filename or the path to it contains a space, then the entire path should be enclosed in quotes.

For example: "c:\My Files\MyXML.xml" or "c:\MyFiles\My XML.xml".
· Commands, paths, and folder and file names are case-insensitive.

13.1.2 StyleVision Server

StyleVision Server can be used via its command line interface (CLI) on Windows, Linux. and Mac OS systems
to transform XML files into output HTML, PDF, RTF, and DOCX documents. The StyleVision Server CLI's
generate command takes an XML file and a PXF file as its two arguments, and the desired output formats

482

664 Automated Processing Command Line Interface

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

as its parameters. The XSLT stylesheets for the transformation are obtained from the PXF file submitted as
input.

An advantage of using StyleVision Server's CLI over RaptorXML Server's CLI is that StyleVision Server can take
PXF files as its input (RaptorXML takes an XSLT file as its input). StyleVision Server is however best used
when used as part of an Altova FlowForce workflow. A FlowForce workflow can start transformation jobs
according to preset triggers: Multiple files can be transformed automatically within a network when the
FlowForce job is triggered. See the section Automation with FlowForce Server for more information.

For more information about the StyleVision Server CLI, see the StyleVision Server documentation.

Output files
StyleVision Server can generate one or more of the following files from the specified PXF file:

· HTML (.html) file/s using the XML and XSLT-for-HTML files specified in the PXF, or using alternative
XML files

· Text file using the text document and XSLT-for-Text files specified in the PXF
· RTF file using the XML and XSLT-for-RTF files specified in the PXF, or using alternative XML files

482

667

http://www.altova.com/documentation.html

© 2017-2023 Altova GmbH

Using RaptorXML 665Automated Processing

Altova StyleVision 2024 Professional Edition

13.2 Using RaptorXML

Altova RaptorXML is Altova's third-generation, hyper-fast XML and XBRL processor XBRL processing is
available only in RaptorXML+XBRL Server.. It has been built to be optimized for the latest standards and parallel
computing environments. Designed to be highly cross-platform capable, the engine takes advantage of today’s
ubiquitous multi-core computers to deliver lightning fast processing of XML and XBRL data.

RaptorXML is available in two editions:

· RaptorXML Server edition, which can be accessed over a network and can transform multiple files at a
time.

· RaptorXML+XBRL Server edition, which can be accessed over a network, can transform multiple files at
a time, and additionally supports XBRL validation.

For more information about RaptorXML, see the Altova website.

Typical use-cases
The functionality of RaptorXML that would be most relevant to StyleVision users is the XSLT transformation
functionality. Typically, this functionality would be used as follows:

1. An XSLT stylesheet is generated from an SPS with the File | Save Generated Files command.
Note that RaptorXML cannot be used to generate XSLT stylesheets from an SPS file.

2. The generated XSLT stylesheet is used to transform XML documents with RaptorXML. With RaptorXML
you can generate HTML, Text, and RTF output.

Advantages of RaptorXML
The advantages of using RaptorXML are as follows:

· RaptorXML provides very fast validation and XSLT transformation, and is therefore useful for dealing with
large files.

· Easy use with command line, COM, Java, and .NET interfaces.
· Automation and scheduling with the use of batch files and the scheduling processes such as the

Scheduled Tasks process of Windows.

For a description of how RaptorXML can be used to automate the production of output documents (such as
HTML) from XML source documents, see the section How to Automate Processing .

For additional and more detailed information about using RaptorXML, including how to use RaptorXML's COM,
Java, and .NET interfaces, see the RaptorXML user documentation.

13.2.1 PDF Output

To generate PDF output from an XML document requires two steps:

1. The XML document is transformed by an XSLT stylesheet. An XSLT transformation engine (such as
that of RaptorXML) is used for this transformation. The result is an FO document.

734

669

669

http://www.altova.com/raptorxml
http://www.altova.com/documentation.html

666 Automated Processing Using RaptorXML

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. The FO document is processed by an FO processor (such as Apache's FOP) to generate the PDF
output. StyleVision can be set up to pass the FO result of an XSLT transformation to an FO processor.
In StyleVision, the result of PDF generation is displayed in the PDF Preview window or can be saved
as a file (via the File | Save Generated Files command).

RaptorXML and PDF
Since RaptorXML does not provide parameters to direct the FO output of an XSLT transformation to an FO
processor, you will be left with an FO document as the result of the XSLT transformation step (the first step of
the two-step PDF-generation process).

The FO document must now be passed to an FO processor for second-step processing from FO to PDF. The
instructions for carrying out this step vary according to the processor being used. For example, in the case of
the Apache FOP processor, the following simple command can be used to identify the input FO document and
specify the name and location of the output PDF document:

fop -fo input.fo -pdf output.pdf

FOP offers other parameters, and these are listed in the FOP user reference.

FOP and XSLT
One FOP option enables you to specify an input XML file, an input XSLT file, and an output PDF file:

fop -xml input.xml -xslt input.xslt -pdf output.pdf

In this situation, FOP uses its built-in XSLT engine to carry out the first-step XML-to-FO transformation. It then
passes the result FO document to FOP for the second-step FO-to-PDF processing.

You should be aware, however, that FOP's built-in engine might not support all the XSLT features that
StyleVision and RaptorXML support. Consequently, there could errors if an XSLT stylesheet generated by
StyleVision is specified as an input for an XML transformation using FOP's built-in XSLT engine. In such cases,
use the XSLT engine of RaptorXML+XBRL) Server to transform to FO, and then supply the FO file to FOP for
processing to PDF.

Batch processing to PDF
A quick and simple way to generate PDF by using RaptorXML for the first-step XSLT transformation and FOP
for the second-step FO processing would be to write a batch file that combines the two commands. For
example:

raptorxmlserver xslt --input=Test.xml --output=Test.fo Test.xslt
fop -fo Test.fo -pdf Test.pdf

The first command calls RaptorXML and produces test.fo as output. The second command passes test.fo
to the FOP processor, which generates the PDF file test.pdf. For more information about batch processing
and how batch files can be used to automate processes, see the following section: How to Automate
Processing .

734

669

http://xmlgraphics.apache.org/fop/index.html

© 2017-2023 Altova GmbH

Automation with FlowForce Server 667Automated Processing

Altova StyleVision 2024 Professional Edition

13.3 Automation with FlowForce Server

Transformations can be automated over a network by using Altova's FlowForce Server, which is available on
Windows, Linux, and Mac OS systems. The process works as follows:

1. From StyleVision, a PXF file is deployed to FlowForce Server (with the File | Deploy to
FlowForce command) as a .transformation file. The .transformation file contains all the files
and information required to carry out transformations as designed in the SPS. (In the diagram below,
the deployment is represented by the connector line running along the top.)

2. After the .transformation file has been deployed to FlowForce Server, jobs can be created in
FlowForce that use the .transformation file to generate transformations according to triggers
specified in the job definition. (A trigger could be, for example, a specific time every day.) Flow Force
jobs are created in the FlowForce Web Server interface (shown in the center of the diagram below),
which can be accessed from StyleVision or via an HTTP address. For information about creating
FlowForce jobs, see the FlowForce documentation.

3. At execution time, FlowForce Server passes the transformation instructions and relevant files to
StyleVision Server, which then carries out the transformation (see diagram below).

The role of StyleVision Server in the FlowForce workflow is shown in the diagram below. (The role of MapForce
Server in the workflow is also displayed since FlowForce jobs can be created that send Altova MapForce
mappings to the Altova MapForce Server for execution.)

482 736

736

http://www.altova.com/flowforce.html

668 Automated Processing Automation with FlowForce Server

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note that additionally to being invoked by a FlowForce job, StyleVision Server can also be invoked via its
command line. Usage is described in the StyleVision Server documentation.

http://www.altova.com/documentation.html

© 2017-2023 Altova GmbH

How to Automate Processing 669Automated Processing

Altova StyleVision 2024 Professional Edition

13.4 How to Automate Processing

A batch file (a text file saved with the file extension .bat) contains a sequence of commands that will be
executed from the command line. When the batch file is executed, each command in the batch file will be
executed in turn, starting with the first and progressing through the sequence. A batch file is therefore useful in
the following situations:

· Executing a series of commands automatically (see below).
· Creating a chain of processing commands, where a command requires input produced by a preceding

command. (For example, an XML file produced as output of one transformation is used as the input of
a subsequent transformation.)

· Scheduling a sequence of tasks to be executed at a particular time.

Batch file with sequence of commands
A sequence of commands to be executed is entered as follows:

@ECHO OFF
CLS
StyleVision TestEN.sps -outxslt=HTML-EN.xslt
StyleVision TestDE.sps -outxslt=HTML-DE.xslt
StyleVision TestES.sps -outxslt=HTML-ES.xslt

When the batch file is processed, the commands are executed and the files generated. The batch file above
uses StyleVision to generate three XSLT files from an SPS file.

670 StyleVision in Visual Studio

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

14 StyleVision in Visual Studio

StyleVision can be integrated into the Microsoft Visual Studio 2012/2013/2015/2017/2019/2022. This unifies the
best of both worlds, integrating advanced SPS file creation capabilities with the advanced development
environment of Visual Studio.

In this section, we describe:

· The broad installation process and the integration of the StyleVision plugin in Visual Studio.
· Differences between the Visual Studio version and the standalone version.

671

672

© 2017-2023 Altova GmbH

Installing the StyleVision Plugin 671StyleVision in Visual Studio

Altova StyleVision 2024 Professional Edition

14.1 Installing the StyleVision Plugin

To install the StyleVision Plug-in for Visual Studio, take the steps below:

1. Install Microsoft Visual Studio 2012/2013/2015/2017/2019/2022. Note that from Visual Studio 2022
onwards, Visual Studio is being made available only as a 64-bit application.

2. Install StyleVision (Enterprise or Professional Edition). If you have installed Visual Studio 2022+, then
you must install the 64-bit version of StyleVision.

3. Download and run the StyleVision integration package for Microsoft Visual Studio. This package is
available on the StyleVision (Enterprise and Professional Editions) download page at www.altova.com.

Once the integration package has been installed, you will be able to use StyleVision in the Visual Studio
environment.

Important

You must use the integration package corresponding to your StyleVision version (current version is 2024).
The integration package is not edition-specific and can therefore be used for both Enterprise and
Professional editions.

https://www.altova.com

672 StyleVision in Visual Studio Differences with StyleVision Standalone

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

14.2 Differences with StyleVision Standalone

This section lists the ways in which the Visual Studio versions differ from the standalone versions of
StyleVision.

Entry helpers (Tool windows in Visual Studio)
The entry helpers of StyleVision are available as Tool windows in Visual Studio. The following points about
them should be noted. (For a description of entry helpers and the StyleVision GUI, see the section, User
Interface .)

· You can drag entry helper windows to any position in the development environment.
· Right-clicking an entry helper tab allows you to further customize your interface. Entry helper

configuration options are: dockable, hide, floating, and auto-hide.

StyleVision commands as Visual Studio commands
Some StyleVision commands are present as Visual Studio commands in the Visual Studio GUI. These are:

· Undo, Redo: These Visual Studio commands affect all actions in the Visual Studio development
environment.

· Proj ects: StyleVision projects are handled as Visual Studio projects.
· Customize Toolbars, Customize Commands: The Toolbars and Commands tabs in the Customize

dialog (Tools | Customize) contain both visual Studio commands as well as StyleVision commands.
· Views: In the View menu, the command StyleVision contains options to toggle on entry helper

windows and other sidebars, and to switch between the editing views, and toggle certain editing guides
on and off.

· StyleVision Help: This StyleVision menu appears as a submenu in Visual Studio's Help menu.

Note: In Visual Studio 2019 and later, StyleVision functionality can be accessed in the Extensions menu of
Visual Studio. In earlier versions of Visual Studio, StyleVision features are available in top-level menus
of Visual Studio.

31

© 2017-2023 Altova GmbH

 673StyleVision in Eclipse

Altova StyleVision 2024 Professional Edition

15 StyleVision in Eclipse

Eclipse is an open source framework that integrates different types of applications delivered in the form of
plugins. The StyleVision Integration Package for Eclipse enables you to integrate and access the functionality
of StyleVision in the Eclipse Platform for Windows. Supported Eclipse versions are: 2023-09, 2023-06, 2023-
03, 2022-12.

In this section, we describe the following:

· How to install the Integration Package for Eclipse and integrate StyleVision in Eclipse
· StyleVision Perspective in Eclipse
· Other StyleVision Entry Points in Eclipse

674

676

679

674 StyleVision in Eclipse Install the Integration Package for Eclipse

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

15.1 Install the Integration Package for Eclipse

Prerequisites

· Eclipse 2023-09, 2023-06, 2023-03, 2022-12 (http://www.eclipse.org), 64-bit.
· A Java Runtime Environment (JRE) or Java Development Kit (JDK) for the 64-bit platform.
· StyleVision Enterprise or Professional Edition 64-bit.

Note: All the prerequisites listed above must have the 64-bit platform. Integration with older Eclipse 32-bit
platforms is no longer supported, although it may still work.

After the prerequisites listed above are in place, you can install the StyleVision Integration Package (64-bit) to
integrate StyleVision in Eclipse. The integration can be carried out either during the installation of the
Integration Package or manually from Eclipse after the Integration Package has been installed. The StyleVision
Integration Package is available for download at https://www.altova.com/components/download.

Note: Eclipse must be closed while you install or uninstall the StyleVision Integration Package.

Integrate StyleVision during installation of the Integration Package
You can integrate StyleVision in Eclipse during the installation of the StyleVision Integration Package. Do this
as follows:

1. Run the StyleVision Integration Package to start the installation wizard.
2. Go through the initial steps of the installation with eth wizard.
3. In the Integration step, select Let this wizard integrate Altova StyleVision plug-in into Eclipse, and

browse for the directory where the Eclipse executable (eclipse.exe) is located.
4. Click Next and complete the installation.

The StyleVision perspective and menus will be available in Eclipse the next time you start it.

Integrate StyleVision in Eclipse manually
After you have installed the StyleVision Integration Package, you can manually integrate StyleVision in Eclipse
as follows:

1. In Eclipse, select the menu command Help | Install New Software.
2. In the Install dialog box, click Add.

http://www.eclipse.org/
https://www.altova.com/components/download

© 2017-2023 Altova GmbH

Install the Integration Package for Eclipse 675StyleVision in Eclipse

Altova StyleVision 2024 Professional Edition

3. In the Add Repository dialog box, click Local. Browse for the folder C:\Program
Files\Altova\Common2024\eclipse\UpdateSite, and select it. Provide a name for the site (such as
"Altova").

4. Repeat the steps 2-3 above, this time selecting the folder C:\Program
Files\Altova\Authentic\eclipse\UpdateSite and providing a name such as "Altova StyleVision".

5. On the Install dialog box, select Only Local Sites. Next, select the "Altova category" folder and click
Next.

6. Review the items to be installed and click Next to proceed.
7. To accept the license agreement, select the respective check box.
8. Click Finish to complete the installation.

Note: If there are problems with the plug-in (missing icons, for example), start Eclipse from the command line
with the -clean flag.

676 StyleVision in Eclipse StyleVision Perspective in Eclipse

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

15.2 StyleVision Perspective in Eclipse

In Eclipse, a perspective is a GUI view that is configured with the functionality of a specific application. After
StyleVision has been integrated in Eclipse, a new perspective, named StyleVision, becomes available in
Eclipse. This perspective is a GUI that resembles the StyleVision GUI and includes a number of its
components.

When a file having a filetype associated with StyleVision is opened (.sps, for example), this file can be edited
in the StyleVision perspective. Similarly, a file of another filetype can be opened in another perspective in
Eclipse. Additionally, for any active file, you can switch the perspective (see below), thus allowing you to edit or
process that file in another environment.

There are therefore two main advantage of perspectives:

1. Being able to quickly change the working environment of the active file, and
2. Being able to switch between files without having to open a new development environment (the

associated environment is available in a perspective)

Working with the StyleVision perspective involves the following key procedures, which are described further
below:

· Switching to the StyleVision perspective.
· Setting preferences for the StyleVision perspective.
· Customizing the StyleVision perspective.

Switch to the StyleVision perspective
In Eclipse, select the command Window | Perspective | Open Perspective | Other. In the dialog that
appears (screenshot below), select StyleVision, and click Open.

© 2017-2023 Altova GmbH

StyleVision Perspective in Eclipse 677StyleVision in Eclipse

Altova StyleVision 2024 Professional Edition

The empty window or the active document will now have the StyleVision perspective. This is how the user
switches the perspective via the menu. To access a perspective faster from another perspective, you can set
the required perspective to be listed in the Open Perspective submenu, above the Other item. This setting is
in the customization dialog (see further below).

Perspectives can also be switched when a file is opened or made active. The perspective of the application
associated with a file's filetype will be automatically opened when that file is opened for the first time. Before
the perspective is switched, a dialog appears asking whether you wish to have the default perspective
automatically associated with this filetype (screenshot below).

Check the Do Not Ask Again option if you wish to associate the perspective with the filetype without having to
be prompted each time a file of this filetype is opened and then click OK.

678 StyleVision in Eclipse StyleVision Perspective in Eclipse

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Preferences for the StyleVision perspective
To access the Preferences of a perspective, select the command Window | Preferences. In the list of
perspectives in the left pane, select StyleVision, then select the required preferences. Finish by clicking OK.

The preferences of a perspective include:

· To automatically switch to the StyleVision perspective when a file of an associated filetype is opened
(see above)

· Options for including or excluding individual StyleVision toolbars
· Access to StyleVision options.

Customize the StyleVision perspective
The customization options enable you to determine what shortcuts and commands are included in the
perspective. To access the Customize Perspective dialog of a perspective, make that perspective the active
perspective and select the command Window | Perspective | Customize Perspective.

· In the Toolbar Visibility and Menu Visibility tabs, you can specify which toolbars and menus are to be
displayed.

· In the Action Set Availability tab, you can add action sets to their parent menus and to the toolbar. If
you wish to enable an action group, check its check box.

· In the Shortcuts tab of the Customize Perspective dialog, you can set shortcuts for submenus. Select
the required submenu in the Submenus combo box. Then select a shortcut category, and check the
shortcuts you wish to include for the perspective.

Click Apply and Close to complete the customization and for the changes to take effect.

© 2017-2023 Altova GmbH

Other Stylevision Entry Points in Eclipse 679StyleVision in Eclipse

Altova StyleVision 2024 Professional Edition

15.3 Other Stylevision Entry Points in Eclipse

In addition to the StyleVision perspective, two other entry points in Eclipse can be used to access StyleVision
functionality:

· StyleVision menu
· StyleVision toolbar

StyleVision menu in Eclipse
The StyleVision menu of Eclipse contains StyleVision commands that provide key StyleVision functionality.
These commands occur in various menus of the standalone version of StyleVision.

StyleVision toolbar in Eclipse
The StyleVision toolbar in Eclipse (screenshot below) contains two buttons.

These buttons do the following:

· Open the StyleVision Help
· Provide access to StyleVision commands (as an alternative to accessing them from the StyleVision

menu, see above).

Note: Toolbar commands are not supported. If you have set up a toolbar command in StyleVision that runs a
command or script, then this toolbar command will not be available in the plug-in.

680 Menu Commands and Reference

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16 Menu Commands and Reference

This section contains a complete description of StyleVision toolbars, Design View symbols, and menu
commands. It is divided into the following broad parts:

· An explanation of symbols used in Design View .
· A description of the Edit XPath Expression dialog .
· A description of all the toolbars with their icons , as well as a description of how to customize the

views of the toolbars.
· All menu commands.

While the User Reference section contains a description of individual commands, the mechanisms behind
various StyleVision features are explained in detail in the relevant sections. The mechanisms have been
organized into the following groups::

· SPS File Content
· SPS File Structure
· SPS File Advanced Features
· SPS File Presentation
· SPS File Additional Functionality
· SPS File and Databases

For command line usage, see Command Line Interface: StyleVisionBatch .

See also

· User Interface
· Quick Start Tutorial

681

685

702

124

200

269

349

415

488

662

31

63

© 2017-2023 Altova GmbH

Design View Symbols 681Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.1 Design View Symbols

An SPS design will typically contain several types of component. Each component is represented in the design
by a specific symbol. These symbols are listed below and are organized into the following groups:

· Nodes in the XML document
· XML document content
· Data-entry devices
· Predefined formats
· XPath objects
· URI objects

Each of these component types can:

· be moved using drag and drop;
· be cut, copied, pasted, and deleted using (i) the commands in the Edit menu , or (ii) the standard

Windows shortcuts for these commands;
· have formatting applied to it;
· have a context menu pop up when right-clicked.

Nodes in the XML document
Element and attribute nodes in the XML document are represented in the SPS design document by tags. Each
node has a start tag and end tag. Double-clicking either the start or end tag collapses that node. When a node
is collapsed all its contents are hidden. Double-clicking a collapsed node expands it and displays its content.

The following types of node are represented:

· Document node

The document node (indicated with $XML) represents the XML document as a whole. It is indicated
with a green $XML tag when the schema source is associated with an XML document, and with $DB
when the schema source is associated with a DB. The document node in the screenshot at left is
expanded and contains the OrgChart element, which is collapsed. The document node in the
screenshot at right is collapsed; its contents are hidden.

· Element node

An element node is inserted together with all its ancestor elements if the ancestors are not present
at the insertion point. In the screenshot above, the Name element node is shown expanded (left) and
collapsed (right).

· Attribute node

681

745

682 Menu Commands and Reference Design View Symbols

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

An attribute node is inserted together with all its ancestor elements if the ancestors are not present
at the insertion point. Attribute names contain the prefix =. In the screenshot above, the href attribute
node is shown expanded (left) and collapsed (right).

Nodes are included in the design as node templates. For information on the various kind of templates that can
be included in the design, see the section, Templates and Design Fragments .

XML document content
XML document content is represented by two placeholders:

· (contents)
· (rest-of-contents)

The contents placeholder represents the contents of a single node. All the text content of the node is output. If

the node is an attribute node or a text-only element node, the value of the node is output. If the node is an
element node that contains mixed content or element-only content, the text content of all descendants is
output. In XSLT terms, the contents placeholder is equivalent to the xsl:apply-templates element with its
select attribute set for that node..

Note: When applied to an element node, the contents placeholder does not output the values of attributes of
that element. To output attribute nodes, you must explicitly include the attribute in the template (main
or global).

The rest-of-contents placeholder applies templates to the rest of the child elements of the current node. The

template that is applied for each child element in this case will be either a global template (if one is defined for
that element) or the default template for elements (which simply outputs text of text-only elements, and applies
templates to child elements). For example, consider an element book, which contains the child elements:
title, author, isbn, and pubdate. If the definition of book specifies that only the title child element be
output, then none of the other child elements (author, isbn, and pubdate) will be output when this definition is
processed. If, however, the definition of book includes the rest-of-contents placeholder after the definition for
the title element, then for each of the other child elements (author, isbn, and pubdate), a global template (if
one exists for that element), or the default template for elements, will be applied.

Data-entry devices
In order to aid the Authentic View user edit the XML document correctly and enter valid data, data-entry devices
can be used in the design. You can assign any of the following data-entry devices to a node:

· Input fields (single line or multi-line)

· Combo boxes

244

© 2017-2023 Altova GmbH

Design View Symbols 683Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· Check boxes

· Radio buttons

These tags can be collapsed and expanded by double-clicking an expanded and the collapsed tag,
respectively. For a detailed description of how each of these data-entry devices is used, see Data-Entry
Devices .

Predefined formats
Predefined formats are shown in mauve tags, which can be expanded/collapsed by double-clicking.

The screenshot above shows tags for the predefined format p (para), expanded (at left) and collapsed (at
right). To apply a predefined format, highlight the items around which the predefined format is to appear (by
clicking a component and/or marking text), and insert the predefined format .

XPath objects
StyleVision features two mechanisms that use XPath expressions:

· Conditional templates

Condition tags are blue. The start tag contains cells. The leftmost cell contains a question mark.
Other cells each contain either (i) a number, starting with one, for each when condition; and/or (ii) an
asterisk for the optional otherwise condition. A condition branch can be selected by clicking it. The
number of the selected condition branch is highlighted in the start tag, and the template for that branch
is displayed (within the start and end tags of the condition). The XPath expression for the selected
condition branch is also highlighted in the Design Tree. Note that tags for conditions cannot be
expanded/collapsed.

· Auto-Calculations

174

350

684 Menu Commands and Reference Design View Symbols

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Auto-Calculations are represented in Design View by the =(AutoCalc) object (see screenshot
above). The XPath expression for the selected Auto-Calculation is highlighted in the Design Tree. The
dialog to edit the Auto-Calculation is accessed via the Properties sidebar .

URI objects
There are three URI-based objects that can be inserted in a design:

· Images
If an image is inserted in the SPS design and can be accessed by StyleVision, it becomes visible in
Design View. If it cannot be accessed, its place in the SPS is marked by an image placeholder.

· Bookmarks (Anchors)

Bookmark tags are yellow and indicated with the character A (screenshots above). A bookmark is
created with the command Insert | Insert Bookmark, and can be empty or contain content. Content
must always be inserted after the anchor is created. Anchor tags can be expanded (screenshot above
left) or collapsed (screenshot above right).

· Links

Link tags are yellow and indicated with the character A (screenshots above). A link is created with the
command Insert | Hyperlink. The object around which the link is created can be inserted in the
design before or after the link is created. If an item is to be created as a link, it should be selected and
the link created around it. Link tags can be expanded (screenshot above left) or collapsed (screenshot
above right).

See also

· Toolbars
· Design sidebars
· Content Editing Procedures

270

702

39

124

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 685Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.2 Edit XPath Expression Dialog

The Edit XPath Expression dialog (screenshot below) is used to build, test, and edit XPath expressions. It is
accessible at all places in Design View where an XPath expression may be entered, such as when entering
expressions for conditional processing or the values of Styles and Properties .

The dialog automatically supports the XPath version that corresponds to the XSLT version of the SPS
(XPath 1.0 for XSLT 1.0; XPath 2.0 for XSLT 2.0; and XPath 3.1 for XSLT 3.0). To switch the XPath version,
switch the XSLT version of the SPS .

Dialog layout
The Edit XPath Expression dialog contains the following panes (see screenshot below): (i) an Expression pane
(top left); (ii) a Sources pane (top right); (iii) a Results pane (bottom). In Builder Mode, the Results pane is
augmented by additional entry helper panes.

Evaluation Mode and Debug Mode
The Edit XPath Expression dialog has two modes:

280 54 55

105

105

686 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Evaluation Mode , in which an XPath expression is evaluated with respect to the assigned Working
XML File/s. The expression is entered in the Expression pane, and the result is displayed in the
Results pane. You can click nodes in the result to go to that node in the Sources pane of the dialog.

· Debug Mode , in which you can debug an XPath expression as it applies to the assigned Working
XML File/s. You can set breakpoints and tracepoints, and go step-by-step through the evaluation. At
each step you can see the content of variables, as well as set custom Watch expressions to check
additional aspects of the evaluation.

To switch between the two modes, select the appropriate command in the Start Evaluation/Debugging
dropdown menu that is located in the left-hand corner of the window's toolbar (see screenshot below).

How to use the two modes is described in the sub-sections of this section.

XPath/XQuery Expression Builder
In both modes, the Expression Builder can be used to help you construct syntactically correct expressions.

Switch Expression Builder on/off with the Builder Mode button of the main toolbar .

16.2.1 Evaluator

Select Evaluation Mode by selecting Start Evaluation in the Start Evaluation/Debugging dropdown menu
(see screenshot below).

In Evaluation Mode, click the Evaluator button (see screenshot below). The evaluator has the following panes
(see screenshot below): (i) an Expression pane (top left); (ii) a Sources pane (top right); (iii) a Results pane
(bottom).

686

689

697

697

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 687Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

The XPath expression and its evaluation
The XPath expression is entered in the Expression pane. The results of the evaluation are displayed in the
Results pane (see screenshot above).

Note the following points:

· In order for an expression to be evaluated against an XML file, that file must be assigned as the
Working XML file of one of the sources of the SPS .

· Results can be displayed even as you type the expression (select the Evaluate on Typing icon in the
toolbar), or they can be displayed when you click the toolbar button Start Evaluation/Debugging (F5)
(located at top left of the toolbar).

· To enter the XPath locator expression of a node in a source tree, double-click that node in the Sources
pane.

· In the Sources pane, you can switch on/off the display of: (i) processing instructions, (ii) comments,
(iii) attributes, and (iv) elements. Do this via the buttons below the Sources pane.

· The context node is that of the design component within which the expression is being created. To set
another node as the context node of the expression: (i) select the node in the Sources pane, and (ii)
click Set Evaluation Context (located below the Sources pane). To save this context node for the
expression, click the toggle command button Remember Evaluation Context (located below the

103

688 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Sources pane). Note, however, that the actual context node for the expression will be the context node
of the current design component, and this is the context node that will be used at runtime.

· You can use the functions of the Java and .NET programming languages in the XPath expression. The
buttons Using Java and Using .NET at the bottom of the dialog display info boxes with explanations
about how to use Java and .NET extension functions in XPath expressions. For more information about
this, see the Extension Functions section of this documentation.

· To create the expression over multiple lines (for easier readability), use the Return key.
· To increase/decrease the size of text in the expression field, click in the expression field, then press

Ctrl and turn the scroll wheel. Note that this also applies in the Results pane.
· Instead of manually entering the locator path expression of a node, you can do the following: (i) Place

the cursor at the point in the XPath expression where you want to enter the locator path; (ii) In the
Sources tree, double-click the node you want to target. This enters the locator path of the selected
node in the expression. The locator path will be an absolute path starting at the root node of the
document.

Results pane
The Results pane is shown in the screenshot below, at bottom. Note that it has its own toolbar.

The Results pane has the following functionality:

· The result list consists of two columns: (i) a node name or a datatype; (ii) the content of the node.

1068

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 689Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· If the XPath expression returns nodes (such as elements or attributes), you can select whether the
entire contents of the nodes should be shown as the value of the node. To do this, switch on the toggle
Show Complete Result.

· When the result contains a node (including a text node)—as opposed to expression-generated literals
—clicking that node in the Results pane highlights the corresponding node in the XML document in the
Sources tree.

· You can copy both columns of a result sub-line, or only the value column. To copy all columns, right-
click a sub-line and toggle on Copying Includes All Columns. (Alternatively you can toggle the
command on/off via its icon in the toolbar of the Results pane.) Then right-click the sub-line you want to
copy and select either Copy Subline (for that subline) or Copy All (for all sublines).

Toolbar of the Results pane
The toolbar of the Results pane contains icons that provide navigation, search, and copy functionality. These
icons, starting from the left, are described in the table below. The corresponding commands are also available
in the context menu of result list items.

Icon What it does

Next, Previous Selects, respectively, the next and previous item in the result list

Copy the selected text
line to the clipboard

Copies the value column of the selected result item to the clipboard. To copy all
columns, toggle on the Copying includes all columns command (see below)

Copy all messages to
the clipboard

Copies the value column of all result items to the clipboard, including empty values.
Each item is copied as a separate line

Copying includes all
columns

Switches between copying (i) all columns, or (ii) only the value column. The column
separator is a single space

Find Opens a Find dialog to search for any string, including special characters, in the
result list

Find previous Finds the previous occurrence of the term that was last entered in the Find dialog

Find next Finds the next occurrence of the term that was last entered in the Find dialog

Expand with children Expands the selected item and all its descendants

Collapse with children Collapses the selected item and all its descendants

Clear Clears the result list

16.2.2 Debugger

The Debugger enables you to debug an XPath expression in the context of a Working XML File . To access
the Debugger, selecting Start Debugging in the Start Evaluation/Debugging dropdown menu (screenshot
below). This sets the mode to Debug Mode. You can then switch between the Builder (for help with building the
expression) and Evaluator (for debugging the expression). To start debugging, click Start
Evaluation/Debugging (F5)

103

690 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

After you have entered an expression, you can start debugging by clicking Start Evaluation/Debugging (F5)
(after making sure that you are in Debug Mode).

Buttons for setting up Debug Mode

Start
Evaluation/Debugging (F5)

Starts the debugger

Switch to Builder Switches to Expression Builder mode, which provides context-
sensitive entry helpers to help construct expressions

Evaluation on typing Switches on the evaluation of expressions while the
expression is being typed

Layout of Debug Mode
In Debug Mode, two additional panes are added to the Results pane (see screenshot below):

· the Call Stack and Debug Points pane, each of which has a separate tab in the pane
· the Variables and Watch Expressions pane; both watch expressions and variables are shown in the

same pane.

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 691Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Debugger Mode offers the following features:

· Enables you to step into the XPath evaluation process, one step at a time to see how the XPath
expression is being evaluated. Use the Step Into (F11) toolbar button for this. At each evaluation step,
the part of the expression being currently evaluated is highlighted in yellow (see screenshot above),
while the result of evaluating that step is shown in the Results pane. For example, in the screenshot
above, all the section descendant elements of the book element have been selected.

· Set breakpoints where you want to pause the evaluation and check results at these points. You can
step through the evaluation by pausing only at breakpoints. Use the Start Debugging (F5) toolbar
button for this. This is quicker than pausing at every step with Step Into (F11).

· Set tracepoints to see a report of results at the steps marked as tracepoints. The evaluation will not
pause (except at breakpoints), but the tracepoint results will be displayed in a list in the Results pane.

· Watch expressions can be used to check information (such as document data or aspects of the
evaluation). This is especially useful at breakpoints.

· Variables that are in scope, including their values, are displayed in the Variables and Watch
Expressions pane.

· Processor calls of an evaluation step are shown in the Call Stack tab of the Call Stack and Debug
Points pane.

· If breakpoints and tracepoints have been set, then these are displayed in the Debug Points tab of the
Call Stack and Debug Points pane.

For more information about these features, see their descriptions below.

Running the Debugger
The broad steps for debugging an XPath expression are as follows:

692 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1. Enter the XPath expression in the expression pane.
2. Set any breakpoints or tracepoints you want. A breakpoint is a point at which the evaluation is paused.

A tracepoint is a point in the evaluation that is recorded; tracepoints thus provide a traceable path of
evaluation results.

3. If you click Start Debugger, evaluation is carried out in one step to the end unless a breakpoint has
been marked in the expression. Click Start Debugger repeatedly to progress through each breakpoint
to the end of the evaluation.

4. Use the Step Into/Out/Over functionality to go step-by-step through the evaluation.

Buttons for debugging

Start Debugger (F5) Starts the debugger. Evaluation goes directly to the end,
stopping only for breakpoints

Stop Debugger (Shift+F5) Exits the evaluation and stops the debugger

Step Into (F11) Proceeds through the evaluation, one step at a time.

Step Out (Shift+F11) Steps out of the current evaluation step, and goes to the parent
step

Step Over (Ctrl+F11) Steps over descendant steps

Insert/Remove Breakpoint
(F9)

Inserts/removes a breakpoint at the expression step where you
place the cursor

Insert/Remove Tracepoint
(Shift+F9)

Inserts/removes a tracepoint at the expression step where you
place the cursor

Stepping in, out, and over evaluation steps
The Step Into functionality enables you to go step-by-step through the evaluation. Each click of this command
takes you through the next step of the evaluation; the current step is shown by the highlighting in the
expression (see screenshot below). The Step Out functionality takes you to a step on a higher level as the
current step, whereas the Step Over functionality steps over lower-level steps and takes you to the next step
on the same level. You can try out the Stepping functionality by using the expression shown in the screenshot
below and clicking the three Step buttons to see how they work.

The screenshot below shows the evaluation when processing has been paused on reaching the locator step
newsitem. At this step, the result shows the four newsitem node.

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 693Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Breakpoints
Breakpoints are points where you want the Debugger to stop after it has been started with Start Debugger.
They are useful if you wish to analyze a specific part of the expression. When the Debugger stops at the
breakpoint, you can check the result and could then use the Step Into functionality to display the results of the
next steps of the evaluation. To set a breakpoint, place the cursor in the expression at the point where you
want the breakpoint, and click the Insert/Remove Breakpoint (F9) toolbar button. The breakpoint will be
marked with a dashed red overline. To remove a breakpoint, select it and click Insert/Remove Breakpoint
(F9).

Also see Debug Points below.

Tracepoints
Tracepoints are points at which the results are recorded. These results are displayed in the Traces tree of the
Result tab (see screenshot below). This enables you to see all the evaluation results of particular parts of the
expression. For example, in the screenshot below, tracepoints have been set on the team node and member

node. The results at these tracepoints are shown in the Traces tree.

To set a tracepoint, place the cursor at the point where you want the tracepoint, and click the toolbar button
Insert/Remove Tracepoint (Shift+F9). The tracepoint will be marked with a dashed blue overline (see
screenshot below). To remove a tracepoint, select it and click Insert/Remove Tracepoint (F9).

696

694 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: If both a breakpoint and a tracepoint are set on a part of the expression, then the overline is composed
of alternating red and blue dashes.

Also see Debug Points below.

Variables, Watch Expressions, and Call Stack
Variables and watch expressions are displayed in the Variables and Watch Expressions pane (bottom center
pane in the screenshot below).

696

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 695Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Variables
Variables that have been declared in the expression and that are in scope in the current evaluation step will be
displayed together with their respective current values. For example, in the screenshot above, processing has
been paused at the breakpoint on headline. The $i variable is in scope at this evaluation step. So $i is

displayed with its current value, which in the screenshot above is the first newsitem node.

Watch expressions
Watch expressions are expressions that you can enter, either before evaluation starts or during a pause in

evaluation. They can be used for the following purposes:

· To test specific conditions. For example in the screenshot above, the watch expression
$i/metainfo/enteredBy/@id="NED" is used to test whether this news item has been entered by the

team member with the id of NED. The result true in the case of the first news item tells us that this

condition has been met.
· To find data within a certain context. For example, within the context of a Company element, we could

enter a watch expression @id to look up that company's customer code in the target XML document.

· To generate additional data. For example, a suitable string can be generated to indicate the total
number of news items..

To enter a watch expression, click Add Watch Entry in the pane's toolbar (encircled in red in the screenshot
above), then enter the expression and click Enter when done. To remove a watch expression, select it and
click Remove Selected Watch Entry in the toolbar. If, during debugging, the expression cannot be correctly
evaluated for some reason (for example, if one of its variables is out of scope), then the watch expression turns
red.

696 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Call stack
The Call Stack tab of the Call Stack and Debug Points pane (bottom right pane in the screenshot above)
displays the processor calls up to that point in the debugging. The current processor call is highlighted in
yellow. Note that only the calls that directly led to the current evaluation step are displayed.

Debug Points
The Debug Points tab of the Call Stack and Debug Points pane (bottom right pane in the screenshot below)
shows the breakpoints (with solid red circles) and tracepoints (solid blue circles) that you have set on the
expression. Each debug point is listed with its line and character number. For example, AxisStep@2:12 means

that there is a debug point on line 2, character 12 of the expression in the Expression pane.

Note the following features:

· For breakpoints, you can enter a break condition by (i) double-clicking Enter break condition in the
Debug Points pane, (ii) entering the expression for the condition, and (iii) pressing Enter. That
breakpoint will be enabled only when the condition evaluates to true. For example, in the screenshot

above, the break condition $i/metainfo/enteredBy/@id="ABE" will enable the breakpoint on the

headline of each news item that was entered by the team member with the id ABE. The screenshot

shows the evaluation paused at this breakpoint. (Notice also that the Watch expression at this
breakpoint returns false.)

· You can enable/disable all debug points by clicking their respective toolbar buttons: Enable All
Debug Points and Disable All Debug Points (buttons encircled in green in the screenshot above).
When a debug point is disabled, it is deactivated for all evaluations till it is enabled again.

· You can enable/disable individual breakpoints in their respective context menus.

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 697Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Toolbar commands in panes
The panes of the Edit XPath Expression dialog in Debug Mode (see screenshot above) contain buttons that
provide navigation, search, and copy functionality. These buttons, starting from the left, are described in the
table below. The corresponding commands are also available in the context menu of listed items.

Icon What it does

Next, Previous Selects, respectively, the next and previous item in the result list

Copy the selected text
line to the clipboard

Copies the value column of the selected result item to the clipboard. To copy all
columns, toggle on the Copying includes all columns command (see below)

Copy all messages to
the clipboard

Copies the value column of all result items to the clipboard, including empty values.
Each item is copied as a separate line

Copying includes all
columns

Switches between copying (i) all columns, or (ii) only the value column. The column
separator is a single space

Find Opens a Find dialog to search for any string, including special characters, in the
result list

Find previous Finds the previous occurrence of the term that was last entered in the Find dialog

Find next Finds the next occurrence of the term that was last entered in the Find dialog

Expand with children Expands the selected item and all its descendants

Collapse with children Collapses the selected item and all its descendants

Clear Clears the result list

16.2.3 Expression Builder

When the Builder button in the Edit XPath Expression dialog is clicked (see screenshot below), entry helper
panes to help you build an XPath expression become visible. Double-click an entry in any of these entry
helpers to enter it at the current cursor point in the XPath expression.

698 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

There are three entry helper panes:

· A schema tree for entering element and attribute nodes in the XPath expression. If the Relative XPath
check box is checked, then the location path to the selected node is entered relative to the context
node (the node in the design within which the XPath expression is being built). The context node is
shown below the schema tree pane. An absolute XPath expression starts at the document root, and is
used for the selected node if the Relative XPath check box is unchecked.

· An entry helper pane for operators and expressions. These include: (i) axes (ancestor::, parent::,
etc), (ii) operators (for example eq and div), and (iii) expressions (for # in # return #, etc). The
items of the pane can be either listed alphabetically or grouped by functional category. Select the
option you want by choosing Hierarchical or Flat from the dropdown menu in the title bar of the pane.

· An entry helper with the functions of the active XPath version either listed alphabetically or grouped by
functional category. Select the option you want by choosing Hierarchical or Flat from the dropdown
menu in the title bar of the pane. The Names/Types option enables you to choose whether the
arguments of functions are displayed as names or datatypes.

Features of the Builder

· To view a text description of an item in either pane, hover over the item.

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 699Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· Each function is listed with its signature (that is, with its arguments, the datatypes of the arguments,
and the datatype of the function's output).

· Signatures are listed using either the names or datatypes of the function's arguments and output.
Select Names or Types from the dropdown menu in the title bar of the pane.

· Double-clicking an item in any of the panes(operator, expression, or function), inserts that item at the
cursor location in the expression. Functions are inserted with their arguments indicated by
placeholders (the # symbol).

· If (i) text is selected in the XPath expression's edit field, and (ii) an expression or function that contains
a placeholder is double-clicked to insert it, then the text that was selected is inserted instead of the
placeholder.

After you have entered a function in the expression, hovering over the function name displays the function's
signature and a text description of the function. If different signatures exist for a function having the same name,
these are indicated with an overload factor at the bottom of the display. If you place the cursor within the
parentheses of the function and press Ctrl+Shift+Spacebar, you can view the signatures of the various
overloads of that function name.

Building XPath expressions
The Edit XPath Expression dialog helps you to build XPath expressions in the following ways.

· Context node and schema tree
The Selection text box in the Sources pane immediately shows you the context node. The expression
will be inserted at a location within this context node, and it will be evaluated with this node as its
context.

· Inserting a node from the schema tree
In the Sources pane, the entire schema is displayed. Double-click a node in the schema tree to insert
it in the XPath expression. If the Relative XPath check box is checked, the selected node will be
inserted with a location path expression that is relative to the context node.

· Namespace information
The schema tree in the Sources pane contains a Namespace item. Expanding this item displays all
the namespaces declared in the stylesheet. This information can be useful for checking the prefixes of
a namespace you might want to use in an XPath expression.

· Inserting XPath axes, operators and expressions
The Select Operator/Expression pane lists the XPath axes (ancestor::, parent::, etc) , operators
(for example, eq and div), and expressions (for # in # return #, etc) for the XPath version
selected as the XSLT version for the SPS. The display can be toggled between an alphabetical listing
and a hierarchical listing (which groups the items according to functionality). To insert an axis,
operator, or axis in the XPath expression, double-click the required item.

· Inserting XPath functions
The Select Function pane lists XPath functions alphabetically or grouped according to functionality
(click the respective icon at the top of the pane to switch between the two arrangements). Each
function is listed with its signature. If a function has more than one signature, that function is listed as
many times as the number of signatures. Arguments in a signature are separated by commas, and
each argument can have an occurrence indicator (? indicates a sequence of zero or one items of the

specified type; * indicates a sequence of zero or more items of the specified type). The arguments

can be displayed as names or as datatypes; select Names or Types in the title bar of the pane.Each
function also specifies the return type of that function. For example: => date ? indicates that the

700 Menu Commands and Reference Edit XPath Expression Dialog

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

expected return datatype is a sequence of none or one date item. Placing the mouse over a function
displays a brief description of the function. To insert a function in the XPath expression, double-click
the required function.

· Java and .NET extension functions can be used in XPath expressions, enabling you to access the
functions of these programming languages. The Java and .NET buttons at the bottom of the dialog,
pop up info boxes with explanations about how to use Java and .NET extension functions in XPath
expressions. For more information about this, see the Extension Functions section of this
documentation.

Intelligent editing during direct text entry
If you type an expression directly in the Expression text box, options that are available at that point are
displayed in a popup (see screenshot below).

These include elements, XPath functions, and XPath axes. Go up and down the list of options using the Up and
Down keys, and press Enter if you wish to select an option and enter it in the expression.

The Otherwise check box
The Otherwise toggle (see the red arrow in the screenshot below) adds an Otherwise branch to a conditional
template as its last branch. Only one Otherwise branch may be present in a conditional template. When a
conditional template is evaluated, the first branch to evaluate to true is executed. If no branch evaluates to
true, then, the Otherwise branch is executed if present, otherwise the conditional template is exited without
any of its branches being executed. Since the Otherwise branch is triggered only in the event that no preceding
branch evaluates to true, it does not need to have a condition defined for it. As a result, when the Otherwise
check box is selected, the entry field of the XPath expression is disabled.

1147

© 2017-2023 Altova GmbH

Edit XPath Expression Dialog 701Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

For details of how to use the Otherwise condition, see Conditional Templates .280

702 Menu Commands and Reference Toolbars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.3 Toolbars

A number of StyleVision commands are available as toolbar shortcuts, organized in the following toolbars:

· Formatting
· Table
· Authentic
· RichEdit
· Insert Design Elements
· Design Filter
· Global Resources
· Standard

The icons in each toolbar are listed in the sub-sections of this section, each with a brief description of the
corresponding command.

Positioning the toolbars
A toolbar can float freely on the screen or can be placed in a toolbar area along any edge of the GUI. Toolbars
are most commonly placed along the top edge of the GUI, just below the Menu bar. However, they can also be
placed along the side or bottom edges of the GUI.

To position a toolbar in a toolbar area, do the following:

1. Grab the toolbar by its handle (if the toolbar is already in a toolbar area) or by its title bar (if the toolbar
is floating).

2. Drag the toolbar to the desired toolbar area, if it exists, and drop it at the desired location in that
toolbar area. If no toolbar area exists at the edge along which you wish to place the toolbar, dragging
the toolbar to that edge will automatically create a toolbar area there when the toolbar is dropped.

To make a toolbar float freely grab it by its handle, drag it away from the toolbar area, and drop it anywhere on
the screen except at an edge or in an existing toolbar area.

Switching the display of toolbars on and off
The display of individual toolbars can be switched on and off using any of the following three methods:

· In the View | Toolbars menu (screenshot below), select or deselect a toolbar to, respectively, show or
hide that toolbar.

704

705

706

708

711

712

712

© 2017-2023 Altova GmbH

Toolbars 703Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· Right-click any toolbar area to display a context menu (screenshot below) that allows you to toggle the
display of individual toolbars on and off.

· In the Toolbars tab of the Customize dialog (Tools | Customize), toggle the display of individual
toolbars on or off by clicking a toolbar's check-box. When done, click the Close button to close the
dialog.

Adding and removing toolbar buttons
Individual toolbar buttons can be added to or removed from a toolbar, that is, they can be made visible or be
hidden. To add or remove a button from a toolbar, do the following:

1. In the toolbar where the button to be added or removed is, click the More Buttons button (if the toolbar
is in a toolbar area) or the Toolbar Options button (if the toolbar is a floating toolbar). The More
Buttons button is an arrowhead located at the right-hand side of the toolbar (in horizontal toolbar areas)
or at the bottom of the toolbar (in vertical toolbar areas). The Toolbar Options button is an arrowhead
located at the right-hand side of the floating toolbar.

2. In the Add or Remove Buttons menu that pops up, place the cursor over the Add or Remove
Buttons menu item (screenshot below). This rolls out a menu which contains the names of the
toolbars in that toolbar area plus the Customize menu item (screenshot below).

835 835

704 Menu Commands and Reference Toolbars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Place the cursor over the toolbar that contains the toolbar button to be added or removed (screenshot
above).

4. In the menu that rolls out (screenshot above), click on the name of the toolbar button to add or remove
that button from the toolbar.

5. Clicking the Customize item pops up the Customize dialog .

The Reset Toolbar item below the list of buttons in each toolbar menu resets the toolbar to the state it was in
when you downloaded StyleVision. In this state, all buttons for that toolbar are displayed.

Note: The buttons that a toolbar contains are preset and cannot be disassociated from that toolbar. The
process described above displays or hides the button in the toolbar that is displayed in the GUI.

16.3.1 Format

The Format toolbar (screenshot below) is enabled in Design View and contains commands that assign
commonly used inline and block formatting properties to the item/s selected in the SPS design.

Predefined HTML formats
The HTML format selected from the dropdown list is applied to the selection in Design View. For example, a
selection of div applies HTML's Block (div) element around the current selection in Design View. The HTML
format is converted to the corresponding RTF properties for the RTF output.

Text properties
The bold, italic, underline, and strikethrough inline text properties can be directly applied to the current
selection in Design View by clicking on the appropriate button. Font style, font size, foreground and
background color can also be applied via toolbar buttons.

Alignment
Alignment properties (left-aligned, centered, right-aligned, and justified) can be directly applied to the selection
in Design View.

Lists
Lists can be inserted at the cursor insertion point, or the selection in the SPS can be converted to a list.

Hyperlinks
Inserts a hyperlink at the cursor insertion point. See Hyperlink for a description of how to use this
command.

835

776

© 2017-2023 Altova GmbH

Toolbars 705Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.3.2 Table

The Table toolbar contains commands to structure and format static and dynamic tables in Design View.
These commands are shown in the screenshot below (which is that of the Table toolbar customization menu,
available when you click the Customize button at the right of the toolbar).

Row and Column operations
Rows and columns in any SPS table (static or dynamic) can be inserted, appended, or deleted with reference
to the cursor location. Rows and columns are inserted before the current cursor location or appended after all
rows/columns. The row/column in which the cursor is can also be deleted. These operations are achieved with
the Insert Row/Column, Append Row/Column, or Delete Row/Column buttons. You can also add table
headers and footers as either columns or rows Add Table Header/Footer Column/Row.

706 Menu Commands and Reference Toolbars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Cell operations
An SPS table cell in which the cursor is located can be joined to any one of the four cells around it. The joining
operation is similar to that of spanning table cells in HTML. The buttons to be used for these operations are
Join Cell Right/Left/Above/Below. Also, an SPS table cell in which the cursor is located can be split, either
horizontally or vertically, using the Split Cell Horizontally and Split Cell Vertically buttons, respectively.
SPS table cell content can be aligned vertically at the top, in the middle, and at the bottom. The display of cell
borders can be switched on and off with the View Cell Bounds toggle.

Table operations, properties, display
Placing the cursor in a static or dynamic table and clicking Delete Table deletes that table. Table markup
can be toggled on and off with the View Table Markup command. The Table Properties command pops up the
Table Properties dialog, in which properties of the table can be defined.

16.3.3 Authentic

The Authentic toolbar contains commands for customizing Authentic View and editing XML documents in
Authentic View. These commands are shown in the screenshot below (the customization menu for adding and
removing Authentic toolbar buttons , available when you click the Customize button at the right of the
toolbar).

All these features are available to the Authentic View user. They enable you, as the SPS designer, to test the
SPS using features at the Authentic View users's disposal.

794

703

© 2017-2023 Altova GmbH

Toolbars 707Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Validating, saving, and reloading XML documents
While editing an XML document in Authentic View, you can check the validity of the Working XML File by using
the Validate XML button. Editing changes can be saved to the Working XML File with the Save Authentic
XML Data button. The XML document can also be reloaded at any time from the last saved version.

Select new row with XML data for editing
This command is enabled only in SPSs that are based on an XML DB. The command enables a new row from
the XML column to be loaded into Authentic View for editing. See the description of the command for
details.

Markup tags in Authentic View
In Authentic View, the display of markup tags can be customized. Markup tags can be hidden (Hide Markup),
can be shown with node names (Show Large Markup), without node names (Show Small Markup), or with
any of these three options for individual nodes (Show Mixed Markup).

Editing of dynamic tables in Authentic View
In Authentic View, row operations can be performed on dynamic tables. Rows can be inserted, appended, and
duplicated, as well as be moved up and down, using the appropriate toolbar buttons (Insert Row, Append
Row, Duplicate Row, Move Row Up, Move Row Down, and Delete Row).

Defining XML Entities
Entities can be defined at any time while editing the Working XML File in Authentic View. Clicking the Define
XML Entities button pops up the Define XML Entities dialog. (See Authentic | Define Entities for details of
usage.)

805

806

708 Menu Commands and Reference Toolbars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.3.4 RichEdit

The RichEdit toolbar contains commands for marking up text in Authentic View with text-styling properties.

In Authentic View, when the cursor is placed inside an element that has been created as a RichEdit
component , the buttons and controls in the RichEdit toolbar (screenshot below) become enabled. Otherwise
they are grayed out.

RichEdit enables the Authentic View user to specify the font, font-weight, font-style, font-decoration, font-size,
color, background color and alignment of text. Select the text you wish to style in Authentic View and specify
the styling you wish to apply via the buttons and controls of the RichEdit toolbar. The text that has been styled
will be enclosed in the tags of the styling element .

16.3.5 Insert Design Elements

The Insert Design Elements toolbar contains icons for commands to insert design elements in the SPS
design, and for related commands. The various design elements that can be inserted via these toolbar icons are
shown in the screenshot below. There are three types of items in the toolbar:

1. Design elements , which are context-node-sensitive (the majority of elements in the toolbar),
2. Layout elements , which are independent of node context, and
3. Grid-related toggles to aid design.

383

383

709

710

711

© 2017-2023 Altova GmbH

Toolbars 709Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Design elements
The design elements are the context-node-sensitive elements that are available in the Insert menu. To insert a
design element using its toolbar icon, do the following:

1. Select the toolbar icon for the element you wish to insert.
2. Click the location in the design where the element is to be inserted. A Insert Design Element for the

selected design element (screenshot below) pops up. This displays the schema tree with the context
node highlighted. The context node is the node within which the cursor has been placed for the
insertion of the design element.

710 Menu Commands and Reference Toolbars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. If you wish to insert the design element within the currently selected context node, click OK. If you
wish to select another context node, do so in the schema tree and then click OK.

4. In the case of some design elements, such as Auto-Calculations, a further step is required, such as
the definition of an Auto-Calculation. In other cases, such as the insertion of a user-defined template,
the Insert Design Element dialog is skipped. In such cases, another dialog, such as the Edit XPath
Expression dialog will pop up. Carry out the required step and press the dialog's OK button.

The design element will be inserted at the end of Step 3 or Step 4, depending on the kind of design element
being inserted.

Layout elements
There are three layout element commands in the Insert Design Elements toolbar: to insert (i) a layout
container; (ii) a layout box; and (iii) a line. Note that layout boxes and lines can only be inserted within a layout
container.

To insert a layout container, select the Insert Layout Container icon and then click at the location in the
design where you wish to insert the layout container. You will be prompted about the size of the layout
container, on selecting which the layout container will be inserted. To insert a layout box, click the Insert
Layout Box icon, then move the cursor to the location within the layout container at which you wish to insert
the layout box and click. The layout box is inserted. Click inside the layout box to start typing. To insert a line,
click the Insert Line icon, then move the cursor to the location within the layout container at which you wish to
start drawing the line. Click to define the start point of the line and then drag the cursor to the desired endpoint.

685

© 2017-2023 Altova GmbH

Toolbars 711Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Release the cursor at the end point. The line is inserted and extends from the indicated start point to the
indicated end point.

To re-size layout containers and layout boxes, place the cursor over the right or bottom border of the layout
container or layout box and drag the border so as to obtain the desired size. To move a layout box, place the
cursor over the top or left border of the layout box and, when the cursor turns to a cross, drag the layout box to
the new location.

Grid-related toggles
The Show Grid command toggles the display of the drawing grid on and off. When the Snap to Grid
command is toggled on, elements created within the layout container, such as layout boxes and lines, snap to
grid lines and grid line intersections. The properties of the grid can be set in the Design tab of the Options
dialog (Tools | Options).

16.3.6 Design Filter

The Design Filter toolbar (screenshot below) contains commands that enable you to filter which templates
are displayed in the design. Each icon in the toolbar is explained below.

Icon Command Description

Show only one
template

Shows the selected template only. Place the cursor in a template and
click to show that template only.

Show all template
types

Shows all templates in the SPS (main, global, named, and layout) .

Show imported
templates

Toggles the display of imported templates on and off.

Show/Hide main
template

Toggles the display of the main template on and off.

Show/Hide global
templates

Toggles the display of global templates on and off.

Show/Hide Design
Fragments

Toggles the display of Design Fragments on and off.

The Design Filter combo box (screenshot below) displays a list of all the templates in the SPS.

712 Menu Commands and Reference Toolbars

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Selecting a template in the combo box causes the template to be selected in the design. The combo box,
therefore, enables you to quickly navigate to the desired template in the design, which is useful if the design
has several templates, some of which might be currently hidden.

16.3.7 Global Resources

The Global Resources toolbar (screenshot below) enables you: (i) to select the active configuration for the
application, and (ii) to access the Altova Global Resources dialog .

Select the active configuration from among the options in the dropdown list of the combo box. Click the Manage
Global Resources icon to access the Altova Global Resources dialog.

16.3.8 Standard

The Standard toolbar contains buttons for commands that provide important file-related and editing
functionality. These icons are listed below with a brief description. For a fuller description of a command, click
the command to go to its description in the Reference section.

Icon Command Shortcut Description

New from XML
Schema /
DTD

Ctrl+N Creates a new SPS document based on a schema.
Clicking the dropdown arrow enables you to create the
SPS from a DB or an HTML document, or an empty
SPS.

Open Ctrl+O Opens an existing SPS document.

Reload Reloads the SPS from the last saved version.

Save
Design

Ctrl+S Saves the active SPS document.

Save All Ctrl+Shift+S Saves all open SPS documents.

Print Ctrl+P Prints the Authentic View of the Working XML file.

Print
Preview

Displays a print preview of the Authentic View of the
Working XML File.

416

714

720

725

725

743

743

© 2017-2023 Altova GmbH

Toolbars 713Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Icon Command Shortcut Description

Cut Shift+Del Cuts the selection and places it in the clipboard.

Copy Ctrl+C Copies the selection to the clipboard.

Paste Ctrl+P Pastes the clipboard item to the cursor location.

Delete Del Deletes the selection.

Undo Alt+
Backspace

Undoes an editing change. An unlimited number of Undo
actions can be performed at a time.

Redo Ctrl+Y Redoes an undo.

Find Ctrl+F Finds text in Authentic View and Output Views.

Find Next F3 Finds the next occurrence of the searched text.

Zoom Sets the Zoom Factor of Design View.

Show Small
Design Markup

Switches markup tags to small markup format.

Show Large
Design Markup

Switches markup tags to large markup format.

XSLT 1.0 Sets XSLT 1.0 as the stylesheet language.

XSLT 2.0 Sets XSLT 2.0 as the stylesheet language.

XSLT 3.0 Sets XSLT 3.0 as the stylesheet language.

Spelling Runs a spelling check on the SPS document.

Toggle DB
Query

Shows/hides the Database Query dialog.

745

745

745

745

745

745

745

745

762

105

105

105

814

809

714 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.4 File Menu

The File menu contains commands for working with SPSs and related files. The following commands are
available:

· New , to create a new SPS from a variety of sources.
· Open, Reload, Close, Close All , to open and close the active file, and to reload the active file.
· Save Design, Design As, All , which are commands to save the active SPS and all open SPS files.
· Export as MobileTogether Design File , to generate a MobileTogether design from the active SPS

file.
· Save Authentic XML Data, Save As , enabled in Authentic View, it saves changes to the Working

XML File .
· Save Generated Files , to save output files that can be generated using the SPS.
· Web Design , generates all the files required to run an ASPX application, in the folder location you

specify.
· Properties , to set the encoding of the output documents, the CSS compatibility mode of the

browser, how relative image paths in Authentic View should be resolved, and whether images should
be embedded or linked in the RTF (Enterprise and Professional editions) and Word 2007+ (Enterprise
edition only) outputs.

· Print Preview, Print , enabled in Authentic View and output views, these commands print what is
displayed in the previews.

· Most Recently Used Files, Exit , respectively, to select a recently used file to open, and to exit the
program.

16.4.1 New

Placing the cursor over the New command pops out a submenu (screenshot below) that enables you to create
a new SPS document of one of different types:

· A new SPS file based on an XML Schema or DTD or XML Schema generated from an XML file (New
from XML Schema / DTD / XML). The selected schema is added to the Design Overview sidebar
and a graphical tree representation is added to the schema tree (in the Schema Tree sidebar). In
Design View , the SPS is created with an empty main template. A new SPS can also be created
from a file (schema or XML) via a URL or global resource (see below).

· A new SPS file based on an XML Schema generated from a DB you select (New from DB or New
from XML Column in IBM DB2). The connection process is described in the section Connecting to a
DB and Setting up the SPS . The SPS is created in Design View with an empty main template.

714

720

725

733

733

28

734

738

738

743

744

42

44

33

492 33

© 2017-2023 Altova GmbH

File Menu 715Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· A new SPS based on a user-defined schema you create node-by-node from an HTML file (New
from HTML File). The user-defined schema is added to the Design Overview sidebar and Schema
Tree sidebar . In the schema tree, it will have a single document element (root element), and the
HTML file is loaded in Design View .

· An SPS can be created from an XSLT-for-HTML or an XSLT-for-FO or an FO file. Template structure
and styling in the XSLT will be created in the SPS. You can then modify the SPS components and add
content and formatting to the SPS. See New from XSLT for details.

· A new SPS that contains the content of a MS Word document as the design's static text .
· A new SPS that contains the content of a MS Excel document as the design's static text .
· A new empty SPS (New (empty)). No schema is added to either the Design Overview sidebar or the

schema tree. An empty main template will be created in Design View .

Note: A global resource can be used to locate a file or DB resource.

Selecting the type of design
After you have selected (XSD and XML) sources files, if required, the Create New Design dialog appears.

The Create New Design dialog (screenshot below) prompts you to select either: (i) a free-flowing document
design, or (ii) a form-based document design (in which components are positioned absolutely, as in a layout
program).

In a free-flowing document design, document content is laid out to fit the output media object or viewer (paper or
screen). Items in the document content can only be placed relative to each other, and not absolutely. This kind
of design is suited for documents such as reports, articles, and books.

In a form-based document, a single Layout Container is created, in which design components can be

472

42

44

33

442

132

135

33

416

187

716 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

positioned absolutely. The dimensions of the Layout Container are user-defined, and Layout Boxes can be
positioned absolutely within the Layout Container and document content can be placed within individual Layout
Boxes. If you wish the design of your SPS to replicate a specific form-based design, you can use an image of
the original form as a blueprint image . The blueprint image can then be included as the background image of
the Layout Container. The blueprint image is used to help you design your form; it will not be included in the
output.

Selecting files via URLs and Global Resources
In several File Open and File Save dialogs, you can choose to select the required file or save a file via a URL or
a global resource (see screenshot below). Select the Switch to URL or Switch to Global Resource to go to
one of these selection processes.

Selecting files via URLs
To select a file via a URL, do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open dialog (screenshot
below).

187

© 2017-2023 Altova GmbH

File Menu 717Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

2. Enter the URL you want to access, in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this type
of server.

3. If the server is password protected, enter your User-ID and password in the User and Password fields.
4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

718 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The file URL appears in the File URL field (screenshot above). The Open button only becomes active
at this point.

6. Click the Open button to load the file. The file you open appears in the main window.

Note: The Browse function is only available on servers which support WebDAV and on Microsoft SharePoint
Servers. The supported protocols are FTP, HTTP, and HTTPS.

Note: To give you more control over the loading process, you can choose to load the file through the local
cache or a proxy server (which considerably speeds up the process if the file has been loaded before).
Alternatively, you may want to reload the file if you are working, say, with an electronic publishing or
database system; select the Reload option in this case

Microsoft® SharePoint® Server Notes
Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons have
symbols that indicate the check-in/check-out status of files.

© 2017-2023 Altova GmbH

File Menu 719Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Right-clicking a file pops up a context menu containing commands available for that file (screenshot
above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot above),
or via the context menu that pops up when you click the file tab in the Main Window of your application
(screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova application.

720 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The file is considered to be already checked out to you. The available commands at this point in any
Altova application supporting Microsoft® SharePoint® Server will be: Check In and Undo Check Out.

Opening and saving files via Global Resources
To open or save a file via a global resources, click Switch to Global Resource. This pops up a dialog in which
you can select the global resource. These dialogs are described in the section, Using Global Resources .
For a general description of Global Resources, see the Global Resources section in this documentation.

16.4.2 Open, Reload, Close, Close All

The Open (Ctrl+O) command allows you to open an existing SPS or PXF file. The familiar Open dialog
of Windows systems is opened and allows you to select a file with an extension of .sps.

The Reload command reloads the SPS file from the file saved to disk. Any changes made since the file was
last saved will be lost. The Working XML file will also be reloaded, enabling you to update the Working XML File
it it has been changed externally.

The Close command closes the currently active SPS document. Note that while several files can be open, only
one is active. The active document can also be closed by clicking the Close button at the top right of the Main
Window . If you have unsaved changes in the document, you will be prompted to save these changes.

The Close All command closes all the open SPS documents. If you have unsaved changes in an open
document, you will be prompted to save these changes.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

427

416

716

32

© 2017-2023 Altova GmbH

File Menu 721Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog
(the screenshot below shows the Open dialog).

722 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

© 2017-2023 Altova GmbH

File Menu 723Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

724 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

© 2017-2023 Altova GmbH

File Menu 725Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section, Using Global Resources .
For a general description of Global Resources, see the Global Resources section in this
documentation.

16.4.3 Save Design, Save All

The Save Design (Ctrl+S) command saves the currently open document as an SPS file (with the file
extension .sps).

The Save All (Ctrl+Shift+S) command saves all the open SPS documents.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

427

416

726 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog
(the screenshot below shows the Open dialog).

© 2017-2023 Altova GmbH

File Menu 727Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

728 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

© 2017-2023 Altova GmbH

File Menu 729Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

730 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section, Using Global Resources .
For a general description of Global Resources, see the Global Resources section in this
documentation.

16.4.4 Save As

The Save As command enables the design to be saved: (i) as an SPS file or (ii) as a PXF file (Portable XML
Form file). Clicking the command pops up the Save Design dialog (screenshot below). Select the required
format and click OK.

The SPS format is the standard Altova format for StyleVision designs. The PXF format is an Altova format
that allows all files related to the design (schema files, XML files, images files, generated XSLT stylesheets,
etc) to be embedded with the design. This format is very useful for transporting all the files required to open the
design in Authentic View and/or to generate HTML, Text, and/or RTF output based on the design.

Save as SPS
Selecting the SPS option causes the familiar Save As dialog of Windows systems to pop up. Saving works
exactly as described for the Save Design command . The advantage of using the Save As command is
that files that have already been saved with a filename can be saved with another filename.

427

416

725 725

© 2017-2023 Altova GmbH

File Menu 731Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Save as PXF
Selecting the PXF option causes the familiar Save As dialog of Windows systems to pop up. Saving works
exactly as described for the Save Design command —with the additional step of selecting the files you
wish to include in the PXF file. After you specify the PXF filename, the Configure PXF dialog (screenshot below)
will appear, in which you can select/deselect the files you wish to embed.

In the Global Configuration pane of the Design-time Files tab, you can select/deselect the design-related
source files to be embedded/omitted. You can additionally choose to embed XSLT files generated from the
design. In the XSLT files pane, select the output formats for which you wish to generate and embed XSLT files.
If an XSLT file is included in the PXF file and the PXF file is opened in the Authentic View of an Altova product,
then the toolbar button to generate and view that output format is enabled in Authentic View (screenshot
below).

725 725

732 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: If XSLT files for outputs supported only in a higher edition of StyleVision (high to low: Enterprise,
Professional, Basic) were created in a PXF file and if that PXF file is then opened in a lower edition,
then on saving the PXF file the XSLT files for outputs not supported in the lower edition will not be
saved. A prompt appears, asking whether you wish to continue saving the PXF file. You can then save
without the unsupported formats, or abort the save and retain the unsupported formats.

In the Additional Files tab (screenshot below), you can specify any additional files you wish to include that are
not design-time files. These could be, for example, image files referenced in the design by a URL generated
with an XPath expression. In the screenshot below, the image file NewsItems.bmp located in the Images folder
is selected for inclusion in the PXF file.

To include an additional file in the PXF file, click the Add Document button and then browse for the file you
want. The Open dialog (in which you browse for the required file) opens the folder in which the SPS is located.

© 2017-2023 Altova GmbH

File Menu 733Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Files from this folder or any descendant folder may be selected. After an additional file has been added to the
PXF file, it and the folder structure leading to it are displayed. The screenshot above indicates that the
additional file NewsItems.bmp is in a folder named Images, which is itself contained in the folder in which the
SPS file is located.

If a file is selected from a folder located in any level above the folder containing the SPS file, an error is
reported.

In the SPS design, any reference to an additional file must be made with a relative path and must use the folder
structure shown in the Additional Files pane. For example, NewsItems.bmp in the screenshot above must be
referenced with the relative path: Images/NewsItems.bmp.

Note: In order to save PXF files, the option Embed Images for RTF and Word 2007+ (File | Properties |
Images) must be selected.

16.4.5 Export as MobileTogether Design File

This command generates an Altova MobileTogether design file from the active SPS design. A MobileTogether
design file is used to execute solutions in the MobileTogether app for mobile devices. For example, a
MobileTogether solution can be opened in a mobile device, such as a smartphone, to view and edit the
contents of a database. A MobileTogether solution is designed in Altova MobileTogether Designer. This
command enables you to convert an SPS design into a MobileTogether design that can be edited in
MobileTogether Designer. For more information, see the MobileTogether web page and MobileTogether
Designer documentation. Conversions options are available in the MobileTogether Design tab of the Options
dialog (Tools | Options).

Note: Not all SPS design features have correspondences in MobileTogether designs. After running this
command, you should therefore open the generated file in MobileTogether Designer to review it and, if
necessary, correct it. The following design features are known not to be exported to MobileTogether
designs: (i) Sources beyond the first one listed in the StyleVision design(an Enterprise feature); (ii)
global templates ; (ii) modules .

16.4.6 Save Authentic XML Data, Save As

In Authentic View, you can edit the Working XML File or DB related to the SPS. The Save Authentic XML
Data command saves these modifications to the Working XML File or DB. Alternatively to editing the XML file
in StyleVision, you can edit an XML document or DB in the Authentic View of Altova XMLSpy or Altova
Authentic Desktop.

The Save Authentic XML Data As command enables you to save the Authentic XML document as another
file.

839

244 230

https://www.altova.com/mobiletogether.html
https://www.altova.com/manual/en/mobiletogetherdesigner/9.0/
https://www.altova.com/manual/en/mobiletogetherdesigner/9.0/

734 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.4.7 Save Generated Files

The Save Generated Files command pops up a submenu which contains options for saving the following files
(screenshot below). For perspective on how the generated files fit into the general usage procedure, see Usage
Procedure | Generated Files .

Save Generated XSLT-HTML File
The Save Generated XSLT-HTML File command generates an XSLT file for HTML output from your SPS. You
can use this XSLT file subsequently to transform an XML document to HTML.

Save Generated HTML File(s)
The Save Generated HTML File(s) command generates an HTML file or files. Multiple HTML files will be
generated if multiple document output has been specified in the design. This operation requires two input
files:

· The Working XML File assigned to the currently active SPS file. If no Working XML File has been
assigned, the Save Generated HTML File command is disabled. For DB-based SPSs, the
automatically generated non-editable XML file is the Working XML File (see The DB Schema and DB
XML files); you do not assign a Working XML File.

· An XSLT file, which is automatically generated from the currently active SPS file.

Save Generated XSLT-RTF File
The Save Generated XSLT-RTF File command generates an XSLT file for RTF output from your SPS. You can
use this XSLT file subsequently to transform an XML document to RTF.

Save Generated RTF File(s)
The Save Generated RTF File(s) command generates an RTF file. Multiple RTF files will be generated if multiple
document output has been specified in the design. This operation requires two input files:

111

261

586

261

© 2017-2023 Altova GmbH

File Menu 735Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· The Working XML File assigned to the currently active SPS file. If no Working XML File has been
assigned, the command is disabled. For DB-based SPSs, the automatically generated non-editable
XML file is the Working XML File (see The DB Schema and DB XML files); you do not assign a
Working XML File.

· An XSLT-for-RTF file, which is automatically generated from the currently active SPS file.

Save Generated XSLT-Text File
The Save Generated XSLT-Text File command generates an XSLT file for Text output from your SPS. You can
use this XSLT file subsequently to transform an XML document to a text document.

Save Generated Text File(s)
The Save Generated Text File(s) command generates a text file. Multiple text files will be generated if multiple
document output has been specified in the design. This operation requires two input files:

· The Working XML File assigned to the currently active SPS file. If no Working XML File has been
assigned, the command is disabled. For DB-based SPSs, the automatically generated non-editable
XML file is the Working XML File (see The DB Schema and DB XML files); you do not assign a
Working XML File.

· An XSLT-for-Text file, which is automatically generated from the currently active SPS file when this
command is executed.

Save Generated DB Schema
When you connect to a DB in order to create a DB-based SPS, StyleVision generates and loads a temporary
XML Schema based on the DB structure. The Save Generated DB Schema command enables you to save this
generated XML Schema. Note that for XML DBs, StyleVision does not generate a schema file; it uses a
schema file from the DB or some other external file location. Consequently, this command is not enabled for
XML DBs.

Save Generated DB XML Data
The Save Generated DB XML Data command generates and saves an XML file that contains data from the DB
in an XML structure conformant with the structure of the XML Schema generated from the DB. If DB Filters have
been defined in the StyleVision Power Stylesheet, these are applied to the data import. Note that for XML DBs,
StyleVision does not generate an XML file, but uses XML data in the XML columns of the XML DB.
Consequently, this command is not enabled for XML DBs.

Save Generated User-Defined Schema
This command is activated when the SPS involves a user-defined schema. The schema you create in the
Schema Tree sidebar is saved as an XML Schema with the .xsd extension.

Save Generated User-Defined XML Data
The data in the imported HTML file that corresponds to the user-defined schema is saved as an XML file. The
corresponding data are the nodes in the HTML document (in Design View) that have been created as XML
Schema nodes.

586

261

586

736 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.4.8 Deploy to FlowForce

The Deploy to FlowForce command enables you to deploy a .transformation file to your Altova FlowForce
Server. The .transformation file contains all the files and information required to carry out transformations as
designed in the SPS. After the .transformation file has been deployed to the FlowForce Server, you can
create jobs in Altova FlowForce that use the .transformation file to generate transformations according to
triggers specified in the job definition. For information about creating FlowForce jobs, see the FlowForce
documentation.

A .transformation file is generated from a Portable XML Format (PXF) file. So, the Deploy to FlowForce
command can be used when a PXF file is active. (If an SPS file is active, the Deploy to FlowForce command
will be active, but clicking it will prompt you to save the SPS file as a PXF file. To create a PXF file from an
SPS file, use the File | Save As command and select PXF as the format to save as.)

Note the following points:

· When a PXF file is saved, an option is provided for including external files (such as image files) in it. If
an external file is not included in the PXF file but is required for the transformation, then the external file
must be saved on the FlowForce Server. Since the external files will be accessed from the working
directory (specified in the FlowForce job definition), they should be placed relative to the working
directory, in such a way that links originating in the working directory will correctly access them.

· When a FlowForce job requiring a StyleVision transformation is executed, the job is passed to
StyleVision Server, and StyleVision Server will extract the contents of the PXF file to the working
directory that was specified in the job's parameters. To ensure that there is no filename collision when
this extraction occurs, there should be no file in the working directory that has the same name as a file
contained in the PXF file.

Before running the Deploy to FlowForce command, make sure that Altova FlowForce Server and Altova
StyleVision Server are correctly licensed and running. See the Altova FlowForce documentation for more
information about setting up FlowForce Server. (StyleVision Server is packaged with FlowForce Server.)

The Deploy command
The Deploy to FlowForce command pops up the Deploy Transformation dialog (screenshot below).

© 2017-2023 Altova GmbH

File Menu 737Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

In this dialog, you specify the following:

· The address and port number of the FlowForce Web Server (not the FlowForce Server), together with
access details (user and password) for the FlowForce Server.

· The filename of the transformation file and the location on the FlowForce Server where it is to be saved.
The filepath must start with a slash, which represents the root directory of the FlowForce Server.

· If changes have been made to the design since the file was last saved, the Save design changes
before deploying check box will be enabled. Check the box if you wish to save these changes;
otherwise uncheck the box.

· To deploy the mapping through a SSL-encrypted connection, select the Use SSL check box. This
assumes that FlowForce Server is already configured to accept SSL connections. For more
information, refer to FlowForce Server documentation.

On clicking OK, the .transformation file is deployed to the FlowForce Server at the location specified. If you
have checked the Open web browser to create new job check box (see screenshot above), the FlowForce Web
Server interface is opened in a web browser, and the job created during the deployment step can be edited
directly in the browser.

Multiple versions of StyleVision Server
If the server where you deploy the .transformation file has multiple versions of StyleVision Server running
under FlowForce Server management (applicable to Windows servers only), then a Select StyleVision Server
dialog appears, in which you are prompted to specify the version of Stylevision Server with which you want this
mapping to be executed. You can select the version you want to use manually, or let the server select the
most suitable version automatically.

This dialog appears when the FlowForce Server installation directory contains a .tool file for each StyleVision

Server version which runs under FlowForce Server management. By default, a StyleVision Server .tool file is

738 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

added automatically to this directory when you install StyleVision Server as part of a FlowForce Server
installation. The path where the .tool files are stored in FlowForce is: C:\Program

Files\Altova\FlowForceServer2024\tools. If you have additional versions of StyleVision Server which you

want to run under FlowForce Server management, their .tool files may need to be copied manually to the

directory above. The .tool file of StyleVision Server can be found at: C:\Program

Files\Altova\StyleVisionServer2024\etc.

Note: For information about how to work with FlowForce Server, see the FlowForce documentation.

16.4.9 Web Design

The Web Design command rolls out a submenu containing the Generate ASPX Web Application command.
This latter command generates all the files required to run an ASPX application, in the folder location you
specify. A web browser will read the ASPX file that is the output document. C# code in this file will start a
process whereby data in the source database or XML file will be transformed dynamically using an XSLT file in
the ASPX package. The ASPX file (the output document of the transform process) will be updated with the
latest data in the source database or XML file.

For more information, see ASPX Interface for Web Applications .

16.4.10 Properties

The Properties command pops up the Properties dialog (screenshot below shows the dialog in the Enterprise
Edition), in which you can set various properties for the active SPS.

479

https://www.altova.com/manual/en/flowforceserveradvanced/2024.0/

© 2017-2023 Altova GmbH

File Menu 739Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Output
The following properties can be set in the Output tab:

· Output Encoding: In the Output Encoding pane you can select the encoding of your output
documents. Changing the encoding in this dialog changes the encoding for the currently active SPS.
You can also specify the application-wide default encoding for all SPS documents in the Encoding
tab of the Options dialog.

· HTML output mode: You can select whether an entire HTML document or only the child elements of
the HTML body element are output. The child elements are output parallel to each other—that is, on

the same level—and will contain all descendants recursively. As a result, the output documents can
be fragments of HTML code..

· HTML output mode (DOCTYPE): You can select whether an HTML5, HTML 4.01 Transitional
document, or XHTML 1.0 Transitional document is generated for the HTML output. This setting can be
changed at any time while creating or editing the SPS document.

839

740 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Internet Explorer Compatibility and CSS support: CSS support in versions of Internet Explorer (IE)
prior to IE 6 was incomplete and in some respects incorrectly interpreted. CSS support was enhanced
and corrected in IE 6, and further improved and extended in IE 7, IE 9, and higher.

In an SPS, you can select the desired compatibility mode in the Properties dialog (screenshot above).
You can select either IE 5, IE 7, or IE 9. (Note that for IE 9 compatibility to apply, IE 9 or higher must
be installed.) The specified level of IE support is immediately available in Authentic View and HTML
Preview. Note that new SPS documents are created with IE7 compatibility selected. SPS documents
created in earlier versions of Altova StyleVision can be re-saved in the required Compatibility Mode
(selected in the Properties dialog).

XSD/XSLT
In this tab (screenshot below shows the dialog in the Enterprise Edition), you can specify which XSD validator
to use for XML validation and which XSLT version to use in the SPS.

StyleVision has both an XSD 1.0 validator and an XSD 1.1 validator. You can choose from among the following
options:

738

© 2017-2023 Altova GmbH

File Menu 741Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· Use the XSD 1.1 validator if the XSD document's /xs:schema/@vc:minVersion attribute is set to 1.1;
otherwise use the XSD 1.0 validator.

· Always use the XSD 1.1 validator.
· Alawys use the XSD 1.0 validator.

Select the XSLT version for the active document in this tab. Checking the option about the xsl:import-schema
statement causes the xsl:import-schema element of the XSLT 2.0 and 3.0 specifications to be included in the
XSLT document generated by StyleVision. It is recommended that you select this option in order for datatypes
to be read from the schema in the event that there is no xsi:schemaLocation attribute in the XML document.

For Text output, you can specify the following:

· The end-of-line characters to use. The default is \r\n (which indicates the carriage-return and linefeed

characters on Windows systems).
· The character to indicate the end of a table cell. The default is the semicolon character.

Images
This tab provides settings for selecting the following:

· In the RTF output: Whether images are linked to or embedded.
· In HTML output: Whether images (currently chart, barcode and inline images) are embedded by means

of the Data URI scheme.

These settings are made for each SPS individually, and they are available when the XSLT version of the SPS is
either 2.0 or 3.0.

Embedding images in RTF output
To embed images, do the following:

1. With the required SPS active, open the Properties dialog (File | Properties).
2. Check the Embed Images for RTF and Word 2007+ check box (default setting is checked). Note that

images will only be embedded if XSLT 2.0 or 3.0 is set as the XSLT version of the active SPS.
3. Click OK and save the SPS. The setting is saved for the active SPS.

If the Embed Images check box is not checked, images will be linked according to the image file path specified
in the image's properties (select the image and select URL in the Properties entry helper). For information
about how paths are resolved, see the section Image URIs .

This setting must be selected in order to save PXF files .

Note: The RTF format supports embedded images only for EMF, JPG, and PNG files.

Embedding images in HTML output
Chart, barcode, and inline images can be embedded in HTML output. If this checkbox is selected, the image
data is converted to a Base64 string that is stored in the src attribute of the HTML img element using the Data

URI scheme. This kind of embedding is available only when the XSLT version of the SPS is 2.0 or 3.0.

55

168

482

742 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Paths
Default paths for various files created by the SPS file and for paths saved in the SPS file are specified in the

settings of this tab (screenshot below shows the dialog in the Enterprise Edition).

The following defaults are set in the Paths tab:

· Whether preview files are created in the directory of the SPS file or the Working XML File of the main
schema source.

· Where additionally generated files (image files, barcode image files, chart image files, etc) are created.
· Whether file paths in the SPS are relative only when the target directory is in the directory tree of the

SPS file, or relative even when the target directory is outside the directory tree of the SPS file.

Resolution
The resolution factor resolves how lengths that are specified as pixels in the design are to be converted to non-
screen (print) units of length. You can select 72dpi, 96dpi, or 120dpi from the dropdown list of the combo box.
The higher the dpi, the smaller will each pixel and the corresponding absolute length be. The conversion factors

© 2017-2023 Altova GmbH

File Menu 743Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

(for obtaining the number of points from the number of pixels) for each dpi are, respectively, 1.0, 0.75, and 0.6.
For a complete explanation, see Pixel Resolution .

Authentic
The following Authentic properties can be set:

· Default paste mode for Authentic: Specifies whether an Authentic View selection that has been
saved to the clipboard will be pasted, by default, as XML or text in Authentic View. If it is pasted as
XML, it will be pasted with markup (XML tags), if the copied selection contains markup. Otherwise the
default paste mode copies the text content of nodes without markup. The default paste mode can be
overridden in Authentic View by right-clicking at the insertion point and, in the context menu that
appears, selecting the command Paste As | XML or Paste As | Text, as required. The default paste
mode can be changed at any time while editing the SPS document.

You can also specify whether, when text is dragged and dropped in Authentic View, the user is given
the option of selecting how to paste the text or whether the default paste mode is used. To give the
user the choice of deciding the past mode, select the radio button Ask on every drag-and-drop; to use
the default paste mode without consulting the user, select the radio button Use default mode for paste.

· Authentic scripting: These are options for scripts that are saved with an SPS: (i) Scripts can be
enabled or not; (ii) Events in the scripts can be processed or can be disabled; (iii) Macros in the scripts
can be run in debug mode from outside StyleVision (that is in the Authentic View of other Altova
products) or can be disallowed. This feature is useful if you wish to test and debug a macro outside the
StyleVision environment.

· Maximum template call depth: Specifies the maximum number of template calls that can be made
recursively in the Authentic View output. If the number of template calls exceeds the number specified
here, an error is returned. This setting can be used to prevent Authentic View from entering an
unending loop.

16.4.11 Print Preview, Print

The Print Preview command is enabled in Design View and Authentic View (Authentic View is supported
in the Enterprise and Professional editions only). The Print Preview command opens a window containing a
preview of the SPS design (when Design View is active) or of the Authentic View of the Working XML File when
Authentic View is active). The preview will show the design with or without tags according to what is on screen.

You can do the following in the Print Preview window, via the toolbar commands at the top of the page
(screenshot above) and the page navigation icons at the bottom of the page. The commands in the Print
Preview toolbar are as follows, starting from the left.

· Print the page using the Print button.
· Set paper orientation to portrait or landscape.
· Set page properties by clicking the Page Setup button to get the Page Setup dialog.

409

744 Menu Commands and Reference File Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Toggle on/off the display and printout of headers and footers.
· Set the view so that either the page width or page height occupies, respectively, the full screen width or

full screen height.
· Set how many pages are to fit within the screen.
· Change the zoom factor of the preview pages using the Zoom In and Zoom Out buttons or the combo

box to select a zoom factor.

To navigate the pages of the preview, use the page navigation buttons at the bottom of the preview or by
entering the page number in the Page text-box.

The Print command is enabled in the Authentic View and output preview tabs. It prints out the selected
view of the Working XML File according to the page setup for that view. Note that the page setup for Authentic
View can be edited in the Page Setup dialog, which you access via the Print Preview window.

Note: To enable background colors and images in Print Preview, do the following: (i) In the Tools menu of
Internet Explorer, click Internet Options, and then click the Advanced tab; (ii) In the Settings box,
under Printing, select the Print background colors and images check box, and (iii) Then click OK.

16.4.12 Most Recently Used Files, Exit

The list of most recently used files, shows the file name and path information for the nine most recently used
files. Clicking one of these entries, causes that file to be opened in a new tab in the Main Window.

To access these files using the keyboard, press ALT+F to open the File menu, and then the number of the file
you wish to open; for example, pressing 1 will open the first file in the list, 2 the second file, and so on.

The Exit command is used to quit StyleVision. If you have an open file with unsaved changes, you will be
prompted to save these changes.

© 2017-2023 Altova GmbH

Edit Menu 745Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.5 Edit Menu

The Edit menu contains commands that aid the editing of SPS and Authentic View documents. Besides the
standard editing commands, such as Cut (Shift+Del or Ctrl+X), Copy (Ctrl+C), Paste (Ctrl+V), and Delete
(Del), which are not described in this section, the following commands are available:

· Undo, Redo, Select All , to undo or restore your previous actions, and to select all content of the
SPS.

· Find, Find Next, Replace , to find text in the SPS, Authentic View, and XSLT stylesheet previews,
and to replace text in Authentic View.

· Stylesheet Parameters , to edit parameters declared globally for the SPS.
· Collapse/Expand Markup , to collapse and expand SPS design component tags.

Commands are also available via the context menu which appears when you right-click a component or right-
click at a cursor insertion point. Additionally, some commands are available as keyboard shortcuts and/or
toolbar icons. Note, however, that commands which are not applicable in a particular document view or at a
given location are grayed out in the menu.

16.5.1 Undo, Redo, Select All

The Undo (Ctrl+Z) command enables you to undo an editing change. An unlimited number of Undo actions
is supported. Every action can be undone and it is possible to undo one command after another till the first
action that was made since the document was opened.

The Redo (Ctrl+Y) command allows you to redo any number of previously undone commands. By using the
Undo and Redo commands, you can step backward and forward through the history of commands.

The Select All command selects the entire contents of the Design Document window.

16.5.2 Find, Find Next, Replace

The Find (Ctrl+F) command enables you to find text strings in Design View, JavaScript Editor, Authentic
View, and XSLT stylesheets.

The Find & Replace dialog that is displayed depends on which view is currently active.

· When Design View is active, clicking the Find or Replace command will set the focus to the Find &
Replace sidebar . The search and replace functionality of Design View is described in the topic Find
& Replace sidebar .

· The search and replace functionality in JavaScript Editor, Authentic View, and XSLT stylesheets is
described in this topic.

XSLT stylesheets and JavaScript Editor
Clicking the Find command in the XSLT-for-HTML, XSLT-for-RTF or JavaScript Editor tab displays the following
dialog:

745

745

750

751

61

61

746 Menu Commands and Reference Edit Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

You can select from the following options:

· Match case: Case-sensitive search when toggled on (Address is not the same as address).
· Match whole word: Only the exact words in the text will be matched. For example, for the input string

fit, with Match whole word toggled on, only the word fit will match the search string; the fit in
fitness, for example, will not be matched.

· Regular expression: If toggeld on, the search term will be read as a regular expression. See Regular
expressions below for a description of how regular expressions are used.

· Find anchor: When a search term is entered, the matches in the document are highlighted and one of
these matches will be marked as the current selection. The Find anchor toggle determines whether
that first current selection is made relative to the cursor position or not. If Find anchor is toggled on,
then the first currently selected match will be the next match from the current cursor location. If Find
anchor is toggled off, then the first currently selected match will be the first match in the document,
starting from the top.

· Find in selection: When toggled on, locks the current text selection and restricts the search to the
selection. Otherwise, the entire document is searched. Before selecting a new range of text, unlock
the currently selection by toggling off the Find in Selection option.

· Replace: In the JavaScript Editor tab, click the Down Arrow button, which is located at the top left of
the dialog, to open the Replace field. Here you can enter the string that you want to substitute for the
found string.

HTML Preview and Authentic View
Clicking the Find command in HTML Preview or Authentic View opens a simple Find and Replace dialog.

Note the following:

· To match the entry with whole words, check "Match whole word only". For example, an entry of soft
will find only the whole word soft; it will not find, for example, the soft in software.

· To match the entry with fragments of words, leave the "Match whole word only" check box unchecked.
Doing this would enable you, for example, to enter soft and software.

· To make the search case-insensitive, leave the "Match case" checkbox unchecked. This would enable
you to find, say, Soft with an entry of soft.

· In Authentic View, the dynamic data (XML data) is searched, not text from the static (XSLT) input.
· The Replace functionality in Authentic View is straightforward, enabling you to replace a chosen text

string with another. Available options are: (i) the matching of whole words only (not words in the text
that contain the searched-for string), and (ii) the matching of words that have the same casing as the
searched-for string.

Find Next command

The Find Next (F3) command repeats the last Find command to search for the next occurrence of the
requested text. See Find for a description of how to use the search function.

747

61

745

© 2017-2023 Altova GmbH

Edit Menu 747Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Using regular expressions
You can use regular expressions (regex) to find a text string. To do this, first, switch the Regular expression
option on (see above). This specifies that the text in the search term field is to be evaluated as a regular
expression. Next, enter the regular expression in the search term field. For help with building a regular
expression, click the Regular Expression Builder button, which is located to the right of the search term
field. Click an item in the Builder to enter the corresponding regex metacharacter/s in the search term field.
See below for a brief description of metacharacters.

Regular expression metacharacters
Given below is a list of regular expression metacharacters.

. Matches any character. This is a placeholder for a single character.

(Marks the start of a tagged expression.

) Marks the end of a tagged expression.

(abc) The (and) metacharacters mark the start and end of a tagged expression. Tagged

expressions may be useful when you need to tag ("remember") a matched region for
the purpose of referring to it later (back-reference). Up to nine expressions can be
tagged (and then back-referenced later, either in the Find or Replace field).

For example, (the) \1 matches the string the the. This expression can be literally

explained as follows: match the string "the" (and remember it as a tagged region),
followed by a space character, followed by a back-reference to the tagged region
matched previously.

\n Where n is a variable that can take integer values from 1 through 9. The expression
refers to the first through ninth tagged region when replacing. For example, if the find
string is Fred([1-9])XXX and the replace string is Sam\1YYY, this means that in the

find string there is one tagged expression that is (implicitly) indexed with the number 1;

in the replace string, the tagged expression is referenced with \1. If the find-replace

command is applied to Fred2XXX, it would generate Sam2YYY.

\< Matches the start of a word.

\> Matches the end of a word.

\x Allows you to use a character x, which would otherwise have a special meaning. For
example, \[would be interpreted as [and not as the start of a character set.

[...] Indicates a set of characters. For example, [abc] means any of the characters a, b or
c. You can also use ranges: for example [a-z] for any lower case character.

[^...] The complement of the characters in the set. For example, [^A-Za-z] means any
character except an alphabetic character.

^ Matches the start of a line (unless used inside a set, see above).

$ Matches the end of a line. Example: A+$ to find one or more A's at end of line.

* Matches 0 or more times. For example, Sa*m matches Sm, Sam, Saam, Saaam and so
on.

+ Matches 1 or more times. For example, Sa+m matches Sam, Saam, Saaam and so on.

748 Menu Commands and Reference Edit Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Representation of special characters
Note the following expressions.

\r Carriage Return (CR). You can use either CR (\r) or LF (\n) to find or create a new line

\n Line Feed (LF). You can use either CR (\r) or LF (\n) to find or create a new line

\t Tab character

\\ Use this to escape characters that appear in regex expression, for example: \\\n

Regular expression examples
This example illustrates how to find and replace text using regular expressions. In many cases, finding and
replacing text is straightforward and does not require regular expressions at all. However, there may be
instances where you need to manipulate text in a way that cannot be done with a standard find and replace
operation. Consider, for example, that you have an XML file of several thousand lines where you need to rename
certain elements in one operation, without affecting the content enclosed within them. Another example: you
need to change the order of multiple attributes of an element. This is where regular expressions can help you,
by eliminating a lot of work which would otherwise need to be done manually.

Example 1: Renaming elements
The sample XML code listing below contains a list of books. Let's suppose your goal is to replace the
<Category> element of each book to <Genre>. One of the ways to achieve this goal is by using regular
expressions.

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd">

 <book id="1">

 <author>Mark Twain</author>

 <title>The Adventures of Tom Sawyer</title>

 <category>Fiction</category>

 <year>1876</year>

 </book>

 <book id="2">

 <author>Franz Kafka</author>

 <title>The Metamorphosis</title>

 <category>Fiction</category>

 <year>1912</year>

 </book>

 <book id="3">

 <author>Herman Melville</author>

 <title>Moby Dick</title>

 <category>Fiction</category>

 <year>1851</year>

 </book>

</books>

To solve the requirement, follow the steps below:

1. Press Ctrl+H to open the Find and Replace dialog box.

© 2017-2023 Altova GmbH

Edit Menu 749Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

2. Click Use regular expressions .
3. In the Find field, enter the following text: <category>(.+)</category> . This regular expression

matches all category elements, and they become highlighted.

To match the inner text of each element (which is not known in advance), we used the tagged
expression (.+) . The tagged expression (.+) means "match one or more occurrences of any

character, that is .+ , and remember this match". As shown in the next step, we will need the

reference to the tagged expression later.

4. In the Replace field, enter the following text: <genre>\1</genre> . This regular expression defines the

replacement text. Notice it uses a back-reference \1 to the previously tagged expression from the Find

field. In other words, \1 in this context means "the inner text of the currently matched <category>

element".

5. Click Replace All and observe the results. All category elements have now been renamed to
genre, which was the intended goal.

Example 2: Changing the order of attributes
The sample XML code listing below contains a list of products. Each product element has two attributes: id
and a size. Let's suppose your goal is to change the order of id and size attributes in each product element
(in other words, the size attribute should come before id). One of the ways to solve this requirement is by
using regular expressions.

<?xml version="1.0" encoding="UTF-8"?>
<products xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="products.xsd">

 <product id="1" size="10"/>

 <product id="2" size="20"/>

 <product id="3" size="30"/>

 <product id="4" size="40"/>

 <product id="5" size="50"/>

 <product id="6" size="60"/>

</products>

750 Menu Commands and Reference Edit Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To solve the requirement, follow the steps below:

1. Press Ctrl+H to open the Find and Replace dialog box.

2. Click Use regular expressions .
3. In the Find field, enter the following: <product id="(.+)" size="(.+)"/> . This regular expression

matches a product element in the XML document. Notice that, in order to match the value of each
attribute (which is not known in advance), a tagged expression (.+) is used twice. The tagged

expression (.+) matches the value of each attribute (assumed to be one or more occurrences of any

character, that is .+).

4. In the Replace field, enter the following: <product size="\2" id="\1"/> . This regular expression

contains the replacement text for each matched product element. Notice that it uses two references \1

and \2 . These correspond to the tagged expressions from the Find field. In other words, \1 means

"the value of attribute id" and \2 means "the value of attribute size".

6. Click Replace All and observe the results. All product elements have now been updated so that
attribute size comes before attribute id.

16.5.3 Stylesheet Parameters

The Stylesheet Parameters command enables you to declare and edit parameters and their default
values. The command is available in both the Design Document view and the Authentic Editor View. When you
click this command, the Edit Parameters dialog (shown below) pops up.

© 2017-2023 Altova GmbH

Edit Menu 751Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

The following points should be noted:

· You can insert, append, edit and delete parameters for the entire stylesheet and for the DB Filters.
· Parameter names must begin with a letter, and can contain the characters A to Z, a to z, 0 to 9, and

the underscore.
· The Edit Parameters dialog contains all the user-defined parameters in an SPS.
· Parameters can also be declared in the Design Overview sidebar .

16.5.4 Collapse/Expand Markup

The Collapse/Expand Markup command is a toggle command, which collapses and expands the selected
tag. It can be applied to any kind of tag: node, predefined format, SPS mechanism, etc. To collapse/expand a
tag, double-click the tag; the end tag of an expanded tag may also be double-clicked to collapse that tag.

The screenshots below show how a series of tags are collapsed. Double-clicking a collapsed tag expands it.

Collapsing a tag can be useful for optimizing the display according to your editing needs.

42

752 Menu Commands and Reference Edit Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

© 2017-2023 Altova GmbH

Project Menu 753Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.6 Project Menu

The Project menu (screenshot below) enables you to create, structure, and modify projects. You can quickly
set up a project, specify files in the project, and organize files by file type into separate folders. A project is
displayed graphically in the Project sidebar, from where files can be accessed for use in the SPS design.

The Project menu contains the following commands, which are explained in detail in the sub-sections of this
section:

· New Project , for creating a new project
· Open Project , for opening an existing project
· Reload Project , for refreshing a project in the Projects sidebar
· Close Project , for closing a project in the Project sidebar
· Save Project , for saving and naming a project
· Add Files to Project , for adding files to a project in the Project sidebar
· Add Global Resource to Project , for adding Altova Global Resources to a project in the Project

sidebar
· Add URL to Project , for adding a file via a URL to a project in the Project sidebar
· Add Active File to Project , for adding the currently active SPS file to a project
· Add Active and Related Files to Project , for adding the currently active SPS file and its related

files
· Add Project Folder to Project , for adding folders to a project in the Project sidebar
· Add External Folder to Project , for adding local folders to a project in the Project sidebar
· Add External Web Folder to Project , for adding folders via URL to a project in the Project sidebar

754

754

754

754

754

755

755

755

756

756

756

756

756

754 Menu Commands and Reference Project Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Recent projects
At the bottom of the Project menu, the file names of the nine most recently used projects are listed, thus
allowing quick access to these files.

Drag-and-drop
In the Project window, a folder can be dragged to another folder or to another location within the same folder. A
file can be dragged to another folder, but cannot be moved within the same folder (within which files are
arranged alphabetically). Additionally, files and folders can be dragged from Windows File Explorer to the
Project sidebar.

16.6.1 New Project, Open Project, Reload Project

The New Project command creates a new project. The new project replaces the previous project (if any)
in the Projects sidebar. If the project you have been working on has unsaved changes, a prompt appears asking
whether you wish to save changes to the project. Note that the New Project command only creates a new
project without saving it; you have to explicitly save the project using the Save Project command.

The Open Project command opens an existing project and displays it in the Projects sidebar. If a project
was previously open in the Projects sidebar, it is replaced by the opened project. If the previous project has
unsaved changes, a prompt appears asking whether you wish to save changes to that project before it is
replaced in the Projects sidebar.

The Reload Project command reloads the current project. This command is especially useful if you are
working in a multi-user environment, where other users might make changes to the project.

16.6.2 Close Project, Save Project

The Close Project command closes the active project. If the project contains unsaved changes, a prompt
appears asking whether you wish to save the project before closing it. A project with unsaved changes is
indicated with an asterisk after the project name in the Project sidebar (screenshot below).

754

© 2017-2023 Altova GmbH

Project Menu 755Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

The Save Project command saves the current project. Note that it is when a project is saved for the first time
that it is named. A project can only be renamed outside StyleVision; for example, by using Windows File
Explorer to locate and rename the file.

16.6.3 Add Files / Global Resource / URL to Project

Add Files to Project
The Add Files to Project command adds files to the current project. The command pops up an Open dialog
box, in which you select a single file or a group of files to add to the project. The file/s will be added to sub-
folders within the project folder according to the file type extensions defined for each sub-folder. If the same file
type extension has been defined for more than one folder, then a file with that file type extension will be added
to the first folder (in the Projects sidebar) having that file type extension.

To add a file to a folder or sub-folder within the main project folder, right-click that folder, select the command
Add Files, and then browse for the required file/s.

Add Global Resource to Project
The Add Global Resource to Project command pops up a dialog that lists global resources in the currently
active Global Resources XML File and enables you to select one of these resources to add to the active
project. Select the required global resource and click OK.

Add URL to Project
The Add URL to Project command adds a URL to the current project. URLs in a project cause the target
object of the URL to be included in the project. The command pops up the Add URL to Project dialog
(screenshot below).

756 Menu Commands and Reference Project Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

You can enter either a file URL (with or without the file:\\ protocol) or a server URL. For the server URL,
enter your user name and password, then enter the server URL. Click Browse to connect to the server, then,
from the list that appears in the Available Files display, click the file you wish to add to the project folder.

Note that URLs can also be added to folders and sub-folders of the main project folder. To do this, right-click
the project folder and select the command Add URL. This pops up the Add URL dialog. Proceed as described
above.

Drag-and-drop
A file can be dragged to another folder, but cannot be moved within the same folder (within which files are
arranged alphabetically). Additionally, files can be dragged from Windows File Explorer to the Project window.

Deleting Files, Resources, and URL
To delete a file, Altova Resource, or URL, select that object in the Project sidebar, right-click, and, from the
context menu, select Delete.

16.6.4 Add Active (and Related) Files to Project

Add Active File to Project
The Add Active File to Project command adds the active SPS file to the current project. This file is added to
the first folder defined for the .sps file type extension. If you wish to add not just the SPS but the related
schema, Working XML, Template XML, CSS and image files, use the Add Active and Related Files to
Project command (see below). To add the active file to a folder or sub-folder within the main project folder,
right-click that folder, select the command Add Active File.

Add Active and Related Files to Project
The Add Active and Related Files to Project command adds the currently active SPS file as well as the
related schema files, and, if any, the Working XML, Template XML, CSS and image files. Each file is added to
the first folder defined for that particular file type extension. To add the active file and related files to a folder or
sub-folder within the main project folder, right-click that folder, select the command Add Active and Related
Files.

Deleting Files
To delete a file, select the file in the Project sidebar, right-click, and, from the context menu, select Delete.

16.6.5 Add Project and External Folders to Project

Add Project Folder to Project
The Add Project Folder to Project command adds a new folder to the current project. When you click the
command, the Properties dialog (screenshot below) pops up, in which you enter the name and file type
extensions for the folder (file type extensions are separated by a semi-colon). When a file having the file type

© 2017-2023 Altova GmbH

Project Menu 757Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

extension defined for the folder is added to the project, the file will automatically be added to this folder. The
newly added project folder is appended to the list of project folders in the Project sidebar.

To create a sub-folder of any given project folder, right-click the folder for which the sub-folder is required. In the
context-menu that pops up, select Add Project Folder. In the Properties dialog, enter the folder name and the
file type extensions for the folder.

Add External Folder to Project
The Add External Folder to Project command adds a new external folder to the current project. The
command adds a local or network folder, with all its contents, to the current project. The added external folder
can be expanded and collapsed. To add an external folder to a project folder as a sub-folder, right-click the
project folder and, from the context menu, select the command Add External Folder.

Add External Web Folder to Project
The Add External Web Folder to Project command adds a new external folder via a URL to the current
project. The added external folder can be expanded and collapsed. To add an external web folder to a project
folder as a sub-folder, right-click the project folder and, from the context menu, select the command Add
External Web Folder.

On clicking the command, the Add Web Folder dialog pops up (screenshot below). Do the following:

1. Click in the Server URL field to enter the server URL, and enter the login ID in the User and Password
fields.

758 Menu Commands and Reference Project Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. Click Browse to connect to the server and view the folders available there.

3. Click the folder you want to add to the project view. The OK button only becomes active once you do
this. The folder name and server URL now appear in the File URL field.

4. Click OK to add the folder to the project.
5. Click the plus icon to view the folder contents.
6. To define the file types to display for the web folder, right-click, select Properties from the context

menu, and enter the required file type extensions.

© 2017-2023 Altova GmbH

Project Menu 759Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Drag-and-drop
In the Project window, a folder can be dragged to another folder or to another location within the same folder.
Additionally, folders can be dragged from Windows File Explorer to the Project window.

Deleting Folders
To delete a folder or multiple folders, select the file in the Project sidebar, right-click, and, from the context
menu, select Delete.

760 Menu Commands and Reference View Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.7 View Menu

The View menu (screenshot below) enables you to change the look of the GUI and to toggle on and off the
display of GUI components. You can switch the display of individual toolbars, individual design sidebars, design
filters, and the status bar on and off.

16.7.1 Toolbars and Status Bar

Placing the cursor over the Toolbars item pops out a submenu (screenshot below), which enables you to turn
on and off the display of the different toolbars.

© 2017-2023 Altova GmbH

View Menu 761Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

When a toolbar is checked, it is displayed. In the screenshot above all the toolbars are displayed. To toggle on
or off the display of a toolbar, click the appropriate toolbar. For a complete description of toolbars, see the
section Reference | Toolbars .

Status Bar
The display of the Status Bar, which is located at the bottom of the application window, can be switched on or
off by clicking the Status Bar toggle command.

16.7.2 Design Sidebars

The View menu contains toggle commands to switch the display of each sidebar on and off (screenshot
below).

When a sidebar is toggled on (the command's icon is framed) it is displayed in the GUI. Click a sidebar to set
its display on or off, as required. This command is also used to make a hidden sidebar visible again. The
display setting specified for a sidebar is View-specific: a setting made in a particular View (Design View,
Authentic View, Output View, no document open) is retained for that particular View till changed.

702

762 Menu Commands and Reference View Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.7.3 Design Filter, Zoom

Design Filter
The Design Filter menu item rolls out a sub-menu containing commands that enable you to filter the templates
that are displayed in Design View. This is useful if your design is very long or contains several templates. Using
the Design Filter mechanism, you can specify what kinds of template to display. The following filter options are
available:

Icon Command Description

Show only one
template

Shows the selected template only. Place the cursor in a template and
click to show that template only.

Show all template
types

Shows all templates in the SPS (main, global, named, and layout) .

Show imported
templates

Toggles the display of imported templates on and off.

Show/Hide main
template

Toggles the display of the main template on and off.

Show/Hide global
templates

Toggles the display of global templates on and off.

Show/Hide Design
Fragments

Toggles the display of Design Fragments on and off.

Note that these commands are also available as toolbar icons in the Design Filters toolbar.

Zoom
The Zoom command enables you to select a Zoom factor from the submenu that rolls out. You can also zoom
in or out by changing the Zoom factor in the Zoom combo box (in the Standard toolbar), or by pressing the Ctrl
key and scrolling with the mouse.

16.7.4 Output Previews

There are three Output Preview commands:

· Output Preview, which switches Output Preview on/off
· Output Preview Horizontal, which is enabled when Output Preview has been switched on. The

command switches from a vertical split view to a horizontal split view. When the output preview
becomes available in a horizontal split, the command automatically changes to Output Preview
Vertical, which switches the split view back to a vertical split view.

· Refresh Output Preview, which immediately refresh the output preview with any changes in the
design or Authentic View.

711

© 2017-2023 Altova GmbH

Insert Menu 763Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.8 Insert Menu

The Insert menu provides commands enabling you to insert a variety of design components into the SPS.
Some of these commands are available as toolbar icons . Additionally, Insert menu commands are also
available via context menus which appear when, in the SPS design, you right-click a cursor insertion point. In
the context menus, commands that are not available at that location in the SPS are disabled.

Note: Since the Insert commands are used for constructing the SPS, they are available in Design View only.

16.8.1 Contents

The Contents command inserts a (content) placeholder at the cursor location point. There (content)
placeholder can be inserted within two types of node, element and attribute, and it indicates that all children
of the current node will be processed.

· If the current node is an element node, the node's children element nodes and text nodes will be
processed. For the processing of children element nodes, global templates will be used if these exist.
Otherwise the built-in template rule for elements will be used. For the processing of text nodes, the
built-in template rule for text nodes will be used, the effect of which is to output the text. Effectively, the
built-in template rule for elements, outputs the text of all descendant text nodes. It is important to note
that the values of attributes will not be output when the (content) placeholder is used—unless a
global template is defined for the attribute's parent element or one of its ancestors and the attribute is
explicitly output, using either the (content) placeholder or any other content-rendering component.

· If the current node is an attribute node, the built-in template rule for the attribute's child text node will
be used. This template copies the text of the text node to the output, effectively outputting the
attribute's value.

The (content) placeholder can also be inserted for a node by placing the cursor inside the node tags, right-
clicking, and selecting Insert | Contents or by clicking the Insert Contents icon in the Insert Design Elements
toolbar , and then clicking the location in the design where the element is to be inserted.

Styling the contents
The (content) placeholder can be formatted by selecting it and using a predefined format and/or properties in
Styles sidebar. This formatting is visible in the design, and, in the output, it will be applied to the contents of
the node.

Replacing contents
If another node from the schema tree is dropped into a node containing a (content) placeholder, then the
existing (content) placeholder is replaced by the new node.

Deleting contents
The (content) placeholder can be deleted by selecting it and pressing the Delete key on the keyboard.

702

708

764 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: You can create an empty template rule by deleting the (content) placeholder of a node. An empty
template rule is useful if you wish to define that some node have no template applied to it, i.e. produce
no output.

16.8.2 Rest of Contents

The Rest of Contents command inserts the (rest-of-contents) placeholder for that node. This placeholder
represents the content of unused child nodes of the current node; it corresponds to the xsl:apply-
templates rule of XSLT applied to the unused elements and text nodes of the current element. Note that
templates are not applied for child attributes. The (rest-of-contents) placeholder can also be inserted for an
element by placing the cursor inside the element tags, right-clicking, and selecting Insert Rest of Contents.

Use the (rest-of-contents) placeholder in situations where you wish to process one child element in a
specific way and apply templates to its siblings. It is important to apply templates to siblings in order to avoid
the possibility that the siblings are not processed. This enables you to reach elements lower down in the
document hierarchy.

The (rest-of-contents) placeholder can be deleted by selecting it and pressing the Delete key on the
keyboard.

16.8.3 RichEdit

The RichEdit command inserts a RichEdit component at the cursor location. For the first RichEdit component,
the RichEdit Configuration dialog (screenshot below) pops up. This RichEdit configuration is valid for all
RichEdit components in the document. As a result, for RichEdit components inserted subsequently, the
RichEdit Configuration dialog does not appear.

© 2017-2023 Altova GmbH

Insert Menu 765Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

In the RichEdit Configuration dialog, enter the name of the styling element and its attribute that is to contain the
RichEdit styling properties. You can also select the required element and attribute from the schema tree. Click
the respective Select buttons to open the schema tree. When done, click OK. The RichEdit component is
created (see screenshot below), and an uneditable RichEdit global template having the name of the styling
element (Style in the screenshot below) is created in the design.

766 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

For more information about the RichEdit feature in context, see Text-Styling Flexibility in Authentic .

16.8.4 Form Controls

Mousing over the Form Controls command rolls out a submenu (screenshot below) containing commands to
insert various form controls (data-entry devices).

How to create each of these form controls is described in the section Using Data-Entry Devices . After a
form control has been created, its properties can be edited by selecting it and then editing the required
property in the Properties sidebar .

Form controls can also be inserted in the design by right-clicking at the insertion point and selecting Insert |
Form Controls, or by clicking the respective Form Control icon in the Insert Design Elements toolbar , and
then clicking the location in the design where the element is to be inserted.

Note: CDATA sections cannot be inserted into input fields (that is, in text boxes and multiline text boxes).
CDATA sections can only be entered within elements that are displayed in Authentic View as text
content components.

16.8.5 DB Control

Mousing over the DB Controls command rolls out a submenu containing commands to insert controls in
Authentic View that enable the Authentic View user to navigate the display of records in Authentic View and to

381

174

174

55

708

© 2017-2023 Altova GmbH

Insert Menu 767Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

query the DB. These control can be inserted in the design and will appear in the Authentic View document at
the corresponding locations.

The list of commands is as follows.

· Navigation
· Navigation + Goto
· Query Button

For details about how these controls are created and what they do, see the section SPS Design Features for
DB .

16.8.6 Auto-Calculation

An Auto-Calculation uses an XPath expression to calculate a value. This value is displayed at the point where
the Auto-Calculation is inserted. An Auto-Calculation can be inserted in the SPS as a text value, input field, or
multiline input field. Place the cursor at the location where the Auto-Calculation is to be inserted, then either
right-click or use the command in the Insert menu. When the cursor is placed over Insert | Auto-Calculation,
a menu pops out (screenshot below), enabling you to choose how the Auto-Calculation should be inserted.
Alternatively, you can use the Auto-Calculation icon in the Insert Design Elements toolbar .

The value of the Auto-Calculation will be displayed accordingly in Authentic View and the output document.

The XPath expression for the Auto-Calculation
On selecting how the Auto-Calculation should be represented, the Edit XPath Expression dialog
(screenshot below) pops up.

594

708

685

768 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The context node for the expression being built is highlighted in the schema tree in the pane at extreme left.
You can enter the XPath expression directly in the text box, or you can double click an item (in any of the three
panes) to insert that item. Nodes inserted from the schema tree in the left-hand pane are inserted relative to the
context node (if the Relative XPath check box is checked) or as an absolute expression starting from the
document node (if the Relative XPath check box is unchecked).

After completing the XPath expression, click OK to finish inserting the Auto-Calculation.

Updating an XML node with an Auto-Calculation
A node in an XML document can be updated with the result of an Auto-Calculation. How to do this is described
in the section, Updating Nodes with Auto-Calculations .

16.8.7 Date Picker

The Date Picker command inserts a Date Picker at the current cursor position. It will be enabled only when
the cursor is within an xs:date or xs:dateTime node and if the element has been created as (contents) or

an input field.

272

© 2017-2023 Altova GmbH

Insert Menu 769Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.8.8 Paragraph, Special Paragraph

The Paragraph command inserts an HTML paragraph <p> element around the selected component. A

component is considered selected for this purpose when the entire node is selected (by clicking either of its
tags) or when static text is selected. If the cursor is placed within static text, the paragraph element is inserted
(start and end tags) at this point. A paragraph can also be inserted by using the Insert Paragraph icon in the
Insert Design Elements toolbar .

The Special Paragraph command allows you to assign a predefined format to the selected node. The
available predefined formats can also be selected from the combo box in the toolbar.

Each paragraph type has particular formatting features that can be used to advantage. Note that the pre format
type enables carriage returns to be output as such instead of them being normalized to whitespace.

16.8.9 Barcode

The Insert Barcode command pops up the Insert Barcode dialog (screenshot below).

708

770 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Two properties, Type and Text, are mandatory; the others are optional and/or have appropriate default values.
After entering values for the mandatory properties and any other properties you wish to set, click OK. The
barcode you have specified (such as that for the ISBN shown below) will be inserted in the design. For detailed
information about the various barcode properties, see the section, Barcodes .

Important: For barcodes to work, a Java Runtime Environment must be installed. This must be version 1.4 or
later in a bit version that corresponds to the bit version of the StyleVision package installed on your system:
32-bit or 64-bit.

Important: For barcodes to be generated in the output, you must use Altova's XSLT processor to generate
the output. This is because the barcodes in an SPS are generated by calling special Java extension functions
that are not part of the XSLT standard. Altova's XSLT processors support these specific extension functions,
whereas other XSLT processors very probably do not. As a result, barcodes will not be generated if processed
with a non-Altova XSLT processor. The Altova XSLT processor is packaged with StyleVision, and is
automatically called when you generate output via the Generate commands in the File menu. Alternatively,
you can use RaptorXML Server, which is a Altova's standalone XSLT processor.

16.8.10 Image

The Image command pops up the Insert Image dialog (see screenshots below), in which you can specify the
image to insert. The Insert Image icon in the Insert Design Elements toolbar also pops up the Insert Image
dialog.

The Insert Image dialog has four tabs, each of which provides a different way to specify the image location.
These are:

· Static: for entering the image URI directly
· Dynamic: for obtaining the image URI from the XML document or generating it with an XPath

expression
· Static and dynamic: for combining the static and dynamic methods
· Inline data: for selecting an image that is stored in an XML file as Base-16 or Base-64 encoded text

The tabs are described in detail below.

Static
The image URI is entered directly in the Address field (see screenshot below). In the screenshot below the
image URI is: http://www.altova.com/pix/Marketing/logo.png.

183

708

https://www.altova.com/raptorxml

© 2017-2023 Altova GmbH

Insert Menu 771Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

You can specify whether the URI is absolute (Absolute check box checked) or relative (Absolute check box
unchecked). If a relative URI is entered, it will be resolved relative to the SPS file location. To enter the
(absolute or relative) URI automatically, click Browse and browse for the image file.

Dynamic
An XPath expression returns the image URI. In the screenshot below, the XPath expression is @deptlogo. This
assumes that the image URI is stored in the deptlogo attribute of the context node. The context node is the
node within which the image is being created.

Click the Edit XPath button to pop up the XPath Expression Builder . In the schema tree of the XPath
Expression Builder, the context node will be highlighted.

If the SPS is DTD-based and uses unparsed entities, then, an unparsed entity that references the image URI
can be used. First, check the Treat as unparsed entity checkbox. Then enter an XPath expression that selects
the node containing the unparsed entity. For details of how to use unparsed entities, see Unparsed Entity
URIs .

Static and Dynamic
Use both the static and dynamic mechanisms together to generate the URI.

697

440

772 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If the deptname attribute of the context node has a value of Marketing, then the image URI composed in the
screenshot above will be: http://www.altova.com/pix/Marketing/logo.png. Note that you can use the
XPath Expression Builder for the dynamic part.

Inline data
An image can be stored in an XML file as Base-16 or Base-64 encoded text. The XPath expression in the Insert
Image dialog (see screenshot below) selects the node containing the encoded text. The Encoding combo box
specifies the encoding used in the source XML so that StyleVision can correctly read the encoded text. And
the Image Format combo box indicates in what format the image file must be generated. (An image file is
generated from the encoded text data, and this file is then used in the output document.)

The Image File Settings dialog (accessed by clicking the Image File Settings button) enables you to give a
name for the image file that will be created. You can choose not to provide a name, in which case StyleVision
will generate a name.

16.8.11 Horizontal Line

The Horizontal Line command inserts a horizontal line at the cursor insertion point. This command is not
available when an SPS component is selected. To set properties for the horizontal line, select the line in the
design, and in the Properties sidebar, select line, and specify values for properties in the HTML group (see
screenshot below).

697

© 2017-2023 Altova GmbH

Insert Menu 773Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

You can specify the following properties for the line: its color, size (thickness), width (in the design),
alignment, and the noshade property.

16.8.12 Table

The Insert Table command pops up the Create Table dialog (screenshot below).

According to whether you wish to create a static table or a dynamic table, select the appropriate button. How
to proceed with each type of table is described in the section: Static SPS Tables and Dynamic SPS
Tables .

Note that tables can also be created by using the Table | Insert Table menu command and the Insert
Table icon in the Insert Design Elements toolbar.

16.8.13 Bullets and Numbering

The Bullets and Numbering command allows you to create a list, either static or dynamic. The list items of a
static list are entered in the SPS, while those of dynamic lists are the values of sibling nodes in the XML
document.

To create a list do the following:

145

146

774 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1. Place the cursor at the location where you wish to insert the list and click the Bullets and
Numbering command. This pops up a dialog asking whether you wish to create a static list or
dynamic list (screenshot below).

If you click Static List, the Bullets and Numbering dialog described in Step 3 pops up. If you click
Dynamic List, the XPath Selector dialog pops up (screenshot below).

2. In the XPath Selector dialog, notice that the XPath Context is the context of the insertion location, and
that it cannot be changed in the dialog. Select the node that is to be created as the dynamic list. In the
screenshot below, the context node is n1:Department, and the n1:Person node has been selected as
the node to be created as a list. This means that the content of each n1:Person node will be created
as an item in the list.

© 2017-2023 Altova GmbH

Insert Menu 775Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

If you select the User-defined XPath option, then you can enter an XPath expression to select the node
to be created as the dynamic table. Clicking OK pops up the Bullets and Numbering dialog described
in the next step.

3. In the the Bullets and Numbering dialog, select the kind of list you wish to create. You can choose
from a bulleted list (with a bullet, circle, or square as the list item marker), or a numbered list. Clicking
OK creates the list with the type of list item marker you selected.

Note: A static list can also be created by placing the cursor at the location where the list is to be created
and then clicking the Bulleted List icon or Numbered List icon in the Insert Design Elements toolbar
as required. A dynamic list can also be created by dragging a node from the Schema Tree into the
design.

16.8.14 Bookmark

The Bookmark command allows you to insert a bookmark (or anchor) anywhere in the SPS. A bookmark can
be referenced by a Hyperlink .

To insert a bookmark, do the following:

1. Place the cursor at the location where you wish to create the bookmark.
2. Select Insert | Bookmark, or right-click and select Insert | Bookmark. The Insert Bookmark dialog

appears.

708

776

776 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. In the Insert Bookmark dialog , select a tab according to whether the name of the bookmark should
be static (Static tab), dynamically obtained from the XML document (Dynamic), or composed of both
static and dynamic parts (Static and Dynamic). In the screenshot above a dynamic bookmark is
created, which has a name that is a unique ID for each Name child of the context node.

4. Click OK. The bookmark is defined.

Note: Bookmarks are created at the location specified in the design. If that location is within an element that
repeats, a bookmark is created within each instance of that repeating element. If a static name is
given, then each bookmark will have the same name. Therefore, it is better in such cases (of repeating
elements) to give a dynamic name, which can be, for example, the name of a child element of the
context node (the element within which the bookmark is created). If the node selected for the dynamic
name might have the same content across multiple instances, then the uniqueness of the bookmark
name can be ensured by using the generate-id() function to generate the name (see screenshot
above). To reference such a bookmark, the same ID can be generated as the href value of a
hyperlink . In this case make sure you use the fragment-identifier # in front of the generate-id()
function. The XPath expression would be: concat('#', generate-id(nodeXXX)).

You can edit the name of a bookmark after it has been created. Do this by right-clicking the bookmark and
selecting the Edit Bookmark Name command from the context menu that appears. Alternatively, in the
Properties sidebar, in the Bookmark group of properties for the bookmark, you can click the Edit button of the
bookmark name attribute and make the required changes.

Deleting a bookmark
To delete a bookmark, select it in the design and press the Delete key.

16.8.15 Hyperlink

The Hyperlink command enables you to insert a link from any part of the output document (HTML or RTF) to
an anchor within the output document or to an external document or document fragment. Note that links are
created only in the output document; linking is not available in Authentic View.

To insert a hyperlink, do the following:

339

344

© 2017-2023 Altova GmbH

Insert Menu 777Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

1. A hyperlink can be created around an existing design component or inserted at any point in the
document (with the link text inserted subsequently). Select the SPS component or text fragment to be
made into a hyperlink or place the cursor at the point where the link is to be inserted.

2. Click the Hyperlink icon in the toolbar, or select Insert | Hyperlink, or right-click and select Insert |
Hyperlink (when no design component is selected) or Enclose With | Hyperlink (when a design
component is selected). A hyperlink can also be inserted by using the Insert Hyperlink icon in the
Insert Design Elements toolbar .

3. In the Insert Hyperlink dialog that appears, specify the document or document fragment you wish to
link to. If you are linking to a document fragment (that is, to a bookmark within a document), remember
to include the # symbol. The URI for the hyperlink is specified in one of the following forms:

· As a static address (entered directly; you can select an HTML file via the Browse button, and a
fragment in the current document via the Bookmark button). Examples would be:
http://www.altova.com (static Web page URI); U:\documentation\index.html (via Browse
button); or #top_of_page (via Bookmark button).

· As a dynamic address (which comes from a node in the XML document; you specify the node). An
example would be a node such as //otherdocs/doc1. If the name of a bookmark has been
generated using the generate-id() function, then the href of the hyperlink should be generated
using the same generate-id() function. For information, see Defining Hyperlinks .

· As a combination of static and dynamic text for an address (you specify the static text and the XML
document node). An example would be www.altova.com -- department/name -- #intropara.

4. Click OK. The hyperlink is created.

Note: When specifying the node for a dynamic hyperlink entry, you can enter the XPath expression as an
absolute XPath expression by checking the Absolute Path check box. If this check box is not
checked, the XPath expression will be relative to the context node, which is the node within which the
hyperlink is being inserted.

Using unparsed entities
If you are using a DTD as your schema, then in the dynamic part of a hyperlink address, you can use the URI
declared for an unparsed entity in the DTD. For details of how to use unparsed entities, see Using unparsed
entity URIs .

Editing a hyperlink
You can edit the href of a hyperlink after it has been created. Do this by right-clicking the hyperlink and
selecting the Edit URL command. Alternatively, in the Properties sidebar, in the Link group of properties for the
link, you can click the Edit button of the URL attribute and make the required changes.

Deleting a hyperlink
To delete a hyperlink, select it in the design and press the Delete key.

16.8.16 Footnote

You can insert footnotes in a document by adding the Footnote component (Insert | Insert Footnote) at the
location where you want the footnote number to be. Footnotes are available in paged media output (PDF, RTF,
and Word 2007+ in the Enterprise Edition; and RTF in the Professional Edition).

708

341

344

440

778 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note the following points:

· The text of the footnote must be placed within the tags of the footnote component, and the footnote
text can be formatted.

· In the output, the footnote number appears at the location where the footnote was added. The footnote
text appears at the bottom of the page, together with the corresponding footnote number.

· In the output, footnote text will be formatted according to the formatting of the text within the footnote
component in the design.

· In the output, footnotes are numbered automatically through to the end of the document.
· In the case of multiple output documents, numbering is re-started for each output document.

In the screenshot below, two footnote components (Insert | Insert Footnote) have been inserted. The footnote
text has been placed within the tags of the component, and the text has been formatted.

The screenshots below show the output. The screenshot at left shows the complete page, while the
screenshots at right show closeups of the footnote numbers (top) and footnote texts (bottom).

© 2017-2023 Altova GmbH

Insert Menu 779Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Note: Formatting of footnote numbers is not supported.

16.8.17 Condition, Output-Based Condition

The Condition command enables you to insert a condition at the cursor point or around the selection. A
condition consists of one or more branches, with each branch containing a specific set of processing rules. In
this way, different sets of processing rules can be specified for different branches. For example, if the content of
a node is the string Stop, the branch can test this, and specify that the contents of the node be colored red; a
second branch can test whether the contents of the node is the string Go, and, if yes, color the contents of the
node green; a third branch can specify that if the contents of the node is neither the string Stop nor the string
Go, the contents of the node should be colored black.

To insert a condition, do the following:

1. Place the cursor at the desired location in the design or select the component around which the
condition is to be inserted.

2. Select the menu command Insert | Condition or right-click and select the context menu command
Insert | Condition.

3. In the Edit XPath Expression dialog that pops up (screenshot below), enter the XPath expression.685

780 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The context node for the expression being built is highlighted in the schema tree in the pane at
extreme left. You can enter the XPath expression directly in the text box, or you can double click an
item (in any of the three panes) to insert that item. Nodes inserted from the schema tree in the left-
hand pane are inserted relative to the context node (if the Relative XPath check box is checked) or as
an absolute expression starting from the document node (if the Relative XPath check box is
unchecked).

4. Click OK to finish inserting the condition. The condition is created with one branch, the test for which is
the XPath expression you entered.

Insert Output-Based Condition
This command inserts an output based-condition at the cursor location or around the selected component.
Each branch of the condition represents a single output (Authentic View, RTF, Text or HTML). To determine
which branch represents which output, mouseover the branch tag or check the XPath expression of the
selected branch (in the Properties sidebar, in the Condition Branch entry, click the Edit button). If the
output-based condition was created at a cursor insertion point, all branches will be empty and content will have
to be inserted for each branch. If the output-based condition was created around a component, each branch will
contain that component. For more details about output-based conditions, see Output-Based Conditions .
You can edit, move, and delete output-based conditions in the same way you would with a standard condition.

Editing the XPath expressions of branches
To edit the XPath expression of a branch, select the branch in Design View. Then, in the Properties sidebar,

283

284

© 2017-2023 Altova GmbH

Insert Menu 781Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

select condition branch | when. Click the Edit button for the XPath item. This pops up the Edit XPath
Expression dialog (screenshot above), in which you can edit the expression. Click OK when done.

Adding branches, changing the order of branches, and deleting branches
To add new branches, change the order of branches, and delete branches, right-click the required branch and
select the relevant item from the context menu.

16.8.18 Disabled

The Disabled command inserts a Disabled component at the cursor location (screenshot below). (To put the
Disabled component around selected content, use the Enclose With | Disabled command.)

Content inside a Disabled component is ignored in the output. So you can add content that you want to ignore
to the Disabled component. The Disabled component thus serves as a way to comment out content.

When you want to reinstate disabled content, simply remove the Disabled tags from around the content. To do
this, select the Disabled component, right-click, and select Remove Tag Only.

16.8.19 Template

The Template command inserts, at the cursor insertion point, an empty template for the schema tree node
you select. Insert a template as follows.

1. Place the cursor in the design at the location where the template is to be inserted.
2. Click the Insert | Template command. This pops up the Insert Template dialog (screenshot below).

792

782 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. The XPath Context field contains the context node of the cursor insertion point and will be the context
node for the template when it is created. Select the node for which you wish to create the template. In
the screenshot above the strings node is selected as the node for which the template is being
created.

4. Click OK to finish.

An empty template for the selected node will be created (in the screenshot below, an empty template for the
strings node has been created).

16.8.20 User-Defined Template

The User-Defined Template command inserts, at the cursor insertion point, an empty template that selects a
node the user specifies in an XPath expression. Insert a user-defined template as follows.

1. Place the cursor in the design at the location where the template is to be inserted.

© 2017-2023 Altova GmbH

Insert Menu 783Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

2. Click the Insert | User-Defined Template command. This pops up the Edit XPath Expression
dialog .

3. Enter the XPath expression to select the node you want. There are a few points to note in this
connection: (i) The XPath expression will be evaluated in the context of the node within which the user-
defined template is being created; (ii) The XPath expression can select any node anywhere in the
document as well as in another XML document.

4. After you have entered the XPath expression, click OK to finish.

An empty user-defined template for the targeted node will be created.

For more detailed information, see the section, SPS File: Contents | User-Defined Templates .

16.8.21 Variable Template

A Variable Template is a template that targets a variable and, by default outputs its content. It is inserted
with the Insert | Variable Template or Enclose with | Variable command, which inserts, at the cursor
insertion point, a template for a variable defined in the SPS. The variable template (screenshot below) contains
a content placeholder by default, and this serves to output the contents of the variable. You can insert
additional content (static as well as dynamic) in the variable template as required, or modify it as you would
any other template. A variable template is indicated with a dollar symbol in its start and end tags.

To insert a variable template, do the following:

1. Place the cursor in the design at the location where the template is to be inserted.
2. Click the Insert | Variable Template command. This pops up the Insert Variable Template dialog

(screenshot below).

3. The dialog contains a list of all the user-declared parameters and variables defined in the SPS.
Select the variable for which you wish to add a variable template.

4. Click OK to finish.

685

137

302

784 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.8.22 Design Fragment

Mousing over the Design Fragment command rolls out a submenu containing all the Design Fragments
currently in the design. Clicking a Design Fragment in the submenu inserts it at the cursor insertion point.

16.8.23 Layout Container, Layout Box, Line

The Insert | Layout Container command enables a Layout Container to be inserted anywhere in the design. A
Layout Box and a Line can be inserted in a Layout Container, and both these commands are enabled only
when a Layout Container is selected.

Layout Containers, Layout Boxes, and Lines can also be inserted via the respective icons in the Insert Design
Elements toolbar . To insert via the toolbar icons, you must first select the appropriate toolbar icon and then
click in the design at the location where you wish to insert the layout item.

For a detailed description of Layout modules and how to insert and use them in the design, see the section
Layout Modules .

16.8.24 Table of Contents

Mousing over the Table of Contents command rolls out a submenu containing commands to insert various
commands relating to the creation of a Table of Contents (TOC) template, TOC bookmarks, and a design
document structure for the TOC.

The list of commands is as follows. For the details of how to use them click on the respective links, which will
take you to the section on how to use that particular TOC component.

· Insert Table of Contents
· TOC Bookmark
· TOC Bookmark (Wizard)
· TOC Reference
· TOC Reference | Entry Text / Leader / Page Reference
· Hierarchical Numbering
· Sequential Numbering
· Level
· Level Reference
· Template Serves as Level

Note: These commands are also available as commands in a context menu, depending on where you right
click in the design.

708

187

322

319

315

325

325

325

325

316

324

316

© 2017-2023 Altova GmbH

Insert Menu 785Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.8.25 New Document

The Insert New Document command inserts a New Document template (screenshot below) at the cursor
insertion point.

The New Document template contains an empty Initial Document Section. Content can now be entered in the
Initial Document Section. If desired, additional Document Sections can be appended to the Initial Document
Section via the Insert | Insert Page / Column / Document Section command.

A New Document template creates a new document in the output. As a result, the output will consist of
multiple output-documents.

For a detailed description of how to work with multiple output-documents, see the section, Multiple Document
Output .

16.8.26 Page / Column / Document Section

With the Page / Column / Document Section command you can insert, for paged media output, a page
break (HTML printouts and RTF outputs) and page number (RTF output). Such insertions are possible only at
cursor insertion points.

New Page
Click New Page to insert a page break at the cursor insertion point. The page break is displayed as a dashed
line across the whole of the Design window. In HTML output, while the page break has no effect in the browser
view, a page break will be inserted when the browser view of the HTML file is printed out. In RTF output, a page
break is inserted at the specified locations.

Page Number
Click Page | Number to insert the current page number in the RTFoutputs. The page number appears as a
block (i.e. as a separate line) or as an inline (embedded in document text), depending on where in the
document the page number has been inserted. For example, if the page number is inserted within a paragraph
element, then the page number appears inline within the paragraph. If, on the other hand, the page number is
inserted, say, between two elements, then it appears on a separate line by itself.

Page Total
Click Page | Total to insert the total number of pages in the PDF output. The page total can be inserted
anywhere in the document design, including in headers and footers. It is particularly useful when numbering

261

786 Menu Commands and Reference Insert Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

pages. For example, the page total can be inserted in a header design as follows: Page: (page number)/
(page total). This would produce output in the form: Page: 1/25.

New Column
The number of columns that a page in a given section must have is specified in the page properties of that
section. In the output, text will fill the columns on a multi-column page one by one. Text can however be forced
into a new column by inserting a column break (new column) in the design. To insert a new column in a
document, place the cursor at the location in the design where the new section is to be added and click the
New Column command, which is also available via the context menu.

New Document Section
A document is made up of one initial section and, optionally, additional sections. Each section has its own
page properties. To insert a new section in a document, place the cursor at the location in the design where the
new section is to be added and click the New Document Section command, which is also available via the
context menu.

Deleting Page Breaks, Page Numbers, and Page Total
To delete page breaks, page numbers, and page total, select the placeholder and click Delete.

16.8.27 User-Defined Item

Mousing over the Insert | User-Defined Item command causes a sub-menu to roll out that contains
commands to insert a User-Defined Element or a User-Defined XML Text Block . How to use these two
components is described in the section SPS File: Content | User-Defined Elements, XML Text Blocks .

401

393

140 141

140

© 2017-2023 Altova GmbH

Enclose With Menu 787Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.9 Enclose With Menu

The Enclose with menu provides commands enabling you to enclose a selection in the design with a variety of
design components. Some of these commands are available as toolbar icons that enable you to insert the
component in the design (equivalent commands are available in the Insert menu). Additionally, Enclose
with menu commands are also available via context menus which appear when, in the SPS design, you right-
click a selection. In the menus and context menus, commands that are not available at that location in the
SPS are disabled.

Note: Since the Enclose with commands are used for constructing the SPS, they are available in Design
View only.

16.9.1 Template

The Enclose with | Template command encloses the selected design component or text with a template for
the schema tree node you select. Do this as follows.

1. Select the design component or text you wish to enclose with a template.
2. Click the Enclose with | Template command. This pops up the Schema Selector dialog (screenshot

below).

3. The XPath Context field contains the context node of the selection and will be the context node of the
template when it is created. Select the node for which you wish to create the template. In the
screenshot above the n1:Name node is selected as the node for which the template is being created.

702

763

788 Menu Commands and Reference Enclose With Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4. Click OK to finish.

A template for the selected node will be created around the selection.

16.9.2 User-Defined Template

The Enclose with | User-Defined Template command encloses the selection with a template for a node the
user specifies in an XPath expression. Insert a user-defined template as follows.

1. Select the component in the design that you wish to enclose with a user-defined template.
2. Click the Enclose with | User-Defined Template command. This pops up the Edit XPath

Expression dialog.
3. Enter the XPath expression to select the node you want. There are a few points to note in this

connection: (i) The XPath expression will be evaluated in the context of the node within which the user-
defined template is being created; (ii) The XPath expression can select any node anywhere in the
document as well as in another XML document.

4. After you have entered the XPath expression, click OK to finish.

A user-defined template for the targeted node will be created around the selection.

For more information, see the section, SPS File: Structure | Templates and Design Fragments | User-Defined
Templates .

16.9.3 Variable Template

The Enclose with | Variable Template command encloses the selection with a template for a variable defined
in the SPS design.

1. Select the component in the design that you wish to enclose with a variable template.
2. Click the Enclose with | Variable Template command. This pops up the Enclose with Variable

Template dialog .
3. From the list in the dialog, select the variable for which you wish to create the template.
4. Click OK to finish.

A variable template will be created around the selection.

For more information, see the section, SPS File: Structure | Templates and Design Fragments | Variable
Templates .

16.9.4 Paragraph, Special Paragraph

The Paragraph command inserts an HTML paragraph <p> element around the selected component. A

component is considered selected for this purpose when the entire node is selected (by clicking either of its
tags) or when static text is selected. If the cursor is placed within static text, the paragraph element is inserted

685

248

251

251

© 2017-2023 Altova GmbH

Enclose With Menu 789Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

(start and end tags) at this point. A paragraph can also be inserted by using the Insert Paragraph icon in the
Insert Design Elements toolbar .

The Special Paragraph command allows you to assign a predefined format to the selected node. The
available predefined formats can also be selected from the combo box in the toolbar.

Each paragraph type has particular formatting features that can be used to advantage. Note that the pre format
type enables carriage returns to be output as such instead of them being normalized to whitespace.

16.9.5 Bullets and Numbering

The Enclose with | Bullets and Numbering command creates a static list and list items around the
selection. If the selection contains a CR-LF, carriage-return and/or linefeed (inserted by pressing the Enter
key), then separate list items are created for each text fragment separated by a CR-LF.

When this command is selected, the Bullets and Numbering dialog (screenshot below) pops up.

Select the list item marker you want and click OK. A list is created. The number of list items in the list
corresponds to the number of CR-LFs (carriage-returns and/or linefeeds) in the selection. You can add more list
items to the list by pressing Enter.

Note: You can obtain the same results by selecting static content and then clicking the Bulleted List or
Numbered List icons in the Insert Design Elements toolbar .

708

708

790 Menu Commands and Reference Enclose With Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.9.6 Bookmarks and Hyperlinks

The Enclose with | Bookmark and Enclose With | Hyperlink commands are enabled when some text or
component in the SPS design is selected. These commands enable a bookmark and hyperlink, respectively, to
be created around the selection. For more information about how bookmarks and hyperlinks work and how to
create them, see the section Advanced Features | Table of Contents, Referencing, Bookmarks .

16.9.7 Condition, Output-Based Condition

The Condition command enables you to insert a condition at the cursor point or around the selection. A
condition consists of one or more branches, with each branch containing a specific set of processing rules. In
this way, different sets of processing rules can be specified for different branches. For example, if the content of
a node is the string Stop, the branch can test this, and specify that the contents of the node be colored red; a
second branch can test whether the contents of the node is the string Go, and, if yes, color the contents of the
node green; a third branch can specify that if the contents of the node is neither the string Stop nor the string
Go, the contents of the node should be colored black.

To insert a condition, do the following:

1. Place the cursor at the desired location in the design or select the component around which the
condition is to be inserted.

2. Select the menu command Insert | Condition or right-click and select the context menu command
Insert | Condition.

3. In the Edit XPath Expression dialog that pops up (screenshot below), enter the XPath expression.

339

685

© 2017-2023 Altova GmbH

Enclose With Menu 791Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

The context node for the expression being built is highlighted in the schema tree in the pane at
extreme left. You can enter the XPath expression directly in the text box, or you can double click an
item (in any of the three panes) to insert that item. Nodes inserted from the schema tree in the left-
hand pane are inserted relative to the context node (if the Relative XPath check box is checked) or as
an absolute expression starting from the document node (if the Relative XPath check box is
unchecked).

4. Click OK to finish inserting the condition. The condition is created with one branch, the test for which is
the XPath expression you entered.

Insert Output-Based Condition
This command inserts an output based-condition at the cursor location or around the selected component.
Each branch of the condition represents a single output (Authentic View, RTF, Text or HTML). To determine
which branch represents which output, mouseover the branch tag or check the XPath expression of the
selected branch (in the Properties sidebar, in the Condition Branch entry, click the Edit button). If the
output-based condition was created at a cursor insertion point, all branches will be empty and content will have
to be inserted for each branch. If the output-based condition was created around a component, each branch will
contain that component. For more details about output-based conditions, see Output-Based Conditions .
You can edit, move, and delete output-based conditions in the same way you would with a standard condition.

Editing the XPath expressions of branches
To edit the XPath expression of a branch, select the branch in Design View. Then, in the Properties sidebar,

283

284

792 Menu Commands and Reference Enclose With Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

select condition branch | when. Click the Edit button for the XPath item. This pops up the Edit XPath
Expression dialog (screenshot above), in which you can edit the expression. Click OK when done.

Adding branches, changing the order of branches, and deleting branches
To add new branches, change the order of branches, and delete branches, right-click the required branch and
select the relevant item from the context menu.

16.9.8 Disabled

The Disabled command encloses selected content (including design components) with a Disabled component
(see screenshot below).

Content inside a Disabled component is ignored in the output. So you can enclose content that you want to
ignore with a Disabled component.

When you want to reinstate disabled content, simply remove the Disabled tags from around the content. To do
this, select the Disabled component, right-click, and select Remove Tag Only.

16.9.9 TOC Bookmarks and TOC Levels

When a component in the design is selected, it can be enclosed with one or more relevant Table of Contents
(TOC) components. The list of TOC commands is as follows. For the details of how to use them click on the
respective links, which will take you to the section on how to use that particular TOC component.

· TOC Bookmark
· TOC Bookmark (Wizard)
· Level
· Level Reference

Note: These commands are also available as commands in a context menu, depending on where you right
click in the design.

319

315

316

324

© 2017-2023 Altova GmbH

Enclose With Menu 793Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.9.10 New Document

The Enclose With New Document command encloses the current selection with a New Document template
(screenshot below).

The New Document template contains an Initial Document Section that contains the design selection that was
highlighted when the Enclose With New Document command was selected. In the screenshot above, the
TOC design component was selected and enclosed with a New Document template. Content can now be
entered in the Initial Document Section. If desired, additional Document Sections can be appended to the Initial
Document Section via the Insert | Insert Page / Column / Document Section command.

A New Document template creates a new document in the output. As a result, the output will consist of
multiple output-documents.

For a detailed description of how to work with multiple output-documents, see the section, Multiple Document
Output .

16.9.11 User-Defined Element

The Enclose with | User-Defined Element command creates a User-Defined Element around the
selection in the design. How to use user-defined elements is described in the section SPS File: Content | User-
Defined Elements .

261

140

140

794 Menu Commands and Reference Table Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.10 Table Menu

The Table menu provides commands enabling you to insert a static or dynamic table and to change the
structure and properties of static and dynamic tables. You can edit table structure by appending, inserting,
deleting, joining, and splitting rows and columns. Properties of the table as well as of individual columns, rows,
and cells are defined using CSS styles and HTML properties for tables and its sub-components .

The Table commands are available in the Table menu (see list below) and as icons in the Table toolbar .
The availability of various table commands depends on the current cursor position. A table can be inserted at
any location in the SPS by clicking the Insert Table command. To edit the table structure, place the cursor
in the appropriate cell, column, or row, and select the required editing command. To edit a formatting property,
place the cursor in the appropriate cell, column, row, or table, and, in the Styles sidebar and/or Properties
sidebar , define the required property for that table component.

The following commands are available in the Table menu:

· Insert Table, Delete Table
· Add Table Headers, Footers
· Append/Insert Row/Column
· Delete Row, Column
· Join Cell Left, Right, Below, Above
· Split Cell Horizontally, Vertically
· View Cell Bounds, Table Markup
· Table Properties
· Vertical Alignment of Cell Content

Headers and footers
When you create a dynamic table, you can specify whether you wish to include headers and/or footers.
(Footers are allowed only when the table grows top–down.) You can create a header and footer in a static table
by manually inserting a top and bottom row, respectively. The structures of headers and footers in both static
and dynamic tables can be modified by splitting and joining cells.

Navigating in tables
Use the Tab and arrow keys to navigate the table cells.

Adding cell content
Any type of SPS component can be inserted as the content of a cell. The component should be formatted
using the standard formatting tools.

16.10.1 Insert Table, Delete Table

The Insert Table command inserts an empty table in the design tab. Selecting this command opens a
dialog box in which you select whether you wish to create a static or dynamic table.

· If you choose to create a static table, a dialog prompts you for the size of the table (in terms of its rows
and columns).

153 153

705

794

153

153

794

795

795

796

796

796

797

797

798

© 2017-2023 Altova GmbH

Table Menu 795Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· If you choose to create a dynamic, the XPath Selector dialog pops up, in which you can select the
node that is to be created as a dynamic table. On clicking OK, the Create Dynamic Table dialog pops
up, in which you can select the child nodes you wish to display as the fields of each table item. For
details, see Creating dynamic tables .

You can change the structure of a table subsequently by appending, inserting, and deleting rows and/or
columns.

The Delete Table command deletes the static or dynamic table in which the cursor is.

16.10.2 Add Table Headers, Footers

Table headers can appear as a header row (above the table body) or as a header column (to the left of the table
body, though markup-wise a header column might be placed inside the table body). Similarly, table footers can
appear as a footer row (below the table body) or as a footer column (to the right of the table body, though
markup-wise a footer might be placed inside the table body).

Note: In the HTML output since table headers are enclosed in th elements, they appear bold (because the
bold formatting is inherent in the th element).

The Add Table Header and Add Table Footer commands add table headers and footers as columns and rows,
as follows:

Add Table Header Column: Adds a header column to the left of the table body.

Add Table Footer Column: Adds a footer column to the right of the table body.

Add Table Header Row: Adds a header row above the table body.

Add Table Footer Row: Adds a footer row below the table body.

16.10.3 Append/Insert Row/Column

The Append Row command appends a row to the static or dynamic table in which the cursor is.

The Insert Row command inserts a row above the row in which the cursor is. This command applies to
both static and dynamic tables.

The Append Column command appends a column to the static or dynamic table in which the cursor is.

The Insert Column command inserts a column to the left of the column in which the cursor is. This
command applies to both static and dynamic tables.

146

796 Menu Commands and Reference Table Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.10.4 Delete Row, Column

The Delete Row command deletes the row in which the cursor is. This command applies to both static
and dynamic tables.

The Delete Column command deletes the column in which the cursor is. This command applies to both
static and dynamic tables.

16.10.5 Join Cell Left, Right, Below, Above

The Join Cell Left command joins the cell in which the cursor is to the adjacent cell on the left. The
contents of both cells are concatenated in the new cell. All property values of the cell to the left are passed to
the new cell. This command applies to both static and dynamic tables.

The Join Cell Right command joins the cell in which the cursor is to the cell on the right. The contents of
both cells are concatenated in the new cell. All property values of the cell to the left are passed to the new cell.
This command applies to both static and dynamic tables.

The Join Cell Below command joins the cell in which the cursor is to the cell below. The contents of both
cells are concatenated in the new cell. All property values of the cell on the top are passed to the new cell. This
command applies to both static and dynamic tables.

The Join Cell Above command joins the cell in which the cursor is to the cell above. The contents of both
cells are concatenated in the new cell. All property values of the cell on top are passed to the new cell. This
command applies to both static and dynamic tables.

16.10.6 Split Cell Horizontally, Vertically

The Split Cell Horizontally command creates a new cell to the right of the cell in which the cursor is. The
contents of the original cell stay in the original cell. All properties of the original cell are passed to the new cell.
This command applies to both static and dynamic tables.

The Split Cell Vertically command creates a new cell below the cell in which the cursor is. The contents
of the original cell remain in the upper cell. All properties of the original cell are passed to the new cell. This
command applies to both static and dynamic tables.

© 2017-2023 Altova GmbH

Table Menu 797Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.10.7 View Cell Bounds, Table Markup

The View Cell Bounds and View Table Markup commands display the boundaries of cells and table column
and row markup, respectively. With these two options switched on, you can better understand the structure of
the table. Switched off, however, you can visualize the table more accurately.

The View Cell Bounds command toggles the display of table boundaries (borders)
on and off for tables that have a table border value of 0.

The View Table Markup command toggles the display of the blue column and row
markers on and off.

16.10.8 Table Properties

The Table Properties command is enabled when the cursor is placed inside a static or dynamic table .
Clicking the command, pops up the Properties sidebar, with the Table component selected (screenshot below).

You can now edit the properties of the table. Click OK when done.

143

798 Menu Commands and Reference Table Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.10.9 Edit CALS/HTML Tables

The Edit CALS/HTML Tables command enables data structures in the XML document that follow the CALS
table model or HTML table model to be generated in the output as tables. The table markup in the output
formats is derived directly from the XML document. However, additional table formatting styles can be added via
the SPS.

Selecting this command pops up the Edit CALS/HTML Tables dialog (screenshot below).

For details about CALS/HTML tables, see the section Tables .

16.10.10 Vertical Alignment of Cell Content

Commands to set the vertical alignment of cell content are available as icons in the Table toolbar. Place the
cursor anywhere in the cell, and click the required icon.

Vertically Align Top vertically aligns cell content with the top of the cell.

Vertically Align Middle vertically aligns cell content with the middle of the cell.

Vertically Align Bottom vertically aligns cell content with the bottom of the cell.

143

© 2017-2023 Altova GmbH

Authentic Menu 799Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.11 Authentic Menu

The Authentic menu contains commands that enable you to:

· Customize aspects of the Authentic View of an XML document that will be displayed using the SPS.
· Edit documents in the Authentic View preview of StyleVision.

The commands in the Authentic menu are listed below:

· Edit Authentic Scripts
· Custom Toolbar Buttons
· Check Macro References
· Auto-Add Date Picker
· Auto-Add DB Controls
· Reload, Validate XML
· Select New Row with XML Data for Editing
· Define XML Entities
· Markup Commands
· (Dynamic Table) Row Commands

Each of these commands is described in detail in the sub-sections of this section.

16.11.1 Edit Authentic Scripts

The Edit Authentic Scripts command pops up StyleVision's Scripting Editor (screenshot below), in which you
can create Forms, Event, and Macros for use in Authentic View.

799

800

803

804

804

804

805

806

806

807

800 Menu Commands and Reference Authentic Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

For an overview of how scripts can be used in Authentic View, see the section, Scripting for Authentic . For
a description of how the Scripting Editor works, see the section, Scripting in the Programmers'
Reference .

16.11.2 Custom Toolbar Buttons

Clicking the Custom Toolbar Buttons command pops up the Authentic Custom Buttons dialog (screenshot
below), in which you can design a customized Authentic toolbar. After the Authentic toolbar has been saved
with an SPS, the toolbar will appear in the Authentic View of Enterprise and Professional editions of Altova
products whenever an XML file associated with this SPS is edited in Authentic View.

Note: Altova products that have an Authentic View window are: the Enterprise and Professional editions of
XMLSpy, and StyleVision and the Enterprise edition of Authentic Desktop and Authentic Browser.

650

854

853

© 2017-2023 Altova GmbH

Authentic Menu 801Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Adding a button
To add a button or separator to the Authentic toolbar, click the Add button at the top right of the dialog. This
pops up a menu in which you can select what you wish to add: (i) a text state icon, (ii) a custom button to
execute a macro, or (iii) a separator line in the toolbar to separate groups of buttons. Text state icons and
custom buttons are described in detail below.

Moving a button and deleting a button
To move a button or separator to another location in the toolbar, select it and drag it to the new position. To
delete a button or separator, select it and click the Delete button at the top right of the dialog.

Text state icons
A text state icon defines an icon for a global element. When the Authentic View user selects text in the
Authentic View document and clicks a text state icon, then the element that the icon defines is inserted around
the selected text. Text state icons are intended for elements that provide inline formatting, such as bold and
italic formatting.

To add a text state icon to the Authentic toolbar, click the Add button at the top right of the Authentic Custom
Buttons dialog (see screenshot below) and select Add Text State Icon. Enter the name of the XML element
for which the text state icon is being created, then browse for a bitmap image file for the button or enter a text
for the button. You can optionally enter a tooltip as a guide for the Authentic View user when he or she mouses
over the text state icon. Click OK to add the button to the Authentic toolbar.

801

802

802 Menu Commands and Reference Authentic Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The screenshot above shows the text state icon for the bold element selected. This text state icon uses an
image named bold.bmp. Text for the button can be entered as a fallback. For the text state icon defined in the
screenshot above, if the image cannot be found, then the text Bold will be used as the button text.

Custom buttons
When an Authentic View user clicks a custom button in the Authentic toolbar, a macro is executed. In the
SPS design you can create a custom button and specify what macro it will trigger.

To add a custom button to the Authentic toolbar, click the Add button at the top right of the Authentic Custom
Buttons dialog (see screenshot below) and select Add Custom Toolbar Button.

© 2017-2023 Altova GmbH

Authentic Menu 803Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Custom buttons take the following parameters:

· The location of an image for the button (in the Bitmap field) or text for the button (in the Text field).
· In the Macro Name combo box select a macro from the dropdown list. The macros listed here are

those that have been saved with the SPS. When you click the New button, the Scripting Editor of
StyleVision opens in its own window, enabling you to quickly and easily create a macro and save it
with the SPS. Clicking the Edit button opens the selected macro for editing in the Scripting Editor .

· You can optionally enter a tooltip as a guide for the Authentic View user when he or she mouses over
the custom button.

· In the Identifier field enter a text string that will be used as the identifier of the custom button. This
identifier can then be used in scripting code.

The screenshot above shows custom button for the ChangeAddressToUS macro. This custom button uses an
image named US.bmp. Text for the button can be entered as a fallback. A tooltip has been entered and the
custom button has the identifier Address_US. These examples are from the file ToolbarButtons.sps is in the
Authentic\Scripting folder of the Examples project in the Project window.

16.11.3 Check Macro References

The Check Macro References command checks that references from toolbar buttons and scripts to macros
are correct. If any incorrect reference is found an error message is displayed.

854

854

804 Menu Commands and Reference Authentic Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.11.4 Auto-Add Date Picker

This is a toggle command that switches the Auto-Add Date Picker feature on and off. When the Auto-Add Date
Picker feature is ON, any xs:date or xs:dateTime datatype element that is created as contents or as an
input field will have the Date Picker automatically inserted within the element tags and after the contents

placeholder or input field.

16.11.5 Auto-Add DB Controls

This is a toggle command that switches the Auto-Add DB Controls feature on and off.

When the Auto-Add DB Controls is on, then, whenever a DB table element is dropped into the design, the DB
Controls panel (shown below) is inserted immediately before the Row child element of that DB table element.

The DB Controls panel enables the Authentic View user to navigate the rows of the DB table in Authentic View.
The first (leftmost) button navigates to the first record; the second button navigates to the previous record; the
third button is the Goto button; it pops up a dialog (screenshot below) that prompts you for the number of the
record to which you wish to go; the fourth button navigates to the next record; and the fifth button navigates to
the last record.

When the Auto-Add DB Controls toggle is turned off, the DB Controls panel is not inserted when a DB table is
dropped into the Design document.

Note: You can manually insert navigation buttons by placing the cursor anywhere between the start and end
tags of the DB table and selecting the required option from the Insert | DB Controls submenu. Note that in this
submenu the DB Controls panel can be inserted as the four navigation buttons or as the four navigation buttons
plus the button that calls the Goto Record dialog.

16.11.6 Reload Authentic View, Validate XML

The Reload command reloads the Authentic XML data file. This can be useful if the file has been modified
outside StyleVision, especially by another user working from another machine.

© 2017-2023 Altova GmbH

Authentic Menu 805Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

The Validate XML (F8) command checks the validity of the XML file against the associated schema.
Whether StyleVision's XSD 1.0 or XSD 1.1 validator is used can be specified in the Properties dialog . Any
additional validation requirement that you have entered for individual nodes (Properties sidebar: Additional
validation in the Authentic group of properties) is also checked. The result of the validation check is displayed in
a pop-up message box.

16.11.7 Select New Row with XML Data for Editing

The Select New Row with XML Data for Editing command enables you to select a new row from the
relevant table in an XML DB, such as IBM DB2. This row appears in Authentic View, can be edited there, and
then saved back to the DB.

When an XML DB is used as the XML data source, the XML data that is displayed in Authentic View is the
XML document contained in one of the cells of the XML data column. The Select New Row with XML Data
for Editing command enables you to select an XML document from another cell (or row) of that XML column.
Selecting the Select New Row... command pops up the Choose XML Field dialog (screenshot below), which
displays the table containing the XML column.

You can enter a filter for this table. The filter should be an SQL WHERE clause (just the condition, without the
WHERE keyword, for example: CID>1002). Click Update to refresh the dialog. In the screenshot above, you can
see the result of a filtered view. Next, select the cell containing the required XML document and click OK. The
XML document in the selected cell (row) is loaded into Authentic View.

738

806 Menu Commands and Reference Authentic Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.11.8 Define XML Entities

The Define XML Entities command is available only in Authentic View. With the Define Entities command in
Authentic View, you can define entities that you want to add to your XML document. After an entity has been
defined, it can be inserted in the XML document by right-clicking at the location where you wish to insert the
entity, and, from the context menu that pops up, selecting Insert Entity, and then the name of the entity to be
inserted.

An entity that you define with this command can be any of three types:

· Internal parsed entity. The value of the entity is a text string that usually occurs frequently in the
document. Using an entity ensures that all occurrences are expanded to the value defined here.

· External parsed entity. This is an external XML file that will replace each occurrence of the entity. The
value of the entity is the URI of the external XML file.

· External unparsed entity. This is an external resource that will be called when the entity is processed.
The value of the entity is the URI of the external resource.

Clicking the command, pops up the Define Entities dialog (screenshot below).

For a description of how to use this dialog, see Define Entities in the Authentic View documentation.

16.11.9 View Markup

The View Markup command has a submenu with options to control markup in the Authentic XML document.
With the four markup commands (screenshot below), you can select between the Hide Markup and the various
Show Markup modes.

646

© 2017-2023 Altova GmbH

Authentic Menu 807Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

The markup refers to how the various node tags are displayed in Authentic View. These are mutually exclusive
options, and one option must be selected at any given time. With Hide Markup selected node tags are not
displayed. Small Markup shows opening and closing tags without node names. Large Markup shows opening
and closing node tags with their respective node names. Mixed Markup refers to the markup specified in the
Authentic Node Properties of individual nodes. Since the default markup property for individual nodes is Hide
Markup, no markup (either small or large) will be displayed—unless you have specified (as a node property)
small or large markup for some node/s.

16.11.10 RichEdit

Mousing over the RichEdit command pops out a submenu containing the RichEdit markup commands
(screenshot below). The menu commands in this submenu are enabled only in Authentic View and when the
cursor is placed inside an element that has been created as a RichEdit component.

The text-styling properties of the RichEdit menu will be applied to the selected text when a RichEdit command
is clicked. The Authentic View user can specify the font, font-weight, font-style, font-decoration, font-size, color,
background color and alignment of the selected text.

For more information about the RichEdit feature in context, see Text-Styling Flexibility in Authentic .

16.11.11 (Dynamic Table) Row Commands

The (Dynamic Table) Row commands are enabled in Authentic View when the cursor is placed inside the
row of a dynamic table. They enable you to manipulate the rows of a dynamic table. You can append, insert,
duplicate, and delete rows, and you can move the selected row up and down relative to the other rows of the
table. Since a row in a dynamic table represents a fixed data structure, the Authentic View user will be
manipulating units of a data structure in the context of the data structure represented by the dynamic table.

433

433

381

808 Menu Commands and Reference Authentic Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

A row is selected by placing the cursor inside it. An empty row can then be inserted (before) or appended
(after) the selected row. A row can be duplicated, in the sense that a copy of the row plus its content is created
after the selected. A row can also be moved up or down relative to adjacent rows.

© 2017-2023 Altova GmbH

Database Menu 809Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.12 Database Menu

The Database menu contains commands to query the connected database and to edit and clear the filters
applied to the connected database.

· Query Database starts up the Connect to Database process and opens the Database Query
window.

· Edit DB Filter, Clear DB Filter , to access the Edit DB Filters dialog and clear DB Filters,
respectively.

16.12.1 Query Database

The Query Database command pops up the Database Query window (screenshot below), via which
you can connect to a database and query it. How to use the Database Query window is explained in the
section Query Database .

The Database Query window is toggled on and off by clicking the Query Database command.

809 492

810

599

599

810 Menu Commands and Reference Database Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.12.2 Edit DB Filter, Clear DB Filter

The Edit DB Filter command allows you to create and edit a filter for a database table (a DB Filter). A DB
Filter determines what data from the selected database table is imported and displayed. A DB Filter consists of
one or more criteria. When you specify criteria, you use an expression, which is a combination of operators (=

or >) and values (text or numbers). Additionally, criteria can be joined by the logical operators AND or OR.

To create or edit a DB Filter, do the following:

1. Select the top-level data table element for which you wish to create or edit a DB Filter. Do this by
clicking either the element tag in Design View or the element name in the schema tree.

2. Select Database | Edit DB Filter or click the toolbar icon for the command. This pops up the Edit
Database Filters dialog.

3. To add criteria use the Append AND and Append OR buttons. To move a criterion up or down, use
the arrow buttons. To delete a criterion, use the Delete button.

4. Specify the criteria for the DB Filter. Each criterion consists of three parts: Field Name +

Operator + Value. The options for Field Names and Operators are available in combo boxes. The

value of the expression must be keyed in, and may be a parameter (indicated by a preceding $

character).

Clear DB Filter command

The Clear DB Filter command deletes the filter after asking for and receiving a confirmation from you.

© 2017-2023 Altova GmbH

Properties Menu 811Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.13 Properties Menu

The Properties menu contains commands that enable you to insert lists and define datatype formats for the
input formatting feature. The description of the commands is organized into the following sub-sections:

· Bullets and Numbering command, to insert lists.
· Predefined Format Strings command, to define numeric datatype formats for a given SPS.

16.13.1 Edit Bullets and Numbering

The Edit Bullets and Numbering command enables you to insert a list at the cursor location. Clicking the
command pops up the Bullets and Numbering dialog (screenshot below), in which you can select the list style;
in the case of a numbered list, the initial number can also be specified.

16.13.2 Predefined Value Formatting Strings

Any (content) placeholder, input field, or Auto-Calculation which is of a numeric, date, time, dateTime

or duration datatype can be assigned a custom format with the Value Formatting dialog. In the Value

Formatting dialog, you can either create a format directly or select from a drop-down list of predefined formats.

354

811

811

354

812 Menu Commands and Reference Properties Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The predefined formats that are available in the dropdown list are of two types:

· Predefined formats that have been delivered with StyleVision, and
· Predefined formats that the user creates with the Predefined Value Formatting Strings command

(this command). When a user creates predefined value formats, these are created for the currently
open SPS file—not for the entire application. After the user creates predefined value formats, the SPS
file must be saved in order for the formats to be available when the file is next opened.

Creating a predefined value formatting string
A predefined value format string is specific to a datatype. To create a predefined value formatting string, do the
following:

1. Click Properties | Predefined Value Formatting Strings. The following dialog appears:

2. Select a datatype from the drop-down list in the combo box, and then click the Append or Insert icon

as required. This pops up the Edit Format String dialog:

If you click the down arrow of the combo box, a drop-down list with the StyleVision-supplied predefined
formats for that datatype is displayed (shown in the screenshot below).

© 2017-2023 Altova GmbH

Properties Menu 813Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

You can either select a format from the list and modify it, or you can enter a format directly into the
input field. The syntax for defining a format is explained in the section, Value Formatting . If you
need help with the syntax, use the Insert Field and Field Options buttons.

3. After you have defined a format, click OK and save the SPS file. The formatting string is added to the
list of predefined formats for that datatype, and it will appear as an option in the Value Formatting
dialog (of the current SPS file) when the selected element is of the corresponding datatype.

Note the following points:

· You can add as many custom format strings for different datatypes as you want.
· The sequential order of format strings in the Predefined Format Strings dialog determines the order in

which these format strings appear in the Value Formatting dialog. The customized format strings
appear above the supplied predefined formats.

· To edit a custom format string, double-click the entry in the Predefined Format Strings dialog.
· To delete a custom format string, select it, and click the Delete icon in the Predefined Value

Formatting Strings dialog.

354

814 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.14 Tools Menu

The Tools menu contains the spell-check command and commands that enable you to customize StyleVision.

The description of the Tools menu commands is organized into the following sub-sections:

· Spelling
· Spelling Options
· Global Resources
· Active Configuration
· XML Schema Manager
· Customize
· Options

16.14.1 Spelling

The Spelling command runs a spelling check on the SPS (in Design View) or the document in Authentic View,
depending on which is active. You can use what language to use from the spellchecker's built-in language
dictionaries (see note below).

Note: The selection of built-in dictionaries that ship with Altova software does not constitute any language
preferences by Altova, but is largely based on the availability of dictionaries that permit redistribution
with commercial software, such as the MPL, LGPL, or BSD licenses. Many other open-source
dictionaries exist, but are distributed under more restrictive licenses, such as the GPL license. Many
of these dictionaries are available as part of a separate installer located at
http://www.altova.com/dictionaries. It is your choice as to whether you can agree to the terms of the
license applicable to the dictionary and whether the dictionary is appropriate for your use with the
software on your computer.

On clicking this command, the dialog shown below appears. Words that are not present in the selected
dictionary are displayed, in document order and one at a time, in the Not in Dictionary field of the dialog and
highlighted in the Design Document.

814

815

818

819

211

835

839

http://www.mozilla.org/MPL/
http://www.gnu.org/copyleft/lesser.html
http://en.wikipedia.org/wiki/BSD_licenses
http://www.gnu.org/licenses/gpl.html

© 2017-2023 Altova GmbH

Tools Menu 815Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

You can then select an entry from the list in the Suggestions pane and click Change or Change All to change
the highlighted instance of this spelling or all its instances, respectively. (Double-clicking a word in the
Suggestions list causes it to replace the unknown word.) Alternatively, you can ignore this instance of the
unknown word (Ignore Once); or ignore all instances of this unknown word (Ignore All); or add this unknown
word to the user dictionary (Add to Dictionary). Adding the unknown word to the dictionary causes the spell-
checker to treat the word as correct and to pass on to the next word not found in the dictionary. You can
recheck the document from the beginning (Recheck Document) or close the dialog (Close) at any time.

The Options button opens the Spelling Options dialog, in which you can specify options for the spelling
check.

16.14.2 Spelling Options

The Spelling options command opens a dialog box (shown below) in which you specify options for the
spelling check.

815

816 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Always suggest corrections:
Activating this option causes suggestions (from both the language dictionary and the user dictionary) to be
displayed in the Suggestions list box. Disabling this option causes no suggestions to be shown.

Make corrections only from main dictionary:
Activating this option causes only the language dictionary (main dictionary) to be used. The user dictionary is
not scanned for suggestions. It also disables the User Dictionary button, preventing any editing of the user
dictionary.

Ignore words in UPPER case:
Activating this option causes all upper case words to be ignored.

Ignore words with numbers:
Activating this option causes all words containing numbers to be ignored.

Split CamelCase words
CamelCase words are words that have capitalization within the word. For example the word "CamelCase" has
the "C" of "Case" capitalized, and is therefore said to be CamelCased. Since CamelCased words are rarely
found in dictionaries, the spellchecker would flag them as errors. To avoid this, the Split CamelCase words
option splits CamelCased words into their capitalized components and checks each component individually.
This option is checked by default.

Dictionary Language
Use this combo box to select the dictionary language for the spellchecker. The default selection is US English.
Other language dictionaries are available for download free of charge from the Altova website.

Adding dictionaries for the spellchecker
For each dictionary language there are two Hunspell dictionary files that work together: a .aff file and .dic
file. All language dictionaries are installed in a Lexicons folder at the following location: C:

https://www.altova.com/dictionaries

© 2017-2023 Altova GmbH

Tools Menu 817Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons.

Within the Lexicons folder, different language dictionaries are each stored in a different folder: <language
name>\<dictionary files>. For example, files for the two English-language dictionaries (English
(British) and English (US)) will be stored as below:

C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.dic
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.dic

In the Spelling Options dialog, the dropdown list of the Dictionary Language combo box displays the language
dictionaries. These dictionaries are those available in the Lexicons folder and have the same names as the
language subfolders in the Lexicons folder. For example, in the case of the English-language dictionaries
shown above, the dictionaries would appear in the Dictionary Language combo box as: English (British) and
English (US).

All installed dictionaries are shared by the different users of the machine and the different major versions of
Altova products (whether 32-bit or 64-bit).

You can add dictionaries for the spellchecker in two ways, neither of which require that the files be registered
with the system:

· By adding Hunspell dictionaries into a new subfolder of the Lexicons folder. Hunspell dictionaries can
be downloaded, for example, from https://wiki.openoffice.org/wiki/Dictionaries or
http://extensions.services.openoffice.org/en/dictionaries. (Note that OpenOffice uses the zipped OXT
format. So change the extension to .zip and unzip the .aff and .dic file to the language folders in
the Lexicons folder. Also note that Hunspell dictionaries are based on Myspell dictionaries. So
Myspell dictionaries can also be used.)

· By using the Altova dictionary installer, which installs a package of multiple language dictionaries by
default to the correct location on your machine. The installer can be downloaded via the link in the
Dictionary language pane of the Spelling Options dialog (see screenshot below). Installation of the
dictionaries must be done with administrator rights, otherwise installation will fail with an error.

Note: It is your choice as to whether you agree to the terms of the license applicable to the dictionary and
whether the dictionary is appropriate for your use with the software on your computer.

Working with the user dictionary
Each user has one user dictionary, in which user-allowed words can be stored. During a spellcheck, spellings
are checked against a word list comprising the words in the language dictionary and the user dictionary. You
can add words to and delete words from the user dictionary via the User Dictionary dialog (screenshot below).
This dialog is accessed by clicking the User Dictionary button in the Spelling Options dialog (see second
screenshot in this section).

https://wiki.openoffice.org/wiki/Dictionaries
http://extensions.services.openoffice.org/en/dictionaries
https://www.altova.com/dictionaries

818 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

To add a word to the user dictionary, enter the word in the Word text box and click Add. The word will be
added to the alphabetical list in the Dictionary pane. To delete a word from the dictionary, select the word in the
Dictionary pane and click Delete. The word will be deleted from the Dictionary pane. When you have finished
editing the User Dictionary dialog, click OK for the changes to be saved to the user dictionary.

Words may also be added to the User Dictionary during a spelling check. If an unknown word is encountered
during a spelling check, then the Spelling dialog pops up prompting you for the action you wish to take. If
you click the Add to Dictionary button, then the unknown word is added to the user dictionary.

The user dictionary is located at: C:\Users\<user>\Documents\Altova\SpellChecker\Lexicons\user.dic

16.14.3 Global Resources

The Global Resources command pops up the Altova Global Resources dialog (screenshot below), in which
you can:

· Specify the Altova Global Resources XML File to use for global resources.
· Add file, folder, and database global resources (or aliases)
· Specify various configurations for each global resource (alias). Each configuration maps to a specific

resource.

814

© 2017-2023 Altova GmbH

Tools Menu 819Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

How to define global resources is described in detail in the section, Defining Global Resources .

Note: The Altova Global Resources dialog can also be accessed via the Global Resources toolbar (View |
Toolbars | Global Resources).

16.14.4 Active Configuration

Mousing over the Active Configuration menu item rolls out a submenu containing all the configurations
defined in the currently active Global Resources XML File (screenshot below).

 The currently active configuration is indicated with a bullet. In the screenshot above the currently active
configuration is Default. To change the active configuration, select the configuration you wish to make active.

Note: The active configuration can also be selected via the Global Resources toolbar (View | Toolbars |
Global Resources).

416

760

416

760

820 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.14.5 Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML schemas
(DTDs for XML and XML Schemas) for use across all Altova's XML-Schema-aware applications, including
StyleVision.

· On Windows, Schema Manager has a graphical user interface (screenshot below) and is also available
at the command line. (Altova's desktop applications are available on Windows only; see list below.)

· On Linux and macOS, Schema Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

© 2017-2023 Altova GmbH

Tools Menu 821Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Altova applications that operate with Schema Manager

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

XMLSpy (all editions) RaptorXML Server, RaptorXML+XBRL Server

822 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

MapForce (all editions) StyleVision Server

StyleVision (all editions)

Authentic Desktop Enterprise Edition

Installation and de-installation of Schema Manager
Schema Manager is installed automatically when you first install a new version of Altova Mission Kit or of any
of Altova's XML-schema-aware applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XML-schema-aware application from
your computer.

Schema Manager features
Schema Manager provides the following features:

· Shows XML schemas installed on your computer and checks whether new versions are available for
download.

· Downloads newer versions of XML schemas independently of the Altova product release cycle. (Altova
stores schemas online, and you can download them via Schema Manager.)

· Install or uninstall any of the multiple versions of a given schema (or all versions if necessary).
· An XML schema may have dependencies on other schemas. When you install or uninstall a particular

schema, Schema Manager informs you about dependent schemas and will automatically install or
remove them as well.

· Schema Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XML schemas, processing will therefore be faster than if the schemas were at a remote
location.

· All major schemas are available via Schema Manager and are regularly updated for the latest versions.
This provides you with a convenient single resource for managing all your schemas and making them
readily available to all of Altova's XML-schema-aware applications.

· Changes made in Schema Manager take effect for all Altova products installed on that machine.
· In an Altova product, if you attempt to validate on a schema that is not installed but which is available

via Schema Manager, then installation is triggered automatically. However, if the schema package
contains namespace mappings, then there will be no automatic installation; in this case, you must
start Schema Manager, select the package/s you want to install, and run the installation. If, after
installation, your open Altova application does not restart automatically, then you must restart it
manually.

How it works
Altova stores all XML schemas used in Altova products online. This repository is updated when new versions of
the schemas are released. Schema Manager displays information about the latest available schemas when
invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall schemas via
Schema Manager.

Schema Manager also installs schemas in one other way. At the Altova website
(https://www.altova.com/schema-manager) you can select a schema and its dependent schemas that you want
to install. The website will prepare a file of type .altova_xmlschemas for download that contains information

about your schema selection. When you double-click this file or pass it to Schema Manager via the CLI as an
argument of the install command, Schema Manager will install the schemas you selected.222

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
https://www.altova.com/schema-manager

© 2017-2023 Altova GmbH

Tools Menu 823Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Local cache: tracking your schemas
All information about installed schemas is tracked in a centralized cache directory on your computer, located
here:

Windows C:\ProgramData\Altova\pkgs\.cache

Linux /var/opt/Altova/pkgs\.cache

macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of schemas at Altova's online storage. These
updates are carried out at the following times:

· Every time you start Schema Manager.
· When you start StyleVision for the first time on a given calendar day.
· If StyleVision is open for more than 24 hours, the cache is updated every 24 hours.
· You can also update the cache by running the update command at the command line interface.

The cache therefore enables Schema Manager to continuously track your installed schemas against the
schemas available online at the Altova website.

Do not modify the cache manually!
The local cache directory is maintained automatically based on the schemas you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Schema Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset command, and (ii) run the
initialize command. (Alternatively, run the reset command with the --i option.)

16.14.5.1 Run Schema Manager

Graphical User Interface
You can access the GUI of Schema Manager in any of the following ways:

· During the installation of StyleVision: Towards the end of the installation procedure, select the check
box Invoke Altova XML-Schema Manager to access the Schema Manager GUI straight away. This will
enable you to install schemas during the installation process of your Altova application.

· After the installation of StyleVision: After your application has been installed, you can access the
Schema Manager GUI at any time, via the menu command Tools | XML Schema Manager.

· Via the .altova_xmlschemas file downloaded from the Altova website: Double-click the downloaded file

to run the Schema Manager GUI, which will be set up to install the schemas you selected (at the
website) for installation.

After the Schema Manager GUI (screenshot below) has been opened, already installed schemas will be shown
selected. If you want to install an additional schema, select it. If you want to uninstall an already installed
schema, deselect it. After you have made your selections and/or deselections, you are ready to apply your
changes. The schemas that will be installed or uninstalled will be highlighted and a message about the

225

223

221

https://www.altova.com/schema-manager

824 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

upcoming changes will be posted to the Messages pane at the bottom of the Schema Manager window (see
screenshot).

© 2017-2023 Altova GmbH

Tools Menu 825Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Command line interface
You can run Schema Manager from a command line interface by sending commands to its executable file,
xmlschemamanager.exe.

The xmlschemamanager.exe file is located in the following folder:

· On Windows: C:\ProgramData\Altova\SharedBetweenVersions
· On Linux or macOS (server applications only): %INSTALLDIR%/bin, where %INSTALLDIR% is the

program's installation directory.

You can then use any of the commands listed in the CLI command reference section .

To display help for the commands, run the following:

· On Windows: xmlschemamanager.exe --help
· On Linux or macOS (server applications only): sudo ./xmlschemamanager --help

16.14.5.2 Status Categories

Schema Manager categorizes the schemas under its management as follows:

· Installed schemas. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked and blue versions of the EPUB and HL7v3 NE schemas are installed schemas). If
all the versions of a schema are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed schema
to uninstall it; (in the screenshot below, the DocBook DTD is installed and has been deselected,
thereby preparing it for de-installation).

· Uninstalled available schemas. These are shown in the GUI with their check boxes unselected. You
can select the schemas you want to install.

220

826 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Upgradeable schemas are those which have been revised by their issuers since they were installed.

They are indicated in the GUI by a icon. You can patch an installed schema with an available
revision.

Points to note

· In the screenshot above, both CBCR schemas are checked. The one with the blue background is
already installed. The one with the yellow background is uninstalled and has been selected for
installation. Note that the HL7v3 NE 2010 schema is not installed and has not been selected for
installation.

· A yellow background means that the schema will be modified in some way when the Apply button is
clicked. If a schema is unchecked and has a yellow background, it means that it will be uninstalled
when the Apply button is clicked. In the screenshot above the DocBook DTD has such a status.

· When running Schema Manager from the command line, the list command is used with different
options to list different categories of schemas:

xmlschemamanager.exe list Lists all installed and available schemas; upgradeables are also
indicated

xmlschemamanager.exe list

-i
Lists installed schemas only; upgradeables are also indicated

xmlschemamanager.exe list

-u
Lists upgradeable schemas

222

© 2017-2023 Altova GmbH

Tools Menu 827Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Note: On Linux and macOS, use sudo ./xmlschemamanager list

16.14.5.3 Patch or Install a Schema

Patch an installed schema
Occasionally, XML schemas may receive patches (upgrades or revisions) from their issuers. When Schema
Manager detects that patches are available, these are indicated in the schema listings of Schema Manager and
you can install the patches quickly.

In the GUI

Patches are indicated by the icon. (Also see the previous topic about status categories .) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each schema that will be patched changes from to , and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a schema marked for
patching, you will actually be uninstalling that schema.

On the CLI
To apply a patch at the command line interface:

1. Run the list -u command. This lists any schemas for which upgrades are available.
2. Run the upgrade command to install all the patches.

Install an available schema
You can install schemas using either the Schema Manager GUI or by sending Schema Manager the install
instructions via the command line.

Note: If the current schema references other schemas, the referenced schemas are also installed.

In the GUI
To install schemas using the Schema Manager GUI, select the schemas you want to install and click Apply.

You can also select the schemas you want to install at the Altova website and generate a downloadable
.altova_xmlschemas file. When you double-click this file, it will open Schema Manager with the schemas you

wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install schemas via the command line, run the install command:

xmlschemamanager.exe install [options] Schema+

where Schema is the schema (or schemas) you want to install or a .altova_xmlschemas file. A schema is

referenced by an identifier of format <name>-<version>. (The identifiers of schemas are displayed when

you run the list command.) You can enter as many schemas as you like. For details, see the
description of the install command.

216

222

225

222

222

222

https://www.altova.com/schema-manager

828 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Installing a required schema
When you run an XML-schema-related command in StyleVision and StyleVision discovers that a schema it
needs for executing the command is not present or is incomplete, Schema Manager will display information
about the missing schema/s. You can then directly install any missing schema via Schema Manager.

In the Schema Manager GUI, you can view all previously installed schemas at any time by running Schema
Manager from Tools | Schema Manager.

16.14.5.4 Uninstall a Schema, Reset

Uninstall a schema
You can uninstall schemas using either the Schema Manager GUI or by sending Schema Manager the
uninstall instructions via the command line.

Note: If the schema you want to uninstall references other schemas, then the referenced schemas are also
uninstalled.

In the GUI
To uninstall schemas in the Schema Manager GUI, clear their check boxes and click Apply. The selected
schemas and their referenced schemas will be uninstalled.

To uninstall all schemas, click Deselect All and click Apply.

On the CLI
To uninstall schemas via the command line, run the uninstall command:

xmlschemamanager.exe uninstall [options] Schema+

where each Schema argument is a schema you want to uninstall or a .altova_xmlschemas file. A schema

is specified by an identifier that has a format of <name>-<version>. (The identifiers of schemas are

displayed when you run the list command.) You can enter as many schemas as you like. For details,
see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Reset Schema Manager
You can reset Schema Manager. This removes all installed schemas and the cache directory.

· In the GUI, click Reset Selection.
· On the CLI, run the reset command.

224

222

224

223

© 2017-2023 Altova GmbH

Tools Menu 829Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

After running this command, make sure to run the initialize command in order to recreate the cache
directory. Alternatively, run the reset command with the -i option.

Note that reset -i restores the original installation of the product, so it is recommended to run the
update command after performing a reset. Alternatively, run the reset command with the -i and -u
options.

16.14.5.5 Command Line Interface (CLI)

To call Schema Manager at the command line, you need to know the path of the executable. By default, the
Schema Manager executable is installed here:

C:\ProgramData\Altova\SharedBetweenVersions\XMLSchemaManager.exe

Note: On Linux and macOS systems, once you have changed the directory to that containing the
executable, you can call the executable with sudo ./xmlschemamanager. The prefix ./ indicates that

the executable is in the current directory. The prefix sudo indicates that the command must be run with

root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]

In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []

indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --
version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

16.14.5.5.1 help

This command provides contextual help about commands pertaining to Schema Manager executable.

Syntax
<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

· You can invoke help for a command by typing the command followed by -h or --help, for example:

<exec> list -h

· If you type -h or --help directly after the executable and before a command, you will get general help

(not help for the command), for example: <exec> -h list

221

223

223

225 223

830 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Example
The following command displays help about the list command:

xmlschemamanager help list

16.14.5.5.2 info

This command displays detailed information for each of the schemas supplied as a Schema argument. This
information for each submitted schema includes the title, version, description, publisher, and any referenced
schemas, as well as whether the schema has been installed or not.

Syntax
<exec> info [options] Schema+

· The Schema argument is the name of a schema or a part of a schema's name. (To display a schema's

package ID and detailed information about its installation status, you should use the list
command.)

· Use <exec> info -h to display help for the command.

Example
The following command displays information about the latest DocBook-DTD and NITF schemas:

xmlschemamanager info doc nitf

16.14.5.5.3 initialize

This command initializes the Schema Manager environment. It creates a cache directory where information
about all schemas is stored. Initialization is performed automatically the first time a schema-cognizant Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

222

© 2017-2023 Altova GmbH

Tools Menu 831Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

Example
The following command initializes Schema Manager:

xmlschemamanager initialize

16.14.5.5.4 install

This command installs one or more schemas.

Syntax
<exec> install [options] Schema+

To install multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas you want, run the list command. You can also use an
abbreviated identifier if it is unique, for example docbook. If you use an abbreviated identifier, then the

latest version of that schema will be installed.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The install command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command installs the CBCR 2.0 (Country-By-Country Reporting) schema and the latest DocBook
DTD:

xmlschemamanager install cbcr-2.0 docbook

16.14.5.5.5 list

This command lists schemas under the management of Schema Manager. The list displays one of the
following

222

211

832 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· All available schemas
· Schemas containing in their name the string submitted as a Schema argument

· Only installed schemas
· Only schemas that can be upgraded

Syntax
<exec> list | ls [options] Schema?

If no Schema argument is submitted, then all available schemas are listed. Otherwise, schemas are listed as

specified by the submitted options (see example below). Note that you can submit the Schema argument

multiple times.

Options
The list command takes the following options:

--installed, --i List only installed schemas. The default is false.

--upgradeable, --u List only schemas where upgrades (patches) are available. The default is
false.

--help, --h Display help for the command.

Examples

· To list all available schemas, run: xmlschemamanager list

· To list installed schemas only, run: xmlschemamanager list -i

· To list schemas that contain either "doc" or "nitf" in their name, run: xmlschemamanager list doc

nitf

16.14.5.5.6 reset

This command removes all installed schemas and the cache directory. You will be completely resetting your
schema environment. After running this command, be sure to run the initialize command to recreate the
cache directory. Alternatively, run the reset command with the -i option. Since reset -i restores the original

installation of the product, we recommend that you run the update command after performing a reset and
initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --i Initialize Schema Manager after reset. The default is false.

--update, --u Updates the list of available schemas in the cache. The default is false.

221

225

© 2017-2023 Altova GmbH

Tools Menu 833Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Examples

· To reset Schema Manager, run: xmlschemamanager reset

· To reset Schema Manager and initialize it, run: xmlschemamanager reset -i

· To reset Schema Manager, initialize it,and update its schema list, run: xmlschemamanager reset -i

-u

16.14.5.5.7 uninstall

This command uninstalls one or more schemas. By default, any schemas referenced by the current one are
uninstalled as well. To uninstall just the current schema and keep the referenced schemas, set the option --k.

Syntax
<exec> uninstall [options] Schema+

To uninstall multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas that are installed, run the list -i command. You can also use

an abbreviated schema name if it is unique, for example docbook. If you use an abbreviated name, then

all schemas that contain the abbreviation in its name will be uninstalled.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced schemas. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command uninstalls the CBCR 2.0 and EPUB 2.0 schemas and their dependencies:

xmlschemamanager uninstall cbcr-2.0 epub-2.0

222

211

834 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The following command uninstalls the eba-2.10 schema but not the schemas it references:
xmlschemamanager uninstall --k cbcr-2.0

16.14.5.5.8 update

This command queries the list of schemas available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset and
initialize .

Syntax
<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command updates the local cache with the list of latest schemas:

xmlschemamanager update

16.14.5.5.9 upgrade

This command upgrades all installed schemas that can be upgraded to the latest available patched version.
You can identify upgradeable schemas by running the list -u command.

Note: The upgrade command removes a deprecated schema if no newer version is available.

Syntax
<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

223

221

222

© 2017-2023 Altova GmbH

Tools Menu 835Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

--help, --h Display help for the command.

16.14.6 Customize

The customize command lets you customize StyleVision to suit your personal needs.

Commands tab
The Commands tab of the Customize dialog allows you to place individual commands in the menu bar and the
toolbar.

To add a command to the menu bar or toolbar, select the command in the Commands pane of the
Commands tab, and drag it to the menu bar or toolbar. When the cursor is placed over a valid position an I-
beam appears, and the command can be dropped at this location. If the location is invalid, a check mark
appears. When you drop the command it is created as an icon if the command already has an associated icon;
otherwise the command is created as text. After adding a command to the menu bar or toolbar, you can edit its
appearance by right-clicking it and then selecting the required action.

To delete a menu bar or toolbar item, with the Customize dialog open, right-click the item to be deleted, and
select Delete.

Note:

· The customization described above applies to the application, and applies whether a document is open
in StyleVision or not.

836 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· To reset menus and toolbars to the state they were in when StyleVision was installed, go to the
Toolbars tab and click the appropriate Reset button.

Toolbars tab
The Toolbars tab allows you to activate or deactivate specific toolbars, to show text labels for toolbar items,
and to reset the menu bar and toolbars to their installation state.

The StyleVision interface displays a fixed menu bar and several optional toolbars (Authentic, Design Filter,
Format, Standard, Table, and Table of Contents).

Each toolbar can be divided into groups of commands. Commands can be added to a toolbar via the
Commands tab. A toolbar can be dragged from its docked position to any location on the screen. Double-
clicking a toolbar's (maximized or minimized) title bar docks and undocks the toolbar.

In the Toolbars tab of the Customize dialog, you can toggle a toolbar on and off by clicking in its checkbox.
When a toolbar is selected (in the Toolbars tab), you can cause the text labels of that toolbar's items to be
displayed by clicking the Show text labels check box. You can also reset a selected toolbar to the state it
was in when StyleVision was installed by clicking the Reset button. You can reset all toolbars and the menu
bar by clicking the Reset All button.

Note about Menu Bar
Commands can be added to, and items deleted from, the menu bar: see Commands above. To reset the menu
bar to the state it was in when StyleVision was installed, select Menu Bar in the Toolbars tab of the Customize
dialog, and click the Reset button. (Clicking the Reset All button will reset the toolbars as well.)

Keyboard tab
The Keyboard tab allows you to define (or change) keyboard shortcuts for any StyleVision command.

© 2017-2023 Altova GmbH

Tools Menu 837Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

To assign a shortcut to a command

1. Select the category in which the command is by using the Category combo box.
2. Select the command you want to assign a shortcut to in the Commands list box.
3. Click in the Press New Shortcut Key input field, and press the shortcut keys that are to activate the

command. The shortcut immediately appears in the Press New Shortcut Key input field. If this shortcut
has already been assigned to a command, then that command is displayed below the input field. (For
example, in the screenshot above, Ctrl+C has already been assigned to the Copy command and
cannot be assigned to the Open File command.) To clear the New Shortcut Key input field, press any
of the control keys, Ctrl, Alt, or Shift.

4. Click the Assign button to permanently assign the shortcut. The shortcut now appears in the Current
Keys list box.

To de-assign (or delete) a shortcut

1. Select the command for which the shortcut is to be deleted.
2. Click the shortcut you want to delete in the Current Keys list box.
3. Click the Remove button (which has now become active).

To reset all keyboard assignments

1. Click the Reset All button to go back to the original, installation-time shortcuts. A dialog box appears
prompting you to confirm whether you want to reset all keyboard assignments.

2. Click Yes if you want to reset all keyboard assignments.

Set accelerator for
Currently no function is available.

838 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Menu tab
The Menu tab allows you to customize the main menu bar as well as the context menus (right-click menus).
There are two types of main menu bar: Default (which appears when no document is open), and SPS (which
appears when an SPS document is open).

To customize a menu

1. Select the menu bar you want to customize (SPS menu in the screenshot above).
2. Click the Commands tab, and drag the commands to the menu bar of your choice.

To delete commands from a menu
1. In the Application Frame Menus pane, select either Default (which shows available menus when no

document is open) or SPS (which shows available menus when one or more documents are open).
2. With the Customize dialog open, select (i) the menu you want to delete from the application's menu

bar, or (ii) the command you want to delete from one of these menus.
3. Either (i) drag the menu from the menu bar or the menu command from the menu, or (ii) right-click the

menu or menu command and select Delete.

To reset either of the menu bars
1. Select the menu entry you want to reset in the combo box of the Application Frame Menus pane.
2. Click the Reset button just below the menu name. A prompt appears asking if you are sure you want

to reset the menu bar.

To customize a context menu (a right-click menu)
1. Select the context menu from the combo box.
2. Click the Commands tab and drag the commands to the context menu that is now open.

© 2017-2023 Altova GmbH

Tools Menu 839Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

To delete commands from a context menu
1. Click right on the command or icon representing the command.
2. Select the Delete option from the popup menu or drag the command away from the context menu and

drop it as soon as the check mark icon appears below the mouse pointer.

To reset a context menu
1. Select the context menu from the combo box, and
2. Click the Reset button just below the context menu name. A prompt appears asking if you are sure

you want to reset the context menu.

To close a context menu window
· Click on the Close icon at the top right of the title bar, or
· Click the Close button of the Customize dialog box.

Menu animations
The menu animation option specifies the way a menu is displayed when a menu is clicked. Select an option
from the drop-down list of menu animations.

Menu shadows
If you wish to have menus displayed with a shadow around it, select this option. All menus will then have a
shadow.

Options tab
The Options tab allows you to customize additional features of the toolbar.

Screen Tips for toolbar items will be displayed if the Show Screen Tips option is checked. The Screen Tips
option has a sub-option for whether shortcuts (where available) are displayed in the Screen Tips or not.

16.14.7 Restore Toolbars and Windows

This command restores toolbars, windows, entry helpers and other GUI components to their default state. You
will need to restart StyleVision for the changes to take effect.

16.14.8 Options

The Options command opens a dialog (screenshot below) in which you can specify the encoding of the HTML
output file.

Design options
In the Design tab (screenshot below), you can set the application-wide general options for designs.

840 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The following options can be set:

· Maximum width (in pixels) of markup tags. Enter the positive integer that is the required number of
pixels.

· Grid size of layout containers in absolute length units. The specified lengths are the distances between
two points on the respective grid axis.

· Default additional width and height of Layout Boxes. These additional lengths are added to all layout
boxes in order to provide the extra length that is often required to accommodate the bigger text
renditions of print formats. These values can be specified as percentage values or as absolute length
units.

· The default behavior when a node-template is created at a location where the context node is not
known. This option typically applies to User-Defined Templates in which the template has been created
for items that cannot be placed in context in the schema source of the design. If a node is created
within such a user-defined template, then the node can be created with (i) only its name, or (ii) with the
full path to it from the schema root. You can set one of these options as the default behavior, or,
alternatively, ask to be prompted each time this situation arises. The default selection for this option is
Always Ask.

Previews
In the Previews tab (screenshot below), you can select options for the previews.

© 2017-2023 Altova GmbH

Tools Menu 841Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

· HTML Output: Select whether to use Edge/Webview2 or Internet Explorer as the browser for HTML
previews.

· PDF Output: Select which PDF reader to use for the PDF preview: (i) PDF.js (an open-source PDF
viewer for browsers) in Edge; (ii) Edge native (the built-in PDF reader of Microsoft Edge); or (iii) Adobe
Acrobat Reader.

· Split Preview settings: You can set a delay for the output previews that are generated on automatic
refreshes. Automatic refreshes occur when the design is modified or data is revised in Authentic View.
If you set, for example, a zero delay, then the output preview will be regenerated with a zero delay each
time the design or Authentic data is modified. If the delay is a short period, then the output generation
will be triggered at short intervals and therefore occur at high frequency. This might result not only in
slow output-preview generation, but also to intermediate outputs, such as error messages that occur if
a modification in progress leads to a temporarily invalid design or invalid data. On the other hand, a
long delay could lead to a long wait for the output preview. Select an optimal value according to the
size of your design and data. Note that the delay specified in this setting does not apply when you first
switch to the split preview or when you run a manual refresh by clicking the Refresh button of the
Output preview pane. In both these latter cases, the output is generated immediately.

Schema options
In the Schema Tree, elements and attributes can be listed alphabetically in ascending order. To do this, check
the respective check boxes in the Schema Options tab. By default, attributes are listed alphabetically and
elements are listed in an order corresponding to the schema structure, as far as this is possible.

Project options
In the Project sidebar, when an XML file or XSD file is double-clicked, one of three actions is executed
depending on the options set in the Project tab of the Options dialog: (i) Edit the file in XMLSpy; (ii) Create a
new design based on the selected file; (iii) Ask the user which action to execute.

Default encoding
In the Default Encoding tab (screenshot below), you can set default encodings for the various outputs
separately. The encoding specifies the codepoints sets for various character sets. The dropdown list of each
combo box displays a list of encoding options. Select the encoding you require for each output type, and click
OK. Every new SPS you create from this point on will set the respective output encodings as defined in this
tab.

In the XSLT-for-HTML, the output encoding information is registered at the following locations:

· In the encoding attribute of the stylesheet's xsl:output element:
<xsl:output version="1.0" encoding="UTF-8" indent="no" omit-xml-declaration="no"

media-type="text/html" />
· In the charset attribute of the content-type meta element in the HTML header:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

In the XSLT-for-RTF, the output encoding information is registered in the encoding attribute of the stylesheet's
xsl:output element:
<xsl:output version="1.0" encoding="ISO-8859-1" indent="no" method="text" omit-xml-
declaration="yes" media-type="text/rtf" />

842 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Note: These settings are the default encodings, and will be used for new SPSs. You cannot change the
encoding of the currently open SPS using this dialog. To change the encoding of the currently open SPS, use
the File | Properties command.

XSL options
In the meta information of HTML output files, the line, 'Generated by StyleVision', will be generated by default.
Purchased versions of the product provide an option to disable the generation of this line.

Network options
The Network section (screenshot below) enables you to configure important network settings.

IP addresses
When host names resolve to more than one address in mixed IPv4/IPv6 networks, selecting this option causes
the IPv6 addresses to be used. If the option is not selected in such environments and IPv4 addresses are
available, then IPv4 addresses are used.

Timeout
· Transfer timeout: If this limit is reached for the transfer of any two consecutive data packages of a

transfer (sent or received), then the entire transfer is aborted. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 40 seconds. If the option is not selected, then there is no time
limit for aborting a transfer.

· Connection phase timeout: This is the time limit within which the connection has to be established,
including the time taken for security handshakes. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 300 seconds. This timeout cannot be disabled.

Certificate
· Verify TLS/SSL server certificate: If selected, then the authenticity of the server's certificate is checked

by verifying the chain of digital signatures until a trusted root certificate is reached. This option is
enabled by default. If this option is not selected, then the communication is insecure, and attacks (for
example, a man-in-the-middle attack) would not be detected. Note that this option does not verify that

738

© 2017-2023 Altova GmbH

Tools Menu 843Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

the certificate is actually for the server that is communicated with. To enable full security, both the
certificate and the identity must be checked (see next option).

· Verify TLS/SSL server identity: If selected, then the server's certificate is verified to belong to the server
we intend to communicate with. This is done by checking that the server name in the URL is the same
as the name in the certificate. This option is enabled by default. If this option is not selected, then the
server's identify is not checked. Note that this option does not enable verification of the server's
certificate. To enable full security, both the certificate as well as the identity must be checked (see
previous option).

Network Proxy options
The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet (for XML validation purposes, for example). By default, the application uses
the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary,
however, you can set an alternative network proxy by selecting, in the Proxy Configuration combo box, either
Automatic or Manual to configure the settings accordingly.

Note: The network proxy settings are shared among all Altova MissionKit applications. So, if you change the
settings in one application, all MissionKit applications will be affected.

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings
configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

· Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat) via DHCP or

DNS, and uses this script for proxy setup.
· Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for

proxy setup.
· Reload: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or

newer, and may need up to 30s to take effect.

844 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported
scheme may be included in the host name (for example: http://hostname). It is not required that the scheme

is the same as the respective protocol if the proxy supports the scheme.

The following options are provided:

· HTTP Proxy: Uses the specified host name and port for the HTTP protocol. If Use this proxy server for
all protocols is selected, then the specified HTTP proxy is used for all protocols.

· SSL Proxy: Uses the specified host name and port for the SSL protocol.
· No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names, or IP

addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6
addresses have to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading dot (for

example: .example.com).

· Do not use the proxy server for local addresses: If checked, adds <local> to the No Proxy for list. If

this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::1], (iii) all host

names not containing a dot character (.).

Note: If a proxy server has been set and you want to deploy a transformation to Altova FlowForce Server, you
must select the option Do not use the proxy server for local addresses.

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the right of the
Test URL field (for example, when changing the test URL, or when the proxy settings have been changed).

· Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/O is done
with this URL. This field must not be empty if proxy-auto-configuration is used (either through Use

https://www.altova.com/flowforceserver

© 2017-2023 Altova GmbH

Tools Menu 845Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

system proxy settings or Authomatic proxy configuration).

Java options
In the Java section (see screenshot below), you can optionally enter the path to a Java VM (Virtual Machine)
on your file system. Note that adding a custom Java VM path is not always necessary. By default, StyleVision
attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the
JAVA_HOME environment variable. The custom path added in this dialog box will take priority over any other
Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does
not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also want to set
this path if you need to override, for whatever reason, any Java VM path detected automatically by StyleVision.

Note the following:

· The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you
change it in one application, it will automatically apply to all other Altova applications.

· The path must point to the jvm.dll file from the \bin\server or \bin\client directory, relative to the

directory where the JDK was installed.
· The StyleVision platform (32-bit, 64-bit) must be the same as that of the JDK.
· After changing the Java VM path, you may need to restart StyleVision for the new settings to take

effect.

Changing the Java VM path affects the following areas:

· JDBC connectivity
· Java extension functions for XSLT/XPath
· Barcode support

Help
StyleVision provides Help (the user manual) in two formats:

· Online Help, in HTML format, which is available at the Altova website. In order to access the Online

846 Menu Commands and Reference Tools Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Help you will need Internet access.
· A Help file in PDF format, which is installed on your machine when you install StyleVision. It is named

StyleVision.pdf and is located in the application folder (in the Program Files folder). If you do not

have Internet access, you can always open this locally saved Help fie.

The Help option (screenshot below) enables you to select which of the two formats is opened when you click
the Help (F1) command in the Help menu.

You can change this option at any time for the new selection to take effect. The links in this section (see
screenshot above) open the respective Help format.

© 2017-2023 Altova GmbH

Window Menu 847Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

16.15 Window Menu

The Window menu has commands to specify how StyleVision windows should be displayed in the GUI
(cascaded, tiled, or maximized). To maximize a window, click the maximize button of that window.

Additionally, all currently open document windows are listed in this menu by document name, with the active
window being checked. To make another window active, click the name of the window you wish to make active.

Windows dialog
At the bottom of the list of open windows is an entry for the Windows dialog. Clicking this entry opens the
Windows dialog, which displays a list of all open windows and provides commands that can be applied to the
selected window/s. (A window is selected by clicking on its name.)

Warning: To exit the Windows dialog, click OK; do not click the Close Window(s) button. The Close
Window(s) button closes the window/s currently selected in the Windows dialog.

848 Menu Commands and Reference Help Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.16 Help Menu

The Help menu contains commands to access the onscreen help manual for StyleVision, commands to
provide information about StyleVision, and links to support pages on the Altova web site. The Help menu also
contains the Registration dialog , which lets you enter your license key-code once you have purchased the
product.

The description of the Help menu commands is organized into the following sub-sections:

· Help
· Activation, Order Form, Registration, Updates
· Other Commands

16.16.1 Help

The Help (F1) command opens the application's Help documentation (its user manual). By default, the Online
Help in HTML format at the Altova website will be opened.

If you do not have Internet access or do not want, for some other reason, to access the Online Help, you can
use the locally stored version of the user manual. The local version is a PDF file named StyleVision.pdf that

is stored in the application folder (in the Program Files folder).

If you want to change the default format to open (Online Help or local PDF), do this in the Help section of the
Options dialog (menu command Tools | Options).

16.16.2 Activation, Order Form, Registration, Updates

Software Activation

License your product
After you download your Altova product software, you can license—or activate—it using either a free
evaluation key or a purchased permanent license key.

· Free evaluation license. When you first start the software after downloading and installing it, the
Software Activation dialog will pop up. In it is a button to request a free evaluation license. Enter
your name, company, and e-mail address in the dialog and click Request. A license file is sent to
the e-mail address you entered and should reach you in a few minutes. Save the license file to a
suitable location.

When you clicked Request, an entry field appeared at the bottom of the Request dialog. This field
takes the path to the license file. Browse for or enter the path to the license file and click OK. (In
the Software Activation dialog, you can also click Upload a New License to access a dialog
in which the path to the license file is entered.) The software will be unlocked for a period of 30
days.

· Permanent license key. The Software Activation dialog allows you to purchase a permanent
license key. Clicking this button takes you to Altova's online shop, where you can purchase a

848

848

848

852

© 2017-2023 Altova GmbH

Help Menu 849Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

permanent license key for your product. Your license will be sent to you by e-mail in the form of a
license file, which contains your license-data.

There are three types of permanent license: installed, concurrent user, and named user. An
installed license unlocks the software on a single computer. If you buy an installed license for N
computers, then the license allows use of the software on up to N computers. A concurrent-user
license for N concurrent users allows N users to run the software concurrently. (The software may
be installed on 10N computers.) A named-user license authorizes a specific user to use the
software on up to 5 different computers. To activate your software, click Upload a New License,
and, in the dialog that appears, enter the path to the license file, and click OK.

Note: For multi-user licenses, each user will be prompted to enter his or her own name.

Your license email and the different ways to license (activate) your Altova product
The license email that you receive from Altova will contain your license file as an attachment.
The license file has a .altova_licenses file extension.

To activate your Altova product, you can do one of the following:

· Save the license file (.altova_licenses) to a suitable location, double-click the

license file, enter any requested details in the dialog that appears, and finish by
clicking Apply Keys.

· Save the license file (.altova_licenses) to a suitable location. In your Altova

product, select the menu command Help | Software Activation, and then Upload a
New License. Browse for or enter the path to the license file, and click OK.

· Save the license file (.altova_licenses) to any suitable location, and upload it from

this location to the license pool of your Altova LicenseServer. You can then either: (i)
acquire the license from your Altova product via the product's Software Activation
dialog (see below) or (ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the rest of this topic.

You can access the Software Activation dialog (screenshot below) at any time by clicking the Help |
Software Activation command.

Activate your software
You can activate the software by registering the license in the Software Activation dialog or by licensing via
Altova LicenseServer (see details below).

· Registering the license in the Software Activation dialog. In the dialog, click Upload a New
License and browse for the license file. Click OK to confirm the path to the license file and to
confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking
Save.

· Licensing via Altova LicenseServer on your network: To acquire a license via an Altova
LicenseServer on your network, click Use Altova LicenseServer, located at the bottom of the
Software Activation dialog. Select the machine on which the LicenseServer you want to use has
been installed. Note that the auto-discovery of License Servers works by means of a broadcast
sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the
same subnet as the client machine for auto-discovery to work. If auto-discovery does not work,

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

850 Menu Commands and Reference Help Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

then type in the name of the server. The Altova LicenseServer must have a license for your Altova
product in its license pool. If a license is available in the LicenseServer pool, this is indicated in
the Software Activation dialog (see screenshot below showing the dialog in Altova XMLSpy).
Click Save to acquire the license.

After a machine-specific (aka installed) license has been acquired from LicenseServer, it cannot
be returned to LicenseServer for a period of seven days. After that time, you can return the
machine license to LicenseServer (click Return License) so that this license can be acquired
from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web UI of LicenseServer.) Note that the
returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

Check out license
You can check out a license from the license pool for a period of up to 30 days so that the license
is stored on the product machine. This enables you to work offline, which is useful, for example, if
you wish to work in an environment where there is no access to your Altova LicenseServer (such
as when your Altova product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the license cannot be used
by any other machine. The license automatically reverts to the checked-in state when the check-
out period ends. Alternatively, a checked-out license can be checked in at any time via the Check
in button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click Check out
License (see screenshot above); (ii) In the License Check-out dialog that appears, select the
check-out period you want and click Check out. The license will be checked out. After checking
out a license, two things happen: (i) The Software Activation dialog will display the check-out
information, including the time when the check-out period ends; (ii) The Check out License
button in the dialog changes to a Check In button. You can check the license in again at any

© 2017-2023 Altova GmbH

Help Menu 851Menu Commands and Reference

Altova StyleVision 2024 Professional Edition

time by clicking Check In. Because the license automatically reverts to the checked-in status
after the check-out period elapses, make sure that the check-out period you select adequately
covers the period during which you will be working offline.

If the license being checked out is a Installed User license or Concurrent User license, then the
license is checked out to the machine and is available to the user who checked out the license. If
the license being checked out is a Named User license, then the license is checked out to the
Windows account of the named user. License check-out will work for virtual machines, but not for
virtual desktop (in a VDI). Note that, when a Named User license is checked out, the data to
identify that license check-out is stored in the user's profile. For license check-out to work, the
user's profile must be stored on the local machine that will be used for offline work. If the user's
profile is stored at a non-local location (such as a file-share), then the checkout will be reported as
invalid when the user tries to start the Altova application.

License check-ins must be to the same major version of the Altova product from which the license
was checked out. So make sure to check in a license before you upgrade your Altova product to
the next major version.

Note: For license check-outs to be possible, the check-out functionality must be enabled on
LicenseServer. If this functionality has not been enabled, you will get an error message to this
effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will
need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova licenses on a
network, together with the details of each license as well as client assignments and client usage of
licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-
volume Altova license management. Altova LicenseServer is available free of cost from the Altova website.
For more information about Altova LicenseServer and licensing via Altova LicenseServer, see the Altova
LicenseServer documentation.

Order Form

When you are ready to order a licensed version of the software product, you can use either the Purchase
a Permanent License Key button in the Software Activation dialog (see previous section) or the Order
Form command to proceed to the secure Altova Online Shop.

Registration

Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will
help ensure that you are always kept up to date with the latest product information.

Check for Updates

Checks with the Altova server whether a newer version than yours is currently available and displays a
message accordingly.

https://www.altova.com/support
https://www.altova.com/
https://www.altova.com/manual/en/licenseserver/3.12/
https://www.altova.com/manual/en/licenseserver/3.12/

852 Menu Commands and Reference Help Menu

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

16.16.3 Other Commands

Support Center

A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums
where problems are discussed, and access to Altova's technical support staff.

Download Components and Free Tools

A link to Altova's Component Download Center on the Internet. From here you can download a variety of
companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors
to Application Server Platforms. The software available at the Component Download Center is typically free
of charge.

StyleVision on the Internet

A link to the Altova website on the Internet. You can learn more about StyleVision, related technologies
and products on the Altova website.

About StyleVision

Displays the splash window and version number of your product. If you are using the 64-bit version of
StyleVision, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-
bit version.

https://www.altova.com/
https://www.altova.com/

© 2017-2023 Altova GmbH

 853Programmers' Reference

Altova StyleVision 2024 Professional Edition

17 Programmers' Reference

StyleVision as an Automation Server
StyleVision is an Automation Server. That is, it is an application that exposes programmable objects to other
applications (called Automation Clients). As a result, an Automation Client can directly access the objects and
functionality that the Automation Server makes available. This is beneficial to an Automation Client because it
can make use of the functionality of StyleVision. For example, an Automation Client can generate an XSLT file
from an SPS via StyleVision. Developers can therefore improve their applications by using the ready-made
functionality of StyleVision.

The programmable objects of StyleVision are made available to Automation Clients via the StyleVision API,
which is a COM API. A complete description of all available objects are provided in this documentation (see the
section Application API).877

854 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.1 Scripting Editor

Scripting Editor is a development environment built into StyleVision from where you can customize the
functionality of the Authentic View with the help of JScript or VBScript scripts. For example, you can add a new
toolbar button that performs a custom task such as text formatting, or you can have StyleVision display a
notification message box each time when an action is taken in the Authentic View. To make this possible, you
create scripting projects—files with .asprj extension (Altova Scripting Project).

Scripting Editor

Scripting projects are portable; you can create them as part of the .sps (StyleVision Power Stylesheet) file. An
Altova application that consumes the .sps file will be able to execute the macros inside the project—this can
be not only StyleVision, but also XMLSpy or Authentic Desktop.

Scripting Editor requires .NET Framework 2.0 or later to be installed before StyleVision is installed.

17.1.1 Creating a Scripting Project

All scripts and scripting information created in the Scripting Editor are stored in Altova Scripting Projects (.asprj
files). A scripting project may contain macros, application event handlers, and forms (which can have their own
event handlers). In addition, you can add global variables and functions to a "Global Declarations" script—this
makes such variables and functions accessible across the entire project. To start a new project:

1. Create or open the .sps file that the scripting project should be part of.

© 2017-2023 Altova GmbH

Scripting Editor 855Programmers' Reference

Altova StyleVision 2024 Professional Edition

2. Do one of the following:
· On the Authentic menu, click Authentic Scripts.
· Click the Design tab at the base of the main window, and then select Authentic Script.

Each .sps file can have a single scripting project assigned to it. To open an existing scripting project
associated with an .sps file, follow the same instructions as above. This opens the Scripting Editor window. As
you edit the scripting project, you can temporarily save changes in memory, by clicking the Save button at the
base of Scripting Editor . To save the scripting project to disk, first click Save & Close in Scripting Editor, and
then save the .sps file.

The languages supported for use in a scripting project are JScript and VBScript (not to be confused with Visual
Basic, which is not supported). These scripting engines are available by default on Windows and have no
special requirements to run. You can select a scripting language as follows:

1. Right-click the Project item in the upper-left pane, and select Project settings from the context menu.
2. Select a language (JScript or VBScript), and click OK.

From the Project settings dialog box above, you can also change the target .NET Framework version. This is
typically necessary if your scripting project requires features available in a newer .NET Framework version.
Note that any clients using your scripting project will need to have the same .NET Framework version installed
(or a later compatible version).

By default, a scripting project references several .NET assemblies, like System, System.Data,
System.Windows.Forms, and others. If necessary, you can import additional .NET assemblies, including
assemblies from .NET Global Assembly Cache (GAC) or custom .dll files. You can import assemblies as
follows:

1. Statically, by adding them manually to the project. Right-click Project in the top-left pane, and select
Add .NET Assembly from the context menu.

2. Dynamically, at runtime, by calling the CLR.LoadAssembly command from the code.869

856 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The next sections focus on the parts that your scripting project may need: global declarations, macros, forms,
and events. For further information about scripting and examples of scripting projects, see Authentic
Scripting .

17.1.1.1 Overview of the Environment

The Scripting Editor consists of the following parts:

· Toolbar
· Project pane
· Properties pane
· Main window
· Toolbox

The scripting project is saved when you save the .sps file of which the scripting project is part of. The Save
button illustrated above creates only a temporary in-memory copy.

Toolbar
The toolbar includes the Undo (Ctrl+Z) and Redo (Ctrl+Y) commands and editor commands (Copy, Cut,
Delete, Paste). When editing source code, the Find and Replace commands are additionally available, as
well as the Print command.

650

© 2017-2023 Altova GmbH

Scripting Editor 857Programmers' Reference

Altova StyleVision 2024 Professional Edition

Project pane
The project pane helps you view and manage the structure of the project. A scripting project consists of several
components that can work together and may be created in any order:

· A "Global Declarations" script. As the name suggests, this script stores information available globally
across the project. You can declare in this script any variables or functions that you need to be
available in all forms, event handler scripts, and macros.

· Forms. Forms are typically necessary to collect user input, or provide some informative dialog boxes.
A form is invoked by a call to it either within a function (in the Global Declarations script) or directly in a
macro.

· Events. The "Events" folder displays StyleVision application events provided by the COM API. To write
a script that will be executed when an event occurs, double-click any event, and then type the handling
code in the editor. The application events should not be confused with form events; the latter are
handled at form level, as further detailed below.

· Macros. A macro is a script that can be invoked either on demand from a context menu or be executed
automatically when StyleVision starts. Macros do not have parameters or return values. A macro can
access all variables and functions declared in the Global Declarations script and it can also display
forms.

Right-click any of the components to see the available context menu commands and their shortcuts. Double-
click any file (such as a form or a script) to open it in the main window.

The toolbar buttons provide the following quick commands:

New macro Adds a new macro to the project, in the Macros directory.

New form Adds a new form to the project, in the Forms directory.

Properties pane
The Properties pane is very similar to the one in Visual Studio. It displays the following:

· Form properties, when a form is selected
· Object properties, when an object in a form is selected
· Form events, when a form is selected
· Object events, when an object in a form is selected

To switch between the properties and events of the selected component, click the Properties or Events
 buttons, respectively.

The Categorized and Alphabetical icons display the properties or events either organized by
category or organized in ascending alphabetical order.

When a property or event is selected, a short description of it is displayed at the bottom of the Properties pane.

858 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Main window
The main window is the working area where you can enter source code or modify the design of the form. When
editing forms, you can work in two tabs: the Design tab and the Source tab. The Design tab shows the layout
of the form, while the Source tab contains the source code such as handler methods for the form events.

The source code editor provides code editing aids such as syntax coloring, source code folding, highlighting of
starting and ending braces, zooming, autocompletion suggestions, bookmarks.

Autocompletion suggestions
JScript and VBScript are untyped languages, so autocompletion is limited to COM API names and StyleVision
built-in commands . The full method or property signature is shown next to the autocompletion entry helper.

Placing the mouse over a known method or property displays its signature (and documentation if available), for
example:
The auto-completion entry helper is normally shown automatically during editing, but it can also be obtained on
demand by pressing Ctrl+Space.

Bookmarks
· To set or remove a bookmark, click inside a line, and then press Ctrl+F2
· To navigate to the next bookmark, press F2
· To navigate to the previous bookmark, press Shift+F2
· To delete all bookmarks, press Ctrl+Shift+F2

Zooming in/out
· To zoom in or out, hold the Ctrl key pressed and then press the "+" or "-" keys or rotate the mouse

wheel.

Text view settings
To trigger text settings, right-click inside the editor, and select Text View Settings from the context menu.

Font settings
To change the font, right-click inside the editor, and select Text View Font from the context menu.

866

© 2017-2023 Altova GmbH

Scripting Editor 859Programmers' Reference

Altova StyleVision 2024 Professional Edition

Toolbox
The Toolbox contains all the objects that are available for designing forms, such as buttons, text boxes, combo
boxes, and so on.

To add a Toolbox item to a form:

1. Create or open a form and make sure that the Design tab is selected.
2. Click the Toolbox object (for example, Button), and then click at the location in the form where you

wish to insert it. Alternatively, drag the object directly onto the form.

Some objects such as Timer are not added to the Form but are created in a tray at the bottom of the main
window. You can select the object in the tray and set properties and event handlers for the object from the
Properties pane. For an example of handling tray components from the code, see Handling form events .

You can also add registered ActiveX controls to the form. To do this, right-click the Toolbox area and select
Add ActiveX Control from the context menu.

17.1.1.2 Global Declarations

The "Global Declarations" script is present by default in any scripting project; you do not need to create it
explicitly. Any variables or functions that you add to this script are considered global across the entire project.
Consequently, you can refer to such variables and functions from any of the project's macros and events. The
following is an example of a global declarations script that imports the System.Windows.Forms namespace into
the project. To achieve that, the code below invokes the CLR.Import command built into Scripting Editor.

// import System.Windows.Forms namespace for all macros, forms and events:
CLR.Import("System.Windows.Forms");

Note: Every time a macro is executed or an event handler is called, the global declarations are re-initialized.

17.1.1.3 Macros

Macros are scripts that contain JScript (or VBScript, depending on your project's language) statements, such
as variable declarations and functions.

If your projects should use macros, you can add them as follows: right-click inside the Project pane, select
Add Macro from the context menu, and then enter the macro's code in the main form. The code of a macro
could be as simple as an alert, for example:

alert("Hello, I'm a macro!");

More advanced macros can contain variables and local functions. Macros can also contain code that invokes
forms from the project. The listing below illustrates an example of a macro that shows a form. It is assumed
that this form has already been created in the "Forms" folder and has the name "SampleForm", see also
Forms .

861

861

860 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

// display a form
ShowForm("SampleForm");

In the code listing above, ShowForm is a command built into Scripting Editor. For reference to other similar
commands that you can use to work with forms and .NET objects, see the Built-in Commands .

Only one macro can be run at a time. After a macro (or event) is executed, the script is closed and global
variables lose their values.

To run a macro directly in Script Editor, click Run Macro . To debug a macro using the Visual Studio

debugger, click Debug Macro .

Running macros
To run a macro, you need to first bind the macro to an Authentic event. The macro will run when that Authentic
event is triggered. For example, say you wish to run a macro before editing text in Authentic. You must go
about this as follows:

1. In Design View, select the editable content for which the macro is to be set.
2. In the Properties sidebar (screenshot below), select the Authentic group of properties of the relevant

design component.

3. Select the Authentic event that will trigger the macro and open the dropdown list of this event's Value
combo box. All the macros defined in the Scripting Project of the SPS will be listed. Select the macro
you wish to associate with this function.

4. In Authentic View, when any Authentic event that has a macro assigned to it is triggered, then the
macro will be executed.

See the section, Authentic Scripting >> Macros , for a detailed description of how to use macros in a
StyleVision design document.

866

653

© 2017-2023 Altova GmbH

Scripting Editor 861Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.1.1.4 Forms

Forms are particularly useful if you need to collect input data from users or display data to users. A form can
contain miscellaneous controls to facilitate this, such as buttons, check boxes, combo boxes, and so on.

To add a form, right-click inside the Project pane, and then select Add Form from the context menu. To add a
control to a form, drag it from the Toolbox available to the right side of Scripting Editor and drop it onto the
form.

You can change the position and size of the controls directly on the form, by using the handles that appear
when you click any control, for example:

All form controls have properties that you can easily adjust in the Properties pane. To do this, first select the
control on the form, and then edit the required properties in the Properties pane.

Handling form events
Each form control also exposes various events to which your scripting project can bind. For example, you
might want to invoke some StyleVision COM API method whenever a button is clicked. To create a function
that binds to a form event, do the following:

1. In the Properties pane, click Events .
2. In the Action column, double-click the event where you need the method (for example, in the image

below, the handled event is "Click").

862 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

You can also add handler methods by double-clicking a control on the form. For example, double-clicking a
button in the form design generates a handler method for the "Click" event of that button.

Once the body of the handler method is generated, you can type code that handles this event, for example:

//Occurs when the component is clicked.
function MyForm_ButtonClick(objSender, e_EventArgs)

{
 alert("A button was clicked");
}

To display a work-in-progress form detached from the Scripting Editor, right-click the form in the Project
window, and select Test Form from the context menu. Note that the Test Form command just displays the
form; the form's events (such as button clicks) are still disabled. To have the form react to events, call it from a
macro, for example:

// Instantiate and display a form
ShowForm("SampleForm");

Accessing form controls
You can access any components on a form from your code by using field access syntax. For example,
suppose there is a form designed as follows:

// MyForm
// ButtonPanel
// OkButton
// CancelButton
// TextEditor
// AxMediaPlayer1
// TrayComponents
// MyTimer

The code below shows how to instantiate the form, access some of its controls using field access syntax, and
then display the form:

// Instantiate the form
var objForm = CreateForm("MyForm");

© 2017-2023 Altova GmbH

Scripting Editor 863Programmers' Reference

Altova StyleVision 2024 Professional Edition

// Disable the OK button
objForm.ButtonPanel.OkButton.Enabled = false;

// Change the text of TextEditor
objForm.TextEditor.Text = "Hello";
// Show the form
objForm.ShowDialog();

When you add certain controls such as timers to the form, they are not displayed on the form; instead, they
are shown as tray components at the base of the form design, for example:

To access controls from the tray, use the GetTrayComponent method on the form object, and supply the name
of the control as argument. In this example, to get a reference to MyTimer and enable it, use the following code:

var objTimer = objForm.GetTrayComponent("MyTimer");

objTimer.Enabled = true;

For ActiveX Controls, you can access the underlying COM object via the OCX property:

var ocx = lastform.AxMediaPlayer1.OCX; // get underlying COM object

ocx.enableContextMenu = true;

ocx.URL = "mms://apasf.apa.at/fm4_live_worldwide";

17.1.1.5 Events

Your scripting project may optionally include scripts that handle events in the Authentic View, such as cutting,
copying, or pasting text, or opening a context menu. These events are provided by the StyleVision COM API,

864 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

and you can find them in the "Events" folder of your scripting project. Note that these events are StyleVision-
specific, as opposed to form events.

To create an event handler script, right-click an event, and select Open from the context menu (or double-click
the event). The event handler script is displayed in the main window, where you can start editing it. For
example, the event handler illustrated below calls a function when a toolbar button is executed. The function
definition is in the Global Declarations script, so it is available to the event handler script.

The name of the event handler function must not be changed; otherwise, the event handler script will not be
called.

You can optionally define local variables and helper functions within event handler scripts, for example:

var local;

function On_AuthenticLoad()

{
 local = "OnAuthenticLoad";
 Helper();
}

function Helper()

{
 alert("I'm a helper function for " + local);
}

17.1.1.6 JScript Programming Tips

Below are a few JScript programming tips that you may find useful while developing a scripting project in
StyleVision Scripting Editor.

Out parameters
Out parameters from methods of the.NET Framework require special variables in JScript. For example:

859

© 2017-2023 Altova GmbH

Scripting Editor 865Programmers' Reference

Altova StyleVision 2024 Professional Edition

var dictionary =

CLR.Create("System.Collections.Generic.Dictionary<System.String,System.String>");
dictionary.Add("1", "A");
dictionary.Add("2", "B");

// use JScript method to access out-parameters
var strOut = new Array(1);

if (dictionary.TryGetValue("1", strOut)) // TryGetValue will set the out parameter

 alert(strOut[0]); // use out parameter

Integer arguments
.NET Methods that require integer arguments should not be called directly with JScript number objects which
are floating point values. For example, instead of:

var objCustomColor = CLR.Static("System.Drawing.Color").FromArgb(128,128,128);

use:

var objCustomColor =

CLR.Static("System.Drawing.Color").FromArgb(Math.floor(128),Math.floor(128),Math.floor(12
8));

Iterating .NET collections
To iterate .NET collections, the JScript Enumerator as well as the .NET iterator technologies can be used, for
example:

// iterate using the JScript iterator
var itr = new Enumerator(coll);

for (; !itr.atEnd(); itr.moveNext())

 alert(itr.item());

// iterate using the .NET iterator
var itrNET = coll.GetEnumerator();

while(itrNET.MoveNext())

 alert(itrNET.Current);

.NET templates

.NET templates can be instantiated as shown below:

var coll = CLR.Create("System.Collections.Generic.List<System.String>");

or

CLR.Import("System");
CLR.Import("System.Collections.Generic");

866 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

var dictionary = CLR.Create("Dictionary<String,Dictionary<String,String>>");

.NET enumeration values
 .NET enumeration values are accessed as shown below:

var enumValStretch = CLR.Static("System.Windows.Forms.ImageLayout").Stretch;

Enumeration literals
The enumeration literals from the StyleVision API can be accessed as shown below (there is no need to know
their numerical value).

objExportXMIFileDlg.XMIType = eXMI21ForUML23;

17.1.2 Built-in Commands

This section provides reference to all the commands you can use in the StyleVision Scripting Editor.

· alert
· confirm
· CLR.Create
· CLR.Import
· CLR.LoadAssembly
· CLR.ShowImports
· CLR.ShowLoadedAssemblies
· CLR.Static
· CreateForm
· doevents
· lastform
· prompt
· ShowForm
· watchdog

17.1.2.1 alert

Displays a message box that shows a given message and the "OK" button. To proceed, the user will have to
click "OK".

866

867

868

868

869

870

870

871

872

873

873

874

874

875

© 2017-2023 Altova GmbH

Scripting Editor 867Programmers' Reference

Altova StyleVision 2024 Professional Edition

Signature
For JScript, the signature is:

alert(strMessage : String) -> void

For VBScript, the signature is:

MsgBox(strMessage : String) -> void

Example
The following JScript code displays a message box with the text "Hello World".

alert("Hello World");

17.1.2.2 confirm

Opens a dialog box that shows a given message, a confirmation button, and a cancel button. The user will have
to click either "OK" or "Cancel" to proceed. Returns a Boolean that represents the user's answer. If the user
clicked "OK", the function returns true; if the user clicked "Cancel", the function returns false.

868 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Signature

confirm(strMessage : String) -> result : Boolean

Example (JScript)

if (confirm("Continue processing?") == false)

 alert("You have cancelled this action");

Example (VBScript)

If (confirm("Continue processing?") = false) Then

 MsgBox("You have cancelled this action")

End If

17.1.2.3 CLR.Create

Creates a new .NET object instance of the type name supplied as argument. If more than one argument is
passed, the successive arguments are interpreted as the arguments for the constructor of the .NET object. The
return value is a reference to the created .NET object

Signature

CLR.Create(strTypeNameCLR : String, constructor arguments ...) -> object

Example
The following JScript code illustrates how to create instances of various .NET classes.

// Create an ArrayList
var objArray = CLR.Create("System.Collections.ArrayList");

// Create a ListViewItem
var newItem = CLR.Create("System.Windows.Forms.ListViewItem", "NewItemText");

// Create a List<string>
var coll = CLR.Create("System.Collections.Generic.List<System.String>");

// Import required namespaces and create a Dictionary object
CLR.Import("System");
CLR.Import("System.Collections.Generic");
var dictionary = CLR.Create("Dictionary< String, Dictionary< String, String > >");

17.1.2.4 CLR.Import

Imports a namespace. This is the scripting equivalent of C# using and VB.Net imports keyword. Calling
CLR.Import makes it possible to leave out the namespace part in subsequent calls like CLR.Create() and
CLR.Static().

© 2017-2023 Altova GmbH

Scripting Editor 869Programmers' Reference

Altova StyleVision 2024 Professional Edition

Note: Importing a namespace does not add or load the corresponding assembly to the scripting project. You
can add assemblies to the scripting project dynamically (at runtime) in the source code by calling
CLR.LoadAssembly .

Signature

CLR.Import(strNamespaceCLR : String) -> void

Example
Instead of having to use fully qualified namespaces like:

if (ShowForm("FormName") == CLR.Static("System.Windows.Forms.DialogResult").OK)

{
 var sName = lastform.textboxFirstName.Text + " " + lastform.textboxLastName.Text;

 CLR.Static("System.Windows.Forms.MessageBox").Show("Hello " + sName);
}

One can import namespaces first and subsequently use the short form:

CLR.Import("System.Windows.Forms");

if (ShowForm("FormName") == CLR.Static("DialogResult").OK)

{
 var sName = lastform.textboxFirstName.Text + " " + lastform.textboxLastName.Text;

 CLR.Static("MessageBox").Show("Hello " + sName);
}

17.1.2.5 CLR.LoadAssembly

Loads the .NET assembly with the given long assembly name or file path. Returns Boolean true if the
assembly could be loaded; false otherwise.

Signature

CLR.LoadAssembly(strAssemblyNameCLR : String, showLoadErrors : Boolean) -> result :
Boolean

Example
The following JScript code attempts to set the clipboard text by loading the required assembly dynamically.

// set clipboard text (if possible)
// System.Windows.Clipboard is part of the PresentationCore assembly, so load this
assembly first:
if (CLR.LoadAssembly("PresentationCore, Version=3.0.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35", true))

869

870 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

{
 var clipboard = CLR.Static("System.Windows.Clipboard");

 if (clipboard != null)

 clipboard.SetText("HelloClipboard");
}

17.1.2.6 CLR.ShowImports

Opens a message box that shows the currently imported namespaces. The user will have to click "OK" to
proceed.

Signature

CLR.ShowImports() -> void

Example
The following JScript code first imports a namespace, and then displays the list of imported namespaces:

CLR.Import("System.Windows.Forms");
CLR.ShowImports();

17.1.2.7 CLR.ShowLoadedAssemblies

Opens a message box that shows the currently loaded assemblies. The user will have to click "OK" to
proceed.

Signature

CLR.ShowLoadedAssemblies() -> void

Example

CLR.ShowLoadedAssemblies();

© 2017-2023 Altova GmbH

Scripting Editor 871Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.1.2.8 CLR.Static

Returns a reference to a static .NET object. You can use this function to get access to .NET types that have
no instances and contain only static members.

Signature

CLR.Static(strTypeNameCLR : String) -> object

Example (JScript)

// Get the value of a .NET Enum into a variable
var enumValStretch = CLR.Static("System.Windows.Forms.ImageLayout").Stretch

// Set the value of the Windows clipboard
var clipboard = CLR.Static("System.Windows.Clipboard");

clipboard.SetText("HelloClipboard");

// Check the buttons pressed by the user on a dialog box
if (ShowForm("FormName") == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

872 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.1.2.9 CreateForm

Instantiates the Form object identified by the name supplied as argument. The form must exist in the "Forms"
folder of the scripting project. Returns the form object (System.Windows.Forms.Form) corresponding to the
given name, or null if no form with such name exists.

Signature

CreateForm (strFormName : String) -> System.Windows.Forms.Form | null

Example
Let's assume that a form called "FormName" exists in the scripting project.

The following JScript code instantiates the form with some default values and displays it to the user.

var myForm = CreateForm("FormName");

if (myForm != null)

{
 myForm.textboxFirstName.Text = "Daniela";
 myForm.textboxLastName.Text = "Heidegger";
 var dialogResult = myForm.ShowDialog();

}

The dialogResult can subsequently be evaluated as follows:

if (dialogResult == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

Note: The code above will work only if the DialogResult property of the "OK" and "Cancel" buttons is set
correctly from the Properties pane (for example, it must be OK for the "OK" button).

© 2017-2023 Altova GmbH

Scripting Editor 873Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.1.2.10 doevents

Processes all Windows messages currently in the message queue.

Signature

doevents() -> void

Example (JScript)

for (i=0; i < nLongLastingProcess; ++i)

{
 // do long lasting process

 doevents(); // process Windows messages; give UI a chance to update
}

17.1.2.11 lastform

This is a global field that returns a reference to the last form object that was created via CreateForm() or
ShowForm().

Signature

lastform -> formObj : System.Windows.Forms.Form

Example
The following JScript code shows the form "FormName" as a dialog box.

CreateForm("FormName");
if (lastform != null)

{
 lastform.textboxFirstName.Text = "Daniela";
 lastform.textboxLastName.Text = "Heidegger";
 var dialogResult = lastform.ShowDialog();

}

The values of both textbox controls are initialized with the help of lastform.

874 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.1.2.12 prompt

Opens a dialog box that shows a message and a textbox control with a default answer. This can be used to let
the user input a simple string value. The return value is a string that contains the textbox value or null if the user
selected "Cancel".

Signature

prompt(strMessage : String, strDefault : String) -> val : String

Example

var name = prompt("Please enter your name", "Daniel Smith");

if (name != null)

 alert("Hello " + name + "!");

17.1.2.13 ShowForm

Instantiates a new form object from the given form name and immediately shows it as dialog box. The return
value is an integer that represents the generated DialogResult (System.Windows.Forms.DialogResult). For
the list of possible values, refer to the documentation of the DialogResult Enum
(https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult?view=netframework-4.8).

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.dialogresult?view=netframework-4.8

© 2017-2023 Altova GmbH

Scripting Editor 875Programmers' Reference

Altova StyleVision 2024 Professional Edition

Signature

ShowForm(strFormName : String) -> result : Integer

Example
The following JScript code

var dialogResult = ShowForm("FormName");

Shows the form "FormName" as a dialog box:

The DialogResult can subsequently be evaluated, for example:

if (dialogResult == CLR.Static("System.Windows.Forms.DialogResult").OK)

 alert("ok");
else

 alert("cancel");

Note: The code above will work only if the DialogResult property of the "OK" and "Cancel" buttons is set
correctly from the Properties pane (for example, it must be OK for the "OK" button).

17.1.2.14 watchdog

Long running CPU-intensive scripts may ask the user if the script should be terminated. The watchdog()
method is used to disable or enable this behavior. By default, the watchdog is enabled.

Calling watchdog(true) can also be used to reset the watchdog. This can be useful before executing long
running CPU-intensive tasks to ensure they have the maximum allowed script processing quota.

Signature

watchdog(bEnable : boolean) -> void

876 Programmers' Reference Scripting Editor

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Example

watchdog(false); // disable watchdog - we know the next statement is CPU intensive but

it will terminate for sure
doCPUIntensiveScript();
watchdog(true); // re-enable watchdog

© 2017-2023 Altova GmbH

Application API 877Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2 Application API

The COM-based API of StyleVision (also called the Application API from now on) enables other applications to
use the functionality of StyleVision.

StyleVision and its Application API follow the common specifications for automation servers set out by
Microsoft. It is possible to access the methods and properties of the Application API from common
development environments, such as those using C#, C++, VisualBasic, and Delphi, and with scripting
languages like JScript and VBScript.

Execution environments for the Application API
The Application API can be accessed from the following execution environments:

· External programs (described below and in the Overview part of this section)
· From within the built-in Scripting Editor of StyleVision. For a description of the scripting environment,

see the section, Scripting Editor .
· Via an ActiveX Control, which is available if the integration package is installed. For more

information, see the section ActiveX Integration .

External programs
In the Overview part of this section, we describe how the functionality of StyleVision can be accessed and
automated from external programs.

Using the Application API from outside StyleVision requires an instance of StyleVision to be started first. How
this is done depends on the programming language used. See the section, Programming Languages , for
information about individual languages.

Essentially, StyleVision will be started via its COM registration. Then the Application object associated with
the StyleVision instance is returned. Depending on the COM settings, an object associated with an already
running StyleVision can be returned. Any programming language that supports creation and invocation of COM
objects can be used. The most common of these are listed below.

· JScript script files have a simple syntax and are designed to access COM objects. They can be run
directly from a DOS command line or with a double click on Windows Explorer. They are best used for
simple automation tasks.

· C# is a full-fledged programming language that has a wide range of existing functionality. Access to
COM objects can be automatically wrapped using C#..

· C++ provides direct control over COM access but requires relatively larger amounts of code than the
other languages.

· Java : Altova products come with native Java classes that wrap the Application API and provide a full
Java look-and-feel.

· Other programming languages that make useful alternatives are: Visual Basic for Applications, Perl,
and Python.

Programming points
The following limitations must be considered in your client code:

· Be aware that if your client code crashes, instances of StyleVision may still remain in the system.

877 878

854

1002

1002

878

878

882

891

878 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Don't hold references to objects in memory longer than you need them, especially those from the
XMLData interface. If the user interacts between two calls of your client, then there is no guarantee that
these references are still valid.

· Don't forget to disable dialogs if the user interface is not visible.

17.2.1 Overview

This overview of the Application API is organized as follows:

· The Object Model describes the relationships between the objects of the Application API.
· Programming Languages explains how the most commonly used programming languages (JScript,

VBScript, C#, and Java) can be used to access the functionality of the Application API. Code listings
from the example files supplied with your application package are used to describe basic mechanisms.

17.2.1.1 Object Model

The starting point for every application which uses the Application API is the Application object. This
object contains general methods like import/export support and references to the open documents and any
open project.

The Application object is created differently in various programming languages. In scripting languages such
as JScript or VBScript, this involves calling a function which initializes the application's COM object. For
examples, see the Programming Languages section.

The chart below shows the links between the main objects of the Application API

Application
|
| -- Documents
| |
| | -- Document
| | |
| | | -- Methods for assigning working XML file, saving files
| | | -- Methods for saving generated files
| | | -- Methods for activating, saving, closing SPS file

In addition there are objects for schema sources and properties, as well as methods for AuthenticView events.

Once you have created an Application object you can start using the functionality of StyleVision.

17.2.1.2 Programming Languages

Programming languages differ in the way they support COM access. A few examples for the most frequently
used languages (links below) will help you get started. The code listings in this section show how basic
functionality can be accessed. The files in the API subfolder of the Examples folder can be used to test this
functionality:

878

878

898

878

© 2017-2023 Altova GmbH

Application API 879Programmers' Reference

Altova StyleVision 2024 Professional Edition

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\StyleVision\2024\%APPNAME%>Examples

JScript
The JScript listings demonstrate the following basic functionality:

· Start application or attach to a running instance
· Simple document access
· Iteration

VBScript
VBScript is different than JScript only syntactically; otherwise it works in the same way. For more information,
refer to the JScript examples .

C#
C# can be used to access the Application API functionality. The code listings show how to access the API for
certain basic functionality.

· Start StyleVision : Starts StyleVision, which is registered as an automation server, or activates
StyleVision if it is already running.

· Open OrgChart.pxf : Locates one of the example documents installed with StyleVision and opens it.
If this document is already open it becomes the active document.

· OnDocumentOpened Event On/Off : Shows how to listen to StyleVision events. When turned on, a
message box will pop up after a document has been opened.

· Open ExpReport.xml : Opens another example document.
· Shutdown StyleVision : Stops StyleVision.

Java
The StyleVision API can be accessed from Java code. The Java sub-section of this section explains how
some basic StyleVision functionality can be accessed from Java code. It is organized into the following sub-
sections:

· Mapping Rules for the Java Wrapper
· Example Java Project
· Application Startup and Shutdown
· Simple Document Access
· Iterations
· Event Handlers

17.2.1.2.1 JScript

This section contains listings of JScript code that demonstrate the following basic functionality:

· Start application or attach to a running instance

880

881

882

879

887

888

889

888

887

891

891

892

896

897

897

897

880

880 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Simple document access
· Iteration

Example files
The code listings in this section are available in example files that you can test as is or modify to suit your
needs. The JScript example files are located in the JScript subfolder of the API Examples folder:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\StyleVision\2024\%APPNAME%>Examples

The example files can be run in one of two ways:

· From the command line: Open a command prompt window, change the directory to the path above,
and type the name of one of the example scripts (for example, Start.js).

· From Windows Explorer: In Windows Explorer, browse for the JScript file and double-click it.

The script is executed by Windows Script Host that is packaged with Windows operating system. For more
information about Windows Script Host, refer to MSDN documentation (https://msdn.microsoft.com).

17.2.1.2.1.1 Start Application

The JScript below starts the application and shuts it down. If the COM object of the 32-bit StyleVision cannot
be found, the code attempts to get the COM object of the 64-bit application; otherwise, an error is thrown. If an
instance of the application is already running, the running instance will be returned.

Note: For 32-bit StyleVision, the registered name, or programmatic identifier (ProgId) of the COM object is
StyleVision.Application. For 64-bit StyleVision, the name is StyleVision_x64.Application. Be
aware, though, that the calling program will access the CLASSES registry entries in its own registry
hive, or group (32-bit or 64-bit). Therefore, if you run scripts using the standard command prompt and
Windows Explorer on 64-bit Windows, the 64-bit registry entries will be accessed, which point to the
64-bit StyleVision. For this reason, if both StyleVision 32-bit and 64-bit are installed, special handling
is required in order to call the 32-bit StyleVision. For example, assuming that Windows Scripting Host
is the calling program, do the following:

1. Change the current directory to C:\Windows\SysWOW64.
2. At the command line, type wscript.exe followed by the path to the script that you would like to run, for

example:

wscript.exe "C:\Users\...
\Documents\Altova\StyleVision2024\StyleVisionExamples\API\JScript\start.js"

// Initialize application's COM object. This will start a new instance of the application
and
// return its main COM object. Depending on COM settings, the main COM object of an

881

882

https://msdn.microsoft.com

© 2017-2023 Altova GmbH

Application API 881Programmers' Reference

Altova StyleVision 2024 Professional Edition

already
// running application might be returned.
try { objStyleVision = WScript.GetObject("", "StyleVision.Application"); }

catch(err) {}

if(typeof(objStyleVision) == "undefined")

{
 try { objStyleVision = WScript.GetObject("", "StyleVision_x64.Application") }

 catch(err)

 {
 WScript.Echo("Can't access or create StyleVision.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it to
visible.
objStyleVision.Visible = true;

WScript.Echo(objStyleVision.Edition + " has successfully started. ");

objStyleVision.Visible = false; // will shutdown application if it has no more COM

connections
//objStyleVision.Visible = true; // will keep application running with UI visible

The JScript code listed above is available in the sample file Start.js (see Example Files).

17.2.1.2.1.2 Simple Document Access

After you have started the application as shown in Start Application , you will most likely want to
programmatically open a document in order to work with it. The JScript code listing below illustrates how to
open two documents from the StyleVision Examples folder.

// Locate examples via USERPROFILE shell variable. The path needs to be adapted to major
release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objStyleVision.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\\My
Documents\\Altova\\StyleVision" + majorVersionYear + "\\StyleVisionExamples\\";

// Tell StyleVision to open two documents. No dialogs
objDoc1 = objStyleVision.Documents.OpenDocument(strExampleFolder + "OrgChart.pxf");
objStyleVision.Documents.OpenDocument(strExampleFolder +
"BiggestCitiesPerContinent.sps");

The JScript code listed above is available in the sample file DocumentAccess.js (see Example Files).

880

880

880

882 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.1.2.1.3 Iteration

The JScript listing below shows how to iterate through the open documents. It is assumed that you have
already started the application and opened some documents as shown in the previous sections.

// go through all open documents using a JScript Enumerator
for (var iterDocs = new Enumerator(objStyleVision.Documents); !iterDocs.atEnd();

iterDocs.moveNext())
{
 objName = iterDocs.item().Name;
 WScript.Echo("Document name: " + objName);
}

// go through all open documents using index-based access to the document collection
for (i = objStyleVision.Documents.Count; i > 0; i--)

 objStyleVision.Documents.Item(i).Close();

The JScript code listed above is available in the sample file DocumentAccess.js (see Example Files).

17.2.1.2.2 C#

The C# programming language can be used to access the Application API functionality. You could use Visual
Studio 2012/2013/2015/2017/2019/2022 to create the C# code, saving it in a Visual Studio project. Create the
project as follows:

1. In Microsoft Visual Studio, add a new project using File | New | Project.
2. Add a reference to the StyleVision Type Library by clicking Project | Add Reference. The Add

Reference dialog appears. Browse for the StyleVision Type Library component, which is located in the
StyleVision application folder, and add it.

3. Enter the code you want.
4. Compile the code and run it.

Example C# project
Your StyleVision package contains an example C# project, which is located in the API\C# subfolder of the
Examples folder :

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\StyleVision\2024\%APPNAME%>Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022. The code
listing below shows how basic application functionality can be used. This code is similar to the example C#
project in the API Examples folder of your application package, but might differ slightly.

880

© 2017-2023 Altova GmbH

Application API 883Programmers' Reference

Altova StyleVision 2024 Professional Edition

Platform configuration
If you have a 64-bit operating system and are using a 32-bit installation of StyleVision, you must add the x86
platform in the solution's Configuration Manager and build the sample using this configuration. A new x86
platform (for the active solution in Visual Studio) can be created in the New Solution Platform dialog (Build |
Configuration Manager | Active solution platform | <New…>).

What the code listing below does
The example code listing below creates a simple user interface (screenshot below) with buttons that invoke
basic StyleVision operations:

· Start StyleVision : Starts StyleVision, which is registered as an automation server, or activates the
application if it is already running.

· Open OrgChart.pxf : Locates one of the example documents installed with StyleVision and opens it.
If this document is already open it becomes the active document.

· Open MultiFileOutput.sps : Opens another example document.
· Shut down StyleVision : Stops StyleVision.

You can modify the code (of the code listing below or of the example C# project in the API Examples folder) in
any way you like and run it.

Compiling and running the example
In the API Examples folder, double-click the file AutomateStyleVision_VS2008.sln or the file
AutomateStyleVision_VS2010.sln (to open in Visual Studio 2012/2013/2015/2017/2019/2022). Alternatively
the file can be opened from within Visual Studio (with File | Open | Project/Solution). To compile and run the
example, select Debug | Start Debugging or Debug | Start Without Debugging.

Code listing of the example
Given below is the C# code listing of the basic functionality of the form (Form1.cs) created in the
AutomateStyleVision example. Note that the code listed below might differ slightly from the code in the API
Examples form.The listing below is commented for ease of understanding. Parts of the code are also presented
separately in the sub-sections of this section, according to the Application API functionality they access.

887

888

888

887

884 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

The code essentially consists of a series of handlers for the buttons in the user interface shown in the
screenshot above.

namespace WindowsFormsApplication2
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 // An instance of StyleVision is accessed via its automation interface.
 StyleVisionLib.Application StyleVision;

 // Location of examples installed with StyleVision
 String strExamplesFolder;

 private void Form1_Load(object sender, EventArgs e)
 {
 // Locate examples installed with StyleVision.
 // REMARK: You might need to adapt this if you have a different major version
of the product.
 strExamplesFolder = Environment.GetEnvironmentVariable("USERPROFILE") + "\\My
Documents\\Altova\\StyleVision2012\\StyleVisionExamples\\";
 }

 // Handler for the "Start StyleVision" button
 private void StartStyleVision_Click(object sender, EventArgs e)
 {
 if (StyleVision == null)
 {
 Cursor.Current = Cursors.WaitCursor;

 // If there is no StyleVision instance, create one and make it visible.
 StyleVision = new StyleVisionLib.Application();
 StyleVision.Visible = true;

 Cursor.Current = Cursors.Default;
 }
 else
 {
 // If a StyleVision instance is already running, make sure it's visible.
 if (!StyleVision.Visible)
 StyleVision.Visible = true;
 }
 }

 // Handler for the "Open OrgChart.pxf" button
 private void openOrgChart_Click(object sender, EventArgs e)
 {
 // Make sure there's a running StyleVision instance, and that it's visible
 StartStyleVision_Click(null, null);

© 2017-2023 Altova GmbH

Application API 885Programmers' Reference

Altova StyleVision 2024 Professional Edition

 // Open a sample files installed with the product.
 StyleVision.Documents.OpenDocument(strExamplesFolder + "OrgChart.pxf");
 updateListBox();
 }

 // Handler for the "Open MultiFileOutput.sps" button
 private void openMultiFileOutput_Click(object sender, EventArgs e)
 {
 // Make sure there's a running StyleVision instance, and that it's visible
 StartStyleVision_Click(null, null);

 // Open one of the sample files installed with the product.
 StyleVision.Documents.OpenDocument(strExamplesFolder + "MultiFileOutput.sps");
 updateListBox();
 }

 // Handler for the "Shutdown StyleVision" button
 // Shut down the application instance by explicitly releasing the COM object.
 private void shutdownStyleVision_Click(object sender, EventArgs e)
 {
 if (StyleVision != null)
 {
 // Allow shut-down of StyleVision by releasing UI
 StyleVision.Visible = false;

 // Explicitly release the COM object
 try
 {
 int i =
System.Runtime.InteropServices.Marshal.ReleaseComObject(StyleVision);
 while
(System.Runtime.InteropServices.Marshal.ReleaseComObject(StyleVision) > 0) ;
 }
 finally
 {
 // Disallow subsequent access to this object.
 StyleVision = null;
 }
 }
 }

 delegate void addListBoxItem_delegate(string sText);
 // Called from the UI thread
 private void addListBoxItem(string sText)
 {
 listBoxMessages.Items.Add(sText);
 }
 // Wrapper method to call UI control methods from a worker thread
 void syncWithUIthread(Control ctrl, addListBoxItem_delegate methodToInvoke, String
sText)
 {
 // Control.Invoke: Executes on the UI thread, but calling thread waits for
completion before continuing.
 // Control.BeginInvoke: Executes on the UI thread, and calling thread doesn't
wait for completion.
 if (ctrl.InvokeRequired)

886 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 ctrl.BeginInvoke(methodToInvoke, new Object[] { sText });
 }

 // Event handler for OnDocumentClosed event
 private void handleOnDocumentClosed(StyleVisionLib.Document i_ipDocument)
 {
 String sText = "";

 if (i_ipDocument.Name.Length > 0)
 sText = "Document " + i_ipDocument.Name + " was closed!";

 // Synchronize the calling thread with the UI thread because
 // COM events are triggered from a working thread
 addListBoxItem_delegate methodToInvoke = new
addListBoxItem_delegate(addListBoxItem);
 // Call syncWithUIthread with the following arguments:
 // 1 - listBoxMessages - list box control to display messages from COM events
 // 2 - methodToInvoke - a C# delegate which points to the method which will be
called from the UI thread
 // 3 - sText - the text to be displayed in the list box
 syncWithUIthread(listBoxMessages, methodToInvoke, sText);
 }

 private void updateListBox()
 {
 // Iterate through all open documents
 listBoxMessages.Items.Clear();

 for (int i = 1; i <= StyleVision.Documents.Count; i++)
 {
 StyleVisionLib.Document doc = StyleVision.Documents[i];

 if (doc != null)
 {
 if (checkBoxEventOnOff.Checked)
 doc.OnDocumentClosed += new
StyleVisionLib._IDocumentEvents_OnDocumentClosedEventHandler(handleOnDocumentClosed);
 else
 doc.OnDocumentClosed -= new
StyleVisionLib._IDocumentEvents_OnDocumentClosedEventHandler(handleOnDocumentClosed);

 listBoxMessages.Items.Add(doc.Name);
 StyleVisionLib.SchemaSources sources = doc.SchemaSources;

 for (int j = 1; j <= sources.Count; j++)
 {
 StyleVisionLib.SchemaSource source = sources[j];

 if (source != null)
 {
 listBoxMessages.Items.Add("\tSchema file name : " +
source.SchemaFileName + "\n");

© 2017-2023 Altova GmbH

Application API 887Programmers' Reference

Altova StyleVision 2024 Professional Edition

 listBoxMessages.Items.Add("\tWorking XML file name : " +
source.WorkingXMLFileName + "\n");
 listBoxMessages.Items.Add("\tIs main schema source : " +
source.IsMainSchemaSource + "\tType name : " + source.TypeName + "\n");
 }
 }
 }
 }
 }
 }
}

17.2.1.2.2.1 Add Reference to StyleVision API

Add the application's type library as a reference in a .NET project as follows: With the .NET project open, click
Project | Add Reference. Then browse for the type library, which is called StyleVision.tlb, and is located
in the StyleVision application folder.

Then declare a variable to access the StyleVision API:

 // An instance of StyleVision is accessed via its automation interface.
 StyleVisionLib.Application StyleVision;

17.2.1.2.2.2 Application Startup and Shutdown

In the code snippets below, the methods StartStyleVision_Click and ShutdownStyleVision_Click are
those assigned to buttons in the AutomateStyleVision example that, respectively, start up and shut down
the application. This example is located in the C# subfolder of the API Examples folder (see the file Form1.cs):

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\StyleVision\2024\%APPNAME%>Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

Starting StyleVision
The following code snippet from the AutomateStyleVision example shows how to start up the application.

 // Handler for the "Start StyleVision" button
 private void StartStyleVision_Click(object sender, EventArgs e)
 {
 if (StyleVision == null)
 {
 Cursor.Current = Cursors.WaitCursor;

 // If there is no StyleVision instance, create one and make it visible.
 StyleVision = new StyleVisionLib.Application();
 StyleVision.Visible = true;

882

882

888 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 Cursor.Current = Cursors.Default;
 }
 else
 {
 // If an instance of StyleVision is already running, make sure it's visible
 if (!StyleVision.Visible)
 StyleVision.Visible = true;
 }
 }

Shutting down StyleVision
The following code snippet from the AutomateStyleVision example shows how to shut down the application.

 // Handler for the "Shutdown StyleVision" button
 // Shut down the application instance by explicitly releasing the COM object.
 private void shutdownStyleVision_Click(object sender, EventArgs e)
 {
 if (StyleVision != null)
 {
 // Allow shut-down of StyleVision by releasing UI
 StyleVision.Visible = false;

 // Explicitly release the COM object
 try
 {
 int i =
System.Runtime.InteropServices.Marshal.ReleaseComObject(StyleVision);
 while
(System.Runtime.InteropServices.Marshal.ReleaseComObject(StyleVision) > 0) ;
 }
 finally
 {
 // Disallow subsequent access to this object.
 StyleVision = null;
 }
 }
 }

17.2.1.2.2.3 Opening Documents

The code snippets below (from the AutomateStyleVision example) show how two files are opened via two
separate methods assigned to two buttons in the user interface. Both methods use the same Application API
access mechanism: Documents.OpenDocument(string) .

The AutomateStyleVision example (see the file Form1.cs) is located in the C# subfolder of the API
Examples folder:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\StyleVision\2024\%APPNAME%>Examples

882

882

976

882

© 2017-2023 Altova GmbH

Application API 889Programmers' Reference

Altova StyleVision 2024 Professional Edition

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

Code snippet

 // Handler for the "Open OrgChart.pxf" button
 private void openOrgChart_Click(object sender, EventArgs e)
 {
 // Make sure there's a running StyleVision instance, and that it's visible
 StartStyleVision_Click(null, null);

 // Open a sample files installed with the product.
 StyleVision.Documents.OpenDocument(strExamplesFolder + "OrgChart.pxf");
 updateListBox();
 }

 // Handler for the "Open MultiFileOutput.sps" button
 private void openMultiFileOutput_Click(object sender, EventArgs e)
 {
 if (StyleVision == null)
 StartStyleVision_Click(null, null);

 // Open one of the sample files installed with the product.
 StyleVision.Documents.OpenDocument(strExamplesFolder + "MultiFileOutput.sps");
 updateListBox();
 }

The file opened last will be the active file.

17.2.1.2.2.4 Events

The code snippet below (from the AutomateStyleVision example) lists the code for two event handlers. The
AutomateStyleVision example (see the file Form1.cs) is located in the C# subfolder of the API Examples
folder:

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\StyleVision\2024\%APPNAME%>Examples

You can compile and run the project from within Visual Studio 2012/2013/2015/2017/2019/2022.

Code snippet

 delegate void addListBoxItem_delegate(string sText);
 // Called from the UI thread
 private void addListBoxItem(string sText)
 {
 listBoxMessages.Items.Add(sText);
 }

882

882

890 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 // Wrapper method to call UI control methods from a worker thread
 void syncWithUIthread(Control ctrl, addListBoxItem_delegate methodToInvoke, String
sText)
 {
 // Control.Invoke: Executes on the UI thread, but calling thread waits for
completion before continuing.
 // Control.BeginInvoke: Executes on the UI thread, and calling thread doesn't
wait for completion.
 if (ctrl.InvokeRequired)
 ctrl.BeginInvoke(methodToInvoke, new Object[] { sText });
 }

 // Event handler for OnDocumentClosed event
 private void handleOnDocumentClosed(StyleVisionLib.Document i_ipDocument)
 {
 String sText = "";

 if (i_ipDocument.Name.Length > 0)
 sText = "Document " + i_ipDocument.Name + " was closed!";

 // Synchronize the calling thread with the UI thread because
 // COM events are triggered from a working thread
 addListBoxItem_delegate methodToInvoke = new
addListBoxItem_delegate(addListBoxItem);
 // Call syncWithUIthread with the following arguments:
 // 1 - listBoxMessages - list box control to display messages from COM events
 // 2 - methodToInvoke - a C# delegate which points to the method which will be
called from the UI thread
 // 3 - sText - the text to be displayed in the list box
 syncWithUIthread(listBoxMessages, methodToInvoke, sText);
 }

 private void updateListBox()
 {
 // Iterate through all open documents
 listBoxMessages.Items.Clear();

 for (int i = 1; i <= StyleVision.Documents.Count; i++)
 {
 StyleVisionLib.Document doc = StyleVision.Documents[i];

 if (doc != null)
 {
 if (checkBoxEventOnOff.Checked)
 doc.OnDocumentClosed += new
StyleVisionLib._IDocumentEvents_OnDocumentClosedEventHandler(handleOnDocumentClosed);
 else
 doc.OnDocumentClosed -= new
StyleVisionLib._IDocumentEvents_OnDocumentClosedEventHandler(handleOnDocumentClosed);

 listBoxMessages.Items.Add(doc.Name);
 StyleVisionLib.SchemaSources sources = doc.SchemaSources;

© 2017-2023 Altova GmbH

Application API 891Programmers' Reference

Altova StyleVision 2024 Professional Edition

 for (int j = 1; j <= sources.Count; j++)
 {
 StyleVisionLib.SchemaSource source = sources[j];

 if (source != null)
 {
 listBoxMessages.Items.Add("\tSchema file name : " +
source.SchemaFileName + "\n");
 listBoxMessages.Items.Add("\tWorking XML file name : " +
source.WorkingXMLFileName + "\n");
 listBoxMessages.Items.Add("\tIs main schema source : " +
source.IsMainSchemaSource + "\tType name : " + source.TypeName + "\n");
 }
 }
 }
 }
 }

17.2.1.2.3 Java

The Application API can be accessed from Java code. To allow accessing the StyleVision automation server
directly from Java code, the libraries listed below must reside in the classpath. They are installed in the folder:
JavaAPI in the StyleVision application folder.

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers (AltovaAutomation_x64.dll in
the case of 64-bit versions)

· AltovaAutomation.jar: Java classes to access Altova automation servers
· StyleVisionAPI.jar: Java classes that wrap the StyleVision automation interface
· StyleVisionAPI_JavaDoc.zip: a Javadoc file containing help documentation for the Java API

Note: In order to use the Java API, the DLL and Jar files must be on the Java Classpath.

Example Java project
An example Java project is supplied with your product installation. You can test the Java project and modify
and use it as you like. For more details of the example Java project, see the section, Example Java Project .

Rules for mapping the Application API names to Java
The rules for mapping between the Application API and the Java wrapper are as follows:

· Classes and class names
For every interface of the StyleVision automation interface a Java class exists with the name of the
interface.

· Method names
Method names on the Java interface are the same as used on the COM interfaces but start with a
small letter to conform to Java naming conventions. To access COM properties, Java methods that
prefix the property name with get and set can be used. If a property does not support write-access, no
setter method is available. Example: For the Name property of the Document interface, the Java
methods getName and setName are available.

892

892 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Enumerations
For every enumeration defined in the automation interface, a Java enumeration is defined with the same
name and values.

· Events and event handlers
For every interface in the automation interface that supports events, a Java interface with the same
name plus 'Event' is available. To simplify the overloading of single events, a Java class with default
implementations for all events is provided. The name of this Java class is the name of the event
interface plus 'DefaultHandler'. For example:
Application: Java class to access the application
ApplicationEvents: Events interface for the Application
ApplicationEventsDefaultHandler: Default handler for ApplicationEvents

Exceptions to mapping rules
There are some exceptions to the rules listed above. These are listed below:

Interface Java name

Document, method SetEncoding setFileEncoding

AuthenticView, method Goto gotoElement

AuthenticRange, method Goto gotoElement

AuthenticRange, method Clone cloneRange

This section
This section explains how some basic StyleVision functionality can be accessed from Java code. It is
organized into the following sub-sections:

· Example Java Project
· Application Startup and Shutdown
· Simple Document Access
· Iterations
· Event Handlers

17.2.1.2.3.1 Example Java Proj ect

The StyleVision installation package contains an example Java project, located in the the API\Java subfolder
of the Examples folder :

Windows 7, Windows 8,
Windows 10, Windows 11

C:\Users\<username>\Documents\
Altova\StyleVision\2024\%APPNAME%>Examples

This folder contains Java examples for the StyleVision API. You can test it directly from the command line
using the batch file BuildAndRun.bat, or you can compile and run the example project from within Eclipse.
See below for instructions on how to use these procedures.

892

896

897

897

897

© 2017-2023 Altova GmbH

Application API 893Programmers' Reference

Altova StyleVision 2024 Professional Edition

File list
The Java examples folder contains all the files required to run the example project. These files are listed below.
If you are using a 64-bit version of the application, some filenames contain _x64 in the name. These filenames
are indicated with (_x64).

AltovaAutomation(_x64).dll Java-COM bridge: DLL part

AltovaAutomation.jar Java-COM bridge: Java library part

StyleVisionAPI.jar Java classes of the StyleVision API

RunStyleVision.java Java example source code

BuildAndRun.bat Batch file to compile and run example code from the command line prompt.
Expects folder where Java Virtual Machine resides as parameter.

.classpath Eclipse project helper file

.project Eclipse project file

StyleVision_JavaDoc.zip Javadoc file containing help documentation for the Java API

What the example does
The example starts up StyleVision and performs a few operations, including opening and closing documents.
When done, StyleVision stays open. You must close it manually.

· Start StyleVision : Starts StyleVision, which is registered as an automation server, or activates
StyleVision if it is already running.

· Open OrgChart.pxf : Locates one of the example documents installed with StyleVision and opens it.
· Iteration and Changing the View Mode : Shows how to iterate through open documents.
· Event Handling : Shows how to handle StyleVision events.
· Shut down StyleVision : Shuts down StyleVision.

You can modify the example in any way you like and run it.

Running the example from the command line
To run the example from the command line, open a command prompt window, go to the Java folder of the API
Examples folder (see above for location), and then type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

The Java binary folder must be that of a JDK 14 or later installation on your computer. Press the Return key.
The Java source in RunStyleVision.java will be compiled and then executed.

Loading the example in Eclipse
Open Eclipse and use the Import | Existing Projects into Workspace command to add the Eclipse project
file (.project) located in the Java folder of the API Examples folder (see above for location). The project

896

897

897

897

896

894 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

RunStyleVision will then appear in your Package Explorer or Navigator. Select the project and then the
command Run as | Java Application to execute the example.

Note: You can select a class name or method of the Java API and press F1 to get help for that class or
method.

Java source code listing
The Java source code in the example file RunStyleVision.java is listed below with comments.

01 // Access general JAVA-COM bridge classes
02 import com.altova.automation.libs.*;
03
04 // Access StyleVision Java-COM bridge
05 import com.altova.automation.StyleVision.*;
06 import com.altova.automation.StyleVision.Enums.ENUMApplicationStatus;
07
08 /**
09 * A simple example that starts the COM server and performs a View operations on it.
10 * Feel free to extend.
11 */
12 public class RunStyleVision
13 {
14 public static void main(String[] args)
15 {
16 // An instance of the application.
17 Application stylevision = null;
18
19 // Instead of COM error-handling, use Java exception mechanism.
20 try
21 {
22 // Start StyleVision as COM server.
23 stylevision = new Application();
24
25 ENUMApplicationStatus status = ENUMApplicationStatus.eApplicationRunning;
26 do{
27 // Check the application status
28 status = stylevision.getStatus();
29 System.out.println("status : " + status + "\n");
30 } while (status != ENUMApplicationStatus.eApplicationRunning);
31
32 // COM servers start up invisible, so we make the server visible
33 stylevision.setVisible(true);
34
35 // Locate samples installed with the product.
36 String strExamplesFolder = System.getenv("USERPROFILE") + "\\My Documents\\Altova\
\StyleVision2012\\StyleVisionExamples\\";
37
38 // Open two files from the product samples.
39 stylevision.getDocuments().openDocument(strExamplesFolder + "OrgChart.pxf");
40 stylevision.getDocuments().openDocument(strExamplesFolder +
"BiggestCitiesPerContinent.sps");
41
42 // Iterate through all open documents
43 for (Document doc:stylevision.getDocuments())

© 2017-2023 Altova GmbH

Application API 895Programmers' Reference

Altova StyleVision 2024 Professional Edition

44 {
45 System.out.println("Document name : " + doc.getName() + "\n");
46 SchemaSources sources = doc.getSchemaSources();
47
48 for (int i = 1; i <= sources.getCount(); i++)
49 {
50 SchemaSource source = sources.getItem(i);
51 System.out.println("\tSchema file name : " + source.getSchemaFileName() +
"\n");
52 System.out.println("\tWorking XML file name : " +
source.getWorkingXMLFileName() + "\n");
53 System.out.println("\tIs main schema source : " +
source.getIsMainSchemaSource() + "\tType name : " + source.getTypeName() + "\n");
54 }
55 }
56 // The following lines attach to the document events using a default
implementation
57 // for the events and override one of its methods.
58 // If you want to override all document events it is better to derive your
listener class
59 // from DocumentEvents and implement all methods of this interface.
60 Document doc = stylevision.getActiveDocument();
61 doc.addListener(new DocumentEventsDefaultHandler()
62 {
63 @Override
64 public void onDocumentClosed(Document i_ipDoc) throws AutomationException
65 {
66 System.out.println("Document " + i_ipDoc.getName() + " requested closing.");
67 }
68 });
69 doc.close();
70 doc = null;
71
72 System.out.println("Watch StyleVision!");
73 }
74 catch (AutomationException e)
75 {
76 e.printStackTrace();
77 }
78 finally
79 {
80 // Make sure that StyleVision can shut down properly.
81 if (stylevision != null)
82 stylevision.dispose();
83
84 // Since the COM server was made visible and still is visible, it will keep
running
85 // and needs to be closed manually.
86 System.out.println("Now close StyleVision!");
87 }
88 }
89 }

896 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.1.2.3.2 Application Startup and Shutdown

The code listings below show how the application can be started up and shut down.

Application startup
Before starting up the application, the appropriate classes must be imported (see below).

01 // Access general JAVA-COM bridge classes
02 import com.altova.automation.libs.*;
03
04 // Access StyleVision Java-COM bridge
05 import com.altova.automation.StyleVision.*;
06 import com.altova.automation.StyleVision.Enums.ENUMApplicationStatus;
07
08 /**
09 * A simple example that starts the COM server and performs a View operations on it.
10 * Feel free to extend.
11 */
12 public class RunStyleVision
13 {
14 public static void main(String[] args)
15 {
16 // An instance of the application.
17 Application stylevision = null;
18
19 // Instead of COM error-handling, use Java exception mechanism.
20 try
21 {
22 // Start StyleVision as COM server.
23 stylevision = new Application();
24
25 ENUMApplicationStatus status = ENUMApplicationStatus.eApplicationRunning;
26 do{
27 // Check the application status
28 status = stylevision.getStatus();
29 System.out.println("status : " + status + "\n");
30 } while (status != ENUMApplicationStatus.eApplicationRunning);
31
32 // COM servers start up invisible, so we make the server visible
33 stylevision.setVisible(true);
34
35 ...
36 }
37 }
38 }

Application shutdown
The application can be shut down as shown below.

1 {
2 // Make sure that StyleVision can shut down properly.
3 if (stylevision != null)

© 2017-2023 Altova GmbH

Application API 897Programmers' Reference

Altova StyleVision 2024 Professional Edition

4 stylevision.dispose();
5
6 // Since the COM server was made visible and still is visible, it will keep running
7 // and needs to be closed manually.
8 System.out.println("Now close StyleVision!");
9 }

17.2.1.2.3.3 Simple Document Access

The code listing below shows how to open a document.

1 // Locate samples installed with the product.
2 String strExamplesFolder = System.getenv("USERPROFILE") + "\\My Documents\\Altova\
\StyleVision2012\\StyleVisionExamples\\";
3
4 // We open two files form the product samples.
5 stylevision.getDocuments().openDocument(strExamplesFolder + "OrgChart.pxf");
6 stylevision.getDocuments().openDocument(strExamplesFolder +
"BiggestCitiesPerContinent.sps");

17.2.1.2.3.4 Iterations

The listing below shows how to iterate through open documents.

01 // Iterate through all open documents
02 for (Document doc:stylevision.getDocuments())
03 {
04 System.out.println("Document name : " + doc.getName() + "\n");
05 SchemaSources sources = doc.getSchemaSources();
06
07 for (int i = 1; i <= sources.getCount(); i++)
08 {
09 SchemaSource source = sources.getItem(i);
10 System.out.println("\tSchema file name : " + source.getSchemaFileName() +
"\n");
11 System.out.println("\tWorking XML file name : " + source.getWorkingXMLFileName()
+ "\n");
12 System.out.println("\tIs main schema source : " + source.getIsMainSchemaSource()
+ "\tType name : " + source.getTypeName() + "\n");
13 }
14 }

17.2.1.2.3.5 Event Handlers

The listing below shows how to listen for and use events.

898 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

01 // The following lines attach to the document events using a default implementation
02 // for the events and override one of its methods.
03 // If you want to override all document events it is better to derive your listener
class
04 // from DocumentEvents and implement all methods of this interface.
05 Document doc = stylevision.getActiveDocument();
06 doc.addListener(new DocumentEventsDefaultHandler()
07 {
08 @Override
09 public void onDocumentClosed(Document i_ipDoc) throws AutomationException
10 {
11 System.out.println("Document " + i_ipDoc.getName() + " requested closing.");
12 }
13 });
14 doc.close();
15 doc = null;

17.2.2 Interfaces

This chapter contains the reference of the StyleVision Type Library.

17.2.2.1 Application

Methods

Quit

Properties
Application
Parent

ActiveDocument
Documents

Status
MajorVersion
MinorVersion
Edition
IsAPISupported
ServicePackVersion

Description
Application is the root for all other objects. It is the only object you can create by CreateObject (VisualBasic) or
other similar COM related functions.

Example

Dim objSpy As Application

902

899

901

899

899

902

900

900

900

900

902

© 2017-2023 Altova GmbH

Application API 899Programmers' Reference

Altova StyleVision 2024 Professional Edition

Set objSpy = CreateObject("XMLSpy.Application")

17.2.2.1.1 Events

17.2.2.1.1.1 OnShutDown

Event: OnShutDown()

Description
Sent just before StyleVision shuts down.

17.2.2.1.2 ActiveDocument

Property: ActiveDocument as Document

Description
Reference to the active document. If no document is open, ActiveDocument is null (nothing).

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.3 Application

Property: Application as Application (read-only)

Description
Accesses the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.4 Documents

Property: Documents as Documents

Description
Collection of all open documents.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

961

898

974

900 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.1.5 Edition

Property: Edition as String

Description
Returns the edition of the application, for example Altova StyleVision Enterprise Edition for the
Enterprise edition.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.6 IsAPISupported

Property: IsAPISupported as Boolean

Description
Returns whether the API is supported in this version or not.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.7 MajorVersion

Property: MajorVersion as Integer

Description
Returns the application version's major number, for example 15 for 2013 versions, and 16 for 2014 versions..

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.8 MinorVersion

Property: MinorVersion as Integer

Description
Returns the application version's minor number.

Errors

© 2017-2023 Altova GmbH

Application API 901Programmers' Reference

Altova StyleVision 2024 Professional Edition

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.9 NewDocument

Method: NewDocument as Document

Return Value
None

Description
Creates a new empty document based on the previous template.

Errors

1000 The application object is invalid.

1005 Error when creating a new document

1006 Cannot create document

17.2.2.1.10 OpenDocument

Method: OpenDocument(strFileName as String) as Document

Return Value
None

Description
Opens an existing SPS file.

Errors

1000 The application object is invalid.

1002 Invalid file extension.

1003 Error when opening document.

1004 Cannot open document.

17.2.2.1.11 Parent

Property: Parent as Application (read-only)

Description
Accesses the StyleVision application object.

Errors

961

961

898

902 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.12 Quit

Method: Quit()

Return Value
None

Description
This method terminates StyleVision. All modified documents will be closed without saving the changes. This is
also true for an open project.

If StyleVision was automatically started as an automation server by a client program, the application will not
shut down automatically when your client program shuts down if a project or any document is still open. Use
the Quit method to ensure automatic shut-down.

Errors

1111 The application object is no longer valid.

17.2.2.1.13 ServicePackVersion

Property: ServicePackVersion as Long

Description
Returns the Service Pack version number of the application. Eg: 1 for 2010 R2 SP1

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.1.14 Status

Property: Status as ENUMApplicationStatus

Description
Returns the current status of the running application.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

996

© 2017-2023 Altova GmbH

Application API 903Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.1.15 Visible

Property: Visible as VARIANT_BOOL

Description
Sets or gets the visibility attribute of StyleVision.

Errors

1110 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.2 AppOutputLine

Represents a message line. Its structure is more detailed and can contain a collection of child lines, thereby
forming a tree of message lines.

Properties and Methods
Properties to navigate the object model:

Application
Parent

Line access:

GetLineSeverity
GetLineSymbol
GetLineText
GetLineTextEx
GetLineTextWithChildren
GetLineTextWithChildrenEx

A single AppOutputLine consists of one or more sub-lines.
Sub-line access:

GetLineCount

A sub-line consists of one or more cells.
Cell access:

GetCellCountInLine
GetCellIcon
GetCellSymbol
GetCellText
GetCellTextDecoration
GetIsCellText

Below an AppOutputLine there can be zero, one, or more child lines which themselves are of type
AppOutputLine, which thus form a tree structure.

904

908

906

907

907

907

907

908

906

904

905

907

905

905

905

904 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Child lines access:

ChildLines

17.2.2.2.1 Application

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.2 ChildLines

Property: ChildLines as AppOutputLines (read-only)

Description
Returns a collection of the current line's direct child lines.

Errors

4100 The application object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.3 GetCellCountInLine

Method: GetCellCountInLine (nLine as Long) as Long

Description
Gets the number of cells in the sub-line indicated by nLine in the current AppOutputLine.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

904

898

908

© 2017-2023 Altova GmbH

Application API 905Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.2.4 GetCellIcon

Method: GetCellIcon (nLine as Long, nCell as Long) as Long

Description
Gets the icon of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.5 GetCellSymbol

Method: GetCellSymbol (nLine as Long, nCell as Long) as AppOutputLineSymbol

Description
Gets the symbol of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.6 GetCellText

Method: GetCellText (nLine as Long, nCell as Long) as String

Description
Gets the text of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.7 GetCellTextDecoration

Method: GetCellTextDecoration (nLine as Long, nCell as Long) as Long

Description
Gets the decoration of the text cell indicated by nCell in the current AppOutputLine's sub-line indicated by
nLine.
It can be one of the ENUMAppOutputLine_TextDecoration values.

910

997

906 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.8 GetIsCellText

Method: GetIsCellText (nLine as Long, nCell as Long) as String

Description
Gets the text of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.9 GetLineCount

Method: GetLineCount () as Long

Description
Gets the number of sub-lines the current line consists of.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.10 GetLineSeverity

Method: GetLineSeverity () as Long

Description
Gets the severity of the line. It can be one of the ENUMAppOutputLine_Severity values:

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

996

© 2017-2023 Altova GmbH

Application API 907Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.2.11 GetLineSymbol

Method: GetLineSymbol () as AppOutputLineSymbol

Description
Gets the symbol assigned to the whole line.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.12 GetLineText

Method: GetLineText () as String

Description
Gets the contents of the line as text.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.13 GetLineTextEx

Method: GetLineTextEx (psTextPartSeperator as String, psLineSeperator as String) as String

Description
Gets the contents of the line as text using the specified part and line separators.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.14 GetLineTextWithChildren

Method: GetLineTextWithChildren () as String

Description
Gets the contents of the line including all child and descendant lines as text.

Errors

910

908 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.15 GetLineTextWithChildrenEx

Method: GetLineTextWithChildrenEx (psPartSep as String, psLineSep as String, psTabSep as String,
psItemSep as String) as String

Description
Gets the contents of the line including all child and descendant lines as text using the specified part, line, tab
and item separators.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.2.16 Parent

Property: Parent as AppOutputLines (read-only)

Description
The parent object according to the object model.

Errors

4100 The object is no longer valid.

4101 Invalid address for the return parameter was specified.

17.2.2.3 AppOutputLines

Represents a collection of AppOutputLine message lines.

Properties and Methods
Properties to navigate the object model:

Application
Parent

Iterating through the collection:

Count
Item

908

909

909

909

909

© 2017-2023 Altova GmbH

Application API 909Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.3.1 Application

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors

4000 The object is no longer valid.

4001 Invalid address for the return parameter was specified.

17.2.2.3.2 Count

Property: Count as Integer (read-only)

Description
Retrieves the number of lines in the collection.

Errors

4000 The object is no longer valid.

4001 Invalid address for the return parameter was specified.

17.2.2.3.3 Item

Property: Item (nIndex as Integer) as AppOutputLine (read-only)

Description
Retrieves the line at nIndex from the collection. Indices start with 1.

Errors

4000 The object is no longer valid.

4001 Invalid address for the return parameter was specified.

17.2.2.3.4 Parent

Property: Parent as AppOutputLine (read-only)

Description
The parent object according to the object model.

Errors

898

903

903

910 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

4000 The object is no longer valid.

4001 Invalid address for the return parameter was specified.

17.2.2.4 AppOutputLineSymbol

An AppOutputLineSymbol represents a link in an AppOutputLine message line which can be clicked in the
StyleVision Messages window. It is applied to a cell of an AppOutputLine or to the whole line itself.

Properties and Methods
Properties to navigate the object model:

Application
Parent

Access to AppOutputLineSymbol methods:

GetSymbolHREF
GetSymbolID
IsSymbolHREF

17.2.2.4.1 Application

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

17.2.2.4.2 GetSymbolHREF

Method: GetSymbolHREF () as String

Description
If the symbol is of type URL, returns the URL as a string.

Errors

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

.

910

911

910

911

911

898

© 2017-2023 Altova GmbH

Application API 911Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.4.3 GetSymbolID

Method: GetSymbolHREF () as Long

Description
Gets the ID of the symbol.

Errors

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

17.2.2.4.4 IsSymbolHREF

Method: IsSymbolHREF () as Boolean

Description
Indicates if the symbol is of kind URL.

Errors

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

17.2.2.4.5 Parent

Property: Parent as Application (read-only)

Description
The parent object according to the object model.

Errors

4200 The object is no longer valid.

4201 Invalid address for the return parameter was specified.

17.2.2.5 AuthenticContextMenu

The context menu interface provides the means for the user to customize the context menus shown in
Authentic. The interface has the methods listed in this section.

898

912 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.5.1 CountItems

Method: CountItems() nItems as long

Return Value
Returns the number of menu items.

Errors

2501 Invalid object.

17.2.2.5.2 DeleteItem

Method: DeleteItem(IndexPosition as long)

Return Value
Deletes the menu item that has the index position submitted in the first parameter.

Errors

2501 Invalid object

2502 Invalid index

17.2.2.5.3 GetItemText

Method: GetItemText(IndexPosition as long) MenuItemName as string

Return Value
Gets the name of the menu item located at the index position submitted in the first parameter.

Errors

2501 Invalid object

2502 Invalid index

17.2.2.5.4 InsertItem

Method: InsertItem(IndexPosition as long, MenuItemName as string, MacroName as string)

Return Value

© 2017-2023 Altova GmbH

Application API 913Programmers' Reference

Altova StyleVision 2024 Professional Edition

Inserts a user-defined menu item at the position in the menu specified in the first parameter and having the
name submitted in the second parameter. The menu item will start a macro, so a valid macro name must be
submitted.

Errors

2501 Invalid object

2502 Invalid index

2503 No such macro

2504 Internal error

17.2.2.5.5 SetItemText

Method: SetItemText(IndexPosition as long, MenuItemName as string)

Return Value
Sets the name of the menu item located at the index position submitted in the first parameter.

Errors

2501 Invalid object

2502 Invalid index

17.2.2.6 AuthenticEventContext

The EventContext interface gives access to many properties of the context in which a macro is executed.

17.2.2.6.1 EvaluateXPath

Method: EvaluateXPath (strExpression as string) as strValue as string

Return Value
The method evaluates the XPath expression in the context of the node within which the event was triggered and
returns a string.

Description
EvaluateXPath() executes an XPath expression with the given event context. The result is returned as a
string, in the case of a sequence it is a space-separated string.

Errors

2201 Invalid object.

2202 No context.

914 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2209 Invalid parameter.

2210 Internal error.

2211 XPath error.

17.2.2.6.2 GetEventContextType

Method: GetEventContextType () Type as AuthenticEventContextType enumeration

Return Value
Returns the context node type.

Description
GetEventContextType allows the user to determine whether the macro is in an XML node or in an XPath
atomic item context. The enumeration AuthenticEventContextType is defined as follows:

authenticEventContextXML,
authenticEventContextAtomicItem,
authenticEventContextOther

If the context is a normal XML node, the GetXMLNode() function gives access to it (returns NULL if not).

Errors

2201 Invalid object.

2202 No context.

2209 Invalid parameter.

17.2.2.6.3 GetNormalizedTextValue

Method: GetNormalizedTextValue() strValue as string

Return Value
Returns the value of the current node as string

Errors

2201 Invalid object.

2202 No context.

2203 Invalid context

2209 Invalid parameter.

© 2017-2023 Altova GmbH

Application API 915Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.6.4 GetVariableValue

Method: GetVariableValue(strName as string) strValue as string

Return Value
Gets the value of the variable submitted as the parameter.

Description
GetVariableValue gets the variable's value in the scope of the context.

nZoom = parseInt(AuthenticView.EventContext.GetVariableValue('Zoom'));
if (nZoom > 1)
{
 AuthenticView.EventContext.SetVariableValue('Zoom', nZoom - 1);
}

Errors

2201 Invalid object.

2202 No context.

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2209 Invalid parameter

17.2.2.6.5 GetXMLNode

Method: GetXMLNode() Node as XMLData object

Return Value
Returns the context XML node or NULL

Errors

2201 Invalid object.

2202 No context.

2203 Invalid context

2209 Invalid parameter.

916 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.6.6 IsAvailable

Method: IsAvailable() as Boolean

Return Value
Returns true if EventContext is set, false otherwise.

Errors

2201 Invalid object.

17.2.2.6.7 SetVariableValue

Method: SetVariableValue(strName as string, strValue as string)

Return Value
Sets the value (second parameter) of the variable submitted in the first parameter.

Description
SetVariableValue sets the variable's value in the scope of the context.

nZoom = parseInt(AuthenticView.EventContext.GetVariableValue('Zoom'));
if (nZoom > 1)
{
 AuthenticView.EventContext.SetVariableValue('Zoom', nZoom - 1);
}

Errors

2201 Invalid object.

2202 No context.

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2207 Variable read-only

2208 No modification allowed

17.2.2.7 AuthenticRange

The first table lists the properties and methods of AuthenticRange that can be used to navigate through the
document and select specific portions.

© 2017-2023 Altova GmbH

Application API 917Programmers' Reference

Altova StyleVision 2024 Professional Edition

Properties Methods

Application Clone MoveBegin

FirstTextPosition CollapsToBegin MoveEnd

FirstXMLData CollapsToEnd NextCursorPosition

FirstXMLDataOffset ExpandTo PreviousCursorPosition

LastTextPosition Goto Select

LastXMLData GotoNext SelectNext

LastXMLDataOffset GotoPrevious SelectPrevious

Parent IsEmpty SetFromRange

 IsEqual

The following table lists the content modification methods, most of which can be found on the right/button
mouse menu.

Properties Edit operations Dynamic table operations

Text Copy AppendRow

 Cut DeleteRow

 Delete DuplicateRow

 IsCopyEnabled InsertRow

 IsCutEnabled IsFirstRow

 IsDeleteEnabled IsInDynamicTable

 IsPasteEnabled IsLastRow

 Paste MoveRowDown

 MoveRowUp

The following methods provide the functionality of the Authentic entry helper windows for range objects.

Operations of the entry helper windows

 Elements Attributes Entities

CanPerformActionWith GetElementAttributeValu
e

GetEntityNames

CanPerformAction GetElementAttributeNam
es

InsertEntity

PerformAction GetElementHierarchy

 HasElementAttribute

 IsTextStateApplied

 SetElementAttributeValue

919 920 939

924 920 939

925 921 930

926 924

931

936 929 941

937 929 942

937 930 943

940 934 945

934

945 921 918

921 922

922 922

933 932

933 934

933 935

935 935

940 939

940

920

927 928

919

927

932

941 928

931

936

944

918 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Description
AuthenticRange objects are the 'cursor' selections of the automation interface. You can use them to point to
any cursor position in the Authentic view, or select a portion of the document. The operations available for
AuthenticRange objects then work on this selection in the same way, as the corresponding operations of the
user interface do with the current user interface selection. The main difference is that you can use an arbitrary
number of AuthenticRange objects at the same time, whereas there is exactly one cursor selection in the user
interface.

To get to an initial range object use AuthenticView.Selection , to obtain a range corresponding with the
current cursor selection in the user interface. Alternatively, some trivial ranges are accessible via the read/only
properties AuthenticView.DocumentBegin , AuthenticView.DocumentEnd , and
AuthenticView.WholeDocument . The most flexible method is AuthenticView.Goto , which allows
navigation to a specific portion of the document within one call. For more complex selections, combine the
above with the various navigation methods on range objects listed in the first table on this page.

Another method to select a portion of the document is to use the position properties of the range object. Two
positioning systems are available and can be combined arbitrarily:

· Absolute text cursor positions, starting with position 0 at the document beginning, can be set and
retrieved for the beginning and end of a range. For more information see FirstTextPosition and
LastTextPosition . This method requires complex internal calculations and should be used with
care.

· The XMLData element and a text position inside this element, can be set and retrieved for the

beginning and end of a range. For more information see FirstXMLData , FirstXMLDataOffset ,
LastXMLData , and LastXMLDataOffset . This method is very efficient but requires knowledge of
the underlying document structure. It can be used to locate XMLData objects and perform operations
on them otherwise not accessible through the user interface.

Modifications to the document content can be achieved by various methods:

· The Text property allows you to retrieve the document text selected by the range object. If set, the
selected document text gets replaced with the new text.

· The standard document edit functions Cut , Copy , Paste and Delete .
· Table operations for tables that can grow dynamically.
· Methods that map the functionality of the Authentic entry helper windows.
· Access to the XMLData objects of the underlying document to modify them directly.

17.2.2.7.1 AppendRow

Method: AppendRow()as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a new row at the end of the selected
table. The selection of the range is modified to point to the beginning of the new row. The function returns true if
the append operation was successful, otherwise false.

Errors

959

954 954

961 956

924

936

925 926

937 937

945

921 921 940 922

984

© 2017-2023 Altova GmbH

Application API 919Programmers' Reference

Altova StyleVision 2024 Professional Edition

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Append row at end of current dynamically growable table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.AppendRow
' objRange points to beginning of new row
objRange.Select

End If

17.2.2.7.2 Application

Property: Application as Application (read-only)

Description
Accesses the StyleVision application object.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.3 CanPerformAction

Method: CanPerformAction (eAction as SPYAuthenticActions , strElementName as String) as Boolean

Description
CanPerformAction and its related methods enable access to the entry-helper functions of Authentic. This
function allows easy and consistent modification of the document content, without having to know exactly
where the modification will take place. The beginning of the range object is used to locate the next valid
location where the specified action can be performed. If the location can be found, the method returns True,
otherwise it returns False.

HINT: To find out all valid element names for a given action, use CanPerformActionWith .

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

2007 Invalid action was specified.

898

998

920

920 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Examples
See PerformAction .

17.2.2.7.4 CanPerformActionWith

Method: CanPerformActionWith (eAction as SPYAuthenticActions , out_arrElementNames as Variant)

Description
PerformActionWith and its related methods, enable access to the entry-helper functions of Authentic. This
function allows easy and consistent modification of the document content without having to know exactly where
the modification will take place.

This method returns an array of those element names that the specified action can be performed with.

HINT: To apply the action use CanPerformActionWith .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

2007 Invalid action was specified.

Examples
See PerformAction .

17.2.2.7.5 Clone

Method: Clone() as AuthenticRange

Description
Returns a copy of the range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.6 CollapsToBegin

Method: CollapsToBegin() as AuthenticRange

Description
Sets the end of the range object to its begin. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

941

998

920

941

916

916

© 2017-2023 Altova GmbH

Application API 921Programmers' Reference

Altova StyleVision 2024 Professional Edition

2005 Invalid address for the return parameter was specified.

17.2.2.7.7 CollapsToEnd

Method: CollapsToEnd() as AuthenticRange

Description
Sets the beginning of the range object to its end. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.8 Copy

Method: Copy() as Boolean

Description
Returns False if the range contains no portions of the document that may be copied.
Returns True if text, and in case of fully selected XML elements the elements as well, has been copied to the
copy/paste buffer.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.9 Cut

Method: Cut() as Boolean

Description
Returns False if the range contains portions of the document that may not be deleted.
Returns True after text, and in case of fully selected XML elements the elements as well, has been deleted
from the document and saved in the copy/paste buffer.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

916

922 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.7.10 Delete

Method: Delete() as Boolean

Description
Returns False if the range contains portions of the document that may not be deleted.
Returns True after text, and in case of fully selected XML elements the elements as well, has been deleted
from the document.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.11 DeleteRow

Method: DeleteRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method deletes the selected row. The selection of
the range gets modified to point to the next element after the deleted row. The function returns true, if the delete
operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Delete selected row from dynamically growing table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we are in a table
If objRange.IsInDynamicTable Then

objRange.DeleteRow
End If

17.2.2.7.12 DuplicateRow

Method: DuplicateRow() as Boolean

Description

© 2017-2023 Altova GmbH

Application API 923Programmers' Reference

Altova StyleVision 2024 Professional Edition

If the beginning of the range is inside a dynamic table, this method inserts a duplicate of the current row after
the selected one. The selection of the range gets modified to point to the beginning of the new row. The function
returns true if the duplicate operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' duplicate row in current dynamically growable table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.DuplicateRow
' objRange points to beginning of new row
objRange.Select

End If

17.2.2.7.13 EvaluateXPath

Method: EvaluateXPath (strExpression as string) strValue as string

Return Value
The method returns a string

Description
EvaluateXPath() executes an XPath expression with the context node being the beginning of the range
selection. The result is returned as a string, in the case of a sequence it is a space-separated string. If XML
context node is irrelevant, the user may provide any node, like AuthenticView.XMLDataRoot.

Errors

2001 Invalid object

2005 Invalid parameter

2008 Internal error

2202 Missing context node

2211 XPath error

924 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.7.14 ExpandTo

Method: ExpandTo (eKind as SPYAuthenticElementKind), as AuthenticRange

Description
Selects the whole element of type eKind, that starts at, or contains, the first cursor position of the range. The
method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Range expansion would be beyond end of document.

2005 Invalid address for the return parameter was specified.

17.2.2.7.15 FirstTextPosition

Property: FirstTextPosition as Long

Description
Set or get the left-most text position index of the range object. This index is always less or equal to
LastTextPosition . Indexing starts with 0 at document beginning, and increments with every different position
that the text cursor can occupy. Incrementing the test position by 1, has the same effect as the cursor-right
key. Decrementing the test position by 1 has the same effect as the cursor-left key.

If you set FirstTextPosition to a value greater than the current LastTextPosition , LastTextPosition gets
set to the new FirstTextPosition.

HINT: Use text cursor positions with care, since this is a costly operation compared to XMLData based cursor
positioning.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid address for the return parameter was specified.

2006 A text position outside the document was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

nDocStartPosition = objAuthenticView.DocumentBegin.FirstTextPosition
nDocEndPosition = objAuthenticView.DocumentEnd.FirstTextPosition

' let's create a range that selects the whole document
' in an inefficient way

998 916

936

936 936

© 2017-2023 Altova GmbH

Application API 925Programmers' Reference

Altova StyleVision 2024 Professional Edition

Dim objRange
' we need to get a (any) range object first
Set objRange = objAuthenticView.DocumentBegin
objRange.FirstTextPosition = nDocStartPosition
objRange.LastTextPosition = nDocEndPosition

' let's check if we got it right
If objRange.isEqual(objAuthenticView.WholeDocument) Then

MsgBox "Test using direct text cursor positioning was ok"
Else

MsgBox "Ooops!"
End If

17.2.2.7.16 FirstXMLData

Property: FirstXMLData as XMLData

Description
Set or get the first XMLData element in the underlying document that is partially, or completely selected by the
range. The exact beginning of the selection is defined by the FirstXMLDataOffset attribute.

Whenever you set FirstXMLData to a new data object, FirstXMLDataOffset gets set to the first cursor
position inside this element. Only XMLData objects that have a cursor position may be used. If you set
FirstXMLData / FirstXMLDataOffset selects a position greater then the current LastXMLData /
LastXMLDataOffset , the latter gets moved to the new start position.

HINT: You can use the FirstXMLData and LastXMLData properties to directly access and manipulate the
underlying XML document in those cases where the methods available with the AuthenticRange object are
not sufficient.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid address for the return parameter was specified.

2008 Internal error

2009 The XMLData object cannot be accessed.

Examples
' ---
' Scripting environment - VBScript
' show name of currently selected XMLData element
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objXmlData
Set objXMLData = objAuthenticView.Selection.FirstXMLData
' authentic view adds a 'text' child element to elements
' of the document which have content. So we have to go one

984

926

926

926 937

937

925 937

916

926 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

' element up.
Set objXMLData = objXMLData.Parent
MsgBox "Current selection selects element " & objXMLData.Name

17.2.2.7.17 FirstXMLDataOffset

Property: FirstXMLDataOffset as Long

Description
Set or get the cursor position offset inside FirstXMLData element for the beginning of the range. Offset
positions are based on the characters returned by the Text property, and start with 0. When setting a new
offset, use -1 to set the offset to the last possible position in the element. The following cases require specific
attention:

· The textual form of entries in Combo Boxes, Check Boxes and similar controls can be different from what

you see on screen. Although the data offset is based on this text, there only two valid offset positions, one at
the beginning and one at the end of the entry. An attempt to set the offset to somewhere in the middle of the
entry, will result in the offset being set to the end.

· The textual form of XML Entities might differ in length from their representation on the screen. The offset is

based on this textual form.

If FirstXMLData / FirstXMLDataOffset selects a position after the current LastXMLData /
LastXMLDataOffset , the latter gets moved to the new start position.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid offset was specified.
Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Select the complete text of an XMLData element
' using XMLData based selection and ExpandTo
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' first we use the XMLData based range properties
' to select all text of the first XMLData element
' in the current selection
Dim objRange
Set objRange = objAuthenticView.Selection
objRange.FirstXMLDataOffset = 0 ' start at beginning of element text
objRange.LastXMLData = objRange.FirstXMLData ' select only one element
objRange.LastXMLDataOffset = -1 ' select till its end

' the same can be achieved with the ExpandTo method

925

945

926 937

937

© 2017-2023 Altova GmbH

Application API 927Programmers' Reference

Altova StyleVision 2024 Professional Edition

Dim objRange2
Set objRange2 = objAuthenticView.Selection.ExpandTo(spyAuthenticTag)

' were we successful?
If objRange.IsEqual(objRange2) Then

objRange.Select()
Else

MsgBox "Oops"
End If

17.2.2.7.18 GetElementAttributeNames

Method: GetElementAttributeNames (strElementName as String, out_arrAttributeNames as Variant)

Description
Retrieve the names of all attributes for the enclosing element with the specified name. Use the
element/attribute pairs, to set or get the attribute value with the methods GetElementAttributeValue and
SetElementAttributeValue .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid element name was specified.
Invalid address for the return parameter was specified.

Examples
See SetElementAttributeValue .

17.2.2.7.19 GetElementAttributeValue

Method: GetElementAttributeValue (strElementName as String, strAttributeName as String) as String

Description
Retrieve the value of the attribute specified in strAttributeName, for the element identified with strElementName.
If the attribute is supported but has no value assigned, the empty string is returned. To find out the names of
attributes supported by an element, use GetElementAttributeNames , or HasElementAttribute .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid element name was specified.
Invalid attribute name was specified.
Invalid address for the return parameter was specified.

Examples
See SetElementAttributeValue .

927

944

944

927 931

944

928 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.7.20 GetElementHierarchy

Method: GetElementHierarchy (out_arrElementNames as Variant)

Description
Retrieve the names of all XML elements that are parents of the current selection. Inner elements get listed
before enclosing elements. An empty list is returned whenever the current selection is not inside a single
XMLData element.

The names of the element hierarchy, together with the range object uniquely identify XMLData elements in the
document. The attributes of these elements can be directly accessed by GetElementAttributeNames , and
related methods.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.21 GetEntityNames

Method: GetEntityNames (out_arrEntityNames as Variant)

Description
Retrieve the names of all defined entities. The list of retrieved entities is independent of the current selection, or
location. Use one of these names with the InsertEntity function.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

Examples
See: GetElementHierarchy and InsertEntity .

17.2.2.7.22 GetVariableValue

Method: GetVariableValue(strName as string) strVal as string

Return Value
Gets the value of the variable named as the method's parameter.

Errors

2001 Invalid object.

2202 No context.

927

932

928 932

© 2017-2023 Altova GmbH

Application API 929Programmers' Reference

Altova StyleVision 2024 Professional Edition

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2209 Invalid parameter

17.2.2.7.23 Goto

Method: Goto (eKind as SPYAuthenticElementKind , nCount as Long, eFrom as
SPYAuthenticDocumentPosition) as AuthenticRange

Description
Sets the range to point to the beginning of the nCount element of type eKind. The start position is defined by
the parameter eFrom.

Use positive values for nCount to navigate to the document end. Use negative values to navigate to the
beginning of the document. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid start position specified.
Invalid address for the return parameter was specified.

17.2.2.7.24 GotoNext

Method: GotoNext (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Sets the range to the beginning of the next element of type eKind. The method returns the modified range
object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document word-by-word

998

998 916

998 916

930 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentBegin
Dim bEndOfDocument
bEndOfDocument = False

On Error Resume Next
While Not bEndOfDocument

objRange.GotoNext(spyAuthenticWord).Select
If ((Err.number - vbObjecterror) = 2003) Then

bEndOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

17.2.2.7.25 GotoNextCursorPosition

Method: GotoNextCursorPosition() as AuthenticRange

Description
Sets the range to the next cursor position after its current end position. Returns the modified object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2005 Invalid address for the return parameter was specified.

17.2.2.7.26 GotoPrevious

Method: GotoPrevious (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Sets the range to the beginning of the element of type eKind which is before the beginning of the current range.
The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

916

998 916

© 2017-2023 Altova GmbH

Application API 931Programmers' Reference

Altova StyleVision 2024 Professional Edition

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document tag-by-tag
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentEnd
Dim bBeginOfDocument
bBeginOfDocument = False

On Error Resume Next
While Not bBeginOfDocument

objRange.GotoPrevious(spyAuthenticTag).Select
If ((Err.number - vbObjecterror) = 2004) Then

bBeginOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

17.2.2.7.27 GotoPreviousCursorPosition

Method: GotoPreviousCursorPosition() as AuthenticRange

Description
Set the range to the cursor position immediately before the current position. Returns the modified object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2004 Target lies before begin of document.

2005 Invalid address for the return parameter was specified.

17.2.2.7.28 HasElementAttribute

Method: HasElementAttribute (strElementName as String, strAttributeName as String) as Boolean

Description
Tests if the enclosing element with name strElementName, supports the attribute specified in
strAttributeName.

Errors

2001 The authentic range object, or its related view object is no longer valid.

916

932 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2005 Invalid element name was specified.
Invalid address for the return parameter was specified.

17.2.2.7.29 InsertEntity

Method: InsertEntity (strEntityName as String)

Description
Replace the ranges selection with the specified entity. The specified entity must be one of the entity names
returned by GetEntityNames .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Unknown entry name was specified.

Examples
' ---
' Scripting environment - VBScript
' Insert the first entity in the list of available entities
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' first we get the names of all available entities as they
' are shown in the entry helper of XMLSpy
Dim arrEntities
objRange.GetEntityNames arrEntities

' we insert the first one of the list
If UBound(arrEntities) >= 0 Then

objRange.InsertEntity arrEntities(0)
Else

MsgBox "Sorry, no entities are available for this document"
End If

17.2.2.7.30 InsertRow

Method: InsertRow() as Boolean

Description
If the beginning of the range is inside a dynamic table, this method inserts a new row before the current one.
The selection of the range gets modified to point to the beginning of the newly inserted row. The function returns
true if the insert operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

928

© 2017-2023 Altova GmbH

Application API 933Programmers' Reference

Altova StyleVision 2024 Professional Edition

2005 Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Insert row at beginning of current dynamically growing table
' ---
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' check if we can insert something
If objRange.IsInDynamicTable Then

objRange.InsertRow
' objRange points to beginning of new row
objRange.Select

 End If

17.2.2.7.31 IsCopyEnabled

Property: IsCopyEnabled as Boolean (read-only)

Description
Checks if the copy operation is supported for this range.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.32 IsCutEnabled

Property: IsCutEnabled as Boolean (read-only)

Description
Checks if the cut operation is supported for this range.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.33 IsDeleteEnabled

Property: IsDeleteEnabled as Boolean (read-only)

Description
Checks if the delete operation is supported for this range.

934 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.34 IsEmpty

Method: IsEmpty() as Boolean

Description
Tests if the first and last position of the range are equal.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.35 IsEqual

Method: IsEqual (objCmpRange as AuthenticRange) as Boolean

Description
Tests if the start and end of both ranges are the same.

Errors

2001 One of the two range objects being compared, is invalid.

2005 Invalid address for a return parameter was specified.

17.2.2.7.36 IsFirstRow

Property: IsFirstRow as Boolean (read-only)

Description
Test if the range is in the first row of a table. Which table is taken into consideration depends on the extent of
the range. If the selection exceeds a single row of a table, the check is if this table is the first element in an
embedding table. See the entry helpers of the user manual for more information.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

916

© 2017-2023 Altova GmbH

Application API 935Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.7.37 IsInDynamicTable

Method: IsInDynamicTable() as Boolean

Description
Test if the whole range is inside a table that supports the different row operations like 'insert', 'append',
duplicate, etc.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.38 IsLastRow

Property: IsLastRow as Boolean (read-only)

Description
Test if the range is in the last row of a table. Which table is taken into consideration depends on the extent of
the range. If the selection exceeds a single row of a table, the check is if this table is the last element in an
embedding table. See the entry helpers of the user manual for more information.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.39 IsPasteEnabled

Property: IsPasteEnabled as Boolean (read-only)

Description
Checks if the paste operation is supported for this range.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.40 IsSelected

Property: IsSelected as Boolean

Description

936 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Returns true() if selection is present. The selection range still can be empty: that happens when e.g. only the
cursor is set.

17.2.2.7.41 IsTextStateApplied

Method: IsTextStateApplied (i_strElementName as String) as Boolean

Description
Checks if all the selected text is embedded into an XML Element with name i_strElementName. Common
examples for the parameter i_strElementName are "strong", "bold" or "italic".

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.42 LastTextPosition

Property: LastTextPosition as Long

Description
Set or get the rightmost text position index of the range object. This index is always greater or equal to
FirstTextPosition . Indexing starts with 0 at the document beginning, and increments with every different
position that the text cursor can occupy. Incrementing the test position by 1, has the same effect as the
cursor-right key. Decreasing the test position by 1 has the same effect as the cursor-left key.

If you set LastTextPosition to a value less then the current FirstTextPosition , FirstTextPosition gets set
to the new LastTextPosition.

HINT: Use text cursor positions with care, since this is a costly operation compared to XMLData based cursor
positioning.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid address for the return parameter was specified.

2006 A text position outside the document was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

nDocStartPosition = objAuthenticView.DocumentBegin.FirstTextPosition
nDocEndPosition = objAuthenticView.DocumentEnd.FirstTextPosition

924

924 924

© 2017-2023 Altova GmbH

Application API 937Programmers' Reference

Altova StyleVision 2024 Professional Edition

' let's create a range that selects the whole document
' in an inefficient way
Dim objRange
' we need to get a (any) range object first
Set objRange = objAuthenticView.DocumentBegin
objRange.FirstTextPosition = nDocStartPosition
objRange.LastTextPosition = nDocEndPosition

' let's check if we got it right
If objRange.isEqual(objAuthenticView.WholeDocument) Then

MsgBox "Test using direct text cursor positioning was ok"
Else

MsgBox "Oops!"
End If

17.2.2.7.43 LastXMLData

Property: LastXMLData as XMLData

Description
Set or get the last XMLData element in the underlying document that is partially or completely selected by the
range. The exact end of the selection is defined by the LastXMLDataOffset attribute.

Whenever you set LastXMLData to a new data object, LastXMLDataOffset gets set to the last cursor
position inside this element. Only XMLData objects that have a cursor position may be used. If you set
LastXMLData / LastXMLDataOffset , select a position less then the current FirstXMLData /
FirstXMLDataOffset , the latter gets moved to the new end position.

HINT: You can use the FirstXMLData and LastXMLData properties to directly access and manipulate the
underlying XML document in those cases, where the methods available with the AuthenticRange object are
not sufficient.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid address for the return parameter was specified.

2008 Internal error

2009 The XMLData object cannot be accessed.

17.2.2.7.44 LastXMLDataOffset

Property: LastXMLDataOffset as Long

Description
Set or get the cursor position inside LastXMLData element for the end of the range.

984

937

937

937 925

926

925 937

916

937

938 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Offset positions are based on the characters returned by the Text property and start with 0. When setting a
new offset, use -1 to set the offset to the last possible position in the element. The following cases require
specific attention:

· The textual form of entries in Combo Boxes, Check Boxes and similar controls can be different from what

you see on the screen. Although, the data offset is based on this text, there only two valid offset positions,
one at the beginning and one at the end of the entry. An attempt to set the offset to somewhere in the middle
of the entry, will result in the offset being set to the end.

· The textual form of XML Entities might differ in length from their representation on the screen. The offset is
based on this textual form.

If LastXMLData / LastXMLDataOffset selects a position before FirstXMLData / FirstXMLDataOffset
, the latter gets moved to the new end position.

Errors

2001 The authentic range object, or its related view object is not valid.

2005 Invalid offset was specified.
Invalid address for the return parameter was specified.

Examples
' ---
' Scripting environment - VBScript
' Select the complete text of an XMLData element
' using XMLData based selection and ExpandTo
' ---
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' first we use the XMLData based range properties
' to select all text of the first XMLData element
' in the current selection
Dim objRange
Set objRange = objAuthenticView.Selection
objRange.FirstXMLDataOffset = 0 ' start at beginning of element text
objRange.LastXMLData = objRange.FirstXMLData ' select only one element
objRange.LastXMLDataOffset = -1 ' select till its end

' the same can be achieved with the ExpandTo method
Dim objRange2
Set objRange2 = objAuthenticView.Selection.ExpandTo(spyAuthenticTag)

' were we successful?
If objRange.IsEqual(objRange2) Then

objRange.Select()
Else

MsgBox "Ooops"
End If

945

937 937 925 926

© 2017-2023 Altova GmbH

Application API 939Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.7.45 MoveBegin

Method: MoveBegin (eKind as SPYAuthenticElementKind , nCount as Long) as AuthenticRange

Description
Move the beginning of the range to the beginning of the nCount element of type eKind. Counting starts at the
current beginning of the range object.

Use positive numbers for nCount to move towards the document end, use negative numbers to move towards
document beginning. The end of the range stays unmoved, unless the new beginning would be larger than it. In
this case, the end is moved to the new beginning. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

17.2.2.7.46 MoveEnd

Method: MoveEnd (eKind as SPYAuthenticElementKind , nCount as Long) as AuthenticRange

Description
Move the end of the range to the begin of the nCount element of type eKind. Counting starts at the current end
of the range object.

Use positive numbers for nCount to move towards the document end, use negative numbers to move towards
document beginning. The beginning of the range stays unmoved, unless the new end would be less than it. In
this case, the beginning gets moved to the new end. The method returns the modified range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

17.2.2.7.47 MoveRowDown

Method: MoveRowDown() as Boolean

Description

998 916

998 916

940 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If the beginning of the range is inside a dynamic table and selects a row which is not the last row in this table,
this method swaps this row with the row immediately below. The selection of the range moves with the row, but
does not otherwise change. The function returns true if the move operation was successful, otherwise false.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.48 MoveRowUp

Method: MoveRowUp() as Boolean

Description
If the beginning of the range is inside a dynamic table and selects a row which is not the first row in this table,
this method swaps this row with the row above. The selection of the range moves with the row, but does not
change otherwise. The function returns true if the move operation was successful, otherwise false.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.49 Parent

Property: Parent as AuthenticView (read-only)

Description
Access the view that owns this range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.7.50 Paste

Method: Paste() as Boolean

Description
Returns False if the copy/paste buffer is empty, or its content cannot replace the current selection.

Otherwise, deletes the current selection, inserts the content of the copy/paste buffer, and returns True.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

946

© 2017-2023 Altova GmbH

Application API 941Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.7.51 PerformAction

Method: PerformAction (eAction as SPYAuthenticActions , strElementName as String) as Boolean

Description
PerformAction and its related methods, give access to the entry-helper functions of Authentic. This function
allows easy and consistent modification of the document content without a need to know exactly where the
modification will take place. The beginning of the range object is used to locate the next valid location where
the specified action can be performed. If no such location can be found, the method returns False. Otherwise,
the document gets modified and the range points to the beginning of the modification.

HINT: To find out element names that can be passed as the second parameter use CanPerformActionWith .

Errors

2001 The authentic range object, or its related view object is no longer valid.

2005 Invalid address for the return parameter was specified.

2007 Invalid action was specified.

Examples
' --
' Scripting environment - VBScript
' Insert the innermost element
' --
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' we determine the elements that can be inserted at the current position
Dim arrElements()
objRange.CanPerformActionWith spyAuthenticInsertBefore, arrElements

' we insert the first (innermost) element
If UBound(arrElements) >= 0 Then

objRange.PerformAction spyAuthenticInsertBefore, arrElements(0)
' objRange now points to the beginning of the inserted element
' we set a default value and position at its end
objRange.Text = "Hello"
objRange.ExpandTo(spyAuthenticTag).CollapsToEnd().Select

Else
MsgBox "Can't insert any elements at current position"

End If

17.2.2.7.52 Select

Method: Select()

Description

998

920

942 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Makes this range the current user interface selection. You can achieve the same result using:
'objRange.Parent.Selection = objRange'

Errors

2001 The authentic range object or its related view object is no longer valid.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' set current selection to end of document
objAuthenticView.DocumentEnd.Select()

17.2.2.7.53 SelectNext

Method: SelectNext (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Selects the element of type eKind after the current end of the range. The method returns the modified range
object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2003 Target lies after end of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document word-by-word
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentBegin
Dim bEndOfDocument
bEndOfDocument = False

On Error Resume Next
While Not bEndOfDocument

objRange.SelectNext(spyAuthenticWord).Select
If ((Err.number - vbObjecterror) = 2003) Then

998 916

© 2017-2023 Altova GmbH

Application API 943Programmers' Reference

Altova StyleVision 2024 Professional Edition

bEndOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

17.2.2.7.54 SelectPrevious

Method: GotoPrevious (eKind as SPYAuthenticElementKind) as AuthenticRange

Description
Selects the element of type eKind before the current beginning of the range. The method returns the modified
range object.

Errors

2001 The authentic range object, or its related view object is no longer valid.

2004 Target lies before begin of document.

2005 Invalid element kind specified.
Invalid address for the return parameter was specified.

Examples
' --
' Scripting environment - VBScript
' Scan through the whole document tag-by-tag
' --
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

Dim objRange
Set objRange = objAuthenticView.DocumentEnd
Dim bBeginOfDocument
bBeginOfDocument = False

On Error Resume Next
While Not bBeginOfDocument

objRange.SelectPrevious(spyAuthenticTag).Select
If ((Err.number - vbObjecterror) = 2004) Then

bBeginOfDocument = True
Err.Clear

ElseIf (Err.number <> 0) Then
Err.Raise ' forward error

End If
Wend

998 916

944 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.7.55 SetElementAttributeValue

Method: SetElementAttributeValue (strElementName as String, strAttributeName as String, strAttributeValue
as String)

Description
Set the value of the attribute specified in strAttributeName for the element identified with strElementName. If the
attribute is supported but has no value assigned, the empty string is returned. To find out the names of
attributes supported by an element, use GetElementAttributeNames , or HasElementAttribute .

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid element name was specified.
Invalid attribute name was specified.
Invalid attribute value was specified.

Examples
' --
' Scripting environment - VBScript
' Get and set element attributes
' --
Dim objRange
' we assume that the active document is open in authentic view mode
Set objRange = Application.ActiveDocument.AuthenticView.Selection

' first we find out all the elements below the beginning of the range
Dim arrElements
objRange.GetElementHierarchy arrElements

If IsArray(arrElements) Then
If UBound(arrElements) >= 0 Then

' we use the top level element and find out its valid attributes
Dim arrAttrs()
objRange.GetElementAttributeNames arrElements(0), arrAttrs

If UBound(arrAttrs) >= 0 Then
' we retrieve the current value of the first valid attribute
Dim strAttrVal
strAttrVal = objRange.GetElementAttributeValue (arrElements(0), arrAttrs(0))
msgbox "current value of " & arrElements(0) & "//" & arrAttrs(0) & " is: " & strAttrVal

' we change this value and read it again
strAttrVal = "Hello"
objRange.SetElementAttributeValue arrElements(0), arrAttrs(0), strAttrVal
strAttrVal = objRange.GetElementAttributeValue (arrElements(0), arrAttrs(0))
msgbox "new value of " & arrElements(0) & "//" & arrAttrs(0) & " is: " & strAttrVal

End If
End If

End If

927 931

© 2017-2023 Altova GmbH

Application API 945Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.7.56 SetFromRange

Method: SetFromRange (objSrcRange as AuthenticRange)

Description
Sets the range object to the same beginning and end positions as objSrcRange.

Errors

2001 One of the two range objects, is invalid.

2005 Null object was specified as source object.

17.2.2.7.57 SetVariableValue

Method: SetVariableValue(strName as string, strValue as string)

Return Value
Sets the value (second parameter) of the variable named in the first parameter.

Errors

2201 Invalid object.

2202 No context.

2204 No such variable in scope

2205 Variable cannot be evaluated

2206 Variable returns sequence

2207 Variable read-only

2208 No modification allowed

17.2.2.7.58 Text

Property: Text as String

Description
Set or get the textual content selected by the range object.

The number of characters retrieved are not necessarily identical, as there are text cursor positions between the
beginning and end of the selected range. Most document elements support an end cursor position different to
the beginning cursor position of the following element. Drop-down lists maintain only one cursor position, but
can select strings of any length. In the case of radio buttons and check boxes, the text property value holds the
string of the corresponding XML element.

916

946 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If the range selects more then one element, the text is the concatenation of the single texts. XML entities are
expanded so that '&' is expected as '&'.

Setting the text to the empty string, does not delete any XML elements. Use Cut , Delete or
PerformAction instead.

Errors

2001 The authentic range object or its related view object is no longer valid.

2005 Invalid address for a return parameter was specified.

17.2.2.8 AuthenticView

Properties Methods Events

Application Goto OnBeforeCopy

AsXMLString IsRedoEnabled OnBeforeCut

DocumentBegin IsUndoEnabled OnBeforeDelete

DocumentEnd Print OnBeforeDrop

Event Redo OnBeforePaste

MarkupVisibility Undo

Parent UpdateXMLInstanceEntities

Selection OnMouseEvent

XMLDataRoot OnSelectionChanged

WholeDocument

Description
AuthenticView and its child objects AuthenticRange and AuthenticDataTransfer provide you

with an interface for Authentic View, which allow easy and consistent modification of
document contents. These interfaces replace the following interfaces which are marked now
as obsolete:

OldAuthenticView (old name was DocEditView)
AuthenticSelection (old name was DocEditSelection, superseded by AuthenticRange)
AuthenticEvent (old name was DocEditEvent)

AuthenticView gives you easy access to specific features such as printing, the multi-level undo buffer, and the
current cursor selection, or position.

AuthenticView uses objects of type AuthenticRange to make navigation inside the document straight-
forward, and to allow for the flexible selection of logical text elements. Use the properties DocumentBegin ,
DocumentEnd , or WholeDocument for simple selections, while using the Goto method for more
complex selections. To navigate relative to a given document range, see the methods and properties of the
AuthenticRange object.

921 922

941

952 956 947

952 957 947

954 957 947

954 958 948

955 959 948

958 960

958 960

959 949

961 950

961

916

916

916

954

954 961 956

916

© 2017-2023 Altova GmbH

Application API 947Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.8.1 Events

17.2.2.8.1.1 OnBeforeCopy

Event: OnBeforeCopy() as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforeCopy()

' On_AuthenticBeforeCopy = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeCopy()
{

// return false; /* to disable operation */
}

17.2.2.8.1.2 OnBeforeCut

Event: OnBeforeCut() as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforeCut()

' On_AuthenticBeforeCut = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeCut()
{

// return false; /* to disable operation */
}

17.2.2.8.1.3 OnBeforeDelete

Event: OnBeforeDelete() as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforeDelete()

' On_AuthenticBeforeDelete = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeDelete()
{

// return false; /* to disable operation */
}

948 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.8.1.4 OnBeforeDrop

Event: OnBeforeDrop (i_nXPos as Long, i_nYPos as Long, i_ipRange as AuthenticRange , i_ipData as
cancelBoolean

Scripting environment - VBScript:
Function On_AuthenticBeforeDrop(nXPos, nYPos, objRange, objData)

' On_AuthenticBeforeDrop = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforeDrop(nXPos, nYPos, objRange, objData)
{

// return false; /* to disable operation */
}

Description
This event gets triggered whenever a previously dragged object gets dropped inside the application window. All
event related information gets passed as parameters.

The first two parameters specify the mouse position at the time when the event occurred. The parameter
objRange passes a range object that selects the XML element below the mouse position. The value of this
parameter might be NULL. Be sure to check before you access the range object. The parameter objData allows
to access information about the object being dragged.

Return False to cancel the drop operation. Return True (or nothing) to continue normal operation.

17.2.2.8.1.5 OnBeforePaste

Event: OnBeforePaste (objData as Variant, strType as String) as Boolean

Scripting environment - VBScript:
Function On_AuthenticBeforePaste(objData, strType)

' On_AuthenticBeforePaste = False ' to disable operation
End Function

Scripting environment - JScript:
function On_AuthenticBeforePaste(objData, strType)
{

// return false; /* to disable operation */
}

Description
This event gets triggered before a paste operation gets performed on the document. The parameter strType is
one of "TEXT", "UNICODETEXT" or "IUNKNOWN". In the first two cases objData contains a string
representation of the object that will be pasted. In the later case, objData contains a pointer to an IUnknown
COM interface.

Return True (or nothing) to allow paste operation. Return False to disable operation.

916

© 2017-2023 Altova GmbH

Application API 949Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.8.1.6 OnBeforeSave

Event: OnBeforeSave (SaveAs flag) as Boolean

Description: OnBeforeSave gives the opportunity to e.g. warn the user about overwriting the existing XML
document, or to make the document read-only when specific circumstances are not met. The event will be fired
before the file dialog is shown. (Please note, that the event fires when saving the XML document, and not when
saving the SPS design in StyleVision.)

17.2.2.8.1.7 OnLoad

Event: OnLoad ()

Description: OnLoad can be used e.g. to restrict some AuthenticView functionality, as shown in the example
below:

function On_AuthenticLoad()
{
 // We are disabling all entry helpers in order to prevent user from manipulating XML tree
 AuthenticView.DisableElementEntryHelper();
 AuthenticView.DisableAttributeEntryHelper();

 // We are also disabling the markup buttons for the same purpose
 AuthenticView.SetToolbarButtonState('AuthenticMarkupSmall', authenticToolbarButtonDisabled);
 AuthenticView.SetToolbarButtonState('AuthenticMarkupLarge', authenticToolbarButtonDisabled);
 AuthenticView.SetToolbarButtonState('AuthenticMarkupMixed', authenticToolbarButtonDisabled);
}

In the example the status of the Markup Small, Markup Large, Markup Mixed toolbar buttons are manipulated
with the help of button identifiers. See complete list .

17.2.2.8.1.8 OnMouseEvent

Event: OnMouseEvent (nXPos as Long, nYPos as Long, eMouseEvent as SPYMouseEvent , objRange as
AuthenticRange) as Boolean

Scripting environment - VBScript:
Function On_AuthenticMouseEvent(nXPos, nYPos, eMouseEvent, objRange)

' On_AuthenticMouseEvent = True ' to cancel bubbling of event
End Function

Scripting environment - JScript:
function On_AuthenticMouseEvent(nXPos, nYPos, eMouseEvent, objRange)
{

// return true; /* to cancel bubbling of event */
}

950

999

916

950 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Description
This event gets triggered for every mouse movement and mouse button Windows message.

The actual message type and the mouse buttons status, is available in the eMouseEvent parameter. Use the
bit-masks defined in the enumeration datatype SPYMouseEvent to test for the different messages, button
status, and their combinations.

The parameter objRange identifies the part of the document found at the current mouse cursor position. The
range object always selects a complete tag of the document. (This might change in future versions, when a
more precise positioning mechanism becomes available). If no selectable part of the document is found at the
current position, the range object is null.

17.2.2.8.1.9 OnSelectionChanged

Event: OnSelectionChanged (objNewSelection as AuthenticRange)

Scripting environment - VBScript:
Function On_AuthenticSelectionChanged (objNewSelection)
End Function

Scripting environment - JScript:
function On_AuthenticSelectionChanged (objNewSelection)
{
}

Description
This event gets triggered whenever the selection in the user interface changes.

17.2.2.8.1.10 OnToolbarButtonClicked

Event: OnToolbarButtonClicked (Button identifier)

Description: OnToolbarButtonClicked is fired when a toolbar button was clicked by user. The parameter
button identifier helps to determine which button was clicked. The list of predefined button identifiers is below:

· AuthenticPrint
· AuthenticPrintPreview
· AuthenticUndo
· AuthenticRedo
· AuthenticCut
· AuthenticCopy
· AuthenticPaste
· AuthenticClear
· AuthenticMarkupHide
· AuthenticMarkupLarge
· AuthenticMarkupMixed
· AuthenticMarkupSmall
· AuthenticValidate
· AuthenticChangeWorkingDBXMLCell
· AuthenticSave

999

916

© 2017-2023 Altova GmbH

Application API 951Programmers' Reference

Altova StyleVision 2024 Professional Edition

· AuthenticSaveAs
· AuthenticReload
· AuthenticTableInsertRow
· AuthenticTableAppendRow
· AuthenticTableDeleteRow
· AuthenticTableInsertCol
· AuthenticTableAppendCol
· AuthenticTableDeleteCol
· AuthenticTableJoinCellRight
· AuthenticTableJoinCellLeft
· AuthenticTableJoinCellAbove
· AuthenticTableJoinCellBelow
· AuthenticTableSplitCellHorizontally
· AuthenticTableSplitCellVertically
· AuthenticTableAlignCellContentTop
· AuthenticTableCenterCellVertically
· AuthenticTableAlignCellContentBottom
· AuthenticTableAlignCellContentLeft
· AuthenticTableCenterCellContent
· AuthenticTableAlignCellContentRight
· AuthenticTableJustifyCellContent
· AuthenticTableInsertTable
· AuthenticTableDeleteTable
· AuthenticTableProperties
· AuthenticAppendRow
· AuthenticInsertRow
· AuthenticDuplicateRow
· AuthenticMoveRowUp
· AuthenticMoveRowDown
· AuthenticDeleteRow
· AuthenticDefineEntities
· AuthenticXMLSignature

For custom buttons the user might add his own identifiers. Please, note that the user must take care, as the
identifiers are not checked for uniqueness. The same identifiers can be used to identify buttons in the
Set/GetToolbarState() COM API calls. By adding code for different buttons, the user is in the position to
completely redefine the AuthenticView toolbar behavior, adding own methods for table manipulation, etc.

17.2.2.8.1.11 OnToolbarButtonExecuted

Event: OnToolbarButtonExecuted (Button identifier)

Description: OnToolbarButtonClicked is fired when a toolbar button was clicked by user. The parameter
button identifier helps to determine which button was clicked. See the list of predefined button identifiers .

OnToolbarButtonExecuted is fired after the toolbar action was executed. It is useful e.g. to add update code,
as shown in the example below:

//event fired when a toolbar button action was executed
function On_AuthenticToolbarButtonExecuted(varBtnIdentifier)
{

950

952 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 // After whatever command user has executed - make sure to update toolbar button states
 UpdateOwnToolbarButtonStates();
}

In this case UpdateOwnToolbarButtonStates is a user function defined in the Global Declarations.

17.2.2.8.1.12 OnUserAddedXMLNode

Event: OnUserAddedXMLNode (XML node)

Description: OnUserAddedXMLNode will be fired when the user adds an XML node as a primary action. This
happens in the situations, where the user clicks on

· auto-add hyperlinks (see example OnUserAddedXMLNode.sps)
· the Insert…, Insert After…, Insert Before… context menu items
· Append row, Insert row toolbar buttons
· Insert After…, Insert Before… actions in element entry helper (outside StyleVision)

The event doesn’t get fired on Duplicate row, or when the node was added externally (e.g. via COM API), or on
Apply (e.g. Text State Icons), or when in XML table operations or in DB operations.

The event parameter is the XML node object, which was added giving the user an opportunity to manipulate the
XML node added. An elaborate example for an event handler can be found in the OnUserAddedXMLNode.sps file.

17.2.2.8.2 Application

Property: Application as Application (read-only)

Description
Accesses the StyleVision application object.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.3 AsXMLString

Property: AsXMLString as String

Description
Returns or sets the document content as an XML string. Setting the content to a new value does not change
the schema file or sps file in use. If the new XMLString does not match the actual schema file error 2011 gets
returned.

Errors

2000 The authentic view object is no longer valid.

898

© 2017-2023 Altova GmbH

Application API 953Programmers' Reference

Altova StyleVision 2024 Professional Edition

2011 AsXMLString was set to a value which is no valid XML for the current
schema file.

17.2.2.8.4 ContextMenu

Property: ContextMenu() as ContextMenu

Description
The property ContextMenu gives access to customize the context menu. The best place to do it is in the event
handler OnContextMenuActivated.

Errors

2000 Invalid object.

2005 Invalid parameter.

17.2.2.8.5 CreateXMLNode

Method: CreateXMLNode (nKind as SPYXMLDataKind) as XMLData

Return Value
The method returns the new XMLData object.

Description
To create a new XMLData object use the CreateXMLNode() method.

Errors

2000 Invalid object.

2012 Cannot create XML node.

17.2.2.8.6 DisableAttributeEntryHelper

Method: DisableAttributeEntryHelper()

Description
DisableAttributeEntryHelper() disables the attribute entry helper in XMLSpy, Authentic Desktop and Authentic
Browser plug-in.

Errors

2000 Invalid object.

1001 984

984

954 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.8.7 DisableElementEntryHelper

Method: DisableElementEntryHelper()

Description
DisableElementEntryHelper() disables the element entry helper in XMLSpy, Authentic Desktop and Authentic
Browser plug-in.

Errors

2000 Invalid object.

17.2.2.8.8 DisableEntityEntryHelper

Method: DisableEntityEntryHelper()

Description
DisableEntityEntryHelper() disables the entity entry helper in XMLSpy, Authentic Desktop and Authentic
Browser plug-in.

Errors

2000 Invalid object.

17.2.2.8.9 DocumentBegin

Property: DocumentBegin as AuthenticRange (read-only)

Description
Retrieve a range object that points to the beginning of the document.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.10 DocumentEnd

Property: DocumentEnd as AuthenticRange (read-only)

Description
Retrieve a range object that points to the end of the document.

Errors

2000 The authentic view object is no longer valid.

916

916

© 2017-2023 Altova GmbH

Application API 955Programmers' Reference

Altova StyleVision 2024 Professional Edition

2005 Invalid address for the return parameter was specified.

17.2.2.8.11 DoNotPerformStandardAction

Method: DoNotPerformStandardAction ()

Description
DoNotPerformStandardAction() serves as cancel bubble for macros, and stops further execution after macro
has finished.

Errors

2000 Invalid object.

17.2.2.8.12 EvaluateXPath

Method: EvaluateXPath (XMLData as XMLData , strExpression as string) strValue as string

Return Value
The method returns a string

Description
EvaluateXPath() executes an XPath expression with the given XML context node. The result is returned as a
string, in the case of a sequence it is a space-separated string.

Errors

2000 Invalid object.

2005 Invalid parameter.

2008 Internal error.

2013 XPath error.

17.2.2.8.13 Event

Property: Event as AuthenticEvent (read-only)

Description
This property gives access to parameters of the last event in the same way as OldAuthenticView.event does.
Since all events for the scripting environment and external clients are now available with parameters this Event
property should only be used from within IDE-Plugins.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

984

956 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.8.14 EventContext

Property: EventContext() as EventContext

Description
EventContext property gives access to the running macros context. See the EventContext interface
description for more details.

Errors

2000 Invalid object.

17.2.2.8.15 GetToolbarButtonState

Method: GetToolbarButtonState (ButtonIdentifier as string) as AuthenticToolbarButtonState

Return Value
The method returns AuthenticToolbarButtonState

Description
Get/SetToolbarButtonState queries the status of a toolbar button, and lets the user disable or enable the
button, identified via its button identifier (see list above). One usage is to disable toolbar buttons
permanently. Another usage is to put SetToolbarButtonState in the OnSelectionChanged event handler, as
toolbar buttons are updated regularly when the selection changes in the document.

Toolbar button states are given by the listed enumerations .

The default state means that the enable/disable of the button is governed by AuthenticView. When the user
sets the button state to enable or disable, the button remains in that state as long as the user does not change
it.

Errors

2000 Invalid object.

2005 Invalid parameter.

2008 Internal error.

2014 Invalid button identifier.

17.2.2.8.16 Goto

Method: Goto (eKind as SPYAuthenticElementKind , nCount as Long, eFrom as
SPYAuthenticDocumentPosition) as AuthenticRange

Description

913

950

999

998

998 916

© 2017-2023 Altova GmbH

Application API 957Programmers' Reference

Altova StyleVision 2024 Professional Edition

Retrieve a range object that points to the beginning of the nCount element of type eKind. The start position is
defined by the parameter eFrom. Use positive values for nCount to navigate to the document end. Use negative
values to navigate towards the beginning of the document.

Errors

2000 The authentic view object is no longer valid.

2003 Target lies after end of document.

2004 Target lies before beginning of document.

2005 Invalid element kind specified.
The document position to start from is not one of spyAuthenticDocumentBegin
or spyAuthenticDocumentEnd.
Invalid address for the return parameter was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

On Error Resume Next
Dim objRange
' goto beginning of first table in document
Set objRange = objAuthenticView.Goto (spyAuthenticTable, 1, spyAuthenticDocumentBegin)
If (Err.number = 0) Then

objRange.Select()
Else

MsgBox "No table found in document"
End If

17.2.2.8.17 IsRedoEnabled

Property: IsRedoEnabled as Boolean (read-only)

Description
True if redo steps are available and Redo is possible.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.18 IsUndoEnabled

Property: IsUndoEnabled as Boolean (read-only)

959

958 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Description
True if undo steps are available and Undo is possible.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.19 MarkupVisibility

Property: MarkupVisibility as SPYAuthenticMarkupVisibility

Description
Set or get current visibility of markup.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid enumeration value was specified.
Invalid address for the return parameter was specified.

17.2.2.8.20 Parent

Property: Parent as Document (read-only)

Description
Access the document shown in this view.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.21 Print

Method: Print (bWithPreview as Boolean, bPromptUser as Boolean)

Description
Print the document shown in this view. If bWithPreview is set to True, the print preview dialog pops up. If
bPromptUser is set to True, the print dialog pops up. If both parameters are set to False, the document gets
printed without further user interaction.

Errors

2000 The authentic view object is no longer valid.

960

999

961

© 2017-2023 Altova GmbH

Application API 959Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.8.22 Redo

Method: Redo() as Boolean

Description
Redo the modification undone by the last undo command.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.23 Selection

Property: Selection as AuthenticRange

Description
Set or get current text selection in user interface.

Errors

2000 The authentic view object is no longer valid.

2002 No cursor selection is active.

2005 Invalid address for the return parameter was specified.

Examples
' ---------------------------------------
' Scripting environment - VBScript
' ---------------------------------------
Dim objAuthenticView
' we assume that the active document is open in authentic view mode
Set objAuthenticView = Application.ActiveDocument.AuthenticView

' if we are the end of the document, re-start at the beginning
If (objAuthenticView.Selection.IsEqual(objAuthenticView.DocumentEnd)) Then

objAuthenticView.Selection = objAuthenticView.DocumentBegin
Else

' objAuthenticView.Selection = objAuthenticView.Selection.GotoNextCursorPosition()
' or shorter:
 objAuthenticView.Selection.GotoNextCursorPosition().Select

End If

17.2.2.8.24 SetToolbarButtonState

Method: SetToolbarButtonState (ButtonIdentifier as string, AuthenticToolbarButtonState state)

Description

916

960 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Get/SetToolbarButtonState queries the status of a toolbar button, and lets the user disable or enable the
button, identified via its button identifier (see list above). One usage is to disable toolbar buttons
permanently. Another usage is to put SetToolbarButtonState in the OnSelectionChanged event handler, as
toolbar buttons are updated regularly when the selection changes in the document.

Toolbar button states are given by the listed enumerations .

The default state means that the enable/disable of the button is governed by AuthenticView. When the user
sets the button state to enable or disable, the button remains in that state as long as the user does not change
it.

Errors

2000 Invalid object.

2008 Internal error.

2014 Invalid button identifier.

17.2.2.8.25 Undo

Method: Undo() as Boolean

Description
Undo the last modification of the document from within this view.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.26 UpdateXMLInstanceEntities

Method: UpdateXMLInstanceEntities()

Description
Updates the internal representation of the declared entities, and refills the entry helper. In addition, the validator
is reloaded, allowing the XML file to validate correctly. Please note that this may also cause schema files to be
reloaded.

Errors
The method never returns an error.

Example
// ---
// Scripting environment - JavaScript
// ---
if(Application.ActiveDocument && (Application.ActiveDocument.CurrentViewMode == 4))
{

var objDocType;

950

999

© 2017-2023 Altova GmbH

Application API 961Programmers' Reference

Altova StyleVision 2024 Professional Edition

objDocType = Application.ActiveDocument.DocEditView.XMLRoot.GetFirstChild(10);

if(objDocType)
{

var objEntity = Application.ActiveDocument.CreateChild(14);
objEntity.Name = "child";
objEntity.TextValue = "SYSTEM \"child.xml\"";
objDocType.AppendChild(objEntity);

Application.ActiveDocument.AuthenticView.UpdateXMLInstanceEntities();
}

}

17.2.2.8.27 WholeDocument

Property: WholeDocument as AuthenticRange (read-only)

Description
Retrieve a range object that selects the whole document.

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.8.28 XMLDataRoot

Property: XMLDataRoot as XMLData (read-only)

Description
Returns or sets the top-level XMLData element of the current document. This element typically describes the
document structure and would be of kind spyXMLDataXMLDocStruct, spyXMLDataXMLEntityDocStruct or
spyXMLDataDTDDocStruct..

Errors

2000 The authentic view object is no longer valid.

2005 Invalid address for the return parameter was specified.

17.2.2.9 Document

The Document interface has the following properties and methods.

Methods
· Activate
· Application
· AssignWorkingXMLFile

916

984

963

963

963

962 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Close
· Save
· SaveAs
· Saved
· SaveGeneratedFOFile
· SaveGeneratedFOFileEx
· SaveGeneratedHTMLFile
· SaveGeneratedHTMLFileEx
· SaveGeneratedPDFFile
· SaveGeneratedPDFFileEx
· SaveGeneratedRTFFile
· SaveGeneratedRTFFileEx
· SaveGeneratedWord2007File
· SaveGeneratedWord2007FileEx
· SaveGeneratedTextFile
· SaveGeneratedTextFileEx
· SaveGeneratedXSLTFOFile
· SaveGeneratedXSLTFOFileEx
· SaveGeneratedXSLTHTMLFile
· SaveGeneratedXSLTHTMLFileEx
· SaveGeneratedXSLTRTFFile
· SaveGeneratedXSLTRTFFileEx
· SaveGeneratedXSLTWord2007File
· SaveGeneratedXSLTWord2007FileEx
· SaveGeneratedXSLTTextFile
· SaveGeneratedXSLTTextFileEx

Properties
· Application
· FullName
· Name
· Parameters
· Parent
· Path
· SchemaSources

17.2.2.9.1 Events

17.2.2.9.1.1 OnDocumentClosed

Event: OnDocumentClosed(Document as Document)

Description
This event gets fired as a result of closing a document.

964

966

966

967

967

967

967

968

968

968

968

969

969

969

970

970

970

970

971

971

971

972

972

972

972

973

963

964

965

965

965

966

973

961

© 2017-2023 Altova GmbH

Application API 963Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.9.1.2 OnModifiedFlagChanged

Event: OnModifiedFlagChanged(as Boolean)

Description
Returns true if the Modified flag has been changed.

17.2.2.9.2 Activate

Method: Activate ()

Description
Activate document frame.

Errors

1200 Document object is invalid.

1201 Invalid input parameter.

17.2.2.9.3 Application

Property: Application as Application (read-only)

Description
Accesses the StyleVision application object.

Errors

140011
11

The object is no longer valid.

140711
00

Invalid address for the return parameter was specified.

17.2.2.9.4 AssignWorkingXMLFile

Method: AssignWorkingXMLFile (strWorkingXMLFileName as String, strSchemaSourceName as String)

Description
Assigns the Working XML File by supplying its URI as a string and the Schema Source Name as a string. The
Schema Source Name is the name assigned to the schema in the SPS; (the default schema name in an SPS
created new in StyleVision is: XML).

Errors

1200 The document object is invalid.

898

964 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1201 Invalid input parameter.

1203 Error assigning Working XML File

1404 Missing XML Schema or DTD

17.2.2.9.5 Close

Method: Close (bDiscardChanges as Boolean)

Description
To close the document call this method. If bDiscardChanges is true and the document is modified, the
document will be closed but not saved.

Errors

1400 The object is no longer valid.

1401 Document needs to be saved first.

17.2.2.9.6 FullName

Property: FullName as String

Description
This property can be used to get or set the full file name - including the path - to where the document gets
saved. The validity of the name is not verified before the next save operation.

This property makes the methods GetPathName and SetPathName obsolete.

Errors

1400 The document object is no longer valid.

1402 Empty string has been specified as full file name.

17.2.2.9.7 GetPathName (obsolete)

Superseded by Document.FullName

/ / ----- j avascript sample -----
/ / instead of:
/ / strPathName = Application.ActiveDocument.GetPathName();
/ / use now:
strPathName = Application.ActiveDocument.FullName;

Method: GetPathName() as String

Description

964 973

964

© 2017-2023 Altova GmbH

Application API 965Programmers' Reference

Altova StyleVision 2024 Professional Edition

The method GetPathName gets the path of the active document.

See also Document.SetPathName (obsolete).

17.2.2.9.8 Name

Property: Name as String (read-only)

Description
Use this property to retrieve the name - not including the path - of the document file. To change the file name for
a document use the property FullName .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

17.2.2.9.9 Parameters

Property: Parameters as Parameters (read-only)

Description
Reference to the current Parameters object.

Errors

1200 Document object is invalid.

1201 Invalid input parameter.

17.2.2.9.10 Parent

Property: Parent as Documents (read-only)

Description
Access the parent of the document object.

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

Property: Parent as Application (read-only)

Description
Access the StyleVision application object.

973

964

974

898

966 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.9.11 Path

Property: Path as String (read-only)

Description
Use this property to retrieve the path - not including the file name - of the document file. To change the file
name and path for a document use the property FullName .

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

17.2.2.9.12 Save

Method: Save()

Description
The method writes any modifications of the document to the associated file.

Errors

1400 The document object is no longer valid.

1407 An empty file name has been specified.

1403 Error when saving file, probably the file name is invalid.

17.2.2.9.13 SaveAs

Method: SaveAs (strFileName as String)

Description
Save the document to the file specified.

Errors

1400 The document object is no longer valid.

1407 An empty file name has been specified.

1403 Error when saving file, probably the file name is invalid.

964

© 2017-2023 Altova GmbH

Application API 967Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.9.14 Saved

Property: Saved as Boolean (read-only)

Description
This property can be used to check if the document has been saved after the last modifications.

Errors

1400 The document object is no longer valid.

1407 Invalid address for the return parameter was specified.

17.2.2.9.15 SaveGeneratedFOFile

Method: SaveGeneratedFOFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.16 SaveGeneratedFOFileEx

Method: SaveGeneratedFOFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.17 SaveGeneratedHTMLFile

Method: SaveGeneratedHTMLFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

968 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1204 Cannot generate output file.

17.2.2.9.18 SaveGeneratedHTMLFileEx

Method: SaveGeneratedHTMLFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.19 SaveGeneratedPDFFile

Method: SaveGeneratedPDFFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.20 SaveGeneratedPDFFileEx

Method: SaveGeneratedPDFFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.21 SaveGeneratedRTFFile

Method: SaveGeneratedRTFFile (strFileName as String)

Description

© 2017-2023 Altova GmbH

Application API 969Programmers' Reference

Altova StyleVision 2024 Professional Edition

Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.22 SaveGeneratedRTFFileEx

Method: SaveGeneratedRTFFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.23 SaveGeneratedWord2007File

Method: SaveGeneratedWord2007File (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.24 SaveGeneratedWord2007FileEx

Method: SaveGeneratedWord2007FileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

970 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.9.25 SaveGeneratedTextFile

Method: SaveGeneratedTextFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.26 SaveGeneratedTextFileEx

Method: SaveGeneratedTextFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.27 SaveGeneratedXSLTFOFile

Method: SaveGeneratedXSLTFOFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.28 SaveGeneratedXSLTFOFileEx

Method: SaveGeneratedXSLTFOFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

© 2017-2023 Altova GmbH

Application API 971Programmers' Reference

Altova StyleVision 2024 Professional Edition

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.29 SaveGeneratedXSLTHTMLFile

Method: SaveGeneratedXSLTHTMLFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.30 SaveGeneratedXSLTHTMLFileEx

Method: SaveGeneratedXSLTHTMLFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.31 SaveGeneratedXSLTRTFFile

Method: SaveGeneratedXSLTRTFFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

972 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.9.32 SaveGeneratedXSLTRTFFileEx

Method: SaveGeneratedXSLTRTFFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.33 SaveGeneratedXSLTWord2007File

Method: SaveGeneratedXSLTWord2007File (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.34 SaveGeneratedXSLTWord2007FileEx

Method: SaveGeneratedXSLTWord2007FileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.35 SaveGeneratedXSLTTextFile

Method: SaveGeneratedXSLTTextFile (strFileName as String)

Description
Saves the generated file to the location specified.

Errors

© 2017-2023 Altova GmbH

Application API 973Programmers' Reference

Altova StyleVision 2024 Professional Edition

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.36 SaveGeneratedXSLTTextFileEx

Method: SaveGeneratedXSLTTextFileEx (strFileName as String, pbError as Variant) as AppOutputLines

Description
Saves the generated file to the location specified and gives error description.

Errors

1201 Invalid document object.

1204 Cannot generate output file.

17.2.2.9.37 SchemaSources

Property: SchemaSources as SchemaSources (read-only)

Description
Reference to the current SchemaSources object.

Errors

1200 Document object is invalid.

1201 Invalid input parameter.

17.2.2.9.38 SetPathName (obsolete)

Superseded by Document.FullName

/ / ----- j avascript sample -----
/ / instead of:
/ / Application.ActiveDocument.SetPathName("C:\\myXMLFiles\\test.xml");
/ / use now:
Application.ActiveDocument.FullName = "C:\\myXMLFiles\\test.xml";

Method: SetPathName (strPath as String)

Description
The method SetPathName sets the path of the active document. SetPathName only copies the string and does
not check if the path is valid. All succeeding save operations are done into this file.

964

974 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.10 Documents

The Documents interface has the following methods and properties:

Methods

· ActiveDocument
· Item
· NewDocument
· OpenDocument

Properties

· Application
· Count
· Parent

17.2.2.10.1 ActiveDocument

Property: ActiveDocument as Document

Description
Reference to the active document. If no document is open, ActiveDocument is null (nothing).

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

1600 Invalid Documents object

1601 Invalid input parameter

17.2.2.10.2 Application

Property: Application as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

974

975

975

976

974

975

976

961

898

© 2017-2023 Altova GmbH

Application API 975Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.10.3 Count

Property: Count as long

Description
Count of open documents.

Errors

1600 Invalid Documents object

1601 Invalid input parameter

17.2.2.10.4 Item

Method: Item (n as long) as Document

Description
Gets the document with the index n in this collection. Index is 1-based.

Errors

1600 Invalid Documents object

1601 Invalid input parameter

17.2.2.10.5 NewDocument

Method: NewDocument() as Document

Return Value
None

Description
Creates a new empty document based on the previous template.

Errors

1000 The application object is invalid.

1005 Error when creating a new document

1006 Cannot create document

1600 Invalid Documents object

1601 Invalid input parameter

961

961

976 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.10.6 OpenDocument

Method: OpenDocument(strFileName as String) as Document

Return Value
None

Description
Opens an existing SPS file.

Errors

1000 The application object is invalid.

1002 Invalid file extension.

1003 Error when opening document.

1004 Cannot open document.

1600 Invalid Documents object

1601 Invalid input parameter

17.2.2.10.7 Parent

Property: Parent as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.11 Parameter

The Parameter interface has the following properties:

Properties

· Application
· Name
· Parent
· Value

961

898

977

977

977

977

© 2017-2023 Altova GmbH

Application API 977Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.11.1 Application

Property: Application as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.11.2 Name

Property: Name as String (read-only)

Errors

1600 Invalid Documents object

1601 Invalid input parameter

17.2.2.11.3 Parent

Property: Parent as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.11.4 Value

Property: Value as String (read-only)

Errors

1600 Invalid Documents object

1601 Invalid input parameter

898

898

978 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.12 Parameters

The Parameters interface has the following properties:

Properties

· Application
· Count
· Item
· Parent

17.2.2.12.1 Application

Property: Application as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.12.2 Count

Property: Count as long

Description
Count of parameters.

Errors

1600 Invalid Parameters object

1601 Invalid input parameter

17.2.2.12.3 Item

Method: Item (n as long) as Document

Description
Gets the document with the index n in this collection. Index is 1-based.

Errors

978

978

978

979

898

961

© 2017-2023 Altova GmbH

Application API 979Programmers' Reference

Altova StyleVision 2024 Professional Edition

1600 Invalid Documents object

1601 Invalid input parameter

17.2.2.12.4 Parent

Property: Parent as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.13 SchemaSource

The SchemaSource interface has the following properties:

Properties

· Application
· IsMainSchemaSource
· Name
· Parent
· SchemaFileName
· TemplateFileName
· Type
· TypeName
· WorkingXMLFileName

17.2.2.13.1 Application

Property: Application as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

898

979

980

980

980

980

981

981

981

982

898

980 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.13.2 IsMainSchemaSource

Property: IsMainSchemaSource as Boolean (read-only)

Description
Returns true if schema source is the main schema source.

Errors

1400 Invalid schema source object.

1401 Invalid parameter.

17.2.2.13.3 Name

Property: Name as String (read-only)

Description
Use this property to retrieve the name of the schema source.

Errors

1400 The schema source object is not valid.

1401 Invalid parameter.

17.2.2.13.4 Parent

Property: Parent as SchemaSource (read-only)

Description
The parent object according to the object model.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.13.5 SchemaFileName

Property: SchemaFileName as String

Description
Use this property to retrieve the name of the Schema File.

© 2017-2023 Altova GmbH

Application API 981Programmers' Reference

Altova StyleVision 2024 Professional Edition

Errors

1400 Invalid schema source object.

1401 Invalid parameter.

1403 Missing XMLSchema or DTD

1406 Error assigning schema File

17.2.2.13.6 TemplateFileName

Property: TemplateFileName as String

Description
Use this property to retrieve the name of the Working XML File.

Errors

1400 Invalid schema source object.

1401 Invalid parameter.

1403 Missing XMLSchema or DTD

1407 Error assigning Template XML File

17.2.2.13.7 Type

Property: Type as ENUMSchemaSourceType (read-only)

Description
Use this property to retrieve the type of the schema source.

Errors

1400 Invalid schema source object.

1401 Invalid parameter.

17.2.2.13.8 TypeName

Property: TypeName as String (read-only)

Description
Use this property to retrieve the type of the schema source.

Errors

982 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1400 Invalid schema source object.

1401 Invalid parameter.

17.2.2.13.9 WorkingXMLFileName

Property: WorkingXMLFileName as String

Description
Use this property to retrieve the name of the Working XML File.

Errors

1400 Invalid schema source object.

1401 Invalid parameter.

1403 Missing XMLSchema or DTD

1203 Error assigning Working XML File

17.2.2.14 SchemaSources

The SchemaSources interface has the following properties:

Properties

· Application
· MainSchemaSource
· Parent

17.2.2.14.1 Application

Property: Application as Application (read-only)

Description
Access the StyleVision application object.

Errors

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

982

983

983

898

© 2017-2023 Altova GmbH

Application API 983Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.14.2 Count

Property: Count as long (read-only)

Description
Count of schema sources.

Errors

1300 Invalid SchemaSources object

1301 Invalid input parameter

17.2.2.14.3 Item

Method: Item (n as long) as Document

Description
Gets the document with the index n in this collection. Index is 1-based.

Errors

1300 Invalid SchemaSources object

1301 Invalid input parameter

17.2.2.14.4 MainSchemaSource

Property: MainSchemaSource as SchemaSource (read-only)

Errors

1300 Invalid SchemaSources object

1301 Invalid input parameter

17.2.2.14.5 Parent

Property: Parent as SchemaSources (read-only)

Description
The parent object according to the object model.

Errors

961

984 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

1111 The application object is no longer valid.

1100 Invalid address for the return parameter was specified.

17.2.2.15 XMLData

Properties
Kind
Name
TextValue

HasChildren
MayHaveChildren
Parent

Methods
GetFirstChild
GetNextChild
GetCurrentChild

InsertChild
InsertChildAfter
InsertChildBefore
AppendChild

EraseAllChildren
EraseChild
EraseCurrentChild

IsSameNode

CountChildren
CountChildrenKind

GetChild
GetChildAttribute
GetChildElement
GetChildKind
GetNamespacePrefixForURI

HasChildrenKind
SetTextValueXMLEncoded

Description
The XMLData interface provides direct XML-level access to a document. You can read and directly modify the
XML representation of the document. However, please, note the following restrictions:

· The XMLData representation is only valid when the document is shown in grid view or authentic view.

994

995

996

992

994

995

990

990

989

993

993

993

985

986

987

987

994

985

986

988

988

988

989

990

992

995

© 2017-2023 Altova GmbH

Application API 985Programmers' Reference

Altova StyleVision 2024 Professional Edition

· When in authentic view, additional XMLData elements are automatically inserted as parents of each visible
document element. Typically this is an XMLData of kind spyXMLDataElement with the Name property set
to 'Text'.

· When you use the XMLData interface while in a different view mode you will not receive errors, but changes
are not reflected to the view and might get lost during the next view switch.

Note also:

· Setting a new text value for an XML element is possible if the element does not have non-text children.
A text value can be set even if the element has attributes.

· When setting a new text value for an XML element which has more than one text child, the latter will be
deleted and replaced by one new text child.

· When reading the text value of an XML element which has more than one text child, only the value of
the first text child will be returned.

17.2.2.15.1 AppendChild

Declaration: AppendChild (pNewData as XMLData)

Description
AppendChild appends pNewData as last child to the XMLData object.

Errors

1500 The XMLData object is no longer valid.

1505 Invalid XMLData kind was specified.

1506 Invalid address for the return parameter was specified.

1507 Element cannot have Children

1512 Cyclic insertion - new data element is already part of document

1514 Invalid XMLData kind was specified for this position.

1900 Document must not be modified

Example
Dim objCurrentParent As XMLData
Dim objNewChild As XMLData

Set objNewChild = objSpy.ActiveDocument.CreateChild(spyXMLDataElement)
Set objCurrentParent = objSpy.ActiveDocument.RootElement

objCurrentParent.AppendChild objNewChild

Set objNewChild = Nothing

17.2.2.15.2 CountChildren

Declaration: CountChildren as long

995

984

986 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Description
CountChildren gets the number of children.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

17.2.2.15.3 CountChildrenKind

Declaration: CountChildrenKind (nKind as SPYXMLDataKind) as long

Description
CountChildrenKind gets the number of children of the specific kind.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

17.2.2.15.4 EraseAllChildren

Declaration: EraseAllChildren

Description
EraseAllChildren deletes all associated children of the XMLData object.

Errors

1500 The XMLData object is no longer valid.

1900 Document must not be modified

Example
The sample erases all elements of the active document.

Dim objCurrentParent As XMLData

Set objCurrentParent = objSpy.ActiveDocument.RootElement
objCurrentParent.EraseAllChildren

1001

© 2017-2023 Altova GmbH

Application API 987Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.15.5 EraseChild

Method: EraseChild (Child as XMLData)

Description
Deletes the given child node.

Errors

1500 Invalid object.

1506 Invalid input xml

1510 Invalid parameter.

17.2.2.15.6 EraseCurrentChild

Declaration: EraseCurrentChild

Description
EraseCurrentChild deletes the current XMLData child object. Before you call EraseCurrentChild you must
initialize an internal iterator with XMLData.GetFirstChild . After deleting the current child, EraseCurrentChild
increments the internal iterator of the XMLData element. No error is returned when the last child gets erased
and the iterator is moved past the end of the child list. The next call to EraseCurrentChild however, will return
error 1503.

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object, or the iterator points past
the last child.

1900 Document must not be modified

Examples
/ / ---------------------------------------
/ / XMLSpy scripting environment - JScript
/ / erase all children of XMLData
// ---------------------------------------
/ / let's get an XMLData element, we assume that the
// cursor selects the parent of a list in grid view
var objList = Application.ActiveDocument.GridView.CurrentFocus;

/ / the following line would be shorter, of course
// objList.EraseAllChildren ();

/ / but we want to demonstrate the usage of EraseCurrentChild
if ((objList != null) && (objList.HasChildren))
{

try
{

984

990

988 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

objEle = objList.GetFirstChild(-1);
while (objEle != null)

objList.EraseCurrentChild();
/ / no need to call GetNextChild

}
catch (err)

/ / 1503 - we reached end of child list
{ if ((err.number & 0xffff) != 1503) throw (err); }

}

17.2.2.15.7 GetChild

Declaration: GetChild (position as long) as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetChild() returns a reference to the child at the given index (zero-based).

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.2.15.8 GetChildAttribute

Method: GetChildAttribute (strName as string) child as XMLData object (NULL on error)

Description
Retrieves the attribute having the given name.

Errors

1500 Invalid object.

1510 Invalid parameter.

17.2.2.15.9 GetChildElement

Method: GetChildElement (strName as string, nIndex as long) child as XMLData object (NULL on error)

Description
Retrieves the Nth child element with the given name.

984

© 2017-2023 Altova GmbH

Application API 989Programmers' Reference

Altova StyleVision 2024 Professional Edition

Errors

1500 Invalid object.

1510 Invalid parameter.

17.2.2.15.10 GetChildKind

Declaration: GetChildKind (position as long, nKind as SPYXMLDataKind) as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetChildKind() returns a reference to a child of this kind at the given index (zero-based). The position parameter
is relative to the number of children of the specified kind and not to all children of the object.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.2.15.11 GetCurrentChild

Declaration: GetCurrentChild as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetCurrentChild gets the current child. Before you call GetCurrentChild you must initialize an internal iterator
with XMLData.GetFirstChild .

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object.

1510 Invalid address for the return parameter was specified.

1001 984

984

990

990 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.15.12 GetFirstChild

Declaration: GetFirstChild (nKind as SPYXMLDataKind) as XMLData

Return Value
Returns an XML element as XMLData object.

Description
GetFirstChild initializes a new iterator and returns the first child. Set nKind = -1 to get an iterator for all kinds of
children.
REMARK: The iterator is stored inside the XMLData object and gets destroyed when the XMLData object gets
destroyed. Be sure to keep a reference to this object as long as you want to use GetCurrentChild ,
GetNextChild or EraseCurrentChild .

Errors

1500 The XMLData object is no longer valid.

1501 Invalid XMLData kind was specified.

1504 Element has no children of specified kind.

1510 Invalid address for the return parameter was specified.

Example
See the example at XMLData.GetNextChild .

17.2.2.15.13 GetNamespacePrefixForURI

Method: GetNamespacePrefixForURI (strURI as string) strNS as string

Description
Returns the namespace prefix of the supplied URI.

Errors

1500 Invalid object.

1510 Invalid parameter.

17.2.2.15.14 GetNextChild

Declaration: GetNextChild as XMLData

Return Value
Returns an XML element as XMLData object.

Description

1001 984

989

990 987

990

984

© 2017-2023 Altova GmbH

Application API 991Programmers' Reference

Altova StyleVision 2024 Professional Edition

GetNextChild steps to the next child of this element. Before you call GetNextChild you must initialize an
internal iterator with XMLData.GetFirstChild .

Check for the last child of the element as shown in the sample below.

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object.

1510 Invalid address for the return parameter was specified.

Examples
' --
' VBA code snippet - iterate XMLData children
' --
On Error Resume Next
Set objParent = objSpy.ActiveDocument.RootElement

'get elements of all kinds
Set objCurrentChild = objParent.GetFirstChild(-1)

Do
 'do something useful with the child

 'step to next child
 Set objCurrentChild = objParent.GetNextChild

Loop Until (Err.Number - vbObjectError = 1503)

/ / ---------------------------------------
/ / XMLSpy scripting environment - JScript
/ / iterate through children of XMLData
// ---------------------------------------
try
{

var objXMLData = ... / / initialize somehow
var objChild = objXMLData.GetFirstChild(-1);

while (true)
{

/ / do something usefull with objChild

objChild = objXMLData.GetNextChild();
}

}
catch (err)
{

if ((err.number & 0xffff) == 1504)
; / / element has no children

else if ((err.number & 0xffff) == 1503)
; / / last child reached

else

990

992 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

throw (err);
}

17.2.2.15.15 GetTextValueXMLDecoded

Method: GetTextValueXMLDecoded ()as string

Description
Gets the decoded text value of the XML.

Errors

1500 Invalid object.

1510 Invalid parameter.

17.2.2.15.16 HasChildren

Declaration: HasChildren as Boolean

Description
The property is true if the object is the parent of other XMLData objects. This property is read-only.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.2.15.17 HasChildrenKind

Declaration: HasChildrenKind (nKind as SPYXMLDataKind) as Boolean

Description
The method returns true if the object is the parent of other XMLData objects of the specific kind.

Available with TypeLibrary version 1.5

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

1001

© 2017-2023 Altova GmbH

Application API 993Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.2.15.18 InsertChild

Declaration: InsertChild (pNewData as XMLData)

Description
InsertChild inserts the new child before the current child (see also XMLData.GetFirstChild ,
XMLData.GetNextChild to set the current child).

Errors

1500 The XMLData object is no longer valid.

1503 No iterator is initialized for this XMLData object.

1505 Invalid XMLData kind was specified.

1506 Invalid address for the return parameter was specified.

1507 Element cannot have Children

1512 Cyclic insertion - new data element is already part of document

1514 Invalid XMLData kind was specified for this position.

1900 Document must not be modified

17.2.2.15.19 InsertChildAfter

Method: InsertChildAfter (Node as XMLData, NewData as XMLData)

Description
Inserts a new XML node (supplied with the second parameter) after the specified node (first parameter).

Errors

1500 Invalid object.

1506 Invalid input xml

1507 No children allowed

1510 Invalid parameter.

1512 Child is already added

1514 Invalid kind at position

17.2.2.15.20 InsertChildBefore

Method: InsertChildBefore (Node as XMLData, NewData as XMLData)

Description
Inserts a new XML node (supplied with the second parameter) before the specified node (first parameter).

984

990

990

994 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Errors

1500 Invalid object.

1506 Invalid input xml

1507 No children allowed

1510 Invalid parameter.

1512 Child is already added

1514 Invalid kind at position

17.2.2.15.21 IsSameNode

Declaration: IsSameNode (pNodeToCompare as XMLData) as Boolean

Description

Returns true if pNodeToCompare references the same node as the object itself.

Errors

1500 The XMLData object is no longer valid.

1506 Invalid address for the return parameter was specified.

17.2.2.15.22 Kind

Declaration: Kind as SPYXMLDataKind

Description
Kind of this XMLData object. This property is read-only.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.2.15.23 MayHaveChildren

Declaration: MayHaveChildren as Boolean

Description
Indicates whether it is allowed to add children to this XMLData object.
This property is read-only.

Errors

984

1001

© 2017-2023 Altova GmbH

Application API 995Programmers' Reference

Altova StyleVision 2024 Professional Edition

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.2.15.24 Name

Declaration: Name as String

Description
Used to modify and to get the name of the XMLData object.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.2.15.25 Parent

Declaration: Parent as XMLData

Return value
Parent as XMLData object. Nothing (or NULL) if there is no parent element.

Description
Parent of this element. This property is read-only.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.2.15.26 SetTextValueXMLEncoded

Method: SetTextValueXMLEncoded (strVal as String)

Description
Sets the encoded text value of the XML.

Errors

1500 Invalid object.

1513 Modification not allowed.

984

1001

996 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.2.2.15.27 TextValue

Declaration: TextValue as String

Description
Used to modify and to get the text value of this XMLData object.

Errors

1500 The XMLData object is no longer valid.

1510 Invalid address for the return parameter was specified.

17.2.3 Enumerations

This is a list of all enumerations used by the StyleVision API. If your scripting environment does not support
enumerations use the number-values instead.

17.2.3.1 ENUMApplicationStatus

Enumeration to specify the current Application status.

eApplicationRunning = 0

eApplicationAfterLicenseCheck = 1

eApplicationBeforeLicenseCheck = 2

eApplicationConcurrentLicenseCheckFailed = 3

eApplicationProcessingCommandLine = 4

17.2.3.2 ENUMAppOutputLine_Severity

Enumeration values to identify the severity of an AppOutputLine.

eSeverity_Undefined = -1

eSeverity_Info = 0

eSeverity_Warning = 1

eSeverity_Error = 2

eSeverity_CriticalError = 3

eSeverity_Success = 4

eSeverity_Summary = 5

© 2017-2023 Altova GmbH

Application API 997Programmers' Reference

Altova StyleVision 2024 Professional Edition

eSeverity_Progress = 6

eSeverity_DataEdit = 7

eSeverity_ParserInfo = 8

eSeverity_PossibleInconsistencyWarning = 9

eSeverity_Message = 10

eSeverity_Document = 11

eSeverity_Rest = 12

eSeverity_NoSelect = 13

eSeverity_Select = 14

eSeverity_Autoinsertion = 15

eSeverity_GlobalResources_DefaultWarning = 16

17.2.3.3 ENUMAppOutputLine_TextDecoration

Enumeration values for the different kinds of text decoration of an AppOutputLine.

eTextDecorationDefault = 0

eTextDecorationBold = 1

eTextDecorationDebugValues = 2

eTextDecorationDB_ObjectName = 3

eTextDecorationDB_ObjectLink = 4

eTextDecorationDB_ObjectKind = 5

eTextDecorationDB_TimeoutValue = 6

eTextDecorationFind_MatchingString = 7

eTextDecorationValidation_Speclink = 8

eTextDecorationValidation_ErrorPosition = 9

eTextDecorationValidation_UnkownParam = 10

17.2.3.4 ENUMSchemaSourceType

Enumeration to specify the source schema type: XML Schema, DTD, DB, DB cell, User-Defined, or XBRL.

eSchemaSourceType_XSDorDTD = 0

eSchemaSourceType_DB = 1

eSchemaSourceType_DBCell = 2

eSchemaSourceType_User = 3

998 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

eSchemaSourceType_XBRL = 4

17.2.3.5 ENUMSchemaType

Enumeration to specify the schema type: W3C XML Schema or DTD.

eSchemaTypeW3CSchema = 0

eSchemaTypeDTD = 1

17.2.3.6 SPYAuthenticActions

Actions that can be performed on AuthenticRange objects.

spyAuthenticInsertAt = 0

spyAuthenticApply = 1

spyAuthenticClearSurr = 2

spyAuthenticAppend = 3

spyAuthenticInsertBefore = 4

spyAuthenticRemove = 5

17.2.3.7 SPYAuthenticDocumentPosition

Relative and absolute positions used for navigating with AuthenticRange objects.

spyAuthenticDocumentBegin = 0

spyAuthenticDocumentEnd = 1

spyAuthenticRangeBegin = 2

spyAuthenticRangeEnd = 3

17.2.3.8 SPYAuthenticElementKind

Enumeration of the different kinds of elements used for navigation and selection within the AuthenticRange
and AuthenticView objects.

spyAuthenticChar = 0

spyAuthenticWord = 1

916

916

916

946

© 2017-2023 Altova GmbH

Application API 999Programmers' Reference

Altova StyleVision 2024 Professional Edition

spyAuthenticLine = 3

spyAuthenticParagraph = 4

spyAuthenticTag = 6

spyAuthenticDocument = 8

spyAuthenticTable = 9

spyAuthenticTableRow = 10

spyAuthenticTableColumn = 11

17.2.3.9 SPYAuthenticMarkupVisibility

Enumeration values to customize the visibility of markup with MarkupVisibility .

spyAuthenticMarkupHidden = 0

spyAuthenticMarkupSmall = 1

spyAuthenticMarkupLarge = 2

spyAuthenticMarkupMixed = 3

17.2.3.10 SPYAuthenticToolbarButtonState

Authentic toolbar button states are given by the following enumerations.

authenticToolbarButtonDefault = 0

authenticToolbarButtonEnabled = 1

authenticToolbarButtonDisabled = 2

17.2.3.11 SPYMouseEvent

Enumeration type that defines the mouse status during a mouse event. Use the enumeration values as
bitmasks rather then directly comparing with them.

spyNoButtonMask = 0

spyMouseMoveMask = 1

spyLeftButtonMask = 2

spyMiddleButtonMask = 4

spyRightButtonMask = 8

spyButtonUpMask = 16

958

1000 Programmers' Reference Application API

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

spyButtonDownMask = 32

spyDoubleClickMask = 64

spyShiftKeyDownMask = 128

spyCtrlKeyDownMask = 256

spyLeftButtonDownMask = 34 // spyLeftButtonMask | spyButtonDownMask

spyMiddleButtonDownMask = 36 // spyMiddleButtonMask | spyButtonDownMask

spyRightButtonDownMask = 40 // spyRightButtonMask | spyButtonDownMask

spyLeftButtonUpMask = 18 // spyLeftButtonMask | spyButtonUpMask

spyMiddleButtonUpMask = 20 // spyMiddleButtonMask | spyButtonUpMask

spyRightButtonUpMask = 24 // spyRightButtonMask | spyButtonUpMask

spyLeftDoubleClickMask = 66 // spyRightButtonMask | spyButtonUpMask

spyMiddleDoubleClickMask = 68 // spyMiddleButtonMask | spyDoubleClickMask

spyRightDoubleClickMask = 72 // spyRightButtonMask | spyDoubleClickMask

Examples

' to check for ctrl-leftbutton-down in VB
If (i_eMouseEvent = (XMLSpyLib.spyLeftButtonDownMask Or XMLSpyLib.spyCtrlKeyDownMask)) Then

' react on ctrl-leftbutton-down
End If

' to check for double-click with any button in VBScript
If (((i_eMouseEvent And spyDoubleClickMask) <> 0) Then

' react on double-click
End If

17.2.3.12 SPYValidateXSDVersion

Description
Enumeration values that select what XSD version to use. The XSD version that is selected depends on both (i)
the presence/absence—and, if present, the value—of the /xs:schema/@vc:minVersion attribute of the XSD
document, and (ii) the value of this enumeration.

spyValidateXSDVersion_AutoDetect = 0

spyValidateXSDVersion_1_1 = 1

spyValidateXSDVersion_1_0 = 2

spyValidateXSDVersion_1_0 selects XSD 1.0 if vc:minVersion is absent, or is present with any value.
spyValidateXSDVersion_1_1 selects XSD 1.1 if vc:minVersion is absent, or is present with any value.
spyValidateXSDVersion_AutoDetect selects XSD 1.1 if vc:minVersion=1.1. If the vc:minVersion attribute
is absent, or is present with a value other than 1.1, then XSD 1.0 is selected.

© 2017-2023 Altova GmbH

Application API 1001Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.2.3.13 SPYValidateErrorFormat

Enumeration values that select the format of the error message.

spyValidateErrorFormat_Text = 0

spyValidateErrorFormat_ShortXML = 1

spyValidateErrorFormat_LongXML = 2

17.2.3.14 SPYXMLDataKind

The different types of XMLData elements available for XML documents.

spyXMLDataXMLDocStruct = 0

spyXMLDataXMLEntityDocStruct = 1

spyXMLDataDTDDocStruct = 2

spyXMLDataXML = 3

spyXMLDataElement = 4

spyXMLDataAttr = 5

spyXMLDataText = 6

spyXMLDataCData = 7

spyXMLDataComment = 8

spyXMLDataPI = 9

spyXMLDataDefDoctype = 10

spyXMLDataDefExternalID = 11

spyXMLDataDefElement = 12

spyXMLDataDefAttlist = 13

spyXMLDataDefEntity = 14

spyXMLDataDefNotation = 15

spyXMLDataKindsCount = 16

1002 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3 ActiveX Integration

The StyleVision user interface and the functionality described in this section can be integrated into custom
applications that can consume ActiveX controls. ActiveX technology enables a wide variety of languages to be
used for integration, such as C++, C#, and VB.NET. All components are full OLE Controls. Integration into Java
is provided through wrapper classes.

To integrate the ActiveX controls into your custom code, the StyleVision Integration Package must be
installed (see https://www.altova.com/components/download). Ensure that you install StyleVision first, and
then the StyleVision Integration Package. Other prerequisites apply, depending on language and platform
(see Prerequisites).

You can flexibly choose between two different levels of integration: application level and document level.

Integration at application level means embedding the complete interface of StyleVision (including its menus,
toolbars, panes, etc) as an ActiveX control into your custom application. For example, in the most simple
scenario, your custom application could consist of only one form that embeds the StyleVision graphical user
interface. This approach is easier to implement than integration at document level but may not be suitable if
you need flexibility to configure the StyleVision graphical user interface according to your custom
requirements.

Integration at document level means embedding StyleVision into your own application piece-by-piece. This
includes implementing not only the main StyleVision control but also the main document editor window, and,
optionally, any additional windows. This approach provides greater flexibility to configure the GUI, but requires
advanced interaction with ActiveX controls in your language of choice.

The sections Integration at the Application Level and Integration at Document Level describe the key
steps at these respective levels. The ActiveX Integration Examples section provides examples in C# and
Java. Looking through these examples will help you to make the right decisions quickly. The Object
Reference section describes all COM objects that can be used for integration, together with their properties
and methods.

For information about using StyleVision as a Visual Studio plug-in, see StyleVision in Visual Studio .

17.3.1 Prerequisites

To integrate the StyleVision ActiveX control into a custom application, the following must be installed on your
computer:

· StyleVision
· The StyleVision Integration Package, available for download at

https://www.altova.com/components/download

To integrate the 64-bit ActiveX control, install the 64-bit versions of StyleVision and StyleVision Integration
Package. For applications developed under Microsoft .NET platform with Visual Studio, both the 32-bit and 64-
bit versions of StyleVision and StyleVision Integration Package must be installed, as explained below.

1002

1005 1007

1010

1037

670

https://www.altova.com/components/download
https://www.altova.com/components/download

© 2017-2023 Altova GmbH

ActiveX Integration 1003Programmers' Reference

Altova StyleVision 2024 Professional Edition

Microsoft .NET (C#, VB.NET) with Visual Studio
To integrate the StyleVision ActiveX control into a 32-bit application developed under Microsoft .NET, the
following must be installed on your computer:

· Microsoft .NET Framework 4.0 or later
· Visual Studio 2012/2013/2015/2017/2019/2022
· StyleVision 32-bit and StyleVision Integration Package 32-bit
· The ActiveX controls must be added to the Visual Studio toolbox (see Adding the ActiveX Controls to

the Toolbox).

If you want to integrate the 64-bit ActiveX control, the following prerequisites apply in addition to the ones
above:

· StyleVision 32-bit and StyleVision Integration Package 32-bit must still be installed (this is required to
provide the 32-bit ActiveX control to the Visual Studio designer, since Visual Studio runs on 32-bit)

· StyleVision 64-bit and StyleVision Integration Package 64-bit must be installed (provides the actual 64-
bit ActiveX control to your custom application at runtime)

· In Visual Studio, create a 64-bit build configuration and build your application using this configuration.
For an example, see Running the Sample C# Solution .

Java
To integrate the StyleVision ActiveX control into Java application using the Eclipse development environment,
the following must be installed on your computer:

· Java Runtime Environment (JRE) or Java Development Kit (JDK) 7 or later
· Eclipse
· StyleVision and StyleVision Integration Package

Note: To run the 64-bit version of the StyleVision ActiveX control, use a 64-bit version of Eclipse, as well as
the 64-bit version of StyleVision and the StyleVision Integration Package.

StyleVision integration and deployment on client computers
If you create a .NET application and intend to distribute it to other clients, you will need to install the following
on the client computer(s):

· StyleVision
· The StyleVision Integration Package
· The custom integration code or application.

17.3.2 Adding the ActiveX Controls to the Toolbox

To use the StyleVision ActiveX controls in an application developed with Visual Studio, the controls must first
be added to the Visual Studio Toolbox, as follows:

1. On the Tools menu of Visual Studio, click Choose Toolbox Items.

1003

1010

1004 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

2. On the COM Components tab, select the check boxes next to the StyleVisionControl,
StyleVisionControl Document, and StyleVisionControl Placeholder.

In case the controls above are not available, follow the steps below:

1. On the COM Components tab, click Browse, and select the StyleVisionControl.ocx file from the
StyleVision installation folder. Remember that the StyleVision Integration Package must be installed;
otherwise, this file is not available, see Prerequisites .

2. If prompted to restart Visual Studio with elevated permissions, click Restart under different
credentials.

If the steps above were successful, the StyleVision ActiveX controls become available in the Visual Studio
Toolbox.

1002

© 2017-2023 Altova GmbH

ActiveX Integration 1005Programmers' Reference

Altova StyleVision 2024 Professional Edition

Note: For an application-level integration, only the StyleVisionControl ActiveX control is used (see
Integration at Application Level). The StyleVisionControl Document and StyleVisionControl
Placeholder controls are used for document-level integration (see Integration at Document Level).

17.3.3 Integration at Application Level

Integration at application level allows you to embed the complete interface of StyleVision into a window of your
application. With this type of integration, you get the whole user interface of StyleVision, including all menus,
toolbars, the status bar, document windows, and helper windows. Customization of the application's user
interface is restricted to what StyleVision provides. This includes rearrangement and resizing of helper windows
and customization of menus and toolbars.

The only ActiveX control you need to integrate is StyleVisionControl . Do not instantiate or access
StyleVisionControlDocument or StyleVisionControlPlaceHolder ActiveX controls when integrating
at application-level.

If you have any initialization to do or if you want to automate some behaviour of StyleVision, use the properties,
methods, and events described for StyleVisionControl . Consider using
StyleVisionControl.Application for more complex access to StyleVision functionality.

1005

1007

1041

1048 1055

1041

1042

1006 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

In C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which integrates the
StyleVision ActiveX controls at application level are as follows:

1. Check that all prerequisites are met (see Prerequisites).
2. Create a new Visual Studio Windows Forms project with a new empty form.
3. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX

Controls to the Toolbox).
4. Drag the StyleVisionControl from the toolbox onto your new form.
5. Select the StyleVisionControl on the form, and, in the Properties window, set the IntegrationLevel

property to ICActiveXIntegrationOnApplicationLevel.

6. Create a build platform configuration that matches the platform under which you want to build (x86,
x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in

this example, x86).

1002

1003

© 2017-2023 Altova GmbH

ActiveX Integration 1007Programmers' Reference

Altova StyleVision 2024 Professional Edition

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration
that matches your target platform (x86, x64).

17.3.4 Integration at Document Level

Compared to integration at application level, integration at document level is a more complex, yet more flexible
way to embed StyleVision functionality into your application by means of ActiveX controls. With this approach,
your code can access selectively the following parts of the StyleVision user interface:

· Document editing window
· Project window
· Design Overview window
· Schema Tree window
· Design Tree window
· Styles window
· Style Repository window
· Properties window
· Messages window

As mentioned in Integration at Application Level , for an ActiveX integration at application level, only one
control is required, namely the StyleVisionControl. However, for an ActiveX integration at document level,
StyleVision functionality is provided by the following ActiveX controls:

· StyleVisionControl
· StyleVisionControl Document
· StyleVisionControl Placeholder

These controls are supplied by the StyleVisionControl.ocx file available in the application installation folder of
StyleVision. When you develop the ActiveX integration with Visual Studio, you will need to add these controls
to the Visual Studio toolbox (see Adding the ActiveX Controls to the Toolbox).

The basic steps to integrate the ActiveX controls at document level into your application are as follows:

1. First, instantiate StyleVisionControl in your application. Instantiating this control is mandatory; it
enables support for the StyleVisionControl Document and StyleVisionControl Placeholder controls

1005

1041

1048

1055

1003

1008 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

mentioned above. It is important to set the IntegrationLevel property to
ICActiveXIntegrationOnDocumentLevel (or "1"). To hide the control from the user, set its Visible
property to False. Note that, when integrating at document level, do not use the Open method of the
StyleVisionControl; this might lead to unexpected results. Use the corresponding open methods of
StyleVisionControl Document and StyleVisionControl PlaceHolder instead.

2. Create at least one instance of StyleVisionControl Document in your application. This control supplies
the document editing window of StyleVision to your application and can be instantiated multiple times
if necessary. Use the method Open to load any existing file. To access document-related functionality,
use the Path and Save or methods and properties accessible via the property Document. Note that the
control does not support a read-only mode. The value of the property ReadOnly is ignored.

3. Optionally, add to your application the StyleVisionControl Placeholder control for each additional
window (other than the document window) that must be available to your application. Instances of
StyleVisionControl PlaceHolder allow you to selectively embed additional windows of StyleVision into
your application. The window kind (for example, Project window) is defined by the property
PlaceholderWindowID. Therefore, to set the window kind, set the property PlaceholderWindowID. For
valid window identifiers, see StyleVisionControlPlaceholderWindow . Use only one
StyleVisionControl PlaceHolder for each window identifier.

For placeholder controls that select the StyleVision project window, additional methods are available.
Use OpenProject to load a StyleVision project. Use the property Project and the methods and
properties from the StyleVision automation interface to perform any other project related operations.

For example, in C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which
integrates the StyleVision ActiveX controls at document level could be similar to those listed below. Note that
your application may be more complex if necessary; however, the instructions below are important to
understand the minimum requirements for an ActiveX integration at document level.

1. Create a new Visual Studio Windows Forms project with a new empty form.
2. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX

Controls to the Toolbox).
3. Drag the StyleVisionControl from the toolbox onto your new form.
4. Set the IntegrationLevel property of the StyleVisionControl to ICActiveXIntegrationOnDocumentLevel,

and the Visible property to False. You can do this either from code or from the Properties window.
5. Drag the StyleVisionControl Document from the toolbox onto the form. This control provides the

main document window of StyleVision to your application, so you may need to resize it to a
reasonable size for a document.

6. Optionally, add one or more StyleVisionControl Placeholder controls to the form (one for each
additional window type that your application needs, for example, the Project window). You will typically
want to place such additional placeholder controls either below or to the right or left of the main
document control, for example:

1043

1058

1003

1041

1048

1055

© 2017-2023 Altova GmbH

ActiveX Integration 1009Programmers' Reference

Altova StyleVision 2024 Professional Edition

7. Set the PlaceholderWindowID property of each StyleVisionControl Placeholder control to a valid
window identifier. For the list of valid values, see StyleVisionControlPlaceholderWindow .

8. Add commands to your application (at minimum, you will need to open, save and close documents),
as shown below.

Querying StyleVision Commands
When you integrate at document level, no StyleVision menu or toolbar is available to your application. Instead,
you can retrieve the required commands, view their status, and execute them programmatically, as follows:

· To retrieve all available commands, use the CommandsList property of the StyleVisionControl.
· To retrieve commands organized according to their menu structure, use the MainMenu property.
· To retrieve commands organized by the toolbar in which they appear, use the Toolbars property.
· To send commands to StyleVision, use the Exec method.
· To query if a command is currently enabled or disabled, use the QueryStatus method.

This enables you to flexibly integrate StyleVision commands into your application's menus and toolbars.

Your installation of StyleVision also provides you with command label images used within StyleVision. See the
folder <ApplicationFolder>\Examples\ActiveX\Images of your StyleVision installation for icons in GIF format.
The file names correspond to the command names as they are listed in the Command Reference section.

1058

1042

1043

1044

1045

1046

1024

1010 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

General considerations
To automate the behaviour of StyleVision, use the properties, methods, and events described for the
StyleVisionControl , StyleVisionControl Document , and StyleVisionControl Placeholder .

For more complex access to StyleVision functionality, consider using the following properties:

· StyleVisionControl.Application
· StyleVisionControlDocument.Document
· StyleVisionControlPlaceHolder.Project

These properties give you access to the StyleVision automation interface (StyleVisionAPI)

Note: To open a document, always use StyleVisionControlDocument.Open or
StyleVisionControlDocument.New on the appropriate document control. To open a project, always
use StyleVisionControlPlaceHolder.OpenProject on a placeholder control embedding a StyleVision
project window.

For examples that show how to instantiate and access the necessary controls in different programming
environments, see ActiveX Integration Examples .

17.3.5 ActiveX Integration Examples

This section contains examples of StyleVision document-level integration using different container environments
and programming languages. Source code for all examples is available in the folder
<ApplicationFolder>\Examples\ActiveX of your StyleVision installation.

17.3.5.1 C#

A basic ActiveX integration example solution for C# and Visual Studio is available in the folder
<ApplicationFolder>\Examples\ActiveX\C#. Before you compile the source code and run the sample,

make sure that all prerequisites are met (see Running the Sample C# Solution).

17.3.5.1.1 Running the Sample C# Solution

The sample Visual Studio solution available in the folder <ApplicationFolder>\Examples\ActiveX\C#
illustrates how to consume the StyleVision ActiveX controls. Before attempting to build and run this solution,
note the following steps:

Step 1: Check the prerequisites
Visual Studio 2010 or later is required to open the sample solution. For the complete list of prerequisites, see
Prerequisites .

1041 1048 1055

1042

1050

1056

1052

1051

1056

1010

1010

1002

© 2017-2023 Altova GmbH

ActiveX Integration 1011Programmers' Reference

Altova StyleVision 2024 Professional Edition

Step 2: Copy the sample to a directory where you have write permissions
To avoid running Visual Studio as an Administrator, copy the source code to a directory where you have write
permissions, instead of running it from the default location.

Step 3: Check and set all required control properties
The sample application contains one instance of StyleVisionControlDocument and several instances of
StyleVisionControlPlaceHolder controls. Double-check that the following properties of these controls are set
as shown in the table below:

Control name Property Property value

axStyleVisionControl IntegrationLevel ICActiveXIntegrationOnDocumentLe
vel

axStyleVisionControlHelperWndSchemaSour
ce

PlaceholderWindowID 2

axStyleVisionControlHelperWndStyleReposit
ory

PlaceholderWindowID 4

axStyleVisionControlHelperWndContextStyle PlaceholderWindowID 6

axStyleVisionControlHelperWndContextPrope
rties

PlaceholderWindowID 5

axStyleVisionControlHelperWndProject PlaceholderWindowID 0

axStyleVisionControlHelperWndDesignOvervi
ew

PlaceholderWindowID 1

axStyleVisionControlHelperWndDesignTree PlaceholderWindowID 3

Here is how you can view or set the properties of an ActiveX control:

1. Open the MDIMain.cs form in the designer window.

Note: On 64-bit Windows, it may be necessary to change the build configuration of the Visual Studio solution
to "x86" before opening the designer window. If you need to build the sample as a 64-bit application,
see Prerequisites .

2. Open the Document Outline window of Visual Studio (On the View menu, click Other Windows |
Document Outline).

1048

1055

1002

1012 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3. Click an ActiveX control in the Document Outline window, and edit its required property in the
Properties window, for example:

© 2017-2023 Altova GmbH

ActiveX Integration 1013Programmers' Reference

Altova StyleVision 2024 Professional Edition

Step 4: Set the build platform
· Create a build platform configuration that matches the platform under which you want to build (x86,

x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in

this example, x86).

1014 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration
that matches your target platform (x86, x64); otherwise, runtime errors might occur.

17.3.5.2 Java

StyleVision ActiveX components can be accessed from Java code. Java integration is provided by the libraries
listed below. These libraries are available in the folder <ApplicationFolder>\Examples\JavaAPI of your
StyleVision installation, after you have installed both StyleVision and the StyleVision Integration Package (see
also Prerequisites).

· AltovaAutomation.dll: a JNI wrapper for Altova automation servers (in case of the 32-bit installation
of StyleVision)

· AltovaAutomation_x64.dll: a JNI wrapper for Altova automation servers (in case of the 64-bit
installation of StyleVision)

· AltovaAutomation.jar: Java classes to access Altova automation servers
· StyleVisionActiveX.jar: Java classes that wrap the StyleVision ActiveX interface
· StyleVisionActiveX_JavaDoc.zip: a Javadoc file containing help documentation for the Java

interface

Note: In order to use the Java ActiveX integration, the .dll and .jar files must be included in the Java class
search path.

Example Java project
An example Java project is supplied with your product installation. You can test the Java project and modify
and use it as you like. For more details, see Example Java Project .

Rules for mapping the ActiveX Control names to Java
For the documentation of ActiveX controls, see Object Reference . Note that the object naming conventions
are slightly different in Java compared to other languages. Namely, the rules for mapping between the ActiveX
controls and the Java wrapper are as follows:

Classes and class names
For every component of the StyleVision ActiveX interface a Java class exists with the name of the component.

Method names
Method names on the Java interface are the same as used on the COM interfaces but start with a small letter
to conform to Java naming conventions. To access COM properties, Java methods that prefix the property
name with get and set can be used. If a property does not support write-access, no setter method is available.
Example: For the IntegrationLevel property of the StyleVisionControl, the Java methods
getIntegrationLevel and setIntegrationLevel are available.

Enumerations
For every enumeration defined in the ActiveX interface, a Java enumeration is defined with the same name and
values.

1002

1015

1037

© 2017-2023 Altova GmbH

ActiveX Integration 1015Programmers' Reference

Altova StyleVision 2024 Professional Edition

Events and event handlers
For every interface in the automation interface that supports events, a Java interface with the same name plus
'Event' is available. To simplify the overloading of single events, a Java class with default implementations for all
events is provided. The name of this Java class is the name of the event interface plus 'DefaultHandler'. For
example:

StyleVisionControl: Java class to access the application
StyleVisionControlEvents: Events interface for the StyleVisionControl
StyleVisionControlEventsDefaultHandler: Default handler for StyleVisionControlEvents

Exceptions to mapping rules
There are some exceptions to the rules listed above. These are listed below:

Interface Java name

StyleVisionControlDocument, method
New

newDocument

AuthenticView, method Goto gotoElement

AuthenticRange, method Goto gotoElement

AuthenticRange, method Clone cloneRange

This section
This section shows how some basic StyleVision ActiveX functionality can be accessed from Java code. It is
organized into the following sub-sections:

· Example Java Project
· Creating the ActiveX Controls
· Loading Data in the Controls
· Basic Event Handling
· Menus
· UI Update Event Handling
· Creating a StyleVision Node Tree

17.3.5.2.1 Example Java Project

The StyleVision installation package contains an example Java project, located in the ActiveX Examples folder
of the application folder: <ApplicationFolder>\Examples\ActiveX\Java\.

The Java example shows how to integrate the StyleVisionControl in a common desktop application created with
Java. You can test it directly from the command line using the batch file BuildAndRun.bat, or you can compile
and run the example project from within Eclipse. See below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are listed below:

.classpath Eclipse project helper file

1015

1017

1018

1018

1019

1021

1022

1016 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

.project Eclipse project file

AltovaAutomation.dll Java-COM bridge: DLL part (for the 32-bit installation)

AltovaAutomation_x64.dll Java-COM bridge: DLL part (for the 64-bit installation)

AltovaAutomation.jar Java-COM bridge: Java library part

BuildAndRun.bat Batch file to compile and run example code from the
command line prompt. Expects folder where Java
Virtual Machine resides as parameter.

StyleVisionActiveX.jar Java classes of the StyleVision ActiveX control

StyleVisionActiveX_JavaDoc.zip Javadoc file containing help documentation for the Java
API

StyleVisionContainer.java Java example source code

StyleVisionContainerEventHandler.java Java example source code

StyleVisionDialog.java Java example source code

What the example does
The example places one StyleVision document editor window, the StyleVision project window, the StyleVision
schema tree window and the StyleVision design overview window in an AWT frame window. It reads out the
main menu defined for StyleVision and creates an AWT menu with the same structure. You can use this menu
or the project window to open and work with files in the document editor.

You can modify the example in any way you like.

The following specific features are described in code listings:

· Creating the ActiveX Controls : Starts StyleVision, which is registered as an automation server, or
activates StyleVision if it is already running.

· Loading Data in the Controls : Locates one of the example documents installed with StyleVision and
opens it.

· Basic Event Handling : Changes the view of all open documents to Text View. The code also shows
how to iterate through open documents.

· Menus : Validates the active document and shows the result in a message box. The code shows
how to use output parameters.

· UI Update Event Handling : Shows how to handle StyleVision events.
· Creating a StyleVision Node Tree : Shows how to create a StyleVision node tree and prepare it for

modal activation.

Updating the path to the Examples folder
Before running the provided sample, you may need to edit the StyleVisionContainer.java file. Namely, check
that the following path refers to the actual folder where the StyleVision example files are stored on your
operating system:

// Locate samples installed with the product.

1017

1018

1018

1019

1021

1022

© 2017-2023 Altova GmbH

ActiveX Integration 1017Programmers' Reference

Altova StyleVision 2024 Professional Edition

final String strExamplesFolder = System.getenv("USERPROFILE") + "\\Documents\\Altova\
\StyleVision2024\\StyleVisionExamples\\";

Running the example from the command line
To run the example from the command line:

1. Check that all prerequisites are met (see Prerequisites).
2. Open a command prompt window, change the current directory to the sample Java project folder, and

type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

3. Press Enter.

The Java source in StyleVisionContainer.java will be compiled and then executed.

Compiling and running the example in Eclipse
To import the sample Java project into Eclipse:

1. Check that all prerequisites are met (see Prerequisites).
2. On the File menu, click Import.
3. Select Existing Projects into Workspace, and browse for the Eclipse project file located at

<ApplicationFolder>\Examples\ActiveX\Java\. Since you may not have write-access in this
folder, it is recommended to select the Copy projects into workspace check box on the Import dialog
box.

To run the example application, right-click the project in Package Explorer and select the command Run as |
Java Application.

Help for Java API classes is available through comments in code as well as the Javadoc view of Eclipse. To
enable the Javadoc view in Eclipse, select the menu command Window | Show View | JavaDoc.

17.3.5.2.2 Creating the ActiveX Controls

The code listing below show how ActiveX controls can be created. The constructors will create the Java wrapper
objects. Adding these Canvas-derived objects to a panel or to a frame will trigger the creation of the wrapped
ActiveX object.

01 /**
02 * StyleVision manager control - always needed
03 */
04 public static StyleVisionControl styleVisionControl = null;
05
06 /**
07 * StyleVisionDocument editing control
08 */

1002

1002

1018 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

09 public static StyleVisionControlDocument styleVisionDocument = null;
10
11 /**
12 * Tool windows - StyleVision place-holder controls
13 */
14 private static StyleVisionControlPlaceHolder styleVisionProjectToolWindow = null;
15 private static StyleVisionControlPlaceHolder styleVisionDesignToolWindow = null;
16 private static StyleVisionControlPlaceHolder styleVisionSchemaTreeToolWindow = null;
17
18 // Create the StyleVision ActiveX controls. First should be StyleVisionControl
 // determining that we want to place document controls and place-holder
19 // controls individually. It gives us full control over the menu, as well.
20 styleVisionControl = new StyleVisionControl(
 ICActiveXIntegrationLevel.ICActiveXIntegrationOnDocumentLevel.getValue());
21
22 styleVisionDocument = new StyleVisionControlDocument();
23 frame.add(styleVisionDocument, BorderLayout.CENTER);
24
25
26 // Create a project window and open the sample project in it
27 styleVisionProjectToolWindow = new StyleVisionPlaceHolder(
 StyleVisionControlPlaceholderWindow.StyleVisionControlProjectWindowToolWnd.getValue
());
28 styleVisionProjectToolWindow.setPreferredSize(new Dimension(200, 200));

17.3.5.2.3 Loading Data in the Controls

The code listing below show how data can be loaded in the ActiveX controls.

1 // Locate samples installed with the product.
2 final String strExamplesFolder = System.getenv("USERPROFILE") +
 "\\Documents\\Altova\\StyleVision2023\\StyleVisionExamples\\";
3 styleVisionProjectToolWindow.openProject(strExamplesFolder + "Examples.svp");

17.3.5.2.4 Basic Event Handling

The code listing below shows how basic events can be handled. When calling the StyleVisionControl’s open
method, or when trying to open a file via the menu or Project tree, the onOpenedOrFocused event is sent to the
attached event handler. The basic handling for this event is opening the file by calling the
StyleVisionDocumentControl’s open method.

01 // Open the PXF file when button is pressed
02 btnOpenPxf.addActionListener(new ActionListener() {
03 public void actionPerformed(ActionEvent e) {
04 try {
05 styleVisionControl.open(strExamplesFolder + "OrgChart.pxf");
06 } catch (AutomationException e1) {
07 e1.printStackTrace();

© 2017-2023 Altova GmbH

ActiveX Integration 1019Programmers' Reference

Altova StyleVision 2024 Professional Edition

08 }
09 }
10 });
11 public void onOpenedOrFocused(String i_strFileName, boolean
i_bOpenWithThisControl, boolean i_bFileAlreadyOpened) throws AutomationException
12 {
13 // Handle the New/Open events coming from the Project tree or from the menus
14 if (!i_bFileAlreadyOpened)
15 {
16 // This is basically an SDI interface, so open the file in the already existing
document control
17 try {
18 StyleVisionContainer.initStyleVisionDocument();
19 StyleVisionContainer.styleVisionDocument.open(i_strFileName);
20 } catch (Exception e) {
21 e.printStackTrace();
22 }
23 }
24 }

17.3.5.2.5 Menus

The code listing below shows how menu items can be created. Each StyleVisionCommand object gets a
corresponding MenuItem object, with the ActionCommand set to the ID of the command. The actions generated
by all menu items are handled by the same function, which can perform specific handlings (like reinterpreting
the closing mechanism) or can delegate the execution to the StyleVisionControl object by calling its exec
method. The menuMap object that is filled during menu creation is used later (see section UI Update Event
Handling).

01
02 // Load the file menu when the button is pressed
03 btnMenu.addActionListener(new ActionListener() {
04 public void actionPerformed(ActionEvent e) {
05 try {
06 // Create the menubar that will be attached to the frame
07 MenuBar mb = new MenuBar();
08 // Load the main menu's first item - the File menu
09 StyleVisionCommand xmlSpyMenu =
styleVisionControl.getMainMenu().getSubCommands().getItem(0);
10 // Create Java menu items from the Commands objects
11 Menu fileMenu = new Menu();
12 handlerObject.fillMenu(fileMenu, xmlSpyMenu.getSubCommands());
13 fileMenu.setLabel(xmlSpyMenu.getLabel().replace("&", ""));
14 mb.add(fileMenu);
15 frame.setMenuBar(mb);
16 frame.validate();
17 } catch (AutomationException e1) {
18 e1.printStackTrace();
19 }
20 // Disable the button when the action has been performed
21 ((AbstractButton) e.getSource()).setEnabled(false);
22 }

1021

1020 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

23 }) ;
24 /**
25 * Populates a menu with the commands and submenus contained in a StyleVisionCommands
object
26 */
27 public void fillMenu(Menu newMenu, StyleVisionCommands styleVisionMenu) throws
AutomationException
28 {
29 // For each command/submenu in the xmlSpyMenu
30 for (int i = 0 ; i < styleVisionMenu.getCount() ; ++i)
31 {
32 StyleVisionCommand styleVisionCommand = styleVisionMenu.getItem(i);
33 if (styleVisionCommand.getIsSeparator())
34 newMenu.addSeparator();
35 else
36 {
37 StyleVisionCommands subCommands = styleVisionCommand.getSubCommands();
38 // Is it a command (leaf), or a submenu?
39 if (subCommands.isNull() || subCommands.getCount() == 0)
40 {
41 // Command -> add it to the menu, set its ActionCommand to its ID and store it
in the menuMap
42 MenuItem mi = new MenuItem(styleVisionCommand.getLabel().replace("&",
""));
43 mi.setActionCommand("" + styleVisionCommand.getID());
44 mi.addActionListener(this);
45 newMenu.add(mi);
46 menuMap.put(styleVisionCommand.getID(), mi);
47 }
48 else
49 {
50 // Submenu -> create submenu and repeat recursively
51 Menu newSubMenu = new Menu();
52 fillMenu(newSubMenu, subCommands);
53 newSubMenu.setLabel(styleVisionCommand.getLabel().replace("&", ""));
54 newMenu.add(newSubMenu);
55 }
56 }
57 }
58 }
59 /**
60 * Action handler for the menu items
61 * Called when the user selects a menu item; the item's action command corresponds to
the command table for XMLSpy
62 */
63 public void actionPerformed(ActionEvent e)
64 {
65 try
66 {
67 int iCmd = Integer.parseInt(e.getActionCommand());
68 // Handle explicitly the Close commands
69 switch (iCmd)
70 {
71 case 57602: // Close
72 case 34050: // Close All
73 StyleVisionContainer.initStyleVisionDocument();

© 2017-2023 Altova GmbH

ActiveX Integration 1021Programmers' Reference

Altova StyleVision 2024 Professional Edition

74 break;
75 default:
76 StyleVisionContainer.styleVisionControl.exec(iCmd);
77 break;
78 }
79 }
80 catch (Exception ex)
81 {
82 ex.printStackTrace();
83 }
84
85 }

17.3.5.2.6 UI Update Event Handling

The code listing below shows how a UI-Update event handler can be created.

01 /**
02 * Call-back from the StyleVisionControl.
03 * Called to enable/disable commands
04 */
05 @Override
06 public void onUpdateCmdUI() throws AutomationException
07 {
08 // A command should be enabled if the result of queryStatus contains the Supported
(1) and Enabled (2) flags
09 for (java.util.Map.Entry<Integer, MenuItem> pair : menuMap.entrySet())
10
pair.getValue().setEnabled(StyleVisionContainer.styleVisionControl.queryStatus(pair.getKe
y()) > 2);
11 }
12
13 /**
14 * Call-back from the StyleVisionControl.
15 * Usually called while enabling/disabling commands due to UI updates
16 */
17 @Override
18 public boolean onIsActiveEditor(String i_strFilePath) throws AutomationException
19 {
20 try {
21 return
StyleVisionContainer.styleVisionDocument.getDocument().getFullName().equalsIgnoreCase(i_st
rFilePath);
22 } catch (Exception e) {
23 return false;
24 }
25 }

1022 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.5.2.7 Listing the Properties of a StyleVision Document

The listing below shows the properties of a StyleVision document (schemas, parameters, etc) can be loaded
as nodes in a tree.

001 //access StyleVision Java-COM bridge
002 import com.altova.automation.StyleVision.*;
003
004 // access AWT/Swing components
005 import java.awt.*;
006 import javax.swing.*;
007 import javax.swing.tree.*;
008
009 /**
010 * A simple example of a tree control loading the structure from a StyleVision Document
object.
011 * The class receives a Document object, loads its nodes in a JTree, and prepares
012 * for modal activation.
013 *
014 * Feel free to modify and extend this sample.
015 *
016 * @author Altova GmbH
017 */
018 class StyleVisionDialog extends JDialog
019 {
020 /**
021 * The tree control
022 */
023 private JTree myTree;
024
025 /**
026 * Root node of the tree control
027 */
028 private DefaultMutableTreeNode top ;
029
030 /**
031 * Constructor that prepares the modal dialog containing the filled tree control
032 * @param xml The data to be displayed in the tree
033 * @param parent Parent frame
034 */
035 public StyleVisionDialog(Document doc, Frame parent)
036 {
037 // Construct the modal dialog
038 super(parent, "Data tree", true);
039 // Arrange controls in the dialog
040 top = new DefaultMutableTreeNode("root");
041 myTree = new JTree(top);
042 setContentPane(new JScrollPane(myTree));
043 // Build up the tree; expand all nodes, hide root node
044 fillTree(top, doc);
045 for(int i = 0 ; i < myTree.getRowCount() ; ++i)
046 myTree.expandRow(i);
047 myTree.setRootVisible(false);

© 2017-2023 Altova GmbH

ActiveX Integration 1023Programmers' Reference

Altova StyleVision 2024 Professional Edition

048 }
049
050 /**
051 * Loads the nodes of an XML element under a given tree node
052 * @param node Target tree node
053 * @param doc Source XML element
054 */
055 private void fillTree(DefaultMutableTreeNode node, Document doc)
056 {
057 try
058 {
059 DefaultMutableTreeNode titleNode = new
DefaultMutableTreeNode("SchemaSources") ;
060 for (SchemaSource schema : doc.getSchemaSources())
061 {
062 String nodeText = "$" + schema.getName() ;
063 if (schema.getIsMainSchemaSource())
064 nodeText += " (main)";
065 DefaultMutableTreeNode newNode = new DefaultMutableTreeNode(nodeText) ;
066 node.add(titleNode) ;
067 titleNode.add(newNode);
068 String attribute = schema.getSchemaFileName() ;
069 if (attribute.length() > 0)
070 {
071 DefaultMutableTreeNode subNode = new DefaultMutableTreeNode("SchemaFile") ;
072 subNode.add(new DefaultMutableTreeNode(attribute));
073 newNode.add(subNode);
074 }
075 attribute = schema.getWorkingXMLFileName() ;
076 if (attribute.length() > 0)
077 {
078 DefaultMutableTreeNode subNode = new DefaultMutableTreeNode("Working
XML") ;
079 subNode.add(new DefaultMutableTreeNode(attribute));
080 newNode.add(subNode);
081 }
082 attribute = schema.getTemplateFileName() ;
083 if (attribute.length() > 0)
084 {
085 DefaultMutableTreeNode subNode = new DefaultMutableTreeNode("Template") ;
086 subNode.add(new DefaultMutableTreeNode(attribute));
087 newNode.add(subNode);
088 }
089 }
090
091 titleNode = new DefaultMutableTreeNode("Parameters") ;
092 for (Parameter param : doc.getParameters())
093 {
094 DefaultMutableTreeNode newNode = new DefaultMutableTreeNode("$" +
param.getName());
095 node.add(titleNode) ;
096 titleNode.add(newNode);
097 DefaultMutableTreeNode subNode = new DefaultMutableTreeNode("Value") ;
098 subNode.add(new DefaultMutableTreeNode(param.getValue()));
099 newNode.add(subNode);
100 }

1024 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

101 }
102 catch (Exception e)
103 {
104 e.printStackTrace();
105 }
106 }
107
108 }

17.3.6 Command Reference

This section lists the names and identifiers of all menu commands that are available within StyleVision. Every
sub-section lists the commands from the corresponding top-level menu of StyleVision. The command tables
are organized as follows:

· The "Menu Item" column shows the command's menu text as it appears in StyleVision, to make it
easier for you to identify the functionality behind the command.

· The "Command Name" column specifies the string that can be used to get an icon with the same
name from ActiveX\Images folder of the StyleVision installation directory.

· The "ID" column shows the numeric identifier of the column that must be supplied as argument to
methods which execute or query this command.

To execute a command, use the StyleVisionControl.Exec or the
StyleVisionControlDocument.Exec methods. To query the status of a command, use the
StyleVisionControl.QueryStatus or StyleVisionControlDocument.QueryStatus methods.

Depending on the edition of StyleVision you have installed, some of these commands might not be supported.

17.3.6.1 "File" Menu

The "File" menu has the following commands:

Menu item Command name ID

New from XML Schema/DTD/XML... IDC_FILE_NEW_FROM_SCHEMA 37579

New from DB... IDC_FILE_NEW_FROM_DB 37577

New from XML column in DB table... IDC_FILE_NEW_FROM_DBCELL 37861

New from XBRL Taxonomy... IDC_FILE_NEW_FROM_XBRL_TAXONOMY 37912

New from HTML file... IDC_FILE_NEW_FROM_HTML 37578

New from XSLT file... IDC_FILE_NEW_FROM_XSLT 39737

New from Word 2007+ file... IDC_FILE_NEW_FROM_DOCX 39814

New from Excel 2007+ file... IDC_FILE_NEW_FROM_EXCEL 36054

1045

1051

1046 1052

© 2017-2023 Altova GmbH

ActiveX Integration 1025Programmers' Reference

Altova StyleVision 2024 Professional Edition

Menu item Command name ID

New (empty) IDC_FILE_NEW_EMPTY 37576

Open... ID_FILE_OPEN 57601

Reload IDC_FILE_RELOAD 36002

Close ID_FILE_CLOSE 57602

Close All ID_FILE_CLOSE_ALL 37777

Save Design ID_FILE_SAVE 57603

Save As... ID_FILE_SAVE_AS 57604

Save All ID_FILE_SAVE_ALL 37778

Export as MobileTogether Design file... IDC_FILE_EXPORT_AS_MTD 36055

Save Authentic XML Data ID_SAVE_AUTHENTIC_XML 32860

Save Authentic XML Data as ... ID_SAVE_AUTHENTIC_XML_AS 32812

Save Generated XSLT-HTML File... IDC_SAVE_GEN_XSLT_HTML 37642

Save Generated HTML File(s)... IDC_SAVE_GEN_HTML 37636

Save Generated XSLT-RTF File... IDC_SAVE_GEN_XSLT_RTF 37643

Save Generated RTF File(s)... IDC_SAVE_GEN_RTF 37638

Save Generated XSLT-FO File... IDC_SAVE_GEN_XSLT_FO 37641

Save Generated FO File(s)... IDC_SAVE_GEN_FO 37635

Save Generated PDF File(s)... IDC_SAVE_GEN_PDF 37637

Save Generated XSLT-Word 2007+ File... IDC_SAVE_GEN_XSLT_WORDML 37523

Save Generated Word 2007+ File(s)... IDC_SAVE_GEN_WORDML 37529

Save Generated DB Schema... IDC_SAVE_GEN_DB_SCHEMA 37633

Save Generated DB XML Data... IDC_SAVE_GEN_DB_XML 37634

Save Generated User-Defined Schema... IDC_SAVE_GEN_USERDEF_SCHEMA 37639

Save Generated User-Defined XML Data... IDC_SAVE_GEN_USERDEF_XML 37640

Deploy to FlowForce... IDC_STYLEVISIONGUI_DEPLOY_TO_FLOWF
ORCE

39787

Generate ASPX Web Application... IDC_SAVE_SCRIPT_FOR_DBEXTRACT_AND_
XSLTGEN_ASPX

39755

Properties... IDC_FILE_PROPERTIES 36027

1026 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Menu item Command name ID

Print Preview... ID_FILE_PRINT_PREVIEW 57609

Print... ID_FILE_PRINT 57607

Recent File ID_FILE_MRU_FILE1 57616

Exit ID_APP_EXIT 57665

17.3.6.2 "Edit" Menu

The "Edit" menu has the following commands:

Menu item Command name ID

Undo ID_EDIT_UNDO 57643

Redo ID_EDIT_REDO 57644

Cut ID_EDIT_CUT 57635

Copy ID_EDIT_COPY 57634

Paste ID_EDIT_PASTE 57637

Delete ID_EDIT_CLEAR 57632

Find ID_EDIT_FIND 57636

Find Next ID_EDIT_FINDNEXT 36802

Replace... ID_EDIT_REPLACE 57641

Stylesheet Parameters... IDC_EDIT_PARAMETERS 37573

Collapse/Expand Markup IDC_SPSGUI_COLLAPSE_EXPAND_MARKUP 36804

Select All ID_EDIT_SELECT_ALL 57642

17.3.6.3 "Project" Menu

The "Project" menu has the following commands:

Menu item Command name ID

New Project IDC_ICPROJECTGUI_NEW 37200

Open Project... IDC_ICPROJECTGUI_OPEN 37201

© 2017-2023 Altova GmbH

ActiveX Integration 1027Programmers' Reference

Altova StyleVision 2024 Professional Edition

Menu item Command name ID

Reload Project IDC_ICPROJECTGUI_RELOAD 37202

Close Project IDC_ICPROJECTGUI_CLOSE 37203

Save Project IDC_ICPROJECTGUI_SAVE 37204

Add Files to Project... IDC_ICPROJECTGUI_ADD_FILES_TO_PROJE
CT

37205

Add Global Resource to Project... IDC_ICPROJECTGUI_ADD_GLOBAL_RESOUR
CE_TO_PROJECT

37239

Add URL to Project... IDC_ICPROJECTGUI_ADD_URL_TO_PROJEC
T

37206

Add Active File to Project IDC_ICPROJECTGUI_ADD_ACTIVE_FILE_TO_
PROJECT

37208

Add Active and Related Files to Project IDC_ICPROJECTGUI_ADD_ACTIVE_AND_REL
ATED_FILES_TO_PROJECT

37209

Add Project Folder to Project... IDC_ICPROJECTGUI_ADD_FOLDER_TO_PRO
JECT

37210

Add External Folder to Project... IDC_ICPROJECTGUI_ADD_EXT_FOLDER_TO_
PROJECT

37211

Add External Web Folder to Project... IDC_ICPROJECTGUI_ADD_EXT_URL_FOLDER
_TO_PROJECT

37212

Recent Project IDC_ICPROJECTGUI_RECENT 37224

17.3.6.4 "View" Menu

The "View" menu has the following commands:

Menu item Command name ID

Dummy entry ID_VIEW_TOOLBARS 37807

Project ID_VIEW_PROJECT 57682

Design Overview ID_VIEW_DESIGNOVERVIEW 37883

Schema Tree ID_VIEW_SCHEMASOURCES 37805

Design Tree ID_VIEW_DESIGNTREE 37804

Style Repository ID_VIEW_STYLEREPOSITORY 37806

1028 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Menu item Command name ID

Context Properties ID_VIEW_CONTEXTPROPERTY_COMMON 37802

Context Styles ID_VIEW_CONTEXTPROPERTY_STYLES 37803

Show only one template at once IDC_DESIGN_FILTER_ONE 37704

Show all template types IDC_DESIGN_FILTER_ALL 37700

Show imported templates IDC_DESIGN_FILTER_IMPORTED 37870

Show/Hide main template IDC_DESIGN_FILTER_MAIN 37701

Show/Hide global templates IDC_DESIGN_FILTER_MATCH 37702

Show/Hide design fragments IDC_DESIGN_FILTER_NAMED 37703

Zoom In IDC_SPSGUI_ZOOM_IN 36805

Zoom Out IDC_SPSGUI_ZOOM_OUT 36806

Zoom 500% IDC_SPSGUI_ZOOM_500 36807

Zoom 400% IDC_SPSGUI_ZOOM_400 36808

Zoom 200% IDC_SPSGUI_ZOOM_200 36809

Zoom 150% IDC_SPSGUI_ZOOM_150 36810

Zoom 100% IDC_SPSGUI_ZOOM_100 36811

Zoom 75% IDC_SPSGUI_ZOOM_75 36812

Zoom 50% IDC_SPSGUI_ZOOM_50 36813

Status Bar ID_VIEW_STATUS_BAR 59393

17.3.6.5 "Insert" Menu

The "Insert" menu has the following commands:

Menu item Command name ID

Insert Contents IDC_INSERT_CONTENTS 37846

Insert Rest of Contents IDC_INSERT_REST_OF_CONTENTS 37617

Insert RichEdit IDC_INSERT_RICHEDIT 39773

Input Field IDC_INSERT_EDITFIELD 37854

Multiline Input Field IDC_INSERT_MULTILINEEDITFIELD 37855

© 2017-2023 Altova GmbH

ActiveX Integration 1029Programmers' Reference

Altova StyleVision 2024 Professional Edition

Menu item Command name ID

Check Box... IDC_INSERT_CHECKBOX 37857

Combo Box... IDC_INSERT_COMBOBOX 37856

Radio Button... IDC_INSERT_RADIOBUTTON 37858

Button IDC_INSERT_BUTTON 37859

Navigation IDC_INSERT_DBNAVIGATION 37603

Navigation + Goto IDC_INSERT_DBNAVIGATIONGOTO 37604

Query Button IDC_INSERT_DBQUERY 37605

Value... IDC_INSERT_AUTOCALC_VALUE 37596

Input Field... IDC_INSERT_AUTOCALC_FIELD 37594

Multiline Input Field... IDC_INSERT_AUTOCALC_MULTILINE_FIELD 37595

Insert Date Picker IDC_INSERT_DATEPICKER 37602

Insert Paragraph IDC_INSERT_PARAGRAPH 37847

Address IDC_INSERT_ADDRESS 37843

Block (div) IDC_INSERT_BLOCK 37528

Blockquote IDC_INSERT_BLOCKQUOTE 37527

Center IDC_INSERT_CENTER 37534

Fieldset IDC_INSERT_FIELDSET 37574

Preformatted IDC_INSERT_FORMATTED 37580

Preformatted, wrapping IDC_INSERT_FORMATTED_WRAP 37876

Heading 1 (h1) IDC_INSERT_HEADING1 37585

Heading 2 (h2) IDC_INSERT_HEADING2 37586

Heading 3 (h3) IDC_INSERT_HEADING3 37587

Heading 4 (h4) IDC_INSERT_HEADING4 37588

Heading 5 (h5) IDC_INSERT_HEADING5 37589

Heading 6 (h6) IDC_INSERT_HEADING6 37590

Insert Barcode... IDC_INSERT_BARCODE 40221

Insert Chart... IDC_INSERT_CHART 40223

Insert Image... IDC_INSERT_IMAGE 37593

1030 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Menu item Command name ID

Insert Horizontal Line IDC_INSERT_HORIZONTAL_LINE 37606

Insert Table... IDC_INSERT_TABLE 40212

Insert Bullets and Numbering... IDC_INSERT_FORMAT_BULLETS 37848

Insert Bookmark... IDC_INSERT_BOOKMARK 37530

Insert Hyperlink... IDC_INSERT_HYPERLINK 37849

Insert Footnote IDC_INSERT_FOOTNOTE 39797

Insert Condition... IDC_INSERT_CONDITION 37850

Insert Output-based Condition IDC_INSERT_CONDITION_PER_OUTPUT 37851

Insert Template... IDC_INSERT_TEMPLATE 40216

Insert User-Defined Template... IDC_INSERT_USER_DEFINED_TEMPLATE 40184

Insert Variable Template... IDC_INSERT_VARIABLE_TEMPLATE 37531

Dummy entry IDC_INSERT_NAMED_TEMPLATE 39300

Insert Layout Container IDC_INSERT_LAYOUT_CONTAINER 40213

Insert Layout Box IDC_INSERT_LAYOUT_BOX 40214

Insert Line IDC_INSERT_SHAPE_LINE 40215

Table of Contents... IDC_INSERT_TOC_WIZARD 37618

TOC Bookmark IDC_INSERT_MARKER 37608

TOC Bookmark (Wizard)... IDC_INSERT_MARKER_WIZARD 37609

TOC Reference IDC_INSERT_REF 37613

Entry Text IDC_INSERT_REF_ENTRY_TEXT 37614

Leader IDC_INSERT_REF_LEADER 37615

Page Reference IDC_INSERT_REF_PAGE_REFERENCE 37616

Hierarchical Numbering IDC_INSERT_AUTO_NUMBER_LEVEL 37598

Sequential Numbering IDC_INSERT_AUTO_NUMBER_FLAT 37597

TOC Level IDC_INSERT_LEVEL 37607

TOC Level Reference IDC_INSERT_REFLEVEL 37860

Template Serves as Level IDC_ASSIGN_LEVEL 37524

Insert New Document IDC_INSERT_RESULT_DOCUMENT 39756

© 2017-2023 Altova GmbH

ActiveX Integration 1031Programmers' Reference

Altova StyleVision 2024 Professional Edition

Menu item Command name ID

New Page IDC_INSERT_PAGE_BREAK 37610

Page Number IDC_INSERT_PAGE_NUMBER 37611

Page Total IDC_INSERT_PAGE_TOTAL 37612

New Column IDC_INSERT_COLUMN_BREAK 37864

New Document Section IDC_INSERT_DOCUMENT_SECTION 37951

Insert XBRL Table from Taxonomy... IDC_INSERT_XBRL_TABLE_FROM_TAXONOM
Y

39813

Context IDC_INSERT_XBRL_CONTEXT 37942

Item IDC_INSERT_XBRL_ITEM 39793

Period IDC_INSERT_XBRL_PERIOD 37909

Period Start IDC_INSERT_XBRL_PERIOD_START 37947

Period End IDC_INSERT_XBRL_PERIOD_END 37948

Identifier IDC_INSERT_XBRL_IDENTIFIER 37910

Unit IDC_INSERT_XBRL_UNITASPECT 39789

UnitRef IDC_INSERT_XBRL_UNITREF 37946

Footnote IDC_INSERT_XBRL_FOOTNOTE 37911

Non-XDT Segment IDC_INSERT_XBRL_NONXDTSEGMENT_ASP
ECT

39790

Non-XDT Scenario IDC_INSERT_XBRL_NONXDTSCENARIO_ASP
ECT

39791

XML Node IDC_INSERT_XBRL_XMLNODE 39792

iXBRL Hidden Data IDC_INSERT_IXBRL_HIDE 39721

iXBRL Fraction IDC_INSERT_IXBRL_FRACTION 39723

User-Defined Element IDC_STYLEVISIONGUI_INSERT_USERXMLEL
EM

37908

User-Defined Block IDC_STYLEVISIONGUI_INSERT_USERXMLTE
XT

37920

1032 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.6.6 "Enclose with" Menu

The "Enclose with" menu has the following commands:

Menu item Command name ID

Template... IDC_ENCLOSE_WITH_TEMPLATES 40180

User-Defined Template... IDC_ENCLOSE_WITH_USER_DEFINED_TEM
PLATES

40217

Variable Template... IDC_ENCLOSE_WITH_VARIABLE_TEMPLATE
S

37520

Paragraph IDC_ENCLOSE_PARAGRAPH 37627

Address IDC_ENCLOSE_ADDRESS 40194

Block (div) IDC_ENCLOSE_BLOCK 40195

Blockquote IDC_ENCLOSE_BLOCKQUOTE 40196

Center IDC_ENCLOSE_CENTER 40197

Fieldset IDC_ENCLOSE_FIELDSET 40198

Preformatted IDC_ENCLOSE_FORMATTED 40199

Preformatted, wrapping IDC_ENCLOSE_FORMATTED_WRAP 40200

Heading 1 (h1) IDC_ENCLOSE_HEADING1 40201

Heading 2 (h2) IDC_ENCLOSE_HEADING2 40202

Heading 3 (h3) IDC_ENCLOSE_HEADING3 40203

Heading 4 (h4) IDC_ENCLOSE_HEADING4 40204

Heading 5 (h5) IDC_ENCLOSE_HEADING5 40205

Heading 6 (h6) IDC_ENCLOSE_HEADING6 40206

Bullets and Numbering... IDC_ENCLOSE_FORMAT_BULLETS 37581

Bookmark... IDC_ENCLOSE_BOOKMARK 40207

Hyperlink... IDC_ENCLOSE_HYPERLINK 37620

Condition... IDC_ENCLOSE_CONDITION 37599

Output-based Condition IDC_ENCLOSE_CONDITION_PER_OUTPUT 37600

TOC Bookmark IDC_ENCLOSE_MARKER 40210

TOC Bookmark (Wizard)... IDC_ENCLOSE_MARKER_WIZARD 40211

© 2017-2023 Altova GmbH

ActiveX Integration 1033Programmers' Reference

Altova StyleVision 2024 Professional Edition

Menu item Command name ID

TOC Level IDC_ENCLOSE_LEVEL 40208

TOC Level Reference IDC_ENCLOSE_REFLEVEL 40209

New Document IDC_ENCLOSE_RESULT_DOCUMENT 39758

User-Defined Element... IDC_ENCLOSE_WITH_USER_DEFINED_XML_
ELEMENT

40222

17.3.6.7 "Table" Menu

The "Table" menu has the following commands:

Menu item Command name ID

Insert Table... IDC_INSERT_TABLE 40212

Delete Table IDC_TABLE_DELETE 37658

Add Table Header Column IDC_TABLE_ADD_HEADERCOL 37888

Add Table Footer Column IDC_TABLE_ADD_FOOTERCOL 37889

Add Table Header Row IDC_TABLE_ADD_HEADERROW 37900

Add Table Footer Row IDC_TABLE_ADD_FOOTERROW 37901

Append Row IDC_TABLE_APPEND_ROW 37657

Append Column IDC_TABLE_APPEND_COL 37656

Insert Row IDC_TABLE_INSERT_ROW 37664

Insert Column IDC_TABLE_INSERT_COL 37662

Delete Row IDC_TABLE_DELETE_ROW 37660

Delete Column IDC_TABLE_DELETE_COL 37659

Join Cell Left IDC_TABLE_JOIN_LEFT 37666

Join Cell Right IDC_TABLE_JOIN_RIGHT 37667

Join Cell Below IDC_TABLE_JOIN_DOWN 37665

Join Cell Above IDC_TABLE_JOIN_UP 37668

Split Cell Horizontally IDC_TABLE_SPLIT_HORZ 37670

Split Cell Vertically IDC_TABLE_SPLIT_VERT 37671

1034 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Menu item Command name ID

View Cell Bounds IDC_TABLE_SHOW_ZERO_BORDER 37669

View Table Markup IDC_TABLE_SHOW_UICELLS 37887

Table Properties... IDC_TABLE_EDIT_PROPERTIES 37661

Edit CALS/HTML Tables... IDC_EDIT_XMLTABLES 37533

17.3.6.8 "Authentic" Menu

The "Authentic" menu has the following commands:

Menu item Command name ID

Edit Authentic Scripts... IDC_EDIT_AUTHENTIC_SCRIPTPROJECT 37601

Custom Toolbar Buttons... IDC_TEXT_STATE_ICONS 37672

Check Macro References... IDC_AUTHENTIC_CHECK_MACRO_REFEREN
CES

39751

Auto-add Date Picker IDC_TOGGLE_DATEPICKER_AUTOINSERT 37674

Auto-add DB Controls IDC_TOGGLE_DBCONTROL_AUTOINSERT 37675

Reload Authentic View IDC_AUTHENTICGUI_RELOAD 32800

Validate XML IDC_VALIDATE 32954

Select New Row with XML Data for Editing... IDC_CHANGE_WORKING_DB_XML_CELL 32861

XML Signature... IDC_AUTHENTICGUI_XMLSIGNATURE 32862

Define XML Entities... IDC_DEFINE_ENTITIES 32805

Hide Markup IDC_MARKUP_HIDE 32855

Show Small Markup IDC_MARKUP_SMALL 32858

Show Large Markup IDC_MARKUP_LARGE 32856

Show Mixed Markup IDC_MARKUP_MIXED 32857

Toggle Bold IDC_AUTHENTICGUI_RICHEDIT_TOGGLEBOL
D

32813

Toggle Italic IDC_AUTHENTICGUI_RICHEDIT_TOGGLEITALI
C

32814

© 2017-2023 Altova GmbH

ActiveX Integration 1035Programmers' Reference

Altova StyleVision 2024 Professional Edition

Menu item Command name ID

Toggle Underline IDC_AUTHENTICGUI_RICHEDIT_TOGGLEUND
ERLINE

32815

Toggle Strikethrough IDC_AUTHENTICGUI_RICHEDIT_TOGGLESTRI
KETHROUGH

32816

Foreground Color IDC_AUTHENTICGUI_RICHEDIT_COLOR_FOR
EGROUND

32824

Background Color IDC_AUTHENTICGUI_RICHEDIT_COLOR_BAC
KGROUND

32830

Align Left IDC_AUTHENTICGUI_RICHEDIT_ALIGN_LEFT 32818

Center IDC_AUTHENTICGUI_RICHEDIT_ALIGN_CENT
ER

32819

Align Right IDC_AUTHENTICGUI_RICHEDIT_ALIGN_RIGHT 32820

Justify IDC_AUTHENTICGUI_RICHEDIT_ALIGN_JUSTI
FY

32821

Append Row IDC_ROW_APPEND 32806

Insert Row IDC_ROW_INSERT 32809

Duplicate Row IDC_ROW_DUPLICATE 32808

Move Row Up IDC_ROW_MOVE_UP 32811

Move Row Down IDC_ROW_MOVE_DOWN 32810

Delete Row IDC_ROW_DELETE 32807

17.3.6.9 "Database" Menu

The "Database" menu has the following commands:

Menu item Command name ID

Query Database ID_VIEW_DBQUERY 37818

Edit DB Filter... IDC_EDIT_DBFILTERS 37571

Clear DB Filter IDC_CLEAR_DBFILTERS 37547

1036 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.6.10 "Properties" Menu

The "Properties" menu has the following commands:

Menu item Command name ID

Edit Bullets and Numbering... IDC_EDIT_BULLETS_AND_NUMBERING 37839

Predefined Value Formatting Strings... IDC_FORMAT_PREDEFINES 37582

17.3.6.11 "Tools" Menu

The "Tools" menu has the following commands:

Menu item Command name ID

Spelling... IDC_SPSGUI_SPELL_CHECK 36800

Spelling Options... IDC_SPSGUI_SPELL_OPTIONS 36801

Global Resources IDC_GLOBALRESOURCES 37401

<plugin not loaded> IDC_GLOBALRESOURCES_SUBMENUENTR
Y1

37408

Customize... IDC_APP_TOOLS_CUSTOMIZE 32959

Options... IDC_TOOLS_OPTIONS 37676

17.3.6.12 "Window" Menu

The "Window" menu has the following commands:

Menu item Command name ID

Cascade ID_WINDOW_CASCADE 57650

Tile Horizontal ID_WINDOW_TILE_HORZ 57651

Tile Vertical ID_WINDOW_TILE_VERT 57652

Arrange Icons ID_WINDOW_ARRANGE 57649

© 2017-2023 Altova GmbH

ActiveX Integration 1037Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.3.6.13 "Help" Menu

The "Help" menu has the following commands:

Menu item Command name ID

Table of Contents IDC_HELP_CONTENTS 32966

Index... IDC_HELP_INDEX 32967

Search... IDC_HELP_SEARCH 32969

Software Activation... IDC_ACTIVATION 32970

Order form... IDC_OPEN_ORDER_PAGE 32971

Registration... IDC_REGISTRATION 32972

Check for Updates... IDC_CHECK_FOR_UPDATES 32973

StyleVision Product Comparison... IDC_PRODUCT_COMPARISON 32955

Support Center... IDC_OPEN_SUPPORT_PAGE 32961

FAQ on the Web... IDC_OPEN_FAQ_PAGE 32962

Download Components and Free Tools... IDC_OPEN_COMPONENTS_PAGE 32963

StyleVision on the Internet... IDC_OPEN_HOME_PAGE 32964

StyleVision Training... IDC_OPEN_TRAINING_PAGE 32965

About StyleVision... ID_APP_ABOUT 57664

17.3.7 Object Reference

Objects:
StyleVisionCommand
StyleVisionCommands
StyleVisionControl
StyleVisionControlDocument
StyleVisionControlPlaceHolder

To give access to standard StyleVision functionality, objects of the StyleVision automation interface can be
accessed as well. See StyleVisionControl.Application , StyleVisionControlDocument.Document and
StyleVisionControlPlaceHolder.Project for more information.

1038

1040

1041

1048

1055

1042 1050

1056

1038 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.7.1 StyleVisionCommand

Properties:
ID
Label
Name
IsSeparator
ToolTip
StatusText
Accelerator
SubCommands

Description:
A command object can be one of the following: an executable command, a command container (for example, a
menu, submenu, or toolbar), or a menu separator. To determine what kind of information is stored in the current
Command object, query its ID, IsSeparator, and SubCommands properties, as follows.

The Command object is... When...

An executable command · ID is greater than zero
· IsSeparator is false
· SubCommands is empty

A command container · ID is zero
· IsSeparator is false
· SubCommands contains a collection of

Command objects.

Separator · ID is zero
· IsSeparator is true

17.3.7.1.1 Accelerator

Property: Accelerator as string

Description:
Returns the accelerator key defined for the command. If the command has no accelerator key assigned, this
property returns the empty string. The string representation of the accelerator key has the following format:

[ALT+][CTRL+][SHIFT+]key

Where key is converted using the Windows Platform SDK function GetKeyNameText.

17.3.7.1.2 ID

Property: ID as long

1038

1039

1039

1039

1040

1039

1038

1040

© 2017-2023 Altova GmbH

ActiveX Integration 1039Programmers' Reference

Altova StyleVision 2024 Professional Edition

Description:
This property gets the unique identifier of the command. A command's ID is required to execute the command
(using Exec) or query its status (using QueryStatus). If the command is a container for other commands
(for example, a top-level menu), or a separator, the ID is 0.

17.3.7.1.3 IsSeparator

Property: IsSeparator as boolean

Description:
The property returns true if the command object is a menu separator; false otherwise. See also
Command .

17.3.7.1.4 Label

Property: Label as string

Description:
This property gets the text of the command as it is displayed in the graphical user interface of StyleVision. If
the command is a separator, "Label" is an empty string. This property may also return an empty string for
some toolbar commands that do not have any GUI text associated with them.

17.3.7.1.5 Name

Property: Name as string

Description:
This property gets the unique name of the command. This value can be used to get the icon file of the
command, where it is available. The available icon files can be found in the folder
<ApplicationFolder>\Examples\ActiveX\Images of your StyleVision installation.

17.3.7.1.6 StatusText

Property: Label as string

Description:
The status text is the text shown in the status bar of StyleVision when the command is selected. It applies
only to command objects that are not separators or containers of other commands; otherwise, the property is
an empty string.

1045 1046

1038

1040 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.7.1.7 SubCommands

Property: SubCommands as Commands

Description:
The SubCommands property gets the collection of Command objects that are sub-commands of the current
command. The property is applicable only to commands that are containers for other commands (menus,
submenus, or toolbars). Such container commands have the ID set to 0, and the IsSeparator property set to
false.

17.3.7.1.8 ToolTip

Property: ToolTip as string

Description:
This property gets the text that is shown as a tool-tip for each command. If the command does not have a
tooltip text, the property returns an empty string.

17.3.7.2 StyleVisionCommands

Properties:
Count
Item

Description:
Collection of Command objects to get access to command labels and IDs of the StyleVisionControl. Those
commands can be executed with the Exec method and their status can be queried with QueryStatus .

17.3.7.2.1 Count

Property: Count as long

Description:
Number of Command objects on this level of the collection.

17.3.7.2.2 Item

Property: Item (n as long) as Command

Description:
Gets the command with the index n in this collection. Index is 1-based.

1040

1038

1040

1040

1038

1045 1046

1038

1038

© 2017-2023 Altova GmbH

ActiveX Integration 1041Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.3.7.3 StyleVisionControl

Properties:
IntegrationLevel
Appearance
Application
BorderStyle
CommandsList
EnableUserPrompts
MainMenu
Toolbars

Methods:
Open
Exec
QueryStatus

Events:
OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnDocumentOpened
OnValidationWindowUpdated

This object is a complete ActiveX control and should only be visible if the StyleVision library is used in the
Application Level mode.

17.3.7.3.1 Properties

The following properties are defined:

IntegrationLevel
EnableUserPrompts
Appearance
BorderStyle

Command related properties:
CommandsList
MainMenu
Toolbars

Access to StyleVisionAPI:
Application

1043

1042

1042

1042

1042

1043

1043

1044

1045

1045

1046

1048

1047

1046

1047

1047

1048

1043

1043

1042

1042

1042

1043

1044

1042

1042 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.7.3.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the control. Default value is 0.

17.3.7.3.1.2 Application

Property: Application as Application

Dispatch Id: 1

Description:
The Application property gives access to the Application object of the complete StyleVision automation
server API. The property is read-only.

17.3.7.3.1.3 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

17.3.7.3.1.4 CommandsList

Property: CommandList as Commands (read-only)

Dispatch Id: 1004

Description:
This property returns a flat list of all commands defined available with StyleVisionControl. To get commands
organized according to their menu structure, use MainMenu . To get toolbar commands, use Toolbars .

public void GetAllStyleVisionCommands()
{
 // Get all commands from the StyleVision ActiveX control assigned to the current form
 StyleVisionControlLib.StyleVisionCommands commands =

1040

1043 1044

© 2017-2023 Altova GmbH

ActiveX Integration 1043Programmers' Reference

Altova StyleVision 2024 Professional Edition

this.axStyleVisionControl1.CommandList;
 // Iterate through all commands
 for (int i = 0; i < commands.Count; i++)
 {
 // Get each command by index and output it to the console
 StyleVisionControlLib.StyleVisionCommand cmd =
axStyleVisionControl1.CommandList[i];
 Console.WriteLine("{0} {1} {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&", ""));
 }
}

C# example

17.3.7.3.1.5 EnableUserPrompts

Property: EnableUserPrompts as boolean

Dispatch Id: 1006

Description:
Setting this property to false, disables user prompts in the control. The default value is true.

17.3.7.3.1.6 IntegrationLevel

Property: IntegrationLevel as ICActiveXIntegrationLevel

Dispatch Id: 1000

Description:
The IntegrationLevel property determines the operation mode of the control. See also Integration at
Application Level and Integration at Document Level for more information.

Note: It is important to set this property immediately after the creation of the StyleVisionControl object.

17.3.7.3.1.7 MainMenu

Property: MainMenu as Command (read-only)

Dispatch Id: 1003

Description:
This property provides information about the structure and commands available in the StyleVisionControl main
menu, as a Command object. The Command object contains all available submenus of StyleVision (for example
"File", "Edit", "View" etc.). To access the submenu objects, use the SubCommands property of the MainMenu
property. Each submenu is also a Command object. For each submenu, you can then further iterate through their

1058

1005 1007

1038

1044 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

SubCommands property in order to get their corresponding child commands and separators (this technique may
be used, for example, to create the application menu programmatically). Note that some menu commands act
as containers ("parents") for other menu commands, in which case they also have a SubCommands property. To
get the structure of all menu commands programmatically, you will need a recursive function.

public void GetStyleVisionMenus()
{
 // Get the main menu from the StyleVision ActiveX control assigned to the current
form
 StyleVisionControlLib.StyleVisionCommand mainMenu =
this.axStyleVisionControl1.MainMenu;

 // Loop through entries of the main menu (e.g. File, Edit, etc.)
 for (int i = 0; i < mainMenu.SubCommands.Count; i++)
 {
 StyleVisionControlLib.StyleVisionCommand menu = mainMenu.SubCommands[i];
 Console.WriteLine("{0} menu has {1} children items (including separators)",
menu.Label.Replace("&", ""), menu.SubCommands.Count);
 }
}

C# example

17.3.7.3.1.8 Toolbars

Property: Toolbars as Commands (read-only)

Dispatch Id: 1005

Description:
This property provides information about the structure of StyleVisionControl toolbars, as a Command object. The
Command object contains all available toolbars of StyleVision. To access the toolbars, use the SubCommands
property of the Toolbars property. Each toolbar is also a Command object. For each toolbar, you can then
further iterate through their SubCommands property in order to get their commands (this technique may be used,
for example, to create the application's toolbars programmatically).

public void GetStyleVisionToolbars()
{
 // Get the application toolbars from the StyleVision ActiveX control assigned to the
current form
 StyleVisionControlLib.StyleVisionCommands toolbars =
this.axStyleVisionControl1.Toolbars;

 // Iterate through all toolbars
 for (int i = 0; i < toolbars.Count; i++)
 {
 StyleVisionControlLib.StyleVisionCommand toolbar = toolbars[i];
 Console.WriteLine();
 Console.WriteLine("The toolbar \"{0}\" has the following commands:",

1040

© 2017-2023 Altova GmbH

ActiveX Integration 1045Programmers' Reference

Altova StyleVision 2024 Professional Edition

toolbar.Label);

 // Iterate through all commands of this toolbar
 for (int j = 0; j < toolbar.SubCommands.Count; j++)
 {
 StyleVisionControlLib.StyleVisionCommand cmd = toolbar.SubCommands[j];
 // Output only command objects that are not separators
 if (!cmd.IsSeparator)
 {
 Console.WriteLine("{0}, {1}, {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&",
""));
 }
 }
 }
}

C# example

17.3.7.3.2 Methods

The following methods are defined:

Open
Exec
QueryStatus

17.3.7.3.2.1 Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 6

Description:
This method calls the StyleVision command with the ID nCmdID. If the command can be executed, the method
returns true. To get a list of all available commands, use CommandsList . To retrieve the status of any
command, use QueryStatus .

17.3.7.3.2.2 Open

Method: Open (strFilePath as string) as boolean

Dispatch Id: 5

Description:
The result of the method depends on the extension passed in the argument strFilePath. If the file extension
is .sps, a new document is opened. If the file extension is .svp, the corresponding project is opened. If a

1045

1045

1046

1042

1046

1046 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

different file extension is passed into the method, the control tries to load the file as a new component into the
active document.

Do not use this method to load documents or projects when using the control in document-level integration
mode. Instead, use StyleVisionControlDocument.Open and
StyleVisionControlPlaceHolder.OpenProject .

17.3.7.3.2.3 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 7

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by
nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid StyleVision command.
If QueryStatus returns a value of 1 or 5, the command is disabled.

17.3.7.3.3 Events

The StyleVisionControl ActiveX control provides the following connection point events:

OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnDocumentOpened
OnValidationWindowUpdated

17.3.7.3.3.1 OnCloseEditingWindow

Event: OnCloseEditingWindow (i_strFilePath as String) as boolean

Dispatch Id: 1002

Description:
This event is triggered when StyleVision needs to close an already open document. As an answer to this event,
clients should close the editor window associated with i_strFilePath. Returning true from this event indicates

1052

1056

1048

1047

1046

1047

1047

1048

© 2017-2023 Altova GmbH

ActiveX Integration 1047Programmers' Reference

Altova StyleVision 2024 Professional Edition

that the client has closed the document. Clients can return false if no specific handling is required and
StyleVisionControl should try to close the editor and destroy the associated document control.

17.3.7.3.3.2 OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1

Description:
This event is triggered whenever a document is opened. The argument objDocument is a Document object from
the StyleVision automation interface and can be used to query for more details about the document, or perform
additional operations. When integrating on document-level, it is often better to use the event
StyleVisionControlDocument.OnDocumentOpened instead.

17.3.7.3.3.3 OnFileChangedAlert

Event: OnFileChangedAlert (i_strFilePath as String) as bool

Dispatch Id: 1001

Description:
This event is triggered when a file loaded with StyleVisionControl is changed on the hard disk by another
application. Clients should return true, if they handled the event, or false, if StyleVision should handle it in its
customary way, i.e. prompting the user for reload.

17.3.7.3.3.4 OnLicenseProblem

Event: OnLicenseProblem (i_strLicenseProblemText as String)

Dispatch Id: 1005

Description:
This event is triggered when StyleVisionControl detects that no valid license is available for this control. In case
of restricted user licenses this can happen some time after the control has been initialized. Integrators should
use this event to disable access to this control's functionality. After returning from this event, the control will
block access to its functionality (e.g. show empty windows in its controls and return errors on requests).

17.3.7.3.3.5 OnOpenedOrFocused

Event: OnOpenedOrFocused (i_strFilePath as String, i_bOpenWithThisControl as bool)

Dispatch Id: 1000

1054

1048 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Description:
When integrating at application level, this event informs clients that a document has been opened, or made
active by StyleVision.

When integrating at document level, this event instructs the client to open the file i_strFilePath in a
document window. If the file is already open, the corresponding document window should be made the active
window.

if i_bOpenWithThisControl is true, the document must be opened with StyleVisionControl, since internal
access is required. Otherwise, the file can be opened with different editors.

17.3.7.3.3.6 OnToolWindowUpdated

Event: OnToolWindowUpdated(pToolWnd as long)

Dispatch Id: 1006

Description:
This event is triggered when the tool window is updated.

17.3.7.3.3.7 OnUpdateCmdUI

Event: OnUpdateCmdUI()

Dispatch Id: 1003

Description:
Called frequently to give integrators a good opportunity to check status of StyleVision commands using
StyleVisionControl.QueryStatus . Do not perform long operations in this callback.

17.3.7.3.3.8 OnValidationWindowUpdated

Event: OnValidationWindowUpdated()

Dispatch Id: 3

Description:
This event is triggered whenever the validation output window is updated with new information.

17.3.7.4 StyleVisionControlDocument

Properties:
Appearance

1046

1049

© 2017-2023 Altova GmbH

ActiveX Integration 1049Programmers' Reference

Altova StyleVision 2024 Professional Edition

BorderStyle
Document
IsModified
Path
ReadOnly

Methods:
Exec
New
Open
QueryStatus
Reload
Save
SaveAs

Events:
OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnFileChangedAlert
OnActivate

If the StyleVisionControl is integrated in the Document Level mode each document is displayed in an own
object of type StyleVisionControlDocument. The StyleVisionControlDocument contains only one
document at the time but can be reused to display different files one after another.

This object is a complete ActiveX control.

17.3.7.4.1 Properties

The following properties are defined:

ReadOnly
IsModified
Path
Appearance
BorderStyle

Access to StyleVisionAPI:
Document

17.3.7.4.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the document control. Default value is 0.

1050

1050

1050

1050

1051

1051

1051

1052

1052

1052

1052

1053

1054

1053

1054

1054

1053

1051

1050

1050

1049

1050

1050

1050 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.7.4.1.2 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

17.3.7.4.1.3 Document

Property: Document as Document

Dispatch Id: 1

Description:
The Document property gives access to the Document object of the StyleVision automation server API. This
interface provides additional functionality which can be used with the document loaded in the control. The
property is read-only.

17.3.7.4.1.4 IsModified

Property: IsModified as boolean (read-only)

Dispatch Id: 1006

Description:
IsModified is true if the document content has changed since the last open, reload or save operation. It is
false, otherwise.

17.3.7.4.1.5 Path

Property: Path as string

Dispatch Id: 1005

Description:
Sets or gets the full path name of the document loaded into the control.

© 2017-2023 Altova GmbH

ActiveX Integration 1051Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.3.7.4.1.6 ReadOnly

Property: ReadOnly as boolean

Dispatch Id: 1007

Description:
Using this property you can turn on and off the read-only mode of the document. If ReadOnly is true it is not
possible to do any modifications.

17.3.7.4.2 Methods

The following methods are defined:

Document handling:
New
Open
Reload
Save
SaveAs

Command Handling:
Exec
QueryStatus

17.3.7.4.2.1 Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 8

Description:
Exec calls the StyleVision command with the ID nCmdID. If the command can be executed, the method returns
true. This method should be called only if there is currently an active document available in the application.

To get commands organized according to their menu structure, use the MainMenu property of
StyleVisionControl. To get toolbar commands, use the Toolbars property of the StyleVisionControl.

17.3.7.4.2.2 New

Method: New () as boolean

Dispatch Id: 1000

Description:

1051

1052

1052

1052

1053

1051

1052

1043

1044

1052 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

This method initializes a new document inside the control.

17.3.7.4.2.3 Open

Method: Open (strFileName as string) as boolean

Dispatch Id: 1001

Description:
Open loads the file strFileName as the new document into the control.

17.3.7.4.2.4 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 9

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by
nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid StyleVision command.
If QueryStatus returns a value of 1 or 5 the command is disabled. The client should call the QueryStatus
method of the document control if there is currently an active document available in the application.

17.3.7.4.2.5 Reload

Method: Reload() as boolean

Dispatch Id: 1002

Description:
Reload updates the document content from the file system.

17.3.7.4.2.6 Save

Method: Save() as boolean

© 2017-2023 Altova GmbH

ActiveX Integration 1053Programmers' Reference

Altova StyleVision 2024 Professional Edition

Dispatch Id: 1003

Description:
Save saves the current document at the location Path .

17.3.7.4.2.7 SaveAs

Method: SaveAs (strFileName as string) as boolean

Dispatch Id: 1004

Description:
SaveAs sets Path to strFileName and then saves the document to this location.

17.3.7.4.3 Events

The StyleVisionControlDocument ActiveX control provides following connection point events:

OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnFileChangedAlert
OnActivate
OnSetEditorTitle

17.3.7.4.3.1 OnActivate

Event: OnActivate ()

Dispatch Id: 1005

Description:
This event is triggered when the document control is activated, has the focus, and is ready for user input.

17.3.7.4.3.2 OnDocumentClosed

Event: OnDocumentClosed (objDocument as Document)

Dispatch Id: 1001

Description:
This event is triggered whenever the document loaded into this control is closed. The argument objDocument is
a Document object from the StyleVision automation interface and should be used with care.

1050

1050

1054

1053

1054

1054

1053

1055

1054 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.7.4.3.3 OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1000

Description:
This event is triggered whenever a document is opened in this control. The argument objDocument is a
Document object from the StyleVision automation interface, and can be used to query for more details about
the document, or perform additional operations.

17.3.7.4.3.4 OnDocumentSaveAs

Event: OnContextDocumentSaveAs (i_strFileName as String)

Dispatch Id: 1007

Description:
This event is triggered when this document gets internally saved under a new name.

17.3.7.4.3.5 OnFileChangedAlert

Event: OnFileChangedAlert () as bool

Dispatch Id: 1003

Description:
This event is triggered when the file loaded into this document control is changed on the hard disk by another
application. Clients should return true, if they handled the event, or false, if StyleVision should handle it in its
customary way, i.e. prompting the user for reload.

17.3.7.4.3.6 OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1002

Description:
This event gets triggered whenever the document changes between modified and unmodified state. The
parameter i_bIsModifed is true if the document contents differs from the original content, and false, otherwise.

© 2017-2023 Altova GmbH

ActiveX Integration 1055Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.3.7.4.3.7 OnSetEditorTitle

Event: OnSetEditorTitle ()

Dispatch Id: 1006

Description:
This event is being raised when the contained document is being internally renamed.

17.3.7.5 StyleVisionControlPlaceHolder

Properties available for all kinds of placeholder windows:
PlaceholderWindowID

Properties for project placeholder window:
Project

Methods for project placeholder window:
OpenProject
CloseProject

The StyleVisionControlPlaceHolder control is used to show the additional StyleVision windows like
Overview, Library or Project window. It is used like any other ActiveX control and can be placed anywhere in the
client application.

17.3.7.5.1 Properties

The following properties are defined:

PlaceholderWindowID

Access to StyleVisionAPI:
Project

17.3.7.5.1.1 Label

Property: Label as String (read-only)

Dispatch Id: 1001

Description:
This property gives access to the title of the placeholder. The property is read-only.

1056

1056

1056

1057

1056

1056

1056 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.7.5.1.2 PlaceholderWindowID

Property: PlaceholderWindowID as StyleVisionControlPlaceholderWindow

Dispatch Id: 1

Description:
This property specifies which StyleVision window should be displayed in the client area of the control. The
PlaceholderWindowID can be set at any time to any valid value of the
StyleVisionControlPlaceholderWindow enumeration. The control changes its state immediately and
shows the new StyleVision window.

17.3.7.5.1.3 Proj ect

Property: Project as Project (read-only)

Dispatch Id: 2

Description:
The Project property gives access to the Project object of the StyleVision automation server API. This
interface provides additional functionality which can be used with the project loaded into the control. The
property will return a valid project interface only if the placeholder window has PlaceholderWindowID with a
value of StyleVisionXProjectWindow (=3). The property is read-only.

17.3.7.5.2 Methods

The following method is defined:

OpenProject
CloseProject

17.3.7.5.2.1 OpenProj ect

Method: OpenProject (strFileName as string) as boolean

Dispatch Id: 3

Description:
OpenProject loads the file strFileName as the new project into the control. The method will fail if the
placeholder window has a PlaceholderWindowID different to StyleVisionXProjectWindow (=3).

1058

1058

1056

1056

1057

1056

© 2017-2023 Altova GmbH

ActiveX Integration 1057Programmers' Reference

Altova StyleVision 2024 Professional Edition

17.3.7.5.2.2 CloseProj ect

Method: CloseProject ()

Dispatch Id: 4

Description:
CloseProject closes the project loaded by the control. The method will fail if the placeholder window has a
PlaceholderWindowID different to StyleVisionXProjectWindow (=3).

17.3.7.5.3 Events

The StyleVisionControlPlaceholder ActiveX control provides following connection point events:

OnModifiedFlagChanged

17.3.7.5.3.1 OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1

Description:
This event gets triggered only for placeholder controls with a PlaceholderWindowID of
StyleVisionXProjectWindow (=3). The event is fired whenever the project content changes between

modified and unmodified state. The parameter i_bIsModifed is true if the project contents differs from the
original content, and false, otherwise.

17.3.7.5.3.2 OnSetLabel

Event: OnSetLabel(i_strNewLabel as string)

Dispatch Id: 1000

Description:
Raised when the title of the placeholder window is changed.

17.3.7.6 Enumerations

The following enumerations are defined:

ICActiveXIntegrationLevel
StyleVisionControlPlaceholderWindow

1056

1057

1056

1058

1058

1058 Programmers' Reference ActiveX Integration

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

17.3.7.6.1 ICActiveXIntegrationLevel

Possible values for the IntegrationLevel property of the StyleVisionControl.

ICActiveXIntegrationOnApplicationLevel = 0
ICActiveXIntegrationOnDocumentLevel = 1

17.3.7.6.2 StyleVisionControlPlaceholderWindow

This enumeration contains the list of the supported additional StyleVision windows.

StyleVisionControlNoToolWnd = -1
StyleVisionControlProjectWnd = 0
StyleVisionControlDesignOverviewWnd = 1
StyleVisionControlSchemaSourcesWnd = 2
StyleVisionControlDesignTreeWnd = 3
StyleVisionControlStyleRepositoryWnd = 4
StyleVisionControlContextPropertiesWnd = 5
StyleVisionControlContextStylesWnd = 6
StyleVisionControlMessageWnd = 7
StyleVisionControlDBQueryWnd = 8

1043

© 2017-2023 Altova GmbH

 1059Appendices

Altova StyleVision 2024 Professional Edition

18 Appendices

These appendices contain (i) information about the XSLT Engines used in StyleVision; (ii) information about the
conversion of DB datatypes to XML Schema datatypes; (iii) technical information about StyleVision; and (iv)
licensing information for StyleVision. Each appendix contains the sub-sections listed below:

XSLT Engine Information
Provides implementation-specific information about the Altova XSLT Engines, which are used by StyleVision to
generate output.

· Altova XSLT 1.0 Engine
· Altova XSLT 2.0 Engine
· Altova XSLT 3.0 Engine
· XSLT and XPath/XQuery Functions

DatatypesDB2XSD
When DB fields are converted to XML nodes, the DB datatypes are converted to XML Schema datatypes. This
appendix lists the mappings for the following source DBs.

· MS Access
· MS SQL Server
· MySQL
· Oracle
· ODBC
· ADO
· Sybase

Technical Data
Provides technical information about StyleVision.

· OS and memory requirements
· Altova XML Parser
· Altova XSLT and XQuery Engines
· Unicode support
· Internet usage

License Information
Contains information about the way StyleVision is distributed and about its licensing.

· Electronic software distribution
· License metering
· Copyright
· End User License Agreement

1060

1166

1172

1174

1060 Appendices XSLT and XQuery Engine Information

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

18.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of StyleVision follow the W3C specifications closely and are therefore stricter
than previous Altova engines—such as those in previous versions of XMLSpy. As a result, minor errors that
were ignored by previous engines are now flagged as errors by StyleVision.

For example:

· It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and non-nodes.
· It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a sequence of

nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance document as
appropriate.

This section describes implementation-specific features of the engines, organized by specification:

· XSLT 1.0
· XSLT 2.0
· XSLT 3.0
· XQuery 1.0
· XQuery 3.1

18.1.1 XSLT 1.0

The XSLT 1.0 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999. Note the
following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by default, then special
characters in the XML or XSLT file are inserted in the HTML document as HTML character references in the
output. For instance, the character U+00A0 (the hexadecimal character reference for a non-breaking space) is
inserted in the HTML code either as a character reference (or) or as an entity reference,
 .

18.1.2 XSLT 2.0

This section:

· Engine conformance
· Backward compatibility
· Namespaces
· Schema awareness
· Implementation-specific behavior

1060

1060

1062

1063

1066

1061

1061

1061

1061

1062

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116/

© 2017-2023 Altova GmbH

XSLT and XQuery Engine Information 1061Appendices

Altova StyleVision 2024 Professional Edition

Conformance
The XSLT 2.0 engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XSLT 2.0
Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. Typically, the backwards compatibility of the XSLT 2.0 engine
comes into play when using the XSLT 2.0 engine to process an XSLT 1.0 stylesheet or instruction. Note that
there could be differences in the outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT
2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to use the type
constructors and functions available in XSLT 2.0. The prefixes given below are conventionally used; you could
use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in the table
above) as its default functions namespace. So you can use XPath 2.0 and XSLT 2.0 functions in
your stylesheet without any prefix. If you declare the XPath 2.0 Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath 2.0 functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the xsl:validate
instruction.

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

1062 Appendices XSLT and XQuery Engine Information

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects of certain
XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

18.1.3 XSLT 3.0

The XSLT 3.0 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XSLT 3.0
Recommendation of 8 June 2017 and XPath 3.1 Recommendation of 21 March 2017.

The XSLT 3.0 engine has the same implementation-specific characteristics as the XSLT 2.0 engine .
Additionally, it includes support for a number of new XSLT 3.0 features: XPath/XQuery 3.1 functions and
operators, and the XPath 3.1 specification.

Note: The optional streaming feature is not supported currently. The entire document will be loaded into
memory regardless of the value of the streamable attribute. If enough memory is available, then: (i) the
entire document will be processed—without streaming, (ii) guaranteed-streamable constructs will be
processed correctly, as if the execution used streaming, and (iii) streaming errors will not be detected.
In 64-bit apps, non-streaming execution should not be a problem. If memory does turn out to be an
issue, a solution would be to add more memory to the system.

Namespaces
Your XSLT 3.0 stylesheet should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XSLT 3.0. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

1060

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xpath-31/
http://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xslt-30/#streaming-feature
https://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable

© 2017-2023 Altova GmbH

XSLT and XQuery Engine Information 1063Appendices

Altova StyleVision 2024 Professional Edition

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="3.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 3.0 engine uses the XPath and XQuery Functions and Operators 3.1 namespace (listed in
the table above) as its default functions namespace. So you can use the functions of this
namespace in your stylesheet without any prefix. If you declare the Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath/XQuery functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

18.1.4 XQuery 1.0

This section:

· Engine conformance
· Schema awareness
· Encoding
· Namespaces
· XML source and validation
· Static and dynamic type checking
· Library modules
· External functions
· Collations

1064

1064

1064

1061

1065

1065

1065

1065

1065

1064 Appendices XSLT and XQuery Engine Information

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Precision of numeric data
· XQuery instructions support
· Implementation-specific behavior

Conformance
The XQuery 1.0 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XQuery 1.0
Recommendation of 14 December 2010. The XQuery standard gives implementations discretion about how to
implement many features. Given below is a list explaining how the XQuery 1.0 Engine implements these
features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

· The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

· Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes have been
moved, with the CRs of 23 January 2007, from the XPath Datatypes namespace to the XML Schema
namespace, so: xs:yearMonthDuration.

1066

1066

1066

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/

© 2017-2023 Altova GmbH

XSLT and XQuery Engine Information 1065Appendices

Altova StyleVision 2024 Professional Edition

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be well-formed.
However, they do not need to be valid according to an XML Schema. If the file is not valid, the invalid file is
loaded without schema information. If the XML file is associated with an external schema and is valid according
to it, then post-schema validation information is generated for the XML data and will be used for query
evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external references (e.g. for
modules) exist, whether invoked functions and variables are defined, and so on. If an error is detected in the
static analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is incompatible
with the requirement of an operation, an error is reported. For example, the expression xs:string("1") + 1
returns an error because the addition operation cannot be carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine supports modules
that are stored in a single external XQuery file. Such a module file must contain a module declaration in its
prolog, which associates a target namespace. Here is an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the module. The
module is used by importing it into an XQuery file with the import module statement in the query prolog. The
import module statement only imports functions and variables declared directly in the library module file. As
follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";
if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of their Unicode
codepoint. Other supported collations are the ICU collations listed here . To use a specific collation, supply1068

http://site.icu-project.org/

1066 Appendices XSLT and XQuery Engine Information

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

its URI as given in the list of supported collations . Any string comparisons, including for the fn:max and
fn:min functions, will be made according to the specified collation. If the collation option is not specified, the
default Unicode-codepoint collation is used.

Precision of numeric types

· The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
· The xs:decimal datatype has a limit of 20 digits after the decimal point.
· The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression is evaluated.

Implementation-specific behavior
Given below is a description of how the XQuery and XQuery Update 1.0 engines handle implementation-specific
aspects of certain functions.

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

18.1.5 XQuery 3.1

The XQuery 3.1 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XQuery 3.1
Recommendation of 21 March 2017 and includes support for XPath and XQuery Functions 3.1. The XQuery 3.1
specification is a superset of the 3.0 specification. The XQuery 3.1 engine therefore supports XQuery 3.0
features.

Namespaces
Your XQuery 3.1 document should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XQuery 3.1. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

1068

http://www.w3.org/TR/xquery-31/
http://www.w3.org/TR/xquery-31/

© 2017-2023 Altova GmbH

XSLT and XQuery Engine Information 1067Appendices

Altova StyleVision 2024 Professional Edition

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

The following points should be noted:

· The XQuery 3.1 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

Implementation-specific behavior
Implementation-specific characteristics are the same as for XQuery 1.0 .

Additionally, the Altova-specific encoding x-base64tobinary can be used to create a binary result document,
such as an image.

1063

1068 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

18.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in XPath and/or
XQuery expressions. Altova extension functions can be used with Altova's XSLT and XQuery engines, and
provide functionality additional to that available in the function libraries defined in the W3C standards.

This section mainly describes XPath/XQuery extension functions that have been created by Altova to provide
additional operations. These functions can be computed by Altova's XSLT and XQuery engines according to
the rules described in this section. For information about the regular XPath/XQuery functions, see Altova's
XPath/XQuery Function Reference.

General points
The following general points should be noted:

· Functions from the core function libraries defined in the W3C specifications can be called without a
prefix. That's because the Altova XSLT and XQuery engines read non-prefixed functions as belonging to
the namespace http://www.w3.org/2005/xpath-functions, which is the default functions
namespace specified in the XPath/XQuery functions specifications. If this namespace is explicitly
declared in an XSLT or XQuery document, the prefix used in the namespace declaration can also
optionally be used on function names.

· In general, if a function expects a sequence of one item as an argument, and a sequence of more than
one item is submitted, then an error is returned.

· All string comparisons are done using the Unicode codepoint collation.
· Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required by the
specification. For division operations that produce a result of type xs:decimal, the precision is 19 digits after
the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezones of the values being compared
need to be known. When the timezone is not explicitly given in such a value, the implicit timezone is used. The
implicit timezone is taken from the system clock, and its value can be checked with the implicit-
timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of their Unicode
codepoint. The engine uses the Unicode Collation Algorithm. Other supported collations are the ICU collations
listed below; to use one of these, supply its URI as given in the table below. Any string comparisons, including
for the max and min functions, will be made according to the specified collation. If the collation option is not
specified, the default Unicode-codepoint collation is used.

Language URIs

da: Danish da_DK

1069

https://www.altova.com/xpath-xquery-reference
https://www.altova.com/xpath-xquery-reference
http://site.icu-project.org/

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1069Appendices

Altova StyleVision 2024 Professional Edition

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA, en_GB,
en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP, en_MT, en_MU,
en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT, en_UM, en_US, en_VI,
en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE, es_PR,
es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF, fr_CG,
fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN, fr_GP, fr_GQ,
fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML, fr_MQ, fr_NE, fr_RE,
fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

nb: Norwegian Bokmal nb_NO

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however, supported. To
access namespace information with XPath 2.0 mechanisms, use the in-scope-prefixes(), namespace-
uri() and namespace-uri-for-prefix() functions.

18.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension
functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions,

and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace.

Note that, in future versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath expressions in
an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this documentation we indicate the
functions that can be used in the former context (XPath in XSLT) with an XP symbol and call them XPath
functions; those functions that can be used in the latter (XQuery) context are indicated with an XQ symbol; they
work as XQuery functions. The W3C's XSLT specifications—not XPath/XQuery Functions specifications—also

1070 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

define functions that can be used in XPath expressions in XSLT documents. These functions are marked with
an XSLT symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function can be
used are indicated in the description of the function (see symbols below). Functions from the XPath/XQuery and
XSLT function libraries are listed without a prefix. Extension functions from other libraries, such as Altova
extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Usage of Altova extension functions
In order to use Altova extension functions, you must declare the Altova extension functions namespace (first
highlight in code listing below) and then use the extension functions so that they are resolved as belonging to
this namespace (see second highlight). The example below uses the Altova extension function named age.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:altova="http://www.altova.com/xslt-extensions">

<xsl:output method="text" encoding="ISO-8859-1"/>

<xsl:template match="Persons">

<xsl:for-each select="Person">

 <xsl:value-of select="concat(Name, ': ')"/>

 <xsl:value-of select="altova:age(xs:date(BirthDate))"/>

 <xsl:value-of select="' years
'"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

 XSLT functions
XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT 2.0's current-
group() or key() functions). These functions are not intended for, and will not work in, a non-XSLT context (for
instance, in an XQuery context). Note that XSLT functions for XBRL can be used only with editions of Altova
products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in XQuery
expressions:

· Date/Time
· Geolocation
· Image-related
· Numeric
· Sequence
· String

1071

1073

1090

1102

1107

1128

1136

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1071Appendices

Altova StyleVision 2024 Professional Edition

· Miscellaneous

Barcode functions
Altova's barcode extension functions enable barcodes to be generated and placed in output generated via
XSLT stylesheets.

18.2.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not work in a non-
XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

General functions
distinct-nodes [altova:]

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with duplicate
values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples

· altova:distinct-nodes(country) returns all child country nodes less those having duplicate

values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN]) XSLT1 XSLT2
XSLT3

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the output of the
evaluated expression. For example: altova:evaluate('//Name[1]') returns the contents of the first

Name element in the document. Note that the expression //Name[1] is passed as a string by enclosing it
in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments are the values

1143

1145

1072 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

of in-scope variables that have the names p1, p2, p3... pN. Note the following points about usage: (i) The
variables must be defined with names of the form pX, where X is an integer; (ii) the altova:evaluate
function's arguments (see signature above), from the second argument onwards, provide the values of the
variables, with the sequence of the arguments corresponding to the numerically ordered sequence of
variables: p1 to pN: The second argument will be the value of the variable p1, the third argument that of the
variable p2, and so on; (iii) The variable values must be of type item*.

Example

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

· The second argument of the altova:evaluate expression is the value assigned to the
variable $p1, the third argument that assigned to the variable $p2, and so on.

· Notice that the fourth argument of the function is a string value, indicated by its being
enclosed in quotes.

· The select attribute of the xs:variable element supplies the XPath expression. Since this
expression must be of type xs:string, it is enclosed in single quotes.

Examples to further illustrate the use of variables

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath expression in the XSLT
stylesheet contains one or more parts that must be evaluated dynamically. For example, consider a
situation in which a user enters his request for the sorting criterion and this criterion is stored in the
attribute UserReq/@sortkey. In the stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The altova:evaluate()

function reads the sortkey attribute of the UserReq child element of the parent of the context node. Say
the value of the sortkey attribute is Price, then Price is returned by the altova:evaluate() function
and becomes the value of the select attribute: <xsl:sort select="Price" order="ascending"/>. If

this sort instruction occurs within the context of an element called Order, then the Order elements will
be sorted according to the values of their Price children. Alternatively, if the value of @sortkey were, say,
Date, then the Order elements would be sorted according to the values of their Date children. So the sort
criterion for Order is selected from the sortkey attribute at runtime. This could not have been achieved
with an expression like: <xsl:sort select="../UserReq/@sortkey" order="ascending"/>. In the

case shown above, the sort criterion would be the sortkey attribute itself, not Price or Date (or any other
current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—from the
calling environment. The base URI and default namespace are inherited.

More examples

mailto:.

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1073Appendices

Altova StyleVision 2024 Professional Edition

· Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

· Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

· Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as xs:boolean,

preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved according to the
boolean value specified for their respective arguments.

[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced by the input
node.

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node. The function
returns the XBRL label nodes associated with the input node.

[Top]

18.2.1.2 XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data held as XML Schema's various date and time datatypes. The functions in

1071

1071

1074 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery
contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Grouped by functionality

· Add a duration to xs:dateTime and return xs:dateTime
· Add a duration to xs:date and return xs:date
· Add a duration to xs:time and return xs:time
· Format and retrieve durations
· Remove timezone from functions that generate current date/time
· Return days, hours, minutes, and seconds from durations
· Return weekday as integer from date
· Return week number as integer from date
· Build date, time, or duration type from lexical components of each type
· Construct date, dateTime, or time type from string input
· Age-related functions
· Epoch time (Unix time) functions

Listed alphabetically

altova:add-days-to-date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date
altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age
altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ

1075

1077

1078

1078

1079

1081

1082

1082

1084

1086

1087

1089

1077

1075

1075

1078

1075

1078

1077

1075

1075

1078

1077

1075

1087

1087

1084

1084

1084

1079

1079

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1075Appendices

Altova StyleVision 2024 Professional Edition

altova:current-time-no-TZ
altova:date-no-TZ
altova:dateTime-from-epoch
altova:dateTime-from-epoch-no-TZ
altova:dateTime-no-TZ
altova:days-in-month
altova:epoch-from-dateTime
altova:hours-from-dateTimeDuration-accumulated
altova:minutes-from-dateTimeDuration-accumulated
altova:seconds-from-dateTimeDuration-accumulated
altova:format-duration
altova:parse-date
altova:parse-dateTime
altova:parse-duration
altova:parse-time
altova:time-no-TZ
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

Add a duration to xs:dateTime XP3.1 XQ3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format

of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time formats separated by the
letter T. A timezone suffix (+01:00, for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in years to an xs:dateTime (see examples below). The second argument is the number of
years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2024-

01-15T14:00:00
· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4) returns 2010-
01-15T14:00:00

add-months-to-dateTime [altova:]

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in months to an xs:dateTime (see examples below). The second argument is the number
of months to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

1079

1079

1089

1089

1079

1081

1089

1081

1081

1081

1078

1086

1086

1078

1086

1079

1082

1082

1083

1083

1073

1076 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

11-15T14:00:00
· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2) returns 2013-

11-15T14:00:00

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as xs:dateTime

XP3.1 XQ3.1

Adds a duration in days to an xs:dateTime (see examples below). The second argument is the number of
days to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

01-25T14:00:00
· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8) returns 2014-

01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is the number of
hours to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10) returns 2014-

01-15T23:00:00
· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8) returns 2014-

01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument is the number
of minutes to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45) returns

2014-01-15T14:55:00
· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5) returns

2014-01-15T14:05:00

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument is the

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1077Appendices

Altova StyleVision 2024 Professional Edition

number of seconds to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20) returns

2014-01-15T14:00:30
· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5) returns

2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3.1 XQ3.1

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date XP3.1 XQ3.1

 Adds a duration in years to a date. The second argument is the number of years to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

· altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in months to a date. The second argument is the number of months to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

· altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

· altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

[Top]

1073

1073

1078 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Format and retrieve durations XP3.1 XQ3.1

These functions parse an input xs:duration or xs:string and return, respectively, an xs:string or

xs:duration.

format-duration [altova:]

altova:format-duration(Duration as xs:duration, Picture as xs:string) as xs:string XP3.1

 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string submitted as
the second argument. The output is a text string formatted according to the picture string.

Examples

· altova:format-duration(xs:duration("P2DT2H53M11.7S"), "Days:[D01] Hours:[H01]

Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns "Days:02 Hours:02 Minutes:53
Seconds:11 Fractions:7"

· altova:format-duration(xs:duration("P3M2DT2H53M11.7S"), "Months:[M01] Days:[D01]

Hours:[H01] Minutes:[m01]") returns "Months:03 Days:02 Hours:02 Minutes:53"

parse-duration [altova:]

altova:parse-duration(InputString as xs:string, Picture as xs:string) as xs:duration

XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument. The input
string is parsed on the basis of the picture string, and an xs:duration is returned.

Examples

· altova:parse-duration("Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"),

"Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns
"P2DT2H53M11.7S"

· altova:parse-duration("Months:03 Days:02 Hours:02 Minutes:53 Seconds:11

Fractions:7", "Months:[M01] Days:[D01] Hours:[H01] Minutes:[m01]") returns
"P3M2DT2H53M"

[Top]

Add a duration to xs:time XP3.1 XQ3.1

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical form of

hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated Universal Time
(UTC). All other time zones are represented by their difference from UTC in the format +hh:mm, or -hh:mm. If no
time zone value is present, it is considered unknown; it is not assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in hours to a time. The second argument is the number of hours to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

· altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

1073

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1079Appendices

Altova StyleVision 2024 Professional Edition

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in minutes to a time. The second argument is the number of minutes to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

· altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in seconds to a time. The second argument is the number of seconds to be added to the
xs:time supplied as the first argument. The result is of type xs:time. The Seconds component can be in
the range of 0 to 59.999.

Examples

· altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

· altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns 14:00:20.895

[Top]

Remove the timezone part from date/time datatypes XP3.1 XQ3.1

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values, respectively.

Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the case of the latter the
timezone part is required (while it is optional in the case of the former). So the format of an xs:dateTimeStamp
value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-DDThh:mm:ss.sssZ. If the date and time is read from
the system clock as xs:dateTimeStamp, the current-dateTime-no-TZ() function can be used to remove the
timezone if so required.

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-date() (which is the current
date according to the system clock) and returns an xs:date value.

Examples

If the current date is 2014-01-15+01:00:

· altova:current-date-no-TZ() returns 2014-01-15

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-dateTime() (which is the
current date-and-time according to the system clock) and returns an xs:dateTime value.

1073

1080 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Examples

If the current dateTime is 2014-01-15T14:00:00+01:00:

· altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-time() (which is the current
time according to the system clock) and returns an xs:time value.

Examples

If the current time is 14:00:00+01:00:

· altova:current-time-no-TZ() returns 14:00:00

date-no-TZ [altova:]

altova:date-no-TZ(InputDate as xs:date) as xs:date XP3.1 XQ3.1

This function takes an xs:date argument, removes the timezone part from it, and returns an xs:date
value. Note that the date is not modified.

Examples

· altova:date-no-TZ(xs:date("2014-01-15+01:00")) returns 2014-01-15

dateTime-no-TZ [altova:]

altova:dateTime-no-TZ(InputDateTime as xs:dateTime) as xs:dateTime XP3.1 XQ3.1

This function takes an xs:dateTime argument, removes the timezone part from it, and returns an
xs:dateTime value. Note that neither the date nor the time is modified.

Examples

· altova:dateTime-no-TZ(xs:date("2014-01-15T14:00:00+01:00")) returns 2014-01-

15T14:00:00

time-no-TZ [altova:]

altova:time-no-TZ(InputTime as xs:time) as xs:time XP3.1 XQ3.1

This function takes an xs:time argument, removes the timezone part from it, and returns an xs:time
value. Note that the time is not modified.

Examples

· altova:time-no-TZ(xs:time("14:00:00+01:00")) returns 14:00:00

[Top]
1073

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1081Appendices

Altova StyleVision 2024 Professional Edition

Return the number of days, hours, minutes, seconds from durations XP3.1 XQ3.1

These functions return the number of days in a month, and the number of hours, minutes, and seconds,
respectively, from durations.

days-in-month [altova:]

altova:days-in-month(Year as xs:integer, Month as xs:integer) as xs:integer XP3.1 XQ3.1

Returns the number of days in the specified month. The month is specified by means of the Year and
Month arguments.

Examples

· altova:days-in-month(2018, 10) returns 31

· altova:days-in-month(2018, 2) returns 28

· altova:days-in-month(2020, 2) returns 29

hours-from-dayTimeDuration-accumulated

altova:hours-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as xs:integer

XP3.1 XQ3.1

Returns the total number of hours in the duration submitted by the DayAndTime argument (which is of type
xs:duration). The hours in the Day and Time components are added together to give a result that is an
integer. A new hour is counted only for a full 60 minutes. Negative durations result in a negative hour value.

Examples

· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5D")) returns 120, which

is the total number of hours in 5 days.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H")) returns 122,

which is the total number of hours in 5 days plus 2 hours.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H60M")) returns 123,

which is the total number of hours in 5 days plus 2 hours and 60 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H119M")) returns

123, which is the total number of hours in 5 days plus 2 hours and 119 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H120M")) returns

124, which is the total number of hours in 5 days plus 2 hours and 120 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("-P5DT2H")) returns -122

minutes-from-dayTimeDuration-accumulated

altova:minutes-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of minutes in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The minutes in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative minute value.

Examples

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT60M")) returns 60

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 60,

which is the total number of minutes in 1 hour.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H40M")) returns 100

1082 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 1440,

which is the total number of minutes in 1 day.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("-P1DT60M")) returns -
1500

seconds-from-dayTimeDuration-accumulated

altova:seconds-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of seconds in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The seconds in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative seconds value.

Examples

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1M")) returns 60,

which is the total number of seconds in 1 minute.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 3600,

which is the total number of seconds in 1 hour.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H2M")) returns 3720

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 86400,

which is the total number of seconds in 1 day.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("-P1DT1M")) returns -
86460

Return the weekday from xs:dateTime or xs:date XP3.1 XQ3.1

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of the week are
numbered (using the American format) from 1 to 7, with Sunday=1. In the European format, the week starts with
Monday (=1). The American format, where Sunday=1, can be set by using the integer 0 where an integer is
accepted to indicate the format.

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its single argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1),
use the other signature of this function (see next signature below).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns 2, which

would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer) as

xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as an integer. If
the second (integer) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the
second argument is an integer other than 0, then Monday=1. If there is no second argument, the function is
read as having the other signature of this function (see previous signature).

Examples

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1083Appendices

Altova StyleVision 2024 Professional Edition

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0) returns 2, which

would indicate a Monday.

weekday-from-date [altova:]

altova:weekday-from-date(Date as xs:date) as xs:integer XP3.1 XQ3.1

Takes a date as its single argument and returns the day of the week of this date as an integer. The
weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1), use
the other signature of this function (see next signature below).

Examples

· altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which would indicate a

Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer. If the second
(Format) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would indicate a

Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3.1 XQ3.1

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-numbering is
available in the US, ISO/European, and Islamic calendar formats. Week-numbering is different in these calendar
formats because the week is considered to start on different days (on Sunday in the US format, Monday in the
ISO/European format, and Saturday in the Islamic format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as xs:integer XP2

XQ1 XP3.1 XQ3.1

Returns the week number of the submitted Date argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

1073

1084 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

· altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and Islamic
calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as xs:integer) as

xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted DateTime argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1) returns 12

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00")) returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

[Top]

Build date, time, and duration datatypes from their lexical components XP3.1 XQ3.1

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as input
arguments and combine them to build the respective datatype.

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as xs:integer) as

1073

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1085Appendices

Altova StyleVision 2024 Professional Edition

xs:date XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the year, month, and date. They are combined to
build a value of xs:date type. The values of the integers must be within the correct range of that particular
date part. For example, the second argument (for the month part) should not be greater than 12.

Examples

· altova:build-date(2014, 2, 03) returns 2014-02-03

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer) as

xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. They are combined to build a value of xs:time type. The values of the integers must be
within the correct range of that particular time part. For example, the second (Minutes) argument should
not be greater than 59. To add a timezone part to the value, use the other signature of this function (see
next signature).

Examples

· altova:build-time(23, 4, 57) returns 23:04:57

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer,

TimeZone as xs:string) as xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. The fourth argument is a string that provides the timezone part of the value. The four
arguments are combined to build a value of xs:time type. The values of the integers must be within the
correct range of that particular time part. For example, the second (Minutes) argument should not be
greater than 59.

Examples

· altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as

xs:yearMonthDuration XP3.1 XQ3.1

Takes two arguments to build a value of type xs:yearMonthDuration. The first argument provides the
Years part of the duration value, while the second argument provides the Months part. If the second
(Months) argument is greater than or equal to 12, then the integer is divided by 12; the quotient is added to
the first argument to provide the Years part of the duration value while the remainder (of the division)
provides the Months part. To build a duration of type xs:dayTimeDuration., see the next signature.

Examples

· altova:build-duration(2, 10) returns P2Y10M

· altova:build-duration(14, 27) returns P16Y3M

· altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as xs:integer,

Seconds as xs:integer) as xs:dayTimeDuration XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The first
argument provides the Days part of the duration value, the second, third, and fourth arguments provide,

1086 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

respectively, the Hours, Minutes, and Seconds parts of the duration value. Each of the three Time
arguments is converted to an equivalent value in terms of the next higher unit and the result is used for
calculation of the total duration value. For example, 72 seconds is converted to 1M+12S (1 minute and 12
seconds), and this value is used for calculation of the total duration value. To build a duration of type
xs:yearMonthDuration., see the previous signature.

Examples

· altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

· altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

· altova:build-duration(1, 0, 0, 3600) returns P1DT1H

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3.1 XQ3.1

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time datatypes. The
string is analyzed for components of the datatype based on a submitted pattern argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date XP2 XQ1 XP3.1
XQ3.1

Returns the input string Date as an xs:date value. The second argument DatePattern specifies the

pattern (sequence of components) of the input string. DatePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type xs:date, the

output will always have the lexical format YYYY-MM-DD.

Examples

· altova:parse-date(xs:string("09-12-2014"), "[D]-[M]-[Y]") returns 2014-12-09

· altova:parse-date(xs:string("09-12-2014"), "[M]-[D]-[Y]") returns 2014-09-12

· altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

· altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

· altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as

xs:dateTime XP2 XQ1 XP3.1 XQ3.1

Returns the input string DateTime as an xs:dateTime value.The second argument DateTimePattern

specifies the pattern (sequence of components) of the input string. DateTimePattern is described with the

component specifiers listed below and with component separators that can be any character. See the
examples below.

D Date

1073

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1087Appendices

Altova StyleVision 2024 Professional Edition

M Month

Y Year

H Hour

m minutes

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of type

xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples

· altova:parse-dateTime(xs:string("09-12-2014 13:56:24"), "[M]-[D]-[Y] [H]:[m]:

[s]") returns 2014-09-12T13:56:24
· altova:parse-dateTime("time=13:56:24; date=09-12-2014", "time=[H]:[m]:[s];

date=[D]-[M]-[Y]") returns 2014-12-09T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time XP2 XQ1 XP3.1
XQ3.1

Returns the input string Time as an xs:time value.The second argument TimePattern specifies the

pattern (sequence of components) of the input string. TimePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type xs:time, the

output will always have the lexical format HH:mm:ss.

Examples

· altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

· altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

· altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns 13:56:24

· altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns 13:56:24

[Top]

Age-related functions XP3.1 XQ3.1

These functions return the age as calculated (i) between one input argument date and the current date, or (ii)
between two input argument dates. The altova:age function returns the age in terms of years, the

altova:age-details function returns the age as a sequence of three integers giving the years, months, and

days of the age.

age [altova:]

1073

1088 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

altova:age(StartDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date submitted as the
argument and ending with the current date (taken from the system clock). If the input argument is a date
anything greater than or equal to one year in the future, the return value will be negative.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2013-01-15")) returns 1

· altova:age(xs:date("2013-01-16")) returns 0

· altova:age(xs:date("2015-01-15")) returns -1

· altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date that is submitted as
the first argument up to an end-date that is the second argument. The return value will be negative if the
first argument is one year or more later than the second argument.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

· altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current date is 2014-

01-15
· altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the date that is
submitted as the argument and the current date (taken from the system clock). The sum of the returned
years+months+days together gives the total time difference between the two dates (the input date and the
current date). The input date may have a value earlier or later than the current date, but whether the input
date is earlier or later is not indicated by the sign of the return values; the return values are always
positive.

Examples

If the current date is 2014-01-15:

· altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

· altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

· altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the two argument
dates. The sum of the returned years+months+days together gives the total time difference between the
two input dates; it does not matter whether the earlier or later of the two dates is submitted as the first
argument. The return values do not indicate whether the input date occurs earlier or later than the current
date. Return values are always positive.

Examples

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1089Appendices

Altova StyleVision 2024 Professional Edition

· altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns (0 0 1)

[Top]

Epoch time (Unix time) functions XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the number of
seconds that have elapsed since 00:00:00 UTC on 1 January 1970. Altova's Epoch time extension functions
convert xs:dateTime values to Epoch time values and vice versa.

dateTime-from-epoch [altova:]

altova:dateTime-from-epoch(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-epoch

function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local timezone, and

includes the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that includes a TZ

(timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time, and

adding to it the local timezone (taken from the system clock). For example, if the function is executed on
a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC dateTime

equivalent has been calculated, one hour will be added to the result. The timezone information, which is an
optional lexical part of the xs:dateTime result, is also reported in the dateTime result. Compare this

result with that of dateTime-from-epoch-no-TZ, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is reported in
the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34+01:00

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02+01:00

dateTime-from-epoch-no-TZ [altova:]

altova:dateTime-from-epoch-no-TZ(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-

epoch-no-TZ function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local

timezone, but does not include the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that does not includes a
TZ (timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time,

and adding to it the local timezone (taken from the system clock). For example, if the function is executed
on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC
dateTime equivalent has been calculated, one hour will be added to the result. The timezone information,

1073

1090 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

which is an optional lexical part of the xs:dateTime result, is not reported in the dateTime result.

Compare this result with that of dateTime-from-epoch, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is not reported
in the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02

epoch-from-dateTime [altova:]

altova:epoch-from-dateTime(dateTimeValue as xs:dateTime) as xs:decimal XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The epoch-from-dateTime

function returns the Epoch time equivalent of the xs:dateTime that is submitted as the argument of the

function. Note that you might have to explicitly construct the xs:dateTime value. The submitted

xs:dateTime value may or may not contain the optional TZ (timezone) part.

Whether the timezone part is submitted as part of the argument or not, the local timezone offset (taken
from the system clock) is subtracted from the submitted dateTimeValue argument. This produces the

equivalent UTC time, from which the equivalent Epoch time is calculated. For example, if the function is
executed on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then one hour is
subtracted from the submitted dateTimeValue before the Epoch value is calculated. Also see the function

dateTime-from-epoch.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, one hour will be
subtracted from the submitted dateTime before the Epoch time is calculated.

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34+01:00")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("2021-04-01T11:22:33")) returns 1617272553

[Top]

18.2.1.3 XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of StyleVision
and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery
document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to

1073

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1091Appendices

Altova StyleVision 2024 Professional Edition

the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

format-geolocation [altova:]

altova:format-geolocation(Latitude as xs:decimal, Longitude as xs:decimal,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes the latitude and longitude as the first two arguments, and outputs the geolocation as a string. The
third argument, GeolocationOutputStringFormat, is the format of the geolocation output string; it uses

integer values from 1 to 4 to identify the output string format (see 'Geolocation output string formats'
below). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:format-geolocation(33.33, -22.22, 4) returns the xs:string "33.33 -22.22"

· altova:format-geolocation(33.33, -22.22, 2) returns the xs:string "33.33N 22.22W"

· altova:format-geolocation(-33.33, 22.22, 2) returns the xs:string "33.33S 22.22E"

· altova:format-geolocation(33.33, -22.22, 1) returns the xs:string "33°19'48.00"S 22°

13'12.00"E"

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

1102

1092 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

parse-geolocation [altova:]

altova:parse-geolocation(GeolocationInputString as xs:string) as xs:decimal+ XP3.1 XQ3.1

Parses the supplied GeolocationInputString argument and returns the geolocation's latitude and
longitude (in that order) as a sequence two xs:decimal items. The formats in which the geolocation input
string can be supplied are listed below.

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply the geolocation input string (see example below).

Examples

· altova:parse-geolocation("33.33 -22.22") returns the sequence of two xs:decimals

(33.33, 22.22)
· altova:parse-geolocation("48°51'29.6""N 24°17'40.2""") returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation('48°51''29.6"N 24°17''40.2"') returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation(image-exif-

data(//MyImages/Image20141130.01)/@Geolocation) returns a sequence of two xs:decimals

Geolocation input string formats:

1102 1102

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1093Appendices

Altova StyleVision 2024 Professional Edition

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

1094 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

13'11.73"E

geolocation-distance-km [altova:]

altova:geolocation-distance-km(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in kilometers. The formats in which the geolocation
input string can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-km("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 4183.08132372392

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

1102 1102

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1095Appendices

Altova StyleVision 2024 Professional Edition

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-distance-mi [altova:]

altova:geolocation-distance-mi(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in miles. The formats in which a geolocation input string
can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-mi("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 2599.40652340653

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create

1102 1102

1096 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocations-bounding-rectangle [altova:]

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1097Appendices

Altova StyleVision 2024 Professional Edition

altova:geolocations-bounding-rectangle(Geolocations as xs:sequence,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes a sequence of strings as its first argument; each string in the sequence is a geolocation. The
function returns a sequence of two strings which are, respectively, the top-left and bottom-right geolocation
coordinates of a bounding rectangle that is optimally sized to enclose all the geolocations submitted in the
first argument. The formats in which a geolocation input string can be supplied are listed below (see
'Geolocation input string formats'). Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

The function's second argument specifies the format of the two geolocation strings in the output sequence.
The argument takes an integer value from 1 to 4, where each value identifies a different geolocation string
format (see 'Geolocation output string formats' below).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832"), 1) returns the sequence ("51°30'33.804"N 0°7'5.952"W", "48°12'51.67116"N
16°22'14.61576"E")

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832", "42.5584577 -70.8893334"), 4) returns the sequence ("51.50939 -70.8893334",
"42.5584577 16.3707266")

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

1102

1098 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1099Appendices

Altova StyleVision 2024 Professional Edition

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-within-polygon [altova:]

altova:geolocation-within-polygon(Geolocation as xs:string, ((PolygonPoint as

xs:string)+)) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the polygonal area described by the

PolygonPoint arguments. If the PolygonPoint arguments do not form a closed figure (formed when the

first point and the last point are the same), then the first point is implicitly added as the last point in order
to close the figure. All the arguments (Geolocation and PolygonPoint+) are given by geolocation input
strings (formats listed below). If the Geolocation argument is within the polygonal area, then the function
returns true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24", "58 -

32")) returns true()

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24")) returns

true()
· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48°51'29.6""N

 24°17'40.2""")) returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

1102 1102

1100 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

geolocation-within-rectangle [altova:]

altova:geolocation-within-rectangle(Geolocation as xs:string, RectCorner-1 as

xs:string, RectCorner-2 as xs:string) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the rectangle defined by the second and

third arguments, RectCorner-1 and RectCorner-2, which specify opposite corners of the rectangle. All

the arguments (Geolocation, RectCorner-1 and RectCorner-2) are given by geolocation input strings

(formats listed below). If the Geolocation argument is within the rectangle, then the function returns
true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude values

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1101Appendices

Altova StyleVision 2024 Professional Edition

range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-rectangle("33 -22", "58 -32", "-48 24") returns true()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48 24") returns false()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48°51'29.6""S 24°

17'40.2""") returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

1102 1102

1102 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

[Top]

18.2.1.4 XPath/XQuery Functions: Image-Related

The following image-related XPath/XQuery extension functions are supported in the current version of
StyleVision and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an
XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

suggested-image-file-extension [altova:]

altova:suggested-image-file-extension(Base64String as string) as string? XP3.1 XQ3.1

Takes the Base64 encoding of an image file as its argument and returns the file extension of the image as
recorded in the Base64-encoding of the image. The returned value is a suggestion based on the image
type information available in the encoding. If this information is not available, then an empty string is

1090

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1103Appendices

Altova StyleVision 2024 Professional Edition

returned. This function is useful if you wish to save a Base64 image as a file and wish to dynamically
retrieve an appropriate file extension.

Examples

· altova:suggested-image-file-extension(/MyImages/MobilePhone/Image20141130.01)

returns 'jpg'
· altova:suggested-image-file-extension($XML1/Staff/Person/@photo) returns ''

In the examples above, the nodes supplied as the argument of the function are assumed to contain a
Base64-encoded image. The first example retrieves jpg as the file's type and extension. In the second
example, the submitted Base64 encoding does not provide usable file extension information.

image-exif-data [altova:]

altova:image-exif-data(Base64BinaryString as string) as element? XP3.1 XQ3.1

Takes a Base64-encoded JPEG image as its argument and returns an element called Exif that contains

the Exif metadata of the image. The Exif metadata is created as attribute-value pairs of the Exif element.
The attribute names are the Exif data tags found in the Base64 encoding. The list of Exif-specification tags
is given below. If a vendor-specific tag is present in the Exif data, this tag and its value will also be returned
as an attribute-value pair. Additional to the standard Exif metadata tags (see list below), Altova-specific
attribute-value pairs are also generated. These Altova Exif attributes are listed below.

Examples

· To access any one attribute, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@GPSLatitude

image-exif-data(//MyImages/Image20141130.01)/@Geolocation

· To access all the attributes, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@*

· To access the names of all the attributes, use the following expression:
for $i in image-exif-data(//MyImages/Image20141130.01)/@* return name($i)

This is useful to find out the names of the attributes returned by the function.

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif

metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°

13'11.73"E

Altova Exif Attribute: OrientationDegree

The Altova XPath/XQuery Engine generates the custom attribute OrientationDegree from the Exif

metadata tag Orientation.

1104 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

OrientationDegree translates the standard Exif tag Orientation from an integer value (1, 8, 3, or

6) to the respective degree values of each (0, 90, 180, 270), as shown in the figure below. Note that
there are no translations of the Orientation values of 2, 4, 5, 7. (These orientations are obtained by
flipping image 1 across its vertical center axis to get the image with a value of 2, and then rotating
this image in 90-degree jumps clockwise to get the values of 7, 4, and 5, respectively).

Listing of standard Exif meta tags

· ImageWidth
· ImageLength
· BitsPerSample
· Compression
· PhotometricInterpretation
· Orientation
· SamplesPerPixel
· PlanarConfiguration
· YCbCrSubSampling
· YCbCrPositioning
· XResolution
· YResolution
· ResolutionUnit
· StripOffsets
· RowsPerStrip
· StripByteCounts
· JPEGInterchangeFormat
· JPEGInterchangeFormatLength
· TransferFunction

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1105Appendices

Altova StyleVision 2024 Professional Edition

· WhitePoint
· PrimaryChromaticities
· YCbCrCoefficients
· ReferenceBlackWhite
· DateTime
· ImageDescription
· Make
· Model
· Software
· Artist
· Copyright

· ExifVersion
· FlashpixVersion
· ColorSpace
· ComponentsConfiguration
· CompressedBitsPerPixel
· PixelXDimension
· PixelYDimension
· MakerNote
· UserComment
· RelatedSoundFile
· DateTimeOriginal
· DateTimeDigitized
· SubSecTime
· SubSecTimeOriginal
· SubSecTimeDigitized
· ExposureTime
· FNumber
· ExposureProgram
· SpectralSensitivity
· ISOSpeedRatings
· OECF
· ShutterSpeedValue
· ApertureValue
· BrightnessValue
· ExposureBiasValue
· MaxApertureValue
· SubjectDistance
· MeteringMode
· LightSource
· Flash
· FocalLength
· SubjectArea
· FlashEnergy
· SpatialFrequencyResponse
· FocalPlaneXResolution
· FocalPlaneYResolution
· FocalPlaneResolutionUnit
· SubjectLocation
· ExposureIndex
· SensingMethod
· FileSource
· SceneType

1106 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· CFAPattern
· CustomRendered
· ExposureMode
· WhiteBalance
· DigitalZoomRatio
· FocalLengthIn35mmFilm
· SceneCaptureType
· GainControl
· Contrast
· Saturation
· Sharpness
· DeviceSettingDescription
· SubjectDistanceRange
· ImageUniqueID

· GPSVersionID
· GPSLatitudeRef
· GPSLatitude
· GPSLongitudeRef
· GPSLongitude
· GPSAltitudeRef
· GPSAltitude
· GPSTimeStamp
· GPSSatellites
· GPSStatus
· GPSMeasureMode
· GPSDOP
· GPSSpeedRef
· GPSSpeed
· GPSTrackRef
· GPSTrack
· GPSImgDirectionRef
· GPSImgDirection
· GPSMapDatum
· GPSDestLatitudeRef
· GPSDestLatitude
· GPSDestLongitudeRef
· GPSDestLongitude
· GPSDestBearingRef
· GPSDestBearing
· GPSDestDistanceRef
· GPSDestDistance
· GPSProcessingMethod
· GPSAreaInformation
· GPSDateStamp
· GPSDifferential

[Top]
1102

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1107Appendices

Altova StyleVision 2024 Professional Edition

18.2.1.5 XPath/XQuery Functions: Numeric

Altova's numeric extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double, Increment as

xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1 XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated the first time
the function is called, is specified by the StartsWith argument. Each subsequent call to the function
generates a new number, this number being incremented over the previously generated number by the
value specified in the Increment argument. In effect, the altova:generate-auto-number function creates
a counter having a name specified by the ID argument, with this counter being incremented each time the
function is called. If the value of the ResetOnChange argument changes from that of the previous function
call, then the value of the number to be generated is reset to the StartsWith value. Auto-numbering can
also be reset by using the altova:reset-auto-number function.

Examples

· altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will return one

number each time the function is called, starting with 1, and incrementing by 1 with each call to
the function. As long as the fourth argument remains "SomeString" in each subsequent call, the
incrementing will continue. When the value of the fourth argument changes, the counter (called
ChapterNumber) will reset to 1. The value of ChapterNumber can also be reset by a call to the
altova:reset-auto-number function, like this: altova:reset-auto-number("ChapterNumber").

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3.1 XQ3.1

This function resets the number of the auto-numbering counter named in the ID argument. The number is
reset to the number specified by the StartsWith argument of the altova:generate-auto-number
function that created the counter named in the ID argument.

1108 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Examples

· altova:reset-auto-number("ChapterNumber") resets the number of the auto-numbering

counter named ChapterNumber that was created by the altova:generate-auto-number function.
The number is reset to the value of the StartsWith argument of the altova:generate-auto-
number function that created ChapterNumber.

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3.1 XQ3.1

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system (Base-10), and
returns the decimal integer.

Examples

· altova:hex-string-to-integer('1') returns 1

· altova:hex-string-to-integer('9') returns 9

· altova:hex-string-to-integer('A') returns 10

· altova:hex-string-to-integer('B') returns 11

· altova:hex-string-to-integer('F') returns 15

· altova:hex-string-to-integer('G') returns an error

· altova:hex-string-to-integer('10') returns 16

· altova:hex-string-to-integer('01') returns 1

· altova:hex-string-to-integer('20') returns 32

· altova:hex-string-to-integer('21') returns 33

· altova:hex-string-to-integer('5A') returns 90

· altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3.1 XQ3.1

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples

· altova:integer-to-hex-string(1) returns '1'

· altova:integer-to-hex-string(9) returns '9'

· altova:integer-to-hex-string(10) returns 'A'

· altova:integer-to-hex-string(11) returns 'B'

· altova:integer-to-hex-string(15) returns 'F'

· altova:integer-to-hex-string(16) returns '10'

· altova:integer-to-hex-string(32) returns '20'

· altova:integer-to-hex-string(33) returns '21'

· altova:integer-to-hex-string(90) returns '5A'

[Top]

1107

1107

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1109Appendices

Altova StyleVision 2024 Professional Edition

Number-formatting functions

[Top]

18.2.1.6 XPath/XQuery Functions: Schema

The Altova extension functions listed below return schema information. Given below are descriptions of the
functions, together with (i) examples and (ii) a listing of schema components and their respective properties.
They can be used with Altova's XPath 3.0 and XQuery 3.0 engines and are available in XPath/XQuery
contexts.

Schema information from schema documents
The function altova:schema has two arguments: one with zero arguments and the other with two arguments.

The zero-argument function returns the whole schema. You can then, from this starting point, navigate into the
schema to locate the schema components you want. The two-argument function returns a specific component
kind that is identified by its QName. In both cases, the return value is a function. To navigate into the returned
component, you must select a property of that specific component. If the property is a non-atomic item (that is,
if it is a component), then you can navigate further by selecting a property of this component. If the selected
property is an atomic item, then the value of the item is returned and you cannot navigate any further.

Note: In XPath expressions, the schema must be imported into the processing environment (for example, into
XSLT) with the xslt:import-schema instruction. In XQuery expressions, the schema must be

explicitly imported using a schema import.

Schema information from XML nodes
The function altova:type submits the node of an XML document and returns the node's type information from

the PSVI.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Schema (zero arguments)

altova:schema() as (function(xs:string) as item()*)? XP3.1 XQ3.1

1107

https://www.w3.org/TR/xslt-30/#element-import-schema
https://www.w3.org/TR/xquery-31/#prod-xquery31-SchemaImport

1110 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

Returns the schema component as a whole. You can navigate further into the schema component by

selecting one of the schema component's properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

The properties of the schema component are:

"type definitions"
"attribute declarations"
"element declarations"
"attribute group definitions"
"model group definitions"
"notation declarations"
"identity-constraint definitions"

The properties of all other component kinds (besides schema) are listed below.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd"; for $typedef in altova:schema()

("type definitions")

return $typedef ("name") returns the names of all simple types or complex types in the
schema

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema() ("type definitions")[1]("name") returns the name of the first of all simple

types or complex types in the schema

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1111Appendices

Altova StyleVision 2024 Professional Edition

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

1112 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1113Appendices

Altova StyleVision 2024 Professional Edition

Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"

1114 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1115Appendices

Altova StyleVision 2024 Professional Edition

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

1116 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Schema (two arguments)

altova:schema(ComponentKind as xs:string, Name as xs:QName) as (function(xs:string) as

item()*)? XP3.1 XQ3.1

Returns the component kind that is specified in the first argument which has a name that is the same as
the name supplied in the second argument. You can navigate further by selecting one of the component's
properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema("element declaration", xs:QName("OrgChart"))("type definition")

("content type")("particles")[3]!.("term")("kind")
returns the kind property of the term of the third particles component. This particles component
is a descendant of the element declaration having a QName of OrgChart

· import schema "" at "C:\Test\ExpReport.xsd";

let $typedef := altova:schema("type definition", xs:QName("emailType"))

for $facet in $typedef ("facets")

return [$facet ("kind"), $facet("value")]

returns, for each facet of each emailType component, an array containing that facet's kind and

value

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1117Appendices

Altova StyleVision 2024 Professional Edition

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":

1118 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1119Appendices

Altova StyleVision 2024 Professional Edition

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

1120 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1121Appendices

Altova StyleVision 2024 Professional Edition

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

1122 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Type

altova:type(Node as item?) as (function(xs:string) as item()*)? XP3.1 XQ3.1

The function altova:type submits an element or attribute node of an XML document and returns the

node's type information from the PSVI.

Note: The XML document must have a schema declaration so that the schema can be referenced.

Examples

· for $element in //Email

let $type := altova:type($element)

return $type

returns a function that contains the Email node's type information

· for $element in //Email

let $type := altova:type($element)

return $type ("kind")

takes the Email node's type component (Simple Type or Complex Type) and returns the value of
the component's kind property

The "_props" parameter returns the properties of the selected component. For example:
· for $element in //Email

let $type := altova:type($element)

return ($type ("kind"), $type ("_props"))

takes the Email node's type component (Simple Type or Complex Type) and returns (i) the value of
the component's kind property, and then (ii) the properties of that component.

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1123Appendices

Altova StyleVision 2024 Professional Edition

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":

1124 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1125Appendices

Altova StyleVision 2024 Professional Edition

anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

1126 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1127Appendices

Altova StyleVision 2024 Professional Edition

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

1128 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

18.2.1.7 XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. This
means that the context node must be the parent element node.

Examples

· altova:attributes("MyAttribute") returns MyAttribute()*

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as

attribute()* XP3.1 XQ3.1

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1129Appendices

Altova StyleVision 2024 Professional Edition

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. The
context node must be the parent element node. The second argument is a string containing option flags.
Available flags are:
r = switches to a regular-expression search; AttributeName must then be a regular-expression search

string;
f = If this option is specified, then AttributeName provides a full match; otherwise AttributeName need

only partially match an attribute name to return that attribute. For example: if f is not specified, then

MyAtt will return MyAttribute;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the namespace

prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument
(previous signature). However, an empty sequence is not allowed as the second argument.

Examples

· altova:attributes("MyAttribute", "rfip") returns MyAttribute()*

· altova:attributes("MyAttribute", "pri") returns MyAttribute()*

· altova:attributes("MyAtt", "rip") returns MyAttribute()*

· altova:attributes("MyAttributes", "rfip") returns no match

· altova:attributes("MyAttribute", "") returns MyAttribute()*

· altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

· altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

altova:elements(ElementName as xs:string) as element()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The context
node must be the parent node of the element/s being searched for.

Examples

· altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as element()*

XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The
context node must be the parent node of the element/s being searched for. The second argument is a
string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-expression search

string;
f = If this option is specified, then ElementName provides a full match; otherwise ElementName need only

partially match an element name to return that element. For example: if f is not specified, then MyElem will

return MyElement;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the namespace prefix,

for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument

1130 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

(previous signature). However, an empty sequence is not allowed.
Examples

· altova:elements("MyElement", "rip") returns MyElement()*

· altova:elements("MyElement", "pri") returns MyElement()*

· altova:elements("MyElement", "") returns MyElement()*

· altova:elements("MyElem", "rip") returns MyElement()*

· altova:elements("MyElements", "rfip") returns no match

· altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

· altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as xs:boolean)) as

item()? XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() is returned as the result of altova:find-first,

and the iteration stops.

Examples

· altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 6

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first is passed, in turn, to $a as its input value. The input value is tested on the condition in the

function definition ($a mod 2 = 0). The first input value to satisfy this condition is returned as the
result of altova:find-first (in this case 6).

· altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer 4

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string http://www.altova.com/index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1131Appendices

Altova StyleVision 2024 Professional Edition

(doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first, because it takes only one argument (arity=1), because it takes an item() as input (a
string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() evaluates to true() and that string is returned as

the result of the altova:find-first function. Note about the doc-available() function: Relative

paths are resolved relative to the the current base URI, which is by default the URI of the XML
document from which the function is loaded.

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence making up a

pair) as the arguments of the function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-combination. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-combination returns No

results; (ii) The result of altova:find-first-combination will always be a pair of items (of any datatype)

or no item at all.

Examples

· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns the sequence of xs:integers (11, 21)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns the sequence of xs:integers (11, 22)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 34})

1132 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-01-

Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-pair. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-pair returns No results;

(ii) The result of altova:find-first-pair will always be a pair of items (of any datatype) or no item at

all.

Examples

· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32}) returns

the sequence of xs:integers (11, 21)
· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33}) returns

No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). This is why the second example returns No results (because no ordered pair gives
a sum of 33).

find-first-pair-pos [altova:]

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-

01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1133Appendices

Altova StyleVision 2024 Professional Edition

If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condition function to evaluate to true() is

returned as the result of altova:find-first-pair-pos. Note that if the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then altova:find-first-

pair-pos returns No results.

Examples

· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns 1
· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). In the first example, the first pair causes the Condition function to evaluate to

true(), and so its index position in the sequence, 1, is returned. The second example returns No

results because no pair gives a sum of 33.

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as xs:boolean))

as xs:integer XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() has its index position in Sequence returned as the

result of altova:find-first-pos, and the iteration stops.

Examples

· altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 2

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first-pos is passed, in turn, to $a as its input value. The input value is tested on the condition in

the function definition ($a mod 2 = 0). The index position in the sequence of the first input value to
satisfy this condition is returned as the result of altova:find-first-pos (in this case 2, since 6,

the first value (in the sequence) to satisfy the condition, is at index position 2 in the sequence).

· altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 1

1134 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first-pos, because it takes only one argument (arity=1), because it takes an item() as input
(a string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() function evaluates to true() and the index

position of that string in the sequence is returned as the result of the altova:find-first-pos

function. Note about the doc-available() function: Relative paths are resolved relative to the the
current base URI, which is by default the URI of the XML document from which the function is
loaded.

for-each-attribute-pair [altova:]

altova:for-each-attribute-pair(Seq1 as element()?, Seq2 as element()?, Function as

function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then the pair is "disjoint", meaning that it consists of one member only. The function
item (third argument Function) is applied separately to each pair in the sequence of pairs (joint and
disjoint), resulting in an output that is a sequence of items.

Examples

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, function($a, $b)

{$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1135Appendices

Altova StyleVision 2024 Professional Edition

 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 Note: The result (2, 6) is obtained by way of the following action: (1+1, ()+2, 3+3, 4+()). If

one of the operands is the empty sequence, as in the case of items 2 and 4, then the result of the
addition is an empty sequence.

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, concat#2) returns

...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 2, 33, 4) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

for-each-combination [altova:]

altova:for-each-combination(FirstSequence as item()*, SecondSequence as item()*,

Function($i,$j){$i || $j}) as item()* XP3.1 XQ3.1

The items of the two sequences in the first two arguments are combined so that each item of the first
sequence is combined, in order, once with each item of the second sequence. The function given as the
third argument is applied to each combination in the resulting sequence, resulting in an output that is a
sequence of items (see example).

Examples

· altova:for-each-combination(('a', 'b', 'c'), ('1', '2', '3'), function($i, $j)

{$i || $j}) returns ('a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3')

for-each-matching-attribute-pair [altova:]

altova:for-each-matching-attribute-pair(Seq1 as element()?, Seq2 as element()?,

Function as function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then no pair is built. The function item (third argument Function) is applied
separately to each pair in the sequence of pairs, resulting in an output that is a sequence of items.

Examples

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

1136 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

function($a, $b){$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att3="1" />

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

concat#2) returns ...

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 33) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item()) as item()*

XP3.1 XQ3.1

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty, returns
FirstSequence.

Examples

· altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

· altova:substitute-empty((), (4,5,6)) returns (4,5,6)

18.2.1.8 XPath/XQuery Functions: String

Altova's string extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1137Appendices

Altova StyleVision 2024 Professional Edition

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3.1 XQ3.1

Returns the input string InputString in CamelCase. The string is analyzed using the regular expression

'\s' (which is a shortcut for the whitespace character). The first non-whitespace character after a

whitespace or sequence of consecutive whitespaces is capitalized. The first character in the output string
is capitalized.

Examples

· altova:camel-case("max") returns Max

· altova:camel-case("max max") returns Max Max

· altova:camel-case("file01.xml") returns File01.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml -file02.xml") returns File01.xml -file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex as

xs:boolean) as xs:string XP3.1 XQ3.1

Converts the input string InputString to camel case by using SplitChars to determine the character/s

that trigger the next capitalization. SplitChars is used as a regular expression when IsRegex = true(),

or as plain characters when IsRegex = false(). The first character in the output string is capitalized.

Examples

· altova:camel-case("setname getname", "set|get", true()) returns setName getName

· altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
obtained by converting the value of the context item to xs:string. The result string will be empty if no
character exists at the index submitted by the Position argument.

Examples

If the context item is 1234ABCD:

· altova:char(2) returns 2

· altova:char(5) returns A

· altova:char(9) returns the empty string.

1138 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· altova:char(-2) returns the empty string.

altova:char(InputString as xs:string, Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
submitted as the InputString argument. The result string will be empty if no character exists at the index
submitted by the Position argument.

Examples

· altova:char("2014-01-15", 5) returns -

· altova:char("USA", 1) returns U

· altova:char("USA", 10) returns the empty string.

· altova:char("USA", -2) returns the empty string.

create-hash-from-string[altova:]

altova:create-hash-from-string(InputString as xs:string) as xs:string XP2 XQ1 XP3.1
XQ3.1

altova:create-hash-from-string(InputString as xs:string, HashAlgo as xs:string) as

xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a hash string from InputString by using the hashing algorithm specified by the HashAlgo
argument. The following hashing algorithms may be specified (in upper or lower case): MD5, SHA-1, SHA-

224, SHA-256, SHA-384, SHA-512. If the second argument is not specified (see the first signature above),

then the SHA-256 hashing algorithm is used.

Examples

· altova:create-hash-from-string('abc') returns a hash string generated by using the SHA-256

hashing algorithm.
· altova:create-hash-from-string('abc', 'md5') returns a hash string generated by using the

MD5 hashing algorithm.

· altova:create-hash-from-string('abc', 'MD5') returns a hash string generated by using the

MD5 hashing algorithm.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the first X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:first-chars(2) returns 12

· altova:first-chars(5) returns 1234A

· altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the first X-Number of characters of the string submitted as the InputString
argument.

Examples

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1139Appendices

Altova StyleVision 2024 Professional Edition

· altova:first-chars("2014-01-15", 5) returns 2014-

· altova:first-chars("USA", 1) returns U

format-string [altova:]

altova:format-string(InputString as xs:string, FormatSequence as item()*) as xs:string

XP3.1 XQ3.1

The input string (first argument) contains positional parameters (%1, %2, etc). Each parameter is replaced
by the string item that is located at the corresponding position in the format sequence (submitted as the
second argument). So the first item in the format sequence replaces the positional parameter %1, the
second item replaces %2, and so on. The function returns this formatted string that contains the
replacements. If no string exists for a positional parameter, then the positional parameter itself is returned.
This happens when the index of a positional parameter is greater than the number of items in the format
sequence.

Examples

· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe')) returns "Hello

Jane, John, Joe"
· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Joe"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Tom"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe')) returns "Hello
Jane, John, %4"

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the last X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:last-chars(2) returns CD

· altova:last-chars(5) returns 4ABCD

· altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the last X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:last-chars("2014-01-15", 5) returns 01-15

· altova:last-chars("USA", 10) returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, StringLength as xs:integer,

1140 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the left of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad. has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-left('AP', 1, 'Z') returns 'AP'

· altova:pad-string-left('AP', 2, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'Z') returns 'ZAP'

· altova:pad-string-left('AP', 4, 'Z') returns 'ZZAP'

· altova:pad-string-left('AP', -3, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the right of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-right('AP', 1, 'Z') returns 'AP'

· altova:pad-string-right('AP', 2, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'Z') returns 'APZ'

· altova:pad-string-right('AP', 4, 'Z') returns 'APZZ'

· altova:pad-string-right('AP', -3, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as xs:string XP2

XQ1 XP3.1 XQ3.1

Generates a string that is composed of the first InputString argument repeated Repeats number of
times.

Examples

· altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

altova:substring-after-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs after CheckString in MainString
is returned. If CheckString is not found in MainString, then the empty string is returned. If CheckString
is an empty string, then MainString is returned in its entirety. If there is more than one occurrence of

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1141Appendices

Altova StyleVision 2024 Professional Edition

CheckString in MainString, then the substring after the last occurrence of CheckString is returned.
Examples

· altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

· altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

· altova:substring-after-last('ABCDEFGH', 'BD') returns ''

· altova:substring-after-last('ABCDEFGH', 'Z') returns ''

· altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

· altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

· altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs before CheckString in MainString
is returned. If CheckString is not found in MainString, or if CheckString is an empty string, then the
empty string is returned. If there is more than one occurrence of CheckString in MainString, then the
substring before the last occurrence of CheckString is returned.

Examples

· altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BD') returns ''

· altova:substring-before-last('ABCDEFGH', 'Z') returns ''

· altova:substring-before-last('ABCDEFGH', '') returns ''

· altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

· altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string) as

xs:integer XP3.1 XQ3.1

Returns the character position of the first occurrence of StringToFind in the string StringToCheck. The
character position is returned as an integer. The first character of StringToCheck has the position 1. If
StringToFind does not occur within StringToCheck, the integer 0 is returned. To check for the second or
a later occurrence of StringToCheck, use the next signature of this function.

Examples

· altova:substring-pos('Altova', 'to') returns 3

· altova:substring-pos('Altova', 'tov') returns 3

· altova:substring-pos('Altova', 'tv') returns 0

· altova:substring-pos('AltovaAltova', 'to') returns 3

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string, Integer as

xs:integer) as xs:integer XP3.1 XQ3.1

Returns the character position of StringToFind in the string, StringToCheck. The search for
StringToFind starts from the character position given by the Integer argument; the character substring
before this position is not searched. The returned integer, however, is the position of the found string within
the entire string, StringToCheck. This signature is useful for finding the second or a later position of a

1142 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

string that occurs multiple times with the StringToCheck. If StringToFind does not occur within
StringToCheck, the integer 0 is returned.

Examples

· altova:substring-pos('Altova', 'to', 1) returns 3

· altova:substring-pos('Altova', 'to', 3) returns 3

· altova:substring-pos('Altova', 'to', 4) returns 0

· altova:substring-pos('Altova-Altova', 'to', 0) returns 3

· altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading and trailing whitespace, and returns a
"trimmed" xs:string.

Examples

· altova:trim-string(" Hello World ") returns "Hello World"

· altova:trim-string("Hello World ") returns "Hello World"

· altova:trim-string(" Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading whitespace, and returns a left-trimmed
xs:string.

Examples

· altova:trim-string-left(" Hello World ") returns "Hello World "

· altova:trim-string-left("Hello World ") returns "Hello World "

· altova:trim-string-left(" Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any trailing whitespace, and returns a right-trimmed
xs:string.

Examples

· altova:trim-string-right(" Hello World ")) returns " Hello World"

· altova:trim-string-right("Hello World ")) returns "Hello World"

· altova:trim-string-right(" Hello World")) returns " Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1143Appendices

Altova StyleVision 2024 Professional Edition

18.2.1.9 XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current version of
StyleVision and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an
XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

decode-string [altova:]

altova:decode-string(Input as xs:base64Binary) as xs:string XP3.1 XQ3.1

altova:decode-string(Input as xs:base64Binary, Encoding as xs:string) as xs:string XP3.1

 XQ3.1

Decodes the submitted base64Binary input to a string using the specified encoding. If no encoding is
specified, then the UTF-8 encoding is used. The following encodings are supported: US-ASCII, ISO-
8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-
10646-UCS4

Examples

· altova:decode-string($XML1/MailData/Meta/b64B) returns the base64Binary input as a UTF-8

encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "UTF-8") returns the base64Binary

input as a UTF-8-encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "ISO-8859-1") returns the

base64Binary input as an ISO-8859-1-encoded string

encode-string [altova:]

altova:encode-string(InputString as xs:string) as xs:base64Binaryinteger XP3.1 XQ3.1

altova:encode-string(InputString as xs:string, Encoding as xs:string) as

xs:base64Binaryinteger XP3.1 XQ3.1

Encodes the submitted string using, if one is given, the specified encoding. If no encoding is given, then

1144 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

the UTF-8 encoding is used. The encoded string is converted to base64Binary characters, and the
converted base64Binary value is returned. Initially, UTF-8 encoding is supported, and support will be
extended to the following encodings: US-ASCII, ISO-8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-
10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-10646-UCS4

Examples

· altova:encode-string("Altova") returns the base64Binary equivalent of the UTF-8 encoded

string "Altova"
· altova:encode-string("Altova", "UTF-8") returns the base64Binary equivalent of the UTF-8

encoded string "Altova"

get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3.1 XQ3.1

This function takes no argument. It returns the path to the temporary folder of the current user.
Examples

· altova:get-temp-folder() would return, on a Windows machine, something like C:

\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

generate-guid [altova:]

altova:generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a unique string GUID string.
Examples

· altova:generate-guid() returns (for example) 85F971DA-17F3-4E4E-994E-99137873ACCD

high-res-timer [altova:]

altova:high-res-timer() as xs:double XP3.1 XQ3.1

Returns a system high-resolution timer value in seconds. A high-resolution timer, when present on a
system, enables high precision time measurements when these are required (for example, in animations
and for determining precise code-execution time). This function provides the resolution of the system's
high-res timer.

Examples

· altova:high-res-timer() returns something like '1.16766146154566E6'

parse-html [altova:]

altova:parse-html(HTMLText as xs:string) as node() XP3.1 XQ3.1

The HTMLText argument is a string that contains the text of an HTML document. The function creates an
HTML tree from the string. The submitted string may or may not contain the HTML element. In either case,
the root element of the tree is an element named HTML. It is best to make sure that the HTML code in the

submitted string is valid HTML.
Examples

· altova:parse-html("<html><head/><body><h1>Header</h1></body></html>") creates an

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1145Appendices

Altova StyleVision 2024 Professional Edition

HTML tree from the submitted string

sleep[altova:]

altova:sleep(Millisecs as xs:integer) as empty-sequence() XP2 XQ1 XP3.1 XQ3.1

Suspends execution of the current operation for the number of milliseconds given by the Millisecs
argument.

Examples

· altova:sleep(1000) suspends execution of the current operation for 1000 milliseconds.

[Top]

18.2.1.10 Barcode Functions

The XSLT Engine uses third-party Java libraries to create barcodes. Given below are the classes and the public
methods used. The classes are packaged in AltovaBarcodeExtension.jar, which is located in the folder
<ProgramFilesFolder>\Altova\Common2024\jar.

The Java libraries used are in sub-folders of the folder <ProgramFilesFolder>\Altova\Common2024\jar:

· barcode4j\barcode4j.jar (Website: http://barcode4j.sourceforge.net/)
· zxing\core.jar (Website: http://code.google.com/p/zxing/)

The license files are also located in the respective folders.

Java virtual machine
In order to be able to use the barcode functions, a Java virtual machine must be available on your machine and
it must match the bit version of the Altova application (32-bit or 64-bit). The path to the machine is found as
noted below.

· If you are using an Altova desktop product, the Altova application attempts to detect the path to the
Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the
JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the

application; this entry will take priority over any other Java VM path detected automatically.
· If you are running an Altova server product on a Windows machine, the path to the Java virtual machine

will be read first from the Windows registry; if this is not successful the JAVA_HOME environment

variable will be used.
· If you are running an Altova server product on a Linux or macOS machine, then make sure that the

JAVA_HOME environment variable is properly set and that the Java Virtual Machines library (on Windows,

the jvm.dll file) can be located in either the \bin\server or \bin\client directory.

XSLT example to generate barcode
Given below is an XSLT example showing how barcode functions are used in an XSLT stylesheet.

1143

http://barcode4j.sourceforge.net/
http://code.google.com/p/zxing/

1146 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:altova="http://www.altova.com"
 xmlns:altovaext=”http://www.altova.com/xslt-extensions”
 xmlns:altovaext-barcode="java:com.altova.extensions.barcode.BarcodeWrapper"
 xmlns:altovaext-barcode-
property="java:com.altova.extensions.barcode.BarcodePropertyWrapper">
 <xsl:output method="html" encoding="UTF-8" indent="yes"/>
 <xsl:template match="/">
 <html>
 <head><title/></head>
 <body>

 </body>
 </html>
 <xsl:result-document
 href="barcode.png"
 method="text" encoding="base64tobinary" >
 <xsl:variable name="barcodeObject"
 select="altovaext-barcode:newInstance('Code39',string('some value'),
 96,0, (altovaext-barcode-property:new('setModuleWidth', 25.4 div 96 *
2)))"/>
 <xsl:value-of select="xs:base64Binary(xs:hexBinary(string(altovaext-
barcode:generateBarcodePngAsHexString($barcodeObject))))"/>
 </xsl:result-document>
 </xsl:template>
</xsl:stylesheet>

XQuery example to generate QR code
Given below is an XQuery example showing how barcode functions can be used to generate a QR code image.

declare variable $lines := unparsed-text-

lines('https://info.healthministry.gv.at/data/timeline-cases-provinces.csv', 'utf-8');

declare variable $main := map:merge(tokenize(head($lines), ';')!map{.:position()});

declare variable $data := map:merge(tail($lines)!array{tokenize(., ';')}!map{?($main?Name):

[?($main?Date), xs:integer(?($main?ConfirmedCasesProvinces)) - xs:integer(?($main?

Recovered))]}, map{'duplicates':'combine'});

declare variable $chart_img := altovaext:chart(map{'width': 1900, 'height': 600}, map:for-

each($data, function($k, $v){[$k, $v?1!substring-before(., 'T'), $v?2][$k != 'Austria']}));

(:$main, $data,:)

The com.altova.extensions.barcode package

The package, com.altova.extensions.barcode, is used to generate most of the barcode types.

The following classes are used:

public class BarcodeWrapper

static BarcodeWrapper newInstance(String name, String msg, int dpi, int
orientation, BarcodePropertyWrapper[] arrProperties)

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1147Appendices

Altova StyleVision 2024 Professional Edition

double getHeightPlusQuiet()
double getWidthPlusQuiet()
org.w3c.dom.Document generateBarcodeSVG()
byte[] generateBarcodePNG()
String generateBarcodePngAsHexString()

public class BarcodePropertyWrapper Used to store the barcode properties that will be dynamically set

later
BarcodePropertyWrapper(String methodName, String propertyValue)

BarcodePropertyWrapper(String methodName, Integer propertyValue)
BarcodePropertyWrapper(String methodName, Double propertyValue)
BarcodePropertyWrapper(String methodName, Boolean propertyValue)
BarcodePropertyWrapper(String methodName, Character propertyValue)
String getMethodName()
Object getPropertyValue()

public class AltovaBarcodeClassResolver Registers the class

com.altova.extensions.barcode.proxy.zxing.QRCodeBean for the qrcode bean, additionally to the classes
registered by the org.krysalis.barcode4j.DefaultBarcodeClassResolver.

The com.altova.extensions.barcode.proxy.zxing package

The package, com.altova.extensions.barcode.proxy.zxing, is used to generate the QRCode barcode
type.

The following classes are used:

class QRCodeBean

· Extends org.krysalis.barcode4j.impl.AbstractBarcodeBean
· Creates an AbstractBarcodeBean interface for com.google.zxing.qrcode.encoder

void generateBarcode(CanvasProvider canvasImp, String msg)
void setQRErrorCorrectionLevel(QRCodeErrorCorrectionLevel level)
BarcodeDimension calcDimensions(String msg)
double getVerticalQuietZone()
double getBarWidth()

class QRCodeErrorCorrectionLevel Error correction level for the QRCode
static QRCodeErrorCorrectionLevel byName(String name)
“L” = ~7% correction
“M” = ~15% correction
“H” = ~25% correction
“Q” = ~30% correction

18.2.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are not available
as XQuery/XPath functions or as XSLT functions. A good example would be the math functions available in
Java, such as sin() and cos(). If these functions were available to the designers of XSLT stylesheets and

1148 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

XQuery queries, it would increase the application area of stylesheets and queries and greatly simplify the tasks
of stylesheet creators. The XSLT and XQuery engines used in a number of Altova products support the use of
extension functions in Java and .NET , as well as MSXSL scripts for XSLT . This section describes
how to use extension functions and MSXSL scripts in your XSLT stylesheets. The available extension functions
are organized into the following sections:

· Java Extension Functions
· .NET Extension Functions
· MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective libraries are called;
and (ii) what rules are followed for converting arguments in a function call to the required input format of the
function, and what rules are followed for the return conversion (function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and .NET
Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine running the XSLT
transformation or XQuery execution, or must be accessible for the transformations.

18.2.2.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java constructor or
call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or instance.
How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

· Java: Constructors
· Java: Static Methods and Static Fields
· Java: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to Java
· Datatypes: Java to XPath/XQuery

Note the following
· If you are using an Altova desktop product, the Altova application attempts to detect the path to the

Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the
JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the

application; this entry will take priority over any other Java VM path detected automatically.
· If you are running an Altova server product on a Windows machine, the path to the Java virtual machine

will be read first from the Windows registry; if this is not successful the JAVA_HOME environment

variable will be used.
· If you are running an Altova server product on a Linux or macOS machine, then make sure that the

JAVA_HOME environment variable is properly set and that the Java Virtual Machines library (on Windows,

the jvm.dll file) can be located in either the \bin\server or \bin\client directory.

1148 1157 1163

1148

1157

1163

1153

1154

1155

1155

1156

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1149Appendices

Altova StyleVision 2024 Professional Edition

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part identifies the extension function as a Java function. It does so by associating the
extension function with an in-scope namespace declaration, the URI of which must begin with java:
(see below for examples). The namespace declaration should identify a Java class, for example:
xmlns:myns="java:java.lang.Math". However, it could also simply be:
xmlns:myns="java" (without a colon), with the identification of the Java class being left to the fname()
part of the extension function.

· The fname() part identifies the Java method being called, and supplies the arguments for the method
(see below for examples). However, if the namespace URI identified by the prefix: part does not
identify a Java class (see preceding point), then the Java class should be identified in the fname() part,
before the class and separated from the class by a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname() part. In the
second example, the prefix: part supplies the prefix java: while the fname() part identifies the class as well
as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name of a public
static method in the named Java class (java.lang.Math in the example above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently according to: (i)
whether the classes are accessed via a JAR file or a class file, and (ii) whether these files (JAR or class) are
located in the current directory (the same directory as the XSLT or XQuery document) or not. How to locate
these files is described in the sections User-Defined Class Files and User-Defined Jar Files . Note that
paths to class files not in the current directory and to all JAR files must be specified.

Note: If you wish to add a namespace to an XSLT stylesheet being generated from an SPS created in
StyleVision, the namespace must be added to the top-level schema element of the XML Schema on

1150 1152

1150 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

which the SPS is based. Note that the following namespace declaration xmlns:java="java" is
created automatically by default in every SPS created in StyleVision.

18.2.2.1.1 User-Defined Class Files

If access is via a class file, then there are four possibilities:

· The class file is in a package. The XSLT or XQuery file is in the same folder as the Java package. (See
example below .)

· The class file is not packaged. The XSLT or XQuery file is in the same folder as the class file. (See
example below .)

· The class file is in a package. The XSLT or XQuery file is at some random location. (See example
below .)

· The class file is not packaged. The XSLT or XQuery file is at some random location. (See example
below .)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or XQuery
document. In this case, since all classes in the folder are found, the file location does not need to be specified.
The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the current directory
will be loaded by default)

classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call.

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is also in the folder
JavaProject.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

1150

1151

1151

1152

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1151Appendices

Altova StyleVision 2024 Professional Edition

Class file referenced, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class. Let us say that: (i) the Car class file
is in the following folder: JavaProject/com/altova/extfunc, and (ii) that this folder is the current folder in the
example below. The XSLT file is also in the folder JavaProject/com/altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any location. In this case,
the location of the package must be specified within the URI as a query string. The syntax is:

java:classname[?path=uri-of-package]

where

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

1152 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class. Let us say that the Car class file is in
the folder C:/JavaProject/com/altova/extfunc, and the XSLT file is at any location. The location of the
class file must then be specified within the namespace URI as a query string. The syntax is:

java:classname[?path=<uri-of-classfile>]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

18.2.2.1.2 User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the class:
classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1153Appendices

Altova StyleVision 2024 Professional Edition

? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the syntax:

xmlns:ns1="java:docx.layout.pages?
path=jar:file:///c:/projects/docs/docx.jar!/"

ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

18.2.2.1.3 Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the pseudo-
function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes , then the Java
extension function will return a sequence that is an XPath/XQuery datatype. If the result of a Java constructor
call cannot be converted to a suitable XPath/XQuery datatype, then the constructor creates a wrapped Java
object with a type that is the name of the class returning that Java object. For example, if a constructor for the
class java.util.Date is called (java.util.Date.new()), then an object having a type java.util.Date is
returned. The lexical format of the returned object may not match the lexical format of an XPath datatype and
the value would therefore need to be converted to the lexical format of the required XPath datatype and then to
the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

1156

1154 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())" xmlns:date="java:java.util.Date" />

18.2.2.1.4 Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the method. Static
fields (methods that take no arguments), such as the constant-value fields E and PI, are accessed without
specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all three cases is
jMath:, which is associated with the namespace URI java:java.lang.Math. (The namespace URI must
begin with java:. In the examples above it is extended to contain the class name (java.lang.Math).) The
fname() part of the extension functions must match the name of a public class (e.g. java.lang.Math) followed
by the name of a public static method with its argument/s (such as cos(3.14)) or a public static field (such as
PI()).

In the examples above, the class name has been included in the namespace URI. If it were not contained in the
namespace URI, then it would have to be included in the fname() part of the extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

1155

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1155Appendices

Altova StyleVision 2024 Professional Edition

18.2.2.1.5 Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such a Java object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the date:new()
constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object per se that is
passed as an argument to the instance field. Instead, a parameter or variable is passed as the argument.
However, the parameter/variable may itself contain the value returned by a Java object. For example, the
parameter CurrentDate takes the value returned by a constructor for the class java.util.Date. This value is
then passed as an argument to the instance method date:toString in order to supply the value
of /enrollment/@date.

18.2.2.1.6 Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the function's
arguments is important in determining which of multiple Java classes having the same name is called.

In Java, the following rules are followed:

· If there is more than one Java method with the same name, but each has a different number of
arguments than the other/s, then the Java method that best matches the number of arguments in the
function call is selected.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding Java datatype. If the supplied XPath/XQuery type can be converted to more than one
Java type (for example, xs:integer), then that Java type is selected which is declared for the selected

1156 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

method. For example, if the Java method being called is fx(decimal) and the supplied XPath/XQuery
datatype is xs:integer, then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to Java
datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error. However, note that in some cases, it might be possible to create the required Java type by using a Java
constructor.

18.2.2.1.7 Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean type, then it is
converted to the corresponding XPath/XQuery type. For example, Java's java.lang.Boolean and boolean
datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional arrays will not be
converted, and should therefore be wrapped.

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1157Appendices

Altova StyleVision 2024 Professional Edition

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you can ensure
conversion to the required XPath/XQuery type by first using a Java method (e.g toString) to convert the Java
object to a string. In XPath/XQuery, the string can be modified to fit the lexical representation of the required
type and then converted to the required type (for example, by using the cast as expression).

18.2.2.2 .NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions written in any
of the .NET languages (for example, C#). A .NET extension function can be used within an XPath or XQuery
expression to invoke a constructor, property, or method (static or instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

· .NET: Constructors
· .NET: Static Methods and Static Fields
· .NET: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to .NET
· Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part is associated with a URI that identifies the .NET class being addressed.
· The fname() part identifies the constructor, property, or method (static or instance) within the .NET

class, and supplies any argument/s, if required.
· The URI must begin with clitype: (which identifies the function as being a .NET extension function).
· The prefix:fname() form of the extension function can be used with system classes and with

classes in a loaded assembly. However, if a class needs to be loaded, additional parameters
containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

1159

1160

1160

1161

1162

1158 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If the
assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and omit the from
parameter.

A question mark must be inserted before the first parameter, and parameters must be separated by a semi-
colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;

ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/Altova
Projects/extFunctions/MyManagedDLL.dll;

declare namespace cs="clitype:MyManagedDLL.testClass?from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">

 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>

 <pi><xsl:value-of select="math:PI()"/></pi>

 <e><xsl:value-of select="math:E()"/></e>

 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>

 </math>
 </xsl:template>
</xsl:stylesheet>

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1159Appendices

Altova StyleVision 2024 Professional Edition

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies either a
system class or a loaded class. The math: prefix in the XPath expressions associates the extension functions
with the URI (and, by extension, the class) System.Math. The extension functions identify methods in the class
System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this case a system
class. The XQuery expression identifies the method to be called and supplies the argument.

18.2.2.2.1 .NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the pseudo-
function new(). If there is more than one constructor for a class, then the constructor that most closely
matches the number of arguments supplied is selected. If no constructor is deemed to match the supplied
argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes , then the .NET
extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped .NET object with a type that is the name of the class returning that object. For
example, if a constructor for the class System.DateTime is called (with System.DateTime.new()), then an
object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath datatype. In such
cases, the returned value would need to be: (i) converted to the lexical format of the required XPath datatype;
and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

· It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
· It can be converted to a string, number, or boolean:

1156

1155

1160 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

· <xsl:value-of select="xs:integer(date:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

18.2.2.2.2 .NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method. The name used
in the call must exactly match a public static method in the class specified. If the method name and the
number of arguments that were given in the function call matches more than one method in a class, then the
types of the supplied arguments are evaluated for the best match. If a match cannot be found unambiguously,
an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is called using
the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):
<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):
<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName()) (System.String()):
<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):
<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

18.2.2.2.3 .NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This .NET object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1161Appendices

Altova StyleVision 2024 Professional Edition

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a .NET object of
type System.DateTime. This object is created twice, once as the value of the variable releasedate, a second
time as the first and only argument of the System.DateTime.ToString() method. The instance method
System.DateTime.ToString() is called twice, both times with the System.DateTime constructor (new(2008,
4, 29)) as its first and only argument. In one of these instances, the variable releasedate is used to get the
.NET object.

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance method, a .NET
object is directly passed as an argument; in an instance field, a parameter or variable is passed instead—
though the parameter or variable may itself contain a .NET object. For example, in the example above, the
variable releasedate contains a .NET object, and it is this variable that is passed as the argument of
ToString() in the second date element constructor. Therefore, the ToString() instance in the first date
element is an instance method while the second is considered to be an instance field. The result produced in
both instances, however, is the same.

18.2.2.2.4 Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the function's
arguments are important for determining which one of multiple .NET methods having the same name is called.

In .NET, the following rules are followed:

· If there is more than one method with the same name in a class, then the methods available for
selection are reduced to those that have the same number of arguments as the function call.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding .NET datatype. If the supplied XPath/XQuery type can be converted to more than one
.NET type (for example, xs:integer), then that .NET type is selected which is declared for the
selected method. For example, if the .NET method being called is fx(double) and the supplied
XPath/XQuery datatype is xs:integer, then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to .NET
datatypes.

1162 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error.

18.2.2.2.5 Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean type, then it
is converted to the corresponding XPath/XQuery type. For example, .NET's decimal datatype is converted to
xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can ensure conversion
to the required XPath/XQuery type by first using a .NET method (for example System.DateTime.ToString())
to convert the .NET object to a string. In XPath/XQuery, the string can be modified to fit the lexical
representation of the required type and then converted to the required type (for example, by using the cast as
expression).

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1163Appendices

Altova StyleVision 2024 Professional Edition

18.2.2.3 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called from within
XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level element, that is, it must be a
child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt (see example
below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's language attribute
and the namespace to be used for function calls from XPath expressions is identified with the implements-
prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages that are
installed on your machine may be used within the <msxsl:script> element. The .NET Framework 2.0
platform or higher must be installed for MSXSL scripts to be used. Consequently, the .NET scripting
languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML <script> element. If
the language attribute is not specified, then Microsoft JScript is assumed as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace. This
namespace typically will be a user namespace that has been reserved for a function library. All functions and
variables defined within the <msxsl:script> element will be in the namespace identified by the prefix specified
in the implements-prefix attribute. When a function is called from within an XPath expression, the fully
qualified function name must be in the same namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a <msxsl:script>
element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[

 ' Input: A currency value: the wholesale price

1164 Appendices XSLT and XPath/XQuery Functions

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

 ' Returns: The retail price: the input value plus 20% margin,

 ' rounded to the nearest cent

 dim a as integer = 13

 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a

 End Function

]]>

 </msxsl:script>

 <xsl:template match="/">

 <html>

 <body>

 <p>

 Total Retail Price =

 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =

 $<xsl:value-of select="50"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes. This restriction
does not apply to data passed among functions and variables within the script block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The assembly is identified

via a name or a URI. The assembly is imported when the stylesheet is compiled. Here is a simple
representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

© 2017-2023 Altova GmbH

XSLT and XPath/XQuery Functions 1165Appendices

Altova StyleVision 2024 Professional Edition

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to be written in

the script without their namespaces, thus saving you some tedious typing. Here is how the msxsl:using
element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

1166 Appendices Datatypes in DB-Generated XML Schemas

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

18.3 Datatypes in DB-Generated XML Schemas

When an XML Schema is generated from a database (DB), the datatypes specific to that DB are converted to
XML Schema datatypes. The mappings of DB datatypes to XML Schema datatypes for commonly used DBs
are given in this Appendix. Select from the list below.

· ADO
· MS Access
· MS SQL Server
· MySQL
· ODBC
· Oracle
· Sybase

18.3.1 ADO

When an XML Schema is generated from an ADO database (DB), the ADO DB datatypes are converted to XML
Schema datatypes as listed in the table below.

ADO Datatype XML Schema Datatype

adGUID xs:ID

adChar xs:string

adWChar xs:string

adVarChar xs:string

adWVarChar xs:string

adLongVarChar xs:string

adWLongVarChar xs:string

adVarWChar xs:string

adBoolean xs:boolean

adSingle xs:float

adDouble xs:double

adNumeric xs:decimal

adCurrency xs:decimal

adDBTimeStamp xs:dateTime

adDate xs:date

adBinary xs:base64Binary

adVarBinary xs:base64Binary

1166

1167

1168

1168

1169

1170

1171

© 2017-2023 Altova GmbH

Datatypes in DB-Generated XML Schemas 1167Appendices

Altova StyleVision 2024 Professional Edition

adLongVarBinary xs:base64Binary

adInteger xs:Integer

adUnsignedInt xs:unsignedInt

adSmallInt xs:short

adUnsignedSmallInt xs:unsignedShort

adBigInt xs:long

adUnsignedBigInt xs:unsignedLong

adTinyInt xs:byte

adUnsignedTinyInt xs:unsignedByte

18.3.2 MS Access

When an XML Schema is generated from an MS Access database (DB), the MS Access DB datatypes are
converted to XML Schema datatypes as listed in the table below.

MS Access Datatype XML Schema Datatype

GUID xs:ID

char xs:string

varchar xs:string

memo xs:string

bit xs:boolean

Number(single) xs:float

Number(double) xs:double

Decimal xs:decimal

Currency xs:decimal

Date/Time xs:dateTime

Number(Long Integer) xs:integer

Number(Integer) xs:short

Number(Byte) xs:byte

OLE Object xs:base64Binary

1168 Appendices Datatypes in DB-Generated XML Schemas

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

18.3.3 MS SQL Server

When an XML Schema is generated from an MS SQL Server database (DB), the MS SQL Server DB datatypes
are converted to XML Schema datatypes as listed in the table below.

MS SQL Server Datatype XML Schema Datatype

uniqueidentifier xs:ID

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

ntext xs:string

sysname xs:string

bit xs:boolean

real xs:float

float xs:double

decimal xs:decimal

money xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

binary xs:base64Binary

varbinary xs:base64Binary

image xs:base64Binary

integer xs:integer

smallint xs:short

bigint xs:long

tinyint xs:byte

18.3.4 MySQL

When an XML Schema is generated from a MySQL database (DB), the MySQL DB datatypes are converted to
XML Schema datatypes as listed in the table below.

© 2017-2023 Altova GmbH

Datatypes in DB-Generated XML Schemas 1169Appendices

Altova StyleVision 2024 Professional Edition

MySQL Datatype XML Schema Datatype

char xs:string

varchar xs:string

text xs:string

tinytext xs:string

mediumtext xs:string

longtext xs:string

tinyint(1) xs:boolean

float xs:float

double xs:double

decimal xs:decimal

datetime xs:dateTime

blob xs:base64Binary

tinyblob xs:base64Binary

mediumblob xs:base64Binary

longblob xs:base64Binary

smallint xs:short

bigint xs:long

tinyint xs:byte

18.3.5 ODBC

When an XML Schema is generated from an ODBC database (DB), the ODBC DB datatypes are converted to
XML Schema datatypes as listed in the table below.

ODBC Datatype XML Schema Datatype

SQL_GUID xs:ID

SQL_CHAR xs:string

SQL_VARCHAR xs:string

SQL_LONGVARCHAR xs:string

SQL_BIT xs:boolean

SQL_REAL xs:float

1170 Appendices Datatypes in DB-Generated XML Schemas

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

SQL_DOUBLE xs:double

SQL_DECIMAL xs:decimal

SQL_TIMESTAMP xs:dateTime

SQL_DATE xs:date

SQL_BINARY xs:base64Binary

SQL_VARBINARY xs:base64Binary

SQL_LONGVARBINARY xs:base64Binary

SQL_INTEGER xs:integer

SQL_SMALLINT xs:short

SQL_BIGINT xs:long

SQL_TINYINT xs:byte

18.3.6 Oracle

When an XML Schema is generated from an Oracle database (DB), the Oracle DB datatypes are converted to
XML Schema datatypes as listed in the table below.

Oracle Datatype XML Schema Datatype

ROWID xs:ID

CHAR xs:string

NCHAR xs:string

VARCHAR2 xs:string

NVARCHAR2 xs:string

CLOB xs:string

NCLOB xs:string

NUMBER (with check
constraint applied)*

xs:boolean

NUMBER xs:decimal

FLOAT xs:double

DATE xs:dateTime

INTERVAL YEAR TO MONTH xs:gYearMonth

BLOB xs:base64Binary

* If a check constraint is applied to a column of datatype NUMBER, and the check constraint checks for

© 2017-2023 Altova GmbH

Datatypes in DB-Generated XML Schemas 1171Appendices

Altova StyleVision 2024 Professional Edition

the values 0 or 1, then the NUMBER datatype for this column will be converted to an XML Schema
datatype of xs:boolean. This mechanism is useful for generating an xs:boolean datatype in the
generated XML Schema.

18.3.7 Sybase

When an XML Schema is generated from a Sybase database (DB), the Sybase DB datatypes are converted to
XML Schema datatypes as listed in the table below.

Sybase Datatype XML Schema Datatype

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

sysname-varchar(30) xs:string

bit xs:boolean

real xs:float

float xs:float

double xs:double

decimal xs:decimal

money xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

timestamp xs:dateTime

binary<=255 xs:base64Binary

varbinary<=255 xs:base64Binary

image xs:base64Binary

integer xs:integer

smallint xs:short

tinyint xs:byte

1172 Appendices Technical Data

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

18.4 Technical Data

This section contains information on some technical aspects of your software. This information is organized
into the following sections:

· OS and Memory Requirements
· Altova Engines
· Unicode Support
· Internet Usage

18.4.1 OS and Memory Requirements

Operating System
Altova software applications are available for the following platforms:

· Windows 10, Windows 11
· Windows Server 2012 or newer

Memory
Since the software is written in C++ it does not require the overhead of a Java Runtime Environment and
typically requires less memory than comparable Java-based applications. However, each document is loaded
fully into memory so as to parse it completely and to improve viewing and editing speed. As a result, the
memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting and pasting
large selections in large documents, available memory can rapidly be depleted.

18.4.2 Altova Engines

XML Validator
When opening an XML document, the application uses its built-in XML validator to check for well-formedness,
to validate the document against a schema (if specified), and to build trees and infosets. The XML validator is
also used to provide intelligent editing help while you edit documents and to dynamically display any validation
error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0 and 1.1
specifications. New developments recommended by the W3C's XML Schema Working Group are continuously
being incorporated in the XML validator, so that Altova products give you a state-of-the-art development
environment.

XSLT and XQuery Engines
Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.1 Engines. If
one of these engines is included in the product, then documentation about implementation-specific behavior for
each engine is given in the appendices of the documentation.

1172

1172

1173

1173

© 2017-2023 Altova GmbH

Technical Data 1173Appendices

Altova StyleVision 2024 Professional Edition

Note: Altova MapForce generates code using the XSLT 1.0, 2.0 and XQuery 1.0 engines.

18.4.3 Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need a font that
supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and are therefore
typically targeted at the corresponding writing system. If some text appears garbled, the reason could be that
the font you have selected does not contain the required glyphs. So it is useful to have a font that covers the
entire Unicode range, especially when editing XML documents in different languages or writing systems. A
typical Unicode font found on Windows PCs is Arial Unicode MS.

In the /Examples folder of your application folder you will find an XHTML file called UnicodeUTF-8.html that
contains the following sentence in a number of different languages and writing systems:

· When the world wants to talk, it speaks Unicode
· Wenn die Welt miteinander spricht, spricht sie Unicode

·)

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also indicate what
writing systems are supported by the fonts available on your PC.

18.4.4 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

· If you click the "Request evaluation key-code" in the Registration dialog (Help | Software Activation),
the three fields in the registration dialog box are transferred to our web server by means of a regular
http (port 80) connection and the free evaluation key-code is sent back to the customer via regular
SMTP e-mail.

· In some Altova products, you can open a file over the Internet (File | Open | Switch to URL). In this
case, the document is retrieved using one of the following protocol methods and connections: HTTP
(normally port 80), FTP (normally port 20/21), HTTPS (normally port 443). You could also run an HTTP
server on port 8080. (In the URL dialog, specify the port after the server name and a colon.)

· If you open an XML document that refers to an XML Schema or DTD and the document is specified
through a URL, the referenced schema document is also retrieved through a HTTP connection (port 80)
or another protocol specified in the URL (see Point 2 above). A schema document will also be retrieved
when an XML file is validated. Note that validation might happen automatically upon opening a
document if you have instructed the application to do this (in the File tab of the Options dialog (Tools |
Options)).

· In Altova applications using WSDL and SOAP, web service connections are defined by the WSDL
documents.

· If you are using the Send by Mail command (File | Send by Mail) in XMLSpy, the current selection
or file is sent by means of any MAPI-compliant mail program installed on the user's PC.

· As part of Software Activation and LiveUpdate as further described in the Altova Software License
Agreement.

1174 Appendices License Information

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

18.5 License Information

This section contains information about:

· the distribution of this software product
· software activation and license metering
· the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you
installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

18.5.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the
following unique benefits:

· You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note:
Altova MobileTogether Designer is licensed free of charge.)

· Once you decide to buy the software, you can place your order online at the Altova website and get a
fully licensed product within minutes.

· When you place an online order, you always get the latest version of our software.
· The product package includes an onscreen help system that can be accessed from within the

application interface. The latest version of the user manual is available at www.altova.com in (i) HTML
format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days
into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder
message will be displayed once each time you start the application. If you would like to continue using the
program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form
of a license file containing a key code. Unlock the product by uploading the license file in the Software
Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that
is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in
any way. Any person who accesses the software installer that you have provided must request their own 30-
day evaluation license key code and after expiration of their evaluation period, must also purchase a license in
order to be able to continue using the product.

https://www.altova.com/legal
https://www.altova.com/
https://shop.altova.com/
https://www.altova.com/documentation
https://shop.altova.com/

© 2017-2023 Altova GmbH

License Information 1175Appendices

Altova StyleVision 2024 Professional Edition

18.5.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for
the purpose of transmitting license-related data at the time of installation, registration, use, or update to an
Altova-operated license server and validating the authenticity of the license-related data in order to protect
Altova against unlicensed or illegal use of the software and to improve customer service. Activation is based on
the exchange of license related data such as operating system, IP address, date/time, software version, and
computer name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any unintentional
violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user
installation, and the license-metering module makes sure that no more than the licensed number of users use
the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the
application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a short broadcast
datagram to find any other instance of the product running on another computer in the same network segment.
If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license
If more than one instance of the application is used within the same LAN, these instances will briefly
communicate with each other on startup. These instances exchange key-codes in order to help you to better
determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind
of license metering technology that is common in the Unix world and with a number of database development
tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as to not put a
burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the
IANA (see the IANA Service Name Registry for details) and our license-metering module is tested and proven
technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are
running Altova products. You are, of course, free to block such traffic between different groups in your
organization, as long as you can ensure by other means, that your license agreement is not violated.

Note about certificates
Your Altova application contacts the Altova licensing server (link.altova.com) via HTTPS. For this
communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT
department or an external agency), then your Altova application will warn you about the connection being
insecure. You could use the replacement certificate to start your Altova application, but you would be doing this
at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova
certificate should continue or not).

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

1176 Appendices License Information

© 2017-2023 Altova GmbHAltova StyleVision 2024 Professional Edition

If your organization needs to use its own certificate (for example, to monitor communication to and from client
machines), then we recommend that you install Altova's free license management software, Altova
LicenseServer, on your network. Under this setup, client machines can continue to use your organization's
certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with
Altova.

18.5.3 Altova End-User License Agreement

· The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
· Altova's Privacy Policy is available here: https://www.altova.com/privacy

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver
https://www.altova.com/legal/eula
https://www.altova.com/privacy

© 2017-2023 Altova GmbH

Index 1177

Index

.

.docx (Enterprise Edition only), 18, 36

.NET,

differences to StyleVision standalone, 672

integration of StyleVision with, 670

.NET extension functions,

constructors, 1159

datatype conversions (.NET to XPath/XQuery), 1162

datatype conversions (XPath/XQuery to .NET), 1161

for XSLT and XQuery, 1157

in XPath expressions, 685, 697

instance methods, instance fields, 1160

overview, 1157

static methods, static fields, 1160

support for, in Authentic View, 685, 697

A
Abbreviations,

used in user manual, 29

About StyleVision, 852

Activating the software, 848

Active configuration, 819

ActiveX,

integration at application level, 1005

integration at document level, 1007

integration prerequisites, 1002

ActiveX controls,

adding to the Visual Studio Toolbox, 1003

Add Active and Related Files to Project, 756

Add Active File to Project, 756

Add Altova Resource to Project, 755

Add External Folder / Web Folder to Project, 756

Add Files to Project, 755

Add name, 433

Add Project Folder to Project, 756

Add URL to Project, 755

Adding schema, 714

Additional editing procedures, 415

Additional Validation, 438

ADO,

as data connection interface, 492

setting up a connection, 498

ADO.NET,

setting up a connection, 503

Alias,

see Global Resources, 416

Aligning table cell content,

in SPSs, 798

Alternative processing, 435

Altova extensions,

chart functions (see chart functions), 1069

Altova Global Resources,

see under Global Resources, 416

Altova website, 852

Altova XML Parser,

about, 1172

AltovaRowStatus,

in DB-based SPS, 594

AltovaXML,

and FOP, 665

Ambiguity,

of content model, 128

API,

documentation, 877

overview, 878

Append,

column to table in SPS, 795

row to table in SPS, 795

Appendices, 1059

Application,

ActiveDocument, 899

Application, 899

Documents, 899

Parent, 901

Quit, 902

ASP.NET application, 479

ASPX web application, 479

Assign predefined formats,

in Quick Start tutorial, 80

Attributes entry helper,

in Authentic View, 619

Authentic Browser, 22

Authentic Desktop, 22

Authentic menu, 799

dynamic table editing, 615

markup display, 615

Index

© 2017-2023 Altova GmbH

1178

Authentic node properties, 433

Authentic Scripting, 650, 652

macros in, 653

Authentic toolbar, 800

Authentic View, 632

and SPS, 108

and standard industry schemas, 108

and Working XML File, 35

context menus, 623

description of, 35

document creation process, 108

document display, 617

editing data in an XML DB, 805

entry helpers in, 619

formating text in, 615

in Altova products, 22

main window in, 617

markup display in, 615, 617

overview of GUI, 614

paste as XML/Text, 623

save edits, 733

SPS Tables, 631

synchronizing with new version of StyleVision, 110

tables (SPS and XML), 631

toolbar buttons for, 706

toolbar icons, 615

usage of important features, 626

usage of XML tables, 632

XML table icons, 636

XML tables, 632

Authentic XML, 613

AuthenticRange,

AppendRow, 918

Application, 919

CanPerformAction, 919

CanPerformActionWith, 920

Close, 920

CollapsToBegin, 920

CollapsToEnd, 921

Copy, 921

Cut, 921

Delete, 922

DeleteRow, 922

DuplicateRow, 922

ExpandTo, 924

FirstTextPosition, 924

FirstXMLData, 925

FirstXMLDataOffset, 926

GetElementAttributeNames, 927

GetElementAttributeValue, 927

GetElementHierarchy, 928

GetEntityNames, 928

Goto, 929

GotoNext, 929

GotoNextCursorPosition, 930

GotoPrevious, 930

GotoPreviousCursorPosition, 931

HasElementAttribute, 931

InsertEntity, 932

InsertRow, 932

IsCopyEnabled, 933

IsCutEnabled, 933

IsDeleteEnabled, 933

IsEmpty, 934

IsEqual, 934

IsFirstRow, 934

IsInDynamicTable, 935

IsLastRow, 935

IsPasteEnabled, 935

IsTextStateApplied, 936

LastTextPosition, 936

LastXMLData, 937

LastXMLDataOffset, 937

MoveBegin, 939

MoveEnd, 939

MoveRowDown, 940

MoveRowUp, 939

Parent, 940

Paste, 940

PerformAction, 941

Select, 941

SelectNext, 942

SelectPrevious, 943

SetElementAttributeValue, 944

SetFromRange, 945

Text, 945

AuthenticView, 960

Application, 952

AsXMLString, 952

DocumentBegin, 954

DocumentEnd, 954

Event, 955

Goto, 956

IsRedoEnabled, 957

IsUndoEnabled, 957

MarkupVisibility, 958

© 2017-2023 Altova GmbH

Index 1179

AuthenticView, 960

OnBeforeCopy, 947

OnBeforeCut, 947

OnBeforeDelete, 947

OnBeforeDrop, 948

OnBeforePaste, 948

OnMouseEvent, 949

OnSelectionChanged, 950

Parent, 958

Print, 958

Redo, 959

Selection, 959

Undo, 960

WholeDocument, 961

XMLDataRoot, 961

Auto Hide,

feature of Design Entry Helpers, 39

Auto-add Date Picker, 804

Auto-Calculations, 270

and conditions, 285

and output escaping, 352

based on result of other Auto-Calculations, 275

command for inserting in design, 767

creating, editing, formatting, 270

example files, 276

examples, 292

formatting of date results, 463

hiding, 272

how to use, 270

in Quick Start tutorial, 86

Java and :NET functions in (Enterprise edition only), 270

moving, 270

symbol in Design View, 681

updating node with value of, 767

updating nodes in XML document with value of, 272, 275

Auto-completion in DB Queries, 607

Automated processing, 661

Auto-numbering, 334

Azure SQL, 542

B
Background Information, 1172

Barcode, 769

Barcodes, 183

Base year,

in input formatting, 354

Batch files,

and scheduled tasks, 669

Blueprints for layout, 187

Bookmarks, 182, 339

command for inserting in design, 775

creating and editing, 339

deleting, 339

enclosing with, 790

Bookmarks (anchors),

symbol in Design View, 681

Bookmarks in DB Queries, 607

Borders,

of SPS tables, 797

Breaks, 407

Browser pane,

in Database Query window, 603

Bullets and Numbering, 163, 165, 773, 811

enclosing with, 789

Buttons, 180

C
C#,

integration of StyleVision, 1010

CALS/HTML tables, 158, 798

Carriage return key,

see Enter key, 649

Catalog customization, 120

Catalog files, 118

Catalog mechanism overview, 118

Catalogs and envirnment variables, 122

Catalogs in RaptorXML, 119

CDATA sections, 125

inserting in Authentic View, 626

Cell (of table),

split horizontally, 796

split vertically, 796

Cells,

joining in SPS tables, 796

Change To command, 197

Changing view,

to Authentic View, 615

Character references,

and output escaping, 352

Check boxes, 175

Index

© 2017-2023 Altova GmbH

1180

Class attributes,

in Quick Start tutorial, 80

Close (SPS) command, 720

Close Project, 754

Column,

append to SPS table, 795

delete from table in SPS, 796

insert in SPS table, 795

Columns,

forcing breaks, 785

inserting, 785

Columns (of tables),

hiding in HTML output, 157

Columns for print output, 398

COM-API,

documentation, 877

Combo box,

in Quick Start tutorial, 90

Combo boxes, 177

Command line, 661

and parameters, 302

and scheduled tasks, 669

Command line utility, 25

Command reference, 1024

Commands,

customizing, 835

Commenting out content, 781, 792

Comments in DB Queries, 607

Companion software,

for download, 852

Complex global template, 244

Component download center,

at Altova web site, 852

Composite styles, 378

for Authentic View, 381

Condition,

command for inserting in design, 779

Conditional Presence, 286

Conditional templates, 779

see under: Conditions, 280

symbol in Design View, 681

Conditions,

and Auto-Calculations, 285

editing, 283

enclosing with, 790

for different outputs, 284

in Quick Start tutorial, 90

output-based, 284

setting up, 280

Configurations,

of a global resource, 416, 819

Configurations in global resources, 431

Consecutive markup, 33

Content editing procedures, 124

Content model,

effect of ambiguity on design, 128

Contents,

command for inserting in design, 763

Contents placeholder,

in Quick Start tutorial, 68

inserting node as contents, 125

Context menus,

in Authentic View, 623

Context node,

in XPath dialog, 685, 697

Copy command, 745

Copyright information, 1174

CoreCatalog.xml, 119

Cover pages, 395

Creating new SPS document,

in Quick Start tutorial, 64

Criteria,

in DB Filters, 589

Cross references, 338

CSS files,

managing in Design Overview sidebar, 42

CSS styles,

in Modular SPSs, 234

in Quick Start tutorial, 80

see also Styles, 54

CSS stylesheets,

also see Styles, 365

external stylesheets, 365

import precedence of external, 365

media applied to, 365

Custom buttons for Authentic toolbar, 800

Custom dictionaries,

for SPS spell-checks, 815

CustomCatalog.xml, 119

Customize dialog,

for customizing StyleVision, 760

Customizing StyleVision, 835

Cut command, 745

© 2017-2023 Altova GmbH

Index 1181

D
Database,

toolbar buttons for editing, 712

Database (Enterprise and Professional editions),

see under DB, 17

Database connection,

reusing from Global Resources, 520

setting up, 492

setup examples, 521

starting the wizard, 493

Database drivers,

overview, 495

Database Query,

Browser pane in DB Query window, 603

Connecting to DB for query, 600

creating the query, 609

Messages pane, 610

Results of, 610

Database Query window, 599

toggling view on and off, 809

Databases,

and global resources, 430

see also DB, 638

see under DB, 488

Data-entry devices, 174

menu commands for inserting, 766

symbol in Design View, 681

Datatypes,

in DB Filters, 589

Date,

formatting of, 354

Date Picker,

adding by default to date nodes, 804

and XSD datatypes, 462

command for inserting in design, 768

description of use, 462

inserting in SPS, 462

lexical format of date entries, 462

using in Authentic View, 462, 645

Dates,

and Date Picker, 768

and the Date Picker, 462, 804

changing manually, 646

examples of data manipulation with XPath 2.0, 461

formatting of, 463

how to use in SPS, 461

DB, 586, 638, 639

creating queries, 639

editing in Authentic View, 638, 643

filtering display in Authentic View, 639

generated XML data files, 490

generated XML Schema file, 490

generating XML files and HTML/PDF output, 598

navigating tables in Authentic View, 639

parameters in DB queries, 639

queries in Authentic View, 638

records to display in Authentic View, 433

schema file for, 586

selecting schema for SPS, 575

selecting schema for SPS (non-XML DBs), 575

selecting schema for SPS (XML DBs), 582

selecting working XML data for SPS, 575

selecting working XML data for SPS (non-XML DBs), 575

selecting working XML data for SPS (XML DBs), 582

work mechanism in StyleVision, 490

working with in StyleVision, 488

XML data file, 586

DB controls, 804

auto-insertion, 594

command for inserting, 766

DB Filters,

clearing, 810

creating and modifying, 589

datatypes in, 589

editing, 810

filtering data for XML file, 589

DB Parameter Defaults, 589

DB Parameters,

creating and editing, 750

usage, 589

DB Query button,

inserting in SPS, 594

DB schemas (Enterprise and Professional editions), 208

DB table navigation controls, 804

Decimals,

formatting of, 354

Default user dictionary,

for SPS spell-checks, 815

Delete,

column from table in SPS, 796

row from table in SPS, 796

table in SPS, 794

Index

© 2017-2023 Altova GmbH

1182

Delete command, 745

Deleting,

a DB Filter, 589

Design elements, 708

Design Entry Helper windows,

docking, 39

floating, 39

Design Entry Helpers,

Auto Hide, 39

description of, 39

Hide, 39

switching display on and off, 761

Design Filters,

switching on and off, 762

Design Fragment,

insert, 784

Design Fragments, 255

Design Overview,

sidebar window, 42

Design structure, 200

Design Tree,

and Modular SPSs, 234

see also Design Entry Helpers, 39

sidebar window, 48

Design View,

and JavaScript Editor, 33

description of, 33

display of markup, 33

symbols in SPS design, 681

Dictionaries,

for SPS spell-checks, 815

Disabled command, 781, 792

disable-output-escaping, 352

Distribution,

of Altova's software products, 1174

Docking,

Design Entry Helper windows, 39

Document,

Application, 963

Close, 964

FullName, 964

GetPathName, 964

Name, 965

Path, 966

Save, 966

SaveAs, 966

Saved, 967

SetPathName, 973

Document element,

definition of, 26

Document elements (see Root elements), 202

Document node,

definition of, 26

Document properties, 268

Document styles, 268

Document views,

in GUI, 32

Documentation,

overview of, 29

Document-level,

examples of integration of XMLSpy, 1010

Documents,

Count, 975

Item, 975

opening and closing, 32

DPI, 738

and pixel-defined lengths, 409

and print output, 409

DTD,

declaring unparsed entities, 440

DTDs,

as SPS source, 203

DTDs and catalogs, 118

Dynamic (SPS) tables in Authentic View,

usage of, 631

Dynamic content,

in Quick Start tutorial, 68

Dynamic lists, 163, 165, 773

Dynamic table,

toolbar buttons for editing, 705

Dynamic tables, 143

and global templates, 146

difference from appended/inserted rows, 146

editing, 615

editing in Authentic View, 807

headers and footers in, 146

nested dynamic tables, 146

see also SPS tables, 146

see also Tables, 153

E
Eclipse platform,

and StyleVision, 673

© 2017-2023 Altova GmbH

Index 1183

Eclipse platform,

and StyleVision Integration Package, 674

StyleVision entry points in, 679

StyleVision Perspective in, 676

Edit menu, 745

Edit Parameters dialog, 750

Edit Template Match command, 137

Edit XPath Expression dialog,

see XPath dialog, 685

Editable variables, 309

Element templates,

user-defined, 140

Elements,

adding in Authentic View and SPS, 128

user-defined, 140

Elements entry helper,

in Authentic View, 619

Embedded images, 738

Enclose With menu, 787

Encoding,

for output files, 839

Encoding command, 738

Encoding of output documents, 738

End User License Agreement, 1174, 1176

Enter key,

effects of using, 649

Entities,

defining in Authentic View, 626, 646, 706, 806

inserting in Authentic View, 626

unparsed, 440

using as URI holders, 440

Entities entry helper,

in Authentic View, 619

Entity references,

and output escaping, 352

Entry helpers in Design View,

switching display on and off, 761

Enumerations,

in StyleVisionControl, 1057

SPYAuthenticActions, 998

SPYAuthenticDocumentPosition, 998

SPYAuthenticElementKind, 998

SPYAuthenticMarkupVisibility, 999

SPYMouseEvent, 999

SPYXMLDataKind, 1001

Environment variables used in catalogs, 119

Environnment variables, 122

Evaluation key,

for your Altova software, 848

Evaluation period,

of Altova's software products, 1174

Event, 947, 948, 949, 950

Event handlers,

assigning functions to, 469

Excel table content,

copy-pasting into design, 132

Exit command, 744

Expressions,

in DB Filter criteria, 589

Extension functions for XSLT and XQuery, 1147

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 1157

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 1148

Extension Functions in MSXSL scripts, 1163

F
FAQs on StyleVision, 852

Features,

of StyleVision, 18

File DSN,

setting up, 510

File menu, 714

command Exit, 744

File | Close, 720

File | Encoding, 738

File | New, 714

File | Open, 720

File | Print, 743

File | Print Preview, 743

File | Save As, 730

File | Save Authentic XML Data, 733

File | Save Design, 725

File | Save Generated Files, 734

File modification alerts,

in Modular SPSs, 234

Files,

open recently used, 744

Filters,

for viewing templates selectively, 711

Filters (for DB),

clearing, 810

editing, 810

Index

© 2017-2023 Altova GmbH

1184

Filters for design templates,

switching on and off, 762

Filters on node-templates, 252

Find,

using regular expressions, 745

Find & Replace sidebar, 61

Find command, 745

Find in Design View, 61

Find Next command, 745

Firebird,

Connecting through JDBC, 521

Connecting through ODBC, 523

Floating,

Design Entry Helper Windows, 39

FO processor (Enterprise edition),

setting up, 25

FO transformations, 665

Footers,

adding in table, 795

in tables, 153

Footers and headers,

containing subtotals, 405

in paged media output, 403, 405

Foreign keys,

disable in SQLite, 518

Form controls,

menu commands for inserting, 766

Format strings,

defining for Input Formatting, 811

Formatting,

also see Presentation, 349

for tables, 153

lists, 704

nodes on insertion, 127

of numeric fields, 354

overview of procedures, 349

predefined HTML formats, 704

text alignment, 704

text properties, 704

toolbar buttons for, 704

Formatting numbers,

in Auto-Numbering, 334

Form-based designs, 187, 714

Functions,

in XPath, defined by user, 446

G
General usage procedure, 102

Generated files, 111

Global Resources, 416

changing configurations, 431

defining, 416

defining database-type, 425

defining file-type, 419

defining folder-type, 424

dialog, 818

selecting configuration via toolbar, 712

toolbar, 712

using, 427, 430, 431

Global Resources XML File, 416

Global styles,

see under Styles, 369

Global templates, 244

effect on rest-of-contents, 130

in Quick Start tutorial, 97

Global types,

in templates, 244

Graphics,

overview of use in SPS, 168

see also under Images, 168

Graphics formats,

in Authentic View, 648

Grouping, 288

group-by example (Persons.sps), 290

group-by example (Scores.sps), 292

GUI,

description of, 31

document views in, 32

Main Window of, 32

multiple documents in, 32

H
Headers,

adding in table, 795

in tables, 153

Headers and footers,

containing subtotals, 405

© 2017-2023 Altova GmbH

Index 1185

Headers and footers,

in paged media output, 403, 405

Help menu, 848

Hide,

feature of Design Entry Helpers, 39

Hide markup, 33, 615, 617

Horizontal line,

command for inserting in design, 772

in Quick Start tutorial, 75

HTML document properties, 390

HTML import, 472

creating a new SPS, 472

generating files from SPS, 478

of HTML lists, 476

of HTML tables, 476

schema structure, 474

SPS design, 474

HTML output, 111

and image support, 170

HTML page content,

copy-pasting into design, 132

HTML tables, 158, 798

HTML to XML conversion, 472

Hyperlink,

command for inserting in design, 776

Hyperlinks, 182, 339

and unparsed entities, 341

creating and editing, 341

enclosing with, 790

linking to bookmarks, 341

linking to external resources, 341

locating via hyperlinks, 440

removing and deleting, 341

symbol in Design View, 681

I
IBM DB2,

connecting through JDBC, 525

connecting through ODBC, 527

IBM DB2 for i,

connecting through JDBC, 533

connecting through ODBC, 534

IBM Informix,

connecting through JDBC, 536

IE 9,

see under Internet Explorer compatibility, 106

Image,

command for inserting in design, 770

Image embedding, 738

Image formats,

in Authentic View, 648

Images,

accessing for output rendering, 168

and unparsed entity URIs, 168

example files, 173

in Quick Start tutorial, 75

locating via unparsed entities, 440

specifying URIs for, 168

supported types, 170

symbol in Design View, 681

Import of XSLT templates,

into SPS, 259

Initial Document Section, 395

Input fields, 175

Input formatting,

defining format strings for, 811

of dates, 463

Insert,

column in SPS table, 795

row in SPS table, 795

Insert menu, 763

Bullets and Numbering, 773

Insert | Auto-Calculation, 767

Insert | Bookmarks, 775

Insert | Condition, 779

Insert | Contents, 763

Insert | Date Picker, 768

Insert | Design Fragment, 784

Insert | Disabled, 781

Insert | Horizontal Line, 772

Insert | Hyperlink, 776

Insert | Image, 770

Insert | Page, 785

Insert | Paragraph, 769

Insert | Rest of contents, 764

Insert | Special Paragraph, 769

Inserting design elements via the toolbar, 708

Integer,

formatting of, 354

Integrating,

StyleVision in applications, 1002

Integration Package for Eclipse,

installing, 674

Index

© 2017-2023 Altova GmbH

1186

Interface,

see GUI, 31

Internet Explorer compatibility, 106

Internet usage,

in Altova products, 1173

J
Java, 1014

Java and .NET functions (Enterprise edition only),

in Auto-Calculations, 270

Java extension functions,

constructors, 1153

datatype conversions, Java to Xpath/XQuery, 1156

datatype conversions, XPath/XQuery to Java, 1155

for XSLT and XQuery, 1148

in XPath expressions, 685, 697

instance methods, instance fields, 1155

overview, 1148

static methods, static fields, 1154

support for, in Authentic View, 685, 697

user-defined class files, 1150

user-defined JAR files, 1152

JavaScript,

see under Scripts, 467

JavaScript Editor, 467, 468

in Design View, 33

JDBC,

as data connection interface, 492

connect to Teradata, 568

setting up a connection (Windows), 513

Joining cells,

in SPS tables, 796

JRE,

for StyleVision Integration Package for Eclipse, 674

JScript,

scripting with StyleVision, 854

K
Keeps, 407

Keyboard shortcuts,

customizing for commands, 835

Key-codes,

for your Altova software, 848

L
Layout,

of views in the GUI, 39

Layout Box, 784

Layout Boxes, 190

Layout Container, 784

Layout Containers, 187

Layout containers and elements, 708

Layout Modules,

steps for creating, 187

Legal information, 1174

License, 1176

information about, 1174

License metering,

in Altova products, 1175

Licenses,

for your Altova software, 848

Line,

in Layout Containers, 784

Links,

following in Authentic View, 626

see under Hyperlinks, 182, 339

List properties, 811

Lists, 163

enclosing with, 789

imported from HTML document, 476

in Quick Start tutorial, 90

Lists (static and dynamic), 773

Local styles,

see under Styles, 371

Local template, 244

M
Macros,

developing, 854, 859

Main schema, 244

Main schema (Enterprise Edition only), 44

Main template, 244

definition of, 26

MariaDB,

© 2017-2023 Altova GmbH

Index 1187

MariaDB,

connect through ODBC, 538

connecting natively, 519

Markup,

in Authentic View, 615, 617, 806

Markup tags in Design View, 33

Memory requirements, 1172

Menu,

customizing, 835

Menu bar,

moving, 31

Messages sidebar, 60

Metadata of output HTML document, 390

Microsoft Access,

connecting through ADO, 498, 540

Microsoft Azure SQL, 542

Microsoft Office 2007 (Enterprise Edition only), 18, 36

Microsoft SQL Server,

connecting through ADO, 543

connecting through ODBC, 545

Mixed markup, 433

MobileTogether design,

export to, 733

Modular SPS,

activating and de-activating, 234

adding the SPS module, 234

and CSS styles, 231, 234

and file modification alerts, 234

and module objects, 231

and namespace declarations, 231

and schema sources, 231, 234

and Scripts, 231

and Template XML Files, 231

and Working XML Files, 231

creating, 234

effect of order on precedence, 234

example project, 238

overview, 230

the SPS module to add, 234

working with, 234

Modules,

managing in Design Overview sidebar, 42

MS Word document content,

copy-pasting into design, 132

msxsl:script, 1163

Multiline input fields, 175

Multiple document-outputs, 785

Multiple languages examples, 346

Multiple output-documents, 261

and output previews, 265

linking between, 263

location of fiiles, 265

MySQL,

connecting natively, 519

connecting through ODBC, 551

N
Named templates, 244

Namespaces,

adding to the SPS, 44, 103, 111, 202

in the SPS, 44

overview of, 48

Native connections, 519

Network Proxy, 839

New command, 714

New document templates, 261

and design structure, 263

inserting, 262

URLs of, 263

New from XSLT, 442

New Project, 754

New releases of StyleVision,

synchronizing with StyleVision, 110

Node,

changing what it is created as, 197

Node-templates,

and chaining to child templates, 252

and global templates, 252

and XPath filters, 252

operations on, 252

User-Defined, 137

Numbering nodes automatically, 334

Numbers,

formatting of, 354

Numeric fields,

formatting of, 354

O
Object Locator,

in Database Query window, 603

Index

© 2017-2023 Altova GmbH

1188

ODBC,

as data connection interface, 492

connect to MariaDB, 538

connect to Teradata, 570

setting up a connection, 510

ODBC Drivers,

checking availability of, 510

Office Open XML (Enterprise Edition only), 18, 36

OLE DB,

as data connection interface, 492

Online Help, 839, 848

OOXML (Enterprise Edition only), 18, 36

Open,

recently used files, 744

Open (SPS) command, 720

Open Project, 754

OpenJDK,

as Java Virtual Machine, 513

Oracle database,

connecting through JDBC, 553

connecting through ODBC, 555

Ordering Altova software, 848

OS,

for Altova products, 1172

Otherwise condition branch, 280

Output encoding, 738

Output escaping, 352

Output files,

from DB-based <%SV-PS%>, 598

generating, 111

Output previews, 762

Output Views,

description of, 36

Output-based conditions, 284

Overview,

of XMLSpy API, 878

P
Page, 398

commands for design, 785

numbering in PDF output, 398

setting margins of for PDF output, 398

setting size of for PDF output, 398

Page breaks, 407, 785

Page numbers (Enterprise Edition), 785

Page properties in PDF, 398

Page total (Enterprise Edition), 785

Paged media,

and pixel-defined lengths, 409

designing for, 392

headers and footers, 403

margins, 398

page definitions, 398

page size, 398

pagination, 398

properties, 392

Paragraph,

command for inserting in design, 769

enclosing with, 788

Parameter defaults,

in DB Filters, 589

Parameters, 302

and Authentic View, 302

and command line, 302

creating and editing, 750

for design fragments, 304

for schema sources, 306

general description, 302

in DB Filters, 589

in DB queries, 639

in SPS, 302

locating nodes in in multiple documents with, 306

managing in Design Overview sidebar, 42

overview of user-defined parameters, 48

Parent, 965

Parser,

built into Altova products, 1172

Paste,

as Text, 626

as XML, 626

Paste As,

Text, 623

XML, 623

Paste command, 745

PDF,

defining page properties, 398

PDF Help, 839, 848

PDF output,

see Paged Media, 403

PDF output (Enterprise edition), 111

and image supportt, 170

Pixel-defined lengths,

and paged media, 409

© 2017-2023 Altova GmbH

Index 1189

Pixels,

and print media lengths, 738

and screen resolution, 738

Platforms,

for Altova products, 1172

PostgreSQL,

connecting natively, 519

connecting through ODBC, 559

Precedence,

of styles, 51

Predefined format strings,

for input formatting, 811

Predefined formats,

command for inserting in design, 769

on inserting a node, 127

symbol in Design View, 681

Presentation,

also see Formats, Formatting, 349

overview of procedures, 349

Print command, 743

Print output,

see Paged media, 392

Print Preview command, 743

Problems with preview, 25

Processors,

for download, 852

Product features,

listing of, 18

Progress OpenEdge database,

connecting through JDBC, 562

connecting through ODBC, 563

Project menu, 753

Add Active and Related Files to Project command, 756

Add Active File to Project command, 756

Add Altova Resource to Project command, 755

Add External Folder / Web Folder to Project command, 756

Add Files to Project command, 755

Add Project Folder to Project command, 756

Add URL to Project command, 755

Close command, 754

New command, 754

Open command, 754

Reload command, 754

Save command, 754

Project options, 839

Project sidebar, 59

Projects,

and drag-and-drop, 753

detailed description of, 113

using, 113

Properties,

and property groups, 55

defining, 55

for nodes in Authentic View, 433

of SPS tables, 705, 797

see also Design Entry Helpers, 39

sidebar window, 55

Properties Entry Helper,

Event group, 469

Properties menu, 811

Bullets and Numbering, 811

Properties of output documents, 268

Proxy settings, 839

PXF files, 482

creating, 482

deploying, 486

editing, 485

saving as, 730

Q
Queries,

for DB display in Authentic View, 639

Query,

see under Database Query, 599

Query button,

inserting in SPS, 594

Query Database,

see under Database Query, 599

Query Database command, 599

Query pane,

in Database Query window, 607

Quick Start tutorial,

Auto-Calculations, 86

class attributes, 80

combo boxes, 90

conditions, 90

contents placeholder, 68

creating new SPS document, 64

CSS styles, 80

dynamic content, 68

generating XSLT stylesheets, 101

global templates, 97

horizontal lines, 75

Index

© 2017-2023 Altova GmbH

1190

Quick Start tutorial,

images, 75

introduction, 63

lists, 90

predefined formats, 80

required files, 63

rest-of-contents, 97

setting up new SPS document, 64

static content, 75

static text, 75

testing Authentic View (Enterprise and Professional
editions), 101

R
Radio buttons, 180

RaptorXML, 661

and FOP, 665

Recently used files, 744

Records displayed in Authentic View,

setting, 594

Redo command, 745

Regions in DB Queries, 607

Registering your Altova software, 848

Regular expressions,

find and replace using, 745

Reload Project, 754

Replace,

using regular expressions, 745

Replace command (Enterprise and Professional
editions), 745

Replace in Design View, 61

Rest-of-contents, 130

and global templates, 244

command for inserting in design, 764

in Quick Start tutorial, 97

Restore toolbars and windows, 839

Return key,

see Enter key, 649

Rich Edit, 383

RichEdit,

commands in Authentic View, 807

insert, 764

RichEdit toolbar, 708

Root elements, 44

Root elements (aka document elements),

and schema sources, 202

selecting for schema, 202

RootCatalog.xml, 119

Row,

append to SPS table, 795

delete from table in SPS, 796

insert in SPS table, 795

Rows (of tables),

expanding/collapsing in HTML output, 157

RTF output,

see Paged Media, 403

RTF output (Enterprise and Professional editions), 111

RTF output (Enterprise edition),

and image support, 170

Running totals,

in headers and footers, 405

S
Save,

Working XML File, 733

Save Authentic XML Data command, 733

Save Design command, 725

Save Generated Files command, 734

Save Project, 754

Scheduled task,

creating a StyleVisionBatch command as, 669

StyleVisionBatch batch files in, 669

Schema for DB-based SPSs, 575, 582

Schema Manager,

CLI Help command, 220, 829

CLI Info command, 221, 830

CLI Initialize command, 221, 830

CLI Install command, 222, 831

CLI List command, 222, 831

CLI overview, 220, 829

CLI Reset command, 223, 832

CLI Uninstall command, 224, 833

CLI Update command, 225, 834

CLI Upgrade command, 225, 834

how to run, 214, 823

installing a schema, 218, 827

listing schemas by status in, 216, 825

overview of, 211, 820

patching a schema, 218, 827

resetting, 219, 828

© 2017-2023 Altova GmbH

Index 1191

Schema Manager,

status of schemas in, 216, 825

uninstalling a achema, 219, 828

upgrading a schema, 218, 827

Schema sources, 103, 714

and root elements (document elements), 202

changing sources, 306

managing in Design Overview sidebar, 42

multiple in SPS (Enterprise edition), 202

multiple sources and locating nodes, 306

multiple sources and XPath, 306

overview of, 48

selecting for SPS, 202

sidebar window, 44

Schema Sources window,

see also Design Entry Helpers, 39

Schema structure,

and SPS design, 128

Schema tree options, 839

Schemas,

as SPS source, 203

from DB for SPS, 208

looking up via catalogs, 120

user-defined, 209

Schemas and catalogs, 118

Screen resolution,

and pixel-defined lenghs, 409

Scripting,

in Authentic View, 650, 652, 653

Scripting Editor, 652

overview, 854, 856

Scripts,

and JavaScript functions, 467

defining JavaScript functions, 468

in the Design Tree, 467

JavaScript functions as event handlers, 469

overview of, 48

using in an SPS, 467

Scripts in XSLT/XQuery,

see under Extension functions, 1147

Scroll buttons,

in Main Window, 32

Sections,

and page layout, 393

default properties for new sections, 395

deleting, 393

in the SPS design, 393

Initial Document Section, 395

inserting, 785

Select All command, 745

Select Tables dialog,

for DB-based SPSs, 575, 582

Setting up new SPS document,

in Quick Start tutorial, 64

Setting up StyleVision, 25

Shortcuts,

customizing for keyboard, 835

Show large markup, 615, 617

Show markup, 33

Show mixed markup, 615, 617

Show small arkup, 617

Show small markup, 615

Simple global template, 244

Software product license, 1176

Sorting, 296

example files, 298

of groups and within groups, 288, 290, 292

Sorting mechanism, 296

Sort-keys, 296

Sort-keys, 296

Source files for SPS, 103

Special paragraph,

command for inserting in design, 769

enclosing with, 788

Spell-checker,

in StyleVision, 814

Spell-checker options,

for SPSs, 815

Split Preview, 36

Split table cell,

horizontally, 796

vertically, 796

SPS,

and Authentic View (Enterprise and Professional editions),
23

and DBs, 488

and StyleVision, 23

and XSLT stylesheets, 23

closing, 720

general description of, 23

opening, 720

reloading, 720

SPS and Authentic View, 108

SPS design overview, 104

SPS file structure, 200

SPS tables,

Index

© 2017-2023 Altova GmbH

1192

SPS tables,

editing dynamic tables, 615

see also Dynamic tables, 143

see aslo Static tables, 143

SPS tables in Authentic View,

usage of, 631

SQL Azure, 542

SQL Editor,

creating query in, 609

description of, 607

in Database Query window, 607

SQL Server,

connecting through ADO, 498

connecting through ADO.NET, 503

connecting via JDBC, 513

SQLite,

connecting natively, 519

disable foreign keys, 518

setting up a connection (Windows), 518

Static (SPS) tables in Authentic View,

usage of, 631

Static content,

in Quick Start tutorial, 75

Static lists, 163, 773, 789

Static table,

inserting, 794

inserting in SPS, 705

toolbar buttons for editing, 705

Static tables, 143

see also SPS tables, 145

see also Tables, 153

Static text,

and output escaping, 352

in Quick Start tutorial, 75

Status bar, 760

Structure of SPS design, 200

Style Repository,

and external CSS stylesheets, 365

and global styles, 369

see also Design Entry Helpers, 39

sidebar window, 51

Styles,

and property groups, 54

assigning CSS stylesheets to SPS, 365

cascading order, 364

combining several, 378

CSS rules combined, 378

defining, 54

defining global styles in SPS, 369

defining local styles, 371

from XML data, 375

media for assigned external stylesheets, 365

precedence of, 51

precedence of styles, 369

see also Design Entry Helpers, 39

sidebar window, 54

terminology of, 364

via XPath expressions, 375

working with in StyleVision, 364

Styles of output documents, 268

Stylesheets,

also see under CSS stylesheets, 365

also see under XSLT stylesheets, 365

StyleVision,

integration, 1002

product features, 18

synchronizing with Authentic, 110

user manual, 17

StyleVision in Eclipse, 673

StyleVision Integration Package, 671

StyleVision perspective in Eclipse, 676

StyleVision Plugin for Eclipse,

see Integration Package for Eclipse, 674

StyleVision Plugin for VS .NET,

installing, 671

StyleVision Power Stylesheet,

see under SPS, 17

StyleVisionBatch, 25, 661

StyleVisionCommand,

in StyleVisionControl, 1038

StyleVisionCommands,

in StyleVisionControl, 1040

StyleVisionControl, 1041

documentation of, 1002

examples of integration at document level, 1010

integration using C#, 1010

object reference, 1037

StyleVisionControlDocument, 1048

StyleVisionControlPlaceHolder, 1055

Subtotals,

in headers and footers, 405

Support for StyleVision, 852

Support options, 29

Sybase,

connecting through JDBC, 566

Symbols in Design View,

© 2017-2023 Altova GmbH

Index 1193

Symbols in Design View,

of Auto-Calculations, 681

of bookmarks (anchors), 681

of conditional templates, 681

of data-entry devices, 681

of hyperlinks, 681

of images, 681

of predefined formats, 681

of XML document content, 681

of XML document nodes, 681

System DSN,

setting up, 510

T
Table,

adding headers and footers, 795

append column to, 795

append row to, 795

cell content, 794

delete column from, 796

delete row from, 796

deleting in SPS, 794

editing in Authentic View, 807

editing properties of, 797

headers and footers, 794

insert column in, 795

insert row in, 795

inserting a static table, 794

navigating, 794

show/hide borders in StyleVision, 797

vertical alignment of cell content, 798

Table menu, 794

Table of contents,

see under TOC, 312

Tables,

Close button to hide columns, 157

conditional processing in, 150

creating, 773

creating dynamic tables, 146

creating static tables, 145

editing dynamic (SPS) tables, 615

expanding/collapsing rows, 157

formatting, 153

headers and footers in PDF, 153

hiding empty columns, 157

imported from HTML document, 476

joining cells in, 796

overview, 143

styles for alternate rows, 375

Tables (SPS),

editing of properties, 705

toolbar buttons for editing, 705

Tables in Authentic View,

icons for editing XML tables, 636

usage of, 631

using SPS (static and dynamic) tables, 631

using XML tables, 632

Tables in Design View,

enclosing with and removing templates, 151

representation of, 151

Tags,

expanding and collapsing, 751

Technical Information, 1172

Technical support for StyleVision, 852

Template,

changing the node match for, 197

enclosing with, 787

inserting, 781

Template filters, 711

Template XML File (Enterprise and Professional
editions), 103

definition of, 26

Templates,

enclosing table rows and columns with, 151

removing from around table rows and columns, 151

switching view on and off, 762

tree of, 48

Templates for nodes,

see Node-templates, 252

Temporary output document, 25

Teradata,

connect through JDBC, 568

connect through ODBC, 570

terminate, 902

Terminology,

used in StyleVision, 26

Text,

editing in Authentic View, 626

formatting in Authentic View, 626

Text output (Enterprise and Professional editions), 111

Text references, 338

Text state icon, 800

Text State Icons, 387

Index

© 2017-2023 Altova GmbH

1194

TOC,

example, hierarchical and sequential, 331

example, simple, 327

marking items for inclusion, 315

menu commands, 784

overview of usage, 312

TOC Bookmarks, 315

and levels, 319

creating, 319

enclosing with, 792

wizard for, 319

TOC items,

constructing, 325

formatting, 325

TOC Levels, 315, 316

enclosing with, 792

TOC references, 325

TOC template,

creating and editing, 322

formatting, 325

level references in, 324

reflevels in, 324

structuring, 324

TOCrefs,

see under TOC references, 325

Toolbar buttons,

adding and removing, 703

Toolbars, 702

adding/removing icons in, 702

Authentic toolbar, 706

customizing, 760

Formatting toolbar, 704

Insert Design Elements toolbar, 708

moving, 31

positioning in GUI, 702

resetting, 702

RichEdit, 708

Standard toolbar, 712

switching display on and off, 760

switching display on/off, 702

Table toolbar, 705

Tools menu, 814

Type-based templates, 244

Types as processing units,

in global templates, 244

U
Ueser-Defined Elements, 140

Ueser-Defined XML Text Blocks, 141

Undo command, 745

Unicode support,

in Altova products, 1173

unparsed-entity-uri function of XSLT, 440

Updating nodes,

with values of Auto-Calculations, 275

Updating nodes (Enterprise and Professional editions),

with an Auto-Calculation result, 270

with values of Auto-Calculations, 272

URIs,

holding in unparsed entities, 440

Usage, 102

User DSN,

setting up, 510

User info, 433

User Interface,

see GUI, 31

User manual, 839, 848

User reference, 680

User-Defined Elements, 140, 786, 793

User-defined schemas, 209

User-defined template,

enclosing with, 788

inserting, 782

User-Defined Templates, 137

User-Defined Text Blocks, 140, 786

User-defined XPath functions, 446

V
Validate XML,

in Authentic View, 804

Validator,

in Altova products, 1172

Value formatting, 354

Variable template, 251

enclosing with, 788

inserting, 783

Variables, 302, 307

© 2017-2023 Altova GmbH

Index 1195

Variables, 302, 307

assigning values via Authentic, 435

editing in Authentic View, 309

VBScript,

scripting with StyleVision, 854

Vertical alignment of table cell content,

in SPSs, 798

Vertical text,

in layout boxes, 190

in table cells, 153

View menu, 760

Views,

layout of in GUI, 39

Visual Studio,

adding the StyleVision ActiveX Controls to the toolbox,
1003

Visual Studio .Net,

and StyleVision, 670

and StyleVision differences, 672

VS .NET,

and StyleVision Integration Package, 671

W
Watermarks, 411

Window menu, 847

Windows,

support for Altova products, 1172

Word 2007 (Enterprise Edition only), 18, 36

Word 2007+ output (Enterprise edition), 111

Word document content,

copy-pasting into design, 132

WordML (Enterprise Edition only), 18, 36

Working XML File, 44, 103

and Authentic View, 35

and Output Views, 36

definition of, 26

print preview, 743

printing, 743

validating in Authentic View, 804

X
XML,

inserting in design, 141

XML data,

inserting in SPS design, 125

merging from multiple sources, 227

XML data for DB-based SPSs, 575

XML DB,

loading new data row into Authentic View, 805

loading new XML data row, 639

XML document content,

symbol in Design View, 681

XML document nodes,

symbol in Design View, 681

XML file,

with data from DB, 598

XML file for DB-based SPSs, 582

XML Parser,

about, 1172

XML Schemas and DTDs,

as SPS source, 203

XML tables (Enterprise and Professional editions), 143

XML tables in Authentic View,

icons for editing, 636

usage of, 632

XMLData,

AppendChild, 985

EraseAllChildren, 986

EraseCurrentChild, 987

GetChild, 988

GetChildKind, 989

GetCurrentChild, 989

GetFirstChild, 990

GetNextChild, 990

HasChildren, 992

HasChildrenKind, 992

InsertChild, 993

IsSameNode, 994

Kind, 994

MayHaveChildren, 994

Name, 995

Parent, 995

TextValue, 996

XMLSpy, 22

XMLSpy API,

documentation, 877

overview, 878

XMLSpyLib, 877

Application, 898

AuthenticRange, 916

AuthenticView, 946

Index

© 2017-2023 Altova GmbH

1196

XMLSpyLib, 877

Document, 961

Documents, 974

XMLData, 984

XPath,

locating nodes in multiple documents, 306

XPath 1.0,

and dates, 461

XPath 2.0,

and dates, 461

XPath dialog,

debugging expressions in, 689

description of, 685, 697

testing expressions in, 686

XPath expressions,

and styles, 375

building in Edit XPath Expression dialog, 685, 697

XPath filter,

on global templates, 244

XPath filters on node-templates, 252

XPath functions,

in XPath dialog, 685, 697

user-defined, 446

XPath operators,

in XPath dialog, 685, 697

XPath to selected node, 614

XPath version in SPS, 105

XQuery,

Extension functions, 1147

xs:date,

and the Date Picker, 462

xs:dateTime,

and the Date Picker, 462

XSLT,

Extension functions, 1147

inserting code fragment in design, 141

XSLT import, 442

XSLT stylesheet preview,

in Output Views, 36

XSLT Templates, 48

importing into SPS, 259

managing in Design Overview sidebar, 42

XSLT to SPS, 442

XSLT transformations, 665

XSLT version,

setting for SPS, 712

XSLT version in SPS, 105

XSLTelements,

inserting as code in design, 140

	Altova StyleVision 2024 Professional Edition User Manual
	Table of Contents
	Introduction
	Product Features
	Authentic View in Altova Products
	What Is an SPS?
	Setting up StyleVision
	Terminology
	About This Documentation

	User Interface
	Main Window
	Design View
	Authentic View
	Output Views

	Sidebars
	Design Overview
	Schema Tree
	Design Tree
	Style Repository
	Styles
	Properties
	Project
	Messages
	Find and Replace

	Quick Start Tutorial
	Creating and Setting Up a New SPS
	Inserting Dynamic Content (from XML Source)
	Inserting Static Content
	Formatting the Content
	Using Auto-Calculations
	Using Conditions
	Using Global Templates and Rest-of-Contents
	That's It!

	Usage Overview
	SPS and Sources
	Creating the Design
	XSLT and XPath Versions
	Internet Explorer Compatibility
	SPS and Authentic View
	Synchronizing StyleVision and Authentic
	Generated Files
	Projects in StyleVision
	Catalogs in StyleVision
	How Catalogs Work
	Catalog Structure in StyleVision
	Customizing Your Catalogs
	Variables for Windows System Locations

	SPS Content
	Inserting XML Content as Text
	Inserting Content with a Predefined Format
	Adding Elements in Authentic View
	Rest-of-Contents

	Inserting MS Word Content
	Inserting MS Excel Content
	User-Defined Templates
	User-Defined Elements, XML Text Blocks
	User-Defined Elements
	User-Defined XML Text Blocks

	Tables
	Static Tables
	Dynamic Tables
	Conditional Processing in Tables
	Tables in Design View
	Table Formatting
	Row and Column Display
	CALS/HTML Tables

	Lists
	Static Lists
	Dynamic Lists

	Graphics
	Images: URIs and Inline Data
	Image Types and Output
	Example: A Template for Images

	Form Controls
	Input Fields, Multiline Input Fields
	Check Boxes
	Combo Boxes
	Radio Buttons, Buttons

	Links
	Barcodes
	Layout Modules
	Layout Containers
	Layout Boxes
	Lines

	The Change-To Feature

	SPS Structure
	Schema Sources
	DTDs and XML Schemas
	DB Schemas
	User-Defined Schemas
	Schema Manager
	Run Schema Manager
	Status Categories
	Patch or Install a Schema
	Uninstall a Schema, Reset
	Command Line Interface (CLI)
	help
	info
	initialize
	install
	list
	reset
	uninstall
	update
	upgrade

	Merging XML Data from Multiple Sources
	Modular SPSs
	Available Module Objects
	Creating a Modular SPS
	Example: An Address Book

	Templates and Design Fragments
	Main Template
	Global Templates
	User-Defined Templates
	Variable Templates
	Node-Template Operations
	Design Fragments

	XSLT Templates
	Multiple Document Output
	Inserting a New Document Template
	New Document Templates and Design Structure
	URLs of New Document Templates
	Preview Files and Output Document Files
	Document Properties and Styles

	Advanced Features
	Auto-Calculations
	Editing and Moving Auto-Calculations
	Updating Nodes with Auto-Calculations
	Auto-Calculations Based on Updated Nodes
	Example: An Invoice

	Conditions
	Setting Up the Conditions
	Editing Conditions
	Output-Based Conditions
	Conditions and Auto-Calculations

	Conditional Presence
	Grouping
	Example: Group-By (Persons.sps)
	Example: Group-By (Scores.sps)

	Sorting
	The Sorting Mechanism
	Example: Sorting on Multiple Sort-Keys

	Parameters and Variables
	User-Declared Parameters
	Parameters for Design Fragments
	SPS Parameters for Sources
	Variables
	Editable Variables in Authentic

	Table of Contents, Referencing, Bookmarks
	Bookmarking Items for TOC Inclusion
	Structuring the Design in TOC Levels
	Creating TOC Bookmarks

	Creating the TOC Template
	Levelrefs in the TOC Template
	TOC References: Name, Scope, Hyperlink
	Formatting TOC Items

	Example: Simple TOC
	Example: Hierarchical and Sequential TOCs
	Auto-Numbering in the Document Body
	Cross-referencing
	Bookmarks and Hyperlinks
	Inserting Bookmarks
	Defining Hyperlinks

	Example: Multiple Languages

	Presentation and Output
	Predefined Formats
	Output Escaping
	Value Formatting (Formatting Numeric Datatypes)
	The Value Formatting Mechanism
	Value Formatting Syntax

	Working with CSS Styles
	External Stylesheets
	Global Styles
	Local Styles
	Setting Style Values
	Style Properties Via XPath
	Composite Styles

	Text-Styling Flexibility in Authentic
	Composite Styles
	RichEdit
	Text State Icons

	HTML Document Properties
	Designing Print Output
	Document Sections
	Initial Document Section
	Page Layout Properties
	Headers and Footers: Part 1
	Headers and Footers: Part 2

	Keeps and Breaks
	Footnotes
	Pixel Resolution
	Watermarks

	Additional Functionality
	Altova Global Resources
	Defining Global Resources
	Files
	Folders
	Databases

	Using Global Resources
	Assigning Files and Folders
	Assigning Databases
	Changing the Active Configuration

	Authentic Node Properties
	Replace Parent Node OnClick With
	Additional Validation
	Unparsed Entity URIs
	New from XSLT, XSL-FO or FO File
	User-Defined XPath Functions
	Defining an XPath Function
	Reusing Functions to Locate Nodes
	Parameters in XPath Functions
	Parameters and Sequences
	Parameters and Nodes

	Working with Dates
	Using the Date-Picker
	Formatting Dates

	Using Scripts
	Defining JavaScript Functions
	Assigning Functions as Event Handlers
	External JavaScript Files

	HTML Import
	Creating New SPS via HTML Import
	Creating the Schema and SPS Design
	Creating Tables and Lists as Elements/Attributes
	Generating Output

	ASPX Interface for Web Applications
	Example: Localhost on Windows 7

	PXF File: Container for SPS and Related Files
	Creating a PXF File
	Editing a PXF File
	Deploying a PXF File

	Databases
	DBs and StyleVision
	Connecting to a Data Source
	Start Database Connection Wizard
	Database Drivers Overview
	ADO Connection
	Connecting to an Existing Microsoft Access Database
	Setting up the SQL Server Data Link Properties
	Setting up the Microsoft Access Data Link Properties

	ADO.NET Connection
	Creating a Connection String in Visual Studio
	Sample ADO.NET Connection Strings
	ADO.NET Support Notes

	ODBC Connection
	Available ODBC Drivers

	JDBC Connection
	Configuring the CLASSPATH

	SQLite Connection
	Connect to an Existing SQLite Database
	Foreign Key Constraints

	Native Connection
	Global Resources
	Database Connection Examples
	Firebird (JDBC)
	Firebird (ODBC)
	IBM DB2 (JDBC)
	IBM DB2 (ODBC)
	IBM DB2 for i (JDBC)
	IBM DB2 for i (ODBC)
	IBM Informix (JDBC)
	MariaDB (ODBC)
	Microsoft Access (ADO)
	Microsoft Azure SQL (ODBC)
	Microsoft SQL Server (ADO)
	Microsoft SQL Server (ODBC)
	MySQL (ODBC)
	Oracle (JDBC)
	Oracle (ODBC)
	PostgreSQL (ODBC)
	Progress OpenEdge (JDBC)
	Progress OpenEdge (ODBC)
	Sybase (JDBC)
	Teradata (JDBC)
	Teradata (ODBC)

	DB Data Selection
	Non-XML Databases
	XML Databases

	The DB Schema and DB XML files
	DB Filters: Filtering DB Data
	SPS Design Features for DB
	Generating Output Files
	Query Database
	Data Sources
	Browser Pane: Viewing the DB Objects
	Query Pane: Description and Features
	Query Pane: Working with Queries
	Results and Messages

	Authentic View
	Authentic View Interface
	Overview of the GUI
	Authentic View Toolbar Icons
	Authentic View Main Window
	Authentic View Entry Helpers
	Authentic View Context Menus

	Editing in Authentic View
	Basic Editing
	Tables in Authentic View
	SPS Tables
	CALS/HTML Tables
	CALS/HTML Table Editing Icons

	Editing a DB
	Navigating a DB Table
	DB Queries
	Modifying a DB Table

	Working with Dates
	Date Picker
	Text Entry

	Defining Entities
	Images in Authentic View
	Keystrokes in Authentic View

	Authentic Scripting
	Scripting Editor
	Macros
	Macros on Design Elements
	Macros on Context Menu Items
	Custom Buttons

	Event Handlers
	Scripting Options

	Automated Processing
	Command Line Interface
	StyleVision
	StyleVision Server

	Using RaptorXML
	PDF Output

	Automation with FlowForce Server
	How to Automate Processing

	StyleVision in Visual Studio
	Installing the StyleVision Plugin
	Differences with StyleVision Standalone

	StyleVision in Eclipse
	Install the Integration Package for Eclipse
	StyleVision Perspective in Eclipse
	Other Stylevision Entry Points in Eclipse

	Menu Commands and Reference
	Design View Symbols
	Edit XPath Expression Dialog
	Evaluator
	Debugger
	Expression Builder

	Toolbars
	Format
	Table
	Authentic
	RichEdit
	Insert Design Elements
	Design Filter
	Global Resources
	Standard

	File Menu
	New
	Open, Reload, Close, Close All
	Save Design, Save All
	Save As
	Export as MobileTogether Design File
	Save Authentic XML Data, Save As
	Save Generated Files
	Deploy to FlowForce
	Web Design
	Properties
	Print Preview, Print
	Most Recently Used Files, Exit

	Edit Menu
	Undo, Redo, Select All
	Find, Find Next, Replace
	Stylesheet Parameters
	Collapse/Expand Markup

	Project Menu
	New Project, Open Project, Reload Project
	Close Project, Save Project
	Add Files / Global Resource / URL to Project
	Add Active (and Related) Files to Project
	Add Project and External Folders to Project

	View Menu
	Toolbars and Status Bar
	Design Sidebars
	Design Filter, Zoom
	Output Previews

	Insert Menu
	Contents
	Rest of Contents
	RichEdit
	Form Controls
	DB Control
	Auto-Calculation
	Date Picker
	Paragraph, Special Paragraph
	Barcode
	Image
	Horizontal Line
	Table
	Bullets and Numbering
	Bookmark
	Hyperlink
	Footnote
	Condition, Output-Based Condition
	Disabled
	Template
	User-Defined Template
	Variable Template
	Design Fragment
	Layout Container, Layout Box, Line
	Table of Contents
	New Document
	Page / Column / Document Section
	User-Defined Item

	Enclose With Menu
	Template
	User-Defined Template
	Variable Template
	Paragraph, Special Paragraph
	Bullets and Numbering
	Bookmarks and Hyperlinks
	Condition, Output-Based Condition
	Disabled
	TOC Bookmarks and TOC Levels
	New Document
	User-Defined Element

	Table Menu
	Insert Table, Delete Table
	Add Table Headers, Footers
	Append/Insert Row/Column
	Delete Row, Column
	Join Cell Left, Right, Below, Above
	Split Cell Horizontally, Vertically
	View Cell Bounds, Table Markup
	Table Properties
	Edit CALS/HTML Tables
	Vertical Alignment of Cell Content

	Authentic Menu
	Edit Authentic Scripts
	Custom Toolbar Buttons
	Check Macro References
	Auto-Add Date Picker
	Auto-Add DB Controls
	Reload Authentic View, Validate XML
	Select New Row with XML Data for Editing
	Define XML Entities
	View Markup
	RichEdit
	(Dynamic Table) Row Commands

	Database Menu
	Query Database
	Edit DB Filter, Clear DB Filter

	Properties Menu
	Edit Bullets and Numbering
	Predefined Value Formatting Strings

	Tools Menu
	Spelling
	Spelling Options
	Global Resources
	Active Configuration
	Schema Manager
	Run Schema Manager
	Status Categories
	Patch or Install a Schema
	Uninstall a Schema, Reset
	Command Line Interface (CLI)
	help
	info
	initialize
	install
	list
	reset
	uninstall
	update
	upgrade

	Customize
	Restore Toolbars and Windows
	Options

	Window Menu
	Help Menu
	Help
	Activation, Order Form, Registration, Updates
	Other Commands

	Programmers' Reference
	Scripting Editor
	Creating a Scripting Project
	Overview of the Environment
	Global Declarations
	Macros
	Forms
	Events
	JScript Programming Tips

	Built-in Commands
	alert
	confirm
	CLR.Create
	CLR.Import
	CLR.LoadAssembly
	CLR.ShowImports
	CLR.ShowLoadedAssemblies
	CLR.Static
	CreateForm
	doevents
	lastform
	prompt
	ShowForm
	watchdog

	Application API
	Overview
	Object Model
	Programming Languages
	JScript
	Start Application
	Simple Document Access
	Iteration

	C#
	Add Reference to StyleVision API
	Application Startup and Shutdown
	Opening Documents
	Events

	Java
	Example Java Project
	Application Startup and Shutdown
	Simple Document Access
	Iterations
	Event Handlers

	Interfaces
	Application
	Events
	OnShutDown

	ActiveDocument
	Application
	Documents
	Edition
	IsAPISupported
	MajorVersion
	MinorVersion
	NewDocument
	OpenDocument
	Parent
	Quit
	ServicePackVersion
	Status
	Visible

	AppOutputLine
	Application
	ChildLines
	GetCellCountInLine
	GetCellIcon
	GetCellSymbol
	GetCellText
	GetCellTextDecoration
	GetIsCellText
	GetLineCount
	GetLineSeverity
	GetLineSymbol
	GetLineText
	GetLineTextEx
	GetLineTextWithChildren
	GetLineTextWithChildrenEx
	Parent

	AppOutputLines
	Application
	Count
	Item
	Parent

	AppOutputLineSymbol
	Application
	GetSymbolHREF
	GetSymbolID
	IsSymbolHREF
	Parent

	AuthenticContextMenu
	CountItems
	DeleteItem
	GetItemText
	InsertItem
	SetItemText

	AuthenticEventContext
	EvaluateXPath
	GetEventContextType
	GetNormalizedTextValue
	GetVariableValue
	GetXMLNode
	IsAvailable
	SetVariableValue

	AuthenticRange
	AppendRow
	Application
	CanPerformAction
	CanPerformActionWith
	Clone
	CollapsToBegin
	CollapsToEnd
	Copy
	Cut
	Delete
	DeleteRow
	DuplicateRow
	EvaluateXPath
	ExpandTo
	FirstTextPosition
	FirstXMLData
	FirstXMLDataOffset
	GetElementAttributeNames
	GetElementAttributeValue
	GetElementHierarchy
	GetEntityNames
	GetVariableValue
	Goto
	GotoNext
	GotoNextCursorPosition
	GotoPrevious
	GotoPreviousCursorPosition
	HasElementAttribute
	InsertEntity
	InsertRow
	IsCopyEnabled
	IsCutEnabled
	IsDeleteEnabled
	IsEmpty
	IsEqual
	IsFirstRow
	IsInDynamicTable
	IsLastRow
	IsPasteEnabled
	IsSelected
	IsTextStateApplied
	LastTextPosition
	LastXMLData
	LastXMLDataOffset
	MoveBegin
	MoveEnd
	MoveRowDown
	MoveRowUp
	Parent
	Paste
	PerformAction
	Select
	SelectNext
	SelectPrevious
	SetElementAttributeValue
	SetFromRange
	SetVariableValue
	Text

	AuthenticView
	Events
	OnBeforeCopy
	OnBeforeCut
	OnBeforeDelete
	OnBeforeDrop
	OnBeforePaste
	OnBeforeSave
	OnLoad
	OnMouseEvent
	OnSelectionChanged
	OnToolbarButtonClicked
	OnToolbarButtonExecuted
	OnUserAddedXMLNode

	Application
	AsXMLString
	ContextMenu
	CreateXMLNode
	DisableAttributeEntryHelper
	DisableElementEntryHelper
	DisableEntityEntryHelper
	DocumentBegin
	DocumentEnd
	DoNotPerformStandardAction
	EvaluateXPath
	Event
	EventContext
	GetToolbarButtonState
	Goto
	IsRedoEnabled
	IsUndoEnabled
	MarkupVisibility
	Parent
	Print
	Redo
	Selection
	SetToolbarButtonState
	Undo
	UpdateXMLInstanceEntities
	WholeDocument
	XMLDataRoot

	Document
	Events
	OnDocumentClosed
	OnModifiedFlagChanged

	Activate
	Application
	AssignWorkingXMLFile
	Close
	FullName
	GetPathName (obsolete)
	Name
	Parameters
	Parent
	Path
	Save
	SaveAs
	Saved
	SaveGeneratedFOFile
	SaveGeneratedFOFileEx
	SaveGeneratedHTMLFile
	SaveGeneratedHTMLFileEx
	SaveGeneratedPDFFile
	SaveGeneratedPDFFileEx
	SaveGeneratedRTFFile
	SaveGeneratedRTFFileEx
	SaveGeneratedWord2007File
	SaveGeneratedWord2007FileEx
	SaveGeneratedTextFile
	SaveGeneratedTextFileEx
	SaveGeneratedXSLTFOFile
	SaveGeneratedXSLTFOFileEx
	SaveGeneratedXSLTHTMLFile
	SaveGeneratedXSLTHTMLFileEx
	SaveGeneratedXSLTRTFFile
	SaveGeneratedXSLTRTFFileEx
	SaveGeneratedXSLTWord2007File
	SaveGeneratedXSLTWord2007FileEx
	SaveGeneratedXSLTTextFile
	SaveGeneratedXSLTTextFileEx
	SchemaSources
	SetPathName (obsolete)

	Documents
	ActiveDocument
	Application
	Count
	Item
	NewDocument
	OpenDocument
	Parent

	Parameter
	Application
	Name
	Parent
	Value

	Parameters
	Application
	Count
	Item
	Parent

	SchemaSource
	Application
	IsMainSchemaSource
	Name
	Parent
	SchemaFileName
	TemplateFileName
	Type
	TypeName
	WorkingXMLFileName

	SchemaSources
	Application
	Count
	Item
	MainSchemaSource
	Parent

	XMLData
	AppendChild
	CountChildren
	CountChildrenKind
	EraseAllChildren
	EraseChild
	EraseCurrentChild
	GetChild
	GetChildAttribute
	GetChildElement
	GetChildKind
	GetCurrentChild
	GetFirstChild
	GetNamespacePrefixForURI
	GetNextChild
	GetTextValueXMLDecoded
	HasChildren
	HasChildrenKind
	InsertChild
	InsertChildAfter
	InsertChildBefore
	IsSameNode
	Kind
	MayHaveChildren
	Name
	Parent
	SetTextValueXMLEncoded
	TextValue

	Enumerations
	ENUMApplicationStatus
	ENUMAppOutputLine_Severity
	ENUMAppOutputLine_TextDecoration
	ENUMSchemaSourceType
	ENUMSchemaType
	SPYAuthenticActions
	SPYAuthenticDocumentPosition
	SPYAuthenticElementKind
	SPYAuthenticMarkupVisibility
	SPYAuthenticToolbarButtonState
	SPYMouseEvent
	SPYValidateXSDVersion
	SPYValidateErrorFormat
	SPYXMLDataKind

	ActiveX Integration
	Prerequisites
	Adding the ActiveX Controls to the Toolbox
	Integration at Application Level
	Integration at Document Level
	ActiveX Integration Examples
	C#
	Running the Sample C# Solution

	Java
	Example Java Project
	Creating the ActiveX Controls
	Loading Data in the Controls
	Basic Event Handling
	Menus
	UI Update Event Handling
	Listing the Properties of a StyleVision Document

	Command Reference
	"File" Menu
	"Edit" Menu
	"Project" Menu
	"View" Menu
	"Insert" Menu
	"Enclose with" Menu
	"Table" Menu
	"Authentic" Menu
	"Database" Menu
	"Properties" Menu
	"Tools" Menu
	"Window" Menu
	"Help" Menu

	Object Reference
	StyleVisionCommand
	Accelerator
	ID
	IsSeparator
	Label
	Name
	StatusText
	SubCommands
	ToolTip

	StyleVisionCommands
	Count
	Item

	StyleVisionControl
	Properties
	Appearance
	Application
	BorderStyle
	CommandsList
	EnableUserPrompts
	IntegrationLevel
	MainMenu
	Toolbars

	Methods
	Exec
	Open
	QueryStatus

	Events
	OnCloseEditingWindow
	OnDocumentOpened
	OnFileChangedAlert
	OnLicenseProblem
	OnOpenedOrFocused
	OnToolWindowUpdated
	OnUpdateCmdUI
	OnValidationWindowUpdated

	StyleVisionControlDocument
	Properties
	Appearance
	BorderStyle
	Document
	IsModified
	Path
	ReadOnly

	Methods
	Exec
	New
	Open
	QueryStatus
	Reload
	Save
	SaveAs

	Events
	OnActivate
	OnDocumentClosed
	OnDocumentOpened
	OnDocumentSaveAs
	OnFileChangedAlert
	OnModifiedFlagChanged
	OnSetEditorTitle

	StyleVisionControlPlaceHolder
	Properties
	Label
	PlaceholderWindowID
	Project

	Methods
	OpenProject
	CloseProject

	Events
	OnModifiedFlagChanged
	OnSetLabel

	Enumerations
	ICActiveXIntegrationLevel
	StyleVisionControlPlaceholderWindow

	Appendices
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XSLT 3.0
	XQuery 1.0
	XQuery 3.1

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: Geolocation
	XPath/XQuery Functions: Image-Related
	XPath/XQuery Functions: Numeric
	XPath/XQuery Functions: Schema
	XPath/XQuery Functions: Sequence
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous
	Barcode Functions

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Datatypes in DB-Generated XML Schemas
	ADO
	MS Access
	MS SQL Server
	MySQL
	ODBC
	Oracle
	Sybase

	Technical Data
	OS and Memory Requirements
	Altova Engines
	Unicode Support
	Internet Usage

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Altova End-User License Agreement

	Index

