
Altova StyleVision 2025 Basic Edition

User & Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2025

© 2019-2025 Altova GmbH

Altova StyleVision 2025 Basic Edition
User & Reference Manual

3Altova StyleVision 2025 Basic Edition

Table of Contents

1 Introduction 13

.. 141.1 Product Features

.. 171.2 Authentic View in Altova Products

.. 181.3 What Is an SPS?

.. 191.4 Setting up StyleVision

.. 201.5 Terminology

.. 231.6 About This Documentation

2 User Interface 25

.. 262.1 Main Window

.. 272.1.1 Design View

.. 282.1.2 Output Views

.. 312.2 Sidebars

.. 332.2.1 Design Overview

.. 362.2.2 Schema Tree

.. 382.2.3 Design Tree

.. 422.2.4 Style Repository

.. 442.2.5 Styles

.. 452.2.6 Properties

.. 492.2.7 Messages

.. 492.2.8 Find and Replace

3 Quick Start Tutorial 51

.. 523.1 Creating and Setting Up a New SPS

.. 563.2 Inserting Dynamic Content (from XML Source)

.. 633.3 Inserting Static Content

.. 683.4 Formatting the Content

.. 743.5 Using Auto-Calculations

Altova StyleVision 2025 Basic Edition4

.. 783.6 Using Conditions

.. 853.7 Using Global Templates and Rest-of-Contents

.. 893.8 That's It!

4 Usage Overview 90

.. 914.1 SPS and Sources

.. 924.2 Creating the Design

.. 934.3 XSLT and XPath Versions

.. 944.4 Internet Explorer Compatibility

.. 964.5 Generated Files

.. 974.6 Catalogs in StyleVision

.. 974.6.1 How Catalogs Work

.. 984.6.2 Catalog Structure in StyleVision

.. 994.6.3 Customizing Your Catalogs

.. 1014.6.4 Variables for Windows System Locations

5 SPS Content 103

.. 1045.1 Inserting XML Content as Text

.. 1065.1.1 Inserting Content with a Predefined Format

.. 1075.1.2 Rest-of-Contents

.. 1085.2 Inserting MS Word Content

.. 1115.3 Inserting MS Excel Content

.. 1135.4 User-Defined Templates

.. 1165.5 User-Defined Elements, XML Text Blocks

.. 1165.5.1 User-Defined Elements

.. 1175.5.2 User-Defined XML Text Blocks

.. 1195.6 Tables

.. 1215.6.1 Static Tables

.. 1225.6.2 Dynamic Tables

.. 1265.6.3 Conditional Processing in Tables

.. 1275.6.4 Tables in Design View

.. 1295.6.5 Table Formatting

.. 1335.6.6 Row and Column Display

5Altova StyleVision 2025 Basic Edition

.. 1345.6.7 CALS/HTML Tables

.. 1395.7 Lists

.. 1395.7.1 Static Lists

.. 1415.7.2 Dynamic Lists

.. 1445.8 Graphics

.. 1445.8.1 Images: URIs and Inline Data

.. 1465.8.2 Image Types and Output

.. 1485.8.3 Example: A Template for Images

.. 1495.9 Form Controls

.. 1505.9.1 Input Fields, Multiline Input Fields

.. 1505.9.2 Check Boxes

.. 1525.9.3 Combo Boxes

.. 1545.9.4 Radio Buttons, Buttons

.. 1555.10 Links

.. 1565.11 Barcodes

.. 1605.12 Layout Modules

.. 1605.12.1 Layout Containers

.. 1635.12.2 Layout Boxes

.. 1675.12.3 Lines

.. 1705.13 The Change-To Feature

6 SPS Structure 173

.. 1756.1 Schema Sources

.. 1766.1.1 DTDs and XML Schemas

.. 1816.1.2 User-Defined Schemas

.. 1836.1.3 Schema Manager

.. 1996.2 Merging XML Data from Multiple Sources

.. 2026.3 Modular SPSs

.. 2036.3.1 Available Module Objects

.. 2066.3.2 Creating a Modular SPS

.. 2106.3.3 Example: An Address Book

.. 2166.4 Templates and Design Fragments

.. 2166.4.1 Main Template

.. 2166.4.2 Global Templates

Altova StyleVision 2025 Basic Edition6

.. 2206.4.3 User-Defined Templates

.. 2236.4.4 Variable Templates

.. 2246.4.5 Node-Template Operations

.. 2266.4.6 Design Fragments

.. 2306.5 XSLT Templates

.. 2326.6 Multiple Document Output

.. 2336.6.1 Inserting a New Document Template

.. 2346.6.2 New Document Templates and Design Structure

.. 2346.6.3 URLs of New Document Templates

.. 2366.6.4 Preview Files and Output Document Files

.. 2396.6.5 Document Properties and Styles

7 Advanced Features 240

.. 2417.1 Auto-Calculations

.. 2417.1.1 Editing and Moving Auto-Calculations

.. 2437.1.2 Example: An Invoice

.. 2467.2 Conditions

.. 2467.2.1 Setting Up the Conditions

.. 2497.2.2 Editing Conditions

.. 2507.2.3 Conditions and Auto-Calculations

.. 2517.3 Grouping

.. 2537.3.1 Example: Group-By (Persons.sps)

.. 2557.3.2 Example: Group-By (Scores.sps)

.. 2597.4 Sorting

.. 2597.4.1 The Sorting Mechanism

.. 2617.4.2 Example: Sorting on Multiple Sort-Keys

.. 2647.5 Parameters and Variables

.. 2647.5.1 User-Declared Parameters

.. 2657.5.2 Parameters for Design Fragments

.. 2687.5.3 SPS Parameters for Sources

.. 2697.5.4 Variables

.. 2727.6 Table of Contents, Referencing, Bookmarks

.. 2757.6.1 Bookmarking Items for TOC Inclusion

.. 2827.6.2 Creating the TOC Template

7Altova StyleVision 2025 Basic Edition

.. 2877.6.3 Example: Simple TOC

.. 2917.6.4 Example: Hierarchical and Sequential TOCs

.. 2947.6.5 Auto-Numbering in the Document Body

.. 2987.6.6 Cross-referencing

.. 2997.6.7 Bookmarks and Hyperlinks

8 Presentation and Output 306

.. 3078.1 Predefined Formats

.. 3098.2 Output Escaping

.. 3118.3 Value Formatting (Formatting Numeric Datatypes)

.. 3118.3.1 The Value Formatting Mechanism

.. 3148.3.2 Value Formatting Syntax

.. 3208.4 Working with CSS Styles

.. 3218.4.1 External Stylesheets

.. 3248.4.2 Global Styles

.. 3268.4.3 Local Styles

.. 3288.4.4 Setting Style Values

.. 3308.4.5 Style Properties Via XPath

.. 3338.4.6 Composite Styles

.. 3368.5 HTML Document Properties

9 Additional Functionality 338

.. 3399.1 Unparsed Entity URIs

.. 3419.2 New from XSLT, XSL-FO or FO File

.. 3459.3 User-Defined XPath Functions

.. 3479.3.1 Defining an XPath Function

.. 3509.3.2 Reusing Functions to Locate Nodes

.. 3519.3.3 Parameters in XPath Functions

.. 3609.4 Working with Dates

.. 3609.4.1 Formatting Dates

.. 3639.5 Using Scripts

.. 3649.5.1 Defining JavaScript Functions

.. 3659.5.2 Assigning Functions as Event Handlers

Altova StyleVision 2025 Basic Edition8

.. 3669.5.3 External JavaScript Files

.. 3689.6 HTML Import

.. 3689.6.1 Creating New SPS via HTML Import

.. 3709.6.2 Creating the Schema and SPS Design

.. 3729.6.3 Creating Tables and Lists as Elements/Attributes

.. 3749.6.4 Generating Output

.. 3759.7 ASPX Interface for Web Applications

.. 3769.7.1 Example: Localhost on Windows 7

.. 3789.8 PXF File: Container for SPS and Related Files

.. 3789.8.1 Creating a PXF File

.. 3819.8.2 Editing a PXF File

.. 3829.8.3 Deploying a PXF File

10 Automated Processing 384

.. 38510.1 Command Line Interface

.. 38510.1.1 StyleVision

.. 38610.1.2 StyleVision Server

.. 38810.2 Using RaptorXML

.. 38810.2.1 PDF Output

.. 39010.3 Automation with FlowForce Server

.. 39210.4 How to Automate Processing

11 Menu Commands and Reference 393

.. 39411.1 Design View Symbols

.. 39811.2 Edit XPath Expression Dialog

.. 39911.2.1 Evaluator

.. 40211.2.2 Debugger

.. 41011.2.3 Expression Builder

.. 41511.3 Toolbars

.. 41711.3.1 Format

.. 41811.3.2 Table

.. 41911.3.3 Insert Design Elements

.. 42111.3.4 Design Filter

9Altova StyleVision 2025 Basic Edition

.. 42211.3.5 Standard

.. 42411.4 File Menu

.. 42411.4.1 New

.. 43011.4.2 Open, Reload, Close, Close All

.. 43511.4.3 Save Design, Save All

.. 44011.4.4 Save As

.. 44111.4.5 Export as MobileTogether Design File

.. 44111.4.6 Save Generated Files

.. 44211.4.7 Deploy to FlowForce

.. 44411.4.8 Web Design

.. 44411.4.9 Properties

.. 44511.4.10 Print Preview, Print

.. 44611.4.11 Most Recently Used Files, Exit

.. 44811.5 Edit Menu

.. 44811.5.1 Undo, Redo, Select All

.. 44811.5.2 Find, Find Next, Replace

.. 45311.5.3 Stylesheet Parameters

.. 45411.5.4 Collapse/Expand Markup

.. 45511.6 View Menu

.. 45511.6.1 Toolbars and Status Bar

.. 45611.6.2 Design Sidebars

.. 45611.6.3 Design Filter, Zoom

.. 45711.6.4 Output Previews

.. 45811.7 Insert Menu

.. 45811.7.1 Contents

.. 45911.7.2 Rest of Contents

.. 45911.7.3 Form Controls

.. 46011.7.4 Auto-Calculation

.. 46111.7.5 Paragraph, Special Paragraph

.. 46211.7.6 Image

.. 46411.7.7 Horizontal Line

.. 46511.7.8 Table

.. 46511.7.9 Bullets and Numbering

.. 46711.7.10 Bookmark

.. 46811.7.11 Hyperlink

Altova StyleVision 2025 Basic Edition10

.. 46911.7.12 Condition, Output-Based Condition

.. 47111.7.13 Disabled

.. 47111.7.14 Template

.. 47311.7.15 User-Defined Template

.. 47311.7.16 Variable Template

.. 47411.7.17 Design Fragment

.. 47411.7.18 Layout Container, Layout Box, Line

.. 47411.7.19 Table of Contents

.. 47511.7.20 New Document

.. 47511.7.21 User-Defined Item

.. 47611.8 Enclose With Menu

.. 47611.8.1 Template

.. 47711.8.2 User-Defined Template

.. 47711.8.3 Variable Template

.. 47811.8.4 Paragraph, Special Paragraph

.. 47811.8.5 Bullets and Numbering

.. 47911.8.6 Bookmarks and Hyperlinks

.. 47911.8.7 Condition, Output-Based Condition

.. 48111.8.8 Disabled

.. 48111.8.9 TOC Bookmarks and TOC Levels

.. 48111.8.10 New Document

.. 48211.8.11 User-Defined Element

.. 48311.9 Table Menu

.. 48311.9.1 Insert Table, Delete Table

.. 48411.9.2 Add Table Headers, Footers

.. 48411.9.3 Append/Insert Row/Column

.. 48511.9.4 Delete Row, Column

.. 48511.9.5 Join Cell Left, Right, Below, Above

.. 48511.9.6 Split Cell Horizontally, Vertically

.. 48611.9.7 View Cell Bounds, Table Markup

.. 48611.9.8 Table Properties

.. 48711.9.9 Edit CALS/HTML Tables

.. 48711.9.10 Vertical Alignment of Cell Content

.. 48811.10 Properties Menu

.. 48811.10.1 Edit Bullets and Numbering

11Altova StyleVision 2025 Basic Edition

.. 48811.10.2 Predefined Value Formatting Strings

.. 49111.11 Tools Menu

.. 49111.11.1 Spelling

.. 49211.11.2 Spelling Options

.. 49511.11.3 XML Schema Manager

.. 49511.11.4 Customize

.. 49911.11.5 Restore Toolbars and Windows

.. 49911.11.6 Options

.. 50711.12 Window Menu

.. 50811.13 Help Menu

.. 50811.13.1 Help

.. 50811.13.2 Activation, Order Form, Registration, Updates

.. 51111.13.3 Other Commands

12 Appendices 513

.. 51412.1 XSLT and XQuery Engine Information

.. 51412.1.1 XSLT 1.0

.. 51412.1.2 XSLT 2.0

.. 51612.1.3 XSLT 3.0

.. 51712.1.4 XQuery 1.0

.. 52012.1.5 XQuery 3.1

.. 52212.2 XSLT and XPath/XQuery Functions

.. 52312.2.1 Altova Extension Functions

.. 59912.2.2 Miscellaneous Extension Functions

.. 61712.3 Datatypes in DB-Generated XML Schemas

.. 61712.3.1 ADO

.. 61812.3.2 MS Access

.. 61912.3.3 MS SQL Server

.. 61912.3.4 MySQL

.. 62012.3.5 ODBC

.. 62112.3.6 Oracle

.. 62212.3.7 Sybase

.. 62312.4 Technical Data

.. 62312.4.1 OS and Memory Requirements

Altova StyleVision 2025 Basic Edition12

.. 62312.4.2 Altova Engines

.. 62412.4.3 Unicode Support

.. 62412.4.4 Internet Usage

.. 62512.5 License Information

.. 62512.5.1 Electronic Software Distribution

.. 62612.5.2 Software Activation and License Metering

.. 62712.5.3 Altova End-User License Agreement

.. 62712.5.4 Packaging License Files with StyleVision Installer

Index 628

© 2019-2025 Altova GmbH

 13Introduction

Altova StyleVision 2025 Basic Edition

1 Introduction

Altova StyleVision 2025 Basic Edition is an application for graphically designing and editing StyleVision Power
Stylesheets. StyleVision® runs on Windows 10, Windows 11, and Windows Server 2016 or newer. Some
functionality of StyleVision and Altova MissionKit can be integrated with applications of the Microsoft Office
suite (MS Access, MS Excel, MS Word), version 2007 or newer.

A StyleVision Power Stylesheet (SPS) can be used for the following purposes:

· To control a graphical WYSIWYG view of XML documents in Authentic View, which is an XML
document editor available in the following Altova products: Altova XMLSpy, Altova StyleVision, Altova
Authentic Desktop, and Altova Authentic Browser. It enables you to easily create electronic forms
based on XML documents.

· To generate XSLT stylesheets based on the SPS design. (XSLT 1.0, XSLT 2.0, and XSLT 3.0 are
supported.) The XSLT stylesheets can be used outside StyleVision to transform XML documents into
outputs such as HTML.

· To generate, directly from within StyleVision, HTML output from an XML document.

Last updated: 17 March 2025

https://www.altova.com/stylevision
https://www.altova.com/missionkit
https://www.altova.com/stylevision/electronic-forms.html

14 Introduction Product Features

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

1.1 Product Features

The main product features of StyleVision are listed below:

General product features
Given below is a list of the main high-level features of StyleVision.

· Enterprise and Professional editions are each available as separate 64-bit and 32-bit applications.

Sources
SPS designs can be based on XML Schemas and DTDs. A design uses other source files, such as XML and
CSS files. The following additional features concerning sources are supported:

·

· HTML documents can be converted to XML .

Interface
Given below are some general GUI features:

· Multiple SPS designs can be open simultaneously, with one being active at any given time. Each
SPS design is shown in a separate tab.

· Template filters allow you to customize the display of the design document. With this feature you
can disable the display of templates that are not currently being edited, thus increasing editing
efficiency.

· Hide Markup in Design View : Markup tags in Design View can be hidden and collapsed, thus
freeing up space in Design View.

· While designing the SPS, output views and stylesheets can be displayed by clicking the respective
tabs. This enables you to quickly preview the output and the XSLT code.

Output
Various output formats are supported depending upon the edition that has been installed. The following output-
related features are supported:

· XSLT versions 1.0, 2.0, and 3.0 are supported.
· In the Enterprise and Professional Editions, multiple output formats (HTML) are generated from a

single SPS design.
· Both XSLT files and output files can be generated and saved , either directly from within the GUI

or via StyleVision Server.
· Altova has developed a special PXF File format that enables an SPS file to be saved together with

related source and data files. This enables entire SPS projects to be transported rather than just the
SPS file.

· ASPX Interface for Web Applications : With this feature, HTML web pages can be quickly updated.
StyleVision generates, from an SPS, all the files necessary for an ASPX application. When the web
page (a .aspx file) is refreshed, the source data (including any updates) is dynamically transformed via
XSLT to the web page.

368

25

421

27

28

93

96

96 96

378

375

https://www.altova.com/stylevision/stylevision-server.html

© 2019-2025 Altova GmbH

Product Features 15Introduction

Altova StyleVision 2025 Basic Edition

SPS design features

Given below is a list of the main StyleVision features specific to designing the SPS.

· The SPS can contain static text , which you enter in the SPS, and dynamic text , which is
selected from the source document .

· Dynamic content is inserted in the design by dragging-and-dropping nodes from the schema
source . Design Elements (paragraphs, lists, images, etc) can also be inserted first, and an XML
node from the schema tree can be assigned to the Design Element afterwards.

· Dynamic content can be inserted as text, or in the form of a data-entry device (such as an input
field or combo box).

· The structure of the design is specified and controlled in a single main template . This structure
can be modified by optional templates for individual elements—known as global templates because
they can be applied globally for that element.

· Global templates can also be created for individual datatypes, thus enabling processing to be
handled also on the basis of types.

· Multiple Document Output : The output generated by the SPS can be designed to be split into
multiple documents. In the design, New Document templates are created and content placed in them.
Each New Document template generates a separate document in the output.

· User-Defined Templates : A template can be generated for a sequence of items by an XPath
expression you specify. These items may be atomic values or nodes. An XPath expression enables
the selection of nodes to be more specific, allowing conditions and filters to be used for the selection.

· User-Defined Elements : This feature is intended to enable presentation language elements (such as
HTML, XSLT, and XSL-FO) to be freely inserted at any location in the design.

· User-Defined XML Text Blocks : XML Text blocks can be freely inserted at any location in the
design, and these blocks will be created at that location in the generated XSLT stylesheet.

· Design Fragments enable the modularization and re-use of templates within an SPS, and also
across multiple SPSs (see modular SPSs), in a manner similar to the way functions are used.

· SPS modules can be added to other SPS modules, thus making objects defined in one SPS
module available to other modules. This enables re-use of module objects across multiple SPSs and
makes maintenance easier.

· XSLT Templates : XSLT files can be imported into the generated stylesheets. If a node in the XML
instance document is matched to a template in the imported XSLT file and no other template takes
precedence over the imported template, then the imported template will be used. Additionally, named
templates in the imported XSLT file can be called from within the design.

· New from XSLT : An SPS can be created from an XSLT-for-HTML or an XSLT-for-FO. Template
structure and styling in the XSLT will be created in the SPS. You can then modify the SPS
components and add content and formatting to the SPS.

· User-Defined XPath Functions : The user can define XPath functions which can be used anywhere in
the document where XPath functions may be used.

· Layout Containers : A Layout Container is a block in which Design Elements can be laid out and
absolutely positioned within the block.

· Blueprints : Within a Layout Container an image of a form can be used as an underlay blueprint for
the design. With the help of a blueprint, an existing design can be reproduced accurately.

· A common feature of XML documents is the repeating data structure. For example, an office
department typically has several employees. The data for each employee would be stored in a data
structure which is repeated for each employee. In the SPS, the processing for each such data
structure is defined once and applied to each relevant node in turn (the employee node in our
example).

· Multiple tables of contents can be inserted in XSLT 2.0 and 3.0 SPSs.

104 104

175

104

175

104 149

150 152

173 21

216

216

232

113

116

116

226

202

202

230

341

345

160

163

104

272

16 Introduction Product Features

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Repeating data structures can also be inserted as dynamic tables . This provides looping in a
structured, table format, with each loop through the data structure producing a row (or, if required, a
column) of the table.

· A repeating element can be sorted on one or more sort-keys you select, and the sorted element
set is sent to the output (HTML).

· Variables : A variable can now be declared on a template and take a value that is specified with an
XPath expression. Previously, the value of a variable was limited to the selection of the node on which
it was created. Variables in the 2010 version allow any XPath expression to be specified as the value of
the variable.

· Nodes can be grouped on the basis of common data content (for example, the common value of an
attribute value) and their positions.

· The conditional templates feature enables one of a set of templates to be processed according to
what conditions in the XML document or system environment are fulfilled. This enables processing that
is conditional on information contained in the source document or that cannot be known to the SPS
document creator at the time of creation (for example, the date of processing). The available conditions
are those that can be tested using XPath expressions.

· Auto-Calculations enable you to manipulate data from the source document/s and to display the
result. This is useful, when you wish to perform calculations on numbers (for example, sum the prices
in an invoice), manipulate strings (for example, change hyphens to slashes), generate content, etc.
The available manipulations are those that can be effected using XPath expressions. Native Java and
.NET functions can be used in the XPath expressions of Auto-Calculations.

· Images can be inserted in the design. The URI for the image can be static (entered in the SPS), or
dynamic (taken from a node in the source document), or a combination of both static and dynamic
parts.

· Images from inline data : Images can be generated from Base-16 and Base-64 encoded text in the
XML document. Consequently, images can be stored directly in the source XML document as text. An
SPS can now decode such text and render the image.

· Two types of lists can be created: static and dynamic. In a static list , each list item is defined in
the SPS. In a dynamic list , a node is created as a list item; the values of all instances of that node
are created as the items of the list.

· Static and dynamic links can be inserted in the design. The target URI can be static (entered in the
SPS), or dynamic (taken from a node in the source document), or a combination of both static and
dynamic parts.

· Static bookmarks can be inserted. These serve as anchors that can be linked to with a hyperlink.
· Parameters can be declared globally for the entire SPS. A parameter is declared with a name and a

string value, and can be used in XPath expressions in the SPS. The parameter value you declare is the
default value. It can be overridden by a value passed via StyleVision Server.

· With the Input Formatting feature, the contents of numeric XML Schema datatype nodes can be
formatted as required for output display. Input Formatting can also be used to format the result of an
Auto-Calculation .

· JavaScript functions can be used in the SPS to provide user-defined functionality for Authentic View
and HTML output.

· A number of predefined HTML formats are available via the GUI and can be applied to individual
SPS components.

· A large number of CSS text formatting and layout properties can be applied to individual SPS
components via the Styles sidebar .

· Additionally, CSS styles can be defined for HTML selectors at the global level of an SPS and in
external CSS stylesheets. These style rules will be applied to HTML output, thus providing
considerable formatting and layout flexibility.

· Styles can also be assigned using XPath expressions . This enables style property values to be
selected from XML documents and to set property values conditionally.

119

259

269

251

246

241

144

119

139 139

141

299

299

264

311

241

363

307

326

324

330

https://www.altova.com/stylevision/stylevision-server.html

© 2019-2025 Altova GmbH

Authentic View in Altova Products 17Introduction

Altova StyleVision 2025 Basic Edition

1.2 Authentic View in Altova Products

Authentic View is a graphical XML document editor available in the following Altova products:

 * Altova XMLSpy
 * Altova Authentic Desktop
 * Altova Authentic Browser
 * Altova StyleVision

18 Introduction What Is an SPS?

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

1.3 What Is an SPS?

A StyleVision Power Stylesheet (or SPS) is an extended XSLT stylesheet which is used to graphically create a
design for an HTML output document

An SPS is saved with the file extension .sps.

Design of the SPS
An SPS is created graphically in StyleVision. It is based on a schema (DTD or XML Schema). The design of
the SPS is flexible. It can contain dynamic and static content. The dynamic content is the data in one XML
document. The static content is content entered directly in the SPS. Dynamic content can be included in
the design either as straight text or within components such as input fields, combo boxes, and tables.
Additionally, dynamic content can be manipulated (using Auto-Calculations) and can be displayed if certain
conditions in the source document are fulfilled. Different pieces of content can be placed at various and multiple
locations in the SPS. Also, the SPS can contain various other components, such as images, hyperlinks, and
JavaScript functions. Each component of the SPS can then be formatted for presentation as required.

The SPS and XSLT stylesheets
After you have completed designing the SPS, you can generate XSLT stylesheets based on the design you
have created. StyleVision supports XSLT 1.0, XSLT 2.0 and XSLT 3.0, and from a single SPS, you can
generate XSLT stylesheets for HTML, RTF, XSL-FO, Text, and Word 2007-and-higher output (XSL-FO, Text,
and Word 2007-and-higher in Enterprise edition only; RTF and Text in Enterprise and Professional Editions; in
Basic Edition only HTML output is supported). The generated XSLT stylesheets can be used in external
transformations to transform XML documents based on the same schema as the SPS from which the XSLT
stylesheet was generated. For more information about procedures used with XSLT stylesheets, see the section
Generated Files .

The SPS and output
You can also use StyleVision to directly generate output (HTML, RTF, Text, XSL-FO, and PDF in Enterprise
Edition; HTML and RTF in Professional Edition; and HTML in Basic Edition). The tabs for Output Views
display the output for the active SPS document directly in the StyleVision GUI. The required output can also be
generated to file from within the GUI via the File | Save Generated Files command or via StyleVision
Server.

Authentic View in Altova Products
Authentic View is a graphical XML document editor available in the following Altova products:

 * Altova XMLSpy
 * Altova Authentic Desktop
 * Altova Authentic Browser
 * Altova StyleVision

21

22

96

28

441

https://www.altova.com/stylevision/stylevision-server.html
https://www.altova.com/stylevision/stylevision-server.html

© 2019-2025 Altova GmbH

Setting up StyleVision 19Introduction

Altova StyleVision 2025 Basic Edition

1.4 Setting up StyleVision

Altova StyleVision runs on Windows 10, Windows 11. After downloading StyleVision from the Altova website,
double-click the executable (.exe) file to run the setup program. The setup program will install StyleVision at
the desired location. The Altova XSLT Engines (1.0 and 2.0) are built into StyleVision and are used for all
internal transformations. You, therefore, do not need to install an XSLT Engine additionally to your StyleVision
installation.

You will, however, need to have the following components installed:

· Internet Explorer 5.5 or later, for HTML Preview and Design View. Internet Explorer 6.0 and later has
better XML support and is recommended. For copy-paste from Word documents (and of content
that can be pasted into Word documents, such as Excel tables and HTML page content) Word 2007+
is required

108

https://www.altova.com/

20 Introduction Terminology

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

1.5 Terminology

This section lists terms used in the StyleVision GUI and in this documentation. Terms are organized into the
groups listed below, and within each group, they are listed alphabetically.

Altova product-related terms

A list of terms that relate to Altova products.

Authentic
View

An XML document editor view available in the following Altova products: Altova XMLSpy; Altova
StyleVision; Altova Authentic Desktop; Altova Authentic Browser. For more details about
Authentic View and Altova products, visit the Altova website.

SPS The abbreviated form of StyleVision Power Stylesheet, it is used throughout this
documentation to refer to the design document created in StyleVision and saved as a file with
the .sps extension. For a detailed description, see What Is an SPS? .

Global
resource

An alias for a set of files, a set of folders, or a set of databases. Each alias has a set of
configurations and each configuration is mapped to a resource. In StyleVision, when a global
resource is used, the resource can be changed by changing the active configuration in
StyleVision.

General XML terms

Definitions of certain XML terms as used in this documentation.

schema A schema (with lowercase 's') refers to any type of schema. Schemas supported by
StyleVision are XML Schema (capitalized) and DTD.

XML
Schema

In this documentation, XML Schema (capitalized) is used to refer to schemas that are
compliant with the W3C's XML Schema specification. XML Schema is considered to be a
subset of all schemas (lowercased).

URI and
URL

In this documentation, the more general URI is used exclusively—even when the identifier has
only a "locator" aspect, and even for identifiers that use the http scheme.

XSLT and XPath terms

There have been changes in terminology from XSLT 1.0 and XPath 1.0 to XSLT 2.0 and XPath 2.0. For
example, what was the root node in XPath 1.0 is the document node in XPath 2.0. In this documentation,
we use the newest, XSLT 3.0 and XPath 3.0, terminology.

absolute
XPath

A path expression that starts at the root node of the tree containing the context node . In
StyleVision, when entering path expressions in dialogs, the expression can be entered as an
absolute path if you check the Absolute XPath check box in the dialog. If this check box is
unchecked, the path is relative to the context node .

context
item /

The context item is the item (node or string value) relative to which an expression is evaluated.
A context node is a context item that is a node. The context item can change within an
expression, for example, with each location step, or within a filter expression (predicate).

18

20

20

21

20

20

https://www.altova.com/
http://www.w3.org/XML/Schema

© 2019-2025 Altova GmbH

Terminology 21Introduction

Altova StyleVision 2025 Basic Edition

context
node

current
node

The current node is the node being currently processed. The current node is the same as the
context node in expressions that do not have sub-expressions. But where there are sub-
expressions, the context node may change. Note that the current() function is an XSLT
function, not an XPath function.

document
element

In a well-formed XML document, the outermost element is known as the document element. It
is a child of the document node , and, in a well-formed XML document, there is only one
document element. In the GUI the document element is referred to as the root element.

document
node

The document node represents and contains the entire document. It is the root node of the
tree representation of the document, and it is represented in an XPath expression as: '/'. In
the Schema Tree window of StyleVision, it is represented by the legend: '/ Root elements'.

StyleVision-specific terms

Terms that refer to StyleVision mechanisms, concepts, and components.

Blueprint
image

A blueprint image is one that is used as the background image of a layout container , and
would typically be the scan of a form. The SPS design can be modelled on the blueprint
image, thus recreating the form design.

dynamic
items

Items that originate in XML data sources. Dynamic items may be text, tables, and lists; also
images and hyperlinks (when the URIs are dynamic).

global
element

An element in the Global Elements list in the Schema Tree window. In an XML Schema, all
elements defined as global elements will be listed in the Global Elements list. In a DTD, all
elements are global elements and are listed in the Global Elements list. Global templates
can be defined only for global elements.

global
template

A global template may be defined for a global element . Once defined, a global template
can be used for that element wherever that element occurs in the document. Alternatively to
the global template, processing for a global element may be defined in a local template .

Layout
container

A Layout Container is a design block in which design elements can be laid out and absolutely
positioned. If a design is to be based on a form, it can be created as a Layout Container, so
that design elements of the form can be absolutely positioned. Alternatively, a design can be
free-flowing and have layout containers placed within the flow of the document.

local
template

A local template is the template that defines how an element (global or non-global) is
processed within the main template . The local template applies to that particular
occurrence of the element in the main template . Instead of the local template, a global
template can be applied to a given occurrence of an element in the main template .

main
schema

One of the assigned schema sources is designated the main schema; the document node of
the Working XML File associated with the main schema is used as the starting point for
the main template .

main
template

The main entry-point template. In StyleVision, this template matches the document
element and is the first to be evaluated by the XSLT processor. In the Schema Tree
window, it is listed as the child of the document node . The main template defines the
basic output document structure and defines how the input document/s are to be processed. It
can contain local templates and can reference global templates .

20

20

21

20

21

21

21

21

21

21 21

22

21

21

21 21

21 21

22 Introduction Terminology

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

output The output produced by processing an XML document with an XSLT stylesheet. Output files
that can be generated by StyleVision would be HTML format. XSLT stylesheets generated by
StyleVision are also not considered output and are referred to separately as XSLT stylesheets.

static items Items that originate in the SPS and not in XML data sources. Static items may be text, tables,
and lists; also images, hyperlinks, and bookmarks (when the URIs are static).

SPS
component

An SPS component can be: (i) a schema node (for example, an element node); (ii) a static
SPS component such as an Auto-Calculation or a text string; or (iii) a predefined format
(represented in the SPS by its start and end tags).

template Defined loosely as a set of instructions for processing a node or group of nodes.

Template
XML File

A Template XML File is assigned to an SPS in StyleVision (Enterprise and Professional
editions). It is an XML file that provides the starting data of a new XML document created with
a given SPS when that SPS is opened in Authentic View. The Template XML File must be
conformant with the schema on which the SPS is based.

User-
defined
element

An element that is neither a node in the schema tree nor a predefined element or a design
element, but one that is specified by the user. An element can be specified with attributes.

User-
defined
template

A template that is created for a sequence specified in an XPath expression.

User-
defined
XML
text blocks

XML Text blocks can be freely inserted at any location in the design

Working
XML/XBRL
 File

A Working XML/XBRL File is an XML data file that is assigned to an SPS in StyleVision in
order to preview the output of the XML document in StyleVision. Without a Working XML/XBRL
File, the SPS in StyleVision will not have any dynamic XML data to process. If the SPS is
based on a schema that has more than one global element, there can be ambiguity about
which global element is the document element. Assigning a Working XML/XBRL File resolves
such ambiguity (because a valid XML document will, by definition, have only one document
element). Note that XBRL functionality is available only in the Enterprise edition.

XML
document

XML document is used in two senses: (i) to refer to a specific XML document; (ii) to refer to
any XML data source. Which sense is intended should be clear from the context.

241 307

21

© 2019-2025 Altova GmbH

About This Documentation 23Introduction

Altova StyleVision 2025 Basic Edition

1.6 About This Documentation

This documentation is the user manual delivered with StyleVision. It is available as the built-in Help system of
StyleVision, can be viewed online at the Altova website, and can also be downloaded from there as a PDF,
which you can print.

The user manual is organized into the following sections:

· An introduction, which explains what an SPS is and introduces the main features and concepts of
StyleVision.

· A description of the user interface , which provides an overview of the StyleVision GUI.
· A tutorial section, which is a hands-on exercise to familiarize you with StyleVision features.
· Usage Overview , which describes usage at a high level: for example, schema sources used to

create an SPS, the broad design process, Authentic View deployment, and projects.
· SPS File Content , which explains how static (stylesheet-originated) and dynamic (XML document-

originated) components are created and edited in the SPS.
· SPS File Structure , which shows how an SPS file can be structured and modularized, and

describes the handling of StyleVision's templates.
· SPS File Advanced Features , which describes advanced design features, such as the automatic

generation of calculations, the setting up of conditions, grouping and sorting on user-defined criteria,
and how to build tables of contents and cross-references in the output document.

· SPS File Presentation , which explains how SPS components are formatted and laid out.
· SPS File Additional Editing Functionality , which describes a range of additional features that can

make your SPS more powerful. These features include: global resources for leveraging functionality in
other Altova products, additional validation, scripts, and variables and parameters.

· A reference section containing descriptions of all symbols and commands used in StyleVision.
· Appendices containing information about the Altova XSLT Engine information; technical data about

StyleVision; and license information.

How to use
We suggest you read the Introduction, User Interface and Usage Overview sections first in order to get
an overview of StyleVision features and general usage. Doing the tutorial next would provide hands-on
experience of creating an SPS. The SPS File sections (SPS File Content , SPS File Structure , SPS File
Advanced Features , SPS File Presentation , SPS File Additional Functionality) provide detailed
descriptions of how to use various StyleVision features. For subsequent reference, the Reference section
provides a concise description of all toolbar icon, design symbols, and menu commands, organized according
to toolbar and menu.

File paths in Windows
File paths given in this documentation will not be the same for all operating systems. You should note the
following correspondences:

· (My) Documents folder: Located by default at the following locations. Example files are located in a
sub-folder of this folder.

Windows 7/8/10/11 C:\Users\<username>\Documents

· Application folder: The Application folder is the folder where your Altova application is located. The path

25

51

90

103

173

240

306

338

393

513

25 90

51

103 173

240 306 338

393

https://www.altova.com/support_help.html

24 Introduction About This Documentation

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

to the Application folder is, by default, the following.

Windows 7/8/10/11 C:\Program Files\Altova\

32-bit version on 64-bit OS C:\Program Files (x86)\Altova\

Note: StyleVision is also supported on Windows Server 2016 or newer.

Support options
Should you have any question or problem related to StyleVision, the following support options are available:

1. Check the Help file (this documentation). The Help file contains a full text-search feature, besides
being fully indexed.

2. Check the FAQs and Discussion Forum at the Altova Website.
3. Contact Altova's Support Center.

Commonly used abbreviations
The following abbreviations are used frequently in this documentation:

· SPS: StyleVision Power Stylesheet
· CSS: Cascading Style Sheets
· FAQ: Frequently Asked Questions

13

https://www.altova.com/support_faq_main.html
https://www.altova.com/forum/default.aspx
https://www.altova.com/
https://www.altova.com/support_center.html

© 2019-2025 Altova GmbH

 25User Interface

Altova StyleVision 2025 Basic Edition

2 User Interface

The StyleVision GUI (illustration below, in which not all sidebars are shown) consists of the following parts:

· A menu bar. Click on a menu to display the items in that menu. All menus and their items are
described in the User Reference section. The menu bar also contains the Minimize, Restore, and
Close Active Document buttons.

· A toolbar area. The various toolbars and the command shortcuts in each toolbar are described in
the User Reference section.

· A tabbed Main Window , which displays one or more open SPS documents at a time. In this
window, you can edit the design of the SPS and preview the XSLT stylesheets and output .

· The Design Sidebars —the Design Overview , Schema Tree , Design Tree , Style
Repository , Styles , Properties windows—which can be docked within the application GUI or
made to float on the screen.

· A status bar, which displays application status information.

The Main Window and Design sidebars are described in more detail in the sub-sections of this section.

Note: The menu bar and toolbars can be moved by dragging their handles to the required location.

393

415

393

26

27 28

31 33 36 38

42 44 45

26 31

26 User Interface Main Window

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2.1 Main Window

The Main Window (illustration below) is where the SPS design, XSLT stylesheets, and output previews are
displayed.

SPS documents in the Main Window
· Multiple SPS documents can be open in StyleVision, though only one can be active at any time. The

names of all open documents are shown in tabs at the bottom of the Main Window, with the tab of the
active document being highlighted.

· To make an open document active, click its tab. Alternatively, use the options in the Windows menu.
· If so many documents are open that all document tabs are not visible in the document-tab bar, then

click the appropriate scroll button (at the right of the document-tab bar; see illustration above) to scroll
the tabs into view.

· To close the active document, click the Close Document button in the menu bar at the top right of the
application window (or select File | Close).

Document views
A document is displayed in the following views, one of which can be active at a time:

· Design View , in which you design the SPS and edit JavaScript functions for use in that SPS. The
view can be toggled between the design document and the JavaScript Editor by clicking the dropdown
menu arrow and selecting Design or JavaScript, as required.

· Output Views (HTML, Text, output). These views are a preview of the actual output format and of the
XSLT stylesheet used to generate that output. The view can be toggled between the output preview and
the XSLT stylesheet by clicking the dropdown menu arrow and making the appropriate selection.

Each of the views listed above is available as a tab at the bottom of the Main Window in the Views Bar. To
select a view, click on its tab. The tab of the selected view is highlighted.

Output Preview
The Output Preview feature enables you to view the design in the left pane and preview the output in the right

430

27

28

© 2019-2025 Altova GmbH

Main Window 27User Interface

Altova StyleVision 2025 Basic Edition

pane. This enables you to preview output even as you design and to then modify your design accordingly—not
only in terms of presentation but also in terms of content.

You can click the Output Preview icon (circled red in the screenshot below) to split the Main Window into two
vertical panes: (i) Design View in the left pane and (ii) Output Previews in the right pane. The Output
Preview icon (see screenshot below) is located at the bottom left of the Main Window. To switch off Output
Preview, click the Output Preview icon again.

In the output-previews pane:

· Click the icon at extreme left to regenerate the currently selected output preview.
· Click the icon at extreme right to toggle between vertical and horizontal output previews.

2.1.1 Design View

The Design View (illustration below) is the view in which the SPS is designed. In Design View, you create the
design of the output document by (i) inserting content (using the sidebars, the keyboard, and the various
content creation and editing features provided in the menus and toolbars); and (ii) formatting the content using
the various formatting features provided in the sidebars and menus. These aspects of the Design View are
explained in more detail below.

Design View can also be switched to a JavaScript Editor . In the JavaScript Editor you can create and edit
JavaScript functions which then become available in the GUI for use in the SPS. To switch to the
JavaScript Editor , click the dropdown button in the Design tab (see illustration) and select JavaScript from
the dropdown menu. To switch back to Design View, click the dropdown button in the JavaScript tab and select
Design from the dropdown menu.

27

364

363

364

28 User Interface Main Window

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

In Design View, the SPS can have several templates: the main template, global templates, and Design
Fragments. You can control which of these template types is displayed in Design View by using Template
Display Filters , which are available as toolbar icons . These display filters will help you optimize and
switch between different displays of your SPS.

Displaying markup tags
The display of markup tags in Design View can be controlled via the markup icons (below).

The icons shown above are toggles. They are, from left: (i) Show small design markups (tags without names);
and (ii) Show large design markups (tags with names). When small markup is switched on, the path to a node
is displayed when you mouseover that node.

Output Preview
The Output Preview feature enables you to view the design in the left pane and preview the output in the right
pane. This enables you to preview output even as you design and to then modify your design accordingly—not
only in terms of presentation but also in terms of content.

You can click the Output Preview icon (circled red in the screenshot below) to split the Main Window into two
vertical panes: (i) Design View in the left pane and (ii) Output Previews in the right pane. The Output
Preview icon (see screenshot below) is located at the bottom left of the Main Window. To switch off Output
Preview, click the Output Preview icon again.

In the output-previews pane:

· Click the icon at extreme left to regenerate the currently selected output preview.
· Click the icon at extreme right to toggle between vertical and horizontal output previews.

2.1.2 Output Views

The Output View tab (illustration below) displays: (i) the XSLT-for-HTML stylesheet generated from the SPS
design; and (ii) a preview of the HTML output, produced by transforming the Working XML File with the
generated XSLT stylesheet.

In the HTML Output View tab, the view can be switched between the XSLT-for-HTML stylesheet and the HTML
output preview by clicking the dropdown button in the HTML Output View tab and selecting the XSLT option or
the output preview option as required.

421 421

27

22

© 2019-2025 Altova GmbH

Main Window 29User Interface

Altova StyleVision 2025 Basic Edition

XSLT view
The XSLT view displays the XSLT-for-HTML generated from the currently active SPS. The stylesheet is
generated afresh each time the XSLT view is selected.

A stylesheet in an Output View tab is displayed with line-numbering and expandable/collapsible elements; click
the + and – icons in the left margin to expand/collapse elements. The stylesheet in XSLT view cannot be
edited, but can be searched (select Edit | Find) and text from it can be copied to the clipboard (with Edit |
Copy).

Note: The XSLT stylesheets generated from the SPS can be separately generated and saved using the File |
Save Generated Files command.

HTML preview
HTML preview displays the output produced by transforming the Working XML File with the XSLT-for-HTML.
The output is generated afresh each time the HTML preview tab is clicked. Note that it is the saved version of
the Working XML File that is transformed—not the temporary version that is edited with Authentic View.

If no Working XML File is assigned when HTML preview is selected in the HTML View tab, you will be
prompted to assign a Working XML File. For DB-based SPSs, there is no need to assign a Working XML
File since a temporary non-editable XML file is automatically generated when the DB is loaded and this XML
file is used as the Working XML File .

Note: The output files generated from the SPS can be separately generated and saved using the File | Save
Generated Files command.

Output Preview
The Output Preview feature enables you to view the design in the left pane and preview the output in the right
pane. This enables you to preview output even as you design and to then modify your design accordingly—not
only in terms of presentation but also in terms of content.

You can click the Output Preview icon (circled red in the screenshot below) to split the Main Window into two
vertical panes: (i) Design View in the left pane and (ii) Output Previews in the right pane. The Output

448

448

441

22

22

22

22

441

27

30 User Interface Main Window

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Preview icon (see screenshot below) is located at the bottom left of the Main Window. To switch off Output
Preview, click the Output Preview icon again.

In the output-previews pane:

· Click the icon at extreme left to regenerate the currently selected output preview.
· Click the icon at extreme right to toggle between vertical and horizontal output previews.

© 2019-2025 Altova GmbH

Sidebars 31User Interface

Altova StyleVision 2025 Basic Edition

2.2 Sidebars

The Sidebars (also called sidebar windows or windows) are GUI components that help you design the SPS
and provide you with information related to the active view. Each sidebar (listed below) is described in a sub-
section of this section.

· Design Overview
· Schema Tree
· Design Tree
· Style Repository
· Styles
· Properties
· Messages
· Find and Replace

Layout of the views
The layout of a view refers to what sidebars are available in that view and how these sidebars are positioned
within the GUI. Layouts can be customized for separate view categories, and the customization consists of two
parts: (i) switching on or off the display of individual sidebars in a view (via the View menu or by right-clicking
the sidebar's title bar and selecting Hide); (ii) positioning the sidebar within the GUI as required. The layout
defined in this way for a view category is retained for that particular view category till changed. So, for example,
if in Design View, all the sidebars except the Styles sidebar are switched on, then this layout is retained for
Design View over multiple view changes, till the Design View layout is changed. The view categories are: (i) no
document open; (ii) Design View; (iii) Output View.

Docking and floating the Sidebar windows
Sidebar windows can be docked in the StyleVision GUI or can be made to float on your screen. To dock a
window, drag the window by its title bar and drop it on any one of the four inner or four outer arrowheads that
appear when you start to drag. The inner arrowheads dock the dragged window relative to the window in which
the inner arrowheads appear. The four outer arrowheads dock the dragged window at each of the four edges of
the interface window. To make a window float, (i) double-click the title bar; or (ii) drag the title bar and drop it
anywhere on the screen except on the arrowheads that appear when you start to drag.

Alternatively, you can also use the following mechanisms. To float a docked window, click the Menu button at
the top-right of a docked window (see screenshot below) and select Floating. This menu can also be accessed
by right-clicking the title bar of the docked window.

33

36

38

42

44

45

49

49

32 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

To dock a floating window, right-click the title bar of the floating window and select Docking from the menu that
appears; the window will be docked in the position in which it was last docked.

Auto-Hiding Design sidebar windows
A docked window can be auto-hidden. When a sidebar window is auto-hidden, it is minimized to a tab at the
edge of the GUI. Placing the cursor over the tab causes that window to roll out into the GUI and over the Main
Window. In the screenshot below, placing the cursor over the Styles tab causes the Styles sidebar to roll out
into the Main Window.

Moving the cursor out of the rolled-out window and from over its tab causes the window to roll back into the tab
at the edge of the GUI.

The Auto-Hide feature is useful if you wish to move seldom-used sidebars out of the GUI while at the same time
allowing you easy access to them should you need them. This enables you to create more screen space for
the Main Window while still allowing easy access to Design sidebar windows.

To auto-hide a window, in a docked window, click the Auto Hide button (the drawing pin icon) at the top right of
the window (screenshot below). Alternatively, in the Menu , select Auto Hide; (to display the Menu , right-
click the title bar of the window or click the Menu button in the title bar of the docked window).

The window will be auto-hidden.

To switch the Auto-Hide feature for a particular window off, place the cursor over the tab so that the window rolls
out, and then click the Auto Hide button (screenshot below). Alternatively, in the Menu , deselect Auto Hide;

32 32

32

32

© 2019-2025 Altova GmbH

Sidebars 33User Interface

Altova StyleVision 2025 Basic Edition

(to display the Menu , right-click the title bar of the window or click the Menu button in the title bar of the
window).

Note: When the Auto-Hide feature of a sidebar window is off, the drawing pin icon of that window points
downwards; when the feature is on, the drawing pin icon points left.

Hiding (closing) sidebar windows
When a sidebar window is hidden it is no longer visible in the GUI, in either its maximized form (docked or
floating) or in its minimized form (as a tab at an edge of the GUI, which is done using the Auto-Hide feature).

To hide a window, click the Close button at the top right of a docked or floating window. Alternatively, in the
Menu , select Hide; (to display the Menu , right-click the title bar of the window or click the Menu
button in the title bar of the window).

To make a hidden (or closed) window visible again, select the name of the Design sidebar in the View
 menu. The Design sidebar window is made visible in the position at which it was (docked or floating) when it
was was hidden.

2.2.1 Design Overview

The Design Overview sidebar (screenshot below) enables you to add schema sources, global parameters,
SPS modules, and CSS files to the active SPS. It gives you an overview of these components and enables you
to manage them conveniently in one location.

32 32

32

32 32

32

456

34 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Adding schema sources
Schema sources may be added to an empty SPS. A schema source is added by clicking the command Add
New Source under the Sources heading. This pops up a menu (screenshot below) that enables you to add an
XML Schema, DTD, schema generated from an XML file, or a user-defined schema.

The Working XML File
When a schema is added, it is listed under the Sources item. Each schema has an entry for the Working XML
File within the XML item.

Adding modules, CSS files, parameters, and XSLT files
Click the respective Add New commands at the bottom of the Modules, CSS Files, Parameters and XSLT
Files sections to add a new item to the respective section.

Design Overview features
The following features are common to each section (Sources, Parameters, etc) in the Design Overview sidebar:

· Each section can be expanded or collapsed by clicking the triangular arrowhead to the left of the
section name.

· Files in the Sources, Modules, and CSS Files sections are listed with only their file names. When you
mouseover a file name, the full file path is displayed in a popup.

· Items that are listed in gray are present in an imported module, not in the SPS file currently active in
the GUI.

22

© 2019-2025 Altova GmbH

Sidebars 35User Interface

Altova StyleVision 2025 Basic Edition

· Each section also has a Add New <Item> command at the bottom of the section, which enables you
to add a new item to that section. For example, clicking the Add New Parameter command adds a
new parameter to the SPS and to the Parameters list in the Design Overview.

· Each item in a section has a context menu which can be accessed either by right-clicking that item or

clicking its Context Menu icon (the downward-pointing arrow to the right of the item).
· The Remove icon in the context menu removes the selected item. This command is also available in

context menus if the command is applicable.
· The context menu command Edit File in XMLSpy opens the selected file in the Altova application

XMLSpy.
· The context menu commands, Move Up and Move Down, are applicable only when one of multiple

modules in the Modules section is selected. Each button moves the selected module, respectively,
up or down relative to the immediately adjacent module.

Sources
The Sources section lists the schema that the SPS is based on and the Working XML File assigned to the
SPS. You can change each of these file selections by accessing its context menu (by right-clicking or clicking

the Context Menu icon), and then selecting the appropriate Assign... option.

Modules
The Modules section lists the SPS modules used by the active SPS. New modules are appended to the list
by clicking the Add New Module command and browsing for the required SPS file. Since the order in which
the modules are listed is significant, if more than one module is listed, the Move Up / Move Down
command/s (in the context menu of a module) can be used to change the order. The context menu also
provides a command for opening the selected module in StyleVision.

Note: The Design Overview sidebar provides an overview of the modules, enabling you to manage modules at
the file level. The various module objects (objects inside the modules), however, are listed in the Design
Tree sidebar .

CSS Files
The CSS Files section lists the CSS files used by the active SPS. New CSS files are appended to the list by
clicking the Add New CSS File command and browsing for the required CSS file. Since the order in which the
CSS files are listed is significant, if more than one CSS file is listed, the Move Up / Move Down
command/s (in the context menu) become active when a CSS file is selected. The selected CSS file can be
moved up or down by clicking the required command. The context menu also provides a command for opening
the selected module in XMLSpy.

Note: The Design Overview sidebar provides an overview of the CSS files, enabling you to manage CSS files at
the file level. The various CSS rules inside the CSS files, however, are listed in the Style Repository
sidebar .

Parameters
The Parameters section lists the global parameters in the SPS. You can add new parameters using the Add
New Parameter command at the bottom of the section. Double-clicking the parameter name or value enables
you to edit the name or value, respectively. To remove a parameter, select the parameter and then click the
Remove command in the context menu.

206

202

206

203

38

321

321

42

36 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

XSLT Files
The XSLT Files section lists the XSLT files that have been imported into the SPS. XSLT templates in these
XSLT files will be available to the stylesheet as global templates. For a complete description of how this works,
see XSLT Templates .

2.2.2 Schema Tree

The Schema Tree sidebar (screenshot below) enables you to do the following:

· Select multiple root elements (document elements) for a schema.
· Drag nodes (elements, attributes, global types) from a schema tree and drop them into the design.

These nodes represent the XML content that is to be included in the output.
· View listings of all global elements and types in the schema source. Enables a global element or

global type to be created as a global template.
· View a listing of all namespaces used in the SPS.
· Insert and edit Design Fragments .
· Insert and and edit user-defined XPath functions for the SPS.

Root elements
For each schema, under the $XML heading, the selected Root elements (or document elements) are
listed. This list consists of all the root elements you select for the schema (see below for how to do this). Each
root element can be expanded to show its content model tree. It is from the nodes in these root element trees
that the content of the main template is created. Note that the entry point of the main template is the document
node of the main schema, which you can select or change at any time (see below for how to do this).

230

226

345

21 21

© 2019-2025 Altova GmbH

Sidebars 37User Interface

Altova StyleVision 2025 Basic Edition

To select the root elements for a schema, do the following: Click the Select button at the right of the Root
Elements item. This pops up the Select Root Elements dialog (screenshot below), in which you can select
which of the global elements in the schema is/are to be the root elements. See SPS Structure | Schema
Sources for an explanation of the possibilities offered by a selection of multiple root elements.

Additionally, all the global elements in the schema are listed under the All Global Elements item. For each
global element, a global template can be created.

Global elements and global types
Global elements and global types can be used to create global templates which can be re-used in other
templates. Additionally, global types can also be used directly in templates.

However, global types only work with valid XML instances. If the XML instance is invalid, then the type will not
match and no content will be displayed.

Design Fragments
All the Design Fragments in the document are listed under this item and can be viewed when the Design
Fragments item is expanded. The following Design Fragment functionality is available:

· Creating a Design Fragment by clicking the Add icon of the Design Fragments item.
· Double-clicking the name of a Design Fragment in the Schema Tree enables the name of that Design

Fragment to be edited.
· A Design Fragment can be enabled or disabled by, respectively, checking or unchecking the check

box next to the Design Fragment.
· A Design Fragment can be dragged from the schema tree into the design.

See the section Design Fragments for information about working with Design Fragments.

175

216

216

226

226

38 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

User-defined XPath Functions

A user-defined XPath function can be added by clicking the Add icon of the Xpath Functions item. After an
XPath function has been created, it is listed in the Schema Tree. Double-clicking an XPath function opens the
function in its dialog for editing. The following XPath functionality is available:

· An XPath function can be enabled or disabled by, respectively, checking or unchecking the check box
next to the XPath Functions item.

· Right-clicking an XPath function also opens a context menu which contains commands to rename and
remove an XPath function.

See the section, User-Defined XPath Functions , for detailed information about working with XPath functions.

Namespaces
The namespaces used in the SPS are listed under the Namespaces heading together with their prefixes. The
namespaces in this list come from two sources: (i) namespaces defined in the referenced schema or schemas
(see note below); and (ii) namespaces that are added to every newly created SPS by default. Referring to such
a list can be very useful when writing XPath expressions. Additionally, you can set an XPath default
namespace for the entire SPS by double-clicking the value field of the xpath-default-ns entry and then
entering the namespace.

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is based.

Symbols used in schema trees
Given below is a list of the symbols in schema trees.

Element.

Attribute.

Element with child elements. Double-clicking the element or the +/- symbol to its left causes the
element to expand/collapse.

Global types can be either complex or simple. Complex types are indicated with a cyan icon,
simple types with a brown icon.

2.2.3 Design Tree

The Design Tree sidebar (screenshot below) provides an overview of the SPS design.

345

© 2019-2025 Altova GmbH

Sidebars 39User Interface

Altova StyleVision 2025 Basic Edition

At the root of the Design Tree is the name of the SPS file; the location of the file is displayed in a pop-up when
you mouseover. The next level of the Design Tree is organized into the following categories:

· Scripts , which shows all the JavaScript functions that have been defined for the SPS using the
JavaScript Editor of StyleVision.

· Main Template , which displays a detailed structure of the main template.
· Global Templates , which lists the global templates in the current SPS, as well as the global

templates in all included SPS modules.
· Design Fragments , which shows all the Design Fragments in the design, and enables you to

create, edit, rename, and delete them.
· XSLT Templates , which provides the capability to view XSLT templates in imported XSLT files.
· User-Defined XPath Functions , which enables you to create, edit, rename, and remove your own

XPath functions.

Toolbar icons
The following toolbar icons are shortcuts for common Design Tree sidebar commands.

Adds a Design Fragment, main template, or layout item to the design. Clicking the left-hand part of
the icon adds a Design Fragment. Clicking the dropdown arrow drops down a list with commands to
add a Design Fragment or any of various layout items.

Remove the selected item; icon is active when item in the Global Templates or Layout sub-trees is
selected.

Synchronize tree toggle. When toggled on (icon has border), selecting a node in the tree selects (i)
the corresponding node in the design, and (ii) the corresponding node in the schema tree if the
Synchronize Tree icon in the schema tree is toggled on. When toggled off, the corresponding nodes
in the design and schema tree are not selected.

Auto-collapses other items in the design tree when the Synchronize Tree toggle is turned on and an
item is selected in the design. Note that this toggle is enabled only when the Synchronize Tree
toggle is turned on.

Modifying the Design Tree display
The display of the Design Tree can be modified via the context menu (screenshot below), which pops up on
right-clicking an item in the Design Tree.

363

216

216

40

41

345

40 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The Remove command removes the selected Design Tree item from the Design Tree. Make Design
Fragment creates a Design Fragment in the design and adds an item for it in the Design Tree. Expand All
expands all the items of the Design Tree.

Scripts and Main Template
The Scripts listing displays all the scripts in the Design, including those in imported modules. The Main
Template listing displays a tree of the main template. Items in the tree and the design can be removed by right-
clicking the item and selecting Remove.

Global Templates
The Global Templates item lists all global templates in the current SPS and in all added SPS modules.
Global templates defined in the current SPS are displayed in black, while global templates that have been
defined in added modules are displayed in gray (see screenshot below). Each global template has a check box
to its left, which enables you to activate or deactivate it. When a global template is deactivated, it is removed
from the design.

A global template in the current SPS (not one in an added module) can be removed by selecting it and clicking
the Remove button in the toolbar or the Remove command in the context menu. The component is removed
from the design and the tree.

Design Fragments
The Design Fragments item lists all the Design Fragments in the current SPS and in all added SPS
modules. Design Fragments defined in the current SPS are displayed in black, while Design Fragments that
have been defined in added modules are displayed in gray (see screenshot below). Each Design Fragment has
a check box to its left, which enables you to activate or deactivate it. A Design Fragment in the current SPS
(not one in an added module) can be removed by selecting it and clicking the Remove command in the
context menu. The component is removed from the design and the tree.

40

216

226

© 2019-2025 Altova GmbH

Sidebars 41User Interface

Altova StyleVision 2025 Basic Edition

A Design Fragment can be added by clicking the Add icon to the right of the Design Fragments item. Each
Design Fragment is designed as a tree with expandable/collapsible nodes. Any component in a Design
Fragment tree (that is defined in the current SPS) can be removed by selecting it and clicking the Remove
button in the toolbar or the Remove command in the context menu. The component is removed from the
design and the tree.

XSLT Templates
In the Design Tree sidebar (screenshot below), the XSLT Templates contained in the imported XSLT file are
displayed under the XSLT Templates heading.

There are two types of imported XSLT templates: (i) match templates (indicated by Match), and (ii) named
templates (indicated by Name). In the Design Tree, these two types are listed with (i) the value of the select
attribute of match templates, and (ii) by the value of the name attribute of named templates, respectively. For a
complete description of how XSLT Templates work, see XSLT Templates .

230

42 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2.2.4 Style Repository

In the Style Repository sidebar (screenshot below), you can assign external CSS stylesheets and define
global CSS styles for the SPS. Style rules in external CSS stylesheets and globally defined CSS styles are
applied to the HTML output document.

The Style Repository sidebar contains two listings, External and Global, each in the form of a tree. The
External listing contains a list of external CSS stylesheets associated with the SPS. The Global listing
contains a list of all the global styles associated with the SPS.

The structure of the listings in the Style Repository is as follows:

External

- CSS-1.css (Location given in popup that appears on mouseover)
 - Media (can be defined in Style Repository window)
 - Rules (non-editable; must be edited in CSS file)
 - Selector-1
 - Property-1
 - ...
 - Property-N
 - ...
 - Selector-N
+ ...
+ CSS-N.css

Global

- Selector-1
 + Selector-1 Properties
- ...
+ Selector-N

© 2019-2025 Altova GmbH

Sidebars 43User Interface

Altova StyleVision 2025 Basic Edition

Precedence of style rules
If a global style rule and a style rule in an external CSS stylesheet have selectors that identify the same
document component, then the global style rule has precedence over that in the external stylesheet, and will
be applied. If two or more global style rules select the same document component, then the rule that is listed
last from among these rules will be applied. Likewise, if two or more style rules in the external stylesheets
select the same document component, then the last of these rules in the last of the containing stylesheets will
be applied

Managing styles in the Style Repository
In the Style Repository sidebar you can do the following, using either the icons in the toolbar and/or items in
the context menu:

Add: The Add icon adds a new external stylesheet entry to the External tree or a new global style entry
to the Global tree, respectively, according to whether the External or Global tree was selected. The new entry
is appended to the list of already existing entries in the tree. The Add command is also available in the context
menu. For more details about using external stylesheets and global styles, see Working with CSS Styles .
Note that an external CSS stylesheet can also be added or a stylesheet removed via the Design Overview
sidebar .

Insert: The Insert icon inserts a new external stylesheet entry above the selected external stylesheet (in
the External tree) or a new global style entry above the selected global style (in the Global tree). The Insert
command is also available in the context menu. For more details about using external stylesheets and global
styles, see Working with CSS Styles .

Move Up/Down: The Move Up icon and Move Down icon move the selected external stylesheet or
global style respectively up and down relative to the other entries in its tree. These commands are useful for
changing the priority of external stylesheets relative to each other and of global style rules relative to each
other. The Move Up and Move Down commands are also available in the context menu. For more details
about how to change the precedence of styles, see Working with CSS Styles .

Views of a selector's styles: Any selector, whether in an external stylesheet or defined globally, can be

displayed in a view obtained by using three view settings. These settings are: List Non-Empty , Expand

All , and Collapse All , and they are available as toolbar buttons and context menu commands:
Toggling the List Non-Empty setting on causes only those style properties to be listed that have a value defined
for them. Otherwise all available style properties are displayed (which could make the view very cluttered). The
Expand All and Collapse All settings combine with the List Non-Empty setting, and respectively expand and
collapse all the style definitions of the selected selector. These commands are also available in the context
menu.

Toggle Important: Clicking the Toggle Important icon sets the CSS value !important on or off for the
selected CSS rule.

Reload All: The Reload All icon reloads all the external CSS stylesheets.

Reset: The Reset icon deletes the selected external stylesheet or global style.

320

33

320

320

44 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Editing CSS styles in the Style Repository
The following editing mechanisms are provided in the Style Repository:

· You can add and remove a CSS Stylesheet, and you can specify the media to which each external
CSS stylesheet applies. How to do this is explained in the section External CSS Stylesheets .

· Global styles can have their selectors and properties directly edited in the Style Repository window.
How this is done is described in the section Defining CSS Styles Globally .

2.2.5 Styles

The Styles sidebar (screenshot below) enables CSS styles to be defined locally for SPS components selected
in the Design View. This is as opposed to styles which are set globally in the Styles Repository sidebar.

The Styles sidebar is divided into two broad parts:

· The left-hand-side, Styles-For column, in which the selected component types are listed. You should
note that when a selection is made in Design View, it could contain several components. The selected
components are listed in the Styles-For column, organized by component type. One of these
component types may be selected at a time for styling. If there is only one instance of the component
type, then that one instance is selected for styling. If there are several instances of the component
type, then all the selected instances can be styled together. The defined styles are applied locally to
each instance. If you wish to style only one specific instance, then select that specific component
instance in Design View and style it locally in the Styles sidebar. You can also select a component
range by selecting the start-of-range and then the end-of-range component with the Shift-key pressed.
For detailed information about the selection of component types, see Defining CSS Styles Locally .

· The right-hand-side, Style Definitions pane, in which CSS styles are defined for the component
type/s selected in the Styles-For column. The Style Definitions pane can be displayed in three views
(see below for description). For the details of how to set style definitions, see Setting CSS Style

Values . The XPath icon toggles on and off the application of XPath expressions as the source
of style values. If a style property is selected and if the XPath icon is toggled on, then an XPath
expression can be entered for this property and the return value of the XPath expression is used as the
value of that style property. In this way, the value of a node in an XML document can be returned at

321

324

42

326

328

© 2019-2025 Altova GmbH

Sidebars 45User Interface

Altova StyleVision 2025 Basic Edition

runtime as the value of a property. When the XPath icon is toggled off, a static value can be entered as
the value of the property.

Settings for Definitions-View
The view of definitions can be changed to suit your editing needs. Three view-settings (listed below) are
available as buttons in the toolbar and as commands in context menus.

· List Non-Empty : When this setting is toggled on, for the component type selected in the left-
hand column, only those properties with values defined for them are displayed, in alphabetical order.
Otherwise all properties are displayed. This setting is very useful if you wish to see what properties are
defined for a particular component type. If you wish to define new properties for the selected
component type, this setting must be toggled off so that you can access the required property.

· Expand All : For the component type selected in the left-hand column, all the properties displayed
in the right-hand pane are expanded. This setting can be combined with the List Non-Empty setting.

· Collapse All : For the component type selected in the left-hand column of the window, all the
properties displayed in the right-hand pane are collapsed. This setting can be combined with the List
Non-Empty setting.

Toggle Important and Reset toolbar icons

Clicking the Toggle Important icon sets the CSS value !important on or off for the selected CSS rule.

Clicking the Reset icon resets the value of the selected property.

2.2.6 Properties

The Properties sidebar (screenshot below) enables properties to be defined for SPS components selected in
Design View.

The Properties sidebar is divided into two broad parts:

46 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· The Properties-For column, in which the selected component-types are listed. One of these
component types may be selected at a time and properties assigned for it. (In the screenshot above,
the template component is selected.) For detailed information about how components with properties
are grouped, see the section Components and their Property Groups below.

· The Property Definitions pane, in which component properties are defined for the component type
selected in the Properties For column. The Property Definitions pane can be displayed in three views
(see below). For the details of what properties are in each property group, see the section Property
Groups below.

Settings for Definitions-View
The view of definitions can be changed to suit your editing needs. Three view-settings (listed below) are
available as buttons in the toolbar and as commands in context menus.

· List Non-Empty : When this setting is toggled on, for the component type selected in the left-
hand column, only those properties with values defined for them are displayed, in alphabetical order.
Otherwise all properties are displayed. This setting is very useful if you wish to see what properties are
defined for a particular component type. If you wish to define new properties for the selected
component type, this setting must be toggled off so that you can access the required property.

· Expand All : For the component type selected in the left-hand column, all the properties displayed
in the right-hand pane are expanded. This setting can be combined with the List Non-Empty setting.

· Collapse All : For the component type selected in the left-hand column of the window, all the
properties displayed in the right-hand pane are collapsed. This setting can be combined with the List
Non-Empty setting.

Reset toolbar icon

Clicking the Reset icon resets the value of the selected property to its default.

Components and their property groups
The availability of property groups is context-sensitive. What property groups are available depends on what
design component is selected. The table below lists SPS components and the property groups they have.

Component Property Group

Content Content; Common; Event

Text Text; Common; Event

Auto-Calculation AutoCalc; Common; Event

Condition Branch When

Data-Entry Device Common; [Data-Entry Device]; Event; HTML

Image Image; Common; Event; HTML

46

48

© 2019-2025 Altova GmbH

Sidebars 47User Interface

Altova StyleVision 2025 Basic Edition

Link Link; Common; Event; HTML

Table Table; Common; Event; HTML; Interactive

Paragraph Paragraph; Common; Event; HTML

The following points about component types should be noted:

· Content components are the content and rest-of-contents placeholders. These represent the text
content of a node or nodes from the XML document.

· A text component is a single string of static text. A single string extends between any two
components other than text components, and includes whitespace, if any is present.

· Data-entry devices are input field, multiline input fields, combo boxes, check boxes, radio buttons and
buttons; their properties cover the data-entry device as well as the contents of the data-entry device, if
any.

· A table component refers to the table structure in the design. Note that it contains sub-components,
which are considered components in their own right. The sub-components are: row, column, cell,
header, and footer.

· A paragraph component is any predefined format.

48 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The table below contains descriptions of each property group.

Property Group Description

AutoCalc These properties are enabled when an Auto-Calculation is selected. The
Value Formatting property specifies the formatting of an Auto-
Calculation that is a numeric or date datatype. The XPath property specifies
the XPath expression that is used for the Auto-Calculation .

Common The Common property group is available for all component types except the
Template and AutoCalc component types. It contains the following
properties that can be defined for the component: class (a class name),
dir (the writing direction), id (a unique ID), lang (the language), and title
(a name).

Data-Entry
Device

Specifies the value range of combo boxes, check boxes, and radio buttons.
Note that this property group does not apply to input fields and buttons.

Event Contains properties that enable JavaScript functions to be defined for the
following client-side HTML events: onclick, ondblclick, onkeydown,
onkeypressed, onkeyup, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup.

HTML Available for the following component types: data-entry devices ;
image ; link ; table ; paragraphs . Note that there are different
types of data-entry devices and paragraphs , and that tables have
sub-components. These properties are HTML properties that can be set on
the corresponding HTML elements (img, table, p, div, etc). The available
properties therefore vary according to the component selected. Values for
these properties can be selected using XPath expressions.

In addition, there are component-specific properties for images , links , paragraphs and other predefined
formats , and condition branches . These properties are described in the respective sections.

Setting property values
Property values can be entered in one, two, or three ways, depending on the property:

· Entered directly in the Value column. To do this, select a property, double-click in its Value column,
enter the value using the keyboard, and press Enter or click anywhere in the GUI.

· By selecting a value from the dropdown list of the combo box for that property. Click the down arrow of
the combo box to drop down the list of property-value options.

· By using the Edit button at the right-hand side of the Value column for that property. Clicking the
Edit button pops up a dialog relevant to that property.

For some properties, in the Common and HTML groups of properties, XPath expressions can be used to

provide the values of the property. The XPath icon toggles on and off the application of XPath expressions
as the source of property values. With a property selected, if the XPath icon is toggled on, then an XPath
expression can be entered for this property and the return value of the XPath expression is used as the value of
that property. In this way, the value of a node in an XML document can be returned, at runtime, as the value of

311

241

363

149

144 299 119 307

149 307 119

144 301

106 249

© 2019-2025 Altova GmbH

Sidebars 49User Interface

Altova StyleVision 2025 Basic Edition

a property. When the XPath icon is toggled off, a static value can be entered as the value of the property. Also
see Style Properties Via XPath .

Modifying or deleting a property value
To modify a property value, use any of the applicable methods described in the previous paragraph, Setting

Property Values . To delete a property value, select the property and click the Reset icon in the toolbar
of the Properties sidebar.

2.2.7 Messages

When StyleVision is opened for the first time, the Messages sidebar (screenshot below) is displayed below the
Main Window of the GUI. To toggle the Messages sidebar on and off, click View | Messages.

The Messages sidebar displays warnings in Design View and Authentic View. In Design View, the warnings
relate to various aspects related to the SPS document, from a missing Working XML File to errors in the design
structure. In Authentic View, the warnings are about the validity of the XML data entered, whether valid
according to the underlying schema or according to additional validation criteria.

2.2.8 Find and Replace

The Find & Replace sidebar (screenshot below) enables you to search and replace text in Design View. Click
the dropdown arrow of the Find button (highlighted blue in the screenshot below) to select the search options.
You can search in text, styles, properties, variables, template matches, and XPath expressions for strings that
you enter directly in the Find field or construct with regular expressions. All searches carried out in this sidebar
apply to Design View. The menu commands Edit | Find and Edit | Replace sets the focus to this
sidebar and places the cursor in the Find field, enabling you to proceed with a search in Design View. The
results of the search are displayed in the sidebar. You can click on a result to go to the corresponding location
in the design. To toggle the Find & Replace sidebar on and off, click View | Find & Replace.

330

48

448 448

50 User Interface Sidebars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

For information about searching in other views (JavaScript Editor and XSLT stylesheets), see the menu-
reference topic Find, Find Next, Replace .

Finding
Enter the term you want to search for in the Find field. Then click the dropdown arrow of the Find button
(highlighted blue in the screenshot above) to select the search options. The following options are available:

· Where to search: The respective Include <component> item should be toggled on for that component
to be included in the search.

· Case and/or whole-word matches: These are toggle options.
· Regular expressions: Your entry will be treated as a regular expression. For a description of how to use

regular expressions, see the menu-reference topic Find, Find Next, Replace .

Results
The results are organized into groups according to the component in which the matched string appears (see
screenshot above). Each result item is show as a hierarchical path. You can click any of the links in the
hierarchy to go to that item in Design View.

The results pane has a toolbar with icons for the following commands, from left: copy an item or a group of
items to the clipboard; clear the results pane.

Replacing
After the results are displayed, you can select one or more of the result items for replacement. The selected
item/s will be indicated with a blue bullet (see screenshot above) and the Replace button will become enabled.
Enter the replacement string in the Replace text box and click Replace. The replacement is carried out and
the blue bullet becomes a green bullet.

448

449

© 2019-2025 Altova GmbH

 51Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

3 Quick Start Tutorial

The objective of this tutorial is to take you quickly through the the key steps in creating an effective SPS. It
starts with a section on creating and setting up the SPS, shows you how to insert content in the SPS, how to
format the components of the SPS, and how to use two powerful SPS features: Auto-Calculations and
conditions. Along the way you will get to know how to structure your output efficiently and how to use a variety
of structural and presentation features.

Files required
Files related to this Quick Start tutorial are in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\QuickStart:

· QuickStart.xsd, the XML Schema file on which the SPS is based.
· QuickStart.xml, the Working XML File, which is the source of the data displayed in the output

previews.
· QuickStart.sps, which is the finished SPS file; you can compare the SPS file you create with this

file.
· QuickStart.css, which is the external CSS stylesheet used in the tutorial.
· NewsItems.BMP, an image file that is used in the SPS.

Doing the tutorial
It is best to start at the beginning of the tutorial and work your way through the sections. Also, you should open
the XSD and XML files before starting the tutorial and take a look at their structure and contents. Keep the XSD
and XML files open while doing the tutorial, so that you can refer to them. Save your SPS document with a
name other than QuickStart.sps (say MyQuickStart.sps) so that you do not overwrite the supplied SPS file.
And, of course, remember to save after successfully completing every part.

23

52 Quick Start Tutorial Creating and Setting Up a New SPS

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3.1 Creating and Setting Up a New SPS

In this section, you will learn:

· How to create a new SPS document
· How to add a schema source for the SPS
· How to select the XSLT version of the SPS
· How to assign the Working XML File
· How to specify the output encoding
· How to save the SPS document

Files in this section
Files referred to in this section are located in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\QuickStart:

· QuickStart.xsd, the XML Schema file on which the SPS is based.
· QuickStart.xml, the Working XML File, which is the source of the data displayed in the output

previews.
· QuickStart.sps, which is the finished SPS file; you can compare the SPS file you create with this

file.

Creating a new SPS document

Create a new SPS document by clicking File | New | New (Empty) or select New (Empty) in the

dropdown list of the New icon in the application toolbar. The Create New Design dialog pops up.

The Create New Design dialog (screenshot below) prompts you to select either: (i) a free-flowing document
design, or (ii) a form-based document design (in which components are positioned absolutely, as in a layout
program).

52

54

55

55

55

55

23

424

422

© 2019-2025 Altova GmbH

Creating and Setting Up a New SPS 53Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

In a free-flowing document design, document content is laid out to fit the output media object or viewer (paper or
screen). Items in the document content can only be placed relative to each other, and not absolutely. This kind
of design is suited for documents such as reports, articles, and books.

In a form-based document, a single Layout Container is created, in which design components can be
positioned absolutely. The dimensions of the Layout Container are user-defined, and Layout Boxes can be
positioned absolutely within the Layout Container and document content can be placed within individual Layout
Boxes. If you wish the design of your SPS to replicate a specific form-based design, you can use an image of
the original form as a blueprint image . The blueprint image can then be included as the background image of
the Layout Container. The blueprint image is used to help you design your form; it will not be included in the
output.

You will be creating a free-flowing document, so select this option by clicking the Create a free-flow document
radio button, then click OK.

A new document titled SPS1.sps is created and displayed in Design View (screenshot below).

160

160

27

54 Quick Start Tutorial Creating and Setting Up a New SPS

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

In Design View , an empty main template is displayed. In the Design Overview and Schema Tree
sidebars, there are no schema entries.

Adding a schema source
For this SPS, you will use the schema, QuickStart.xsd. To add this schema as the schema source, do the
following:

1. In the Design Overview sidebar, under the Sources heading, click the Add New Source command
(screenshot above). In the menu that pops up (screenshot below), select Add XML
Schema/DTD/XML.

2. In the Open dialog that pops up browse for the file QuickStart.xsd in the (My) Documents folder
 (see above), and click Open.

3. You will be prompted to select a Working XML File. Select the option to select the file from the
filesystem, then browse for the file QuickStart.xml in the (My) Documents folder (see above), and
click Open. The schema will be added as a schema source in the Design Overview sidebar and in the
Schema Tree sidebar (screenshot below). Also, in the Design Overview, the Working XML File you
chose will be assigned to the schema.

27 33 36

52

52

© 2019-2025 Altova GmbH

Creating and Setting Up a New SPS 55Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

You should note the following points: (i) In Design Overview, the $XML entry for the schema source lists
the schema and the Working XML File ; (ii) In the Schema Tree sidebar, the Root Elements tree
would list the one or more root elements (document elements) you select from among the global
elements defined in the schema. In the case of this schema, the element presswatch is selected
by default because it is the one global element in the schema that lies clearly at the top of the
hierarchy defined in the schema; (iii) All global elements in the schema are listed in the All Global
Elements tree .

Selecting the XSLT version

For this SPS you will use XSLT 2.0. To specify the XSLT version, in the application toolbar, click the icon.

Assigning or changing the Working XML File
While adding the XML Schema to the SPS in the previous step, you also assigned a Working XML File to
the schema. A Working XML File provides the SPS with a source of XML data to process. To assign, change,
or unassign a Working XML File for a given schema, in the Design Overview sidebar, right-click anywhere in

the Working XML File line you wish to modify (or click the Context Menu icon at the right), and select the
required command from the context menu that pops up. The Working XML File is now assigned, and the
filename is entered in the Design Overview. Before proceeding, ensure that you have correctly assigned the file
QuickStart.xml, which is in the (My) Documents folder , as the Working XML File.

Specifying the encoding of output
In the Default Encoding tab of the Options dialog (Tools | Options), set the HTML encoding to Unicode
UTF-8.

Saving the SPS document
After you have set up the SPS as described above, save it as MyQuickStart.sps in the (My) Documents
folder . Do this via the menu command File | Save Design or Ctrl+S. In the Save Design dialog that
pops up, select the Save as SPS option, and enter the name of the SPS file to save..

22

21

21

21

21

36

22

22

22

52

499

52 435

56 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3.2 Inserting Dynamic Content (from XML Source)

This section introduces mechanisms to insert data from nodes in the XML document. In it you will learn how to
drag element and attribute nodes from the schema tree into the design and create these nodes as contents.
When a node is created as contents, the data in it is output as a string which is the concatenation of the
content of that element's child text nodes and the text nodes of all descendant elements.

Inserting element contents
In your SPS, do the following:

1. In the Schema Tree sidebar , expand the schema tree up to the children of the newsitem element
(screenshot below).

2. Select the headline element (notice that the element's datatype is displayed in a pop-up when you
mouseover; screenshot above). Drag the element into Design View , and, when the arrow cursor
turns to an insertion point, drop it into the main template.

3. In the context menu that pops up, select Create Contents. The start and end tags of the headline
element are inserted at the point where you dropped the headline element, and they contain the
content placeholder. The headline tags are surrounded by the start and end tags of the ancestor
elements of headline (screenshot below).

4. In the design put elements on different lines (by pressing Enter) as shown in the screenshot below.

36

31

© 2019-2025 Altova GmbH

Inserting Dynamic Content (from XML Source) 57Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

Click the HTML tab to see a preview of the HTML output (screenshot below). The HTML preview
shows the contents of the headline child elements of newsitem, each as a text string.

Note: You can also create the contents of a node by using the following steps: (i) Click the the Insert Contents
icon in the Insert Design Elements toolbar , (ii) Click the location in the design where you wish to insert the
content, (iii) Select, from the Schema Selector tree that pops up, the node for which you wish to create
contents.

Inserting attribute contents
When an element is inserted into the design as contents, the contents of its attributes are not automatically
inserted. You must explicitly drag the attribute node into the design for the attribute's value to be output. In your
SPS, now do the following:

1. Place the cursor after the end tag of the headline element and press Enter. This produces an empty
line (screenshot below).

28

419

58 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. In the Schema Tree sidebar, expand the dateline element (screenshot below).

Notice that the dateline element has two child elements, date and place, and that the place
element has two attributes, city and country.

3. Drag the dateline element into the design and drop it at the beginning of the newly created empty line
(screenshot below).

© 2019-2025 Altova GmbH

Inserting Dynamic Content (from XML Source) 59Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

4. Switch to HTML Preview and look carefully at the output of dateline (screenshot below).

Notice that while the contents of the date children of dateline elements have been output, no
contents have been output for the place children of dateline. This is because the place data is
contained in the attributes of the place element (in the attributes city and country) and attribute
contents are not output when the attribute's parent element is processed.

5. Drag the date element from the Schema Tree sidebar and drop it (create it as contents) in
between the start and end tags of the dateline element.

6. Select the city attribute of the dateline/place element (screenshot below) in the Schema Tree
sidebar .

28

36

36

60 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

7. Drag the @city attribute node into Design View , and drop it (create as contents) just after the end
tag of the date element.

8. Drag the @country attribute node into Design View , and drop it (create as contents) just after the
end tag of the @city attribute.

When you are done, the SPS design should look something like this:

The HTML Preview will look like this:

27

27

28

© 2019-2025 Altova GmbH

Inserting Dynamic Content (from XML Source) 61Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

Notice that the values of the @city and @country attributes are now included in the output.

Adding more dynamic content
The contents of elements and attributes from the XML data source can be inserted anywhere in the design
using the method described above. To complete this section, add the synopsis and source elements to the
design so that the design now looks like this:

Notice that the synopsis element has been placed before the source element, which is not the order in which
the elements are in the schema. After you have added the synopsis and source elements to the design,
check the HTML preview to see the output. This is an important point to note: That the order in which nodes
are placed in the main template is the order in which they will appear in the output (see the section,
Templates and Design Fragments , for more information about structuring the output document).

Another important point to note at this stage is the form in which a node is created in the design. In the HTML
preview , you will see that all the nodes included in the design have been sent to the output as text strings.
Alternatively to being output as a text string, a node can be output in some other form, for example, as a table

28

21

216

28

62 Quick Start Tutorial Inserting Dynamic Content (from XML Source)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

or a combo box. In this section, you have, by creating all the nodes as (contents), specified that the output
form of all nodes are text strings. In the section, Using Conditions , you will learn how to create a node as a
combo box, and in the section, Using Global Templates and Rest-of-Contents , how to create a node as a
(dynamic) table.

Make sure to save the file before moving to the next section.

78

85

© 2019-2025 Altova GmbH

Inserting Static Content 63Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

3.3 Inserting Static Content

Static content is content you enter or insert directly in the design—as opposed to content that comes from the
XML source. A variety of static components can be placed in an SPS design. In this part of the tutorial, you will
learn how to insert the following static components:

· An image
· A horizontal line
· Text

Inserting a static image
The static image to insert is in the (My) Documents folder : C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\QuickStart\NewsItems.BMP. It will
be used as the header of the document. To insert this image at the head of the document, do the following:

1. Place the cursor between the start-tags of newsitems and newsitem (screenshot below).

Notice that the cursor is within the newsitems element but outside the newsitem element. It will
therefore be inserted in the output once, at the start of processing of the newsitems element (because
there is only one newsitems element defined in the schema).

2. Right-click, and select Insert | Image . The Insert Image dialog pops up (screenshot below).

3. In the Static tab, click the Absolute Path check box, then browse for the file NewsItems.BMP and
select it.

4. Click OK to finish.

The HTML preview will look something like this:

63

64

64

23

462

64 Quick Start Tutorial Inserting Static Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Inserting horizontal lines
The first horizontal line you will insert is between the document header and document body. Do this as follows:

1. Place the cursor immediately after the recently inserted static image.
2. Right-click, and select Insert | Horizontal Line . A horizontal line is inserted.

Set properties for the line as follows:

1. With the line selected in Design View , in the Properties sidebar , select the line component (in
the Properties For column) and then the HTML group of properties.

2. Assign color and size properties for the line.
3. With the line selected in Design View , in the Styles sidebar , select the line component and then

the box group of properties. Define a margin-bottom property of 12pt.
4. Check the output in HTML Preview .

Now insert a horizontal line at the end of each news item. To do this the cursor would have to be placed
immediately before the end-tag of the newsitem element. This will cause the line to be output at the end of
each newsitem element. You can change the thickness of the line by setting the line's size property to a
number with no unit (in the Properties sidebar, select line, and set a value of, say 3).

Inserting static text
You have already added static text to your design. When you pressed the Enter key to obtain new lines (in the
section Inserting Dynamic Content (from XML Source)), whitespace (static text) was added. In this section,
you will add a few static text characters to your design.

The SPS you have designed up to this point will produce output which looks something like this:

464

27 45

27 44

28

56

© 2019-2025 Altova GmbH

Inserting Static Content 65Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

Notice that in the output of the dateline element, the contents of the date element and place/@city and
place/@country attributes are run together without spacing. You can add the spacing as static text. In the
design, place the cursor after the date element and enter a colon and a space. Next, enter a comma and
space after the @city attribute (screenshot below)

This part of the output will now look like this:

Notice the colon, spacing and comma in the dateline output. All of these text items are static text items that
were inserted directly in the design.

You will now add one more item of static text. In the design, type in the string "Source: " just before the start-
tag of the source element (screenshot below).

66 Quick Start Tutorial Inserting Static Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Formatting static text
To format static text, highlight the text to be formatted and specify local style properties. In the design,
highlight the text "Source:" that you just typed. In the Styles sidebar (screenshot below), notice that the 1
text component is selected. Now expand the font group of properties as shown in the screenshot below, and,
for the font-style property, select the italic option from the dropdown menu.

The static text (that is, the string "Source:") will be give an italic style in the design, and will look like this:

The output will look like this in HTML Preview:

44

© 2019-2025 Altova GmbH

Inserting Static Content 67Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

If you think there is too little vertical space between the source item and the horizontal line separating two
newsitem elements, then, in the design, insert a blank line between the source and the horizontal line (by
pressing Enter).

After you are done, save the file.

In this section you have learned how to insert static content and format it. In the next section you will learn
more about how design components can be formatted using CSS principles and properties.

68 Quick Start Tutorial Formatting the Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3.4 Formatting the Content

StyleVision offers a powerful and flexible styling mechanism , based on CSS, for formatting components in
the design. The following are the key aspects of StyleVision's styling mechanism:

· CSS style rules can be defined for both block components and inline components.
· Predefined formats are block components that have inherent styles and can be used as wrappers

for a group of components that need to be treated as a block. The inherent styles of these predefined
formats can be overridden by styles you specify locally on each component. This is in keeping with the
cascading principle of CSS.

· Class attributes can be declared on components in the design, and the class can be used as a
selector of external or global style rules.

· You can specify styles at three levels. These are, in increasing order of priority: (i) style rules in
external stylesheets , (ii) global style rules , and (iii) local style rules .

In this section, you will learn how to:

· Assign predefined formats
· Assign a component a class attribute
· Define styles in an external CSS stylesheet and add this stylesheet to the style repository of the

SPS
· Define global style rules
· Define local styles for a selection of multiple design components
· Define local styles for a single component

Assigning predefined formats
One reason to assign a predefined format is to give a component the inherent styling of that predefined
format . In the design, select the headline element and then select Enclose with | Special Paragraph |
Heading 3 (h3) (alternatively use the Predefined Formats combo box in the toolbar). The predefined format
tags are created around the headline element (screenshot below).

Notice that the font properties of the contents change and that vertical spacing is added above and below the
predefined format. These property values are inherent in the h3 predefined format.

Another use of predefined formats is to group design components in a block so that they can be formatted as a
block or assigned inline properties as a group. The most convenient predefined property for this purpose is the
div predefined format, which creates a block without spacing above or below. In your design, assign the
newsitem, dateline, synopsis, and source nodes separate div components. Your design should look
something like the screenshot below. Note that the static text "Source: " is also included in the div
component that contains the source element, and that the entire newsitem element is inside a div
component.

320

307

321 324

321 324 326

68

69

70

70

72

72

307

307

© 2019-2025 Altova GmbH

Formatting the Content 69Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

You have now grouped components together in different div blocks. Later in this section , you will learn how
to assign styles to such blocks of grouped components.

Assigning components to class attributes
A style rule can be defined for a class of components. For example, all headers can be defined to have a set of
common properties (for example, a particular font-family, font-weight, and color). To do this you must do two
things: (i) assign the components that are to have the common properties to a single class; (ii) define the
styling properties for that class.

In your design, select the h3 tag, and, in the Styles sidebar, select 1 paragraph (to select the predefined
format), and the common group of properties. Expand the common group of properties, then double-click in the
Value field of the class property and enter header.

72

70 Quick Start Tutorial Formatting the Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

This particular instance of the h3 format is now assigned to a class named header. When you define styling
properties for the header class (styles from an external stylesheet or global SPS styles), these properties will
be applied to all components in the SPS that have the header class.

Adding an external CSS stylesheet to the style repository
Style rules in an external CSS stylesheet can be applied to components in the SPS design. External
stylesheets must, however, first be added to the style repository in order for rules in them to be applied to
components. In the Style Repository sidebar (in Design View), do the following:

1. Select the External item.
2. Click the Add button in the toolbar of the Style Repository sidebar . This pops up the Open dialog.
3. Browse for the file C:\Documents and Settings\<username>\My

Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\QuickStart\QuickStart.

css, which is in the (My) Documents folder , and click Open.

The stylesheet is added to the style repository. It contains the following rules that are relevant at this stage:

.header {
 font-family: "Arial", sans-serif;
 font-weight: bold;
 color: red;
}

h3 {
 font-size: 12pt;
}

The style rules for the header class and h3 element are combined and produce the following HTML output for
the headline element.

Defining global style rules
Global style rules can be defined for the entire SPS using CSS selectors. The rules are defined directly in
the Style Repository sidebar . Create a global style rule for the header class as follows:

1. With Design View active, in the Style Repository sidebar , select the Global item.

42

42

23

324

42

27 27

© 2019-2025 Altova GmbH

Formatting the Content 71Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

2. Click the Add button in the toolbar. This creates an empty rule for the wildcard selector (*), which is
highlighted.

3. Type in .header to replace the wildcard as the selector.
4. Expand the color group of properties, and select green from the dropdown list of the color property

values (screenshot below).

Where the global style rule defines a property that is also defined in the external stylesheet (the color
property), the property value in the global rule takes precedence. In the HTML preview, the contents of the
headline will therefore be green. Other property definitions from the external stylesheet (not over-ridden by a
property in a global style rule) are retained (in this case, font-family and font-weight).

72 Quick Start Tutorial Formatting the Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Defining local styles for multiple components at once
Local styles can be defined for multiple components at once. In your design, to specify that the entire text
contents of a news item should have Arial as its font, click the div component surrounding the newsitem
element and, in the Styles sidebar , in the Styles For column, select 1 paragraph. Then, in the font group
of properties, assign Arial as the font-family. This property setting will be inherited by all five descendant
predefined formats.

Now, in the design, select the three div components surrounding the dateline, synopsis, and source nodes
(by keeping the Shift key pressed as you click each div component). In the Styles sidebar , select 3
paragraphs, then the font group of properties, and set a font-size of 10pt. (The h3 component was not
selected because it already has the required font-size of 12pt.)

Finally, in the design, select the div component surrounding the dateline element. In the Styles For column
of the Styles sidebar , select 1 paragraph. In the font group of properties, set font-weight to bold and
font-style to italic. In the color group of properties, set color to gray. The output of the dateline will look
like this

Notice that the styling defined for the div component has been applied to the static text within the div
component as well (that is, to the colon and the comma).

Defining local styles for a single component
A local style defined on a single component overrides all other styles defined at higher levels of the SPS for that
component. In the design, select the headline element and assign it a color of navy (color property in the
color group of style properties). The locally defined property (color:navy) overrides the global style for the
.header class (color:green).

Select the div component surrounding the source element. In the Styles sidebar , with the 1 paragraph
item in the Styles For column selected, set the color property (in the color group of style properties) to gray.
In the font group of style properties, set font-weight to bold. These values are applied to the static text.
Remember that in the last section the static text "Source: " was assigned a font-style value of italic. The
new properties (font-weight:bold and color:gray) are additional to the font-style:italic property.

Now, in Design View, select the (content) placeholder of the source element. In the Styles For column, with
1 content selected, set the color property (in the color group of style properties) to black. In the font group of
properties, set font-weight to normal. The new properties are set on the contents placeholder node of the
source element and override the properties defined on the div component (see screenshot below).

Completing the formatting
To complete the formatting in this section, select the div component on the synopsis element and, in the
Predefined Formats combo box in the toolbar, select p. This gives the block the inherent styles of HTML's p
element. The HTML preview should now look something like this:

44

44

44

44

307

© 2019-2025 Altova GmbH

Formatting the Content 73Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

After you are done, save the file.

74 Quick Start Tutorial Using Auto-Calculations

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3.5 Using Auto-Calculations

Auto-Calculations are a powerful mechanism for providing additional information from the available XML data.
In this section you will add two pieces of information to the design: the total number of news items and the time
period covered by the news items in the XML document. Neither piece of information is directly available in the
XML document but has to be calculated or manipulated from the available data.

Counting the news item nodes
In the design, do the following:

1. Create space, as shown in the screenshot below, for a line of static text (on which the Auto-Calculation
will also be placed). Use the Return key to add new lines and insert a horizontal line below the space
you create (see screenshot).

2. Type in the static text "Total number of news items: " as shown in the screenshot above.
3. Apply local styling of your choice to the static text. Do this as described in the section Formatting the

Content .
4. Place the cursor after the colon and select Insert | Auto-Calculation | Value. This pops up the Edit

XPath Expression dialog (screenshot below). (Alternatively, you can right-click and select the
command in the context menu.)

241

72

398

© 2019-2025 Altova GmbH

Using Auto-Calculations 75Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

5. In the schema tree, note that the context node is newsitems, which is highlighted. Now, in the
Expression text box either type in the expression count(newsitem) or build the expression using the
entry-helper panes below the Expression text box. (Double-click the count function (found in the
Sequence group of functions) to enter it, then (in the expression in the text box) place the cursor within
the parentheses of the function and double-click the newsitem node in the schema tree. You can see
what the XPath expression returns by clicking the Evaluator button. The result of the evaluation will be
in the Results pane (see screenshot below). For a detailed description of the Edit XPath Expression
dialog, see the section Edit XPath Expression .398

76 Quick Start Tutorial Using Auto-Calculations

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

6. Click OK to finish. The Auto-Calculation is inserted in the design at the cursor location (screenshot
below). Format the Auto-Calculation using local styles .

Your HTML output will look like this:

72

© 2019-2025 Altova GmbH

Using Auto-Calculations 77Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

Displaying the period covered by news items
The period covered by all the news items together can be obtained by getting the date of the earliest news item
and the date of the latest news item. This can be achieved with XPath expressions like those given below. The
first expression below outputs the contents of the date node. The second expression is a refinement,
outputting just the month and year values in the date node. You can use either of these.

· concat(min(//date), ' to ', max(//date)).
· concat(month-from-date(min(//date)), '/', year-from-date(min(//date)), ' to ',

month-from-date(max(//date)), '/', year-from-date(max(//date)))

In the design, insert the static text and Auto-Calculation as shown in the screenshot below. Apply whatever
local styling you like.

The HTML preview will look something like this:

After you are done, save the file.

78 Quick Start Tutorial Using Conditions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3.6 Using Conditions

If you look at QuickStart.xml, you will see that each newsitem element has a metainfo child element, which
in turn can contain one or more relevance child elements. Each relevance node contains a heading under
which the relevance of the news item is indexed. Further, there is a
node /presswatch/selection/byrelevance. The content of this node contains one of the relevance headings
and determines what news items are displayed. For example, if the content of the byrelevance node is
NanoPower, then all news items that have a relevance node containing NanoPower are displayed. A condition
can test what the content of the byrelevance node is (by looking up that node) and provide appropriate
processing (displays) in the conditional template. In this section, you will create a conditional template that
displays those news items that have a relevance element that matches the content of byrelevance.

We will proceed as follows:

1. Create a combo box which displays the value of the byrelevance node. The values in the dropdown
list of the combo box are obtained by using an XPath expression, which dynamically compiles a list of
all unique relevance node values.

2. Insert a condition around the newsitem element. This condition selects all newsitem elements that
have a relevance element with content matching the content of the byrelevance node. The content
that is surrounded by a branch of a condition is known as a conditional template.

3. Within the conditional template, list each relevance node of that news item.
4. Highlight the relevance element (in the list of relevance elements) that matches the byrelevance

element. This is done by creating a condition to select such relevance elements and then applying
special formatting to this conditional template.

5. In the condition for the newsitem element, insert a branch that selects all news items.

Creating the combo box to select unique node values
In the XML document, the node that will contain the user selection is /presswatch/selection/byrelevance.
Create this node as a combo box. Do this as follows:

1. Insert the static text "Select by relevance: " at the head of the document and just below the
second Auto-Calculation (screenshot below).

2. Drag the byrelevance node from the Schema Tree sidebar (screenshot below), and drop it after the
newly entered static text.

74

36

© 2019-2025 Altova GmbH

Using Conditions 79Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

3. In the context menu that appears, select Create Combo Box. This pops up the dialog shown below.

80 Quick Start Tutorial Using Conditions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

4. In the Edit Combo Box dialog (screenshot above), select Use XPath Expression and then Use the
Same XPath for XML Values and Visible Entries. In the XPath for XML Values and Visible Entries,
enter the XPath expression: distinct-values(//relevance). This expression selects unique values
of all relevance elements in the XML document. Note that although the values of all relevance nodes
will appear in the HTML combo box, selecting one of them in HTML Preview will have no effect on the
content of the node in the XML document (which is what the SPS acts on). The HTML document is an
output obtained by transforming the XML document; it does not accept input. The combo box is used
here to demonstrate alternative ways of presenting content.

5. Click OK to finish. The combo box is inserted and the design will look something like this:

6. Switch to HTML Preview . When you click the dropdown arrow of the combo box, notice that the list
contains the unique values of all relevance nodes (screenshot below). Check this against the XML
document. This is a dynamic listing that will be augmented each time a new relevance value is added
to the XML document.

Inserting a condition to display news items having the selected relevance

The condition selects newsitem elements that have a metainfo/relevance element with a value that is the
same as that in the /presswatch/selection/byrelevance element. Insert the condition as follows:

1. Select the contents of the newsitem part of the design which is to be contained inside the condition
(highlighted in the screenshot below).

28

© 2019-2025 Altova GmbH

Using Conditions 81Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

2. Select the menu command (or context menu command) Enclose with | Condition . This pops up
the Edit XPath Expression dialog .

3. Enter the expression metainfo/relevance=/presswatch/selection/byrelevance. This expression
evaluates to true when the value of the metainfo/relevance descendant of the current newsitem is
the same as the value of the /presswatch/selection/byrelevance element (the user selection).

4. Click OK. The condition is created around the contents of the newsitem element (screenshot below).

Note that there is a single branch in this condition. News items for which the condition test evaluates to true
are displayed, those for which the condition test does not evaluate to true are not displayed. The condition in
this case, therefore, works as a filter. Later in this section, you will add a second branch to this condition.

Inserting the relevance node as a list

In order to display the relevance nodes of each newsitem element, insert them in the design as follows (see
screenshot below):

479

398

82 Quick Start Tutorial Using Conditions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

1. Create some vertical space below the div component for the source element and within the end-tag of
the conditional template.

2. Type in the static text "Relevance:" and create a predefined format of div around it (highlight the
static text and insert the predefined format).

3. Drag the relevance element from the Root elements tree in the Schema Tree sidebar and drop it
into the design below the static text Relevance:.

4. Create it as a list. (In the context menu that pops up when you drop the node in the design, select
Bullets and Numbering, and then select the desired list format.)

5. Apply text formatting to the contents of the list. When you are done, the design should look something
like this:

Now, in HTML Preview, check the results for different selections of relevance; Do this by: (i) changing the
value of the byrelevance node in the XML document; (ii) saving the XML document; (iii) and then re-opening
the SPS file in StyleVision.

Making the selected relevance element bold

Some news items have more than one relevance element. In such cases, the design would be improved if the
relevance that matches the user-selection were visually highlighted while the others were not. You can do this
in the following way:

1. Select the relevance element in the design.
2. Insert a condition, giving it an XPath expression of: .=/presswatch/selection/byrelevance. This

creates a condition with a single branch (screenshot below) that selects relevance elements that
match the byrelevance element.

36

© 2019-2025 Altova GmbH

Using Conditions 83Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

3. Select the contents placeholder and give it a local formatting (in the Styles sidebar) of bold (font
group) and yellow background-color (color group).

4. Right-click the condition and, from the context menu, select Copy Branch.
5. In the Edit XPath Expression dialog that pops up, check the Otherwise check box (top right-hand

side).
6. Click OK to finish. A new branch (Otherwise) is created (screenshot below). This condition branch

selects all relevance elements that do not match the byrelevance element.

7. Notice that the contents of the Otherwise branch are a copy of the first branch; the contents
placeholder is bold and has a yellow background. Remove this formatting (bold and background-color)
from the contents placeholder.

You have put a condition with two branches (each with its conditional template) that carries out the following
test on each relevance element: If the contents of relevance match those
of /presswatch/selection/byrelevance, then the contents of relevance are displayed bold and with a
yellow background. Otherwise (the second branch) they are displayed normal. Check this in HTML Preview.

Modifying the combo box and inserting a second condition branch
In the combo box, there is no dropdown list option for selecting all news items. To include this option do the
following:

1. In Design View, select the combo box.
2. In the Properties sidebar, with combobox selected in the Properties For column, click the Edit button

of the Combo box entry value property (in the combo box group of properties).
3. In the Edit Combo Box that pops up, modify the XPath expression from distinct-

values(//relevance) to distinct-values(//relevance), 'All'. This adds the string All to the
sequence of items returned by the XPath expression.

4. Check the dropdown list of the combo box in HTML Preview (screenshot below).

398

152

84 Quick Start Tutorial Using Conditions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

 The value All can now be entered in the byrelevance node. The idea is that when the byrelevance node
contains the value All, all news items should be displayed.

The condition that displays the news item template has a single branch with the expression
metainfo/relevance=/presswatch/selection/byrelevance. Since no metainfo/relevance node has the
value All, no news item will be displayed when All is the value of the byrelevance node. What you have to do
is create a second branch for the condition, which will test for a value of All. By creating the news item
template within this branch, you will be outputting the news item if the test is true. Do this as follows:

1. In Design View, select the news item condition.
2. Right-click the condition and, from the context menu, select Copy Branch.
3. In the Edit XPath Expression dialog that pops up, enter the

expression: /presswatch/selection/byrelevance='All'.
4. Click OK to finish. A second branch is created.

The second branch has as its contents the same template as the first branch. What the second branch does is
output the news item template if the content of the byrelevance node is All.

After you have completed this section, save the design.

398

© 2019-2025 Altova GmbH

Using Global Templates and Rest-of-Contents 85Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

3.7 Using Global Templates and Rest-of-Contents

Global templates are useful for specifying the processing of an element globally. This enables the rules of
the global template (defined in one location) to be used at multiple locations in the stylesheet. A global
template can be used in two ways:

· The rules of the global template can be copied to the local template.
· A local template (in the main template) can pass processing of that node to the global template. After

the global template is executed, processing resumes in the main template. In this case, the global
template is said to be invoked or used from the main template.

There are two mechanisms that are used to invoke a global template from the main template:

· A local template references a global template.
· A (rest-of-contents) instruction in the main template applies templates to the descendant

elements of the current element (that is, to the rest-of-contents of the current element). If a global
template exists for one of the descendant elements, the global template is applied for that element.
Otherwise the built-in template for elements is applied. (The built-in template for elements processes
child elements and outputs the text content of elements. As a result, the text content of all
descendants elements will be output. Note that the values of attributes are not output.)

In this section, you will create a design for the team-members' template using the rest-of-contents instruction
and a global template for the global element member.

Inserting the rest-of-contents instruction
The broad structure of the schema is shown in the screenshot below.

The document element presswatch contains three children: (i) selection; (ii) newsitems; and (iii) team. The
main template you have created this far processes the /presswatch element. Within the presswatch element,

21

21

86 Quick Start Tutorial Using Global Templates and Rest-of-Contents

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

only the newsitems element is processed. The selection and team elements are not processed within the
presswatch element (although selection has been processed within the newsitems element). Inserting the
rest-of-contents instruction within presswatch will therefore cause the selection and team elements to be
processed.

Insert the rest-of-contents instruction in the design by placing the cursor between the end-tags of
newsitems and presswatch, and selecting the menu command or context menu command Insert | Rest of
Contents . The rest-of-contents placeholder is inserted (screenshot below).

If you look at the HTML preview, you will see a string of text (screenshot below):

This string is the result of the application of the built-in templates to the selection and team elements. The
built-in template for elements processes child elements. The built-in template for text nodes outputs the text in
the text node. The combined effect of these two built-in templates is to output the text content of all the
descendant nodes of the selection and team elements. The text All comes from selection/byrelevance,
and is followed by the text output of team/member descendant nodes, first, last, email, in document order.
Note that the id attribute of member is not output (because, as an attribute, it is not considered a child of
member).

Creating a global template for selection

Since the content of selection is not required in the output, you should create an empty global template for
selection so that its contents are not processed. Do this as follows:

1. In Design View, right-click selection in the All Global Elements tree in the Schema Tree sidebar .
2. In the context menu that pops up, select Make / Remove Global Template. A global template for

selection is created (screenshot below).

3. In the global template, click the contents placeholder and press the Delete key of your keyboard. The
contents placeholder is deleted.

4. Check the HTML preview. The text All is no longer present in the line of text output by the built-in
templates (screenshot below).

459

36

© 2019-2025 Altova GmbH

Using Global Templates and Rest-of-Contents 87Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

Since the global template for selection is empty, the child elements of selection are not processed.

Creating a global template for team/member

The objective is to create a table to display details of the members of the press monitoring team. This table will
be created in a global template for the team element. Do this as follows:

1. Create a global template for the element team (right-click team in the All Global Elements list of the
Schema Tree sidebar and select Make / Remove Global Template).

2. In the All Global Elements list, expand the team element and drag its member child element into the
global template of team (in the design).

3. In the context menu that pops up when you drop the element into the global template of team, select
Create Table. This pops up the Create Dynamic Table dialog (screenshot below).

4. In the attributes/elements list deselect @id, department and telephone (see screenshot), and click
OK. The dynamic table is created.

5. Place the cursor in a cell of the table body, and in the Properties sidebar , with table selected in
the Properties For column, specify table properties as shown in the screenshot below.

45

88 Quick Start Tutorial Using Global Templates and Rest-of-Contents

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

6. Set additional properties as required in the Properties and Styles sidebars. For example, a background
color can be set for the header row by placing the cursor in the header row, and with trow selected in
the Styles For column of the Styles sidebar, specifying a value for the background-color property
(color group). You can also edit the headers, which are strings of static text. Also, if the content
placeholder of the team element is still present in the global template, delete it.

The HTML preview of the table will look something like this:

© 2019-2025 Altova GmbH

That's It! 89Quick Start Tutorial

Altova StyleVision 2025 Basic Edition

3.8 That's It!

Congratulations for having successfully completed the tutorial. You have learned the most important aspects of
creating an SPS:

· How to create the structure of the document (main template and global templates).
· How to insert dynamic and static content in the design, using a variety of dynamic and static

SPS components..
· How to use CSS styles , in external stylesheets , in global style rules , and in local style

rules .
· How to use Auto-Calculations to derive additional information from the available XML data.
· How to use conditions to filter the XML data and how to obtain different outputs depending on values

in the XML data.
· How to use global templates and rest-of-contents .

For a more detailed description of these features, see the corresponding sections in the following four sections:

· SPS File: Content
· SPS File: Structure
· SPS File: Advanced Features
· SPS File: Presentation
· SPS File: Additional Functionality

These sections also contain descriptions of several other StyleVision features not encountered in the Quick
Start tutorial.

56 56 85

56 63

56 70 70

72

74

78

86 85

103

173

240

306

338

90 Usage Overview

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

4 Usage Overview

Objectives
SPS documents that you create in StyleVision can be used to generate XSLT stylesheets for HTML. A
stylesheet generated from an SPS can be used to transform any XML document based on the same schema
as the SPS.

Steps for creating an SPS
Given below is an outline of the steps involved in creating a new SPS.

1. Assign a schema to the newly created empty SPS. The schema may be: (i) a schema file (DTD or
XML Schema); (ii) an XML Schema generated from a DB (Enterprise and Professional editions only);
(iii) a schema based on an XBRL taxonomy (Enterprise edition only); (iv) a user-defined schema
(created directly in StyleVision). This is done in the Design Overview sidebar . Alternatively, a new
SPS can be created directly with a schema via the File | New command.

2. Assign a Working XML File to the SPS. The Working XML File provides the XML data
processed by the SPS when generating output previews. The Working XML File is assigned in the
Design Overview sidebar . The Working XML File enables you to preview output in StyleVision.

3. Select the required XSLT version . In order to generate Text output, the XSLT version must be XSLT
2.0 or XSLT 3.0

4. Select the Internet Explorer Compatibility to match the installed Internet Explorer version.
5. The SPS document is designed in Design View using the various design components available to

the designer. The design process consists of creating a document structure and defining
presentation properties .

6. The outputs are tested. If modifications to the design are required, these are made and the SPS
document is re-tested.

7. If XSLT files or output files are required, these are generated .

36

33

36 22

22

33

93

94

27

92

306

96 96

© 2019-2025 Altova GmbH

SPS and Sources 91Usage Overview

Altova StyleVision 2025 Basic Edition

4.1 SPS and Sources

Creating a new SPS file
To create a new SPS document, select an option from under the File | New (Ctrl+N) command or click the

New Design icon in the Standard toolbar . A new SPS document is created and is displayed in
Design View. The new document is given a provisional name of SPSX.sps, where X is an integer corresponding
to the position of that SPS document in the sequence of new documents created since the application was
started.

After a new SPS document is created, the source files for the SPS must be assigned.

Assigning source files for the SPS
There are two types of source files that can be assigned to an SPS:

· Schema sources
· Working XML File

These source file assignments are made in the Design Overview sidebar . How to make the assignments is
described in the section, Design Overview . The significant points about each type of source file are given
below.

Schema sources
A schema source file must be assigned to an SPS so that a structure for the design document can be created.
Schema sources are assigned in the Design Overview sidebar . A schema may be an XML Schema file
(.xsd file), an XML Schema generated from an XML file, a DTD, or a user-defined schema. For each schema,
one optional Working XML File can be assigned.

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is based.

Working XML File
 can, optionally, have a Working XML File associated with it. The function of the Working XML File is to
provide the XML data source for output previews in StyleVision, and it must therefore be valid according to the
schema with which it is associated. The Working XML File is assigned in the Design Overview sidebar .

424

422

91

91

33

33

33

91

22 22

22 33

92 Usage Overview Creating the Design

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

4.2 Creating the Design

In the SPS design, you specify:

1. What content (from the XML document or DB) should go to the output; additionally content can be
inserted directly in the SPS for inclusion in the output;

2. How the output should be structured ; and
3. What presentation (formatting) properties are applied to the various parts of the output.

Content for output
The content for the output can come from:

1. The XML document to which the SPS is applied. Content from the XML document is included in the
SPS by dragging the required XML data node from the relevant schema tree in the Schema Tree
sidebar and dropping this node at the desired place in the SPS.

2. An external XML document that is accessible to the application (that is, to StyleVision). By using the
doc() function of XPath 2.0 in an Auto-Calculation, content from external XML document sources can
be accessed. An XML document accessed via the doc() function in an XPath expression does not need
to be referenced via the Schema Sources associations.

3. The SPS itself. Text and other content (such as images and tables) can be inserted directly in the
SPS using the keyboard and other GUI features. Such input is independent of the XML document.

4. Manipulated dynamic (XML source) data, with the manipulations being achieved using XPath
expressions. Manipulations are typically achieved with Auto-Calculations .

5. For the HTML output, JavaScript functions can be used to generate content.

Structure of output
In the SPS design, the structure of the output can be controlled by using either: (i) a procedural approach,
in which the output structure is specified in an entry-level template (StyleVision's main template) and
can be independent of the structure of the XML document; (ii) a declarative approach, in which template rules
are declared for various nodes (StyleVision's global templates), thus generating an output that follows
the structure of the XML document; or (iii) a combination of the procedural and declarative approaches. In
Design View, you can use a mix of main template and global templates to obtain the desired structure
for the output document. The use of Modular SPSs and Design Fragments provides additional flexibility
in the way an SPS is structured.

Presentation (or formatting) of the output
In Design View, presentation properties are applied to design components using CSS styles. Styles can be
defined locally on the component, for HTML selectors declared at the document level, and for HTML selectors
declared in an external CSS stylesheet. Additionally, certain HTML elements can be applied to components
using predefined formats . Specifying presentation properties is described in detail in the section,
Presentation Procedures .

92

92

92

22

36

36

241

363

216

216 216

216 216

216 216

202 226

307

306

© 2019-2025 Altova GmbH

XSLT and XPath Versions 93Usage Overview

Altova StyleVision 2025 Basic Edition

4.3 XSLT and XPath Versions

An SPS is essentially an XSLT stylesheet. For each SPS you must set the XSLT version: 1.0, 2.0, or 3.0. You

do this by clicking the appropriate toolbar icon: or or . The selection you make determines two
things:

· Which of the three XSLT engines in StyleVision is used for transformations; StyleVision has separate
XSLT 1.0, XSLT 2.0, and XSLT 3.0 engines.

· What XSLT functionality (1.0, 2.0, or 3.0) is displayed in the interface and allowed in the SPS. For
example, XSLT 3.0 uses XPath 3.0, which is a much more powerful language than XPath 1.0 (which is
used in XSLT 1.0) or XPath 2.0 (which is used in XSLT 2.0). Additionally, some SPS features, such as
the table-of-contents feature, is available only with XSLT 2.0 and XSLT 3.0.

Note: In order to generate Text output, the XSLT version must be XSLT 2.0 or XSLT 3.0

XSLT transformations
XSLT transformations in StyleVision are used: (i) to generate output views in the interface; and (ii) to
generate and save output files (HTML) from within the interface and via StyleVision Server. The XSLT
engine used for transformations (Altova XSLT 1.0, 2.0, or 3.0 Engines) corresponds to the XSLT version
selected in the SPS.

XSLT functionality in GUI
The functionality appropriate for each XSLT version relates mostly to the use of the correct XPath version (XPath
1.0 for XSLT 1.0, XPath 2.0 for XSLT 2.0, XPath 3.0 for XSLT 3.0). XPath expressions are widely used in
StyleVision—most commonly in features such as Auto-Calculations and Conditional Templates —and
there are interface mechanisms that require, and help you build, XPath expressions. The functionality of the
correct XPath version is automatically made available in the interface according to the XSLT version you select.

28

96 441

241 246

https://www.altova.com/stylevision/stylevision-server.html

94 Usage Overview Internet Explorer Compatibility

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

4.4 Internet Explorer Compatibility

Internet Explorer (IE) must be installed on the StyleVision machine to correctly display the SPS design (in
Design View) and output previews (in HTML Preview). Given below are notes about the IE versions that are
supported:

· Internet Explorer 5.5 or higher
· Internet Explorer 6.0 and higher has better XML support and is recommended.
· Internet Explorer 9 (IE9) or higher provides additional features, such as support for more image formats

and for new CSS styles. If you plan to use these additional features in your design, you might want to
consider using IE9.

IE9 feature-support in StyleVision
The following features of IE9 or higher are supported in StyleVision:

· Additional image formats supported: TIFF, JPEG XR, and SVG. (SVG documents must be in XML
format and must be in the SVG namespace.) These image formats will be displayed in IE9, but not in
older versions of IE. For a complete listing of images supported in the various outputs, see Image
Types and Output .

· Support for new CSS styles (including CSS3 styles), which are listed below. Application of these
styles is limited to HTML output.

§ background-clip
§ background-origin
§ background-size
§ box-sizing
§ box-shadow
§ border-radius (border-*-radius)
§ font-stretch
§ ruby-align
§ ruby-overhang
§ ruby-position
§ overflow-x, overflow-y
§ outline (outline-color, outline-style, outline-width)
§ text-align-last (partial)
§ text-overflow (partial)

· Support for the new CSS length function calc()
· Support for the new CSS color functions rgba(), hsl() and hsla()
· Support for the new CSS length units rem, vw, vm, vh and ch
· HTML5 elements that are supported by IE9 can be inserted in the design as user-defined elements .

Design View and IE versions
You can set up Design View for a specific IE version by specifying, in the Properties dialog, the IE version
with which you wish Design View to be compatible. This has the following effects:

· All CSS styles that can be rendered by the selected IE version will be automatically displayed in the
Styles sidebars of StyleVision. (Note, however, that if IE9 is selected, then IE9 must be installed for
the IE9-supported CSS styles to be available in the design interface.) For example, if IE9 is installed

146

116

444

© 2019-2025 Altova GmbH

Internet Explorer Compatibility 95Usage Overview

Altova StyleVision 2025 Basic Edition

and IE9 is selected as the compatibility version, then the CSS3 styles supported in IE9 will be
available in the design interface.

· HTML elements corresponding to the selected IE version can be entered as predefined formats or
as user-defined elements . The HTML element will be rendered in HTML Preview according to how
the installed IE version renders this element. For example, if IE9 is installed and IE9 selected as the
compatibility version, then the supported HTML5 elements will be rendered in HTML Preview.

Setting up Design View for a specific IE version
To set up Design View for a specific IE version, select the menu command File | Properties and, in the Output
tab, select the required IE (compatibility) version. See File | Properties for details.

Compatibility of older SPS designs with IE9
If you open an SPS design that has been created for an older IE version, and if the newer IE9 version or higher
is installed on the StyleVision machine, then StyleVision will detect the newer version and ask in a dialog
whether you wish to change the compatibility to IE9-compatibility. Changing to the new compatibility will
provide additional Design View options as indicated above. The appearance of the document in Design View
and HTML output will remain unchanged except for table columns, which are handled differently by IE9. If you
change the IE compatibility to IE9-compatibility, then check whether the table columns are generated as
required. If not, you can modify the properties of the table columns or switch, in the Properties dialog, the IE
compatibility back to that of the previously selected IE version.

106

116

444

444

96 Usage Overview Generated Files

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

4.5 Generated Files

In StyleVision, XSLT stylesheets and output files can be generated using the File | Save Generated Files
command or StyleVision Server.

The following files can be generated from StyleVision:

· XSLT stylesheets based on the SPS design.
· Output files, generated by processing the Working XML File assigned in the SPS with the XSLT

stylesheets generated from the SPS.

The markup for the output is contained in the SPS. The data for the output is contained in the XML document. It
is the XSLT stylesheet that brings markup and data together in the output. Both the XSLT stylesheets as well
as the actual output can be previewed in StyleVision in the Output Views .

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is based.

Altova website: XML reporting

Output documents
Given below are important points to note about the generated documents:

· HTML output and stylesheets: (1) The formatting and layout of the generated HTML document will be
identical to the HTML Preview of StyleVision. (2) Data-input devices (text input fields, check boxes,
etc) in the HTML file do not allow input. These data-input devices are intended for XML data input in
Authentic View and, though they are translated unchanged into the graphical HTML equivalents, they
cannot be used for data-entry in the HTML document.

Altova website: XML to HTML

441

22

28

https://www.altova.com/stylevision/stylevision-server.html
https://www.altova.com/stylevision/xml-reporting
https://www.altova.com/stylevision/xml-to-html

© 2019-2025 Altova GmbH

Catalogs in StyleVision 97Usage Overview

Altova StyleVision 2025 Basic Edition

4.6 Catalogs in StyleVision

The XML catalog mechanism enables files to be retrieved from local folders, thus increasing the overall
processing speed, as well as improving the portability of documents—since only the catalog file URIs then
need to be changed. See the section How Catalogs Work for details.

Altova's XML products use a catalog mechanism to quickly access and load commonly used files, such as
DTDs and XML Schemas. This catalog mechanism can be customized and extended by the user, and it is
described in the sections Catalog Structure in StyleVision and Customizing your Catalogs . The section
Variables for Windows System Locations list Windows variables for common system locations. These
variables can be used in catalog files to locate commonly used folders.

This section is organized into the following sub-sections:

· How Catalogs Work
· Catalog Structure in StyleVision
· Customizing your Catalogs
· Variables for Windows System Locations

For more information on catalogs, see the XML Catalogs specification.

4.6.1 How Catalogs Work

Catalogs can be used to redirect both DTDs and XML Schemas. While the concept behind the mechanisms of
both cases is the same, the details are different and are explained below.

DTDs
Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by mapping, in the
catalog file, public or system identifiers to the required local URI. So when the DOCTYPE declaration in an XML

file is read, its public or system identifier locates the required local resource via the catalog file mapping.

For popular schemas, the PUBLIC identifier is usually pre-defined, thus requiring only that the URI in the catalog

file map the PUBLIC identifier to the correct local copy. When the XML document is parsed, the PUBLIC

identifier in it is read. If this identifier is found in a catalog file, then the corresponding URL in the catalog file will
be looked up and the schema will be read from this location. So, for example, if the following SVG file is
opened in StyleVision:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="20" height="20" xml:space="preserve">

 <g style="fill:red; stroke:#000000">

 <rect x="0" y="0" width="15" height="15"/>

 <rect x="5" y="5" width="15" height="15"/>

 </g>

</svg>

97

98 99

101

97

98

99

101

http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

98 Usage Overview Catalogs in StyleVision

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The catalog is searched for the PUBLIC identifier of this SVG file. Let's say the catalog file contains the

following entry:

<catalog>

 ...
 <public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

 ...
</catalog>

In this case, there is a match for the PUBLIC identifier. As a result, the lookup for the SVG DTD is redirected to

the URL schemas/svg/svg11.dtd (which is relative to the catalog file). This is a local file that will be used as

the DTD for the SVG file. If there is no mapping for the Public ID in the catalog, then the URL in the XML

document will be used (in the SVG fie example above, this is the Internet URL:
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd).

XML Schemas
In StyleVision, you can also use catalogs with XML Schemas. In the XML instance file, the reference to the
schema will occur in the xsi:schemaLocation attribute of the XML document's top-level element. For example,

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

The value of the xsi:schemaLocation attribute has two parts: a namespace part (green above) and a URI part

(highlighted). The namespace part is used in the catalog to map to the alternative resource. For example, the
following catalog entry redirects the schema reference above to a schema at an alternative location.

<uri name="http://www.xmlspy.com/schemas/orgchart" uri="C:\MySchemas\OrgChart.xsd"/>

Normally, the URI part of the xsi:schemaLocation attribute's value is a path to the actual schema location.

However, if the schema is referenced via a catalog, the URI part need not point to an actual XML Schema but
must exist so that the lexical validity of the xsi:schemaLocation attribute is maintained. A value of foo, for

example, would be sufficient for the URI part of the attribute's value to be valid.

4.6.2 Catalog Structure in StyleVision

When StyleVision starts, it loads a file called RootCatalog.xml (structure shown in listing below), which

contains a list of catalog files that will be looked up. You can modify this file and enter as many catalog files to
look up as you like, each of which is referenced in a nextCatalog element. These catalog files are looked up

and the URIs in them are resolved according to their mappings.

Listing of RootCatalog.xml
<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog Catalog.xsd">
 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/CustomCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory level -->

 <nextCatalog spy:recurseFrom="%CommonSchemasFolder%" catalog="catalog.xml"

spy:depth="1"/>

© 2019-2025 Altova GmbH

Catalogs in StyleVision 99Usage Overview

Altova StyleVision 2025 Basic Edition

 <nextCatalog spy:recurseFrom="%ApplicationWritableDataFolder%/pkgs/.cache"

catalog="remapping.xml" spy:depth="0"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

</catalog>

The listing above references a custom catalog (named CustomCatalog.xml) and a set of catalogs that locate

commonly used schemas (such as W3C XML Schemas and the SVG schema).

· CustomCatalog.xml is located in your Personal Folder (located via the variable %PersonalFolder%). It

is a skeleton file in which you can create your own mappings. You can add mappings to
CustomCatalog.xml for any schema you require that is not addressed by the catalog files in the

Common Schemas Folder. Do this by using the supported elements of the OASIS catalog mechanism
(see next section).

· The Common Schemas Folder (located via the variable %CommonSchemasFolder%) contains a set of

commonly used schemas. Inside each of these schema folders is a catalog.xml file that maps public

and/or system identifiers to URIs that point to locally saved copies of the respective schemas.
· CoreCatalog.xml is located in the StyleVision application folder, and is used to locate schemas and

stylesheets used by StyleVision-specific processes, such as StyleVision Power Stylesheets which
are stylesheets used to generate Altova's Authentic View of XML documents.

Location variables
The variables that are used in RootCatalog.xml (listing above) have the following values:

%PersonalFolder%
Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder% C:\ProgramData\Altova\Common2025\Schemas

%
ApplicationWritableDataFolde
r% C:\ProgramData\Altova

Location of catalog files and schemas
Note the locations of the various catalog files.

· RootCatalog.xml and CoreCatalog.xml are in the StyleVision application folder.

· CustomCatalog.xml is located in your MyDocuments\Altova\StyleVision folder.

· The catalog.xml files are each in a specific schema folder, these schema folders being inside the

Common Schemas Folder.

4.6.3 Customizing Your Catalogs

When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by StyleVision), use

only the following elements of the OASIS catalog specification. Each of the elements below is listed with an
explanation of their attribute values. For a more detailed explanation, see the XML Catalogs specification. Note
that each element can take the xml:base attribute, which is used to specify the base URI of that element.

· <public publicId="PublicID of Resource" uri="URL of local file"/>

· <system systemId="SystemID of Resource" uri="URL of local file"/>

· <uri name="filename" uri="URL of file identified by filename"/>

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

100 Usage Overview Catalogs in StyleVision

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· <rewriteURI uriStartString="StartString of URI to rewrite" rewritePrefix="String to

replace StartString"/>
· <rewriteSystem systemIdStartString="StartString of SystemID"

rewritePrefix="Replacement string to locate resource locally"/>

Note the following points:

· In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element.

· A URI can be mapped to another URI using the uri element.
· The rewriteURI and rewriteSystem elements enable the rewriting of the starting part of a URI or

system identifier, respectively. This allows the start of a filepath to be replaced and consequently
enables the targeting of another directory. For more information on these elements, see the XML
Catalogs specification.

From release 2014 onwards, StyleVision adheres closely to the XML Catalogs specification (OASIS Standard
V1.1, 7 October 2005) specification. This specification strictly separates external-identifier look-ups (those with
a Public ID or System ID) from URI look-ups (URIs that are not Public IDs or System IDs). Namespace URIs
must therefore be considered simply URIs—not Public IDs or System IDs—and must be used as URI look-ups
rather than external-identifier look-ups. In StyleVision versions prior to version 2014, schema namespace URIs
were translated through <public> mappings. From version 2014 onwards, <uri> mappings have to be used.

Prior to v2014: <public publicID="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

V-2014 onwards: <uri name="http://www.MyMapping.com/ref"

uri="file:///C:/MyDocs/Catalog/test.xsd"/>

How StyleVision finds a referenced schema
A schema is referenced in an XML document via the xsi:scemaLocation attribute (shown below). The value of

the xsi:schemaLocation attribute has two parts: a namespace part (green) and a URI part (highlighted).

xsi:schemaLocation="http://www.xmlspy.com/schemas/orgchart OrgChart.xsd"

Given below are the steps, followed sequentially by StyleVision, to find a referenced schema. The schema is
loaded at the first successful step.

1. Look up the catalog for the URI part of the xsi:schemaLocation value. If a mapping is found, including

in rewriteURI mappings, use the resulting URI for schema loading.

2. Look up the catalog for the namespace part of the xsi:schemaLocation value. If a mapping is found,

including in rewriteURI mappings, use the resulting URI for schema loading.

3. Use the URI part of the xsi:schemaLocation value for schema loading.

XML Schema specifications
XML Schema specification information is built into StyleVision and the validity of XML Schema (.xsd)
documents is checked against this internal information. In an XML Schema document, therefore, no references
should be made to any schema that defines the XML Schema specification.

The catalog.xml file in the %AltovaCommonSchemasFolder%\Schemas\schema folder contains references to

DTDs that implement older XML Schema specifications. You should not validate your XML Schema documents
against these schemas. The referenced files are included solely to provide StyleVision with entry helper info for

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

© 2019-2025 Altova GmbH

Catalogs in StyleVision 101Usage Overview

Altova StyleVision 2025 Basic Edition

editing purposes should you wish to create documents according to these older recommendations.

4.6.4 Variables for Windows System Locations

Shell environment variables can be used in the nextCatalog element to specify the path to various system
locations (see RootCatalog.xml listing above). The following shell environment variables are supported:

%PersonalFolder%
Full path to the Personal folder of the current user, for example C:
\Users\<name>\Documents

%CommonSchemasFolder
% C:\ProgramData\Altova\Common2025\Schemas

%
ApplicationWritableD
ataFolder% C:\ProgramData\Altova

%AltovaCommonFolder% C:\Program Files\Altova\Common2025

%DesktopFolder% Full path to the Desktop folder of the current user.

%ProgramMenuFolder% Full path to the Program Menu folder of the current user.

%StartMenuFolder% Full path to Start Menu folder of the current user.

%StartUpFolder% Full path to Start Up folder of the current user.

%TemplateFolder% Full path to the Template folder of the current user.

%AdminToolsFolder%

Full path to the file system directory that stores administrative tools of the current
user.

%AppDataFolder% Full path to the Application Data folder of the current user.

%CommonAppDataFolder
% Full path to the file directory containing application data of all users.

%FavoritesFolder% Full path of the Favorites folder of the current user.

%PersonalFolder% Full path to the Personal folder of the current user.

%SendToFolder% Full path to the SendTo folder of the current user.

%FontsFolder% Full path to the System Fonts folder.

%ProgramFilesFolder% Full path to the Program Files folder of the current user.

%CommonFilesFolder% Full path to the Common Files folder of the current user.

%WindowsFolder% Full path to the Windows folder of the current user.

%SystemFolder% Full path to the System folder of the current user.

%LocalAppDataFolder%

Full path to the file system directory that serves as the data repository for local
(nonroaming) applications.

%MyPicturesFolder% Full path to the MyPictures folder.

102 Usage Overview Catalogs in StyleVision

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

© 2019-2025 Altova GmbH

 103SPS Content

Altova StyleVision 2025 Basic Edition

5 SPS Content

This section describes in detail the core procedures used to create and edit SPS document components that
are used to create locations in the document design for XML data content. The procedures are listed below and
described in detail in the sub-sections of this section. These mechanisms are used to design any kind of
template: main , global , or named .

· Inserting XML Content as Text . XML data can be inserted in the design by dragging the relevant
nodes (element, attribute, type, or CDATA) into the design and creating them as (contents) or
(rest-of-contents).

· Inserting MS Word Content
· User-Defined Templates
· User-Defined Elements, XML Text Blocks
· Working with Tables . Tables can be inserted by (i) the SPS designer, directly in the SPS design

(static tables) or using XML document sub-structures, and (ii) the Authentic View user.
· Creating Lists . Static lists, where the list structure is entered in the SPS design, and dynamic lists,

where an XML document sub-structure is created as a list, provide powerful data-ordering capabilities.
· Using Graphics : Graphics can be inserted in the SPS design using a variety of methods to

determine the target URI (static, dynamic, a combination of both, and unparsed entity URIs).
· Using Data-Entry Devices (or Form Controls) . XML data can be input by the Authentic View user via

data-entry devices such as input fields and combo boxes. This provides a layer of user help as well as
of input constraints. Individual nodes in the XML document can be created as data-entry devices.

· Links
· Barcodes
· Layout Modules
· The Change-To Feature . This feature enables a different node to be selected as the match for a

template and allows a node to be changed to another content type.

216 216 226

104

108

113

116

119

139

144

149

155

156

160

170

104 SPS Content Inserting XML Content as Text

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.1 Inserting XML Content as Text

Data from a node in the XML document is included in the design by dragging the corresponding schema node
from the Schema Tree window and dropping it into the design. When the schema node is dropped into the
design, a menu pops up with options for how the node is to be created in the design (screenshot below).

Types of schema nodes
Schema nodes that can be dropped from the Schema Tree sidebar into the design are of three types: (i)
element nodes; (ii) attribute nodes; and (iii) datatype nodes.

Using the Insert Contents toolbar icon
The Insert Contents icon in the Insert Design Elements toolbar also enables you to insert the contents of a
node in the design. Insert contents as follows:

1. Select the Insert Contents icon.
2. Click the location in the design where you wish to insert contents. The Insert Contents Selector pops

up (screenshot below).

419

© 2019-2025 Altova GmbH

Inserting XML Content as Text 105SPS Content

Altova StyleVision 2025 Basic Edition

3. The context of the insertion location in the design is displayed in the XPath Context field. Select the
node for which you wish to create contents.

4. Click OK. The contents placeholder is created. If the node you selected is anything other than the
context node, additional template tags with the path to the selected node will be created around the
contents placeholder.

Outputting text content of nodes
To output the text contents of the node, the node should be created as contents. When a node is created as
contents, the node will look something like this in the design document:

In the screenshot above, the Desc element has been created as contents. The output will display the text
content of Desc. If Desc has descendant elements, such as Bold and Italic, then the text content of the
descendant elements will also be output as part of the contents of Desc. Note that attribute nodes of Desc are
not considered its child nodes, and the contents of the attribute nodes will therefore not be output as part of the
contents of Desc. Attribute nodes have to be explicitly inserted in order to be processed.

106 SPS Content Inserting XML Content as Text

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

CDATA sections
If CDATA sections are present in the XML document they will be output.

Note: In Authentic View, CDATA sections cannot be inserted into input fields (that is, in text boxes and
multiline text boxes). They can only be entered within elements that are displayed in Authentic View as text
content components.

In this section
In the sub-sections of this section, we describe other aspects of inserting XML content as text:

· How the text content of a node can be marked up with a predefined format directly when the node is
inserted.

· How descendant nodes not explicitly included within a node can be included for processing. See Rest-
of-Contents .

Note: You can create an empty template rule by deleting the (content) placeholder of a node. An empty
template rule is useful if you wish to define that some node not be processed, i.e. produce no output.

5.1.1 Inserting Content with a Predefined Format

The text content of a node can be directly inserted with the markup of one of StyleVision's predefined formats.
To do this, drag the node from the Schema Tree window and drop it at the desired location. In the menu that
pops up, select Create Paragraph (screenshot below).

The predefined format can be changed by selecting the predefined format tag and then choosing some other
predefined format from the Format combo box in the toolbar (screenshot below) or using the menu
command Insert | Format.

The predefined format can also be changed by changing the value of the paragraph type property of the
paragraph group of properties in the Properties window, or by changing the paragraph type via the node-
template's context menu command, Enclose With | Special Paragraph .

106

107

417

224 224

© 2019-2025 Altova GmbH

Inserting XML Content as Text 107SPS Content

Altova StyleVision 2025 Basic Edition

Each paragraph type has particular formatting features that can be used to advantage. Note that the pre format
type enables carriage returns and linefeeds to be output as such instead of them being normalized to
whitespace.

5.1.2 Rest-of-Contents

The rest-of-contents placeholder applies templates to all the remaining child elements of the element for
which the template has been created. As an example consider the following:

· An element parent has 4 child elements, child1 to child4.
· In the template for element parent, some processing has been explicitly defined for the child1 and

child4 child elements.

This results in only the child1 and child4 child elements being processed. The elements child2 and child3
will not be processed. Now, if the rest-of-contents placeholder is inserted within the template for parent,
then, not only will child1 and child4 be processed using the explicitly defined processing rules in the
template. Additionally, templates will be applied for the child2 and child3 child elements. If global
templates for these are defined then the global templates will be used. Otherwise the built-in default
templates (for element, attribute, and text nodes) will be applied.

Important: It is important to note what nodes are selected for rest-of-contents.

· As described with the example above, all child element nodes and child text nodes are selected by the
rest-of-contents placeholder. (Even invalid child nodes in the XML document will be processed.)

· Attribute nodes are not selected; they are not child nodes, that is, they are not on the child axis of
XPath.

· If a global template of a child element is used in the parent template, then the child element does not
count as having been used locally. As a result, the rest-of-contents placeholder will also select
such child elements. However, if a global template of a child element is "copied locally", then this
usage counts as local usage, and the child element will not be selected by the rest-of-contents
placeholder.

Note: You can create an empty template rule by deleting the (content) placeholder of a node. An empty
template rule is useful if you wish to define that some node not be processed, i.e. produce no output.

216

108 SPS Content Inserting MS Word Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.2 Inserting MS Word Content

If Microsoft Word 2007+ is installed on your machine, then content can be pasted from Word documents into
the design as static content. The Word content will be inserted within suitably corresponding design
components, and text formatting properties will be carried over from the Word content. For example, text
content that is in a Word paragraph block will be inserted within a Paragraph component , and the formatting
of the text will be preserved (see screenshots below).

Word content.

106

© 2019-2025 Altova GmbH

Inserting MS Word Content 109SPS Content

Altova StyleVision 2025 Basic Edition

Word content pasted into a design. A suitable paragraph format has been applied and text formatting has
been preserved.

Note: In addition to Word content, any content that can be pasted into a Word document can also be pasted
into a StyleVision design. This includes MS Excel tables and HTML page content.

Note: To create an SPS that contains static content from an entire Word document, create a new SPS with
the File | New | New from Word 2007+ command.

Supported Word features
The following Word structures and formats are supported when Word content is copy-pasted into a design:

· Formatted text
o Different fonts, size, weights, style, text-decoration, etc.

o Color

o Background color

o Border around text

· Paragraphs
· Page breaks
· Horizontal line
· Hyperlinks
· Bookmarks
· Tables

o Rowspans, colspans

o Formatted/rich content

o Nested tables

o Headers, footers

424

110 SPS Content Inserting MS Word Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Lists, sublists
o Bulletted: different styles

o Enumerated: different styles

· Images

© 2019-2025 Altova GmbH

Inserting MS Excel Content 111SPS Content

Altova StyleVision 2025 Basic Edition

5.3 Inserting MS Excel Content

If Microsoft Excel 2007+ is installed on your machine, then content can be pasted from Excel documents into
the design as static content. The Excel content will be inserted as static tables and other suitably
corresponding design components. Formatting properties will be preserved (see screenshots below). Each
Excel sheet is inserted as a separate static table.

Excel sheet.

112 SPS Content Inserting MS Excel Content

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Excel content imported into a design as a static table with text formatting preserved.

Note: In addition to Excel content, any content that can be pasted into an Excel document can also be pasted
into a StyleVision design. This includes MS Word content and HTML page content.

Note: To create an SPS that contains static content from an entire Excel document, create a new SPS with
the File | New | New from Excel 2007+ command.424

© 2019-2025 Altova GmbH

User-Defined Templates 113SPS Content

Altova StyleVision 2025 Basic Edition

5.4 User-Defined Templates

User-Defined Templates are templates for items generated by an XPath expression you specify. These items
may be atomic values or nodes. In the screenshot below, which shows three User-Defined Templates, note the
User-Defined Template icon on the left-hand side of the tags (a green person symbol). User-Defined Templates
are very useful because they provide extraordinary flexibility for creating templates.

The XPath expression of each of the three User-Defined templates shown in the screenshot above do the
following:

· Selects a node in a source schema. By using an XPath expression, any node in any of the schema
sources can be reached from within any context node. If StyleVision can unambiguously target the
specified node, the template will be changed automatically from a User-Defined Template to a normal
template. If it is a User-Defined Template, this will be indicated by the green User-Defined Template
icon on the left-hand side of the template tags.

· Selects a node that fulfills a condition specified by the for construct of XPath 2.0 and XPath 3.0. Such
templates can never resolve to normal templates (but will remain User-Defined Templates) because the
for construct does not allow StyleVision to unambiguously resolve the target from only the schema
information it currently has at its disposal.

· Selects a sequence of atomic values {1, 2, 3}. While it is allowed to create a template for an atomic
value, you cannot use the contents placeholder within such a template. This is because the
xsl:apply-templates instruction (which is what the contents placeholder generates) can only be
applied to node items (not atomic values). You could, however, use an Auto-Calculation in combination
with some design element such as a list. For example, the User-Defined Template at left would
generate the output at right.

Note: If the SPS uses XSLT 1.0, then the XPath expression you enter must return a node-set. Otherwise an
error is reported.

114 SPS Content User-Defined Templates

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Advantage of using XPath to select template node
The advantage of selecting a schema node via an XPath expression (User-Defined Templates) is that the power
of XPath's path selector mechanism can be used to select any node or sequence of items, as well as to filter or
set conditions for the node selection. As a result, specific XML document nodes can be targeted for any given
template. For instance, the XPath expression //Office/Department[@Location="NY"] will select only those
Department nodes that have a Location attribute with a value of NY. Also see the other examples in this
section.

Note: If an XPath expression contains multiple location path steps, then it is significant—especially for
grouping and sorting—whether brackets are placed around the multiple location path steps or not. For example,
the XPath expression /Org/Office/Dept will be processed differently than (/Org/Office/Dept). For the
former expression (without brackets), the processor loops through each location step. For the latter expression
(with brackets), all the Dept elements of all Office elements are returned in one undifferentiated nodeset.

Brackets Underlying XSLT Mechanism Effect

No <xsl:for-each select="Org">
 <xsl:for-each select="Office">
 <xsl:for-each select="Dept">
 ...
 </xsl:for-each>
 </xsl:for-each>
</xsl:for-each>

Each Office element has its own Dept
population. So grouping and sorting can be
done within each Office.

Yes <xsl:for-each
select="/Org/Office/Dept">
 ...
</xsl:for-each>

The Dept population extends over all
Office elements and across Org.

This difference in evaluating XPath expressions can be significant for grouping and sorting.

Inserting a User-Defined Template
To insert a User-Defined Template, do the following:

1. Click the Insert User-Defined Template icon in the Insert Design Elements toolbar and then click the
design location where you wish to insert the template. Alternatively, right-click the design location
where you wish to insert the template and, from the context menu that appears, select the Insert
User-Defined Template command.

2. In the Edit XPath Expression dialog that pops up, enter the XPath expression you want, and click
OK. Note that the context node of the XPath expression will be the node within which you have clicked.
An empty node template will be created. Sometimes a joined node is created. When a node is joined,
the targeted instance nodes are selected as if at a single level, whereas if a node is not joined (that is if
it is split into multiple hierarchic levels), then the node selection is done by looping through each
instance node at every split level. The nodeset returned in both cases of selection (joined and split) is
the same unless a grouping or sorting criterion is specified. For a discussion of the effect joined nodes
have on the grouping and sorting mechanisms, see Node-Template Operations .

Editing a Template Match
The node selection of any node template (user-defined or normal) can be changed by using an XPath

398

224

© 2019-2025 Altova GmbH

User-Defined Templates 115SPS Content

Altova StyleVision 2025 Basic Edition

expression to select the new match expression. To edit the template match of a node template, right-click the
node template, then select the Edit Template Match command. This pops up the Edit XPath Expression
dialog, in which you enter the XPath expression to select the new node. Then click OK.

Adding nodes to User-Defined Templates
If a node from the schema tree is added to a User-Defined Template, the context for the new node will not be
known if the User-Defined Template has been created for a node or sequence that cannot be placed in the
context of the schema source of the SPS. You will therefore be prompted (screenshot below) about how the
new node should be referenced: (i) by its name (essentially, a relative path), or (ii) by a full path from the root of
the schema source.

Prompting for advice on how to proceed is the default behavior. This default behavior can be changed in the
Design tab of the Tool | Options dialog .499

116 SPS Content User-Defined Elements, XML Text Blocks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.5 User-Defined Elements, XML Text Blocks

User-Defined Elements and User-Defined XML Text Blocks enable, respectively, (i) any element, and (ii)
any XML text block to be inserted into the design. The advantage of these features is that designers are not
restricted to adding XML elements and design elements from source schemas and the palette of StyleVision
design elements. They can create (i) templates for elements they define (User-Defined Elements), and (ii)
independent and self-contained XML code (User-Defined Blocks) that creates objects independently (for
example ActiveX objects).

There is one important difference between User-Defined Elements and User-Defined XML Text Blocks. A User-
Defined Element is created in the design as a template node for a single XML element (with attributes). All
content of this template must be explicitly created. This content consists of the various design elements
available to the SPS. A User-Defined XML Text Block may not contain any design element; it is an
independent, self-contained block. Since a User-Defined Element is created empty, it does not lend itself for
the creation of an object requiring a number of lines of code. For the latter purpose, User-Defined XML Text
Blocks should be used.

Note: User-Defined Elements and User-Defined Text Blocks are supported in Authentic View only in the
Enterprise Editions of Altova products.

5.5.1 User-Defined Elements

User-Defined Elements are elements that you can generate in the output without these elements needing to be
in any of the schema sources of the SPS. This means that an element from any namespace (HTML or XSL-FO
for example) can be inserted at any location in the design. SPS design elements can then be inserted within
the inserted element.

Note: User-Defined Elements are supported in Authentic View only in the Enterprise Editions of Altova
products.

Inserting User-Defined Elements
The mechanism for using User-Defined Elements is as follows:

1. Right-click at the location in the design where you wish to insert the User-Defined Element.
2. From the context menu that appears, select Insert User-Defined Item | User-Defined Element.
3. In the dialog that appears (screenshot below), enter the element name, the desired attribute-value

pairs, and, a namespace declaration for the element if the document does not contain one.

116 117

© 2019-2025 Altova GmbH

User-Defined Elements, XML Text Blocks 117SPS Content

Altova StyleVision 2025 Basic Edition

In the screenshot above an XSL-FO element called leader is created. It has been given a prefix of fo:,
which is bound to the namespace declaration xmlns:fo="http://www.w3.org/1999/XSL/Format".
The element has a number of attributes, including leader-length and rule-style, each with its
respective value. The element, its attributes, and its namespace declaration must be entered without
the angular tag brackets.

4. Click OK to insert the element in the design. The element is displayed in the design as an empty
template with start and end tags (screenshot below).

5. You can now add content to the template as for any other template. The User-Defined Element may
contain static content, dynamic content from the XML document, as well as more additional User-
Defined Elements.

Note: A User-Defined Element that is intended for a particular output should be enclosed in a suitable output-
based condition so as to avoid unexpected results in alternative outputs.

5.5.2 User-Defined XML Text Blocks

A User-Defined XML Text Block is an XML fragment that will be inserted into the XSLT code generated by the
SPS. It is placed in the SPS design as a self-contained block to which no design element may be added. Such
an XML Text Block should therefore be applicable as XSLT code at the location in the stylesheet at which it
occurs.

The usefulness of this feature is that it provides the stylesheet designer a mechanism with which to insert XSLT
fragments and customized code in the design. For example, an ActiveX obect can be inserted within an HTML
SCRIPT element.

Note: This feature will be enabled only in Enterprise editions of Authentic View (that is, in the Enterprise
editions of StyleVision, Authentic Desktop, Authentic Browser, and XMLSpy).

118 SPS Content User-Defined Elements, XML Text Blocks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Inserting User-Defined XML Text Blocks
To insert an XML Text Block, do the following:

1. Right-click at the location in the design where you wish to insert the User-Defined Block.
2. From the context menu that appears, select Insert User-Defined Item | User-Defined Block.
3. In the dialog that now appears (screenshot below), enter the XML Text Block you wish to insert. Note

that the XML text block should be well-formed XML to be accepted by the dialog.

In the screenshot above an XML Text Block is added that generates an HTML ordered list.
4. Click OK to insert the element in the design. The XML Text Block is displayed in the design as a text

box.

Note: An XML Text Block that is intended for a particular output should be enclosed in a suitable output-based
condition so as to avoid unexpected results in alternative outputs.

© 2019-2025 Altova GmbH

Tables 119SPS Content

Altova StyleVision 2025 Basic Edition

5.6 Tables

In an SPS design, two types of tables may be used: SPS tables and CALS/HTML tables. There are
differences between the two types, and it is important to understand these. This section contains a detailed
description of how to use both types of tables.

SPS tables
An SPS table is a component of an SPS design. It is structured and formatted in the design. It can be created
anywhere in the design and any number of SPS tables can be created.

SPS tables are entirely presentational devices and are represented using the presentational vocabulary of the
output format. The structure of an SPS table is not represented by nodes in the XML document—although
the content of table cells may come from nodes in the XML document.

There are two types of SPS tables:

· Static tables are built up, step-by-step, by the person designing the SPS. After the table structure is
created, the content of each cell is defined separately. The content of cells can come from random
locations in the schema tree and even can be of different types. Note that the rows of a static table do
not represent a repeating data structure. This is why the table is said to be static: it has a fixed
structure that does not change with the XML content.

· Dynamic tables are intended for data structures in the XML document that repeat. They can be
created for schema elements that have a substructure—that is, at least one child attribute or element.
Any element with a substructure repeats if there is more than one instance of it. Each instance of the
element would be a row in the dynamic table, and all or some of its child elements or attributes would
be the columns of the table. A dynamic table's structure, therefore, reflects the content of the XML file
and changes dynamically with the content.

CALS/HTML tables
The content model of a CALS table or HTML table is defined in the XML document—by extension in the DTD or
schema—and follows the respective specification (CALS or HTML). In the SPS design you can then specify
that CALS/HTML table/s are to be processed as tables. The XML data structure that represents the
CALS/HTML table will in these cases generate table markup for the respective output formats. The formatting of
CALS/HTML tables can be specified in the XML instance document or the SPS, or in both.

Shown below is the HTML Preview of an HTML table.

The HTML code fragment for the XML table shown in the illustration above looks like this:

<table border="1" width="40%">

 <tbody>

 <tr>

 <td>Name</td>

120 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

 <td>Phone</td>

 </tr>

 <tr>

 <td>John Merrimack</td>

 <td>6517890</td>

 </tr>

 <tr>

 <td>Joe Concord</td>

 <td>6402387</td>

 </tr>

 </tbody>

</table>

The original XML document might look like this:

<phonelist border="1" width="40%">

 <items>

 <person>

 <data>Name</data>

 <data>Phone</data>

 </person>

 <person>

 <data>John Merrimack</data>

 <data>6517890</data>

 </person>

 <person>

 <data>Joe Concord</data>

 <data>6402387</data>

 </person>

 </items>

</phonelist>

Note that element names in the XML document do not need to have table semantics; the table structure,
however, must correspond to the HTML or CALS table model. Also note the following:

· Note that only one XML element can correspond to the HTML column element <td/>.

· A CALS/HTML table can be inserted at any location in the XML document where, according to the
schema, the element corresponding to the table element is allowed.

· In Authentic View, data is entered directly into table cells. This data is stored as the content of the
corresponding CALS/HTML table element.

· The formatting properties of a CALS/HTML table could come from the XML document, or they could be
specified in the SPS design.

Summary for the designer
From the document designer's perspective, the following points should be noted:

· The structure of an SPS table is defined in the SPS. The structure of a CALS/HTML table on the other
hand is specified in the schema and must follow that of the CALS/HTML table model; the element
names in the schema may, however, be different than those in the CALS or HTML table models.

· Colspans and rowspans in SPS tables are specified in the SPS. But in CALS/HTML tables, colspans
and rowspans are specified in the XML instance document.

© 2019-2025 Altova GmbH

Tables 121SPS Content

Altova StyleVision 2025 Basic Edition

· Table formatting of SPS tables is specified in the SPS. The formatting of CALS/HTML tables is
specified in the XML instance document and/or the SPS.

5.6.1 Static Tables

To create a static table, do the following:

1. Use one of the following commands: Table | Insert Table or Insert | Table, or click the Insert
Table icon in the Insert Design Elements toolbar.

2. All of these commands pop up the Create Table dialog (screenshot below).

Click Static Table.
3. The Insert Table dialog (screenshot below) pops up, in which you specify the dimensions of the table

and specify whether the table should occupy the whole available width.

4. Click OK. An empty table with the specified dimensions, as shown below, is created.

5. You can now enter content into table cells using regular StyleVision features. Cell content could be
text, or elements dragged from the schema tree, or objects such as images and nested tables. The
figure below shows a table containing nested tables.

122 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Static SPS tables are especially well-suited for organizing XML data that is randomly situated in the schema
hierarchy, or for static content (content not derived from an XML source).

Deleting columns, rows, and tables
To delete a column, row, or table, place the cursor in the column, row, or table to be deleted, and click the
menu item Table | Delete Column, Table | Delete Row, or Table | Delete Table, respectively. If you have
nested tables, these commands will apply, respectively, to the column, row, and table containing the cursor.

Toolbar table editing icons
The table editing icons, which are by default in the second row of the toolbar, are shortcuts to the Table menu
commands. These commands allow you to insert, delete, edit the structure of, and assign formatting properties
to the static table. These icons can also be used for dynamic SPS tables.

5.6.2 Dynamic Tables

To insert a dynamic table, do the following:

1. Use one of the following commands: Table | Insert Table or Insert | Table, or click the Insert
Table icon in the Insert Design Elements toolbar.

2. All of these commands pop up the Create Table dialog (screenshot below). If you clicked the Insert
Table icon in the toolbar, the Create Table dialog will pop up when you click at the location in the
design where you want to insert the table.

Click Dynamic Table.

3. In the XPath Selector dialog (screenshot below) that pops up, notice that the XPath Context is the
context of the insertion location, and it cannot be changed in the dialog. Select the node that is to be
created as the dynamic table. In the screenshot below, the context node is n1:Department, and the
n1:Person node has been selected as the node to be created as a table.

© 2019-2025 Altova GmbH

Tables 123SPS Content

Altova StyleVision 2025 Basic Edition

If you select the User-defined XPath option, then you can enter an XPath expression to select the node
to be created as the dynamic table.

4. Click OK. The Create Dynamic Table dialog (screenshot below) pops up.

124 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5. The child elements and attributes of the element that has been dragged into the Design window are
displayed In the "Select rows/columns" list and can be created as columns of the table. Deselect the
child nodes that you do not want and select any attribute/element you want to include as columns. (In
the figure above, the elements Shares, LeaveTotal, LeaveUsed and LeaveLeft have been
deselected.) An explanation of the other options is given below. Click OK when done. Note that
columns are created only for child elements and attributes, and for no descendant on a lower level.

Note: If you specified a User-defined XPath to select the node to be created as the dynamic table, then
StyleVision will probably not know unambiguously which node is being targeted. Consequently, the Create
Dynamic Table will, in such cases, not display a list of child attributes/elements to select as the fields
(columns) of the table. The table that is created will therefore have to be manually populated with node content.
This node content should be child attributes/elements of the node selected to be created as the table.

Note: Another way of creating a schema node as a table is to drag the node from the schema tree into the
design and to specify, when it is dropped, that it be created as a table.

Table grows down or right
When a table grows top-down, this is what it would look like:

When a table grows left-right it looks like this:

© 2019-2025 Altova GmbH

Tables 125SPS Content

Altova StyleVision 2025 Basic Edition

Headers and footers
Columns and rows can be given headers, which will be the names of the column and row elements. Column
headers are created at the top of each column. Row headers are created on the left hand side of a row. To
include headers, check the Create Header check-box. If the table grows top-down, creating a header, creates a
header row above the table body. If the table grows left-right, creating a header, creates a column header to the
left of the table body.

To include footers, check the Create Footer check-box. Footers, like headers, can be created both for columns
(at the bottom of columns) and rows (on the right hand side of a row). The footer of numeric columns or rows
will sum each column or row if the Summary for Numeric Fields check box is checked.

Via the Table menu, header and footer cells can be joined and split, and rows and columns can be inserted,
appended, and deleted; this gives you considerable flexibility in structuring headers and footers. Additionally,
headers and footers can contain any type of static or dynamic content, including conditional templates and
auto-calculations.

Note: Headers and footers must be created when the dynamic table is defined. You do this by checking the
Create Header and Create Footer options in the Create Dynamic Table dialog. Appending or inserting a row
within a dynamic table does not create headers or footers but an extra row. The difference is significant. With
the Create Header/Footer commands, real headers and footers are added to the top and bottom of a table,
respectively. If a row is inserted or appended, then the row occurs for each occurrence of the element that has
been created as a dynamic table.

Nested dynamic tables
You can nest one dynamic table within another dynamic table if the element for which the nested dynamic
table is to be created is a child of the element that has been created as the containing dynamic table. Do the
following:

1. Create the outer dynamic table so that the child element to be created as a dynamic table is created
as a column.

2. In the dynamic table in Design View, right-click the child element.
3. Select Change to | Table. This pops up the Create Dynamic Table dialog.
4. Define the properties of the nested dynamic table.

To nest a dynamic table in a static table, drag the element to be created as a dynamic table into the required
cell of the static table. When you drop it, select Create Table from the context menu that appears.

Tables for elements with text content
To create columns (or rows) for child elements, the element being created as a table must have a child
element or attribute node. Having a child text node does not work. If you have this kind of situation, then

126 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

create a child element called, say, Text, and put your text node in the TableElement/Text elements. Now
you will be able to create TableElement as a dynamic table. This table will have one column for Text
elements. Each row will therefore contain one cell containing the text node in Text, and the rows of the table
will correspond to the occurrences of the TableElement element.

Contents of table body cells
When you create a dynamic table, you can create the node content as any one of a number of StyleVision
components. In the examples above, the table body cells were created as contents; in the Create Dynamic
Table dialog, the option for Display Cells As is contents. They could also have been created as data-entry
devices. There are two points to note here:

· The setting you select is a global setting for all the table body cells. If you wish to have an individual
cell appear differently, edit the cell after you have created the table: right-click in the cell and, in the
context menu that appears, select "Change to" and then select the required cell content type.

· If you create cells as element contents, and if the element has descendant elements, then the content
of the cell will be a concatenation of the text strings of the element and all its descendant elements.

Deleting columns, rows, and tables
To delete a column, row, or table, place the cursor in the column, row, or table to be deleted, and click the
menu item Table | Delete Column, Table | Delete Row, or Table | Delete Table, respectively. If you have
nested tables, the table immediately containing the cursor will be deleted when the Table | Delete Table
command is used.

Toolbar table editing icons
The table editing icons in the toolbar are shortcuts to the Table menu commands. These commands allow you
to insert, delete, edit the structure of, and assign formatting properties to the dynamic table. These icons can
also be used for static tables.

Creating dynamic tables in global templates
You can also create dynamic tables on elements inside global templates. The process works in the same way
as for Main Template elements (described above). The important point to note is that, in a global template, a
dynamic table can only be created for descendant elements of the global template node; it cannot be created
for the global template node itself. For example, if you wish to create a dynamic table for the element authors
within a global template, then this dynamic table must be created within the global template of the parent
element of authors, say contributors. It cannot be created within the global template of the authors
element.

5.6.3 Conditional Processing in Tables

Conditional processing can be set on individual columns and rows of static and dynamic tables, as well as on
column and row headers, to display or hide the column, row, or header depending on the truth of the condition.
If the condition evaluates to true, the column, row, or header is displayed. Otherwise it is not.

© 2019-2025 Altova GmbH

Tables 127SPS Content

Altova StyleVision 2025 Basic Edition

Adding and editing conditional processing
To add conditional processing to a column, row, or header, right click the respective design component and
select Edit Conditional Processing. (In the screenshot below, the column-header design-component at top
left is shown highlighted in blue; the second-column design-component is shown outlined in blue; the only row
component is below the column-header design-component.)

Clicking the Edit Conditional Processing command pops up the Edit XPath Expression dialog , in which
you enter the XPath expression of the condition. Here are some ways in which conditional processing could be
used.

· On a column, row, or table, enter the XPath expression false()to hide the column, true() to display
it.

· A column is output only if the sum of all the values in that column exceeds a certain integer value.
· A column or row is output only if no cell in that column or row, respectively, is empty.
· A column or row is output only if a certain cell-value exists in that column or row, respectively.

To edit an already created condition, right click the respective design component and select Edit Conditional
Processing. In the Edit XPath Expression dialog that pops up, edit the XPath expression that tests the
truth of the condition.

Removing conditional processing
To remove the conditional processing of a column, row, or header, right click the respective design component
and select Clear Conditional Processing.

5.6.4 Tables in Design View

The main components of static and dynamic SPS tables are as shown in the screenshots below with the table
markup (Table | View Table Markup) switched on.

The screenshot above shows a simple table that grows top-down and that has a header and footer.

398

398

128 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· A column is indicated with a rectangle containing a downward-pointing arrowhead. Column indicators
are located at the top of columns. To select an entire column—say, to assign a formatting property to
that entire column—click the column indicator of that column.

· A row is indicated with a rectangle containing a rightward-pointing arrow. Click a row indicator to select
that entire row.

· In tables that grow top-down (screenshot above), headers and footers are indicated with icons pointing
up and down, respectively. In tables that grow left-right, headers and footers are indicated with icons
pointing left and right, respectively (screenshot below).

· To select the entire table, click in the top left corner of the table (in the screenshots above and below,
the location where the arrow cursor points).

· When any table row or column is selected, it is highlighted with a dark blue background. In the
screenshot above, the footer is selected.

· In tables that grow top-down, the element for which the table has been created is shown at the extreme
left, outside the column-row grid (screenshot above). In tables that grow left-right, the element for which
the table has been created is shown at the top, outside the column-row grid (screenshot below).

After a column or row or table has been selected, styles and/or properties can be set for the selection in the
Styles and Properties Windows.

Drag-and-drop functionality
The columns and rows of an SPS table (static or dynamic) can be dragged to alternative locations within the
same table and dropped there.

Enclosing and removing templates on rows and columns
A row or column can be enclosed with a template by right-clicking the row or column indicator and, from the
context menu that pops up (screenshot below), selecting Enclose With | Template or Enclose With | User-
Defined Template. In the next step, you can select a node from the schema tree or enter an XPath
expression for a User-Defined Template . A template will be created around the row or column.

A template that is around a row or column can also be removed while leaving the row or column itself intact. To
do this, select the template tag and press the Delete key.

The enclosing with, and removing, templates feature is useful if you wish to remove a template without removing
the contents of a row or column, and then, if required, enclosing the row or column with another template.

220

© 2019-2025 Altova GmbH

Tables 129SPS Content

Altova StyleVision 2025 Basic Edition

Enclosing with a User-Defined Template also allows the use of interesting template-match results within the
row or column (via Auto-Calculations, for example).

5.6.5 Table Formatting

Static and dynamic tables can be formatted using:

· HTML table formatting properties (in the Properties sidebar)
· CSS (styling) properties (in the Styles sidebar).

Properties sidebar
The HTML table formatting properties are available in the Properties sidebar (screenshot below). These
properties are available in the HTML group of properties for the table component and its sub-components (body,
row, column, and cell).

Styles sidebar
The CSS table formatting properties are available in the Styles sidebar (screenshot below). CSS properties are
available for the table component and its sub-components (body, row, column, and cell).

220

130 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Note: If all table cells in a row are empty, Internet Explorer collapses the row and the row might therefore not
be visible. In this case, you should use the HTML workaround of putting a non-breaking space in the
appropriate cell/s.

Vertical text
Text in table cells can be rotated 90 degrees clockwise or anti-clockwise, so that the text is vertical, reading
from top-to-bottom or bottom-to-top, respectively. To do this, in the design, select the content in the table cell
that is to be rotated and, in the Properties sidebar (screenshot below), select tcell. In the Table Cell group of
properties, select the required value for the Orientation property.

Note the following points:

· The rotation will be applied to the output, but will not be be displayed in the design.
· This property is intended to be applied to text and should not be used for other content.
· Besides being applicable to text in table cells, the property can also be applied to text in Text

boxes .165

© 2019-2025 Altova GmbH

Tables 131SPS Content

Altova StyleVision 2025 Basic Edition

Table formatting via Properties and Styles
Some formatting properties are available in both the Properties sidebar as well as in the Styles sidebar. The
table below lists some of the more important table properties available in both sidebars.

Table component Properties sidebar Styles sidebar

Table border, frame, rules; cellpadding,
cellspacing; bgcolor; height, width
(overriden by height, width in Styles
sidebar if the latter exist); align

borders and padding in Box styles;
height, width in Details group (they
override height and width in
Properties sidebar); color, font, and
text styles

Body align, valign height, vertical-align; color, font, and
text styles

Column align, valign width, vertical-align; color, font, and
text styles; box styles

Row align, valign height, vertical-align; color, font, and
text styles; box styles

Cell align, valign height, width, vertical-align; color,
font, and text styles; box styles

Height and width
The height and width of tables, rows, columns, and cells must be set in the Styles sidebar (in the Details group
of styles). When a table, column, or row is resized in the display by using the mouse, the altered values are
entered automatically in the appropriate style in the Styles sidebar. Note, however, that the height and width
styles are not supported for cells that are spanned (row-spanned or column-spanned).

Centering a table
To center a table, set the align property in the HTML group of table properties to center. The align property
can be accessed by selecting the table, then selecting the menu command Table | Table Properties.
Alternatively, the property is available in the HTML group of properties in the Properties sidebar.

Centering the table in the PDF output will require additional settings according to the FOP processor you are
using. According to the FO specification the correct way to center a table is to surround the fo:table element
with an fo:table-and-caption element and to set the text-align attribute of the fo:table-and-caption
element to center. Stylevision does not automatically create an fo:table-and-caption element when a
table is inserted in the design, but you can add this element as a User-Defined Element . If you are using
the Apache FOP processor, however, you should note that the fo:table-and-caption element might not be
supported, depending on which FOP version you are using. In this case there is a simple workaround: Make
the table a fixed-width table. Do this by specifying a length value, such as 4in or 120mm, as the value of the
width property of the HTML group of table properties (accessed via the menu command Table | Table
Properties).

Giving alternating rows different background colors
If you want alternating background colors for the rows of your dynamic table, do the following:

116

132 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

1. Select the row indicator of the row for which alternating background colors are required. Bear in mind
that, this being a dynamic table, one element is being created as a row, and the design contains a
single row, which corresponds to the element being created as a table.

2. With the row indicator selected, in the Properties sidebar, click the Properties for: trow.
3. Select the bgcolor property.
4. Click the XPath icon in the toolbar of the Properties window, and, in the Edit XPath Expression

dialog that appears, enter an XPath expression similar to this:

if (position() mod 2 = 0) then "white" else "gray"

This XPath expression specifies a bgcolor of white for even-numbered rows and a bgcolor of gray for
odd-numbered rows

You can extend the above principle to provide even more complex formatting.

Numbering the rows of a dynamic table
You can number the rows of a dynamic table by using the position()function of XPath. To do this, first

insert a column in the table to hold the numbers, then insert an Auto-Calculation in the cell of this column with
an XPath of: position(). Since the context node is the element that corresponds to the row of the dynamic

table, the position()function returns the position of each row element in the set of all row elements.

Table headers and footers in PDF output
If a table flows over on to more than one page, then the table header and footer appear on each page that
contains the table. The following points should be noted:

· If the footer contains Auto-Calculations, the footer that appears at the end of the table segment on
each page contains the Auto-Calculations for the whole table—not those for only the table segment on
that page.

· The header and footer will not be turned off for individual pages (for example, if you want a footer only at
the end of the table and not at the end of each page).

In order to omit the header or footer being displayed each time the page breaks, use the table-omit-header-
at-break and/or table-omit-footer-at-break properties (attributes) on the table element. These properties
are available in the Styles sidebar, in the XSL-FO group of properties for the table. To omit the header or footer
when the page breaks, specify a value of true for the respective attribute. (Note that the default value is

false. So not specifying these properties has the effect of inserting headers and footers whenever there is a

break.)

Hyphenating content of table cells
If you wish to hyphenate text in table cells of your PDF output, note that the XSL:FO specification uses the
hyphenate attribute of the fo:block element to do this. So, to apply hyphenation, you must explicitly, in the

FO document, set the hyphenate property of the respective fo:block elements to true.

398

© 2019-2025 Altova GmbH

Tables 133SPS Content

Altova StyleVision 2025 Basic Edition

5.6.6 Row and Column Display

For tables, the following row and column display options are available in the HTML output only. These features
are not supported in Authentic View and they require XSLT 2.0 or XSLT 3.0 to be selected as the XSLT
version of the SPS.

· Empty rows and columns can be automatically hidden.
· Each column can have a Close button, which enables the user to hide individual columns.
· Row elements with descendant relationships can be displayed with expand/collapse buttons.

Hiding empty rows and columns by default
To hide empty rows and/or columns in the HTML output, do the following:

1. In Design View, select the table or any part of it (column, row, cell).
2. In the Properties sidebar, select properties for Table, and the Table group of properties (screenshot

below).

3. Select the required value for the Hide Columns and Hide Rows properties. The options for each of these
two properties are the same: Never, If empty, and If body empty. The If empty option hides the column
or row if the entire column/row (including header and footer) is empty. If body empty requires only that
the body be empty.

Note: If a non-XBRL table has row or column spans (where cells of a row or a column have been joined), the
hiding of empty rows and columns might not work.

User interaction to hide columns expand/collapse rows
It can be specified in the design that each table column contain a Close button in the HTML output (see
screenshot below). The user can then hide individual columns by clicking the Close button. After the user hides
a column, a plus symbol appears in the first column (see screenshot below). Clicking this symbol re-displays
all hidden columns.

134 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Also, row elements that have descendant elements can be displayed in the HTML output with an
expand/collapse (plus/minus) symbol next to it (see screenshot above). Clicking these symbols in the HTML
output expands or collapses that row element. In the design, you can specify indentation for individual rows
using CSS properties.

The settings for these two features are made in the Interactive group of properties of the Table properties
(screenshot below).

The options for both properties are Yes (to add the feature) and No (to not add the feature).

5.6.7 CALS/HTML Tables

A CALS/HTML table is a hierarchical XML structure, the elements of which: (i) define the structure of a CALS or
HTML table, (ii) specify the formatting of that table, and (iii) contain the cell contents of that table. This XML
structure must correspond exactly to the CALS or HTML table model.

To create a CALS/HTML table in the design, do the following:

1. Define the XML structure as a CALS/HTML table structure
2. Specify formatting styles for the table
3. Insert the CALS/HTML table in the SPS design

135

137

137

© 2019-2025 Altova GmbH

Tables 135SPS Content

Altova StyleVision 2025 Basic Edition

Enabling CALS/HTML table structures for output
An XML document may have a data structure that defines the structure and content of a table. For example,
the following XML data structure corresponds to the HTML table model and in fact has the same element
names as those in the HTML table model:

<table>
 <tbody>
 <tr>
 <td/>
 </tr>
 </tbody>
</table>

Alternatively, the XML data structure could have a structure corresponding to the HTML table model but different
element names than in the HTML table model. For example:

<semester>
 <subject>
 <class>
 <student/>
 </class>
 </subject>
</semester>

This table structure, which is defined in the XML document, can be used to directly generate a table in the
various output formats. To do this you need to define this XML data structure as a CALS or HTML table. If the
XML data structure is not defined as a CALS or HTML (the default), the elements in the data structure will be
treated as ordinary non-table elements and no table markup will be added to the output document.

To enable CALS/HTML table markup in the output do the following:

1. Select the command Table | Edit CALS/HTML Tables.
2. In the dialog that pops up (screenshot below), add an entry for the XML data structure you wish to use

as a CALS/HTML table, according to whether the data structure follows the CALS or HTML table
model. (For information about the CALS table model, see the CALS table model at OASIS. For an
example of a table element having an HTML table structure, open HTMLTable1.sps , which is in the
Basics folder of the Examples project folder (in the Project window of the GUI).) So, if you wish to
enable an element in your schema as a CALS or an HTML table element, click the Add CALS/HTML
table button in the top left part of the dialog and then select either the Add CALS Table command or
the Add HTML Table command. (In the screenshot below, the elements table and informaltable
have been enabled as CALS tables (as well as HTML tables).) Click OK to confirm.

http://www.oasis-open.org/specs/a502.htm

136 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. A dialog (Edit CALS Table or Edit HTML table) appears showing the elements of the table type you
selected (screenshot below). The element names that are listed in this dialog are, by default, the
element names in the selected table model (CALS or HTML). If the SPS schema contains elements
with the same names as the names of the CALS/HTML table model, then the names are shown in
black (as in the screenshot below). If a listed element name is not present in the SPS schema, that
element name is listed in red. You can change a listed element name to match a schema name by
double-clicking in the relevant Element Name field and editing the name.

4. Click OK to define this XML data structure as a CALS or HTML table.
5. You can add entries for as many XML data structures as you like (see screenshot in Step 2 above).

The same main element can be used once each for CALS and HTML table types.
6. After you have finished defining the XML data structures you wish to enable as CALS/HTML tables,

click OK to finish.

If a CALS/HTML table has been defined and the XML data structure is correctly inserted as a CALS/HTML
table, then the data structure will be sent to the output as a table. To remove a CALS/HTML table

137

© 2019-2025 Altova GmbH

Tables 137SPS Content

Altova StyleVision 2025 Basic Edition

definition, in the Edit CALS/HTML table dialog select the definition you wish to delete and click the Delete
button at the top right of the Define CALS/HTML Tables pane.

Table formatting
CALS/HTML tables receive their formatting in two ways:

1. From formatting attributes in the source XML document. The CALS and HTML table models allow for
formatting attributes. If such attributes exist in the source XML document they are passed to the
presentation attributes of the output's table markup.

2. Each individual element in the table can be formatted in the Styles column of the Edit CALS Table
dialog or Edit HTML Table dialog (see screenshot below).

To assign a style to a particular element, click the Add Styles button for that element and assign the
required styles in the Styles sidebar that pops up. Each style is added as an individual CSS
attribute to the particular element. Note that a style added via the style attribute will have higher
priority than a style added as an individual CSS attribute (such as bgcolor). For example, in <thead
style="background-color: red" bgcolor="blue"/> the style="background-color: red"
attribute will have priority over the bgcolor="blue" attribute.

To remove a style that has been assigned to an element in the CALS/HTML table definition, select that
element (for example in the screenshot above the thead element has been selected) and click the
Delete button. The styles for that element will be removed.

Inserting a CALS/HTML table in the design
A CALS/HTML table structure can be inserted in the design in two ways:

1. The parent of the table element is inserted in the design as (contents). When the contents of the
parent are processed, the table element will be processed. If CALS/HTML table output is enabled, then
the element is output as a table. Otherwise it is output as text.

2. The table element can be dragged from the Schema Tree. When it is dropped at the desired location in
the design, it can be created as a CALS/HTML table (with the Create CALS/HTML Table command).

44

138 SPS Content Tables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

If the element has not been defined as a CALS/HTML table , the Insert CALS/HTML Tables dialog
(screenshot below) pops up and you can define the element as a CALS or HTML table.

If the element has been created in the design as a CALS/HTML table, a placeholder for the
CALS/HTML table design element is inserted at the location (screenshot below).

Global templates of table elements
If global templates of the following table elements are created they will be used in the CALS/HTML table
output. For CALS tables: title and entry. For HTML tables: caption, th, and td.

Example files
Example files are in the the Examples project folder (in the Project window of the GUI).

135

216

© 2019-2025 Altova GmbH

Lists 139SPS Content

Altova StyleVision 2025 Basic Edition

5.7 Lists

There are two types of lists that can be created in the SPS:

· Static lists , which are lists, the contents of which are entered directly in the SPS. The list structure
is not dynamically derived from the structure of the XML document.

· Dynamic lists , which are lists that derive their structure and contents dynamically from the XML
document.

How to create these two list types are described in detail in the sub-sections of this section.

5.7.1 Static Lists

A static list is one in which list item contents are entered directly in the SPS. To create a static list, do the
following:

1. Place the cursor at the location in the design where you wish to create the static list and select the
Insert | Bullets and Numbering menu command (or click the Bullets and Numbering icon in the
Insert Design Elements toolbar). This pops up a dialog asking whether you wish to create a static
list or dynamic list (screenshot below).

2. Click Static List. This pops up the Bullets and Numbering dialog (screenshot below).

139

141

465

419

140 SPS Content Lists

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. Select the desired list item marker and click OK. An empty list item is created.
4. Type in the text of the first list item.
5. Press Enter to create a new list item.

To create a nested list, place the cursor inside the list item that is to contain the nested list and click the
Insert | Bullets and Numbering menu command. Then use the procedure described above once again.

Note: You can also create a static list by placing the cursor at the location where the list is to be created and
clicking either the Bullets icon or Numbering icon in the Bullets or Numbering icons in the Formatting
toolbar . The first list item will be created at the cursor insertion point.

Changing static text to a list
To change static text to a list, do the following:

Highlight the text you wish to change to a list, select the command Enclose With | Bullets and
Numbering , choose the desired marker type, and click OK. If the text contains a CR-LF, carriage-return
and/or linefeed (inserted by pressing the Enter key), then separate list items are created for each text fragment
separated by a CR-LF. If a text fragment within a line is highlighted, then that text is created as the list-item of
a single-item list; you can add an unlimited number of additional list items by clicking Enter as many times as
required. Note that the Enclose With | Bullets and Numbering command can also be accessed via the
context menu.

465

417

478

478

© 2019-2025 Altova GmbH

Lists 141SPS Content

Altova StyleVision 2025 Basic Edition

5.7.2 Dynamic Lists

Dynamic lists display the content of a set of sibling nodes of the same name, with each node represented as a
single list item in the list. The element, the instances of which are to appear as the list items of the list, is
created as the list. The mechanism and usage are explained below.

General usage mechanism

· Any element can be created as a list.
· When an element is created as a list, the instances of that element are created as the items of the

list. For example, if in a department element, there are several person elements (i.e. instances), and
you wanted to create a list of all the persons in the department, then you must create the person
element as the list.

· Once the list has been created for the element, you can modify the appearance or content of the list or
list item by inserting additional static or dynamic content such as text, Auto-Calculations, dynamic
content, etc.

Creating a dynamic list
Create a dynamic list as follows:

1. Place the cursor at the location in the design where you wish to create the dynamic list and select the
Insert | Bullets and Numbering menu command. This pops up a dialog asking whether you wish
to create a static list or dynamic list (screenshot below).

2. Click Dynamic List. This pops up the XPath Selector dialog (screenshot below).
3. In the XPath Selector dialog, notice that the XPath Context is the context of the insertion location, and

that it cannot be changed in the dialog. Select the node that is to be created as the dynamic list. In the
screenshot below, the context node is n1:Department, and the n1:Person node has been selected as
the node to be created as a list. This means that the content of each n1:Person node will be created
as an item in the list.

465

142 SPS Content Lists

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

If you select the User-defined XPath option, then you can enter an XPath expression to select the node
to be created as the dynamic table. Clicking OK pops up the Bullets and Numbering dialog described
in the next step.

4. In the the Bullets and Numbering dialog, select the kind of list you wish to create. You can choose
from a bulleted list (with a bullet, circle, or square as the list item marker), or a numbered list. Clicking
OK creates the list with the type of list item marker you selected.

© 2019-2025 Altova GmbH

Lists 143SPS Content

Altova StyleVision 2025 Basic Edition

144 SPS Content Graphics

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.8 Graphics

When inserting images in the design document, the location of the image can be specified directly in the SPS
(by the SPS designer) or can be taken or derived from a node in the XML document. How to specify the
location of the image is described in the section Image URIs . What type of images are supported in the
various outputs are listed in the section Image Types and Output .

Image properties
Images can be set in the Properties window. Do this as follows. Select the image in the design. Then, in the
Properties window, (i) select image in the Properties for column, (ii) select the required property group, and (iii)
within the selected property group, select the the required property. For example, to set the height and width of
the image, set the height and width properties in the HTML group of properties.

5.8.1 Images: URIs and Inline Data

Images can be inserted at any location in the design document. These images will be displayed in the output
documents; in Design View, inserted images are indicated with thumbnails or placeholders.

To insert an image, click the Insert | Image menu command, which pops up the Insert Image dialog
(screenshot below).

 Images can be accessed in two ways:

· The image is a file, which is accessed by entering its URI in the Insert Image dialog.
· The image is encoded as Base-16 or Base-64 text in an XML file.

Inserting an image file
An image file is inserted in the design by specifying its URI. This file is accessed at runtime and placed in the
document. There are three ways in which the URI of the image can be entered in the Insert Image dialog
(screenshot above):

· In the Static tab, the URI is entered directly as an absolute or relative URI. For example,
nanonull.gif (relative URI; see section below), and C:/images/nanonull.gif (absolute URI).

144

146

462

145

© 2019-2025 Altova GmbH

Graphics 145SPS Content

Altova StyleVision 2025 Basic Edition

· In the Dynamic tab, as an XPath expression that selects a node containing either (i) a URI (absolute or
relative), or (ii) an unparsed entity name . For example, the entry image/@location would select the
location attribute of the image element that is the child of the context node (that is, the node within
which the image is inserted). The location node in the XML document would contain the image URI.
How to use unparsed entities is described in the section Unparsed Entity URIs .

· In the Static and Dynamic tab, an XPath expression in the Dynamic part can be prefixed and/or
suffixed with static entries (text). For example, the static prefix could be
C:/XYZCompany/Personnel/Photos/; the dynamic part could be concat(First, Last); and the
static suffix could be .png. This would result in an absolute URI something like:
C:/XYZCompany/Personnel/Photos/JohnDoe.png.

Inserting an image that is encoded text
An image can be stored in an XML file as Base-16 or Base-64 encoded text. The advantage of this is that the
image does not have to be accessed from a separate file (linked to it), but is present as text in the source XML
file. To insert an image that is available as encoded text in the XML source, use the Inline Data tab of the Insert
Image dialog (see screenshot below).

Use an XPath expression to locate the node in the XML document that contains the encoded text of the image.
Select an option from the Image Format combo box to indicate in what format the image file must be
generated. (An image file is generated from the encoded text data, and this file is then used in the output
document.) In the Encoding combo box, select the encoding that has been used in the source XML. This
enables StyleVision to correctly read the encoded text (by using the encoding format you specify).

The Image File Settings dialog (accessed by clicking the Image File Settings button) enables you to give a
name for the image file that will be created. You can choose not to provide a name, in which case StyleVision
will, by default, generate a name.

If you wish to embed an inline image in HTML output, select the Image Embedding with Data URI Scheme
option in the Properties dialog of the SPS.

Accessing the image for output
The image is accessed in different ways and at different times in the processes that produce the different
output documents. The following points should be noted:

· Note the output formats available for your edition: (i) HTML in Basic Editiion; (ii) HTML and RTF in
Professional; (iii) HTML, RTF, PDF, and Word 2007+ in Enterprise Edition.

339

339

444

146 SPS Content Graphics

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· For Design View, you can set, in the Properties dialog , whether relative paths to images should be
relative to the SPS or to the XML file.

· For HTML output, the URI of the image is passed to the HTML file and the image is accessed by the
browser. So, if the path to the image is relative, it must be relative to the location of the HTML file. For
the HTML Preview in StyleVision, a temporary HTML file is created in the same folder as the SPS file,
so, for rendition in HTML Preview, relative paths must be relative to this location.

· Whether the URI is relative or absolute, the image must be physically accessible to the process that
renders it.

Editing image properties
To edit an image, right-click the image placeholder in Design View, and select Edit URL from the context
menu. This pops up the Edit Image dialog, which is the same as the Insert Image dialog (screenshot above)
and in which you can make the required modifications. The Edit Image dialog can also be accessed via the URL
property of the image group of properties in the Properties window. The image group of properties also includes
the alt property, which specifies alternative text for the image.

Deleting images
To delete an image, select the image and press the Delete key.

5.8.2 Image Types and Output

The table below shows the image types supported by StyleVision in the various output formats supported by
StyleVision. Note that different editions of StyleVision support different sets of output formats: Enterprise
Edition, HTML, Authentic, RTF, PDF, and Word 2007+; Professional Edition, HTML, Authentic, RTF; Basic
Edition, HTML.

Image Type Authentic HTML RTF PDF Word 2007+

JPEG Yes Yes Yes Yes Yes

GIF Yes Yes Yes Yes Yes

PNG Yes Yes Yes Yes Yes

BMP Yes Yes Yes Yes Yes

TIFF Yes* Yes* Yes Yes Yes

SVG Yes* Yes* No Yes No

JPEG XR Yes Yes No No No

* See notes immediately below

Note the following points:

· In Design View, images will be displayed only if their location is a static URL (i.e. directly entered in
the SPS).

· For the display of TIFF and SVG images in Authentic View and HTML View, Internet Explorer 9 or
higher is required.

444

© 2019-2025 Altova GmbH

Graphics 147SPS Content

Altova StyleVision 2025 Basic Edition

· In RTF output, TIFF images can only be linked, not embeded. So re-sizing is not possible.
· SVG documents must be in XML format and must be in the SVG namespace.
· FOP reports an error if an image file cannot be located and does not generate a PDF.
· If FOP is being used to produce PDF, rendering PNG images requires that the JIMI image library be

installed and accessible to FOP.
· For more details about FOP's graphics handling, visit the FOP website.

Example file
An example file, Images.sps, is located in the folder:

 C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples/Tutorial/Images

SVG images in HTML
When an external SVG file with code for mouse events is used as an image, the SVG file is rendered within the
image and will no longer be interactive. This limitation can be overcome by using the external SVG image file
as an object or by including the SVG code fragment as a User-Defined XML Block.

Given below are the three ways in which SVG images can be included in a web page.

1. External SVG inserted as image : This generates an in the generated HTML file, and
interactivity will be lost.

2. External SVG inserted as an object via the User-Defined Element feature (see screenshot below).
Be sure to insert the type attribute correctly: ke type=”image/svg+xml”. When inserted in this way,
the SVG object is still interactive and the mouse hover-functionality will work.

3. Inline SVG inserted via a User-Defined XML Block . See screenshot below for an example of an
SVG code fragment. In this case, interactivity will work. Note that the svg element does not need to be
in the SVG namespace if the output method is HTML 4.0 or 5.0, but the namespace is required if the
output method is XHTML.

144

116

117

http://xmlgraphics.apache.org/fop/

148 SPS Content Graphics

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.8.3 Example: A Template for Images

The StyleVision package contains an SPS file that demonstrates the use of images in StyleVision. This file is
in the (My) Documents folder : C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\Images\Images.sps. The Images
document (Images.xml and Images.sps) consists of three parts:

· The second part contains a table showing which image formats are supported in the various
StyleVision output formats. Note that the RTF, PDF and Word 2007+ output formats are available only
in the Enterprise Edition and Professional Edition (RTF only) of StyleVision. In Design View, only
images with static URIs will be displayed. All the image formats listed in the table are displayed in Part
3 of the Images document.

· In Part 3, all the popular image formats supported by StyleVision are displayed one below the other.
After opening the file Images.sps in StyleVision, you can switch among the various previews of
StyleVision to see how each image is displayed in that preview. Since the location of the image is in
an XML node, you can also enter the location of your own images in Authentic View and test their
appearances in the preview windows.

23

© 2019-2025 Altova GmbH

Form Controls 149SPS Content

Altova StyleVision 2025 Basic Edition

5.9 Form Controls

Nodes in the XML document can be created as data-entry devices (such as input fields and combo boxes). In
the HTML output, the data-entry device is rendered as an object that is the same as that displayed in Design
View, or a near-equivalent. Note that data-entry devices will not work in the HTML output.

General mechanism
Given below is a list of the data-entry devices available in StyleVision, together with (i) an explanation of how
data is entered in the XML document for each device and (ii) how the data-entry devices will be output in plain
text format.

Data-Entry Device Data in XML File Output to Plain Text Format

Input Field (Text Box) Text entered by user Text entered by user

Multiline Input Field Text entered by user Text entered by user

Combo box User selection is mapped to a value. Selected value

Check box User selection is mapped to a value. [] (unselected); [x] (selected)

Radio button User selection is mapped to a value. () (unselected); (o) (selected)

Button User selection is mapped to a value. Button text

The text values entered in the input fields are entered directly into the XML document as XML content. For the
other data-entry devices, the Authentic View user's selection is mapped to a value. StyleVision enables you to
define the list of options the user will see and the XML value to which each option is mapped. Typically, you will
define the options and their corresponding values in a dialog.
Given below is a list of the data-entry devices available in StyleVision.

Data-Entry Device Output to Plain Text Format

Input Field (Text Box) Text entered by user

Multiline Input Field Text entered by user

Combo box Selected value

Check box [] (unselected); [x] (selected)

Radio button () (unselected); (o) (selected)

Button Button text

General usage
To create a data-entry device, do the following:

1. Drag a node from the Schema Tree window into Design View and drop it at the desired location.
2. From the context menu that appears, select the data-entry device you wish to create the node as.

150 SPS Content Form Controls

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. For some data-entry devices, a dialog pops up. In these cases, enter the required information in the
dialog, and click OK.

To reopen and edit the properties of a data-entry device, select the data-entry device (not the node containing
it), and edit its properties in the Properties sidebar.

Note:
· Data cannot be entered in data-entry devices in the HTML output. In the HTML output, data-entry

devices are merely used as an alternative way of presenting content.
· Data-entry devices can also be created by changing the current component type of a node to a data-

entry device. To do this right-click the node and select Change to.
· In the HTML output, the entry selected by the user is displayed in the output. Changing the value of a

data-entry device in the HTML document does not change the text value in either the XML document or
HTML document.

5.9.1 Input Fields, Multiline Input Fields

You can insert an Input Field or a Multiline Input Field in your SPS when you drop a node from the Schema
Sources window into Design View. The content of that node is displayed in the input field or multiline input field.

Editing the properties of input fields
You can modify the HTML properties of input fields by selecting the input field and then modifying its HTML
properties in the Properties sidebar.

For example, with the input field selected, in the Properties window select editfield, select the HTML group
of properties and the maxlength property. Then double-click in the Value field of maxlength and enter a value.

Note: CDATA sections cannot be inserted into input fields (that is, in text boxes and multiline text boxes).
CDATA sections can only be entered within elements that are displayed in Authentic View as text content
components.

5.9.2 Check Boxes

You can create a check box as a data-entry device. In Basic edition, you can leave the settings in the Edit
Check Box dialog at their default settings (since Basic edition does not support Authentic View, as a result of
which no value can be entered in the XML file.)

© 2019-2025 Altova GmbH

Form Controls 151SPS Content

Altova StyleVision 2025 Basic Edition

In the above screenshot, an element called Name has been created as a check box. If the Authentic View user

checks the check box, a value of true will be entered as the value of the element Name. If the value is

unchecked, then the value false is entered as the XML value of Name (as defined in the dialog).

Note: Check boxes in Text output are displayed as square brackets: [] for unselected check boxes; [x] for

selected check boxes.

Accessing the Edit Check Box dialog
If you are creating a new check box, when you create the node as a check box, the Edit Check Box dialog
pops up. To access the Edit Check Box dialog afterwards, do the following:

1. Select the check box in the design.
2. In the Properties sidebar, select the checkbox item and then the checkbox group of properties (see

screenshot below).

3. Click the Edit button of the check values property. This pops up the Edit Check Box dialog.

Note: You can modify the HTML properties of a check box by selecting it and then modifying its HTML
properties in the Properties sidebar.

152 SPS Content Form Controls

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.9.3 Combo Boxes

A combo box presents items in a dropdown list. The items in the list can be selected in one of the three ways
listed below. This list can be used in the generated HTML document for any required purpose; for example the
generated HTML can be post-processed so that the combo box list provides entries for an HTML form.

· From the schema enumerations for the selected node.
· From a list defined in the Edit Combo Box dialog. You enter the visible entry and the corresponding

XML value, which may be different. The XML value applies to the Enterprise and Professional editions,
and refers to the XML value to which the Authentic View user-selection maps. Basic edition users can
leave this column blank (since Authentic View is not supported in Basic edition).

· From the result sequence of an XPath expression relative to the current node. The items in the result
sequence are displayed as the entries of the drop-down list. This is a powerful method of using
dynamic entries in the combo box. The node that you create as the combo box is important. For
example, say you have a NameList element that may contain an unlimited number of Name elements,
which themselves have First and Last children elements. If you create the Name element as a combo
box, and select the Last child element for the list values, then you will get as many combo boxes as
there are Name elements and each combo box will have the Last child as its dropdown menu entry. In
order to get a single combo box with all the Last elements in the dropdown menu list, you must create
the single NameList element as the combo box, and select the Last element in the XPath expression.

Accessing the Edit Combo Box dialog
If you are creating a new combo box, when you create the node as a combo box, the Edit Combo Box dialog
pops up. You can also insert a combo box with the (Insert | Insert Form Controls | Combo Box) menu
command. To access the Edit Combo Box dialog afterwards, do the following:

1. Select the combo box in the design.
2. In the Properties sidebar, select the combo box item and then the combo box group of properties (see

screenshot below).

3. Click the Edit button of the the content origin property. This pops up the Edit Combo Box
dialog.

Using the Edit Combo Box dialog
The Edit Combo Box dialog is shown below.

© 2019-2025 Altova GmbH

Form Controls 153SPS Content

Altova StyleVision 2025 Basic Edition

To define the entries and values for the combo box, do the following:

1. Select the method with which you wish to define the entries and values by clicking the appropriate
radio button: (i) schema enumerations, (ii) list of values, or (iii) XPath expressions to select values.

2. If you select Schema Enumerations, the enumerations assigned to that node in the schema are
entered automatically as (i) the visible entries of the drop-down list of the combo box, and (ii) the
corresponding XML values (screenshot below). Visible Entries are the entries in the drop-down list of
the combo box. Each drop-down list entry has a corresponding XML value. The XML value
corresponding to the visible entry that the Authentic user selects will be the XML value that is entered
in the XML file. Both visible entries and XML values are grayed out in the list of values because they are
both obtained from the schema enumerations and cannot be edited.

154 SPS Content Form Controls

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

If you select Use List of Values, you can insert, append, edit, and delete any number of entries for the
drop-down list of the combo box as well as for the corresponding XML values. These edits are carried
out in the pane below the Use List of Values radio button. You could also use an XPath expression to
create the visible entries and XML values. The items in the sequence returned by the XPath expression
will be used for visible entries and XML values. You can specify: (i) that the same XPath expression be
used for visible entries and XML values, or (ii) that different XPath expressions be used. In the latter
case, a one-to-one index mapping between the items of the two sequences determines the
correspondence of visible entry to XML value. If the number of items in the two sequences are not
equal, an error is reported.

3. If you wish to have the items that appear in the drop-down list of the combo box in Authentic View
sorted, check the Sort Values in Authentic check box.

4. Click OK to finish.

Note
· Using an XPath expression to select the items of the combo box drop-down list enables you to create

combo boxes with dynamic entries from the XML file itself.
· If the items in the drop-down list of the combo box are obtained from schema enumerations, they will

be sorted alphabetically by default. If the items are obtained from an XML data file, they will appear in
document order by default.

· Combo boxes in Text output displayed the selected value.

5.9.4 Radio Buttons, Buttons

There are two types of button: radio buttons and buttons. Radio buttons and buttons can be useful for input into
forms or triggering events in the HTML output. The latter is done by associating scripts with the button event.

Note: You can modify the HTML properties of a radio button or button by selecting it and then modifying its
HTML properties in the Properties sidebar.

Note: Radio buttons in Text output are displayed as parentheses: () for unselected radio buttons; (o) for

selected radio buttons. Buttons generate only the button text in Text output.

© 2019-2025 Altova GmbH

Links 155SPS Content

Altova StyleVision 2025 Basic Edition

5.10 Links

Links (or hyperlinks) can be created to bookmarks located in the document as well as to external resources
like Web pages. Links can also be created to dynamically generated anchors. StyleVision offers considerable
flexibility in the way target URIs for hyperlinks can be built.

The section, Bookmarks and Hyperlinks , describes how to create static and dynamic bookmarks in the
document and how to link to bookmarks as well as to external documents.

Note: Links are not rendered in Text output.

299

156 SPS Content Barcodes

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.11 Barcodes

The Barcode design element is supported in XSLT 2.0 or XSLT 3.0 mode (not XSLT 1.0) and enables
barcodes (screenshot below) to be generated in the output document. At the location in the design document
where you wish to enter the barcode, insert the Barcode design element and specify its properties .

Important: For barcodes to work, a Java Runtime Environment must be installed. This must be version 1.4 or
later in a bit version that corresponds to the bit version of the StyleVision package installed on your system:
32-bit or 64-bit.

Important: For barcodes to be generated in the output, you must use Altova's XSLT processor to generate
the output. This is because the barcodes in an SPS are generated by calling special Java extension functions
that are not part of the XSLT standard. Altova's XSLT processors support these specific extension functions,
whereas other XSLT processors very probably do not. As a result, barcodes will not be generated if processed
with a non-Altova XSLT processor. The Altova XSLT processor is packaged with StyleVision, and is
automatically called when you generate output via the Generate commands in the File menu. Alternatively,
you can use RaptorXML Server, which is a Altova's standalone XSLT processor.

Note: Barcodes are not rendered in Text output.

Inserting a barcode
To insert a barcode in your design, do the following:

1. At the location where you wish to insert the barcode, right-click and select the command Insert
Barcode. Alternatively, select the command Insert | Insert Barcode or click the Barcode icon in the
toolbar and click the location in the design where you wish to insert the barcode. You can also drag
and drop an element from the Schema Tree into the Design View and then select 'Create Barcode'. The
Insert Barcode dialog pops up (screenshot below).

156 158

https://www.altova.com/raptorxml

© 2019-2025 Altova GmbH

Barcodes 157SPS Content

Altova StyleVision 2025 Basic Edition

2. Two properties, Type and Text, are mandatory; the others are optional and/or have appropriate default
values. The Type property, the value of which can be selected from a dropdown list (see screenshot
above), specifies the type of the barcode, for example EAN-13 (which includes ISBN barcodes) and
UPC-A. The Text property specifies the value that will generate the barcode, for example, an ISBN
number. The various barcode properties are described below . Set the required properties and any
other properties that you want. Note that, if you wish to use a value in the XML file as the value of a
property, you can enter an XPath expression to locate the XML node you wish to access. Do this
as follows: Select the property, toggle on the XPath button in the toolbar of the Properties dialog, and
then enter the XPath expression in the Edit XPath Expression dialog . The XPath expression will be
evaluated within the current context node.

3. After setting the properties, click OK. The barcode image will be inserted. The generated barcode (see
screenshot below) can be immediately viewed in any of the output previews.

Note: Barcode images are generated as PNG files.

158

48

398

158 SPS Content Barcodes

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Barcode properties
The following barcode properties can be specified. The Type and Text properties must be set; the other
properties are optional. Note that different properties are available for different barcode types.

· Type: The barcode system under which the message will be interpreted, such as EAN and UPC.
· Text: The value that will be used to generate the barcode pattern.
· SetModuleWidth: The width of the bars in the code.
· SetBarHeight: The height of the bars.
· SetHeight: The height of the barcode graphic.
· DoQuietZone: Yes or No values determine whether the "quiet zone" (or padding) around the barcode,

which is specified in the SetQuietZone and SetVerticalQuietZone properties, will be implemented.
· SetQuietZone: Sets the "quiet zone" (or padding) around the barcode. In the case of one-dimensional

barcodes, the value specified here is applied to the horizontal dimension. In the case of two-
dimensional barcodes, the value is applied to both horizontal and vertical dimensions. The value of the
vertical dimension can be overridden by the value specified in the SetVerticalQuietZone property. A
length unit of millimeters (mm) is required. Example: 2mm.

· SetVerticalQuietZone: Sets the "quiet zone" (or padding) for the vertical dimension on two-dimensional
barcodes. A length unit of millimeters (mm) is required. Example: 2mm.

· SetMsgPosition: Specifies where the message text appears relative to the barcode. Values are top,
bottom, and none (no mesage is generated).

· SetPattern: Sets a pattern for the message text so that the text is readable. A long string of numbers,
for example, would be difficult to read. The syntax for patterns is given below.

· SetFontName: The font in which text should appear.
· SetFontSize: The font-size in which text should appear.
· SetChecksumMode: The following values are available: (i) Add: the checksum is automatically added

to the message; (ii) Check: the checksum is checked while rendering the barcode (assumes the
checksum is present); (iii) Ignore: no checksum processing is done; (iv) Auto: enables the barcode
type's default behaviour.

· Orientation: Whether the barcode should be rotated. The options are in steps of 90 degrees counter-
clockwise.

· PixelDensity: Specifies the density of the pixels in the barcode image. Higher pixel density provides
sharper images.

· GeneratedImageSettings: Enables you to set a name for the generated barcode image file. If no name
is specified, a name is generated automatically by StyleVision.

Pattern syntax
Patterns are used to make the input message string more readable in the barcode. In the pattern, each
character of the input message text is represented by the underscore "_". Any other characters included in the
pattern are inserted at the corresponding locations in the output message text. The backslash "\" is an escape
symbol. So, the combination of '\?' will insert the character '?' in the output message text, where '?' can be any
character. The character '#' can be used to delete a character from the original message. These points of
pattern syntax are illustrated with the examples below.

Input message text Pattern Output message text

123456 __ __ __ 12 34 56

© 2019-2025 Altova GmbH

Barcodes 159SPS Content

Altova StyleVision 2025 Basic Edition

15032011094655 ________ __:__:__ UTC 15\03\2011 09:46:55 UTC

15-03-2011 __#/__#/____ 15/03/2011

Generating output files
The barcode image files that are generated for the output are saved to locations that are specified in the Paths
tab of the Properties dialog (screenshot below), which is accessed with the menu command File | Properties.

Barcode image files for previews may be created in the same directory as the SPS file or as the Working XML
File. These are temporary files, which are deleted when the SPS is closed. Barcode image files that are
created when output is generated using the File | Save Generated File command can be created at any
location. Their target location is specified in the pane, Location of Additionally Generated Files (see screenshot
above).

160 SPS Content Layout Modules

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.12 Layout Modules

Layout Modules are objects containing a layout. The module as a whole is inserted in the SPS design and
occurs as a block within the document flow. Within a Layout Module, multiple Layout Boxes, each containing
standard SPS design elements, can be placed according to design requirements. Using Layout Modules,
therefore, designers can create a layout just as they would using an artboard-based graphical design
application.

The steps for creating a Layout Module are as follows:

1. Insert a Layout Container . The Layout Container can occupy the entire width of a page or can have
any other dimensions you want. It can contain a blueprint of the design to serve as design guide and it
can be formatted (in the Styles sidebar) using styles for the Layout Container.

2. Insert one or more Layout Boxes in the Layout Container. Layout Boxes can contain multiple
design elements (including static text, schema nodes, Auto-Calculations, images, lists, etc), and they
can be formatted (in the Styles sidebar) using styles for the Layout Box. Layout Boxes can also be
moved relative to each other within the Layout Container and can be positioned in front of or behind
each other.

3. Lines can be drawn, formatted, positioned and moved to the front or back of the stack of layout
objects (Layout Boxes and other Lines).

Note: Layout Modules are not rendered in Text output.

Form-based designs
When you create a new SPS you are offered the choice of creating a free-flowing design or a form-based
design. A form-based design is essentially an SPS design consisting of a Layout Container.

Note: Layout Modules are supported in Authentic View only in the Enterprise Editions of Altova products.

5.12.1 Layout Containers

A Layout Container has the following properties:

· It can be inserted within the flow of a document, that is, within a template. Or it can be inserted as
the container within which the document design is created.

· It can have the same dimensions as the page dimensions defined for that section (the Auto-Fit to Page
property of Layout Containers). Or it can have any other dimensions you specify. See the Layout
Container size section below for details.

· A layout grid and a zoom feature make the positioning of objects in the Layout Container easier.
· It can have style properties , such as borders, background colors, font-properties for the whole

container, etc.
· It can contain Layout Boxes and Lines , but no other design element. (All design elements must be

placed within Layout Boxes.)
· It can contain a blueprint , which is an image placed on the artboard to serve as a reference

template for the designer. The design can then be built to match the blueprint exactly.

Note: Layout Containers are supported in Authentic View only in the Enterprise Editions of Altova products.

160

163

167

424

161

161

161 162

162

162

163

© 2019-2025 Altova GmbH

Layout Modules 161SPS Content

Altova StyleVision 2025 Basic Edition

Inserting a Layout Container
To insert a Layout Container, click the Insert Layout Container icon in the Insert Design Elements toolbar
and click the location in the design where the Layout Container is to be inserted. A dialog appears asking
whether you wish to auto-fit the Layout Container to the page. If you click Yes, the Layout Container will have
the same size as the page dimensions defined in the page layout properties of that particular document
section. If you click No, then a Layout Container with a default size of 3.5in x 5.0in is created.

Note that a Layout Container can also be created at the time you create an SPS.

Layout Container size
There are two sets of properties that affect the size of the Layout Container:

· The Auto-Fit Page Size property (Properties sidebar, screenshot below) can be set to yes to create a
Layout Container having the same dimensions as those specified for pages in that document section.
A value of no for this property creates a Layout Container with a customizable size.

· The height and width properties of the Details group of Layout Container styles (in the Styles sidebar)
specify the dimensions of the Layout Container. The dimensions can also be modified directly in the
design by dragging the right and bottom margins of the Layout Container. Note that the height and
width properties will take effect only when the Auto-Fit Page Size property has a value of no.

Layout Container Grid
The Layout Container has a grid to aid in spacing items in the layout. The following settings control usage of
the grid:

· Show/Hide Grid: A toggle command in the Insert Design Elements toolbar switches the display of the
grid on and off.

· Grid Size: In the Design tab of the Options dialog units for horizontal and vertical lengths can be
specified. Note that if very large length units are selected, the grid might not be clearly visible.

· Snap to Grid: A toggle command in the Insert Design Elements toolbar enables or disables the Snap
to Grid function. When the Snap to Grid feature is enabled, the top and left edges of Layout Boxes and
the endpoints of Layout Lines align with grid lines and points, respectively.

419

162 SPS Content Layout Modules

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Zooming
To help position objects more accurately, you can magnify the view. Do this by changing the Zoom factor in the
Zoom combo box (in the Standard toolbar), or by pressing the Ctrl key and scrolling with the mouse.

Layout Container style properties
There are two types of style properties that can be applied to Layout Containers:

· Those applied to the Layout Container alone and which are not inheritable, such as the border and
background-color properties.

· Those that are inheritable by the Layout Boxes in the Layout Container, such as font properties.

The style properties of a Layout Container are set in the Layout Container styles in the Styles sidebar
(screenshot above).

Layout Container contents
The only design items that can be contained in a Layout Container are Layout Boxes and Lines. Additionally, a
blueprint (which is not a design element) can be placed in the Layout Container as a design aid. All design
elements must be placed in a Layout Box.

© 2019-2025 Altova GmbH

Layout Modules 163SPS Content

Altova StyleVision 2025 Basic Edition

Blueprints
One blueprint can be placed in a Layout Container at a time to aid the designer in creating the SPS. The
blueprint is an image file that can be placed to exactly fit the size of the Layout Container. Alternatively, if the
blueprint image is smaller than the Layout Container, it can be offset to the desired location in the design (see
Blueprint image properties screenshot below). The designer can use the blueprint by reproducing the SPS
design over the blueprint design. In this way the designer will be able to place design elements in the layout
exactly as in the blueprint. The blueprint will appear only in Design View, but not in any output view: this is
because its purpose is only to aid in the design of the SPS.

The blueprint's properties can be controlled via the Blueprint image group of properties of the Layout Container
properties (in the Properties sidebar, screenshot below).

The opacity of the blueprint in the Layout Container can be specified so that the blueprint does not interfere with
the viewing of the design. The display of the blueprint image can also be switched off with the Show Image
property if required.

5.12.2 Layout Boxes

Every design element in a layout (such as static text, schema nodes, Auto-Calculations, images, lists, etc)
must be placed in a Layout Box. The Layout Boxes containing design elements are laid out as required in the
Layout Container. Note that a design element cannot be placed directly in a Layout Container; it must be
placed in a Layout Box.

This section describes how Layout Boxes are used and is organized into the following sub-sections:

· Inserting Layout Boxes
· Selecting and moving Layout Boxes
· Modifying the size of the Layout Box
· Defining Layout Box style properties

164

164

164

165

164 SPS Content Layout Modules

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Inserting content in the Layout Box
· Stacking order of Layout Boxes

Inserting a Layout Box
A Layout Box can be inserted only in a Layout Container . To add a Layout Box, first click the Insert Layout
Box icon in the Insert Design Elements toolbar, then click on the location inside the Layout Container where
you wish to insert the Layout Box. A Layout Box will be inserted, with its top left corner positioned at the point
where you clicked. The box will be transparent, will have no borders, and will have default text.

Selecting and moving a Layout Box
To select a Layout Box, place the cursor over the left border or top border of the Layout Box so that the cursor
becomes a crossed double arrow. When this happens, click to select the Layout Box. If you keep the mouse
button depressed, you can move the Layout Box to another location within its Layout Container. You can also
move a Layout Box left, right, up, or down by selecting it, and then pressing the cursor key for the required
direction. When the Layout Box is selected, its properties and styles are displayed in the respective sidebars.

Layout Box size
Each Layout Box has a property called Auto-Resize (see screenshot below). When the value of this property is
set to yes, the Layout Box automatically resizes to exactly accommodate any static content (including
markup) that is inserted in it in the Design View. When the value of Auto-Resize is set to no, the size of the
Layout Box does not automatically change when content is inserted in it.

To change the size of the Layout Box manually, drag its right border and bottom border. You can also the
change the size of a Layout Box by using the cursor keys to move the right and bottom borders of the box. To
do this first select the Layout Box . Then do the following: (i) to move the right border, keep the Shift key
depressed and press the right or left cursor key till the required size is obtained; (ii) to move the bottom border,
keep the Shift key depressed and press the top or bottom cursor key.

The Additional Height and Additional Width properties give the lengths that are additional to the optimal
dimensions as determined by auto-resizing. The additional lengths are obtained when a Layout Box is manually
resized. Conversely, by changing the values of these two properties, the size of the Layout Box can be
changed.

165

166

160

419

164

© 2019-2025 Altova GmbH

Layout Modules 165SPS Content

Altova StyleVision 2025 Basic Edition

Note: In a Layout Box a linefeed is obtained by pressing the Enter key. This is significant, because if content
is added that does not contain a linefeed, then the length of the current line increases, thus increasing the
optimal width of the Layout Box and—incidentally—affecting the Additional Width value, which is calculated
with reference to the optimal width.

Layout Box style properties
The style properties of a Layout Box are set in the Layout Box styles in the Styles sidebar (screenshot below).
The styles are displayed when the Layout Box is selected, and can then be edited.

Note: The background-color value of transparent can be selected in the dropdown list of the property's combo
box (it is not available in the color palette). The significance of this value in a situation where the Layout Box is
part of a stack is explained below.

Inserting content in a Layout Box
Any type of design element can be inserted in a Layout Box, and is inserted just as it normally would be in an
SPS. Note, however, that neither a Layout Container nor a Layout Line can be inserted in a Layout Box.
The following points should be noted:

· When design elements are inserted that require a context node, the current node will be taken as the
context node. The current node is the node within which the Layout Module has been created.

· Text content in a layout box can be rotated 90 degrees clockwise or anti-clockwise, so that the text is
vertical, reading from top-to-bottom or bottom-to-top, respectively. To do this, in the design, select the
text that is to be rotated and, in the Properties sidebar (screenshot below), select LayoutBox. In the
Layout Box group of properties, select the required value for the Orientation property.

160 167

166 SPS Content Layout Modules

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Note the following points:

· The rotation will be applied to the output, but will not be be displayed in the design.
· This property can also be applied to text in table cells .

Stacking order of Layout Boxes
Layout Boxes can be placed one over the other. When one Layout Box is placed on top of another, then, if it is
opaque, it hides that part of the Layout Box which it covers. This behavior can be extended to a stack of several
Layout Boxes. In such a stack, only the topmost Layout Box will be fully visible; the others will be partially or
fully covered.

Layout Boxes can be sent backward or brought forward using the Order menu commands in the context menu
of the selected Layout Box. Using these commands a Layout Box can be ordered: (i) relative to its nearest
neighbor on the stack (the Bring Forward and Send Backward commands), or (ii) relative to the entire stack
(the Bring to Front and Send to Back commands). In the screenshot above, the stacking order from front to
back is as follows:

· Left stack: orange, green, blue
· Right stack: blue, green, orange

Note that Layout Boxes with transparent backgrounds (the default background of Layout Boxes) might appear
to not move relative to each other, especially if more than one box in the stack is transparent and if boxes have
no borders. The screenshot below presents some ways in which transparency affects stacking.

129

© 2019-2025 Altova GmbH

Layout Modules 167SPS Content

Altova StyleVision 2025 Basic Edition

Note: Layout Lines can also be added to a stack of Layout Boxes, and each Line can be moved relative to
other items in the stack.

5.12.3 Lines

Lines can be inserted in a Layout Container (but not in Layout Boxes), then selected, re-sized and
moved around within the Layout Container, assigned properties , and moved backwards and forwards in a
stack of layout items consisting of Layout Boxes and other Lines.

Inserting a Line
To add a Line to a Layout Container, do the following:

1. Click the Insert Line icon in the Insert Design Elements toolbar.
2. Click on the location inside the Layout Container where you wish to locate the start point of the line.
3. Without releasing the mouse button, draw the line from the start point to the desired end point. Then

release the mouse button.

A black line will be inserted, with a dot at each end indicating the start and end points respectively.

Selecting, moving, and sizing a Line
In the Main Window, you can carry out the following-drag-and-drop functions:

· To select a Line, click any part of the Line (the cursor becomes a crossed double arrow when it is over
the Line). Once a Line is selected, its properties are displayed in the Properties sidebar and can be
edited there (see below).

· To move a Line, select it and drag it to the desired location. You can also move a line left, right, up, or
down by selecting it, and then pressing the cursor key for the required direction.

· To graphically re-size or re-orient a Line, select either the start point or end point and re-position it to
obtain a new size and/or orientation. You can also re-size or re-orient a Line by pressing Shift and the
cursor keys: the right and left cursor keys move the right-hand endpoint right and left, the up and down
cursor keys move the right-hand endpoint up and down, respectively.

167

167

167 168

168

419

168 SPS Content Layout Modules

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Line properties
When a Line is selected its properties are displayed in the Properties sidebar (screenshot below), and the
properties (listed below) can be edited in the sidebar. You can also right-click a Line to pop up the Properties
sidebar with the properties of the Line in it.

The following Line properties can be edited in the Properties sidebar:

· Color: Specifies a color for the Line. The default is black.
· Size and position: The location of the start and end points of the Line can be specified using an x-y

(horizontal-vertical) coordinate system. The reference frame is created with the top left corner of the
Layout Container having the coordinates (x=0, y=0).

· Width: Specifies the thickness of the Line.

Lines and stacking order
When a Line is in a stack consisting of Layout Boxes and other Lines, it can be sent backward or brought
forward using the Order menu commands in the context menu of the selected Line. Using these commands a
Line can be ordered: (i) relative to its nearest neighbor on the stack (the Bring Forward and Send Backward
commands), or (ii) relative to the entire stack (the Bring to Front and Send to Back commands).

© 2019-2025 Altova GmbH

Layout Modules 169SPS Content

Altova StyleVision 2025 Basic Edition

In the screenshot above, the stacking order from front to back is as follows: green box, red line, black line, blue
box.

170 SPS Content The Change-To Feature

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

5.13 The Change-To Feature

The Change-To feature is available when a template or the contents of a template are selected, and enables
you to change: (i) the node for which that template applies, or (ii) how the node is created in the design.

What can be changed with the Change-To feature
Either a node or its contents can be changed. In the image below left, the node is selected. In the image at
right, the node's contents are selected.

The n1:Name element in the screenshot above has been created as (contents), and so the node's contents
are represented by the (contents) placeholder. Alternatively, the node could have been created as another
type of content, for example, as an input field or combo box. Other types of content can also be selected.

The Change-To command
Access the change to comannd by right-clicking your selection. In the context menu that pops up, select
Change To (screenshot below).

© 2019-2025 Altova GmbH

The Change-To Feature 171SPS Content

Altova StyleVision 2025 Basic Edition

Changing template matches
If a template is selected, you can change the node for which that template applies. This is useful if, for
instance, the name of an element has been changed in the schema. When you mouse over the Change To
command and select Template from the sub-menu that pops up, you are presented with a list off all the nodes
that may be inserted as a child of the selected node's parent element. Click one of these nodes to make the
template apply to that node.

If the selected node has a content model that does not match that described in the template, there will be
structural inconsistencies. Such inconsistencies are errors and are indicated with red strikethroughs in the tags
of nodes that are invalid.

You can also change the template-match to match, not a node, but a variable template .

Changing the content type of the node
If a template or its contents are selected, then you can change the type of content the node is created as. On
hovering over the Change To command in the context menu, the type of content that the selected node can be
changed to is displayed as options in the sub-menu that pops up (screenshot below).

223

172 SPS Content The Change-To Feature

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The screenshot above has been taken with a combo box selected.

© 2019-2025 Altova GmbH

 173SPS Structure

Altova StyleVision 2025 Basic Edition

6 SPS Structure

The structure of an SPS document is both input- as well as output-driven, and it is controlled by:

· Schema sources
· Modular SPSs
· Templates and Design Fragments

Input-driven structure: schemas and modular SPS files
By input-driven, we mean that the source schemas of SPS files specify the structure of the input document/s
and that this structure is the structure on which the SPS document is based. For example, if a source schema
specifies a structure that is a sequence of Office elements, then SPS design could have a template for the
Office element. At processing time this template will be applied in turn to each Office element in the source
data document.

Another example of how the source document structure drives the design of the SPS file can be seen in the
use of tables. Say that an Office element contains multiple Person element children, and that each Person
element contains a set of child elements such as Name, Address, Telephone, etc. Then a template in the form
of a table can be created for the Person element. Each Person element can be presented in a separate row of
the table (screenshot below), in which the columns are the details of the Person (the child elements of the
Person element).

Such a template is possible because of the structure of the Person element and because the Person elements
are siblings. In the table template a single row is designed for the Person element, and this processing (the row
design) is applied in turn to each Person element in the source document, creating a new row for each Person
element, with the child elements forming the columns of the table.

How to use various kinds of schema sources is described in the section, Schema Sources .

Additionally, StyleVision allows SPSs to be re-used as modules within other SPSs. In this way, modules can
be included within a structure and can modify it. However, a schema structure contained in a module must fit in
with the structure of the underlying schema of the containing SPS. How to work with modular SPSs is
described in the section, Modular SPSs .

Output-driven structure: templates and design fragments
While the schema sources provide the structure of the input data document, the actual design of the output
document is what is specified in the SPS document. This design is contained in one document template called
the main template. The main template typically contains several component templates and can reference global
templates. Templates are described in the section, Templates and Design Fragments .

175

202

216

175

202

216

174 SPS Structure

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

This composability (of multiple templates) is further enhanced by a StyleVision feature called Design
Fragments, which enables specific processing to be assigned to a document fragment that can be re-used. A
Design Fragment is different than a global template in that: (i) it can be composed of multiple templates; and (ii)
identical content with different processing can be created in separate design fragments, either of which can be
used in a template according to the situation. For example, in some processing situations, an Email node
might be required as a link that opens an empty email; in other cases the Email element could be required in
bold and in red. Two separate design fragments could provide the respective processing, and both can be re-
used as required.

Design fragments are described in detail in the section, Design Fragments .226

© 2019-2025 Altova GmbH

Schema Sources 175SPS Structure

Altova StyleVision 2025 Basic Edition

6.1 Schema Sources

The schema sources are the starting point of the design, and design structure can be influenced by: (i) choices
you make during schema selection, and (ii) the root elements you select in the schema.

Schema selection
The selection of the schema for a new SPS file can be done in the following ways:

1. Click File | New and directly select a schema source to add via one of the methods (except New
(empty)) available in the menu that pops up.

2. Click File | New, select New (empty) from the menu that pops up. After the new SPS is created and
displayed in the GUI, in the Design Overview sidebar , select the Add New Schema command.
This pops up a a menu listing the methods you can use to add different types of schemas (screenshot
below). Each command in this menu is described in the sub-sections of this section.

The schema source can be selected from a file or be user-defined. An important point to consider is whether
you will be using global templates, and whether elements you wish to create as global templates are defined as
global elements in the schema. When adding a DTD from file, remember that all elements defined in the DTD
are global elements. When adding an XML Schema from file, it is worth checking what elements are defined as
global elements and, should you wish to make any change to the schema, whether this is permitted in your
XML environment.

Note: If you wish to add a namespace to an SPS or to an XSLT stylesheet being generated from an SPS, the
namespace must be added to the top-level schema element of the XML Schema on which the SPS is based.

Root elements
If a schema source has multiple global elements , then multiple root elements (document elements) can
be selected for use in the design. This enables the SPS design to have templates that match multiple
document elements. The advantage of this is that if an SPS, say UniversalSPS.sps, based on
UniversalSchema.xsd has one template each for its two root elements, Element-A and Element-B, then this
one SPS can be used with an XML instance document which has Element-A as its document element as well
as with another XML instance document which has Element-B as its document element. For each XML
instance, the relevant template is used, while the other is not used. This is because for the document element
of each XML instance document, there is only one template in the SPS which matches that document element.
For example, the document element /Element-A will be matched by the template which selects /Element-A
but not by that which selects /Element-B. In this connection, it is important to remember that if multiple global
elements are defined in the schema, an XML document with any one of these global elements as its document
element is valid (assuming of course that its substructure is valid according to the schema).

To set up the SPS to use multiple root elements (document elements), click the button to the right of
the /Root elements entry of the schema. The following dialog pops up.

33

21 21

21

176 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The dialog lists all the global elements in the schema. Select the global elements that you wish to use as root
elements (document elements) and click OK. The selected element/s will be available as root document
elements and will be displayed in the Root Elements list. A template can now be created for each of these
document elements. Each of these templates serves as an alternative root element template. When an XML
document is processed with this SPS, only one of the alternative root element templates will be used: the one
that matches the root (or document) element of the XML document.

So, when an XML document having Element-A as its document element is processed with this SPS, then the
root template in the SPS that matches Element-A is triggered, while all the other root element templates in the
SPS are ignored. If an XML document having Element-B as its document element is processed, then the root
template in the SPS that matches Element-B is triggered, while all other root element templates in the SPS
are ignored. In this way a single SPS can be used to process two or more XML documents, each of which has
a different root (or document) element.

6.1.1 DTDs and XML Schemas

An SPS can be based on an XML Schema or DTD. An XML Schema or DTD can be created as a schema
source in one of the following ways:

· The XML Schema or DTD is is created as a schema source directly when the SPS is created (File |
New | New from XML Schema / DTD / XML).

· The XML Schema or DTD is added to an empty SPS (in the Design Overview sidebar).

The respective commands prompt you to browse for the XML Schema or DTD. If the schema is valid, it is
created as a schema source in the Schema Sources tree of the Schema Tree sidebar. Alternatively, an XML
file can be selected. If an XML Schema (.xsd) or DTD file is associated with the XML file, then the XML
Schema or DTD file is loaded as the source schema and the XML file is loaded as the Working XML File. If no
schema is associated with the XML file, a dialog pops up asking whether you wish to generate an XML Schema
based on the structure and contents of the XML file or browse for an existing schema. If you choose to

21

33

© 2019-2025 Altova GmbH

Schema Sources 177SPS Structure

Altova StyleVision 2025 Basic Edition

generate a schema, the generated schema will be loaded as the source schema, and the XML file will be
loaded as the Working XML File.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog
(the screenshot below shows the Open dialog).

178 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

© 2019-2025 Altova GmbH

Schema Sources 179SPS Structure

Altova StyleVision 2025 Basic Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

180 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

© 2019-2025 Altova GmbH

Schema Sources 181SPS Structure

Altova StyleVision 2025 Basic Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section,. For a general description of
Global Resources, see the section in this documentation.

The anyType datatype of XML Schema
If an element in the XML Schema has been assigned the anyType datatype of XML Schema or if it has not
been assigned any datatype, then the schema tree in the Schema Tree will show this element as having all the
global elements of that schema as possible children. For example, if an element called email has not been
assigned any datatype, then it will be displayed in the schema tree with all global elements as possible
children, such as, for example: person, address, city, tel, etc. To avoid this, assign the email element a
datatype such as xs:string.

6.1.2 User-Defined Schemas

You can quickly create a user-defined schema in the Schema Tree sidebar . This is useful if you have an
XML document that is not based on any schema and you wish to create an SPS for this XML document.

To add and create a user-defined schema, in the Schema Tree sidebar, do the following:

1. Click File | New | New (empty). In the Design Overview sidebar , click the Add New Source
command (under the Sources heading), and select Add User-Defined Schema (screenshot below).

The new schema is created and is indicated with the parameter $USER (screenshot below).

36

33

182 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. In the Root Elements tree, there is a single root element (document element) called UserRoot.
3. Double-click UserRoot and rename it to match the document element of the XML document for

which you are building this schema.
4. To assign a child element or an attribute to the document element, select the document element

(UserRoot), and click, respectively, (i) the drop-Append New Element icon in the toolbar of the
Schema Tree sidebar ; and (ii) the dropdown arrow of the Append New Element icon | the Append
New Attribute command. Alternatively, you can right-click and select the required command from the
context menu. When an element is selected, appending and inserting an element, adds the new
element as a sibling element, respectively, after and before the selected element. You can also add a
child element and a child attribute. When an attribute is selected, you can append or insert another
attribute, respectively, after and before the selected attribute. After the new element or attribute is
added to the tree, type in the desired name. You can also drag nodes to the desired location
(described in the next step). In the screenshot below, the Article element is the document element.
The elements Title, Para, Bold, and Italic, and the attributes ID and Author have been added at
the child level of Article.

21

21

36

© 2019-2025 Altova GmbH

Schema Sources 183SPS Structure

Altova StyleVision 2025 Basic Edition

5. To move the elements Bold and Italic, and the attribute ID to the level of children of Para, select

each individually and drag to the Para element. When a bent downward-pointing arrow appears,
drop the dragged node. It will be created as a "child" of Para (screenshot below).

6. When any element other than the document element is selected, adding a new element or attribute
adds the new node at the same level as the selected element. Drag a node (element or attribute) into
an element node to create it as a "child" of the element node.

Editing node names and deleting nodes
To edit the name of an element or attribute, double-click in the name and edit the name. To delete a node,

select it and click the Remove icon in the toolbar. Alternatively, select Remove from the context menu.

6.1.3 Schema Manager

XML Schema Manager is an Altova tool that provides a centralized way to install and manage XML schemas
(DTDs for XML and XML Schemas) for use across all Altova's XML-Schema-aware applications, including
StyleVision.

· On Windows, Schema Manager has a graphical user interface (screenshot below) and is also available
at the command line. (Altova's desktop applications are available on Windows only; see list below.)

· On Linux and macOS, Schema Manager is available at the command line only. (Altova's server
applications are available on Windows, Linux, and macOS; see list below.)

184 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Altova applications that operate with Schema Manager

Desktop applications (Windows only) Server applications (Windows, Linux, macOS)

XMLSpy (all editions) RaptorXML Server, RaptorXML+XBRL Server

© 2019-2025 Altova GmbH

Schema Sources 185SPS Structure

Altova StyleVision 2025 Basic Edition

MapForce (all editions) StyleVision Server

StyleVision (all editions)

Authentic Desktop Enterprise Edition

Installation and de-installation of Schema Manager
Schema Manager is installed automatically when you first install a new version of Altova Mission Kit or of any
of Altova's XML-schema-aware applications (see table above).

Likewise, it is removed automatically when you uninstall the last Altova XML-schema-aware application from
your computer.

Schema Manager features
Schema Manager provides the following features:

· Shows XML schemas installed on your computer and checks whether new versions are available for
download.

· Downloads newer versions of XML schemas independently of the Altova product release cycle. (Altova
stores schemas online, and you can download them via Schema Manager.)

· Install or uninstall any of the multiple versions of a given schema (or all versions if necessary).
· An XML schema may have dependencies on other schemas. When you install or uninstall a particular

schema, Schema Manager informs you about dependent schemas and will automatically install or
remove them as well.

· Schema Manager uses the XML catalog mechanism to map schema references to local files. In the
case of large XML schemas, processing will therefore be faster than if the schemas were at a remote
location.

· All major schemas are available via Schema Manager and are regularly updated for the latest versions.
This provides you with a convenient single resource for managing all your schemas and making them
readily available to all of Altova's XML-schema-aware applications.

· Changes made in Schema Manager take effect for all Altova products installed on that machine.
· In an Altova product, if you attempt to validate on a schema that is not installed but which is available

via Schema Manager, then installation is triggered automatically. However, if the schema package
contains namespace mappings, then there will be no automatic installation; in this case, you must
start Schema Manager, select the package/s you want to install, and run the installation. If, after
installation, your open Altova application does not restart automatically, then you must restart it
manually.

How it works
Altova stores all XML schemas used in Altova products online. This repository is updated when new versions of
the schemas are released. Schema Manager displays information about the latest available schemas when
invoked in both its GUI form as well as on the CLI. You can then install, upgrade or uninstall schemas via
Schema Manager.

Schema Manager also installs schemas in one other way. At the Altova website
(https://www.altova.com/schema-manager) you can select a schema and its dependent schemas that you want
to install. The website will prepare a file of type .altova_xmlschemas for download that contains information

about your schema selection. When you double-click this file or pass it to Schema Manager via the CLI as an
argument of the install command, Schema Manager will install the schemas you selected.194

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
https://www.altova.com/schema-manager

186 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Local cache: tracking your schemas
All information about installed schemas is tracked in a centralized cache directory on your computer, located
here:

Windows C:\ProgramData\Altova\pkgs\.cache

Linux /var/opt/Altova/pkgs\.cache

macOS /var/Altova/pkgs

This cache directory is updated regularly with the latest status of schemas at Altova's online storage. These
updates are carried out at the following times:

· Every time you start Schema Manager.
· When you start StyleVision for the first time on a given calendar day.
· If StyleVision is open for more than 24 hours, the cache is updated every 24 hours.
· You can also update the cache by running the update command at the command line interface.

The cache therefore enables Schema Manager to continuously track your installed schemas against the
schemas available online at the Altova website.

Do not modify the cache manually!
The local cache directory is maintained automatically based on the schemas you install and uninstall. It
should not be altered or deleted manually. If you ever need to reset Schema Manager to its original
"pristine" state, then, on the command line interface (CLI): (i) run the reset command, and (ii) run the
initialize command. (Alternatively, run the reset command with the --i option.)

6.1.3.1 Run Schema Manager

Graphical User Interface
You can access the GUI of Schema Manager in any of the following ways:

· During the installation of StyleVision: Towards the end of the installation procedure, select the check
box Invoke Altova XML-Schema Manager to access the Schema Manager GUI straight away. This will
enable you to install schemas during the installation process of your Altova application.

· After the installation of StyleVision: After your application has been installed, you can access the
Schema Manager GUI at any time, via the menu command Tools | XML Schema Manager.

· Via the .altova_xmlschemas file downloaded from the Altova website: Double-click the downloaded file

to run the Schema Manager GUI, which will be set up to install the schemas you selected (at the
website) for installation.

After the Schema Manager GUI (screenshot below) has been opened, already installed schemas will be shown
selected. If you want to install an additional schema, select it. If you want to uninstall an already installed
schema, deselect it. After you have made your selections and/or deselections, you are ready to apply your
changes. The schemas that will be installed or uninstalled will be highlighted and a message about the

197

195

193

https://www.altova.com/schema-manager

© 2019-2025 Altova GmbH

Schema Sources 187SPS Structure

Altova StyleVision 2025 Basic Edition

upcoming changes will be posted to the Messages pane at the bottom of the Schema Manager window (see
screenshot).

When you click Apply, the progress of the installation is displayed. If there is an error (for example, a
connection error), then an error message is displayed. In this case, click the Advanced button that appears in
the dialog, check the schema selection and retry with Apply.

188 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Command line interface
You can run Schema Manager from a command line interface by sending commands to its executable file,
xmlschemamanager.exe.

The xmlschemamanager.exe file is located in the following folder:

· On Windows: C:\ProgramData\Altova\SharedBetweenVersions
· On Linux or macOS (server applications only): %INSTALLDIR%/bin, where %INSTALLDIR% is the

program's installation directory.

You can then use any of the commands listed in the CLI command reference section .

To display help for the commands, run the following:

· On Windows: xmlschemamanager.exe --help
· On Linux or macOS (server applications only): sudo ./xmlschemamanager --help

6.1.3.2 Status Categories

Schema Manager categorizes the schemas under its management as follows:

· Installed schemas. These are shown in the GUI with their check boxes selected (in the screenshot
below the checked and blue versions of the EPUB and HL7v3 NE schemas are installed schemas). If
all the versions of a schema are selected, then the selection mark is a tick. If at least one version is
unselected, then the selection mark is a solid colored square. You can deselect an installed schema
to uninstall it; (in the screenshot below, the DocBook DTD is installed and has been deselected,
thereby preparing it for de-installation).

· Uninstalled available schemas. These are shown in the GUI with their check boxes unselected. You
can select the schemas you want to install.

192

© 2019-2025 Altova GmbH

Schema Sources 189SPS Structure

Altova StyleVision 2025 Basic Edition

· Upgradeable schemas are those which have been revised by their issuers since they were installed.

They are indicated in the GUI by a icon. You can patch an installed schema with an available
revision.

Points to note

· In the screenshot above, both CBCR schemas are checked. The one with the blue background is
already installed. The one with the yellow background is uninstalled and has been selected for
installation. Note that the HL7v3 NE 2010 schema is not installed and has not been selected for
installation.

· A yellow background means that the schema will be modified in some way when the Apply button is
clicked. If a schema is unchecked and has a yellow background, it means that it will be uninstalled
when the Apply button is clicked. In the screenshot above the DocBook DTD has such a status.

· When running Schema Manager from the command line, the list command is used with different
options to list different categories of schemas:

xmlschemamanager.exe list Lists all installed and available schemas; upgradeables are also
indicated

xmlschemamanager.exe list

-i
Lists installed schemas only; upgradeables are also indicated

xmlschemamanager.exe list

-u
Lists upgradeable schemas

194

190 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Note: On Linux and macOS, use sudo ./xmlschemamanager list

6.1.3.3 Patch or Install a Schema

Patch an installed schema
Occasionally, XML schemas may receive patches (upgrades or revisions) from their issuers. When Schema
Manager detects that patches are available, these are indicated in the schema listings of Schema Manager and
you can install the patches quickly.

In the GUI

Patches are indicated by the icon. (Also see the previous topic about status categories .) If patches are
available, the Patch Selection button will be enabled. Click it to select and prepare all patches for installation.

In the GUI, the icon of each schema that will be patched changes from to , and the Messages pane at
the bottom of the dialog lists the patches that will be applied. When you are ready to install the selected
patches, click Apply. All patches will be applied together. Note that if you deselect a schema marked for
patching, you will actually be uninstalling that schema.

On the CLI
To apply a patch at the command line interface:

1. Run the list -u command. This lists any schemas for which upgrades are available.
2. Run the upgrade command to install all the patches.

Install an available schema
You can install schemas using either the Schema Manager GUI or by sending Schema Manager the install
instructions via the command line.

Note: If the current schema references other schemas, the referenced schemas are also installed.

In the GUI
To install schemas using the Schema Manager GUI, select the schemas you want to install and click Apply.

You can also select the schemas you want to install at the Altova website and generate a downloadable
.altova_xmlschemas file. When you double-click this file, it will open Schema Manager with the schemas you

wanted pre-selected. All you will now have to do is click Apply.

On the CLI
To install schemas via the command line, run the install command:

xmlschemamanager.exe install [options] Schema+

where Schema is the schema (or schemas) you want to install or a .altova_xmlschemas file. A schema is

referenced by an identifier of format <name>-<version>. (The identifiers of schemas are displayed when

you run the list command.) You can enter as many schemas as you like. For details, see the
description of the install command.

188

194

197

194

194

194

https://www.altova.com/schema-manager

© 2019-2025 Altova GmbH

Schema Sources 191SPS Structure

Altova StyleVision 2025 Basic Edition

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Installing a required schema
When you run an XML-schema-related command in StyleVision and StyleVision discovers that a schema it
needs for executing the command is not present or is incomplete, Schema Manager will display information
about the missing schema/s. You can then directly install any missing schema via Schema Manager.

In the Schema Manager GUI, you can view all previously installed schemas at any time by running Schema
Manager from Tools | Schema Manager.

6.1.3.4 Uninstall a Schema, Reset

Uninstall a schema
You can uninstall schemas using either the Schema Manager GUI or by sending Schema Manager the
uninstall instructions via the command line.

Note: If the schema you want to uninstall references other schemas, then the referenced schemas are also
uninstalled.

In the GUI
To uninstall schemas in the Schema Manager GUI, clear their check boxes and click Apply. The selected
schemas and their referenced schemas will be uninstalled.

To uninstall all schemas, click Deselect All and click Apply.

On the CLI
To uninstall schemas via the command line, run the uninstall command:

xmlschemamanager.exe uninstall [options] Schema+

where each Schema argument is a schema you want to uninstall or a .altova_xmlschemas file. A schema

is specified by an identifier that has a format of <name>-<version>. (The identifiers of schemas are

displayed when you run the list command.) You can enter as many schemas as you like. For details,
see the description of the uninstall command.

Note: On Linux or macOS, use the sudo ./xmlschemamanager command.

Reset Schema Manager
You can reset Schema Manager. This removes all installed schemas and the cache directory.

· In the GUI, click Reset Selection.
· On the CLI, run the reset command.

196

194

196

195

192 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

After running this command, make sure to run the initialize command in order to recreate the cache
directory. Alternatively, run the reset command with the -i option.

Note that reset -i restores the original installation of the product, so it is recommended to run the
update command after performing a reset. Alternatively, run the reset command with the -i and -u
options.

6.1.3.5 Command Line Interface (CLI)

To call Schema Manager at the command line, you need to know the path of the executable. By default, the
Schema Manager executable is installed here:

C:\ProgramData\Altova\SharedBetweenVersions\XMLSchemaManager.exe

Note: On Linux and macOS systems, once you have changed the directory to that containing the executable,
you can call the executable with sudo ./xmlschemamanager. The prefix ./ indicates that the executable is in

the current directory. The prefix sudo indicates that the command must be run with root privileges.

Command line syntax
The general syntax for using the command line is as follows:

<exec> -h | --help | --version | <command> [options] [arguments]

In the listing above, the vertical bar | separates a set of mutually exclusive items. The square brackets []

indicate optional items. Essentially, you can type the executable path followed by either --h, --help, or --
version options, or by a command. Each command may have options and arguments. The list of commands
is described in the following sections.

6.1.3.5.1 help

This command provides contextual help about commands pertaining to Schema Manager executable.

Syntax
<exec> help [command]

Where [command] is an optional argument which specifies any valid command name.

Note the following:

· You can invoke help for a command by typing the command followed by -h or --help, for example:

<exec> list -h

· If you type -h or --help directly after the executable and before a command, you will get general help

(not help for the command), for example: <exec> -h list

193

195

195

197 195

© 2019-2025 Altova GmbH

Schema Sources 193SPS Structure

Altova StyleVision 2025 Basic Edition

Example
The following command displays help about the list command:

xmlschemamanager help list

6.1.3.5.2 info

This command displays detailed information for each of the schemas supplied as a Schema argument. This
information for each submitted schema includes the title, version, description, publisher, and any referenced
schemas, as well as whether the schema has been installed or not.

Syntax
<exec> info [options] Schema+

· The Schema argument is the name of a schema or a part of a schema's name. (To display a schema's

package ID and detailed information about its installation status, you should use the list
command.)

· Use <exec> info -h to display help for the command.

Example
The following command displays information about the latest DocBook-DTD and NITF schemas:

xmlschemamanager info doc nitf

6.1.3.5.3 initialize

This command initializes the Schema Manager environment. It creates a cache directory where information
about all schemas is stored. Initialization is performed automatically the first time a schema-cognizant Altova
application is installed. You would not need to run this command under normal circumstances, but you would
typically need to run it after executing the reset command.

Syntax
<exec> initialize | init [options]

Options
The initialize command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

194

194 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Example
The following command initializes Schema Manager:

xmlschemamanager initialize

6.1.3.5.4 install

This command installs one or more schemas.

Syntax
<exec> install [options] Schema+

To install multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas you want, run the list command. You can also use an
abbreviated identifier if it is unique, for example docbook. If you use an abbreviated identifier, then the

latest version of that schema will be installed.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The install command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command installs the CBCR 2.0 (Country-By-Country Reporting) schema and the latest DocBook
DTD:

xmlschemamanager install cbcr-2.0 docbook

6.1.3.5.5 list

This command lists schemas under the management of Schema Manager. The list displays one of the
following

194

183

© 2019-2025 Altova GmbH

Schema Sources 195SPS Structure

Altova StyleVision 2025 Basic Edition

· All available schemas
· Schemas containing in their name the string submitted as a Schema argument

· Only installed schemas
· Only schemas that can be upgraded

Syntax
<exec> list | ls [options] Schema?

If no Schema argument is submitted, then all available schemas are listed. Otherwise, schemas are listed as

specified by the submitted options (see example below). Note that you can submit the Schema argument

multiple times.

Options
The list command takes the following options:

--installed, --i List only installed schemas. The default is false.

--upgradeable, --u List only schemas where upgrades (patches) are available. The default is
false.

--help, --h Display help for the command.

Examples

· To list all available schemas, run: xmlschemamanager list

· To list installed schemas only, run: xmlschemamanager list -i

· To list schemas that contain either "doc" or "nitf" in their name, run: xmlschemamanager list doc

nitf

6.1.3.5.6 reset

This command removes all installed schemas and the cache directory. You will be completely resetting your
schema environment. After running this command, be sure to run the initialize command to recreate the
cache directory. Alternatively, run the reset command with the -i option. Since reset -i restores the original

installation of the product, we recommend that you run the update command after performing a reset and
initialization. Alternatively, run the reset command with both the -i and -u options.

Syntax
<exec> reset [options]

Options
The reset command takes the following options:

--init, --i Initialize Schema Manager after reset. The default is false.

--update, --u Updates the list of available schemas in the cache. The default is false.

193

197

196 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Examples

· To reset Schema Manager, run: xmlschemamanager reset

· To reset Schema Manager and initialize it, run: xmlschemamanager reset -i

· To reset Schema Manager, initialize it,and update its schema list, run: xmlschemamanager reset -i

-u

6.1.3.5.7 uninstall

This command uninstalls one or more schemas. By default, any schemas referenced by the current one are
uninstalled as well. To uninstall just the current schema and keep the referenced schemas, set the option --k.

Syntax
<exec> uninstall [options] Schema+

To uninstall multiple schemas, add the Schema argument multiple times.

The Schema argument is one of the following:

· A schema identifier (having a format of <name>-<version>, for example: cbcr-2.0). To find out the

schema identifiers of the schemas that are installed, run the list -i command. You can also use

an abbreviated schema name if it is unique, for example docbook. If you use an abbreviated name, then

all schemas that contain the abbreviation in its name will be uninstalled.
· The path to a .altova_xmlschemas file downloaded from the Altova website. For information about

these files, see Introduction to SchemaManager: How It Works .

Options
The uninstall command takes the following options:

--keep-references, --k Set this option to keep referenced schemas. The default is false.

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command uninstalls the CBCR 2.0 and EPUB 2.0 schemas and their dependencies:

xmlschemamanager uninstall cbcr-2.0 epub-2.0

194

183

© 2019-2025 Altova GmbH

Schema Sources 197SPS Structure

Altova StyleVision 2025 Basic Edition

The following command uninstalls the eba-2.10 schema but not the schemas it references:
xmlschemamanager uninstall --k cbcr-2.0

6.1.3.5.8 update

This command queries the list of schemas available from the online storage and updates the local cache
directory. You should not need to run this command unless you have performed a reset and
initialize .

Syntax
<exec> update [options]

Options
The update command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

--help, --h Display help for the command.

Example
The following command updates the local cache with the list of latest schemas:

xmlschemamanager update

6.1.3.5.9 upgrade

This command upgrades all installed schemas that can be upgraded to the latest available patched version.
You can identify upgradeable schemas by running the list -u command.

Note: The upgrade command removes a deprecated schema if no newer version is available.

Syntax
<exec> upgrade [options]

Options
The upgrade command takes the following options:

--silent, --s Display only error messages. The default is false.

--verbose, --v Display detailed information during execution. The default is false.

195

193

194

198 SPS Structure Schema Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

--help, --h Display help for the command.

© 2019-2025 Altova GmbH

Merging XML Data from Multiple Sources 199SPS Structure

Altova StyleVision 2025 Basic Edition

6.2 Merging XML Data from Multiple Sources

XML data from multiple source XML files can be merged when XSLT 2.0 or 3.0 is used as the XSLT version of
the SPS.

Typically, the merging of data will be based on a common piece of data, such as an ID. For example, an
employee in a company, who is identified by a personal ID number, can have his or her personal data stored in
multiple XML files held by the personnel department: (i) personal details, (ii) payroll, (iii) work and leave, (iv)
courses attended, etc. Data from these different files can be merged in a single output document using the
personal ID number as a key.

Note: The Enterprise Edition enables you to include multiple schema sources, so XML nodes from other
schemas can be selected using the parameter name for the corresponding schema (as is the case in the
example below). In the Professional and Basic Editions, the doc() function of XPath 2.0 can be used to locate
the required XML file and the XML node within that file. The doc() function of XPath 2.0 provides access to the
document root of external XML documents, and thus enables node content from external XML documents to be
inserted in the output. An Auto-Calculation that uses the doc() function can, therefore, also be used to
merge XML data (see example below).

Example
The (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples, contains an example SPS file
(MergeData_2_Files.sps) that shows how data from different source XML files can be merged. The SPS
selects data from an order (MergeOrder.xml, listed below) that a fictitious customer places.

<?xml version="1.0" encoding="UTF-8"?>
<Order xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MergeOrder.xsd">
 <Item partNum="238-KK" quantity="3" shipDate="2000-01-07" comment="With no inclusions,
please."/>
 <Item partNum="748-OT" quantity="1" shipDate="2000-02-14" comment="Valentine's day
packaging."/>
 <Item partNum="229-OB" quantity="1" shipDate="1999-12-05"/>
 <Item partNum="833-AA" quantity="2" shipDate="1999-12-05" comment="Need this for the
holidays!"/>
</Order>

The value of the /Order/Item/@partNum attribute in this file (see above) is used to select the ordered products
from the catalog of articles stored in another file, MergeArticles.xml (see listing below).

<?xml version="1.0" encoding="UTF-8"?>
<Articles xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MergeArticles.xsd">
 <Article PartNum="833-AA">
 <ProductName>Lapis necklace</ProductName>
 <Price>99.95</Price>
 </Article>
 <Article PartNum="748-OT">
 <ProductName>Diamond heart</ProductName>
 <Price>248.90</Price>
 </Article>
 <Article PartNum="783-KL">

241

23

200 SPS Structure Merging XML Data from Multiple Sources

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

 <ProductName>Uncut diamond</ProductName>
 <Price>79.90</Price>
 </Article>
 <Article PartNum="238-KK">
 <ProductName>Amber ring</ProductName>
 <Price>89.90</Price>
 </Article>
 <Article PartNum="229-OB">
 <ProductName>Pearl necklace</ProductName>
 <Price>4879.00</Price>
 </Article>
 <Article PartNum="128-UL">
 <ProductName>Jade earring</ProductName>
 <Price>179.90</Price>
</Article>

...
</Articles>

The way the merging of the data is done is to set up a User-defined template within the /Order/Item
template (see screenshot below) that selects the corresponding Article element in the MergeArticles.xml
file by using the part number of the ordered item to identify the article. The XPath expression (which is in
the /Order/Item context) is: $Articles//Article[@PartNum=current()/@partNum]

This template will produce output something like that shown in the screenshot below.

Notice that while the quantity ordered of each item is taken from the file MergeOrder.xml, the name of the
ordered article is taken from the file MergeArticles.xml. Also notice how the ProductName node is selected
within the context of the /Articles/Article template.

The same result as that obtained above could also be achieved using an Auto-Calculation (see screenshot
below). Drag the quantity attribute from the Schema Tree window and create it as contents. Then add an
Auto-Calculation as shown in the screenshot and give the Auto-Calculation an XPath expression as described
below.

220

241

© 2019-2025 Altova GmbH

Merging XML Data from Multiple Sources 201SPS Structure

Altova StyleVision 2025 Basic Edition

The XPath expression of the Auto-Calculation could target the required node using either the parameter of
another schema source or the doc() function:

$Articles//Article[@PartNum=current()/@partNum]/ProductName

or

doc('MergeArticles.xml')//Article[@PartNum=current()/@partNum]/ProductName

Notice that, while the first XPath expression above uses a parameter to refer to another XML Schema (a feature
available only in the Enterprise Edition), the second expression uses the doc() function of XPath 2.0 (a feature
available in the Professional and Basic editions as well).

202 SPS Structure Modular SPSs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

6.3 Modular SPSs

The global templates of an SPS, as well as Design Fragments, JavaScript functions, and page layout items
can be used in the design of another SPS. This enables:

1. The re-use of global templates and other components across multiple SPSs, the main advantages of
which are single-source editing and consistency of output.

2. SPSs to be modularized, and thus to be more flexibly structured.

In any given SPS, one or more SPSs can be added as modules. Some types of components (or objects) in
these modules are then available to the importing (or referring) SPS.

Available module objects
The section, Available Module Objects , not only describes the extent to which, and conditions under which,
the various components of an SPS are available to an importing SPS. It also lists those components that are
not available to the importing SPS. You should note that if an added module itself contains modules, then
these are added recursively to the referring SPS. In this way, modularization can be extended to several levels
and across a broad design structure.

Creating a modular SPS
To build a modularized SPS, first add the required SPS to the main SPS as a module. All the JavaScript
functions, global templates, Design Fragments, and XPath functions in the added module are available to the
referring SPS. Each of the available objects is listed in the Design Tree, under its respective heading
(screenshot below), and can be activated or deactivated, respectively, by checking or unchecking its check
box.

203

206

© 2019-2025 Altova GmbH

Modular SPSs 203SPS Structure

Altova StyleVision 2025 Basic Edition

These objects can then be re-used in the referring SPS according to their respective inclusion mechanisms.
Global templates typically would need merely to be activated in order for them to be applied in the referring
SPS. Design fragments have to be dragged from the Design Tree to the required location. JavaScript functions
are assigned via the Property window as event handlers for the selected design component. And available
(activated) XPath functions can be used in Xpath expressions.

How to create and work with a modular SPS is described in the section, Creating a Modular SPS .

Terminology
When an SPS is used within another module it is said to be added to the latter, and we call the process
adding. The two SPSs are referred to, respectively, as the added SPS module and the referring SPS
module. When an SPS module is added, its objects are added to the referring SPS module. These objects
are called module obj ects, and are of the following types: global templates; Design Fragments; JavaScript
functions; and page layout items.

6.3.1 Available Module Objects

This section lists the objects in added SPS modules that are available to the referring SPS module . The
listing explains in what way each object is available to the referring SPS module and how it can be used there.
For a step-by-step approach to creating modular SPSs, see the next section, Creating a Modular SPS . The
section ends with a list of objects in the added SPS that are not available to the referring SPS module; this will
help you to better understand how modular SPSs work.

206

203 203

206

204 SPS Structure Modular SPSs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Namespace declarations
· Global templates
· Design fragments
· Added modules
· Scripts
· CSS styles
· Page layouts
· Unavailable module objects

Namespace declarations
Each SPS stores a list of namespace URIs and their prefixes. When an SPS is added as a module, the
namespaces in it are compared to the namespaces in the schema source/s of the referring SPS. If a
namespace URI in the added SPS matches a namespace URI in the schema source/s of the referring SPS,
then the prefix used in the schema source of the referring SPS is adopted as the prefix for that namespace in
the added SPS. If a namespace URI in the added SPS cannot be matched with any namespace URI in the
schema source/s of the referring SPS, then an error message indicating this is displayed.

The screenshot above shows the various namespaces in an SPS, together with their prefixes, in the Schema
Tree sidebar. These namespaces come from the source schema/s and cannot be edited.

Global templates
The global templates of the added SPS module are available to the referring SPS module and are displayed
in the Design Tree sidebar (screenshot below). They are, by default, activated or deactivated (checked or
unchecked), according to the respective activation status in the added module. If you wish to create a global
template to override a global template from an added module, create the new global template by clicking the

 icon next to the Global Templates entry. In the Add New Global Template that pops up, select an element
or attribute for which you wish to create the global template. Alternatively, enter an XPath expression that
selects the required node in the schema. On clicking OK, you will be prompted as to whether the new global

204

204

205

205

206

206

206

206

216

38

© 2019-2025 Altova GmbH

Modular SPSs 205SPS Structure

Altova StyleVision 2025 Basic Edition

template should be activated in preference to the global template in the added module. The response you
select activates either the newly created global template or the global template in the added module. You can
switch your selection at any time by checking the other of the two global templates.

Note that the main template of added modules are not available. This means that if you plan to re-use a
template via the modular approach, you must create it as a global template. If no global template is defined for
a particular element and processing is invoked for that element, then the default processing for that element
(XSLT's built-in templates) will be used.

Design fragments
Design fragments in the added SPS module are available to the referring SPS and are displayed in the
Design Tree sidebar (screenshot above). When inserting a design fragment in the design, care should be
taken to place the design fragment within the correct context node in the design.

Added modules
Each added SPS module also makes available to the referring SPS its own added modules, and their added
modules, and so on. In this way, adding one module recursively makes available all modules that have been
added to it, down multiple levels. Needless to say, these modules must together construct a content model
that is valid according to the source schema/s of the referring SPS module. Modules are displayed and can be
managed in the Design Overview sidebar .

226

38

33

206 SPS Structure Modular SPSs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Scripts
The scripts in all the added SPS modules are available for use in the referring SPS and are displayed in the
Design Tree sidebar . In effect, the scripts of all the added modules are collected in a library that is now—in
the referring SPS—available for selection in the Properties dialog.

CSS styles
The global styles present in added SPS modules are carried over to the referring SPS as global styles and the
style rules are displayed in the Style Repository sidebar . The CSS files are also listed in the Design
Overview sidebar . Similarly, external CSS files that were available to the added SPS module, are available
to the referring SPS module.

Page layouts
The page layouts of an added module are available to the referring SPS and are displayed in the Design Tree
sidebar .

Module objects that are not available to the referring SPS
The following objects of the added module are not available to the referring SPS:

· Parameter definitions: are ignored.
· Schema sources: The schema source on which the added SPS is based is ignored. Bear in mind that

the content model of the document element of the added SPS must be contained within the content
model of the referring SPS; otherwise it would not be possible to correctly use the added SPS as a
module. If you wish, you could always add a user-defined schema to the referring SPS. The additional
schema could accommodate the content model of the added global template/s.

· Working XML File and Template XML File: References to these files are ignored. The referring SPS
uses its own Working XML and Template XML Files.

· XPath default namespaces: If they have been set on a module that is imported then they are not
carried through to the importing SPS.

6.3.2 Creating a Modular SPS

Creating a modular SPS consists of four broad parts:

1. Design and save the SPS module to be added .
2. Add the module to the SPS in which it is to be used (that is, to the referring SPS module).
3. Activate or deactivate the added object/s as required.
4. Apply the required object wherever required.

The SPS module to be added
There are two points to bear in mind when creating an SPS that will be added to another:

1. The templates that can be used in the referring SPS module can only be global templates . This
means that the templates you wish to re-use must be created as global templates in the SPS module
that is to be added .

363

321

33

38

206

207

209

203 216

203

© 2019-2025 Altova GmbH

Modular SPSs 207SPS Structure

Altova StyleVision 2025 Basic Edition

2. The document structure defined in the SPS module to be added must be valid within the content model
defined by the source schema/s of the referring SPS . If an added template is not contained in the
content model defined by the main schema of the SPS, its content model, however, can still be defined
in a user-defined schema.

When creating the SPS module to be added, the schema on which you base the SPS could be one of the
following:

· The main source schema of the referring SPS. In this case, when the SPS is added, the added global
templates will be part of the content model of the referring SPS's main schema. The output of these
global templates in Authentic View is, therefore, editable.

· A schema which defines a content model that is part of the content model defined by the main schema
of the referring SPS. In this case, when the global templates are added, they will fit into the content
model of the main schema of the referring SPS. The output of these global templates is editable in
Authentic View.

· A schema which defines a content model that is not part of the content model defined by the main
schema of the referring SPS. When this SPS module is added, its global templates will not be part of
the content model of the main schema of the referring SPS. They can, however, be used to produce
output if a user-defined schema is used that defines a content model that contains the content model
of the global template/s. In Authentic View, however, the output of these global templates cannot be
edited.

When defining the content models in your schemas, you should pay close attention to the namespaces
used since these determine the expanded names of nodes.

You could use a Working XML File to test the output of the SPS module to be added. The reference to this
Working XML File will be ignored by the referring SPS .

Adding the SPS module
To add a module to an SPS, in the Design Overview (screenshot below), click the Add New Module
command, browse for the required SPS file in the dialog that appears, select it, and click Open.

206

204

22

206

33

208 SPS Structure Modular SPSs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The module is added to the SPS and is listed under the Modules heading in the Design Overview. In the
screenshot above, the BusinessAddressBook.sps and PersonalAddressBook.sps modules have been added
to the AddressBook.sps module (the active SPS). All the added module objects are listed in the Design Tree
sidebar; added CSS files, though, are also also listed in the Design Overview. If the added modules themselves
refer to modules, these latter, indirectly imported modules are listed under the Modules heading, but in gray.
Information about which modules import an indirectly imported module is available in a pop-up that appears
when you mouseover the indirectly imported module.

To open one of the added modules or indirectly imported modules quickly in StyleVision, right-click that
module, and select Open Defining Module from the context menu that pops up.

Order of added modules
The order in which modules are added and listed is significant for the prioritizing of CSS styles. In keeping with
the CSS cascade order, CSS style rules in a relatively later module (lower down the list) have priority over style
rules defined in a relatively earlier module (higher up the list). CSS styles in the referring SPS module have
priority over those in any added module. To change the relative position of an added module, right-click it in the
Design Overview and click, as required, the Move Up or Move Down command in the context menu.

The module order is not significant for resolving conflicts among scripts, global templates, design fragments,
and page layout items.

File modification alerts
If any added file (whether an SPS module, schema, or Working XML File) is modified after the referring SPS
module has been opened, then a file modification pop-up will alert you to the change and ask whether the
referring SPS module should be refreshed with the changes.

© 2019-2025 Altova GmbH

Modular SPSs 209SPS Structure

Altova StyleVision 2025 Basic Edition

Activating/deactivating the added object
All module objects in all added modules (whether added directly or indirectly) are added to the referring SPS
and are listed under the corresponding headings in the Design Tree: Scripts; Global Templates; Design
Fragments; XSLT Templates; and XPath Functions. Next to each of these objects is a check box (see
screenshot below), which you can check or uncheck to, respectively, activate or deactivate that object. When
an object is deactivated, it is effectively removed from the SPS.

In the screenshot above, all the global templates used in the AddressBook.sps module are listed under the
Global Templates heading. Those that have been added via other modules (whether directly or indirectly) are
displayed in gray. Those that have been created directly in AddressBook.sps are displayed in black. The
screenshot shows that only one global template, addr:Email, has been created in AddressBook.sps itself. All
the other global templates have been added via other modules, and the file in which each of these is defined is
listed next to its name.

Notice that there are two global templates for addr:Email, one created in the referring SPS
(AddressBook.sps) itself, and the other created in the added module ContactPoints.sps. If more than one
global template has the same (namespace-) expanded name, then only one of these will be active at a time.
You can select which one by checking its check box. (Alternatively, you activate the global template from its
context menu in Design View.) This mechanism is useful if you: (i) wish to override an added global template
with one that you create in the referring SPS module, or (ii) wish to resolve a situation where a global template
for one element is defined in more than one added module.

A global template that has been defined in the current SPS can be deleted by selecting it and clicking the
Remove button. However, global templates that have been defined in an added module cannot be removed

210 SPS Structure Modular SPSs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

from the referring SPS. They must be removed by opening the added SPS and removing the global template
there.

Individual scripts, Design Fragments, and page layout items can be activated and deactivated in the same way.

Applying or using modular objects
In the referring SPS module , you design your templates as usual. Each different type of added object is
used or applied differently. You should, of course, ensure that each module object you wish to apply has been
activated .

Global templates
When you wish to use a global template from any of the added SPS modules, you must make sure that
this global template is indeed applied. This can be done in one of two ways, according to which one is
appropriate for your design:

· In the main template, specify that the element template either uses the global template for that
element or copies that global template locally. These two commands are available in the context menu
that appears when you right-click the element tag in the design.

· In the main template, the contents or rest-of-contents placeholders cause templates to be applied,
leading to the relevant global templates being processed.

Design Fragments
To use a Design Fragment, drag it from the Design Tree to the desired location in the main template or a global
template. Make sure that the location where the Design Fragment is dropped is the correct context node for
that Design Fragment. For details, see Design Fragments .

Scripts
All JavaScript functions (whether in an added module or created in the referring SPS) are available as event
handlers, and can be set for a particular event via the Properties sidebar .

6.3.3 Example: An Address Book

The (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\ModularSPS, contains examples of
modular SPSs. The example files in this folder comprise a project in which an address book containing
business and personal contacts is modularized. The example not only demonstrates the mechanisms in which
modularization is implemented, but also illustrates the main reasons why one would modularize.

· The complete address book is composed of two modules: (i) a business address book, and (ii) a
personal address book, each of which has a separate SPS defining different designs. The two modules
together make up the composite address book. Modularization in this case is used to compose: the
modules are the components of a larger unit.

· Although the content model of each module (business and personal address books) differs slightly from
the other, both have a common module, which is the ContactPoints module, consisting of the core
contact details: address, telephone, fax, and email. The ContactPoints module can therefore be shared
between the two address books (business and personal). Modularization in this case enables a single
module to be used as a common unit within multiple other units.

· Further, the ContactPoints module can be modularized to provide more flexibility. In the example
project, we have created a separate Address module to contain the postal address, which may have

203

209

216

226

365

23

© 2019-2025 Altova GmbH

Modular SPSs 211SPS Structure

Altova StyleVision 2025 Basic Edition

one of three content models, depending on whether the address is in the EU, US, or elsewhere. The
output for all three content models is defined in a single SPS. However, they could have been defined
in separate SPSs, which would have provided finer granularity. In this case, modularization would
provide more flexibility as modules could be re-used more easily.

The description of this project is organized into the following parts:

· The schema files
· The XML data sources
· The SPS files

The schema files
When creating schemas for modular SPSs, the most important thing to bear in mind is to create the elements
that you wish to re-use as global elements. The schema for the address book is AddressBook.xsd. This
schema has been constructed by importing the schemas for the business address book
(BusinessAddressBook.xsd) and personal address book (PersonalAddressBook.xsd). The
BusinessAddressBook.xsd schema provides a content model for companies, while the
PersonalAddressBook.xsd schema provides a content model for persons (see screenshot below).

Both schemas import the ContactPoints.xsd schema (see screenshot below), which defines a content model
for contact details.

211

212

213

212 SPS Structure Modular SPSs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Finally, the ContactPoints.xsd schema (screenshot below) includes the Address.xsd schema, which defines
the three address-type content models: for EU, US, and other addresses.

Imports are used when the imported schema belongs to a different namespace than the importing schema.
Includes are used when the included schema belongs to the same namespace as the including schema.

Note: The screenshots above are of the schema in the Schema View of Altova's XMLSpy.

The XML data sources
The XML data is contained in the file AddressBook.xml. This file is structured so that the AddressBook
element contains the companies and persons elements as its children. The content models of these two
elements are defined in the schema files, BusinessAddressBook.xsd and PersonalAddressBook.xsd,
respectively.

© 2019-2025 Altova GmbH

Modular SPSs 213SPS Structure

Altova StyleVision 2025 Basic Edition

There are two additional XML data files, which correspond to the BusinessAddressBook.xsd and
PersonalAddressBook.xsd schemas. These two XML files, BusinessAddressBook.xml and
PersonalAddressBook.xml, are used as the Working XML Files of the corresponding SPS files.

The three XML files are the Working XML Files of the following SPS modules:

· AddressBook.xml => AddressBook.sps, ContactPoints.sps, Address.sps
· BusinessAddressBook.xml => BusinessAddressBook.sps
· PersonalAddressBook.xml => PersonalAddressBook.sps

The SPS modules
 The description of the SPS modules starts with the most basic module (Address.sps) and progresses in
compositionally incremental steps to the complete address book (AddressBook.sps). All the SPS modules
use AddressBook.xsd as its schema.

Address.sps
The key points to note are the use of the schema and the Working XML File.

· Address.sps uses AddressBook.xsd as its schema, but the schema could equally well have been
Address.xsd, ContactPoints.xsd, BusinessAddressBook.xsd, or PersonalAddressBook.xsd—
since the Address element is present in all these schemas and would be available as a global
element. When the SPS module is added to another SPS module, the schema of the imported module
is ignored, so which one is used is not important when the SPS is added as a module.

· The Working XML File is AddressBook.xml. Note that the main template in Address.sps specifies
that only the Address element should be processed, and that global templates for Address-EU,
Address-US, and Address-Other have been defined.

Because only the Address element is processed, the output previews show only the output of
Address. When Address.sps is used as a module, the global templates are added and the main
template is ignored.

ContactPoints.sps
This SPS imports one module. Note the use of global templates within other global templates and the main
template.

· ContactPoints.sps uses AddressBook.xsd as its schema and AddressBook.xml as its Working
XML File.

· Address.sps is added as a module, thus making the global templates of the Address-EU, Address-
US, and Address-Other elements available.

· Global templates for the ContactPoints and Email elements are defined. Note that the
ContactPoints definition uses the global template of Email (screenshot below).

22

214 SPS Structure Modular SPSs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· The main template—required for the previews—uses the global template of the ContactPoints
element, thus enabling previews of the ContactPoints output.

BusinessAddressBook.sps and PersonalAddressBook.sps
These SPSs each import one module, which in turn imports another. Note that the main template simply
applies global templates.

· Each of these two modules uses AddressBook.xsd as its schema. The Working XML Files are,
respectively, BusinessAddressBook.xml and PersonalAddressBook.xml.

· ContactPoints.sps is added as a module. This causes Address.sps to be indirectly imported. All the
global templates in these two modules are available to the referring SPS module.

· In BusinessAddressBook.sps, global templates are defined for the Companies and Company elements.
Note that the Company definition uses the global template of ContactPoints.

· In PersonalAddressBook.sps, global templates are defined for the Person and Persons elements.
The Person definition uses the global template of ContactPoints.

AddressBook.sps
There are two global templates for the Email element; any one can be activated..

· AddressBook.sps uses AddressBook.xsd as its schema. The Working XML File is AddressBook.xml.
· BusinessAddressBook.sps and PersonalAddressBook.sps are added as modules, and this causes

ContactPoints.sps and Address.sps to be indirectly imported.
· A global template is defined for the Email element. This means that there are now two global

templates for Email, one in ContactPoints.sps and the other in AddressBook.sps (see screenshot
below).

© 2019-2025 Altova GmbH

Modular SPSs 215SPS Structure

Altova StyleVision 2025 Basic Edition

· In the Global Templates list in the Design Tree (screenshot above), you can select which of the two
global templates should be active. StyleVision allows only one to be active at a time. Whichever is
active is used within the ContactPoints global template.

· The main template contains some static content for the output header.

216 SPS Structure Templates and Design Fragments

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

6.4 Templates and Design Fragments

The design document is composed of templates, and it is important to recognize the various types of templates
that can be used.

· Main templates and global templates: The design document consists of one main template and,
optionally, one or more global templates . Global templates can be referenced via the main
template.

· Node-templates and variable iterators: These are the templates that constitute the main template and
global templates. A node-template matches a node in a schema source.

· Design fragments: These are templates that are designed separately and re-used in various parts of
the design (main template or global templates).

In this section, we describe the role that templates and design fragments play in the structure of the design.
We are not concerned here with the presentation properties in the design, only the structure.

Note: In Design View, the SPS can have several templates: the main template, global templates, and Design
Fragments. You can control which of these template types is displayed in Design View by using Template
Display Filters , which are available as toolbar icons . These display filters will help you optimize and
switch between different displays of your SPS.

6.4.1 Main Template

The main template determines the structure of the output. This means that the sequence in which the main
template is laid out in the design is the sequence in which the output is laid out. In programming jargon, this is
procedural processing. Processing starts at the beginning of the template and proceeds in sequence to the
end. Along the way, nodes from the XML document are processed. The templates which process these nodes
are called local templates . After a local template is processed, the processor moves to the next component
in the main template, and so on. Occasionally, a node may reference a global template for its processing.
In such cases, after the global template is executed for that node, the processor returns to the position in the
main template from which it branched out and continues in sequence from the next component onwards.

The entry point for the main template is the document node of the schema. StyleVision offers the option of
selecting multiple root elements (document elements). This means that within the main template, there can
be local templates for each of the active document elements. The one that is executed during processing
will be that for the element which is the document element of the XML instance document being processed.

6.4.2 Global Templates

A global template can be defined for any node or type in the schema, or for a node specified in an XPath
pattern.

A global template specifies instructions for the selected node or type, and it is invoked by a call from the main
template , design fragments , or other global templates. The processing model is similar to that of

216

216

224

306

421 421

21

21

21

21

21

21

21

21 226

© 2019-2025 Altova GmbH

Templates and Design Fragments 217SPS Structure

Altova StyleVision 2025 Basic Edition

declarative programming languages, in that a single template is defined and invoked multiple times. In this way
a single definition can be re-used multiple times. Global templates are invoked in two situations:

· When a node or type in the main template has been set to reference its global template (done by
right-clicking the component in the design and selecting Make Global Template).

· When a (contents) or (rest-of-contents) is inserted within an element or type in a local
template , and the rest of the content of that element or type includes a node or type for which a
global template exists.

Global templates are useful if a node (or type) occurs within various elements or in various locations, and a
single set of instructions is required for all occurrences. For example, assume that a para element must be
formatted the same no matter whether it occurs in a chapter, section, appendix, or blockquote element. An
effective approach would be to define a global template for para and then ensure, that in the main template
the global template for the para element is processed wherever required (for example, by
including //chapter/para in the main template and specifying that para reference its global template; or by
including //chapter/title and then including (contents) or (rest-of-contents) so that the rest of
the content of the chapter element is processed with the available global templates and default templates).
Also, a global template can be defined for a complex type (for example, one that defines an address model) or
even for a simple type (for example, xs:decimal). In such cases, all occurrences of the type (complex or
simple) that invoke the global template for that type will be processed according to the rules in the global
template.

Creating a global template
Global templates can be created for any node or type in the schema, or for a node specified in an XPath
pattern., and are created from the Schema Tree sidebar (screenshot below).

A global template can be created in any of the following ways:

· Click the Add New Global Template button located at the right of the Global Templates item in the
Schema Tree (see screenshot above). This pops up the Add New Global Template dialog (screenshot
below). You can select an element, an attribute, or a type from the schema tree shown in the dialog, or
you can enter an XPath pattern. This selects the node that must be created as the global template.
Click OK to finish. The template will be created and appended to the already existing templates in

21

104 107

21

21

21

104 107

218 SPS Structure Templates and Design Fragments

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Design View and can then be edited. In the Schema Tree, the schema node or type will be marked
with a plus sign icon in front of it.

· Right-click the schema node or type component in the Schema Tree (under Root Elements, All Global
Elements, or All Global Types, as appropriate), and select the command Make/Remove Global
Template. The template will be created and appended to the already existing templates in Design
View and can then be edited. In the Schema Tree, the schema node or type will be marked with a plus
sign icon in front of it.

· Global templates can also be created from templates in the main template in Design View. Right-click
the template (either in Design View or the Schema Tree sidebar) and select the command Make
Global Template. A global template is created from the selected template (it is appended to the
templates in Design View) and the template in the main template is automatically defined to use this
global template (see below for an explanation of how global templates are used).

A global template is located in Design View below the main template. It is indicated by a mauve bar containing
the name of the node for which the global template has been created, followed by its type: (simple) or
(complex). A global template is shown in the screenshot below.

Note that the processing of the global template is user-defined and could include both static and dynamic
components, as well as the whole range of processing options available for processing of the main template.

© 2019-2025 Altova GmbH

Templates and Design Fragments 219SPS Structure

Altova StyleVision 2025 Basic Edition

Using a global template
After a global template has been created, it can be used when a node having the same qualified name is
inserted into the document (When the node is dropped in the design, select the command Use Global
Template from the menu that pops up.) by dropping . Alternatively, if a local template is present in the design
and a global template exists for a node having the same qualified name, then the global template can be used
instead of the local template. To use a global template for a local template, right-click the local template in
Design View and select the command Use Global Template. When a global template is used, its processing
instructions are called and used by the local template at runtime.

Wherever a global template is used in the design, an XPath pattern can be created on the global template to
filter the nodeset it addresses. To create such a filter, right-click the global template tag in the design, and
select Edit XPath Filter in the context menu that appears. This pops up the Edit XPath Expression
dialog , in which the required expression can be entered.

Recursive global templates
Global templates can be recursive, that is, a global template can call itself. However, to guard against an
endless loop in Authentic View, a property to limit the call-depth can be set. This property, the Maximum
Template-Call-Depth property, is available in the Authentic tab of the Properties dialog of the SPS (File |
Properties). It specifies the maximum number of template calls that may be made recursively when
processing for the Authentic View output. If the number of template calls exceeds the number specified in the
Maximum Template-Call-Depth property, an error is returned.

Copying a global template locally
After a global template has been created, its processing instructions can be copied directly to a template of the
same qualified name in the main template. To do this, right-click the local template and select the command
Copy Global Template Locally. Copying the global template locally is different than using the global
template (at runtime) in that the processing instructions are merely copied in a one-time action. The global
template has no further influence on the local template. Either, or both, the global template and local template
can subsequently be modified independently of each other, without affecting the other. On the other hand, if it is
specified that a global template should be used (at runtime) by a local template, then any modifications to the
global template will be reflected in the local template at runtime.

Activating and deactivating global templates
A global template can be activated by checking its entry in the global templates listing in the Schema Tree
sidebar. It can be deactivated by unchecking the entry. If a global template has been activated (the default
setting when the global template was created), it is generated in the XSLT stylesheet. If it has been
deactivated, it is not generated in the XSLT stylesheet but is still saved in the SPS design.

Any local template that uses a deactivated global template will then—since it is not able to reference the
missing global template—fall back on the default templates of XSLT, which have the collective effect of
outputting the contents of descendant text nodes.

The advantages of the activation/deactivation feature are: (i) Global templates do not have to be deleted if they
are temporarily not required; they can be reactivated later when they are required; (ii) If there are name conflicts
with templates from imported stylesheets, then the global template that is not required can be temporarily
deactivated.

225

398

444

220 SPS Structure Templates and Design Fragments

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Removing a global template
To remove a global template, right-click the global template to be removed, either in Design View or the
Schema Tree sidebar, and select the command Make/Remove Global Template.

Simple global templates and complex global templates
Global templates are of two types: simple and complex. Complex global templates are available for reasons of
backward-compatibility. If a global template in an SPS created with a version of StyleVision prior to version
2006 contains a table or list, then that global template will typically be opened in StyleVision 2006 and later
versions as a complex global template.

A complex global template is different than a simple global template in the way the node for which the global
template was created is processed. When the first instance of the node is encountered in the document, the
complex global template processes all subsequent instances of that node immediately afterwards. A simple
global template, on the other hand, processes each node instance only when that node instance is individually
encountered.

It is important to note that a simple global template will be automatically converted to a complex global
template if a predefined format or newline is created around the element node for which the global template
was created. This will result in the processing behaviour for complex global templates (described in the previous
list item). To revert to the simple global template, the predefined format should be removed (by dragging the
node outside the predefined format and then deleting the predefined format), or the newline should be removed
(by deleting the item in the Design Tree sidebar), as the case may be. To avoid the automatic conversion
from simple global template to complex global template, make sure that the predefined format or newline is
added within the node tags of the element for which the simple global template was created.

Global templates in modular SPSs
When an SPS module is added to another SPS module , the global templates in the added module are
available for use within the referring SPS. For more information about using modular SPSs, see the section
Modular SPSs .

6.4.3 User-Defined Templates

User-Defined Templates are templates for items generated by an XPath expression you specify. These items
may be atomic values or nodes. In the screenshot below, which shows three User-Defined Templates, note the
User-Defined Template icon on the left-hand side of the tags (a green person symbol). User-Defined Templates
are very useful because they provide extraordinary flexibility for creating templates.

307

307

38

307

202

202

© 2019-2025 Altova GmbH

Templates and Design Fragments 221SPS Structure

Altova StyleVision 2025 Basic Edition

The XPath expression of each of the three User-Defined templates shown in the screenshot above do the
following:

· Selects a node in a source schema. By using an XPath expression, any node in any of the schema
sources can be reached from within any context node. If StyleVision can unambiguously target the
specified node, the template will be changed automatically from a User-Defined Template to a normal
template. If it is a User-Defined Template, this will be indicated by the green User-Defined Template
icon on the left-hand side of the template tags.

· Selects a node that fulfills a condition specified by the for construct of XPath 2.0 and XPath 3.0. Such
templates can never resolve to normal templates (but will remain User-Defined Templates) because the
for construct does not allow StyleVision to unambiguously resolve the target from only the schema
information it currently has at its disposal.

· Selects a sequence of atomic values {1, 2, 3}. While it is allowed to create a template for an atomic
value, you cannot use the contents placeholder within such a template. This is because the
xsl:apply-templates instruction (which is what the contents placeholder generates) can only be
applied to node items (not atomic values). You could, however, use an Auto-Calculation in combination
with some design element such as a list. For example, the User-Defined Template at left would
generate the output at right.

Note: If the SPS uses XSLT 1.0, then the XPath expression you enter must return a node-set. Otherwise an
error is reported.

Advantage of using XPath to select template node
The advantage of selecting a schema node via an XPath expression (User-Defined Templates) is that the power
of XPath's path selector mechanism can be used to select any node or sequence of items, as well as to filter or
set conditions for the node selection. As a result, specific XML document nodes can be targeted for any given
template. For instance, the XPath expression //Office/Department[@Location="NY"] will select only those
Department nodes that have a Location attribute with a value of NY. Also see the other examples in this
section.

Note: If an XPath expression contains multiple location path steps, then it is significant—especially for
grouping and sorting—whether brackets are placed around the multiple location path steps or not. For example,
the XPath expression /Org/Office/Dept will be processed differently than (/Org/Office/Dept). For the
former expression (without brackets), the processor loops through each location step. For the latter expression
(with brackets), all the Dept elements of all Office elements are returned in one undifferentiated nodeset.

Brackets Underlying XSLT Mechanism Effect

No <xsl:for-each select="Org">
 <xsl:for-each select="Office">

Each Office element has its own Dept
population. So grouping and sorting can be

222 SPS Structure Templates and Design Fragments

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

 <xsl:for-each select="Dept">
 ...
 </xsl:for-each>
 </xsl:for-each>
</xsl:for-each>

done within each Office.

Yes <xsl:for-each
select="/Org/Office/Dept">
 ...
</xsl:for-each>

The Dept population extends over all
Office elements and across Org.

This difference in evaluating XPath expressions can be significant for grouping and sorting.

Inserting a User-Defined Template
To insert a User-Defined Template, do the following:

1. Click the Insert User-Defined Template icon in the Insert Design Elements toolbar and then click the
design location where you wish to insert the template. Alternatively, right-click the design location
where you wish to insert the template and, from the context menu that appears, select the Insert
User-Defined Template command.

2. In the Edit XPath Expression dialog that pops up, enter the XPath expression you want, and click
OK. Note that the context node of the XPath expression will be the node within which you have clicked.
An empty node template will be created. Sometimes a joined node is created. When a node is joined,
the targeted instance nodes are selected as if at a single level, whereas if a node is not joined (that is if
it is split into multiple hierarchic levels), then the node selection is done by looping through each
instance node at every split level. The nodeset returned in both cases of selection (joined and split) is
the same unless a grouping or sorting criterion is specified. For a discussion of the effect joined nodes
have on the grouping and sorting mechanisms, see Node-Template Operations .

Editing a Template Match
The node selection of any node template (user-defined or normal) can be changed by using an XPath
expression to select the new match expression. To edit the template match of a node template, right-click the
node template, then select the Edit Template Match command. This pops up the Edit XPath Expression
dialog, in which you enter the XPath expression to select the new node. Then click OK.

Adding nodes to User-Defined Templates
If a node from the schema tree is added to a User-Defined Template, the context for the new node will not be
known if the User-Defined Template has been created for a node or sequence that cannot be placed in the
context of the schema source of the SPS. You will therefore be prompted (screenshot below) about how the
new node should be referenced: (i) by its name (essentially, a relative path), or (ii) by a full path from the root of
the schema source.

398

224

© 2019-2025 Altova GmbH

Templates and Design Fragments 223SPS Structure

Altova StyleVision 2025 Basic Edition

Prompting for advice on how to proceed is the default behavior. This default behavior can be changed in the
Design tab of the Tool | Options dialog .

6.4.4 Variable Templates

A Variable Template is a template that targets a variable and, by default outputs its content. It is inserted
with the Insert | Variable Template or Enclose with | Variable command, which inserts, at the cursor
insertion point, a template for a variable defined in the SPS. The variable template (screenshot below) contains
a content placeholder by default, and this serves to output the contents of the variable. You can insert
additional content (static as well as dynamic) in the variable template as required, or modify it as you would
any other template. A variable template is indicated with a dollar symbol in its start and end tags.

To insert a variable template, do the following:

1. Place the cursor in the design at the location where the template is to be inserted.
2. Right-click and select the Insert | Variable Template command. This pops up the Insert Variable

Template dialog (screenshot below).

3. The dialog contains a list of all the user-declared parameters and variables defined in the SPS.
Select the variable for which you wish to add a variable template.

499

264

224 SPS Structure Templates and Design Fragments

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

4. Click OK to finish.

6.4.5 Node-Template Operations

A node-template is a template in the design that specifies the processing for a node. In the design, node-
templates are displayed with beige start and end tags (screenshot below). The type of node is indicated by a
symbol inside the tags (For example: angular brackets for element nodes and equal-to signs for attribute
nodes). The screenshot below contains two node-templates, both for elements: metainfo and relevance. Also
see, Nodes in the XML document .

The operations that can be carried out on a node-template are accessible via the context menu of that node-
template (accessed by right-clicking either the start or end tag of a node-template.

The commands in this context menu are described below:

· Global templates
· Template match
· XPath filters
· Group by, Sort by, Define variables, Template serves as level
· Create Design Fragment
· Remove Tag Only
· Edit, Enclose with, Change to

These menu commands are described below. Note that for a given node-template, some commands might not
be available; these are grayed out in the context menu.

Global templates: make, use, copy locally
A node-template in the main template can be changed to or associated with a global template via the following
commands:

· Make global template: This option is available if the node-template represents an element that is
defined as a global element in the schema. A global template will be created from the node-template.
The node-template in the main template will use this global template and its tags will then be displayed
in gray (indicating its use of the global template).

· Use global template: If a global template of the same qualified name as the node-template has been
defined, the node-template will use the processing of the global template. The tags of the node-
template will become gray.

· Copy global template locally: The processing instructions of a global template of the same qualified
name as the node-template are copied physically to the node-template. The node-template is

394

224

225

225

226

226

226

226

© 2019-2025 Altova GmbH

Templates and Design Fragments 225SPS Structure

Altova StyleVision 2025 Basic Edition

independent of the global template. Subsequently, both it and the global template can be modified
independently of each other. Since the node-template does not reference a global template, it retains
its beige color.

For more information, see the section Global Templates .

Editing the template match
The node for which a template has been created can be changed by using this command. The Edit Template
Match command pops up the Edit XPath Expression dialog , in which you can enter an XPath expression
that selects another node in the schema. You can also enter any XPath expression to change the template to
a User-Defined Template .

Edit/Clear XPath Filter
An XPath filter enables you to filter the nodeset on which a node-template is applied. XPath filters can also be
applied to global templates .

By default, a node-template will be applied to nodes (elements or attributes) corresponding to the node for
which the node-template was created (having the same name and occurring at that point in the schema
hierarchy). For example, a node-template for the /Personnel/Office node will select all
the /Personnel/Office elements. If an XPath filter with the expression 1 is now created on the Office
element (by right-clicking the Office element and editing its XPath Filter), this has the effect of adding a
predicate expression to the Office element, so that the entire XPath expression would
be: /Personnel/Office[1]. This XPath expression selects the first Office child of the Personnel element,
effectively filtering out the other Office elements.

A filter can be added to any node-template and to multiple node-templates in the design. This enables you to
have selections corresponding to such XPath expressions
as: /Personnel/Office[@country='US']/Person[Title='Manager'] to select all managers in the US
offices of the company. In this example, a filter each has been created on the Office and on the Person node-
templates, respectively.

Wherever a global template is used—that is, called—an XPath filter can be applied to it. So, for every instance
of a global template that is used, an XPath filter can be applied to the global template in order to restrict the
targeted nodeset.

To add an XPath Filter to a node-template, right-click the node-template and select Edit XPath Filter. Enter
the XPath filter expression without quotes, square brackets, or delimiters of any kind. Any valid XPath
expression can be entered. For example:

· 1
· @country='US'
· Title='Manager'

After an XPath Filter has been created for a node-template, this is indicated by a filter symbol in the start tag of
the node-template. In the screenshot below, the synopsis node-template has a filter.

Note: Each node-template supports one XPath Filter.

216

398

113

216

226 SPS Structure Templates and Design Fragments

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Group by, Sort by, Define variables, Template Serves as Level
The mechanisms behind these commands are described in detail in their respective sections:

· The Group by command enables instances of the node represented by the selected node-template to
be grouped. The grouping mechanism is described in the section, Grouping .

· The Sort by command enables instances of the node represented by the selected node-template to be
sorted. The sorting mechanism is described in the section, Sorting .

· The Define Variables command enables you to define variables that are on scope on the selected
node-template. How to work with variables is described in the section, Variables .

· The Template Serves as Level command is a toggle command that creates/removes a level on the
node-template. Levels can be specified at various levels in order to structure the document into a
hierarchy. This structure can then be used to generate a table of contents (TOC), automatic
numbering, and text references. These features are described in detail in the section, Table of Contents
(TOC) and Referencing .

Create Design Fragment
Creates a Design Fragment template from the selected template. The resulting Design Fragment template is
added to the Design Fragment templates at the bottom of the design, and added to the Design Tree and
Schema Tree. The Design Fragment is also applied at that point in the design where it was created.

Remove (Template or Formatting) Tag Only
This command removes the selected template or formatting tag only. It does not remove any descendant nodes
or formatting tags. This command is useful for removing a formatting tag or a parent element tag without
removing all that is contained within the tag (which is what would happen if the Delete operation is carried out
with a tag selected). Note, however, that removing a parent element might render descendant nodes of the
deleted element invalid. In such cases, the invalid nodes are indicated with a red strike-through.

Edit, Enclose with, Change to
These commands are described below:

· Edit: Pops out a submenu with the familiar Windows commands: cut, copy, paste, and delete.
· Enclose with: The node-template can be enclosed within the following design components, each of

which is described in a separate section of this documentation: paragraph , special paragraph ,
Bullets and Numbering , Hyperlink , Condition , TOC Bookmark and Level .

· Change to: The Change-To feature enables you to change: (i) the node for which that template applies,
or (ii) how the node is created in the design. It is described in detail in the section, The Change-To
Feature .

6.4.6 Design Fragments

Design Fragments are useful for creating parts that can be re-used at different locations in the document,
similar to the way functions are re-used.The usage mechanism is as follows:

1. Create the Design Fragment in the design
2. Fill out the contents of the Design Fragment

251

259

269

272

104 106

139 299 246 272

170

227

228

© 2019-2025 Altova GmbH

Templates and Design Fragments 227SPS Structure

Altova StyleVision 2025 Basic Edition

3. Insert the Design Fragment at a location in a template .

Creating a Design Fragment
To create a Design Fragment do the following:

1. In the Design Tree or Schema Tree, click the Add New Design Fragment icon , which is located to
the right of the Design Fragments item in the tree (see screenshot below). This adds a Design
Fragment item in the Design Fragments list of the tree. (Also see note below.)

Notice that a Design Fragment template is created in the SPS design. This template is appended to
the templates already in the design and indicated with a green header. (If you wish to see only the
Design Fragments that are in the design, hide the main template and global templates by clicking their
Show/Hide icons in StyleVision's Design Filter toolbar.) Additionally, the Design Fragment
templates are also listed in the schema tree for ready access from there.

2. Double-click the Design Fragment item (either in the design tree or the schema tree) so as to edit its
name. Name the Design Fragment as required and press Enter. The edited name is entered in the
Design Tree (screenshot below) and in the template in the design.

3. In the design, create the contents of the Design Fragment template. How to do this is described in the
next section.

Note: If you wish to create a Design Fragment from an already existing template, right-click that template and
select the command Create Design Fragment from the context menu that pops up. This creates a Design
Fragment template from the selected template at that point in the design. The Design Fragment template is
also appended to the existing Design Fragment templates at the bottom of the design and added to the Design
Tree and Schema Tree. Creating a Design Fragment in this way also applies it directly at the point where it was
created, there is no need to insert it from the Design Tree or Schema Tree .

229

421 421

229

228 SPS Structure Templates and Design Fragments

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Creating the contents of a Design Fragment
The contents of the Design Fragment template are created as for any other template . To insert static
content, place the cursor in the Design Fragment template and insert the required static content. To insert
dynamic content, drag the required schema node into the Design Fragment template.

When dragging a node from the schema source you can drag the node either: (i) from the Global Elements
tree, or (ii) from the Root Elements tree. The difference is significant. If a node is dragged from the Global
Elements tree, it is created without its ancestor elements (in the screenshot below, see the EmailPerson
Design Fragment) and, therefore, when used in a template, it will have to be used within the context of its
parent. On the other hand, if a node is dragged from the Root Elements tree, it is created within a structure
starting from the document node (in the screenshot below, see the EmailDocNode Design Fragment), and can
therefore be used anywhere in a template.

The screenshot above shows two Design Fragment templates that produce identical output for the Person
element. In the EmailPerson Design Fragment template, the Person node has been created by dragging the
global element Person into the EmailPerson template. In the EmailDocNode Design Fragment template, the
Person node has been dragged from the Root Elements tree, and is created with an absolute path (from $XML,
the document node).

When these Design Fragment templates are inserted in the main template, care must be taken that the
EmailPerson template is called from within a context that is the parent of the Person node. You can
experiment with these Design Fragments. They are in the example file Email.sps, which is in the (My)
Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\DesignFragments.

You can also define a parameter with a default value on the Design Fragment. The parameter can be assigned
a different value in every Design Fragment instance. See Parameters for Design Fragments for details.

After you have completed the design, notice that the components of the design are also graphically depicted in
the Design Tree.

103

23

265

© 2019-2025 Altova GmbH

Templates and Design Fragments 229SPS Structure

Altova StyleVision 2025 Basic Edition

Inserting a Design Fragment in a template
To insert a Design Fragment, drag the Design Fragment from the Design Tree or Schema Tree to the required
location. The location at which the Design Fragment is dropped should be such that it provides a correct
context. If the contents of the Design Fragment were created from a global element, then the correct context in
the main template would be the parent of the node dragged into the Design Fragment. See Creating the
contents of a Design Fragment above.

Alternatively, right-click at the location where the Design Fragment is to be inserted and select Insert Design
Fragment from the context menu.

Note: If a Design Fragment is referenced in the main template and if the name of the Design Fragment is
changed subsequently, then the reference in the main template will no longer be correct and an XSLT error will
result. In order to correct this, delete the original reference in the main template and create a fresh reference to
the newly named Design Fragment.

Recursive design fragments
Design fragments can be recursive, that is, a design fragment can call itself. However, to guard against an
endless loop in Authentic View, a property to limit the call-depth can be set. This property, the Maximum Call-
Depth property, is available in the Authentic tab of the Properties dialog of the SPS (File | Properties). It
specifies the maximum number of template calls that may be made recursively when processing for the
Authentic View output. If the number of template calls exceeds the number specified in the Maximum Call-
Depth property, an error is returned.

Deleting a Design Fragment
To delete a Design Fragment, select it in the Design Tree and click the Remove toolbar icon of the Design

Tree .

Design Fragments in modular SPSs
When an SPS module is added to another SPS module , the Design Fragments in the added module are
available for use within the referring SPS. For more information about using modular SPSs, see the section
Modular SPSs .

Example file
For an example SPS, go to the (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\DesignFragments.

228

444

202

202

23

230 SPS Structure XSLT Templates

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

6.5 XSLT Templates

XSLT files can be imported into an SPS, and XSLT templates in them will be available to the stylesheet as
global templates. If, during the processing of the XML document, one of the XML nodes matches a node in an
imported XSLT template, then the imported XSLT template is applied to that node. If the imported XSLT file
contains named templates, these are available for placement in the design.

Note the following points:

· Imported XSLT templates cannot be modified in StyleVision.

Importing the XSLT file
To import an XSLT File, do the following:

1. In the Design Overview sidebar (screenshot below), click the Add New XSLT File link.

2. In the Open dialog that appears, browse for the required XSLT file, select it, and click Open. The XSLT
file is imported. An xsl:import statement is added to the XSLT stylesheet, and, in the Design Tree
sidebar (screenshot below), the XSLT Templates contained in the imported XSLT file are displayed
under the XSLT Templates heading.

© 2019-2025 Altova GmbH

XSLT Templates 231SPS Structure

Altova StyleVision 2025 Basic Edition

There are two types of imported XSLT templates: (i) match templates (indicated by Match), and (ii) named
templates (indicated by Name). In the Design Tree, these two types are listed with (i) the value of the select
attribute of match templates, and (ii) by the value of the name attribute of named templates, respectively.

Match templates
Match templates will be used when a template, in the course of processing, applies templates to a node in the
XML document instance, and the match template is selected to be applied. This will happen when the qualified
name of the XML node matches the qualified name of the imported match template. If a global template has
been created in the SPS that has the same qualified name, then it has precedence over an imported template
and will be used. If there are several imported XSLT files, the file imported first (and listed first in the XSLT code)
has the lowest precedence, followed by the second lowest precedence for the file imported second, and so on.

Named templates
A named template can be dragged from the Design Tree to any location in the design. At this location, it will be
created as an xsl:call-template element (screenshot below) that calls the named template.

The effect of this in the output is to implement the named template at that location in the design. This can be
useful for inserting content that is independent of both the XML instance document as well as of the XSLT
stylesheet.

232 SPS Structure Multiple Document Output

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

6.6 Multiple Document Output

You can design an SPS to produce multiple output-documents: a main output-document and one or more
additional documents. This is particularly useful if you wish to modularize the output. Output-documents are
created in the design by inserting a New Document template (see screenshot below). Content for each output-
document is placed within its New Document template.

New Document templates can be created anywhere in the document design, thus allowing the output to be
modularized at any level. So, for example, a report about the various branch offices of a global organization can
have separate output-documents at each of the following levels: (i) world, (ii) continent, (iii) country, (iv) state,
and/or (v) branch office. Each branch office, for example, can be presented in a separate output-document or all
the branch offices in a country can appear together in a single country report. In the design, a New Document
template would have to be created at each of the hierarchical levels for which separate output-documents are
required. How to set up the correct document structure is described in the section, New Document Templates
and Design Structure .

This description of multiple output-documents is organized into the following sub-sections:

· Inserting a New Document Template
· New Document Templates and Design Structure
· URLs of New Document Templates
· Preview and Output Document Files
· Document Properties and Styles

234

233

234

234

236

239

© 2019-2025 Altova GmbH

Multiple Document Output 233SPS Structure

Altova StyleVision 2025 Basic Edition

6.6.1 Inserting a New Document Template

A New Document template can be placed in an SPS design in one of two ways:

· A new output-document template can be inserted at any location in the design. In this case the
content of the New Document is added to the template after inserting the template. To insert a New
Document template, place the cursor at the desired location in the design and select the command
Insert | Insert New Document or right-click the location and, from the context menu that pops up,
select Insert New Document.

· A new output-document can be placed in the design by enclosing content with a New Document
template. The New Document template will, in this case, contain the enclosed content when it is
created. You can add to or modify this content in the design. To place a New Document template so
that it encloses content, highlight the content to be enclosed and then select the command Enclose
With | New Document. Alternatively, you can select the content to be enclosed, then right-click it,
and, from the context menu that pops up, select the command Enclose With | New Document.

A New Document template with content is shown in the screenshot below.

Notice the following from the screenshot above:

1. The New Document template tags contain the URL (path and name) of the output-document it will
generate. The filename suffix will be generated automatically according to the file type of the output
format. For example, for the HTML output format, the filename suffix .html will be appended to the
filename in the URL. Issues relevant to the assigning of URLs are discussed in the section, URLs of
New Document Templates .

2. The New Document Template contains one Initial Document Section.

234

234 SPS Structure Multiple Document Output

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

6.6.2 New Document Templates and Design Structure

When creating multiple output-documents, you must create the different New Document templates on the
appropriate nodes of the source document. Therefore, you must consider both the output structure as well
as the input (source XML document) structure when designing multiple output-documents.

Main output document and additional output documents (output structure)
When the first New Document template is added to the design, all design content outside this New Document
template is automatically assigned to a separate document. This separate document is considered to be the
main output document, and, in the output previews of StyleVision, it is referred to as Main Output Document.

In the generated output-documents (created using the command File | Save Generated Files), the name of
the main output document will be the name you assign it when generating the output-document files using the
Save Generated Files command. The names of the additional output-document files will be the names
assigned in the URLs of the respective New Document templates.

New Document templates and source document structure
When a New Document template is created, the hierarchical location where it is created is significant. Two
possibilities exist:

1. The node within which the New Document template is created is processed only once. In this case the
New Document template is also processed only once. The filename in the URL property of the New
Document template can therefore be a static name.

2. The node within which the New Document template is created is processed multiple times. As a result,
the New Document template will be processed as many times as the node is processed. An example
of such a situation would be the following. An Office element has multiple Department element
children (for its various departments). If a New Document template is created within the Department
node in the design, then, since the Department node will be processed multiple times (for all the
different Department elements in that Office element), the New Document template also will be
processed multiple times, once for each Department element in the source XML document. The
filename in the URL property of the New Document template must therefore be a dynamic name.
Otherwise, the output-documents created for the Department elements will each have the same
filename.

6.6.3 URLs of New Document Templates

In this section we describe how the URLs of New Document templates relate to design structure , how URLs
are edited , and how multiple output-documents can be linked among each other.

URLs of New Document templates
If the New Document template is processed only once (see preceding section), then the template's URL
property can be a static URL. In the screenshot below, since the New Document template is immediately
within the document element ($XML), it will be processed only once. The URL has been given a static value of
TableOfContents. This value will therefore be the filename of the output-document. Since no path has been
prefixed to the filename, the file will be generated in the same directory as the Main Document File (see

234

234

234

236 236

234

© 2019-2025 Altova GmbH

Multiple Document Output 235SPS Structure

Altova StyleVision 2025 Basic Edition

Multiple Document Outputs and Previews for details). Alternatively, if the URL contained a path, the output-
document will be saved to the location specified in the path.

If, on the other hand, a New Document template will be processed multiple times to generate multiple output-
documents (see preceding section), then the template's URL property must be a dynamic URL that is
selected with an XPath expression. In the screenshot below, the URL of the New Document template is the
XPath expression: body/header/para. The New Document template is within the topic element, so it will be
processed each time the topic element is processed. On every iteration through the topic element, the
content of that topic element's body/header/para element will be assigned as the URL of the New Document
template. This creates a new document for every topic element. Each of these documents has a different
name, that of its body/header/para element (which is the text of the topic's header).

236

234

236 SPS Structure Multiple Document Output

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Editing the URL
When a New Document template is added to the design, it is created with a default URL. This is a static text
string: DocumentX (where X is an integer). If you wish to edit the URL, right-click the New Document template
and select the command Edit URL. This pops up the Properties dialog (screenshot below), in which you can
edit the Value field of the URL without file ext property.

If you wish to enter a static URL, edit the Value field to contain the required URL text. If you wish to enter a
dynamic URL, click in the Value field, click the XPath button in the toolbar of the Properties dialog, and enter
the XPath expression you want. Note the following: (i) The context node for the XPath expression is the node
within which the New Document template has been inserted. (ii) To prefix a path to the XPath location
expression, use the concat() function of XPath. For example: concat('C:\MyOutput\',
body\header\para). This example expression will generate the URL string: C:\MyOutput\filename. The
appropriate file extension will be generated automatically according to the output format.

Linking the documents
Multiple output-documents can be linked to one another using bookmarks and hyperlinks . A bookmark
can be placed at the head of a New Document Template or anywhere within the New Document Template.
Hyperlinks can then be created in other documents to link back to the bookmark. If bookmarks are required
on a node that is processed multiple times, then make sure that the name of the bookmark is generated
dynamically. Otherwise (if a static bookmark name is given) multiple nodes in the output will have the same
bookmark name.

A Table of Contents (TOC) can also be used to link documents. The TOC could be in a separate document
(for example, the main document) and link to the various output-documents, while the output-documents could
link back to the TOC.

6.6.4 Preview Files and Output Document Files

The output previews of a design document show each of the multiple output-documents that have been
specified in the design as separate documents (see screenshot below).

299 299

301

272

© 2019-2025 Altova GmbH

Multiple Document Output 237SPS Structure

Altova StyleVision 2025 Basic Edition

The screenshot above shows the HTML Preview of an SPS document that has been designed to generate
multiple output-documents. Each output document can be called up in the view window by either: (i) navigating
through the available documents using the arrow buttons at top left, or (ii) selecting the required document from
the dropdown list of the combo box (see screenshot above). Notice that the items of the dropdown list show
the entire URL (path plus filename).

Location of preview files
The preview files are created by default in the directory in which the SPS file is created. This default setting can
be changed in the Paths tab of the SPS file's Properties dialog (screenshot below), which is accessed with the
File | Properties command. In this tab you can specify the directory of the Working XML File as an alternative
location. If the URL of a New Document template contains a path, the location specified in this path will be
used as the location of the respective preview files. If the location cannot be found, an error is returned. You
should be aware of where the output-documents will be saved if you are setting up output-documents to link to
each other.

238 SPS Structure Multiple Document Output

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

In the Paths tab of the Properties dialog (see screenshot above), you can also specify where temporary
additional files for previews, such as output-document files, and image and chart-image files, will be saved.
Note that, if the URL of a New Document template contains a path, then the location specified in this path will
be used.

Generating output (paths etc)
To generate the output-document files, do the following:

1. Mouse over the menu command File | Save Generated Files and click the required output format.
2. In the Save Generated File dialog that pops up browse for the folder in which you wish to save the

generated file.
3. Enter the name of the Main Document File and click Save.

The location of all output-document files as well as other additionally generated files, such as image files and
chart-image files, will be displayed in a pop-up window for your information.

The Main Document File will be saved to the folder location you selected in the Save Generated File dialog. All
the multiple output-documents that were created with New Document templates and whose URLs have no path
information will be saved to the same folder as the Main Document File. If a path was prefixed to the filename in

© 2019-2025 Altova GmbH

Multiple Document Output 239SPS Structure

Altova StyleVision 2025 Basic Edition

a New Document template's URL, the output document will be saved to the location specified in the URL. If that
folder location does not exist an error will be generated.

6.6.5 Document Properties and Styles

In an SPS design, you can split the output into multiple documents. Each of these documents can be assigned
separate document properties and document styles. These are specified in the Document Properties and
Document Styles tabs, respectively (see screenshot below), of the Properties dialog of the document's Initial
Document Section. To access the Properties dialog, click the Edit Properties link in the title bar of the Initial
Document Section of the document for which you wish to set these properties. Document properties and
document styles apply to the entire output document.

In the Document Properties tab, the Document Properties group of properties enable meta-information to be
entered for the document. This meta-information will be saved to the respective output document and to the
respective properties according to output format. For example, in the HTML output format, the properties are
stored in the respective META tags of the HEAD element.

Document styles are described in the section Setting CSS Property Values .328

240 Advanced Features

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

7 Advanced Features

How to create the basic content and structure of the SPS design is described in the sections, SPS File
Content and SPS File Structure . Very often, however, you will also need to modify or manipulate the
content and/or structure of source data in particular ways. For example, you might wish to sort a group of
nodes, say nodes containing personnel information, on a particular criterion, say the alphabetical order of
employee last names. Or you might wish to group all customers in a database by city. Or add up a product's
sales turnover in a particular city. Such functionality is provided in StyleVision's advanced features, and these
are described in this section.

Given below is a list of StyleVision's SPS file advanced features:

· Auto-Calculations . Auto-Calculations are a powerful XPath-based mechanism to manipulate data
and (i) present the manipulated data in the output as well as (ii) update nodes in the XML document
with the result of the Auto-Calculation.

· Conditions . Processing of templates and the content of templates can be conditional upon data
structures or values in the XML, or upon the result of an XPath expression

· Grouping . Processing can be defined for a group of elements that are selected with an XPath
expression.

· Sorting . A set of XML elements can be sorted on multiple sort-keys.
· Parameters and Variables . Parameters are declared at the global SPS level with a default value.

These values can then be overridden at runtime by values passed to the stylesheet from the command
line. Variables can be defined in the SPS and these variables can be referenced for use in the SPS.

· Table of Contents (TOC) and Referencing . Tables of Contents (TOCs) can be constructed at various
locations in the document output, for all output formats. The TOC mechanism works by first selecting
the items to be referenced in the TOC and then referencing these marked items in the TOC. Other
features which use referencing are: (i) Auto-Numbering (repeating nodes in the document can be
numbered automatically and the numbers formatted); (ii) Text References (text in the document can
be marked for referencing and then referenced from elsewhere in the document); and (iii) Bookmarks
and Hyperlinks (bookmarks mark key points in the output document, which can then be targeted by
hyperlinks. Hyperlinks can also link to external resources using a variety of methods to determine the
target URI (static, dynamic, a combination of both, and unparsed entity URIs).) All these referencing
mechanisms are described in this section.

103 173

241

246

251

259

264

272

294

298

299

© 2019-2025 Altova GmbH

Auto-Calculations 241Advanced Features

Altova StyleVision 2025 Basic Edition

7.1 Auto-Calculations

The Auto-Calculation feature (i) displays the result of an XPath evaluation at any desired location in the output
document, and (ii) optionally updates a node in the main XML document (the XML document being edited in
Authentic View) with the result of the XPath evaluation.

The Auto-Calculation feature is a useful mechanism for:

· Inserting calculations involving operations on dynamic data values. For example, you can count the
number of Employee elements in an Office element (with count(Employee)), or sum the values of all
Price elements in each Invoice element (with sum(Price)), or join the FirstName and LastName
elements of a Person element (with concat(FirstName, ' ', LastName)). In this way you can
generate new data from dynamically changing data in the XML document, and send the generated data
to the output.

· Displaying information derived from the structure of the document. For example, you can use the
position() function of XPath to dynamically insert row numbers in a dynamic table, or to

dynamically number the sections of a document. This has the advantage of automatically generating
information based on dynamically changing document structures.

· Inserting data from external XML documents. The doc() function of XPath 2.0 provides access to the
document root of external XML documents, and thus enables node content from the external XML
document to be inserted in the output.

· Presenting the contents of a node at any location in the design.

7.1.1 Editing and Moving Auto-Calculations

Creating Auto-Calculations
To create an Auto-Calculation, do the following:

1. Place the cursor as an insertion point at the location where the Auto-Calculation result is to be
displayed and click Insert | Auto-Calculation. In the submenu that appears, select Value if the result
is to appear as plain text, select Input Field if it is to appear within an input field (i.e. a text box), or
select Multiline Input Field if it is to appear in a multiline text box. (Note that the output of the Auto-
Calculation is displayed as a value, or in an Input Field. It is an output in Authentic View, and cannot
be edited there.) The Edit XPath Expression dialog pops up (screenshot below).

242 Advanced Features Auto-Calculations

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. In the Expression pane, enter the XPath expression for the Auto-Calculation via the keyboard.
Alternatively, enter the expression by double-clicking nodes, operators, and/or functions in the
respective panes of the dialog. It is important to be aware of the context node at the insertion point; the
context node is highlighted in the schema source tree (in the screenshot above the context node,
newsitems, is highlighted). If you have selected XSLT 1.0 as the version of the XSLT language for your
SPS, then you must use XPath 1.0 expressions; if you have selected XSLT 2.0 or XSLT 3.0, then you
must use, respectively, XPath 2.0 or XPath 3.0 expressions. For a detailed description of the Edit
XPath Expression dialog, see the section Edit XPath Expression .

Click the OK button finish. In the Design tab, the Auto-Calculation symbol is displayed. To see the result of the
Auto-Calculation, change to HTML View.

Editing Auto-Calculations
To edit the XPath expression of the Auto-Calculation, select the Auto-Calculation and, in the Properties
sidebar, click the Edit button of the XPath property in the AutoCalc group of properties (screenshot below). This
pops up the Edit XPath Expression dialog (screenshot above), in which you can edit the XPath expression.

398

398

© 2019-2025 Altova GmbH

Auto-Calculations 243Advanced Features

Altova StyleVision 2025 Basic Edition

Formatting Auto-Calculations
You can apply predefined formats and CSS styles to Auto-Calculations just as you would to normal text: select
the Auto-Calculation and apply the formatting. Additionally, input formatting of an Auto-Calculation that is a
numeric or date datatype can be specified via the Input Formatting property in the AutoCalc group of properties
in the Properties window.

Note also that you can include carriage returns and/or linefeeds (CR/LFs) in the XPath expression. If the Auto-
Calculation is enclosed in the pre special paragraph type, the output of a CR/LF will produce a new line in the
output. An example of such an XPath expression is:

translate('a;b;c', ';', codepoints-to-string(13))

Moving Auto-Calculations
You can move an Auto-Calculation to another location by clicking the Auto-Calculation (to select it) and
dragging it to the new location. You can also use cut/copy-and-paste to move/copy an Auto-Calculation. Note,
however, that the XPath expression will need to be changed if the context node in the new location is not the
same as that in the previous location.

Summary of important points
Note the following points:

· An Auto-Calculation can be inserted anywhere in the Design Document.
· The point at which you insert the Auto-Calculation determines the context node for the XPath

evaluation.

7.1.2 Example: An Invoice

The SimpleInvoice.sps example in the (My) Documents folder , C:\Documents and
Settings\<username>\My Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\Auto-

Calculations\, demonstrates how Auto-Calculations can be used for the following purposes:

· Counting nodes
· Selecting a node based on input from the Authentic View user
· Creating complex calculations

311

23

244 Advanced Features Auto-Calculations

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

In the example file, the Auto-Calculations have been highlighted with a yellow background color (see
screenshot below).

Counting nodes
In the SimpleInvoice example, each product in the list is numbered according to its position in the list of
products that a customer has ordered (Product 1, Product 2, etc). This numbering is achieved with an Auto-
Calculation (screenshot below).

In this particular case, the XPath expression position() would suffice to obtain the correct numbering.
Another useful way to obtain the position of a node is to count the number of preceding siblings and add one.
The XPath expression would be: count(preceding-sibling::Product)+1. The latter approach could prove
useful in contexts where the position() function is difficult to use or cannot be used. You can test this Auto-
Calculation in the example file by deleting products, and/or adding and deleting new products.

Selecting a node based on user input
In the SimpleInvoice example, the product category (Book, CD, DVD, or Electronics) is contained in
the //Product/Category node and is displayed in a combo box. This selection is entered in
the //Product/Category node in the XML document. An Auto-Calculation then uses this value to reference a
"lookup table" in the XML document and identify the node holding the VAT percentage for this product category.
The XPath expression of this Auto-Calculation is:

for $i in Category return /Invoice/Categories/Category[. = $i]/@rate.

The VAT percentage is displayed at the Auto-Calculation location in the output. In the Invoices example, the
lookup table is stored in the same XML document as the invoice data. However, such a table can also be
stored in a separate document, in which case it would be accessed using the doc() function of XPath 2.0.
Notice that the VAT value of different products are different (Book=10%; CD=15%; DVD=15%; Electronics=20%);
they have been calculated by the Auto-Calculation.

© 2019-2025 Altova GmbH

Auto-Calculations 245Advanced Features

Altova StyleVision 2025 Basic Edition

Creating a complex Auto-Calculation
The VAT percentage, obtained by the Auto-Calculation described above, is required to calculate the gross price
(net price + VAT amount) of each product. The formula to use would be derived as follows:

Gross Price = Net Price + VAT-amount

Since VAT-amount = Net Price * VAT-percentage div 100
Gross Price = Net Price + (Net Price * VAT-percentage div 100)

The net price of a product is obtained from the PriceNet node. The VAT percentage is calculated by an Auto-
Calculation as described above; it is not contained in any node. Since this value cannot be obtained directly
from a node, it must be re-calculated in the gross price Auto-Calculation. The XPath expression to do this
would be:

for $i in Category return PriceNet + (PriceNet *(/Invoice/Categories/Category[. =

$i]/@rate) div 100)

The XPath expression can be viewed and edited in the Properties window . You can test the Auto-
Calculation for the gross price by changing, in the XML file and then re-loading the SPS, either the price or
product category of any product. Notice that the gross price (price including VAT) of the product also changes.

241

246 Advanced Features Conditions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

7.2 Conditions

You can insert conditions anywhere in the design, in both the main template and global templates. A condition
is an SPS component that is made up of one or more branches, with each branch being defined by an XPath
expression. For example, consider a condition composed of two branches. The XPath expression of the first
branch tests whether the value of the Location attribute of the context node is "US". The XPath expression of
the second branch tests whether the value of the Location attribute is "EU". Each branch contains a template
—a condition template. When a node is processed with a condition, the first branch with a test that evaluates
to true is executed, that is, its condition template is processed, and the condition is exited; no further branches
of that condition are evaluated. In this way, you can use different templates depending on the value of a node. In
the example just cited, different templates could be used for US and EU locations.

This section consists of the following topics:

· Setting Up the Conditions , which describes how to create a condition and its branches.
· Editing Conditions , about how to edit the XPath expressions of condition branches after they have

been created.
· Conditions and Auto-Calculations , explains usage issues when conditions and Auto-Calculations

are used in combination.

7.2.1 Setting Up the Conditions

Setting up the condition consists of the following steps:

1. Create the condition with its first branch.
2. Create additional branches for alternative processing.
3. Create and edit the templates within the various branches of the condition.

Creating the condition with its first branch
Set up a condition as follows:

1. Place the cursor anywhere in the design or select a component and then select the menu command
Insert | Condition.The Edit XPath Expression dialog pops up (screenshot below).

246

249

250

398

© 2019-2025 Altova GmbH

Conditions 247Advanced Features

Altova StyleVision 2025 Basic Edition

2. In the Expression pane, enter the XPath expression for the condition branch via the keyboard.
Alternatively, enter the expression by double-clicking nodes, operators, and/or functions in the panes of
the dialog. It is important to be aware of the context node at the insertion point; the context node is
highlighted in the schema sources tree when the dialog pops up.

3. Click OK to finish. The condition is created with its first branch; the XPath expression you entered is
the XPath expression of the first branch. If the condition was inserted at a text insertion point, the first
branch is empty (there is no template within it; see screenshot below). If the condition was inserted
with a component selected, the condition is created around the component, and that component
becomes the template of the first branch.

To select the entire condition, click the cell with the question mark. To select the first branch, click the
cell with the number one.

After creating a condition with one branch (which may or may not have a template within it), you can create as
many additional branches as required.

248 Advanced Features Conditions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Creating additional branches
Additional branches are created one at a time. An additional branch is created via the context menu
(screenshot below) and can be created in two ways: (i) without any template within it (Add New Branch); and
(ii) with a copy of an existing template within the new branch (Copy Branch).

To create a new branch, right-click any branch of the condition and select Add New Branch from the context
menu. The Edit XPath Expression dialog will pop up. After entering an XPath expression and clicking OK, a
new empty branch is added to the condition. This is indicated in the design by a new cell being added to the
condition; the new cell has a number incremented by one over the last branch prior to the addition.

To create a copy of an existing branch, right-click the branch of the condition you wish to copy and select
Copy Branch. The Edit XPath Expression dialog will pop up, containing the XPath expression of the branch
being copied. After modifying the XPath expression and clicking OK, a new branch is added to the condition.
The new branch contains a copy of the template of the branch that was copied. The new branch is indicated in
the design by a new cell with a number incremented by one over the last branch prior to the addition.

The Otherwise branch
The Otherwise branch is an alternative catch-all to specify a certain type of processing (template) in the event
that none of the defined branches evaluate to true. Without the Otherwise branch, you would either have to
create branches for all possible eventualities or be prepared for the possibility that the conditional template is
exited without any branch being executed.

To insert an Otherwise branch, use either the Add New Branch or Copy Branch commands as described
above, and in the Edit XPath Expression dialog click the Otherwise check box (see screenshot below).

398

398

398

© 2019-2025 Altova GmbH

Conditions 249Advanced Features

Altova StyleVision 2025 Basic Edition

Moving branches up and down
The order of the branches in the condition is important, because the first branch to evaluate to true is executed
and the condition is then exited. To move branches up and down relative to each other, select the branch to be
moved, then right-click and select Move Branch Up or Move Branch Down.

Deleting a branch
To delete a branch, select the branch to be deleted, then right-click and select Delete Branch.

7.2.2 Editing Conditions

To edit the XPath expression of a condition branch, do the following:

1. Select the condition branch (not the condition).
2. In the Properties sidebar, select condition branch in the Properties For column (screenshot below).

250 Advanced Features Conditions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. Click the Edit button of the XPath property in the When group of properties. This pops up the Edit
XPath Expression dialog , in which you can edit the XPath expression for that branch of the
condition.

7.2.3 Conditions and Auto-Calculations

When using Conditions and Auto-Calculations together, there are a few issues to bear in mind. The two most
fundamental points to bear in mind are:

· Only Auto-Calculations in visible conditions—that is the branch selected as true—are evaluated.
· Auto-Calculations are evaluated before Conditions.

Here are a few guidelines that summarize these issues.

1. If an Auto-Calculation updates a node, and if that node is involved in a Condition (either by being in the
XPath expression of a branch or in the content of a conditional template), then keep the Auto-
Calculation outside the condition if possible. This ensures that the Auto-Calculation is always visible—
no matter what branch of the condition is visible. If the Auto-Calculation were inside a branch that is not
visible, then it would not be triggered.

2. If an Auto-Calculation must be placed inside a condition, ensure (i) that it is placed in every branch of
the condition, and (ii) that the various branches of the condition cover all possible conditions. There
should be no eventuality that is not covered by a condition in the Conditional Template; otherwise there
is a risk (if the Auto-Calculation is not in any visible template) that the Auto-Calculation might not be
triggered.

3. If you require different Auto-Calculations for different conditions, ensure that all possible eventualities for
every Auto-Calculation are covered.

4. Remember that the order in which conditions are defined in a conditional template is significant. The
first condition to evaluate to true is executed. The otherwise condition is a convenient catch-all for
non-specific eventualities.

398

© 2019-2025 Altova GmbH

Grouping 251Advanced Features

Altova StyleVision 2025 Basic Edition

7.3 Grouping

The grouping functionality is available in XSLT 2.0 and 3.0 SPSs and for HTML output.

Grouping enables items (typically nodes) to be processed in groups. For example, consider an inventory of
cars, in which the details of each car is held under a car element. If, for example, the car element has a brand
attribute, then cars can be grouped by brand. This can be useful for a variety of reasons. For example:

· All cars of a single brand can be presented together in the output, under the heading of its brand name.
· Operations can be carried out within a group and the results of that operation presented separately for

each group. For example, the number of models available for each brand can be listed.

Additionally, a group can be further processed in sub-groups. For example, within each brand, cars can be
grouped by model and then by year.

Grouping criteria
Items can be grouped using two general criteria: (i) a grouping key, which typically tests the value of a node,
and (ii) the relative position of items. The following specific grouping criteria are available:

· group-by, which groups items on the basis of an XPath-defined key. For example, car elements can
be grouped on the basis of their brand attributes. The grouping is set on the car element, and an
XPath expression selects the brand attribute.

· group-adj acent uses a combination of grouping-key and position criteria. All adjacent items that have
the same value for the grouping key are included in one group. If the grouping-key value of an item is
different from that of the previous item, then this item starts a new group.

· group-starting-with starts a new group when a node matches a defined XPath pattern. If a node does
not match the defined XPath pattern, then it is assigned to the current group.

· group-ending-with ends a group when a node matches a defined XPath pattern; the matching node is
the last in that group. The next node starts a new group. If a node subsequent to that which starts a
group does not match the defined XPath pattern it is assigned to the current group.

Creating groups
Groups can be created on either a node or a current-group template via the context menu. To create a group,
right-click the node or current-group template, and in the context menu that appears, select the Group by
command. This pops up the Define Output Grouping dialog (screenshot below).

252 Advanced Features Grouping

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

In the dialog, check the Enable Grouping check box, then select the required Grouping Type and, in the Match
text box, enter the XPath expression that defines the grouping key (for the group-by and group-adjacent
options) or the desired match pattern (for the group-starting-with and group-ending-with options). When you
click OK, a dialog pops up asking whether you wish to sort the group-set alphabetically (in ascending order).
You can always sort group-sets subsequently or remove such sorting subsequently. The screenshot below
shows nodes and current-group templates which have had grouping added to them.

© 2019-2025 Altova GmbH

Grouping 253Advanced Features

Altova StyleVision 2025 Basic Edition

In the screenshot above, the person node has been grouped and the resulting groups sorted. For example if
the person elements have been grouped by department, then the various departments can be sorted in
alphabetically ascending order. The groups thus created have been further grouped by creating grouping on the
current-group() template. In this way person elements can be grouped, say, first by department, and then by
employment grade.

Sorting groups
After confirming a grouping definition, a pop-up asks you to confirm whether the groups should be sorted in
ascending order or not. You can set sorting subsequently at any time, or modify or delete, at any time, the
sorting set at this stage.

To set, modify, or delete sorting subsequently, right-click the required grouping template and select Sort by.
This pops up the Define Output Sort Order dialog . How to use this dialog is described in the section
Sorting . The important point to note is that to sort groups on the basis of their grouping-key, you must
select the XPath function current-grouping-key() as the sorting key. For examples, see the files described
in the following sections.

Viewing and editing grouping and sorting settings
To view and edit the grouping and sorting settings on a template, right-click the template and select Group by
or Sort by, respectively. This pops up the respective dialog, in which the settings can be viewed or modified.

User-defined templates
User-defined templates are templates that are applied to items selected by an XPath expression you
specify. The nodes selected by the XPath expression of a user-defined template can also be grouped. In this
case, the grouping is applied on the user-defined template.

7.3.1 Example: Group-By (Persons.sps)

The Persons.sps example is based on the Persons.xsd schema and uses Persons.xml as its Working XML
File. It is located in the (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\Grouping\Persons\. The XML
document structure is as follows: an employees document element can contain an unlimited number of person
employees. Each person employee is structured according to this example:

<person first="Vernon" last="Callaby" department="Administration" grade="C"/>

In the design we group persons according to department. Each department is represented by a separate table
and the departments are sorted in ascending alphabetical order. Within each department table, persons are
grouped according to grade (sorted in ascending alphabetical order) and, within each grade, persons are listed
on in ascending alphabetical order of their last names.

Strategy
The strategy for creating the groups is as follows. The grouping is created on the person element with the
department attribute being the grouping-key. This causes the person elements to be ordered in groups based
on the value of the department attribute. (If sorting is specified, then the department groups can be organized in
alphabetical order, for example, Administration first, and so on.) Since the departments are to be created as

259

259

220

23

254 Advanced Features Grouping

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

separate tables, the current-grouping (which is based on the department grouping-key) is created as a table.
Now, within this grouped order of Person elements, we specify that each group must be further ordered with the
grade attribute as the grouping-key.

Creating the SPS
The design was created as follows:

1. Drag the person element from the schema tree and create it as contents.
2. Right-click the person element tag and, in the context menu, select Group by.
3. In the Define Output Grouping dialog, select group-by, set the XPath expression in the Match text box

to @department, and click Yes.
4. A dialog pops up asking whether the groups should be sorted. Since we wish the groups to be sorted

according to the default ascending alphabetical sorting, click OK. (Sorting can always be set, modified,
or deleted subsequently.)

5. Since each group (which is a department) is to be created in a separate table, create the current group
as a table. Do this by right-clicking the current-group() tag (screenshot below), and selecting
Change to | Table, selecting the child attributes @last and @grade as the columns of the table.

6. Re-organize the contents of the columns and cells of the table so that the first column contains @grade
and the second column contains the @first and @last nodes (see screenshot below).

7. Within the current group, which is grouped by department, we wish to group by grade. So on the
current-group() template, create a grouping for the grade attribute. Confirm the default sorting. A
new current-group() template is created (see screenshot below).

8. Sort this current group (which is the sub-group of persons and grouped by grade), on the last
attribute.

9. Set formatting for the table.

© 2019-2025 Altova GmbH

Grouping 255Advanced Features

Altova StyleVision 2025 Basic Edition

10. Above the table provide a heading for the table. Since each table represents a department, the name of
the department can be dynamically obtained from the current context by using an Auto-Calculation
with an XPath expression that calls the current-grouping-key() function of XPath 2.0/3.0.

11. Repeat the entire process, to create similar output, but this this time grouping persons by grade and
then by department.

To view or modify the grouping or sorting of a template, right-click that template and select Group by or Sort
by from the context menu. This pops up the respective dialog, in which the settings can be viewed or modified.

7.3.2 Example: Group-By (Scores.sps)

The Scores.sps example is based on the Scores.xsd schema and uses Scores.xml as its Working XML File.
It is located in the (My) Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\Grouping\Scores\. The XML
document structure is as follows: a results document element contains one or more group elements and one
or more match elements. A group element contains one or more team elements, and a match element is
structured according to this example:

<match group="A" date="2007-10-12">

<team name="Brazil" for="2" points="3"/>

<team name="Germany" for="1" points="0"/>
</match>

The design consists of three parts (screenshot below): (i) the match results presented by day (grouped
on //match/@date); (ii) the match results presented by group (grouped on //match/@group); and (iii) group
tables providing an overview of the standings by group (a dynamic table of the group element, with Auto-
Calculations to calculate the required data).

23

256 Advanced Features Grouping

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Strategy
For the two sections containing the match results, we group matches by date and tournament-group. For
members of each group (date and tournament group), we create borderless tables (for alignment purposes). So
matches played on a single date will be in a separate table, and all the match results of a single tournament

© 2019-2025 Altova GmbH

Grouping 257Advanced Features

Altova StyleVision 2025 Basic Edition

group will be in a separate table (for example, Group A matches). For the group-tables section, the group
element is created as a dynamic table, with Auto-Calculations providing the value of the required data.

Creating the SPS
The design was created as follows:

1. Drag the /results/match element from the schema tree and create it as contents.
2. Right-click the match element tag and, in the context menu, select Group by.
3. In the Define Output Grouping dialog, select group-by, set the XPath expression in the Match text box

to @date, and click OK.
4. A dialog pops up asking whether the groups should be sorted. Since we wish the groups to be sorted

according to the default ascending alphabetical sorting, click Yes. (Sorting can always be set,
modified, or deleted subsequently.)

5. Since each group (which is a date) is to be created in a separate table, create the current group as a
table. Do this by right-clicking the current-group() tag, selecting Change to | Table, and then
selecting the descendant nodes team/@name and team/@for as the columns of the table (see
screenshot below).

6. Set a hyphen in each cell that will be output if the match is not the last in the current group. Do this by
using a conditional template with a condition set to position() != last(). This provides output such
as: Brazil - Germany or 2 - 1.

7. Put an Auto-Calculation in the header that outputs the current grouping key for the respective group
(XPath expression: current-grouping-key()).

8. Format the table as required.
9. To group the matches by tournament group, repeat the entire process, but group matches this time on

the group attribute of match.
10. For the group tables (in the third section of the design), which contain the standings of each team in

the group, create the /results/group element as a dynamic table. Add columns as required (using
the Table | Append Column or Table | Insert Column commands). Set up Auto-Calculations in
each column to calculate the required output (3 point for a win; 1 point for a draw; 0 points for a loss).

258 Advanced Features Grouping

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

And, finally, sort the table in descending order of total points obtained. To see the XPath expressions
used to obtain these results, right-click the Auto-Calculation or sorted template, and select,
respectively, the Edit XPath and Sort by commands.

© 2019-2025 Altova GmbH

Sorting 259Advanced Features

Altova StyleVision 2025 Basic Edition

7.4 Sorting

The sorting functionality is available for HTML output.

A set of sibling element nodes of the same qualified name can be sorted on one or more sort-keys you select.
For example, all the Person elements (within, say, a Company element) can be sorted on the LastName child
element of the Person element. The sort-key must be a node in the document, and is typically a descendant
node (element or attribute) of the element node being sorted. In the example mentioned, LastName is the sort-
key.

If there are two elements in the set submitted for sorting that have sort-key nodes with the same value, then an
additional sort-key could provide further sorting. In the Person example just cited, in addition to a first sort-key
of LastName, a second sort-key of FirstName could be specified. So, for Person elements with the same
LastName value, an additional sort could be done on FirstName. In this way, in an SPS, multiple sort
instructions (each using one sort-key) can be defined for a single sort action.

The template is applied to the sorted set and the results are sent to the output in the sorted order. Sorting is
supported in the HTML output.

User-defined templates
User-defined templates are templates that are applied to items selected by an XPath expression you
specify. The nodes selected by the XPath expression of a user-defined template can also be sorted. In this
case, the sorting is applied on the user-defined template.

In this section

· The sorting mechanism is described.
· An example demonstrates how sorting is used.

7.4.1 The Sorting Mechanism

Setting up a schema element node for sorting consists of two steps:

1. In Design View, select the schema element node that is to be sorted. Note that it is the instances of
this element in the XML document that will be sorted. Often it might not immediately be apparent
which element is to be sorted. For example, consider the structure shown in the screenshot below.

Each newsitem has a dateline containing a place element with a city attribute. The @city nodes of
all newsitem elements are to be output in alphabetical order. In the design, should the @city node be
selected for sorting, or the place, dateline, or newsitem elements? With @city selected, there will

220

259

261

260 Advanced Features Sorting

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

be only the one city node that will be sorted. With place or dateline selected, again there will be
just the one respective element to sort, since within their parents they occur singly. With newsitem
selected, however, there will be multiple newsitem elements within the parent newsitems element. In
this case, it is the newsitem element that should be sorted, using a sort-key of
dateline/place/@city.

2. After selecting the element to sort, in the context menu (obtained by right-clicking the element
selection), click the Sort Output command. This pops up the Define Output Sort Order dialog
(screenshot below), in which you insert or append one or more sort instructions.

Each sort instruction contains: (i) a sort-key (entered in the Match column); (ii) the datatype that the
sort-key node should be considered to be (text or number); (iii) and the order of the sorting (ascending
or descending). The order in which the sort instructions are listed is significant. Sorting is carried out
using each sort instruction in turn, starting with the first, and working down the list when multiple items
have the same value. Any number of sort instructions are allowed.

For an example of how sorting is used, see Example: Sorting on Multiple Sort-Keys .

User-defined templates
User-defined templates are templates that are applied to items selected by an XPath expression you
specify. The nodes selected by the XPath expression of a user-defined template can also be sorted. In this
case, the sorting is applied on the user-defined template.

A note about sort-keys
The XPath expression you enter for the sort-key must select a single node for each element instance—not a
nodeset (XPath 1.0) or a sequence of items (XPath 2.0 and XPath 3.0); the key for each element should be
resolvable to a string or number value.

In an XSLT 2.0 or 3.0 SPS, if the sort-key returns a sequence of nodes, an XSLT processing error will be
returned. So, in the Person example cited above, with a context node of Person, an XPath expression such
as: ../Person/LastName would return an error because this expression returns all the LastName elements

261

220

© 2019-2025 Altova GmbH

Sorting 261Advanced Features

Altova StyleVision 2025 Basic Edition

contained in the parent of Person (assuming there is more than one Person element). The correct XPath
expression, with Person as the context node, would be: LastName (since there is only one LastName node for
each Person element).

In XSLT 1.0, the specification requires that when a nodeset is returned by the sort-key selector, the text value
of the first node is used. StyleVision therefore returns no error if the XPath expression selects multiple nodes
for the sort-key; the text of the first node is used and the other nodes are ignored. However, the first node
selected might not be the desired sort-key. For example, the XPath expression ../Person/LastName of the
example described above would not return an error. But neither would it sort, because it is the same value for
each element in the entire sort loop (the text value of the first LastName node). An expression of the kind:
location/@*, however, would sort, using the first attribute of the location child element as the sort-key. This
kind of expression, however, is to be avoided, and a more precise selection of the sort-key (selecting a single
node) is advised.

7.4.2 Example: Sorting on Multiple Sort-Keys

In the simple example below (available in the (My) Documents folder , C:\Documents and
Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\Sorting\SortingOnTwoTextKeys.

sps), team-members are listed in a table. Each member is listed with first name, last name, and email address
in a row of the table. Let us say we wish to sort the list of members alphabetically, first on last name and then
on first name. This is how one does it.

When the list is unsorted, the output order is the order in which the member elements are listed in the XML
document (screenshot below, which is the HTML output).

In Design View, right-click the member element (highlighted blue in screenshot below), and from the context
menu that appears, select the Sort Output command.

23

262 Advanced Features Sorting

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

This pops up the Define Output Sort Order dialog (screenshot below). Notice that the element selected for
sorting, member, is named at the Sort Nodes entry. This node is also the context node for XPath expressions to
select the sort-key. Click the Add Row button (at left of pane toolbar) to add the first sort instruction. In the row
that is added, enter an XPath expression in the Match column to select the node last. Alternatively, click the

Build button to build the XPath expression. The Datatype column enables you to select how the sort-key
content is to be evaluated: as text or as a number. The Order column lists the order of the sort: ascending or
descending. Select Text and Ascending. Click OK to finish.

In Design View, the member tag displays an icon indicating that it contains a sort filter . The HTML
output of the team-member list, sorted on last name, is shown below. Notice that the two Edwards are not
alphabetically sorted (Nadia is listed before John, which is the order in the XML document). A second sort-key
is required to sort on first name.

In Design View, right-click the member tag and select the Sort Output command from the context menu. The
Define Output Sort Order dialog pops up with the last sort instruction listed. To add another sort instruction,
append a new row and enter the first element as its sort-key (screenshot below). Click OK to finish.

© 2019-2025 Altova GmbH

Sorting 263Advanced Features

Altova StyleVision 2025 Basic Edition

In the HTML output, the list is now sorted alphabetically on last name and then first name.

264 Advanced Features Parameters and Variables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

7.5 Parameters and Variables

Parameters and variables can be declared and referenced in the SPS. The difference between the two is that
while a variable's value is defined when it is declared, a parameter can have a value passed to it (at run-time via
the command line) that overrides the optional default value assigned when the parameter was declared.

In this section, we describe the functionality available for parameters and variables:

· User-Declared Parameters explains how user-defined parameters can be used in an SPS.
· Parameters for Design Fragments describes how parameters can be used with design fragments.
· SPS Parameters for Sources are a special type of parameter. They are automatically defined by

StyleVision for schema sources (specifically, the Working XML Files of schemas). Since the name and
value of such a parameter are known to the user, the parameter can be referenced within the SPS and
a value passed to it at run-time from the command line.

· Variables enable you to: (i) declare a variable with a certain scope and define its value, and (ii) to
reference the value of declared variables and create a template on a node or nodes selected by the
variable.

7.5.1 User-Declared Parameters

In an SPS, user-declared parameters are declared globally with a name and a default string value. Once
declared, they can be used in XPath expressions anywhere in the SPS. The default value of the parameter can
be overridden for individual XSLT transformations by passing the XSLT stylesheet a new global value via
StyleVision Server.

Use of parameters
User-declared parameters are useful in the following situations:

· If you wish to use one value in multiple locations or as an input for several calculations. In this case,
you can save the required value as a parameter value and use the parameter in the required locations
and calculations.

· If you wish to pass a value to the stylesheet at processing time. In the SPS (and stylesheet), you use
a parameter with a default value. At processing time, you pass the desired value to the parameter via
StyleVision Server.

Usage mechanism
Working with user-declared parameters in the SPS consists of two steps:

1. Declaring the required parameters .
2. Referencing the declared parameters .

Declaring parameters
All user-defined parameters are declared and edited in the Edit Parameters dialog (screenshot below). The Edit
Parameters dialog is accessed via: the Edit | Stylesheet Parameters command.

264

265

268

269

264

265

453

https://www.altova.com/stylevision/stylevision-server.html
https://www.altova.com/stylevision/stylevision-server.html

© 2019-2025 Altova GmbH

Parameters and Variables 265Advanced Features

Altova StyleVision 2025 Basic Edition

Declaring a parameter involves giving it a name and a string value—its default value. If no value is specified, the
default value is an empty string.

To declare a parameter, do the following:

1. In the Edit Parameters dialog, append or insert a new parameter by clicking the Append or Insert
buttons. A new line appears.

2. Enter the name of the parameter. Parameter names must begin with a letter, and can contain the
characters A to Z, a to z, 0 to 9, and the underscore.

3. Enter a default value for that parameter. The value you enter is accepted as a text string.

You can insert any number of parameters and modify existing parameters at any time while editing the SPS.

Note:

· The Edit Parameters dialog contains all the user-defined parameters in an SPS.
· Parameters can also be declared in the Design Overview sidebar .

Referencing declared parameters
Parameters can be referenced in XPath expressions by prefixing a $ character before the parameter name. For
example, you could reference a parameter in the XPath expression of an Auto-Calculation (e.g.
concat('www.', $company, '.com')).

Note: While it is an error to reference an undeclared parameter, it is not an error to declare a parameter and not
reference it.

7.5.2 Parameters for Design Fragments

Parameters for Design Fragments enable you to define a parameter on a design fragment you have created and
to give this parameter a default value. At each location where this design fragment is used in the design, you
can enter a different parameter value, thus enabling you to modify the output of individual design fragments.

33

266 Advanced Features Parameters and Variables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

For example, a design fragment named EMailAddresses can be created with a parameter named Domain that
has a default value of altova.com. Now, say this parameter is used in an Auto-Calculation in the design
fragment to generate the email addresses of company employees. For the EU addresses, we could use the
design fragment EmailAddresses and edit the value of the Domain parameter to be altova.eu. In the same
way, in the template for Japanese employees, we could edit the value of the Domain parameter to be
altova.jp. For the US employees of the company, we could leave the parameter value of Domain unchanged,
thus generating the default value of altova.com.

Using parameters for design fragments consists of two parts:

1. Defining the parameter with a default value on the design fragment where it is created.
2. Editing the parameter value where the design fragment is used.

These parts are explained in detail below.

Note: Parameters for Design Fragments are supported in Authentic View only in the Enterprise Editions of
Altova products.

Defining the parameter
Each design fragment can be assigned any number of parameters. To do this, click the Define Parameters link
in the title bar of the design fragment (see screenshot below).

This pops up the Define Parameters for Design Fragments dialog (screenshot below). Click the Append or
Insert icon at top left to add a parameter entry line. Enter or select the name, datatype, number of
occurrences, and default value of the parameter. The Occurrence attribute of the parameter specifies the
number of items returned by evaluating the XPath expression specified as the default value of the parameter.
The Occurrence attribute is optional and is, by default, none or one. You can add as many parameters as you
like.

266

267

© 2019-2025 Altova GmbH

Parameters and Variables 267Advanced Features

Altova StyleVision 2025 Basic Edition

There are two types of Delete icon. The Delete icon to the right of each parameter entry deletes the default
value of that parameter. The Delete icon at the top right of the pane deletes the currently highlighted
parameter.

Note: If the SPS uses XSLT 1.0, then the XPath expression you enter must return a node-set. Otherwise an
error is reported.

Using the parameter
After a design fragment has been created, it can be inserted at multiple locations in the design (by dragging it
from the Design Tree or Schema Tree). The screenshot below shows the design fragment EmailPerson,
inserted after the n1:Name element.

If a parameter has been defined for this design fragment, then its value can be edited for this particular usage
instance of the design fragment. Do this by right-clicking the design fragment and selecting the command Edit
Parameters. This pops up the Edit Parameters for Design Fragments dialog (screenshot below).

268 Advanced Features Parameters and Variables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

You can edit the value of the parameter in this dialog. Click OK to finish. The new parameter value will be used
in this usage instance of the design fragment. If the parameter value is not edited, the original (or default)
parameter value will be used.

Note: If XSLT 1.0 is being used, then the XPath expression must return a node-set. Otherwise an error is
reported.

7.5.3 SPS Parameters for Sources

An SPS can have multiple schema sources, where a schema could be a DTD or XML Schema on which an
XML document is based, or an XML Schema that is generated from a DB and on which the DB is based.

In each SPS, there is one main schema, and, optionally, one or more additional schemas. When you add a
new schema source, StyleVision automatically declares a parameter for that schema and assigns the
parameter a value that is the URI of the Working XML File you assign to that schema. In the case of DBs,
StyleVision generates a temporary XML file from the DB, and sets the parameter to target the document node
of this temporary XML file.

Referencing parameters for sources
Each SPS parameter for a schema source addresses the document node of an XML file corresponding to that
schema. In StyleVision, the XML file for each schema is the Working XML File or the XML file generated from a
DB. SPS parameters for sources can therefore be used in two ways:

1. In XPath expressions within the SPS, to locate nodes in various documents. The parameter is used to
identify the document, and subsequent locator steps in the XPath expression locate the required node
within that document. For example, the expression: count($XML2//Department/Employee) returns
the number of Employee elements in all Department elements in the XML document that is the
Working XML File assigned to the schema source designated $XML2.

2. On the command line, the URI of another XML file can be passed as the value of an SPS parameter for
sources. Of course, the new XML file would have to be based on the schema represented by that
parameter. For example, if FileA.xml and FileB.xml are both valid according to the same schema,
and FileA.xml is the Working XML File assigned to a schema $XML3 used in an SPS, then when an

© 2019-2025 Altova GmbH

Parameters and Variables 269Advanced Features

Altova StyleVision 2025 Basic Edition

XSLT transformation for that SPS is invoked from the command line, FileB.xml can be substituted for
FileA.xml by using the parameter $XML3="FileB.xml". You should also note that, on the command
line, values should be entered for all SPS parameters for sources except the parameter for the main
schema. The XML file corresponding to the main schema will be the entry point for the XSLT
stylesheet, and will therefore be the XML file on which the transformation is run.

7.5.4 Variables

Using variables consists of two parts: (i) declaring the variable , and (ii) using the variable .

Note: Variables are supported in Authentic View only in the Enterprise Editions of Altova products.

Declaring a variable
A variable can be declared on any template included in the design. It is given a name, a datatype, and a value.
Additionally, you can specify whether it is to be editable in the Enterprise editions of Authentic View. The
variable will then be in scope on this template and can be used within it. To declare a variable so that it is in
scope for the entire document, declare the variable on the root template. A major advantage of declaring a
variable only on the template where it is needed is that XPath expressions to locate a descendant node will be
simpler.

Declare a variable as follows:

1. Right-click the node template on which the variable is to be created and select the command Define
Variables.

2. In the Define Variables dialog that appears (screenshot below), click the Append Variable icon in the
top left of the Variables pane, then enter a variable name. The value of the variable is given via an XPath
expression. If you wish to enter a string as the value of the variable (as in the first variable in the
screenshot below), then enclose the string in quotation marks. In the screenshot below, the value of
the SelectGroup variable is the empty string. Otherwise, the text will be read as a node name or a
function-call.

269 271

270 Advanced Features Parameters and Variables

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. Setting a variable to Editable (by checking the Editable check box) enables the variable to be edited in
Authentic View (which is available as a preview only in Enterprise and Professional editions of
StyleVision). In this case, you must also set the datatype value to the correct type, such as
xs:string. When a variable is editable, the original value set by the SPS designer can be edited when
the Authentic View user makes changes to the document in Authentic View. Such changes can be the
explicit editing of the variable (such as when the variable value is created as editable (contents) or an
editable text box and this is edited by the Authentic View user), or when a node or value used in the
variable's XPath expression is modified by the Authentic View user.

4. If the variable is set to Editable, then two more options relevant to Authentic View are enabled:
Undoable and Calc. Checking the Undoable option generates an Undo step for every change made to
the variable. The Authentic View user can therefore click through the Undo cycle to retrieve an earlier
value of the variable.The Calc value can be either Once or Auto. If this option is set to Once, the variable
value is calculated once, when the template containing the variable is evaluated. The value can only be
changed when the user explicitly edits the variable (for example, if the variable is created as editable
(contents) or an editable text box). On the other hand, if this option is set to Auto, the variable will be
re-calculated also each time a node or value used in the variable's XPath expression is modified.

5. You can add as many variables as you like, but the name of a variable must not be the name of an
already declared in-scope variable. To delete a variable click the Delete icon in the top right of the
pane.

6. Click OK when done. The template tag will now have a $ icon to indicate that one or more variables
have been declared on it.

In this way, variables can be created for each node template that is present in the design. Each of these
variables will have a name and a value, and will be in scope within the template on which it was declared. To
edit a variable subsequently, right-click the node template on which the variable was created and select the
command Define Variables to access the Define Variables dialog.

© 2019-2025 Altova GmbH

Parameters and Variables 271Advanced Features

Altova StyleVision 2025 Basic Edition

Using a variable
For a variable to be used at any location, it must be in scope at that location. This means that a variable can
only be used within the template on which it was defined. Variables can also be edited in Authentic View so
that users can control the display. The edited value is discarded when the SPS is closed.

A variable can be used in any XPath expression, and is referenced in the XPath expression by prefixing its
name with a $ symbol. For example, the XPath expression $VarName/Name selects the Name child element of
the node selected by the variable named VarName.

When you enter an XPath expression in the Edit XPath Expression dialog , in-scope variables appear in a
pop-up (see screenshot above). Selecting a variable in the pop-up and pressing Enter inserts the variable
reference in the expression.

398

272 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

7.6 Table of Contents, Referencing, Bookmarks

The Table of Contents (TOC) and other referencing mechanisms work by creating anchors at the required points
in the design document and then referring back to these references from TOCs, text references, auto-
numbering sequences, and hyperlinks.

We will look briefly at the anchoring (or bookmarking) mechanism first and then look at the overall TOC
mechanism. We do this because understanding the bookmarking mechanism first will provide a better
understanding of the overall TOC mechanism.

The bookmarking mechanism
Two types of bookmarking mechanism are used: simple and complex. The complex bookmarking mechanism
is the one used for creating TOCs.

· A simple bookmark is created at a point in the design document. The bookmark is given a unique
name which is used as the target of links that point to it. This simple bookmarking mechanism is the
mechanism used for the Bookmarks and Hyperlinks feature. (Note that hyperlinks can additionally
point to URLs outside the document.)

· For more complex referencing, such as for TOCs and for the auto-numbering of document sections,
building the bookmark involves two parts.

1. The design document is structured into a hierarchy of levels required for the TOC. These levels are
known as TOC levels. The structuring is achieved by assigning TOC levels to different points in the
document structure. TOC levels can be nested within other TOC levels so as to give the document
a hierarchical TOC structure. (For example, a TOC level can be assigned to a book chapter, and
another TOC level can be assigned within that level to the sections of the chapter.)

2. TOC bookmarks are created within the various TOC levels. These TOC bookmarks identify the
document sections at various levels that are to go into the TOC. Additionally, each TOC bookmark
must be defined to provide the text that will appear in the referencing component.

After the TOC levels and the TOC bookmarks' reference texts have been defined, the TOC template containing
the referencing components can be designed.

The overall TOC mechanism is broadly described below, under The TOC mechanism . The various
referencing features are explained in detail in the rest of this section.

The TOC mechanism
If you have selected XSLT 2.0 or XSLT 3.0 (not XSLT 1.0) as the XSLT version of your SPS, you can
create a table of contents (TOC)—essentially a template for the TOC—at any location in the design.

· It is recommended that the items from the design that are to be included in and linked to from the TOC
are bookmarked in the design first. These items can be static content or dynamic content. In the

bottom half of the screenshot below, yellow TOC bookmark tags within
the header tag indicates that the header item has been bookmarked (for inclusion in the TOC
template).

· A template is created for the TOC (highlighted in screenshot below). The TOC template contains
the design of the TOC; it can be located anywhere in the design. In the example shown in the
screenshot below, the TOC template is located near the top of the document.

299

272

93

275

282

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 273Advanced Features

Altova StyleVision 2025 Basic Edition

Note: Either of these two parts can be created first, or both parts can be created concomitantly. We
recommend, however, that the TOC bookmarks are created before the TOC template.

The TOC is displayed in the HTML output. Also note that: (i) TOCs can be created with a flat or a hierarchical
structure (with corresponding numbering), and (ii) multiple TOCs can be created within a design. As a result, a
stylesheet designer can create a document with, say, one (hierarchical) TOC at the book level and others (also
hierarchical) at the chapter level, plus (flat) lists of figures and tables.

Procedure for creating TOCs
Given below is one step-by-step way of creating a TOC. Items are first bookmarked for inclusion. The TOC
template is constructed after that. (Alternatively, you can create the TOC template first, and then bookmark
items for inclusion. Or you can create the TOC template and select items for inclusion in parallel.)

1. Make sure that XSLT 2.0 is the selected XSLT version.93

274 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. Structure the document in TOC levels . If the TOC is to have multiple levels, structure the document
design in a hierarchy of nested TOC levels. If the TOC is to have a flat structure (that is, one level only),
then create at least one TOC level (in the document design) that will enclose the TOC bookmarks.

3. Create one or more TOC bookmarks within each level in the document design. The TOC
bookmarks identify the components within each TOC level that are to appear in the TOC.

4. Create a TOC template containing TOC level references (levelrefs) . The TOC template should have
the required number of TOC level references (levelrefs). In the case of a multi-level TOC, the levelrefs in
the TOC template should be nested (see screenshot above).

5. Create TOC references (TOCrefs) in the TOC template . In the TOC template, set up a TOCref for
each levelref. Each TOCref will reference, by name, the TOC bookmarks within the corresponding TOC
level in the document. Alternatively, the TOCref can reference TOC bookmarks in other levels.

6. Format the TOC items . Each text item in the TOC output is generated by a TOCref in the TOC
template. TOCref definitions can specify item numbering (including hierarchical), the TOC item text, a
leader, and, for paged media, a page number. Each TOCref and its individual parts can be formatted
separately as required. (Note that automatic numbering can also be defined within a TOC bookmark in
the main body of the document. See the section, Auto-Numbering , for details.)

Updating TOC page numbers in DOCX and RTF documents
When a user edits a DOCX or RTF output document in MS Word in such a way that the page count
changes, it may happen that the TOC is not updated with the new page references. This is an MS Word
issue. To update the page references in the TOC, press Ctrl+A to select everything, and then press F9.
For more information, see here.

Terminology
The names of the main TOC-related components used in the interface are given in the table below. Components
have been put in two different columns according to where they occur: in the document body, or in the TOC
template (which is the template that specifies the design of the actual Table of Contents and typically occurs
at the beginning of the document).

· The TOC components in the document body mark out items that will be used in the TOC template.
· The TOC components in the TOC template reference the marked items in the document body.

Components in the TOC template have the word 'reference' in their names.

Document body TOC template

TOC level: The TOC levels structure the
document in a nested hierarchy.

Level references (levelrefs): Correspond to the
TOC-level structure defined in the document
body. Enables TOCrefs in a given level to target
TOC bookmarks at the corresponding level.

TOC bookmark: Has a name, with which it
identifies a node in the document as a TOC item.

TOC references (TOCrefs): References a TOC
bookmark by its name.

276

279

282

285

285

294

https://support.office.com/en-us/article/Update-fields-7339a049-cb0d-4d5a-8679-97c20c643d4e#_updateallfields

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 275Advanced Features

Altova StyleVision 2025 Basic Edition

7.6.1 Bookmarking Items for TOC Inclusion

Bookmarking an item in the design for inclusion in a TOC consists of two steps, which can be done in any
order:

1. Structuring the design document in a hierarchy of nested TOC levels . A TOC level can be created in
the design either on a template or around a design component. In the screenshot below, a TOC level

has been created on the topic template .

When a level is created on a template, this is indicated by the level icon inside the start tag of the

template, for example, . When a level is created around a component it is indicated by TOC

level tags . In the screenshot above, the topics template component is
enclosed by a level. The difference between the two ways of marking levels is explained in the section
Structuring the Design in Levels . When the TOC template is created , it must be structured in a
hierarchy of levels, with the levels in the TOC template corresponding to the levels you have created in
the design. Even for TOCs with a flat structure (one level), the design must have a corresponding level.

2. Creating a TOC bookmark in the design with a name and TOC-item text. The TOC bookmark can
either enclose or not enclose a design component; in the latter case it is empty. In the screenshot
below, the TOC bookmark does not enclose a design component.

The TOC bookmark serves as an anchor in the document. In the screenshot above, the TOC bookmark
(and anchor) is located at the start of para element instances. The TOC bookmark has two attributes:
(i) a name that will be used to reference the TOC bookmark when creating the TOC item in the TOC
template, and (ii) a text string that will be used as the text of the corresponding TOC item. How these
two attributes are assigned is described in the section, Creating TOC Bookmarks .

How bookmarked items are referenced in the TOC template
The TOC template is structured in nested levels (called level references (levelrefs) to differentiate them from

the levels created in the main body of the design template). Within each levelref , a TOC reference

(TOCref) is inserted (see screenshot below). The TOCref within a levelref references TOC
bookmarks using the TOC bookmark's name. Each TOC bookmark with that name and in the corresponding

276

276 282

279

279

282

276 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

level in the XML document will be created as a TOC item at this level in the TOC. For example, the TOCref

indicated with the tag references all TOC bookmarks named chapters in the corresponding
level in the XML document (when the scope of the TOCref has been set to current). The text attribute of the
respective instantiated TOC bookmarks will be output as the text of the TOC item.

In the screenshot above of a TOC template, there are three nested levelrefs, within each of which is a TOCref
that contains the template for the TOC item of that level. For example, in the first levelref, there is a TOCref that

references TOC bookmarks that have a name of MyTOC . As a result, all TOC bookmarks in the
first level (as structured in the design) and named MyTOC will be accessed for output at this level in the TOC.
The TOCref within the second levelref also references TOC bookmarks having a name of MyTOC. As a result, all
TOC bookmarks in the second level of the document and that are named MyTOC will be used for second-level
items in the TOC. The third levelref works in the same way: TOC bookmarks named MyTOC that occur within the
document's third level are referenced for third-level items in the TOC.

In the sub-sections of this section, we describe: (i) how the design is structured into levels , and (ii) how
bookmarks are created . How the TOC template is created is described in the section, Creating the TOC
Template .

7.6.1.1 Structuring the Design in TOC Levels

The hierarchical structure you wish to design for the TOC is specified as a set of nested levels. As such it is a
hierarchical structure which, although related to the XML document structure, is separate from it. This structure
is specified in the SPS document design. The TOC template that you construct will use a structure
corresponding to this hierarchical structure. In the case of a TOC with a flat structure (one level only), the
design document must have at least one level. If more than one level exists in the document, a flat TOC can
then be created for any of these levels or for multiple levels (aggregated together as one level).

In the design, levels can be created in the main template, in global templates, or in a combination of main
template and global templates. The important thing to note is that, wherever created, these levels must
together, in combination, define a clear hierarchical structure.

Creating levels
Each level in the design is created separately. A level can be created on a template or around a component. In

the screenshot below, one level has been created on the topic template (indicated by) and

276

279 282

282

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 277Advanced Features

Altova StyleVision 2025 Basic Edition

another around the topics element (indicated by). The essential difference

between these two ways of creating levels is that the enclose-within-a-level option
enables levels to be created around components other than templates.

To create a level, do the following:

1. Select the component (template or other).
2. Right-click, and from the context menu select Template Serves As Level (enabled when a template

is selected) or Enclose With | TOC Level. Both these options are also available in the Insert | Insert
Table of Contents menu: TOC Level or Template Serves as Level.

Levels in global templates
Levels can also be set in global templates. In these cases, care must be taken to ensure that the levels
created in various global templates, as well as those in the main template, together define a hierarchical
structure when the SPS is executed. The screenshot below shows two levels, one in the main template (on the
topic template) and one in the global template for topic (on the topic template).

278 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

In the content model represented by the screenshot above, topic is a recursive element, that is, a topic
element can itself contain a descendant topic element. In the main template (the end of which is indicated by

the tag), a level has been set on the first level of topic . The rest-of-contents instruction
in the main template specifies that templates will be applied for all child elements of topic/body except
header. This means that the global template for topic children of topic/body will be processed.

In the global template for topic, a level has been set on the topic template (indicated by). This
second level of the TOC hierarchy, which occurs on the second level of topic elements, is nested within the
first level of the TOC hierarchy. Since this global template also has a rest-of-contents instruction, the global
template for topic will be applied to all recursive topic elements, thus creating additional nested levels in the
TOC hierarchy: third level, fourth level, and so on.

As a designer, you should be aware of the number of levels created in the design, because when the TOC
template is constructed, you will need to explicitly specify how TOC items for each level will be selected and
formatted.

Levels in flat TOCs
In a flat TOC hierarchy, TOC items will be output at a single level: for example, a simple list of the images in a
document.

A flat hierarchy can be obtained in a number of ways.

· The design document can be structured with just a single TOC level. The TOC template will then have a
single levelref with a single TOC reference (TOCref) within it.

· If the design document has more than one TOC level, then the TOC template could have a number of
levelrefs equal to the sequential position of the TOC level being referenced. The levelref corresponding
to the targeted TOC level will contain the single TOCref in the TOC template.

· If the design document has more than one TOC level, then the single TOCref in the TOC template must
have a scope that covers all the targeted document levels, which, in effect, will be flattened into a
single level.

Let us say that we wish to gather all the images in a document in a single flat-hierarchy TOC. The document
design must therefore contain at least one level, and this level must contain all the required TOC bookmarks. In
the TOC template, the images to be listed are referenced in the usual way: (i) by creating a corresponding
number of levelrefs; and (ii) creating a TOCref within the levelref corresponding to the targeted TOC level. The
TOCref will have the name of TOC bookmarks in the targeted TOC level.

In the TOC template shown below, there is one levelref containing a TOCref that references TOC bookmarks
named images. The scope of the TOCref has been set to Current level and below. As a result, all TOC
bookmarks named images in the first level and below (that is, in the whole document) will be referenced.

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 279Advanced Features

Altova StyleVision 2025 Basic Edition

If the design contains more than one level, and a flat TOC is required, say, for items in the second level, then
the TOC template could have two levelrefs with a TOCref only within the second level (no TOCref within the first
level). Alternatively, the scope property of TOCrefs can be used to specify what level/s in the design document
should be looked up for bookmarks of a given name.

7.6.1.2 Creating TOC Bookmarks

TOC bookmarks are created within a TOC level in the document design. They can be created in the main
template and/or in global templates. A TOC bookmark serves two purposes:

· It marks a (static or dynamic) component in the design with a static name you assign. It can either
enclose or not enclose a design component; in the latter case it is empty. In the output, the TOC
bookmark is instantiated as an anchor identified by a name. This named anchor can be referenced by
items in the TOC (template).

· A TOC bookmark also defines the text string that will be used as the text of a TOC item. This text
string can be the content of child elements of the node where the marker is located, or it can be the
output of an XPath expression.

You can create a TOC bookmark in two ways:

· By using the Create TOC Bookmark Wizard , which enables you to specify the TOC bookmark's
name, its text entry, whether auto-numbering should be used, and the level within which it appears.

· By inserting an empty TOC bookmark , the properties of which will be defined subsequently.

Creating the TOC bookmark with the Create TOC Bookmark Wizard
To create a TOC bookmark using the TOC Bookmark Wizard, do the following:

1. Place the cursor at the point in the design where you wish to insert the TOC bookmark. Alternatively,
select the design component around which you wish to insert the TOC bookmark.

2. From the context menu (obtained by right-clicking) or from the Insert menu, select Insert Table of
Contents | TOC Bookmark (Wizard). If you are enclosing an a node with a TOC Bookmark, use the
command Enclose with | TOC Bookmark (Wizard). This pops up the Create Marker Wizard
(screenshot below).

276

279

281

280 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. In the wizard's first screen (screenshot above) you: (i) define the text for the TOC item; (ii) set the TOC
bookmark name; and (iii) specify whether this TOC bookmark should be numbered in the output. For
the text entry you can select whether the text of child elements should be used, or an XPath
expression. For the name of the TOC bookmark, you can enter text directly or select from a dropdown
list containing the names of already specified TOC bookmark names. When you are done, click Next.

4. In the wizard's second screen (screenshot below), you can create a TOC level on a template if you
wish to do so. Ancestor templates of the insertion point location are shown in a tree. If a template has
already been created as a TOC level, this is indicated with a symbol. In the screenshot below, the
symbol next to the topic template indicates that it has already been created as a level. If you wish to
create an additional level on any of the ancestor templates, select that template. Alternatively, you can
choose to define the level later by checking the Define Level Later check box. When you have
completed making your selection, click Finish. (Note that, if a TOC level already exists on a template,
selecting such a template and clicking Finish will not create a new TOC level on that template.)

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 281Advanced Features

Altova StyleVision 2025 Basic Edition

On clicking Finish, a TOC bookmark will be created at the insertion point and, if it was specified in the
second screen of the wizard, a TOC level will be created on one template. The TOC bookmark that has
been created will be in the TOC level that immediately contains it. For example, if that TOC level is the
third TOC level in the TOC level hierarchy, then the inserted TOC bookmark will be in the third TOC
level.

Creating a TOC bookmark
To create a TOC bookmark without attributes (TOC bookmark name, TOC item text, etc), do the following:

1. Place the cursor at the point in the design document where you wish to insert the TOC bookmark, or
select the design component around which you wish to insert the TOC bookmark.

2. From the context menu (obtained by right-clicking) or from the Insert menu, select Insert Table of
Contents | TOC Bookmark. A TOC bookmark is inserted. This TOC bookmark has neither a name nor
a text entry. These can be defined subsequently using the Edit commands (see below).

Inserting hierarchical or sequential numbering for a component
Hierarchical or sequential numbering within the main body of the output document (not within the TOC) can be
inserted within (but also outside) a TOC bookmark's tags. Right-click at the location where you wish to insert
the numbering, then select Insert Table Of Contents | Hierarchical Numbering / Sequential Numbering.
For example, an auto-numbering TOC bookmark that is placed around the chapter heading template will
generate numbering for all the chapter headings generated by the chapter heading template.

Note that numbering is based on the structure of TOC levels. So, for example, if a chapter heading element is
in the first TOC level, then the fourth chapter heading will be numbered 4 because it is the fourth instance of a
chapter heading within the first TOC level. If the sections of a chapter occur within the second TOC level, then
the third section of the fourth chapter will be numbered 4.3. This is because, within the first (chapter) TOC
level, it is the fourth instance of a chapter, and within the second (section) TOC level (of the fourth chapter), it is
the third instance of a section.

282

282 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Editing the name and text entry of a TOC bookmark
The name and text entry of the TOC bookmark can be edited in the Properties window (screenshot below). To
edit these properties, select the TOC bookmark, and either directly edit the property in the Property window
or right-click the TOC bookmark and select the property you wish to edit.

The TOC bookmark has the following properties: (i) the name of the TOC bookmark group (Group); (ii) a unique
ID; (iii) an option to remove the bookmark if it is not referenced; and (iv) an option (Text From) to specify the
text entry, which could come from the bookmark's content or from an XPath expression.

7.6.2 Creating the TOC Template

The TOC template is the template that produces the table of contents in the output. It can be created anywhere
within the SPS design, and multiple TOC templates can be created in a single SPS design.

The steps to create a TOC template are as follows:

1. Place the cursor at the location where the TOC template is to be inserted.
2. Click the menu command Insert | Insert Table of Contents | Table of Contents. This pops up the

Create TOC Page dialog (screenshot below). (Alternatively, this command can be accessed via the
context menu, which appears when you right-click.)

45

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 283Advanced Features

Altova StyleVision 2025 Basic Edition

3. Enter the information requested in the dialog: (i) The name of the generated TOC page is the (TOCref)
name that will be used to reference the TOC bookmarks in the design document. If you select
multiple levels for the TOC (level references, to be more accurate; next option), the same TOCref name
will be used in all level references (though individual TOCref names can be edited subsequently). (ii)
 The number of TOC level references (levelrefs) specifies how many level references the TOC is to
have. (iii) For printed media, the option to output page references (i.e. page numbers) is available. (iv)
The text entries in the TOC can be used as links to the TOC bookmarks.

4. Click OK to finish. The TOC template is created with the specified number of levelrefs (screenshot
below; the formatting of the TOC template has been modified from that which is created initially).

Within each levelref is a TOCref having a name that identifies TOC bookmarks that are to be the TOC
items for that levelref. Within each TOCref is a default template for the TOC item, which you can edit at
any time .

Editing the TOC template
The following editing options are available:

· The TOC template can be dragged to another location in the SPS. Note, however, that a change of
context node could affect XPath expressions within the TOC template.

· Levelrefs can be added to or deleted from the structure of the TOC template.
· The properties of individual TOC references (TOCrefs) can be edited. The name and scope of a

TOCref can be changed, and you can choose whether the TOC item corresponding to the TOCref is
created as a hyperlink or not.

279

285

276

285

284

285

284 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· TOCrefs can be added to or deleted from any levelref in the TOC template.
· The TOC item within a TOCref can be formatted with CSS properties using the standard StyleVision

mechanisms .
· Standard SPS features (such as images, Auto-Calculations, and block-formatting components) can be

inserted anywhere in the TOC template.

7.6.2.1 Levelrefs in the TOC Template

The TOC template is structured in level references (or levelrefs); see screenshot below. These levels are
initially created when the TOC template is created, and the number of levelrefs are the number you specify in
the Create TOC Page dialog .

Notice that the levelrefs are nested. For the purposes of the TOC design there is a one-to-one correspondence
between the levelrefs in the TOC template and the levels in the SPS design. Thus, the first levelref of the TOC
template corresponds to the first level in the SPS design, the second levelref in the TOC template to the
second level in the SPS design, and so on. The TOCrefs within a given levelref of the TOC template identify
TOC bookmarks within a specified scope in the SPS design. For example, a TOCref can specify that the
TOCref target TOC bookmarks in the corresponding document level, or target TOC bookmarks in all document
levels, or those in the current document level and lower document levels.

Inserting and removing levelrefs
Levelrefs can be inserted in or deleted from the TOC template after the TOC template has been created.

To insert a levelref around content, select the content in the TOC template around which the levelref is to be
created, then, from the context menu or via the menu bar, select the command Enclose With | TOC Level
Reference. You can also insert an empty levelref at the cursor insertion point with the menu command Insert |
Insert Table of Contents | TOC Level Reference (also available in the context menu).

To remove a levelref from the TOC template, select the levelref to be removed and either press the Delete key
or select Remove from the context menu. Note that only the levelref will be removed—not its contents.

285

285

320

282

282

279 285

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 285Advanced Features

Altova StyleVision 2025 Basic Edition

7.6.2.2 TOC References: Name, Scope, Hyperlink

TOC references (TOCrefs) occur within level references (levelrefs) and have four properties (see screenshot
below):

· A hyperlink property which can be toggled between yes and no to specify whether the corresponding
TOC items are created as hyperlinks or not.

· A group property, which is the name of the TOCref and identifies TOC bookmarks of the same name
that occur within the specified scope (see below). The TOC bookmarks so identified provide the items
to be included at that levelref of the TOC.

· An id to uniquely identify the TOCref.
· A scope, which specifies to which corresponding levels in the SPS design the TOCref applies. Three

options are available: (i) global, (ii) current level, (iii) current level and descendant levels (see
screenshot below).

To insert a TOCref, place the cursor within a levelref and, from the Insert menu or context menu, select Insert
Table of Contents | TOC Reference.

To edit a TOCref property, right-click the TOCref tag in the TOC template and select the property you wish to
edit (Create Hyperlink, Edit ID, Edit Group, or Edit Scope). This pops up the Properties window with the
specified property selected for editing (screenshot below).

Alternatively, with the TOCref tag selected, go directly to the required property in the Properties window (TOC
reference group of properties).

7.6.2.3 Formatting TOC Items

The TOC item can contain up to four standard components, plus optional user-specified content. The four
standard components are (see also screenshot below):

· the text entry of the TOC item, indicated in the TOC template by (text ref)

286 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· the leader between the text entry and the page number (for paged media output), indicated by (.....)

· the page reference of the TOC item (for paged media output), indicated by (page ref)
· hierarchical or sequential numbering, indicated by (num-lvl) and (num-seq), respectively

When the TOC template is initially created, the text entry is automatically inserted within TOCrefs. If the
Include Page Reference option was selected, then the leader and page reference components are also
included. Subsequently, components can be inserted and deleted from the TOC item. To insert a component,
place the cursor at the desired insertion point within the TOC item, and in the context menu, select Insert
Table Of Contents | TOC Reference | Entry Text / Leader / Page Reference or Insert Table Of Contents
| Hierarchical Numbering / Sequential Numbering as required. (Hierarchical numbering should be inserted
when the design is structured into nested levels, sequential numbering when there is no hierarchy, that is, just
one flat TOC level. See the note below on flat TOCs) To delete a component, select it and press the Delete
key.

Additionally, you can insert static content (e.g. text) and dynamic content (e.g. Auto-Calculations) within the
TOC item.

Levels in flat TOCs
In a flat TOC hierarchy, TOC items will be output at a single level: for example, a simple list of the images in a
document.

A flat hierarchy can be obtained in a number of ways.

· The design document can be structured with just a single TOC level. The TOC template will then have a
single levelref with a single TOC reference (TOCref) within it.

· If the design document has more than one TOC level, then the TOC template could have a number of
levelrefs equal to the sequential position of the TOC level being referenced. The levelref corresponding
to the targeted TOC level will contain the single TOCref in the TOC template.

· If the design document has more than one TOC level, then the single TOCref in the TOC template must
have a scope that covers all the targeted document levels, which, in effect, will be flattened into a
single level.

Let us say that we wish to gather all the images in a document in a single flat-hierarchy TOC. The document
design must therefore contain at least one level, and this level must contain all the required TOC bookmarks. In
the TOC template, the images to be listed are referenced in the usual way: (i) by creating a corresponding
number of levelrefs; and (ii) creating a TOCref within the levelref corresponding to the targeted TOC level. The
TOCref will have the name of TOC bookmarks in the targeted TOC level.

In the TOC template shown below, there is one levelref containing a TOCref that references TOC bookmarks
named images. The scope of the TOCref has been set to Current level and below. As a result, all TOC
bookmarks named images in the first level and below (that is, in the whole document) will be referenced.

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 287Advanced Features

Altova StyleVision 2025 Basic Edition

If the design contains more than one level, and a flat TOC is required, say, for items in the second level, then
the TOC template could have two levelrefs with a TOCref only within the second level (no TOCref within the first
level). Alternatively, the scope property of TOCrefs can be used to specify what level/s in the design document
should be looked up for bookmarks of a given name.

Formatting the TOC item
The TOC item can be formatted with CSS styles via the Styles sidebar . Individual TOC item components
can be separately formatted by selecting the component and assigning it style properties in the Styles
sidebar.

7.6.3 Example: Simple TOC

An example SPS file to demonstrate the basic use of TOCs, called ChaptersSimple.sps, is in the (My)
Documents folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\TOC. This SPS is based on a
schema that defines the content model of a large chapter-based document. The schema structure is shown in
the screenshot below and can be viewed in the Schema Tree window of StyleVision when you open
ChaptersSimple.sps. (A more complex TOC example based on the same schema is described in the next
section of this documentation, Example: Hierarchical and Sequential TOCs .)

320 326

326

23

291

288 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The document element is helpproject, which contains a child topics element. The topics element can
contain an unlimited number of topic elements, each of which can in turn contain descendant topic elements.
The first level of topic elements can be considered to be the chapters of the document, while descendant
topic elements are sections, sub-sections, and so on.

This SPS creates a TOC, located at the top of the document, which lists the names of each chapter (the first-
level topics). Creating the TOC involves three steps:

1. Structuring the design in TOC levels : One or more levels are inserted in the design document to
structure the (output) document hierarchically. This hierarchic structure will be the one that the TOC
reflects. In our current example, to keep things simple, only one TOC level has been created—on the
Topic template. Because there is only one level in the design, the TOC template—when it is created
subsequently—can have only one level in its structure (i.e. one level reference).

2. Creating TOC bookmarks : A TOC bookmark is created within the TOC level that was created in
Step 1 (in the design document). This enables TOC references in the TOC template (which will be
created in the next step) to point back to this TOC bookmark. The TOC bookmark also specifies the
text that will appear in the TOC item that points to it.

3. Creating the TOC template : This is the template that creates the TOC in the document. It is
structured into level references (levelrefs), which must correspond to the structure of TOC levels in
the design document. For example if there are three nested levelrefs in the TOC template, then the
design document must have at least three nested levels. In this example we have a single levelref to

276

279

282

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 289Advanced Features

Altova StyleVision 2025 Basic Edition

correspond to the single TOC level in the design document. It is within the levelref that the TOC
reference (TOCref) is placed. It is this TOCref that generates the TOC items for this level in the TOC.

SPS structure and levels
Look at the structure of the design in the SPS. Notice that the main template (with the green $XML tags)
contains the TOC. The rest of the main template specifies, through the rest-of-contents instruction, that
global and default templates are to be applied. The rest of the SPS design—outside the main template and
after it—consists of global templates.

The TOC definitions (TOC levels and TOC bookmarks in the design) are in the global template for topic
(screenshot below). In this global template a condition has been inserted to separate topic elements
according to how many ancestor topic elements each has, thus providing separate processing (within different
conditional branches) for chapters, sections, and sub-sections.

The screenshot above shows the contents of the first conditional branch, for first-level, chapter-type topic
elements. Note that a TOC level has been created on the template start-tag of this topic element. In the other
two conditional branches no TOC level has been created on the topic template. As a result, the document has
been assigned only one TOC level, and this is at the level of the first-level (chapter-type) topic element.

Creating the TOC bookmark
A TOC bookmark (yellow tags in screenshot below) has been created within the header descendant element of
topic (but outside the para element). This TOC bookmark serves as an anchor for every top-level, chapter-type
topic element..

The properties of the TOC bookmark can be edited in the Properties sidebar (screenshot below).

290 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The Group property sets the TOC bookmark group (and is the name of the TOC bookmark). In our example, we
have specified the value MyTOC for this property. The bookmark group will be referenced in the TOC when it is
created, and it enables different TOC groups to be specified within the same level. The ID property enables
unique IDs to be specified for the bookmark instances created. The Remove if not referenced property is an
option to remove the bookmark if it is not referenced. The Text From property specifies the text entry that will
be used as the text of the TOC item in the TOC. The text could come from the bookmark's content (the content
between the start and end tags of the bookmark in the design) or from an XPath expression. In our example, an
XPath expression is used which returns the header text, respectively, of each first-level topic element.

TOC template

Inside the TOC template (screenshot below), a single Level Reference (levelref) has been inserted. This
levelref corresponds to the TOC Level assigned on the first-level, chapter-type topic element in the design (see
'SPS Structure and Levels' above).

Within this levelref, a TOC reference (TOCref) has been inserted. This TOCref has been set to
select bookmarks (i) that are in the bookmark group named MyTOC (see 'Creating the TOC bookmark' above),
and (ii) that are within the scope of the current level only. These settings can be made in the Properties sidebar
when the TOCref is selected, or by right-clicking the TOCref in the design and selecting the relevant editing
command from the context menu..

The appearance of the TOC item is specified within the TOCref tags of the TOC. The numbering format, the
text, the leader, and the page reference can be inserted by right-clicking within the TOCref tags and selecting
the component to insert from the context menu. Each of these components can be edited by selecting it in the
design and modifying its properties in the Properties sidebar.

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 291Advanced Features

Altova StyleVision 2025 Basic Edition

7.6.4 Example: Hierarchical and Sequential TOCs

An example SPS file to demonstrate the use of TOCs, called Chapters.sps, is in the (My) Documents
folder , C:\Documents and Settings\<username>\My
Documents\Altova\StyleVision2025\StyleVisionExamples\Tutorial\TOC. This SPS is based on a
schema that defines the content model of a large chapter-based document. The schema structure is shown in
the screenshot below and can be viewed in the Schema Tree window of StyleVision when you open
Chapters.sps.

The document element is helpproject, which contains a child topics element. The topics element can
contain an unlimited number of topic elements, each of which can in turn contain descendant topic elements.
The first level of topic elements can be considered to be the chapters of the document, while descendant
topic elements are sections, sub-sections, and so on.

The SPS contains three TOCs, located at the top of the document, in the following order:

1. Chapters at a glance , which lists the names of each chapter (the first-level topics).
2. Chapters and their sections , which lists each chapter with its descendants sections (first-level

topics, plus each topic's hierarchy of sub-topics down to the lowest-level topic, which in the
accompanying XML document, chapters.xml, is the third-level topic)

23

292

293

292 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. List of images , which is a flat list of all images in the document (except the first), listed by file
name.

SPS structure
Before considering the TOCs in detail, take a look at the structure of the design. Notice that the main template
(with the green $XML tags) contains the TOCs. The rest of the main template specifies, through the rest-of-
contents instruction, that global and default templates are to be applied.

The TOC definitions are in the global templates for topic and image. In the global template for topic
(screenshot below), a TOC level has been created on the topic element, and a TOC bookmark has been
created within the header child element (but outside the para element).

Since the topic element is recursive, the TOC level and the TOC bookmark will also recurse. This means that,
at the first recursion, a new hierarchically subordinate TOC level and and a new TOC bookmark is created. This
process continues for each descendant topic, thus creating a hierarchy of descendant TOC levels, each with a
corresponding TOC bookmark. Since the formatting of the header (the topic title) for each TOC level is to be
different, we have enclosed each level within a separate branch of a condition with three branches. Each branch
tests for the TOC level at which a topic occurs: first, second, or third level.

Notice that hierarchical numbering (num-lvl) has been inserted within the level. This is done by right-clicking
at the required location and selecting Insert Table of Contents | Hierarchical Numbering. The effect is to
insert the correct hierarchical number before each topic title in the document's text flow, for example, 3.1 or
4.2.3.

TOC descriptions
Given below is a brief description of each TOC and the points to note about them.

Chapters at a glance: Select the TOC bookmark in the global template for topic. In the Properties sidebar
(screenshot below), notice that the entry text has been set to be constructed using an XPath expression.
When you click the Edit button in the value field of the Text from property, you will see that the XPath
expression has been defined as para. This means that the contents of the para child of header (since the TOC
bookmark has been inserted within the header element) will be used as the text of the TOC item.

293

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 293Advanced Features

Altova StyleVision 2025 Basic Edition

The TOC template itself (screenshot below) contains one level reference (levelref) , and the TOCref within

that levelref has been set to select TOC bookmarks named MyTOC within the scope of the current
level only—which is the first level. As a result, TOC items will be created only for first-level topics.

Notice also that the numbering has been defined as hierarchical numbering.

Chapters and their sections: In this TOC (screenshot below), notice that three nested levelrefs have been
defined, each containing a TOCref for which the scope is the current level.

Since each TOC item is contained in a div block, formatting properties (including indentation) can be set for
the block.

List of images: The list of images is a flat list. First of all, consider within which levels images will occur in the
instantiated document. The image element is a child of the para element. Since levels have been created on

294 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

topic elements, image elements will occur within the first, second, and/or third levels of the document. There
is therefore no need to create any level for the image element.

In the global template for image, the condition (see screenshot below) enables separate processing for (i) the
first image (which is presented in this example), and (ii) the other images (which, for purposes of economy, are
not presented in this example).

Notice that the TOC bookmark is placed only within the second branch of the condition; this means that the
images selected in the first branch are not bookmarked. Also, the sequential numbering (num-seq) of the
images, inserted with Insert Table of Contents | Sequential Numbering, will start with the second image
(because the first image is selected in the first branch of the condition). Another feature to note is that the
numbering can be formatted, as has been done in this case. To see the formatting, right-click (num-seq), and
select Edit Format. In the dialog box that pops up, you will see that the formatting has been set to 01,
indicating that a 0 will be inserted in front of single-digit numbers.

In the TOC template for images (screenshot below), notice that there is a single TOCref identifying bookmarks
named images, and that this TOCref is within a single levelref. The scope of the TOCref (editable in the
Properties window when the TOCref is selected) has been set to: current level and below. The current
level, determined by the levelref, is the first level. The levels below will be the second, third, and so on. In this
way, all images from the first level downward are selected as items in the TOC.

Since the selected numbering is sequential, the images are numbered sequentially in a flat list.

7.6.5 Auto-Numbering in the Document Body

Repeating instances of a node can be numbered automatically in the main body of the document using the
Auto-Numbering feature. For example, in a Book element that contains multiple Chapter elements, each
Chapter element can be numbered automatically using the Auto-Numbering feature. This is an easy way to
insert numbering based on the structure of the XML document.

Note: The Auto-Numbering feature refers to numbering within the main body of the document. It does not refer
to numbering within tables of contents (TOCs), where numbering is considered to be a property of the TOC
item.

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 295Advanced Features

Altova StyleVision 2025 Basic Edition

Auto-Numbering can be either sequential (flat) or hierarchical. Sequential numbering provides ordinary
numbering on a single level. Hierarchical numbering is based on the TOC-level hierarchy created in the
document and creates numbering according to the element's position in the TOC-level hierarchy.

A wide variety of formatting is available for the numbers. In the case of hierarchical numbers, individual number
tokens can be formatted separately. For example, a three-token number could be given the format: A.1.i.,
where each of the three tokens has a different number format. Number formatting is assigned differently for
sequential and hierarchical numbering, and therefore have separate descriptions, each in their respective
sections below.

Sequential numbering (num-seq)
Sequential (or flat) numbering can be inserted within a TOC Bookmark in the document design (see
screenshot below). Create sequential numbering as follows:

1. Place the cursor within the node that has to be numbered and create the TOC bookmark (right-click,
and select Insert Table of Contents | TOC Bookmark). The TOC bookmark will be created. In the
screenshot below, we wish to number the topic element, so the TOC bookmark has been created
within the topic element. The exact location within the topic element depends on where in the layout
you want the numbering. (In the screenshot below, the numbering is placed immediately to the left of
the chapter header (title).)

2. Place the cursor within the tags of the TOC bookmark, right-click, and select Insert Table of
Contents | Sequential Numbering. This inserts the Auto-Numbering placeholder for sequential
numbering, (num-seq) (highlighted within the TOC bookmark 'TopicHeader' in the screenshot below).

3. If the TOC bookmark is going to be referenced from within a TOC template, then you can enter TOC
bookmark properties as required. However, if the TOC bookmark is going to be used only for sequential
numbering, there is no need to name it. If you wish to name it, right-click it and select the Edit Group
command.

In the example shown in the screenshot above, sequential numbering has been set on the topic node. The
result is that each topic element receives a sequential number, as shown in the screenshot below. Note that
the numbering is essentially the position of each topic element within the sequence of all sibling topic
elements at that level of the XML document hierarchy.

279

296 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Note: If sequential numbering must be continued on another set of nodes, then use a TOC bookmark with the
same name on both nodesets.

To format the sequential numbering, right-click the num-seq placeholder and select the Edit Format command.
This pops up the Format Sequential Auto-Number dialog (screenshot below).

Select the format you want from the dropdown box of the Available numbering styles combo box (see
screenshot above) and click OK to apply the selected format.

Hierarchical numbering (num-lvl)
Hierarchical numbering can be inserted within a TOC level in the design . To create hierarchical numbering in
a document, you must therefore first structure the document in TOC levels. Do this as described in the section
Structuring the Design in Levels . The following points should be borne in mind:

· Levels must be created either on the node to be numbered or within it.
· Levels must be nested according to the hierarchy of the numbering required (see screenshot below).
· The hierarchical numbering placeholder must be inserted within the corresponding level in the design

(see screenshot below).

In the screenshot above, there are two levels. The topic element is recursive, and a level has been created on
two topic elements (by right-clicking the node tag and selecting Template Serves as Level). One topic
element (highlighted in the screenshot above) is nested within the other. As a result, the levels also are nested.
Within each level, a hierarchical numbering placeholder (num-lvl) has been inserted (right-click within the
level and select Insert Table of Contents | Hierarchical Numbering).

276

276

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 297Advanced Features

Altova StyleVision 2025 Basic Edition

The result of the design shown in the screenshot above will look like this.

The first level is shown in bold, the second in normal.

To format hierarchical numbering, right-click the num-lvl placeholder and select the Edit Format command.
This pops up the Format Hierarchical Auto-Number dialog (screenshot below).

First select the number of tokens in the Token combo box. This number should be the same as the number of
TOC levels in the document. Each token can then be separately formatted. In the lower of the two display
boxes, select the token to be formatted. (In the screenshot above, the second token has been selected.) Next,
in the Formatting combo box, select the formatting style you want. In the screenshot above, lowercase
formatting has been selected for the second token, and this is reflected in the display box at the top of the
dialog. Additionally, levels can be omitted by entering the required number of levels to be omitted in the Omit
Levels box.

Note that formatting is defined on hierarchical numbering one level at a time. So the hierarchical numbering
placeholder num-lvl at each level must be separately formatted.

Click OK when done.

298 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

7.6.6 Cross-referencing

A cross-reference is a reference to another part of the document. In an SPS a cross-reference is created in two
parts: First, by setting the target of the cross-reference. Second, by defining the link to the target. Setting a
target consists of creating a TOC bookmark within a TOC level. The link to the target is a Text Reference within
a TOC reference (TOCref). The Text Reference generates the output text and serves as the link. Building a
cross-reference therefore consists of the following three steps:

Step 1: Levels
The document is structured into TOC levels as described in the section Structuring the Design in Levels .
TOC levels will be used during referencing to specify the scope of the referencing. Only those TOC bookmarks
having the specified name and falling within the specified scope will be targeted. In the screenshot below, a
level has been created on the n1:Office element.

Step 2: Creating TOC bookmarks
Within a level, a TOC bookmark is created by placing the cursor at the required location, right-clicking, and
selecting Insert Table of Contents | TOC Bookmark. The TOC bookmark is given a name and an XPath
expression that generates the output text. The XPath expression will typically identify a node in the document,
the contents of which is the required text.

In the screenshot below, the TOC bookmark within the n1:Name element has a name of
toc3 and an XPath expression that locates the current node. This means that the output text will be the
contents of the n1:Name node.

When the XML document is processed, an anchor is created for every n1:Name element. This anchor will have
a text reference (the text of the cross-reference) that is the value of the n1:Name element.

Step 3: Creating TOC references
A TOC reference (TOCref) is inserted (context menu, Insert Table of Contents | TOC Reference) to create a
link to the anchors generated by a TOC Bookmark.

In the screenshot above, the TOCref named toc3 (screenshot above) is within the same TOC level as the TOC
bookmark it references (the Office level). You must also specify the scope of the TOCref. The scope specifies
what TOC levels must be searched for TOC bookmarks of the same name as the TOCref. In the example
shown above, the scope is the current level. This means that TOC bookmarks within the current level that have
a name of toc3 are targeted by this reference.

276

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 299Advanced Features

Altova StyleVision 2025 Basic Edition

The screenshot above shows an n1:Office template. When an n1:Office node is processed, an anchor is
created with output text that is the content of the n1:Name node. This is because the TOC bookmark specifies
in an XPath expression (via the Text from property of the TOC bookmark) that the contents of this node will be
the output text. The TOCref in the next line identifies the anchor with the name toc3, and the Text reference
component generates the output text of the link to the anchor (purple text in the screenshot below). The output
will look something like this:

In the example above, the scope was set to the current level. There are two other possibilities for the scope: (i)
a global scope, (ii) scope for the current level and below. With these options, it is possible to also target TOC
Bookmarks in other levels of the design.

7.6.7 Bookmarks and Hyperlinks

In the SPS document, bookmarks can be inserted anywhere within the design. These bookmarks are
transformed into anchors in the output, which can be linked to from hyperlinks. Hyperlinks can not only link to
bookmarks, but also to external resources like Web pages. StyleVision offers considerable flexibility in the way
target URIs for hyperlinks can be built.

In this section, we describe:

· How bookmarks can be inserted in the SPS.
· How hyperlinks can be inserted in the SPS and how they link to the target pages.

Note: Links to external documents are supported in the FO spec but might not be supported by the FO
processor you are using. You should check support for this feature if you are planning to use it.

7.6.7.1 Inserting Bookmarks

A bookmark (or anchor) can be inserted anywhere in the SPS, at a cursor insertion point or around an SPS
component.

Bookmarks are created in the SPS via the Insert Bookmark dialog (screenshot below). In this dialog you define
the name of the bookmark. The name can be a static name, or it can be a dynamic name that is (i) derived
from XML document content, or (ii) generated arbitrarily with an XPath expression.

Creating a bookmark
To insert a bookmark, do the following:

1. Place the cursor at the location where you wish to create the bookmark.

299

301

300 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. Select the menu command Insert | Insert Bookmark , or right-click and select Insert | Bookmark.
3. In the Insert Bookmark dialog (screenshot below), select a tab according to whether the name of the

bookmark should be static (Static tab), dynamically obtained from the XML document or arbitrarily
generated from an XPath expression (Dynamic), or composed of both static and dynamic parts (Static
and Dynamic). In the screenshot below a dynamic bookmark is created, which has a name that is a
unique ID for each Name child of the context node.

4. Click OK. The bookmark is defined.

After a bookmark has been created, it can be linked to by a hyperlink .

Note: Bookmarks are created at the location specified in the design. If that location is within an element that
repeats, a bookmark is created within each instance of that repeating element. If a static name is given, then
each bookmark will have the same name. Therefore, it is better in such cases (of repeating elements) to give a
dynamic name, which can be, for example, the name of a child element of the context node (the element within
which the bookmark is created). If the node selected for the dynamic name might have the same content
across multiple instances, then the uniqueness of the bookmark name can be ensured by using the generate-
id() function to generate the name (see screenshot above). To reference such a bookmark, the same ID can
be generated as the href value of a hyperlink . In this case make sure you use the fragment-identifier # in
front of the generate-id() function. The XPath expression would be: concat('#', generate-id(nodeXXX)).

Modifying a bookmark
After a bookmark has been created, its name can be modified via the Edit Bookmarks dialog. This dialog is
accessed as follows:

1. Select the bookmark in the design.
2. In the Properties sidebar, click the Edit button of the Bookmark Name property (screenshot below) in

the Bookmark group of properties. This pops up the Edit Bookmark dialog, which is identical to the
Insert Bookmark dialog described above (see screenshot above).

467

301

304

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 301Advanced Features

Altova StyleVision 2025 Basic Edition

3. In the Edit Bookmark dialog, edit the name of the bookmark in either the Static, Dynamic, or Static
and Dynamic tab.

Deleting a bookmark
To delete a bookmark, select it in the design and press the Delete key.

7.6.7.2 Defining Hyperlinks

Hyperlinks can be created around SPS components such as text or images. The targets of hyperlinks can be:
(i) bookmarks in the SPS design, or (ii) external resources, such as web pages or email messages. In this
section, we first discuss the content of the hyperlink (text, image, etc) and then the target of the hyperlink.

Creating hyperlinks
A hyperlink can be created in the following ways:

· Around text (static or dynamic), nodes, images, conditional templates, Auto-Calculations, and blocks
of content or nodes; it cannot be created around a data-entry device such as an input field or combo
box—though it can be created around a node or conditional template in which that data-entry device is.
This is the content of the link, which, when clicked, jumps to the target of the link. To create a
hyperlink around a component in the SPS, select that component and use the Enclose With |
Hyperlink menu command.

· A new hyperlink can be inserted via the Insert | Hyperlink menu command. The content of the link will
need to be subsequently added within the tags of the newly created hyperlink.

Defining the target of the hyperlink
The target of the hyperlink is created in the Insert Hyperlink dialog (screenshot below), which is accessed via
the Enclose With | Hyperlink or Insert | Hyperlink .479 468

302 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The target of a link can be either:

· A bookmark in the same SPS design (in which case the target URI must be a fragment identifier),
· Dynamically generated to match bookmark anchors (these URIs are also fragment identifiers),
· An external resource ; the URI can be static (directly entered), dynamic (taken from a node in an

XML document), a combination of static and dynamic parts, or the value of an unparsed entity.

How these targets are defined is explained below. After the URI has been defined in the Insert/Edit Hyperlink
dialog, click OK to finish.

Linking to bookmarks
To link to a bookmark, do the following:

1. In the Static tab of the Insert Hyperlink dialog, click the Bookmark button. This pops up the Select
Bookmark in Document dialog (screenshot below). The screenshot below shows two bookmarks: one
static, one dynamic.

302

304

304

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 303Advanced Features

Altova StyleVision 2025 Basic Edition

2. To select a static bookmark as the target URI, double-click the static bookmark and click OK. If you
double-click a dynamic bookmark, you will be prompted to enter an XPath expression to match the
selected dynamic bookmark (see screenshot below).

The dynamic bookmark is actually an XPath expression that generates the name of the bookmark;
it is not itself the name of the bookmark. The Create Hyperlink to Dynamic Bookmark dialog, displays
the XPath expression of the dynamic bookmark and enables you to construct an XPath expression that
will generate a name to match that of the targeted bookmark. Click OK when done.

299

304 Advanced Features Table of Contents, Referencing, Bookmarks

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Linking to dynamically generated ID bookmarks
Bookmarks can have dynamically generated ID anchors . If one wishes to link back to such a bookmark, the
problem then is this: Since the names of dynamically generated anchors are generated at runtime and therefore
unknown at design time, how is one to set the href value of a hyperlink that targets such an anchor? The
answer is to use the generate-id() function once again, this time within the href value of the hyperlink .
The key to understanding why this works lies in a property of the generate-id() function. In a single
transformation, each time the generate-id() function is evaluated for a specific node, it always generates the
same ID. Because of this the IDs generated in the bookmark and the hyperlink will be the same.

Two points should be borne in mind:

· Since the generate-id() function must be evaluated as an XPath expression, use the Dynamic tab of
the Insert Hyperlink dialog (see screenshot below) to set the target of the hyperlink.

· The evaluated value of the href attribute must start with # (the fragment identifier). Consequently the
XPath expression will be: concat('#', generate-id(nodeXXX)). Alternatively, in the Static and
Dynamic tab, enter # in the static part of the address and generate-id(nodeXXX) in the dynamic part.

Linking to external resources
URIs that locate external resources can be built in the following ways:

· By entering the URI directly in the Static tab of the Insert Hyperlink dialog. For example, a link to the
Altova home page (http://www.altova.com) can be entered directly in the Address input field of the
Static tab.

· By selecting a node in the XML document source in the Dynamic tab of the Insert Hyperlink dialog. The
node in the XML source can provide a text string that is either: (i) the URI to be targeted, or (ii) the
name of an unparsed entity which has the required URI as its value. For example, the Altova
website address can be contained as a text string in a node.

· By building a URI that has both static and dynamic parts in the Static and Dynamic tab of the Insert
Hyperlink dialog. This can be useful for adding static prefixes (e.g. a protocol) or suffixes (e.g. a
domain name). For example, email addresses could be created by using a static part of mailto: and a
dynamic part that takes the string content of the //Contact/@email node (the screenshot below
creates a link on the contents placeholder of the //Contact/@email node, which is why the
abbreviated self::node() selector has been used). The Edit XPath button opens the Edit XPath
Expression dialog to help you build the dynamic part of the hyperlink.

How to use unparsed entities is described in the section Unparsed Entity URIs .

299

468

468

339

410

339

© 2019-2025 Altova GmbH

Table of Contents, Referencing, Bookmarks 305Advanced Features

Altova StyleVision 2025 Basic Edition

Editing hyperlink properties
To edit a hyperlink, right-click either the start or end hyperlink (A) tag, and select Edit URL from the context
menu. This pops up the Edit Hyperlink dialog (screenshot above). The Edit Hyperlink dialog can also be
accessed via the URL property of the Hyperlink group of properties in the Properties window.

Removing and deleting hyperlinks
To delete a hyperlink, select the hyperlink (by clicking either the start or end hyperlink (A) tag), and press the
Delete key. The hyperlink and its contents are deleted.

306 Presentation and Output

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

8 Presentation and Output

In the SPS design, a single set of styling features is defined for components. These styles are converted to the
corresponding style markup in the respective outputs (Authentic View, HTML, RTF, PDF, Word 2007+ and Text
in the Enterprise Edition; Authentic View, HTML, RTF, and Text in the Professional Edition; HTML in the Basic
Edition).

Note: Printed-page based output formats, such as RTF, PDF, Word 2007+ and Text (as opposed to HTML),
are not supported in the Basic Edition of StyleVision. As a result, all features relating to such output (such as
adding page headers and footers) are disabled in the Basic Edition. To be able to use these features, you must
obtain a license for the Professional Edition (includes RTF and Text output) or Enterprise Edition (includes RTF,
PDF, Word 2007+ and Text). Please see the StyleVision edition comparison page on the Altova website for
more information.

Styling of SPS components
All styling of SPS components is done using CSS2 principles and syntax. Styles can be defined in external
stylesheets, globally for the SPS, and locally on a component. The cascading order of CSS2 applies to the
SPS, and provides considerable flexibility in designing styles. How to work with CSS styles is described in
detail in the Working with CSS Styles sub-section of this section.

The values of style properties can be entered directly in the Styles or Properties sidebars, or they can be set
via XPath expressions . The benefits of using XPath expressions are: (i) that the property value can taken
from an XML file, and (ii) that a property value can be assigned conditionally according to a test contained in
the XPath expression.

Additionally, in the SPS design, certain HTML elements are available as markup for SPS components. These
predefined formats are passed to the HTML output. The formatting inherent in such markup is therefore also
used to provide styling to SPS components. When CSS styles are applied to predefined formats, the CSS
styles get priority over the inherent style of the predefined format. Predefined formats are described in the
Predefined Formats sub-section of this section.

320

330

307

307

https://www.altova.com/

© 2019-2025 Altova GmbH

Predefined Formats 307Presentation and Output

Altova StyleVision 2025 Basic Edition

8.1 Predefined Formats

StyleVision provides a number of pre-defined formats, each of which corresponds to an HTML element
(screenshot below). When you apply a Predefined Format to a component in the Design, that component is
marked up as a component having the corresponding HTML semantics. This has two effects:

· Formatting inherent to the selected predefined format is applied.
· The component is contained in the component type, paragraph, which makes it available for local

styling by component type.

Assigning Predefined Formats
Predefined formats can be assigned by clicking Insert | Special Paragraph, and then the required format, or
by selecting the required format from the Format drop-down list in the Toolbar (shown below).

Inherent styles
The predefined formats used in StyleVision have either one or both of the following two styling components:

· a text-styling component
· a spacing component.

For example, the predefined para (p) format has a spacing component only; it puts vertical space before and

after the selected component, and does not apply any text styling. On the other hand, the predefined Heading

 1 (h1) format has both a text-styling component and a spacing component.

The following styling points about predefined formats should be noted:

· The spacing component of a predefined format applies for any type of SPS component, but the text
styling only if it can be applied. For example, if you select an image and apply a predefined format of
Heading 1 (h1) to it, then the spacing component will take effect, but the text-styling component will

not.
· The text-styling component of predefined formats does not apply to data-entry devices.
· Only one predefined format applies to a component at any given time.
· The Preformatted predefined format (pre) applies formatting equivalent to that applied by the pre tab

of HTML: linebreaks and spacing in the text are maintained and a monospaced font (such as Courier)
is used for the display. In the case of run-on lines with no linebreaks, such as in a paragraph of text,
the Preformatted (pre) predefined format will display lines of text without wrapping. If you wish to
wrap the text, use the predefined format Preformatted, wrapping (pre-wrap).

326

308 Presentation and Output Predefined Formats

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Defining additional styling for a predefined format
Styles additional to the inherent styling can be defined for a predefined format by selecting it and applying a
local style via the Styles sidebar .326

© 2019-2025 Altova GmbH

Output Escaping 309Presentation and Output

Altova StyleVision 2025 Basic Edition

8.2 Output Escaping

A character in a text string is said to be escaped when it is written as a character reference or entity reference.
Both types of references (character and entity) are delimited by an ampersand at the start and a semicolon at
the end. For example:

· the hexadecimal (or Unicode) character reference of the character A is A
· the decimal character reference of the character A is A
· the HTML (and XML) entity reference of the character & is &
· the hexadecimal (or Unicode) character reference of the character & is &
· the decimal character reference of the character & is &
· the HTML (and XML) entity reference of the character < is <

Output escaping
Output escaping refers to the way characters that are escaped in the input are represented in the output. A
character is said to be output-escaped when it is represented in the output as a character or entity reference.
Note that a character can only be output-escaped when it is escaped in the input (see table below for
examples). In an SPS, output-escaping can be enabled or disabled for:

· Fragments of static text,
· The contents placeholder, and
· Auto-Calculations

This is done with the disable-output-escaping attribute of the Text group of properties. The default value of
this property is no, which means that output-escaping will not be disabled. So characters that are escaped in
the input will be escaped in the output by default (see table below for examples).

To disable output escaping, do the following:

1. Select the (i) static text, or (ii) fragment of static text, (iii) contents placeholder, or (iv) Auto-
Calculation for which you wish to disable output escaping.

2. In the Properties sidebar, select the Text group of properties for the Text item, and set the disable-
output-escaping attribute to yes for the various outputs individually or for all outputs. The available
values are:

· For HTML (to set disable-output-escaping to yes for HTML output).
· For Authentic (to set disable-output-escaping to yes for Authentic output). Note that disabling

output escaping for Authentic View is enabled only in Enterprise editions of Authentic View (that
is, in the Enterprise editions of StyleVision, Authentic Desktop, Authentic Browser, and XMLSpy).

· For all (to set disable-output-escaping to yes for all outputs except Text).

When output escaping is disabled for a particular output format (for example, HTML output), the selected text
will not be escaped in that output format, but will be escaped in the other output formats.

Given below are some examples of text with output escaping disabled and/or enabled.

Static text disable-output-escaping Output text

& no &

310 Presentation and Output Output Escaping

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

& yes &

& no &

& yes &

< no <

< yes <

A no A

A yes A

&lt; no &lt;

&lt; yes <

&amp;lt; yes <

&< yes &<

Note: Disable-Output-Escaping is supported in Authentic View only in the Enterprise Editions of Altova
products.

Using disabled output-escaping across output formats
If output-escaping is disabled, the text string can have significance in one output but no significance at all in
another output. For example, consider the following input text, which has escaped characters (highlighted):

This text is bold.

If output-escaping is disabled, this text will be output as:

This text is bold.

If output-escaping is disabled for HTML output and this output is viewed in a browser (as opposed to a text
editor), the markup will be significant for the HTML browser and the text will be displayed in bold, like this:

This text is bold.

However, if viewed in another output format, such as PDF, the markup that was significant in HTML will not
necessarily be of significance in this other output format. In the particular case cited above, the unescaped text
(output escaping disabled) will be output in PDF format as is, like this:

This text is bold.

As the example above demonstrates, the output text obtained by disabling output-escaping might be
interpretable as code in one output format but not in another. This should be clearly borne in mind when using
the Disable-Output-Escaping property.

© 2019-2025 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 311Presentation and Output

Altova StyleVision 2025 Basic Edition

8.3 Value Formatting (Formatting Numeric Datatypes)

Value Formatting enables the contents of numeric XML Schema datatype nodes (see list below) to be
displayed in a format other than the lexical representation of that datatype. (For example, the lexical
representation of an xs:date datatype node is YYYY-MM-DD, with an optional timezone component, such as
+02:00.) The Value Formatting is displayed in the HTML output. Value Formatting can also be used to format
the result of an Auto-Calculation if the result of the Auto-Calculation is in the lexical format of one of the
numeric datatypes (see list below) for which Value Formatting is available.

In the sub-sections of this section, we describe:

· how the Value Formatting mechanism works , and
· the syntax for defining the Value Formatting.

Note: Value Formatting does not change the format in which the data is stored in the XML document. In the
valid XML document, the data is always stored in the lexical format appropriate to the datatype of the node.
Value Formatting is applied to the display in the output.

Numeric datatypes for which Value Formatting is available
Value Formatting is available for the following datatypes:

· xs:decimal; xs:integer; the 12 built-in types derived from xs:integer
· xs:double and xs:float when values are between and including 0.000001 and 1,000,000. Values

outside this range are displayed in scientific notation (for example: 1.0E7), and cannot have Value
Formatting applied to them.

· xs:date; xs:dateTime: xs:duration
· xs:gYear; xs:gYearMonth; xs:gMonth; xs:gMonthDay; xs:gDay

Note: Not all formats are available in Basic Edition since Authentic View is not supported in Basic Edition.

8.3.1 The Value Formatting Mechanism

Value Formatting can be applied to:

· A numeric datatype node , such as xs:decimal or xs:date that is present in the SPS as

contents or an input field.
· An Auto-Calculation that evaluates to a value which has the lexical format of a numeric datatype .

Defining Value Formatting
To define Value Formatting for a node or Auto-Calculation in the SPS, do the following:

1. Select the contents placeholder or input field of the node, or the Auto-Calculation.
2. In the Properties sidebar, select the item, and then the Content group (or AutoCalc group) of

properties. Now click the Edit button of the Value Formatting property. Alternatively, right-click

311

311

311

314

311

311

312 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

and select Edit Value Formatting from the context menu. The Value Formatting dialog appears
(screenshot below). It is different according to whether the selected component was a node or an Auto-
Calculation. If the selected component was a node, then a dialog like the one below appears. The node
represented in the screenshot below is of the xs:date datatype.

Note that the screenshot above contains the line: Formats for type 'date' and that the standard format
for the xs:date datatype is given alongside the Unformatted check box. For a node of some other
datatype, this information would be correspondingly different.

If the selected component was an Auto-Calculation, the following dialog appears.

© 2019-2025 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 313Presentation and Output

Altova StyleVision 2025 Basic Edition

3. You now specify whether the display of the component's value is to be unformatted or formatted. If you
wish to leave the output unformatted, select the Unformatted radio button. Otherwise select the Format
as XML Schema Value radio button. (If the value is unformatted, the output has the standard formatting
for the datatype of the selected node or the datatype of the Auto-Calculation result. If you specify
Formatting as XML Schema Value for an Auto-Calculation, you have to additionally select (from a
dropdown list) the datatype of the expected Auto-calculation result.

4. Enter the Value Formatting definition. This definition can be entered in three ways: (i) by selecting from
a dropdown list of available options for that datatype (see the 'Format in Output Documents' input field
in the screenshots above); (ii) by entering the definition directly in the input field; and (iii) by using the
Insert Field and Field Options buttons to build the definition correctly. See Value Formatting
Syntax for a full description of the various formatting options.

Errors in syntax
If there is an error in syntax, the following happens:

· The definition is displayed in red.
· An error message, also in red, is displayed below the input field.
· The OK button in the Value Formatting dialog is disabled.
· The Go to Error button in the Value Formatting dialog is enabled. Clicking it causes the cursor to be

placed at the point in the format definition where the syntax error is.

Mismatch of data and datatype formats
If the data entered in an XML node does not match the lexical format of that node's datatype, or if the result of
an Auto-Calculation does not match the lexical format of the expected datatype, then the formatting will be
undefined and will not be displayed correctly in the output.

314

314 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Applying Value Formatting to the output
The Value Formatting that you define applies to Authentic View, which is supported in the Enterprise and
Professional editions.

Some Value Formatting definitions—not all—can also, additionally, be applied to HTML output. To do this,
check the Apply Same Format to XSLT Output check box. If this option is not checked, or if it is not available,
then only Authentic View will display the Value Formatting, while the output will display the value in the
standard format for the datatype of the component (the lexical format).

8.3.2 Value Formatting Syntax

The syntax for Value Formatting is:

([prefix character/s]field[suffix character/s][{field-option1,field-
option2,...}])+

where prefix character/s and suffix character/s are optional specifiers used to control

alignment and the display of positive/negative symbols;
field can be any datatype-specific formatting or text; and

{field-option(s)} is an optional qualifier, that enables additional formatting options.

Explanation of definition syntax
The Value Formatting definition is constructed as follows:

· The definition is composed of one or more fields. For example, the definition DD Month YYYY has three
fields.

· Fields can be run together, or they can be separated by the following characters: space, hyphen,
comma, colon, period, or by a text string in single or double quotes. For example, in the definition: DD-
Month' in the year 'YYYY, the fields DD and Month are separated by a hyphen, and the fields Month
and YYYY are separated by a text string enclosed in single quotes.

· A field can have optional prefix and/or suffix character/s. For example: <+###,##0.00.
· A field can have one or more optional field-options. The field-option/s for each field must be contained in

a single set of curly braces, and must follow the field without any intervening space. Multiple field-
options for a single field are separated by "," (comma). For example, in the definition: DD

Month{uc,ro} YYYY, the curly-brace-enclosed uc and ro are field-options for the field Month.

Examples
Example of Value Formatting for an xs:decimal datatype:

"$"(##0.00)

Examples of the output would be:

$ 25.00
$ 25.42
$267.56

© 2019-2025 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 315Presentation and Output

Altova StyleVision 2025 Basic Edition

Example of Value Formatting for an xs:date datatype:

DD Month{uc,ro} YYYY

where uc and ro are field-options for making the Month field uppercase and read-only, respectively

An example of the output would be:

24 SEPTEMBER 2003

Field types
A field type represents a component of the data and the way that component is to be formatted. The formatting
inherent in the field type can be modified further by prefix and suffix modifiers as well as by field options. The
following tables list the available field types. Note that, in the drop-down menu of the Value Formatting dialog,
there are type-specific and field-only Value Formatting definitions. You can select one of these and modify
them as required by adding prefix modifiers, suffix modifiers, and/or field options.

Field Type Explanation

Space if no digit at position

0 Zero if no digit at position

. Decimal mark

, Digit group separator

Y Year

y year (base = 1930); see Note below

MM Month, must have length of 2

DD Day, must have length of 2

W Week number

d Weekday number (1 to 7)

i Day in the year (1 to 366)

hh Hour (0 to 23), must have length of 2

HH Hour (1 to 12), must have length of 2

mm Minute, must have length of 2

ss Second, must have length of 2

AM AM or PM

am am or pm

AD AD or BC

316 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

ad ad or bc

CE CE or BCE

ce ce or bce

© 2019-2025 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 317Presentation and Output

Altova StyleVision 2025 Basic Edition

Field Type Explanation

Weekday Weekday (Sunday, Monday...)

WEEKDAY Weekday (SUNDAY, MONDAY...)

weekday Weekday (sunday, monday...)

Wkd Weekday (Sun, Mon...)

WKD Weekday (SUN, MON...)

wkd Weekday (sun, mon...)

Month Month (January, February...)

MONTH Month (JANUARY, FEBRUARY...)

month Month (january, february...)

Mon Month (Jan, Feb...)

MON Month (JAN, FEB...)

mon Month (jan, feb...)

Notes on field length and entry length
The following points relating to the length of data components should be noted:

Length of date fields: When fields such as MM, DD, HH, hh, mm, and ss are used, they must have a length of 2
in the definition. When the y or Y fields are used, the number of y or Y characters in the definition determines
the length of the output. For example, if you specify YYY, then the output for a value of 2006 would be 006; for a
definition of YYYYYY, it would be 002006. See also Base Year below.

Extending field length: The * (asterisk) symbol is used to extend the length of a non-semantic numeric field
(integers, decimals, etc). In the case of decimals, it can be used on either or both sides of the decimal point.
For example, the Value Formatting *0.00* ensures that a number will have zeroes as specified in the
formatting if these digit locations are empty, as well as any number of digits on both sides of the decimal point.

Note: If a field does not render any text, this might be because of your region setting in Windows. For example,
Windows returns an empty string for the AM/PM field if the regional language setting is German.

Prefix and suffix modifiers
Prefix and suffix modifiers are used to modify the textual alignment and positive/negative representations of
fields. The following table lists the available prefix and suffix modifiers.

Prefix Suffix Explanation

< Left aligned; default for text. For numbers, which are aligned right
by default, this is significant if there are a fixed number of leading
spaces.

318 Presentation and Output Value Formatting (Formatting Numeric Datatypes)

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

> Right aligned; default for numbers.

? Minus symbol adjacent to number if negative; nothing otherwise.
This is the default for numbers.

<? Minus symbol left-aligned if negative; nothing otherwise. Number
left-aligned, follows minus sign.

<?> Minus symbol left-aligned if negative; nothing otherwise. Number
right-aligned.

- - Minus symbol adjacent to number if negative; space otherwise.
Located before number (prefix), after number (suffix).

<- >- Minus symbol if negative; space otherwise. Number and sign
adjacent. Left-aligned (prefix); right-aligned (suffix).

<-> Minus symbol left-aligned if negative; space otherwise. Number
right-aligned.

+ + Plus or minus sign always, located adjacent to number; before
number (prefix), after number (suffix).

<+ >+ Plus or minus sign always, located adjacent to number; left-
aligned (prefix), right-aligned (suffix).

<+> Plus or minus sign always, left-aligned; number right-aligned.

() Parentheses if negative; space otherwise. Adjacent to number.

<(Parentheses if negative; space otherwise. Adjacent to number.
Left-aligned.

<(> Parentheses if negative; space otherwise. Left parentheses left-
aligned; number and right parentheses adjacent and right-aligned.

[] Parentheses if negative; nothing otherwise. Adjacent to number.

* * Extendable number of digits to left (prefix) or to right (suffix)

_ _ Space

^ ^ Fill character (defined in options)

th Ordinality of number in EN (st, nd, rd, or th)

TH Ordinality of number in EN (ST, ND, RD, or TH)

Field options
Field options enable advanced modifications to be made to fields. The following options are available:

Option Explanation

uc Make uppercase

© 2019-2025 Altova GmbH

Value Formatting (Formatting Numeric Datatypes) 319Presentation and Output

Altova StyleVision 2025 Basic Edition

lc Make lowercase

left Left aligned

right Right aligned

ro Read (XML) only; no editing allowed

edit The field is editable (active by default)

dec=<char> Specify a character for the decimal point (default is point)

sep=<char> Specify a character for the digit separator (default is comma)

fill=<char> Specify fill character

base=<year> Base year for year fields (see note below)

pos Show only positive numbers; input of negative numbers allowed

Field options should be used to generate number formatting for European languages, which interchange the
commas and periods of the English language system: for example, 123.456,75.

The Value Formatting to use to obtain the formatting above would be: ###,###.##{dec=,,sep=.}

Notice that the field retains the English formatting, while it is the field options dec and sep that specify the
decimal symbol and digit separator. If the decimal symbol and digit separator are not specified, these
characters will default to decimal symbol and digit separator of the regional settings of the Windows OS
(Control Panel | All Items | Region | Format).

320 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

8.4 Working with CSS Styles

The SPS design document is styled with CSS rules. Style rules can be specified:

· In external CSS stylesheets . External CSS stylesheets can be added via the Design Overview
sidebar and via the Style Repository sidebar.

· In global styles for the SPS, which can be considered to be defined within the SPS and at its start.
(In the HTML output these global styles are defined within the style child element of the head
element.) Global styles are defined in the Style Repository sidebar.

· Locally , on individual components of the document. In the HTML output, such rules are defined in
the style attribute of individual HTML elements. Local style rules are defined in the Styles sidebar.

Each of the above methods for creating styles is described in detail in the sub-sections of this section (links
above).

Terminology
A CSS stylesheet consists of one or more style rules. A rule looks like this:

H1 { color: blue }

or

H1 { color: blue;

 margin-top: 16px; }

Each rule has a selector (in the examples above, H1) and a declaration (color: blue). The declaration is a list
of properties (for example, color) with values (blue). We will refer to each property-value pair as a style
definition. In StyleVision, CSS styles can be defined in the Styles sidebar (local styles) and Style
Repository sidebar (global styles).

Cascading order
The cascading order of CSS applies. This means that precedence of rules are evaluated on the basis of:

1. Origin. External stylesheets have lower precedence than global styles, and global styles have lower
precedence than local styles. External stylesheets are considered to be imported, and the import order
is significant, with the latter of two imported stylesheets having precedence.

2. Specificity. If two rules apply to the same element, the rule with the more specific selector has
precedence.

3. Order. If two rules have the same origin and specificity, the rule that occurs later in the stylesheet has
precedence. Imported stylesheets are considered to come before the rule set of the importing
stylesheet.

CSS styles in modular SPSs
When an SPS module is added to another SPS, then the CSS styles in the referring SPS have priority over
those in the added module. When multiple modules are added, then CSS styles in those modules located
relatively lower in the module list have priority. For more information about modular SPSs, see the section,
Modular SPSs .

321 33

42

324

42

326

44

44

42

202

© 2019-2025 Altova GmbH

Working with CSS Styles 321Presentation and Output

Altova StyleVision 2025 Basic Edition

CSS support in Internet Explorer
Versions of Internet Explorer (IE) prior to IE 6.0 interpret certain CSS rules differently than IE 6.0 and later. As a
designer, it is important to know for which version of IE you will be designing. IE 6.0 and later offers support for
both the older and newer interpretations, thus enabling you to use even the older interpretation in the newer
versions (IE 6.0 and later). Which interpretation is used by IE 6.0 and later is determined by a switch in the
HTML document code. In an SPS, you can specify whether the HTML output documents should be styled
according to Internet Explorer's older or newer interpretation . You should then set CSS styles according to
the selected interpretation. For more details, see Properties: CSS Support .

Note: For more information about the CSS specification, go to http://www.w3.org/TR/REC-CSS2/.

8.4.1 External Stylesheets

This section describes how external CSS stylesheets can be managed from within the StyleVision GUI. It
consists of the following parts:

· Adding an external CSS stylesheet to the SPS
· Viewing the contents of an external CSS stylesheet and modifying the media applicability
· Changing the precedence
· Switching between the full CSS stylesheet set and a single CSS stylesheet

External CSS stylesheets can be managed from two sidebars: the Style Repository sidebar and the Design
Overview sidebar . If an aspect of the external stylesheets is viewable in both sidebars (for example, the
relative precedence of multiple stylesheets), then changes made in one sidebar will automatically be reflected
in the other.

Adding an external CSS stylesheet to the SPS
To assign an external CSS stylesheet to the SPS, do the following:

1. In Design View, select the External item in the Style Repository window (screenshot below).

2. Click the Add button at the top left of the Style Repository toolbar (see screenshot above).
3. In the Open dialog that pops up, browse for and select the required CSS file, then click Open. The

CSS file is added to the External item as part of its tree structure (see tree listing and screenshot
below).

4. To add an additional external CSS stylesheet, repeat steps 1 to 3. The new CSS stylesheet will be
added to the External tree, below all previously added external CSS stylesheets.

Note: You can also add an external CSS stylesheet via the Design Overview sidebar.

444

94

444

321

322

323

323

42

33

33

http://www.w3.org/TR/REC-CSS2/

322 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Viewing and modifying the tree of external CSS stylesheets
The tree of external CSS stylesheets is structured as follows (also see screenshot below):

- CSS-1.css (File location appears on mouseover)
 - Media (can be defined in Style Repository window)
 - Rules (non-editable; must be edited in CSS file)
 - Selector-1
 - Property-1
 - ...
 - Property-N
 - ...
 - Selector-N
+ ...
+ CSS-N.css

The media to which that particular stylesheet is applicable can be edited in the Style Repository window. Do
this by clicking the down arrow to the right of the item and selecting the required media from the dropdown list.
The rules defined in the external CSS stylesheet are displayed in the Style Repository window, but cannot be
edited. The Stylesheet, Rules, and individual Selector items in the tree can be expanded and collapsed by
clicking the + and - symbols to the left of each item (see screenshot below).

To delete an external stylesheet, select the stylesheet and click the Reset button in the Style Repository
toolbar.

© 2019-2025 Altova GmbH

Working with CSS Styles 323Presentation and Output

Altova StyleVision 2025 Basic Edition

Changing the precedence of the external CSS stylesheets
The external CSS stylesheets that are assigned in the Style Repository window will be imported into the HTML
output file using the @import instruction. In the HTML file, this would look something like this:

<html>
<head>

<style>
<!--
@import url("ExternalCSS-1.css");

@import url("ExternalCSS-2.css")screen;

@import url("ExternalCSS-3.css")print;

-->
</style>

</head>
<body/>

</html>

The order in which the files are listed in the HTML file corresponds to the order in which they are listed in the
External tree of the Style Repository and in the CSS Files tree of the Design Overview sidebar. To change the
order of the CSS stylesheets in the Style Repository, select the stylesheet for which the precedence has to be

changed. Then use the Move Up or Move Down buttons in the Style Repository toolbar to reposition
that stylesheet relative to the other stylesheets in the tree. In the Design Overview sidebar, click the Edit button
of a CSS stylesheet and select the Move Up or Move Down command as required.

Important: Note that it is the lowermost stylesheet that has the highest import precedence, and that the
import precedence decreases with each stylesheet higher in the listing order. The order of import precedence in
the listing shown above is: (i) ExternalCSS-3.css; (ii) ExternalCSS-2.css; (iii) ExternalCSS-1.css. When
two CSS rules, each in a different stylesheet, use the same selector, the rule in the stylesheet with the higher
import precedence applies.

Switching between all CSS files and a single CSS file
You can choose to either: (i) let rules in all CSS files apply with the cascading rules determining precedence,
or (ii) let rules in a single selected CSS file apply. You can select the option you want in the Design Overview
sidebar (see screenshot below). Click the Edit button of any of the listed CSS files and select either the Mix
Styles command or Select One command. This option is also available in the Style Repository (on any of the
external stylesheets).

324 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

If you click the Select One CSS File with XPath command, a dialog pops up in which you can enter the
XPath expression (screenshot below). The XPath expression must evaluate to the name of one of the CSS files
in the SPS, exactly as these names are listed in the top pane of the dialog. If you enter the filename as a
string, note that, like all strings in XPath expressions, the string must be entered within single quotes.
· When styles are mixed from all CSS files: In the Authentic and HTML outputs, all rules from all the CSS file

are applied and are supported on all design components. Conflicts are resolved on the basis of the priority of
the CSS file. In the, only non-class selector rules are applied, with conflicts being resolved on the basis of
priority.

8.4.2 Global Styles

Global styles are defined for the entire SPS design in the Style Repository and are listed in the Style
Repository under the Global heading. They are passed to the HTML output document as CSS rules. In the
HTML document, these CSS rules are written within the /html/head/style element.

In the Style Repository, a global style is a single CSS rule consisting of a selector and CSS properties for that
selector. Creating a global style, therefore, consists of two parts:

· Adding a new style and declaring the CSS selector for it
· Defining CSS properties for the selector

Supported selectors
The following selectors are supported:

· Universal selector: written as *
· Type selectors: element names, such as h1
· Attribute selectors: for example, [class=maindoc]
· Class selectors: for example, .maindoc
· ID selectors: for example, #header

http://www.w3.org/TR/CSS21/selector.html

© 2019-2025 Altova GmbH

Working with CSS Styles 325Presentation and Output

Altova StyleVision 2025 Basic Edition

Adding a global style
To add a global style to the SPS design, do the following:

1. In Design View, select the Global item in the Style Repository window (screenshot below).

2. Click the Add button at the top left of the Style Repository toolbar (see screenshot above). A global
style is inserted in the Global tree with a * selector (which selects all HTML elements); the universal
selector is the default selector for each newly inserted global style.

3. To change the selector from the default universal selector, double-click the selector and edit it.

4. Now set the CSS property values for the selector. How to do this is explained in the section Setting
Style Values .

5. To add another global style, repeat steps 1 to 4. The new global style will be added to the Global tree,
below all previously added global styles.

Note:

· Global styles can also be inserted before a selected global style in the Global tree by clicking the
Insert button in the Style Repository window. The Add and Insert buttons are also available via the
context menu that appears when you right-click a global selector.

· A global style with a selector that is an HTML element can be inserted by right-clicking an item in the
Global tree, then selecting Add Selector | HTML | HTMLElementName.

Editing and deleting global styles
Both a style's selector as well as its properties can be edited in the Style Repository window.

· To edit a selector, double-click the selector name, then place the cursor in the text field, and edit.
· For information about defining and editing a style's property values, see Setting Style Values . (The

style properties can be displayed in three possible views. These views and how to switch between
them are described in Views of Definitions .

To delete a global style, select the style and click the Reset button in the Style Repository toolbar.

328

328

45

326 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Changing the precedence of global styles
Global styles that are assigned in the Style Repository window are placed as CSS rules in
the /html/head/style element. In the HTML file, they would look something like this:

<html>
<head>

<style>
<!--
h1 { color:blue;

 font-size:16pt;

}

h2 { color:blue;

 font-size:14pt;

}

.red { color:red;}

.green { color:green;}

.green { color:lime;}

-->
</style>

</head>
<body/>

</html>

The order in which the global styles are listed in Authentic View and the HTML document corresponds to the
order in which they are listed in the Global tree of the Style Repository. The order in Authentic View and the
HTML document has significance. If two selectors select the same node, then the selector which occurs lower
down the list of global styles has precedence. For example, in the HTML document having the partial listing
given above, if there were an element <h1 class="green">, then three global styles match this element: that
with the h1 selector and the two .green class selectors. The color property of the .green selector with the
color lime will apply because it occurs after the .green selector with the color green and therefore has a
higher precedence. (Class selectors always have a higher precedence than node selectors, so both .green
selectors will have a higher precedence than the h1 selector regardless of their respective positions relevant to
the h1 selector.) The font-size of the h1 style will, however, apply to the <h1> element because there is no
selector with a higher precedence that matches the <h1> element and has a font-size property.

To change the precedence of a global style, select that style and use the Move Up and Move Down buttons
in the Style Repository toolbar to reposition that global style relative to the other global styles in the tree. For
example, if the .green global style were moved to a position before the .red style, then the color property of
the .red style would have precedence over that of the .green style.

Note, however, that class selectors always have precedence over type selectors. So, if the selector order were
changed to .red .green h1 h2, then h1 and h2 would still be green.

8.4.3 Local Styles

When styles are defined locally, the style rules are defined directly on the component. These local rules have
precedence over both global style rules and style rules in external CSS stylesheets that select that
component. Locally defined styles are CSS styles and are defined either via the Format toolbar or in the
Styles sidebar. (This is as opposed to global styles, which are defined in the Style Repository sidebar.)

417

44 42

© 2019-2025 Altova GmbH

Working with CSS Styles 327Presentation and Output

Altova StyleVision 2025 Basic Edition

Local styles via the Format toolbar
You can select content in the design and apply local styles via the Format toolbar (screenshot below).

You can apply predefined HTML formatting (such as div, h1, pre, etc), text styling, background color, text
alignment, lists, and hyperlinks. See the section, Format toolbar , for details.

Local styles via the Styles sidebar
Defining a style locally via the Styles sidebar consists of three parts:

1. The component to be styled is selected in Design View. Any component in the design except node
tags can be styled. The component selected in Design View then appears in the Styles-For column of
the Styles sidebar (see screenshot below). In the screenshot below, a content component was
selected in Design View and consequently appears in the Styles-For column.

Very often, the component selected in Design View might contain other components. In this case all
the components in the selection are displayed, organized by component-type, in the Styles-For column
of the Styles sidebar. The screenshot below shows the different component-types contained in the
Design View selection. To the left of each component-type is the number of instances of that
component-type in the selection. For example, in the screenshot below, there are 16 text components
and two Auto-Calculation components (among others) in the Design View selection. You can also
select a range of components by keeping the Shift key pressed while selecting the second, end-of-
range component.

417

328 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. After making the selection in Design View, you select, in the Styles-For column, the component-type
you wish to style. If there is more than one instance of the component-type you select, then the styles
you define will be applied to all these instances. So, for example, if you select the 16-texts item of the
screenshot above, then the styles you define (see Step 3 below) will be applied to all 16 text
components. If you wish to style, say, four of these text components differently, then you must select
and style each of the four components separately. If two components of the same component-type
have been styled differently and both are selected in Design View, then the styles of both instances are
displayed in the Style Definitions pane. In the screenshot above, for example, while one Auto-
Calculation has a normal font-weight, the other has a bold font-weight. When the 2-Autocalcs item is
selected in the Styles-For pane, both font-weights are displayed.

3. After selecting, in the Styles-For column, the component-type to style, styles are defined in the Style
Definitions pane . How to do this is described in the section Setting Style Values .

8.4.4 Setting Style Values

For the component-type selected in the Styles-For column, style properties are defined in the Style Definitions
pane of the Styles sidebar (screenshot below) . You can select more than one component-type in the
Styles-For column if you like—by selecting additional component-types with the Ctrl-key pressed, or by
selecting a range of component-types in the Styles-For column with the Shift-key pressed. When multiple
component-types are selected, any style value you define in the Style-Definitions pane is applied to all
instances of all the selected component-types.

44 328

44

© 2019-2025 Altova GmbH

Working with CSS Styles 329Presentation and Output

Altova StyleVision 2025 Basic Edition

Style property groups
The available style properties in the Style-Definitions column are organized into groups as shown in the
screenshot below.

The display of properties can be modified using the List Non-Empty , Expand All , and Collapse
All toolbar buttons . Each group of style properties can be expanded to access style properties or sub-
groups of style properties (see screenshot below).

Entering style values
Style property values (style values for short) can be entered in the following ways, all of which are show in the
screenshot below:

· Entered directly in the Value column. To do this, select a property, double-click in its Value column,
enter the value using the keyboard, and press Enter or click anywhere in the GUI.

44 44 44 44

44 44

330 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· By selecting a value from the dropdown list of the combo box for that property. Click the down arrow of
the combo box to drop down the list of style-value options. In the screenshot below, the options for the
(background-)repeat property are displayed. Select the required value from the dropdown list.

· By using the icon on the right-hand side of the Value column for that style property. Two types of icon
are available, and these are available only for properties to which they are relevant: (i) a color palette for
selecting colors (in the screenshot below, see the (background-)color property), and (ii) a dialog for
browsing for files (in the screenshot below, see the (background-)image property).

· Values for styles can also be assigned via an XPath expression .

Modifying or deleting a style value
If a style value is entered incorrectly or is invalid, it is displayed in red. To modify the value, use any of the
applicable methods described in the previous section, Entering Property Values .

To delete a style value (or, in other words, to reset a style value), click the Reset button in the toolbar of the
Styles sidebar. Alternatively, you can double-click in the Value column of the property, and delete the value
using the Delete and/or Backspace key, and then pressing Enter.

8.4.5 Style Properties Via XPath

Styles can be assigned to design components via XPath expressions. This enables style property values to be
taken from XML data or from the XPath expression itself. Also, by using the doc() function of XPath 2.0/3.0,
nodes in any accessible XML document can be addressed. Not only can style definitions be pulled from XML
data; this feature also enables style choices to be made that are conditional upon the structure or content of
the XML data. For example, using the if...else statement of XPath 2.0/3.0, two different background colors
can be selected depending on the position of an element in a sequence. Thus, when these elements are
presented as rows in a table, the odd-numbered rows can be presented with one background color while the

330

329

© 2019-2025 Altova GmbH

Working with CSS Styles 331Presentation and Output

Altova StyleVision 2025 Basic Edition

even-numbered rows are presented with another (see below for example). Also, depending on the content of a
node, the presentation can be varied.

Style properties for which XPath expressions are enabled
XPath expressions can be entered for the following style properties:

· All properties available in the Styles sidebar
· The Common, Event, and HTML groups of properties in the Properties sidebar

Static mode and dynamic (XPath) mode for property values
For those properties where XPath expressions are enabled , two mode are available:

· Static mode, where the value of the property is entered directly in the Value column of the sidebar. For
example, for the background-color of a design component, the value red can be entered directly in the
sidebar.

· Dynamic, or XPath mode, where an XPath expression is entered. The expression is evaluated at
runtime, and the result is entered as the value of the property. For example, for the background color of
a design component, the following XPath expression can be entered: /root/colors/color1. At
runtime, the content of the node /root/colors/color1 will be retrieved and entered as the value of the
background-color property.

Switching between static and dynamic (XPath) modes
For each property for which XPath expressions are enabled, static mode is selected by default. To switch a
property to dynamic (XPath) mode, select that property and click the XPath icon in the toolbar of the sidebar
(screenshot below).

330

332 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

 If a static value was present for that property, it is now cleared and the mode is switched to dynamic. The Edit
XPath Expression dialog appears. It is in this dialog that you enter the XPath expression for the property.
Click OK when finished.

After you enter an XPath expression for the property, an Edit XPath expression button appears in the Value
column for that property (screenshot above). Click this button to subsequently edit the XPath expression. If you
wish to switch back to static mode, click the XPath icon in the toolbar. This will clear the XPath expression and
switch the property to static mode.

Note: There are two important points to note. First, only one mode (static or dynamic), and the
value/expression for that mode, is active at any time. Any value/expression that previously existed for the other
mode is cleared; so switching to the other mode will present that mode with an empty entry field. (In order to go
back to a previous value/expression, use the Undo command .) Second, if you reselect a property after
further editing the SPS, then that property will be opened in the mode it was in previously.

Creating and editing the XPath definition
The XPath definition is created and edited in the Edit XPath Expression dialog . This dialog is accessed in
two ways:

· Each time you switch to the dynamic mode of a property from static mode (by clicking the XPath icon
in the toolbar of the sidebar), the Edit XPath Expression dialog appears. You can now create the
XPath expression. (Note that clicking the toolbar icon when already in dynamic mode switches the
mode to static mode; it does not pop up the Edit XPath Expression dialog.)

· The Edit XPath Expression dialog also pops up when you click the Edit XPath Expression button
in the Value field of a property that already has an XPath expression defined for it. The dialog will
contain the already defined XPath expression for that property, which you can now edit.

After you enter or edit the XPath expression in the entry field, click OK to finish.

Values returned by XPath expressions
The most important benefits of using XPath expressions to set a property value are that: (i) the property value
can be taken from an XML file (instead of being directly entered); and/or (ii) an XPath expression can test some
condition relating to the content or structure of the XML document being processed, and accordingly select a
value. XPath expressions return values in the following two categories:

· XML node content
The XPath expression can address nodes in: (i) the XML document being processed by the SPS, or (ii)
any accessible XML document. For example the expression Format/@color would access the color
attribute of the Format child of the context node. The value of the color attribute will be set as the
value of the property for which the XPath expression was defined. A node in some other XML document
can be accessed using the doc() function of XPath 2.0. For example, the expression
doc('Styles.xml')//colors/color-3 would retrieve the value of the element color-3 in the XML
document Styles.xml and set this value as the value of the property for which the XPath expression
was defined.

· XPath expression
The value of the property can come from the XPath expression itself, not from the XML document. For
example, the background color of an element that is being output as a row can be made to alternate
depending on whether the position of the row is odd-numbered or even-numbered. This could be
achieved using the XPath 2.0/3.0 expression: if (position() mod 2 = 0) then 'red' else
'green'. Note that the return value of this expression is either the string red or the string green, and it

398

448

398

398

398

© 2019-2025 Altova GmbH

Working with CSS Styles 333Presentation and Output

Altova StyleVision 2025 Basic Edition

will be set as the value of the property for which the XPath expression was defined. In the example just
cited, the property values were entered as string literals. Alternatively, they could come from an XML
document, for example: if (position() mod 2 = 0) then doc('Styles.xml')//colors/color-1
else doc('Styles.xml')//colors/color-2. Conversely, the XPath expression could be a
straightforward string, for example: 'green'. However, this is the same as entering the static value
green for the property.

8.4.6 Composite Styles

A Composite Style is a group of CSS text-styling properties that have been associated with an attribute of an
XML instance document node. Additionally, any group of CSS text-styling properties stored in the stylesheet is
also considered to be a Composite Style. Composite Styles can then be specified on the following design
components:

· Auto-Calculations
· The (contents) placeholder
· Paragraph (block) design elements
· Table cells

Advantages of Composite Styles
Composite Styles offer the following advantages:

· Styling properties are in the XML data and can therefore be edited by the user.
· The styling properties of the design components listed above can be a combination of properties stored

in the XML data and properties assigned in the SPS.
· In the SPS design phase, the SPS designer can quickly switch between the multiple Composite

Styles associated with an element.

Entering the Composite Style in the XML attribute
A Composite Style (composed of multiple styling properties) is entered as the attribute-value of an element in
the source XML document. For example, the desc-style attribute in the XML source document listing below
contains a default Composite Style:

<Desc desc-style="font-family:Verdana; font-size:12pt; color:blue">

You can also set more than one Composite Style on an element. In this case, each Composite Style must be
entered in a separate attribute:

<Desc styleBlue="font-family:Verdana; font-size:12pt; color:blue"
 styleRed ="font-family:Verdana; font-size:12pt; color:red">

When multiple Composite Styles are available on an element, you can switch among Composite Styles when
setting a value for the Composite Style property of a design component (see below).

Note: The attributes that will be used to access the Composite Styles must be defined in the source schema
in order for the XML document to be valid.

241

104

106

119

334 Presentation and Output Working with CSS Styles

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Supported CSS text-styling properties
The following CSS styles can be used in Composite Styles:

font-family font-size font-weight font-style

color background-color text-align text-decoration

Setting an attribute as the Composite Style value
If you set the Composite Style of a design component to be an attribute, then the Authentic View user can edit
this Composite Style.

To set an attribute as the Composite Style of a design component, do the following:

1. In Design View, select the design component to which you wish to assign an attribute as Composite
Style. In the screenshot below, the (contents) placeholder of the Desc element has been selected.

2. In the combo box of the Composite Style property of the Content component (see Properties sidebar
at bottom right of screenshot above), the attributes of the context element are displayed. Select the
attribute you wish to set as the Composite Style of the design component.

Setting an XPath expression as the Composite Style value
You can also enter an XPath expression as the value of the Composite Style property. In this case, however,
since the Composite Style is stored in the SPS (not in the XML source document), the Authentic View will not
be able to edit the Composite Style.

© 2019-2025 Altova GmbH

Working with CSS Styles 335Presentation and Output

Altova StyleVision 2025 Basic Edition

To set an XPath expression as the value of the Composite Style property, click the XPath icon in the toolbar of
the Properties sidebar, and then enter the XPath expression in the XPath dialog that pops up. The XPath
expression will be evaluated as an attribute value template; the returned value will be the value of an HTML
style attribute (and its equivalent in non-HTML output formats).

For example, consider the following XPath expression created on the (contents) placeholder of the
n1:Person element.

if (number(n1:Shares) gt 1000) then 'color:red' else 'color:green'

What this expression will do is this: If the n1:Person element has a child element n1:Shares with a number
value greater than 1000, then the contents of the n1:Person element is output in red; otherwise, all n1:Person
elements are output in green. The value returned by the XPath expression is passed to the output document as
the value of an HTML style attribute (or its equivalent in non-HTML output formats).

In the XSLT stylesheet generated from the SPS, this XPath expression will be evaluated as an attribute value
template, something like this:

<span style="{if (number(n1:Shares) gt 1000) then 'color:red' else

'color:green'}">

In the HTML output, one of the following lines would be generated depending on how the condition is evaluated:

or

Note: Attribute value templates are XSLT constructs that allow the value of an attribute to be read as an XPath
expression. They are delimited by curly braces and allow the value of the attribute to be assigned dynamically.

336 Presentation and Output HTML Document Properties

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

8.5 HTML Document Properties

Properties of the output HTML document can be specified either in the Document Properties tab in the
Properties dialog of the Initial Document Section or in Properties View when the Main Template in the Design
Tree window is selected.

Via properties of the Initial Document Section
Click the Edit Properties hyperlink in the Initial Document Section title bar and then select the Document
Properties tab.

Here you can set various properties of the HTML output document that will be generated. Note the following
points:

· These are HTML properties that will be applied at the document level, for example, the class and id

properties of the Common properties section.
· The Document Properties and HTML sections contain generic properties that relate to the HTML

document as a whole, such as link colors, and information that goes into the meta tags of the HTML

document.
· The metadata property of the HTML section enables you to enter any text that you want to go into the

HEAD element of the HTML document (see screenshots above and below, which are from the

Enterprise Edition of StyleVision and contain features specific to that edition). The text you enter
could, for example, be a script or meta element, or several such elements. You can enter these

HTML elements directly as text (without quotes) or, as in the screenshots, as an XPath expression. In
the screenshot example, the XPath expression sets a meta tag for the revision date of a document.

38

© 2019-2025 Altova GmbH

HTML Document Properties 337Presentation and Output

Altova StyleVision 2025 Basic Edition

Via the properties of the Main Template
In the Design Tree sidebar, select the Main Template. In the Properties sidebar (screenshot below), you can
now set the properties of the output HTML document.

The properties in this dialog are exactly the same as those in the Document Properties tab described above.

38

338 Additional Functionality

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

9 Additional Functionality

Additional to the content editing , structure , advanced , and presentation procedures described in
this documentation, StyleVision provides a range of miscellaneous additional features. These are listed below
and described in detail in the sub-sections of this section.

· Working with Dates .Dates can be manipulated and formatted as required.
· Unparsed Entity URIs . URIs can be stored in unparsed entities in the DTD on which an XML

document is based. The Unparsed Entity URI feature enables images and hyperlinks to use these
URIs as target URIs.

· Using Scripts . StyleVision contains a JavaScript Editor in which JavaScript functions can be
defined. These functions are then available for use as event handlers anywhere within the SPS, and will
take effect in the output HTML document.

· HTML Import . An HTML file can be imported into StyleVision and an XML, XSD, and SPS files can
be created from it.

· New from XSLT . An SPS can be created from an XSLT-for-HTML or an XSLT-for-FO. Template
structure and styling in the XSLT will be created in the SPS. You can then modify the SPS
components and add content and formatting to the SPS.

See also

· Properties sidebar

103 173 240 306

360

339

363

368

341

45

© 2019-2025 Altova GmbH

Unparsed Entity URIs 339Additional Functionality

Altova StyleVision 2025 Basic Edition

9.1 Unparsed Entity URIs

If you are using a DTD and have declared an unparsed entity in it, you can use the URI associated with that
entity for image and hyperlink targets in the SPS. This is useful if you wish to use the same URI multiple times
in the SPS. This feature makes use of the XSLT function unparsed-entity-uri to pass the URI of the

unparsed entity from the DTD to the output

Using this feature requires that the DTD, XML document, and SPS documents be appropriately edited, as
follows:

1. In the DTD, the unparsed entities must be declared , with (i) the URI, and (ii) the notation (which
indicates to StyleVision the resource type of the entity).

2. In the XML document, the unparsed entity must be referenced . This is done by giving the names of
the required unparsed entities.

3. In the SPS, unparsed entities can be used to target images and hyperlinks by correctly
accessing the relevant dynamic node values as unparsed entities .

Declaring and referencing unparsed entities
Given below is a cut-down listing of an XML document. It has an internal DTD subset which declares two
unparsed entities, one with a GIF notation (indicating a GIF image) and the other with an LNK notation
(indicating a hyperlink). The img/@src and link/@href nodes in the XML code reference the unparsed entities
by giving their names.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE document SYSTEM "UEURIDoc.dtd" [

<!ENTITY Picture SYSTEM "nanonull.gif" NDATA GIF>

<!ENTITY AltovaURI SYSTEM "http://www.altova.com" NDATA LNK>

]>

<document>

 <header>Example of How to Use Unparsed Entity URIs</header>

 <para>...</para>

 <link href="AltovaURI">Link to the Altova Website.</link>

</document>

SPS images and hyperlinks that use unparsed entities
Images and hyperlinks in the SPS that reference unparsed entity URIs are used as follows:

1. Insert the image or hyperlink via the Insert menu.
2. In the object's Edit dialog, select the Dynamic tab properties (screenshot below), and enter an XPath

expression that selects the node containing the name of the unparsed entity. In the XML document
example given above, these nodes would be, respectively, the //img/@src and //link/@href nodes.

339

339

144 301

339

340 Additional Functionality Unparsed Entity URIs

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. Then check the Treat as Unparsed Entity check box at the bottom of the dialog. This causes the
content of the selected node to be read as an unparsed entity. If an unparsed entity of that name is
declared, the URI associated with that unparsed entity is used to locate the resource (image or
hyperlink).

When the stylesheet is processed, the URI associated with the entity name is substituted for the entity name.

Note: If the URI is a relative URI, then the XSLT processor expands it to an absolute URI applying the base URI
of the DTD. For example, if the unparsed entity is associated with the relative URI "nanonull.gif", then this
URI will be expanded to file:///c:/someFolder/nanonull.gif, where the DTD is in the folder someFolder.

© 2019-2025 Altova GmbH

New from XSLT, XSL-FO or FO File 341Additional Functionality

Altova StyleVision 2025 Basic Edition

9.2 New from XSLT, XSL-FO or FO File

An SPS design can be based on existing XSLT files that were designed for HTML output or XSLT files with XSL-
FO commands for output in PDF or FO files. This means that SPS files do not have to be designed from
scratch, but can take an already existing XSLT file as a starting point.

Steps for creating an SPS from XSLT
The steps for creating an SPS file from an XSLT, XSLT-for-FO, or FO file are as follows.

1. Select the command File | New | New from XSLT, XSL-FO or FO File.
2. In the Open dialog that appears, browse for the file you want.
3. In the next dialog you will be prompted to select a schema on which the SPS is to be based. Select

the schema you want.
4. An SPS based on the structure and formatting in the XSLT or FO file will be created and displayed in

Design View .
5. You can now modify the SPS in the usual way. For example, you could drag in nodes from the

Schema Tree , modify the styling and presentation or add additional styling, and use StyleVision
functionality such as Auto-Calculations and Conditional Templates .

6. You can save the SPS and use a Working XML File to preview various output formats .
Subsequently you can generate stylesheets and output files using the Save Generated Files
command.

Example
The example discussed below is located in the (My) Documents folder , C:\Documents and
Settings\<username>\My

Documents\Altova\StyleVision2025\StyleVisionExamples/Tutorial/NewFromXSLT. This folder contains
the files: SimpleExample.xslt, SimpleExample.xsd, and SimpleEample.xml.

The XML file is shown below.

XML file used in charts example: YearlySales.xml

<?xml version="1.0" encoding="UTF-8"?>
<Data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="YearlySales.xsd">

<ChartType>Pie Chart 2D</ChartType>

<Region id="Americas">

<Year id="2005">30000</Year>

<Year id="2006">90000</Year>

<Year id="2007">120000</Year>

<Year id="2008">180000</Year>

<Year id="2009">140000</Year>

<Year id="2010">100000</Year>

</Region>

<Region id="Europe">

<Year id="2005">50000</Year>

<Year id="2006">60000</Year>

<Year id="2007">80000</Year>

<Year id="2008">100000</Year>

<Year id="2009">95000</Year>

27

36

241 246

33 28

441 441

23

342 Additional Functionality New from XSLT, XSL-FO or FO File

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

<Year id="2010">80000</Year>

</Region>

<Region id="Asia">

<Year id="2005">10000</Year>

<Year id="2006">25000</Year>

<Year id="2007">70000</Year>

<Year id="2008">110000</Year>

<Year id="2009">125000</Year>

<Year id="2010">150000</Year>

</Region>
</Data>

The XSLT file is as follows:

Follow the steps 1 to 4 listed above to obtain the SPS in Design View. The SPS will look something like this:

© 2019-2025 Altova GmbH

New from XSLT, XSL-FO or FO File 343Additional Functionality

Altova StyleVision 2025 Basic Edition

Notice that the two templates in the XSLT have been created in the SPS. Now switch to the HTML Preview
(screenshot below), and notice that the h1 element's styling (color:red) has been also passed to the SPS.

In Design View select the h1 element and change its color to black (in the Styles sidebar, in the Color group of
properties). Then, from the Schema Tree, drag the Year element and create it as a table at the location shown
in the screenshot below. Reverse the contents of the two columns so that the Year ID is in the first column.

344 Additional Functionality New from XSLT, XSL-FO or FO File

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

You can make additional changes in the content, structure, and presentation properties of the document, then
preview the output and save files using the Save Generated Files command.441

© 2019-2025 Altova GmbH

User-Defined XPath Functions 345Additional Functionality

Altova StyleVision 2025 Basic Edition

9.3 User-Defined XPath Functions

The SPS designer can define customized XPath 2.0/3.0 functions. A user-defined XPath function can be re-
used in any design component that accepts an XPath expression, for example, in Auto-Calculations,
conditions, and combo boxes.

Defining and editing user-defined XPath functions
User-defined XPath functions are created (and subsequently accessed for editing) in either the Schema Tree
sidebar or the Design Tree sidebar (see screenshot below). All the user-defined XPath functions in an SPS are
listed under the XPath Functions item in both the Schema Tree and Design Tree sidebars and can be accessed
via either sidebar.

To create a user-defined XPath function, click the icon of the XPath Functions item. This pops up the XPath
Functions dialog (screenshot below). If you wish to edit a function that has already been created, double-click
its entry in the list of XPath functions. The XPath Functions dialog (screenshot below) will appear and the
function definition can be edited.

346 Additional Functionality User-Defined XPath Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

After a user-defined XPath function is created, it is available for use anywhere in the design.

Namespace of user-defined XPath functions
User-defined XPath functions are created in the namespace: http://www.altova.com/StyleVision/user-
xpath-functions. This namespace is bound to the prefix sps:, so user-defined XPath functions must be
called using this namespace prefix. For example, sps:MyFunction().

Enabling and disabling user-defined XPath functions
Each user-defined XPath function can be enabled or disabled by, respectively, checking or unchecking the
check box to the left of the function's entry in the list of user-defined XPath functions (see screenshot below).

© 2019-2025 Altova GmbH

User-Defined XPath Functions 347Additional Functionality

Altova StyleVision 2025 Basic Edition

This feature is useful if two functions have the same name. Such a situation could arise, for example, when an
imported SPS module contains a function having the same name.

Calling a user-defined XPath function
A user-defined XPath function can be called in an XPath expression at any location in the design. For example,
the user-defined XPath function sps:MyFunction defined above can be called, for example, with the following
XPath expression in an Auto-Calculation:

sps:MyFunction()/@name.

This XPath expression would be evaluated as follows:

1. The sps:MyFunction() function is evaluated. Let's say the function is defined as follows:
$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock]. When the function is evaluated it
returns the /Trades/Stock element that has a name attribute with a value that matches the content of
the /Trades/Selection/Stock element.

2. The result of Step 1 is returned to the XPath expression in the function call. Now the value of the name
attribute of this /Trades/Stock element is returned as the value of the Auto-Calculation.

Deleting a function
To delete a function, select it in the XPath Functions list in the Schema Tree or Design Tree sidebar and then
click the Remove Item icon in the toolbar of the sidebar. Alternatively, you can right-click the XPath function
and select Remove Item from the context menu.

9.3.1 Defining an XPath Function

A user-defined XPath function requires: (i) a name (a text string), and (ii) a definition (an XPath expression).

348 Additional Functionality User-Defined XPath Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Additionally, you can specify one or more parameters for the function. A user-defined XPath function can also
have an optional return type (specified by selecting a type from the dropdown list of the Return Type combo
box). A return type is useful if you wish to check that the datatype of the returned value conforms to the
selected datatype. Note that the return value is not converted to the selected datatype. If there is a type
mismatch, an error is returned. If no return type is specified, no datatype check is carried out.

After a user-defined XPath function is created, it is available for use anywhere in the design. In the XSLT
stylesheet, it is created as an xsl:function element that is a child of the xsl:stylesheet element, as
shown in the listing below.

<xsl:stylesheet>
 ...
 <xsl:function name="sps:Stock">

<xsl:sequence select="$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock]"/>
 </xsl:function>
 <xsl:function name="sps:Average" as="xs:decimal">

<xsl:param name="a" as="xs:integer"/>
<xsl:param name="b" as="xs:integer"/>
<xsl:param name="c" as="xs:integer"/>
<xsl:sequence select="avg(($a, $b, $c))"/>

 </xsl:function>
</xsl:stylesheet>

The sps:Stock function shown in the screenshot below and listed above returns the /Trades/Stock element
that has a name attribute with a value that matches the content of the /Trades/Selection/Stock element. The
sps:Average function listed above returns the average of three input parameter-values. The function definition
uses the avg() function of XPath 2.0/3.0. The return datatype is specified to be of the xs:decimal type, which
is the datatype returned by the avg() function when evaluating input values of datatype xs:integer. If the
return type is specified, then the datatype of the return value is checked to see if it conforms with the specified
type. If it doesn't, an error is returned.

© 2019-2025 Altova GmbH

User-Defined XPath Functions 349Additional Functionality

Altova StyleVision 2025 Basic Edition

Defining the function

To define a function, click the icon of the XPath Functions item in the Schema Tree or Design Tree. This
pops up the XPath Functions dialog (screenshot above). If you wish to edit a function that has already been
created, double-click its entry in the list of XPath functions. Then enter a name for the function and a definition
in the Function Body pane. Parameter definitions can be entered if required (see the next two sections,
Parameters and Sequences and Parameters and Nodes , for details). A return type for the function can
also be specified (see above).

The most important point to bear in mind when writing the XPath expression that defines XPath function is that
there is no context node for the XPath expression. If the XPath expression must locate a node then the
context node for the expression can be provided in one of the following ways:

1. The XPath expression starts with the document root. The document root is specified in the first location
step of the XPath expression as $XML. For example, the XPath expression $XML/Trades/Stock[1]
locates the first Stock child element of the /Trades element. The variable $XML (which locates the
document root of the main schema) is defined globally by StyleVision in all SPS designs.

2. The context node can be passed as a parameter. See the section Parameters and Nodes below for
an explanation.

In the following cases, errors are returned:

· If a parameter is defined but is not used in the body of the definition.

353 358

358

350 Additional Functionality User-Defined XPath Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· If the datatype of the value returned by the function does not match the return type defined for the
function.

· If any function in the SPS contains an error, an XSLT error is generated for the whole design, even if the
function containing the error is not called. Note, however, that a function can be disabled by
unchecking its check box in the list of user-defined XPath functions. When disabled in the design, the
function is not included in the XSLT document generated from the design. In this way, an XPath
expression containing an error can be excluded from the XSLT and no XSLT error will be generated.

9.3.2 Reusing Functions to Locate Nodes

In the previous section we saw how an XPath function can be built to locate a node. The sps:Stock function
which is defined as shown in the screenshot below returns the /Trades/Stock element that has a name
attribute with a value that matches the content of the /Trades/Selection/Stock element.

We could modularize the location steps of the XPath expression
$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock] into separate XPath functions. For example as
follows:

· The function sps:Stocks(), with the definition: $XML/Trades/Stock
· The function sps:SelectedStock(), with the definition: $XML/Trades/Selection/Stock

© 2019-2025 Altova GmbH

User-Defined XPath Functions 351Additional Functionality

Altova StyleVision 2025 Basic Edition

The whole XPath expression can then be written in another XPath expression as:

sps:Stocks()[@name=sps:SelectedStock()]

When XPath functions are created in this way to locate a node or nodeset, these functions can be re-used in
other XPath expressions across the SPS design, thus considerably simplifying the writing of complex XPath
expressions.

9.3.3 Parameters in XPath Functions

A user-defined XPath function can be assigned any number of parameters. The function's parameters are
defined in the Parameters pane of the XPath Functions dialog (see screenshot below). These parameters can
then be used in the definition of the user-defined XPath function (in the Function Body pane).

User-defined XPath function mechanism
The steps below explain how an XPath function works.

1. In a function call (for example, in an Auto-Calculation), the number of arguments in the function call
must match the number of parameters defined for the user-defined function (as defined in the
Parameters pane of the user-defined function; see screenshot below). Additionally, the number of items
submitted by each argument (in the function call) must match the Occurrence definition of the
corresponding parameter. If a datatype restriction has been specified for a parameter (in the Type
column of the Parameters pane), the value/s submitted by the argument must match this datatype.

2. The arguments passed to the function's parameters are then used in the XPath function (as defined in
the Function Body pane; see screenshot below). The result obtained by evaluating the XPath
expression is then checked against the optional Return Type definition (see screenshot below). If the
datatype is as expected, the result is used in the XPath expression from which the function was called.

Order of parameters
The order of the user-defined function's parameters is important because, when the function is called, the
arguments submitted in the function call will be assigned to the parameters according to the order in which
they are defined in the Parameters pane (see screenshot below).

352 Additional Functionality User-Defined XPath Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

So if the sps:Stock user-defined XPath function is defined as in the screenshot above and if it is called with the
following XPath expression:

sps:Stock($XML, Node1, Node2)

then these three arguments—$XML, Node1, Node2— will be assigned, in that order, respectively, to the
parameters $ContextStock, $Selection, and $StockInfo.

Note that each argument in the function call is separated from the next by a comma. So, each argument, as
delimited by the commas in the function call, will be passed to the corresponding parameter (as ordered in the
Parameters pane; see screenshot above).

The order of parameters in the Parameters pane can be controlled with the Append, Insert, and Delete icons
of the Parameters pane.

Datatype of parameters
Optionally, the datatypes of parameters of the user-defined function can be defined. If a datatype is specified,
then the datatype of the incoming argument will be checked against the parameter's datatype, and an error will
be returned if the types do not match. This feature enables the input data (from the function call's arguments) to
be checked.

© 2019-2025 Altova GmbH

User-Defined XPath Functions 353Additional Functionality

Altova StyleVision 2025 Basic Edition

Occurrence
Each parameter of the user-defined XPath function can be considered to be a sequence. The Occurrence
property of a parameter specifies how many items must be submitted for that parameter by the corresponding
argument of the function-call.

In both function definitions and in function calls, commas are used to separate one parameter or argument from
another as well as to separate items within a sequence. It is important, therefore, to note the context in which a
comma is used: to separate parameters/arguments or to separate sequence items.

· In parameters/arguments, if required, parentheses are used to delimit sequences—in the function
definition (parameters) or in the function call (arguments).

· In sequences, parentheses are ignored.

In this context, the following examples and points should be noted:

· Parentheses in parameters/arguments: Several XPath functions take a single sequence as an
argument, for example, the avg() and count() functions. If this sequence is enumerated using
comma separators or range operators, the sequence must be enclosed in parentheses to
unambiguously show that it is a single sequence—and not multiple comma-separated sequences. For
example, in the function avg((count($a), $b, $c)), the XPath 2.0 avg() function takes the single
sequence (count($a),$b,$c) as its argument. Since the items of the sequence are enumerated,
making up a sequence of three items, the sequence must be enclosed in parentheses and submitted
as a single argument to the avg() function: avg((count($a),$b,$c)). Without the inner pair of

parentheses, the definition of the avg() function would have three parameters, and that would be an
error (since the avg() function expects one argument consisting of a single sequence).

· No parentheses in parameters/arguments: Similarly, the count() function also takes a single
sequence as its one-parameter argument. However, since in our example count($a) the single
sequence is not a comma-separated enumerated list, but is fetched instead by the variable/parameter
$a, the argument does not need to be enclosed by an inner set of parentheses: So the expression
count($a) is correct.

· Parentheses and commas in function calls: In a function call, parentheses must be correctly used
so that each argument corresponds to a parameter (as defined in the Parameters pane of the XPath
Functions dialog). For example, if a user-defined XPath function named MyAverage() is defined with
the XPath 2.0 expression: avg((count($a),$b,$c)), then the following function call would be valid:
MyAverage((1,2,3),4,5). The values corresponding to the three parameters $a, $b, and $c would be,
respectively, the sequence (1,2,3), the singleton-sequence 4, and the singleton sequence 5.
Singleton-sequences can, optionally, be enclosed in parentheses. The value returned by MyAverage()
in this case would be 4.

9.3.3.1 Parameters and Sequences

It is important to note the relationship between parameters and sequences, and how parameters and
sequences are used in XPath expressions. We use the following definitions to make these relationships
clearer:

· A sequence consists of items that are either atomic values or nodes. A comma can be used to
construct a sequence, by placing it between the items of a sequence and so allowing the sequence to
be built.

354 Additional Functionality User-Defined XPath Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· An XPath function can be defined to take parameters. For example, in the XPath 2.0 expression
count($a), the part within the function's parentheses is the parameter of the function and it must be a
sequence of items.

· An argument consists of one or more items in a function call. For example, the function
count(//Person) has one argument: //Person. This argument is valid because it returns one
sequence of nodes, which corresponds to the signature of the count() function. (The signature of a
function specifies the number of parameters and the expected datatype of each parameter. It also
specifies what the function will return and the datatype of the returned object)

· The function substring('StyleVisionExamples', 6, 6)—which returns the string Vision—has
three arguments. This is valid according to the signature of the substring() function, and is specified
by it. When a function call has multiple arguments, these are separated by commas.

Parentheses as sequence delimiters
A key point to note when constructing XPath expressions is this: Parentheses are used to delimit sequences
that use the comma separator or range operator to enumerate sequences. As a result, each parentheses-
delimited sequence is read as one parameter (in function definitions) or one argument (in function calls).

Parentheses are not necessary around a path (or locator) expression (example of a path
expression: //Person/@salary), because a path expression can be read unambiguously as one parameter or
one argument. It is in fact a one-sequence parameter/argument.

Here are some examples to illustrate the points made above:

· avg((10, 20, 30)) The avg function of XPath 2.0 takes one sequence of items as its single

argument. Since this sequence is a comma-separated enumeration, the inner pair of parentheses are
necessary in order to delimit the mandatory single sequence. Without the inner parentheses, the
argument would have three arguments and therefore be invalid. (The outer pair of parentheses are the
parentheses of the function.)

· avg(//Person/@salary) This path expression selects the salary attribute nodes of all Person

elements and returns their attribute-values as the sequence to be evaluated (that is, to be averaged).
No parentheses are required because the sequence is not enumerated before the argument is read.
The argument is the single path (or locator) expression. The path expression is evaluated and the
returned values are submitted to the function as the items of a sequence.

· count((10 to 34)) This is an enumeration via the range operator. The range operator 'to' generates

 a sequence of comma-separated items (the integers from 10 to 34) before the argument is read. As a
result, the count() function has within its argument a comma-separated sequence of 25 items. To
read this as one single-sequence argument, delimiting parentheses are required. Without such
parentheses, the function call would have 25 arguments instead of one—thus invalidating the function
call, since the count() function must, according to its signature, have only one argument.

· count((10 to 34, 37)) The inner parentheses indicate that everything within them is the one

argument of the function call—a single sequence consisting of 26 items.
· count(//Person) No sequence-delimiter parentheses are required around the single argument. The

arguent is a path expression that collects the //Person nodes in the XML document and returns these
nodes as the items of the sequence to be counted.

Using XPath parameters in XPath functions
When parameters are used in the definition of a user-defined XPath function, ensure (i) that the number of
arguments in a function call to this user-defined XPath function is correct, and (ii) that the arguments evaluate
correctly to the expected type and occurrence.

© 2019-2025 Altova GmbH

User-Defined XPath Functions 355Additional Functionality

Altova StyleVision 2025 Basic Edition

The screenshot above defines three parameters (in the Parameters pane) and then uses these parameters (in
the Function Body pane) to define an XPath function.

Each parameter that is defined in the Parameters can be considered to be a single sequence. The number of
items allowed within the single sequence is specified with the Occurrence property. In the definition above,
each parameter is defined (in its Occurrence property) as a singleton-sequence (that is, a sequence of exactly
one item). Each argument of the function call must therefore be a sequence of one item. The Type property
specifies the datatype of the items of the sequence.

In the definition of our example XPath function (in the Function Body pane), each parameter provides one item
of the sequence that is to be averaged. Since the XPath parameters together constitute a sequence, the
sequence must be enclosed in parentheses to ensure that the entire sequence is read as the one parameter of
the avg() function. If, at runtime, any of the arguments in the function call (corresponding to the three
parameters) is not a singleton-sequence, an error is returned.

Given below are examples of XPath parameter usage in calls to the XPath function ThreeAverage() shown in
the screenshot above. In Design View, you can insert an Auto-Calculation and give it the XPath expressions
listed below to see the results. The function has been defined to take a sequence of three integers and average
them.

· sps:ThreeAverage(10,20,30) returns 20. There are three valid arguments in the function call,
corresponding to the three XPath parameters.

356 Additional Functionality User-Defined XPath Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· sps:ThreeAverage((10),(20),(30)) returns 20. There are three valid input arguments,
corresponding to the three XPath parameters. Each input argument has been enclosed with
parentheses (which are redundant, since each sequence is a singleton-sequence; however, this
redundancy is not an error).

· sps:ThreeAverage((10),20,30) returns 20. There are three valid input arguments, corresponding
to the three XPath parameters. The first argument has been enclosed with parentheses (redundant, but
not an error).

· sps:ThreeAverage((10,20),(30),(40)) returns an error because the first argument is not valid. It
is not a singleton-sequence, as required by the property definition of the first $a parameter ('Exactly
one').

· sps:ThreeAverage((10,20,30)) returns an error because only one input argument is submitted,
inside the parentheses. Additionally, the argument is invalid because the sequence is not a singleton-
sequence.

If the Occurrence property of a parameter is set to At-least-one (as in the definition shown in the screenshot
below), then that parameter is defined as a sequence of one-or-more items.

In the definition above, the first parameter has been defined as a sequence of one or more items, the next two
parameters as singleton-sequences. The function has been defined to count the number of items submitted by
the first parameter, add the result to the sum of the two integers submitted by the other two parameters, and
then divide the result by three to obtain the average. Notice the following:

© 2019-2025 Altova GmbH

User-Defined XPath Functions 357Additional Functionality

Altova StyleVision 2025 Basic Edition

· The sequence that is the parameter of the avg() function is enclosed in parentheses. This is to specify
that the avg() function takes a single sequence consisting of three items as its parameter. The single
sequence consists of three integers: the first submitted by the count() function; the second and third
are the two parameters b and c.

· The argument of the count() function is not enclosed in sequence-delimiter parentheses because the
argument is unambiguously a single sequence.

Here are examples of parameter usage in calls to the XPath function Average() shown in the screenshot
above.

· sps:Average((1,2),3,4) returns 3. There are three valid input arguments, corresponding to the three
parameters. The first argument is enclosed in parentheses to delimit it. When the count() function
operates on it, the function will return the value 2, which will be the first item of the sequence submitted
to the avg() function.

· sps:Average(4,4,4) returns 3. There are three valid input arguments. The first argument is allowed
to be a sequence of one item (see the Occurrence property of its corresponding parameter). No
parentheses are required to indicate separate arguments.

Additional points of interest
The following additional points should be noted:

· If an parameter is defined as having At-least-one occurrence, then a function such as MyAverage()
could be defined with an XPath expression such as avg(($a)). This function would accept an
argument that is a single sequence of one-or-more items. The function could be called as follows:
sps:MyAverage((2,3,4)), and it would return the value 3. The input argument must be enclosed in
parentheses to ensure that the input is being read as a single sequence rather than as three singleton-
sequences (which would be the case if there were no enclosing parentheses).

· If an XPath parameter $a is defined as having None-or-one occurrence, then a function such as
MyAverage() could be defined with an XPath expression such as avg(($a, $b, $c)). This function
would accept as its argument three sequences, with the possibility of the first sequence being empty.
If the first sequence is to be empty, then an empty sequence must be explicitly submitted as the first
input argument. Otherwise an error is reported. If the function were called as follows:
sps:MyAverage(30,20,10), it would return the value 20. The function could also be called with:
sps:MyAverage((),20,10), returning 15 (note that the empty sequence does count: as an input value
of empty; for a return value of 10, the first item would have to be 0). The following, however, would
generate an error: sps:MyAverage(20,10), because no first empty sequence is supplied and, as a
consequence, the third input argument is considered to be absent.

Complex examples
Besides providing the benefit of being able to re-use an XPath expression, user-defined XPath functions also
enable the construction of complex customized XPath functions that are not available in the XPath 2.0 function
set. For example, a factorial function could easily be constructed with an XPath expression that takes a
singleton-sequence as its single parameter. If the parameter $num is the number to be factorialized, then the
XPath expression to create the function would be:

if ($num < 2) then 1 else $num * sps:Factorial($num - 1)

If this function were called Factorial(), then the factorial of, say 6, could be obtained by calling the function
with: sps:Factorial(6).

358 Additional Functionality User-Defined XPath Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

9.3.3.2 Parameters and Nodes

When using parameters in XPath functions that locate nodes, it is important to bear in mind that the function
has no context node, no matter from where in the design it is called. The context node can be supplied either in
the XPath expression that is used to define the function (that is, in the Function Body pane) or in the XPath
expression that is used to call the XPath function. In the latter case, the context can be supplied via arguments
in the function call.

Consider the user-defined XPath function Stock(), which is defined with three parameters as shown in the
screenshot below.

The definition in the function body is $ContextStock[@name=$Selection]/$StockInfo, which uses the three
parameters but contains no context node information. The context node information can be supplied in the
XPath expression that calls the function, for example in this way:

sps:Stock($XML/Trades/Stock, $XML/Trades/Selection/Stock, @name)

The function call has three arguments, the value of each of which supplies either context or node-locator
information. Alternatively, the following XPath expressions can be used as the function-call and give the same
results:

sps:Stock(/Trades/Stock, /Trades/Selection/Stock, @name)

© 2019-2025 Altova GmbH

User-Defined XPath Functions 359Additional Functionality

Altova StyleVision 2025 Basic Edition

sps:Stock(/Trades/Stock, //Selection/Stock, @name)

The $XML variable, which returns the document root, can be left out in function calls from design components
because in the XPath expressions of design components the context node is known.

Notice that in the function-call listed above there are three input arguments corresponding respectively to the
three parameters defined for the user-defined XPath function:

· $ContextStock = $XML/Trades/Stock (the /Trades/Stock element)
· $Selection = $XML/Trades/Selection/Stock (the /Trades/Selection/Stock element)
· $StockInfo = @name

The XPath expression in the function definition is:

$ContextStock[@name=$Selection]/$StockInfo

When the input arguments are substituted, the XPath expression in the function definition becomes:

$XML/Trades/Stock[@name=$XML/Trades/Selection/Stock]/@name

It is important to note that it is the nodesets that are passed to the function, not the text strings.

It is in this way that the context node and location steps are passed to the function via parameters. The
function can then be evaluated to locate and return the required nodes.

360 Additional Functionality Working with Dates

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

9.4 Working with Dates

If the source document contains nodes that take date values, using the xs:date or xs:dateTime datatypes in
the underlying XML Schema makes available the powerful date and time manipulation features of XPath 2.0/3.0
(see examples below). StyleVision supports the xs:date or xs:dateTime datatypes by providing a wide
range of date formatting possibilities via the Input Formatting feature.

Note: Date and time data cannot be manipulated with XPath 1.0. However, with XPath 1.0 you can still use
Input Formatting to provide date formatting .

Date calculations with XPath 2.0
Data involving dates can be manipulated with XPath 2.0 expressions in Auto-Calculations . Given below are a
few examples of what can be achieved with XPath 2.0 expressions.

· The XPath 2.0 functions current-date() and current-dateTime() can be used to obtain the current
date and date-time, respectively.

· Dates can be subtracted. For example: current-date() - DueDate would return an
xdt:dayTimeDuration value; for example, something like P24D, which indicates a positive difference of
24 days.

· Time units can be extracted from durations using XPath 2.0 functions. For example: days-from-
duration(xdt:dayTimeDuration('P24D')) would return the integer 24.

Here is an XPath 2.0 expression in an Auto-Calculation. It calculates a 4% annual interest on an overdue
amount on a per-day basis and returns the sum of the principal amount and the accumulated interest:

if (current-date() gt DueDate)
then (round-half-to-even(InvoiceAmount +

(InvoiceAmount*0.04 div 360 *
days-from-duration((current-date() - DueDate))), 2))

else InvoiceAmount

Such a calculation would be possible with XPath 2.0 only if the DueDate element were defined to be of a date
type such as xs:date and the content of the element is entered in its lexically correct form, that is, YYYY-MM-
DD[±HH:MM], where the timezone component (prefixed by ±) is optional.

9.4.1 Formatting Dates

A date in an XML document is saved in the format specific to the datatype of its node. For example, the value
of an xs:date node will have the format YYYY-MM-DD[±HH:MM], while the value of an xs:dateTime node will
have the format YYYY-MM-DDTHH:MM:SS[±HH:MM]. These formats are said to be the lexical representations of
that data. By default, it is the lexical representation of the data that is displayed in Authentic View and the
output. However, in the SPS, the Value Formatting feature can be used to display dates in alternative formats
in Authentic View and, in some cases, optionally in the output.

360

360 311

360

241

© 2019-2025 Altova GmbH

Working with Dates 361Additional Functionality

Altova StyleVision 2025 Basic Edition

Value Formatting for dates can be used to define custom formats for nodes and Auto-Calculations of the
following datatypes:

· xs:date
· xs:dateTime
· xs:duration
· xs:gYear
· xs:gYearMonth
· xs:gMonth
· xs:gMonthDay
· xs:gDay

Using Value Formatting to format date nodes
To format dates alternatively to the lexical format of the date node, do the following:

1. Select the contents placeholder or input field of the node. Note that value formatting can only be

applied to nodes created as contents or an input field.
2. In the Properties sidebar, select the autocalc item, and then the AutioCalc group of properties. Now

click the Edit button of the Value Formatting property. This displays the Value Formatting dialog
(screenshot below).

By default, the Unformatted radio button (the standard lexical format for the node's datatype) is
selected.

3. To define an alternative format, select the Format radio button.
4. You can now select a predefined date format from the drop-down list of the combo box (screenshot

below), or define your own format in the input field of the combo box. See Value Formatting Syntax
for details about the syntax to use when defining your own format.

314

362 Additional Functionality Working with Dates

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Using Value Formatting to format Auto-Calculations
When Auto-Calculations evaluate to a value that is a lexical date format, Value Formatting can be used to
format the display of the result. Do this as follows:

1. Select the Auto-Calculation in the design.
2. In the Properties sidebar, select the content item, and then the AutoCalc group of properties. Now

click the Edit button of the Value Formatting property. This pops up the Value Formatting dialog
(screenshot below).

By default, the Unformatted radio button is selected.
3. To define an alternative format, select the Format radio button.
4. In the Options for XML Schema value pane, in the Datatype combo box, select the date datatype to

which the Auto-Calculation will evaluate. In the Format combo box, you can then select a predefined
date format from the drop-down list (available options depend on the selected datatype), or define your
own format in the input field of the combo box. See Value Formatting Syntax for details about the
syntax to use when defining your own format.

Applying Value Formatting to the output
The Value Formatting that you define applies to Authentic View. Additionally, some Value Formatting
definitions—not all—can also be applied to HTML output. To do this, check the Apply Same Format to XSLT
Output check box. If this option is not checked or if it is not available, then only Authentic View will display the
Value Formatting; the output will display the value in its lexical format (for nodes) or, in the case of Auto-
Calculations, in the format to which the Auto-Calculation evaluates.

314

© 2019-2025 Altova GmbH

Using Scripts 363Additional Functionality

Altova StyleVision 2025 Basic Edition

9.5 Using Scripts

In StyleVision, you can define JavaScript functions for each SPS in a JavaScript editor (available as a tab in the
Design View). The function definitions created in this way are stored in the header of the HTML document and
can be called from within the body of the HTML document. Such functions are useful when:

· You wish to achieve a complex result using multiple script statements. In this case it is convenient to
write all the required scripts, as separate functions, in one location (the header) and refer to the
functions subsequently in the design document.

· You wish to use a particular script at multiple locations in the design document.

How to define functions in the JavaScript Editor is described in the sub-section Defining JavaScript
Functions .

In the GUI, all JavaScript functions which are defined for a given SPS in the JavaScript Editor are listed in the
Design Tree window under the Scripts entry (screenshot below). The screenshot below indicates that four
JavaScript functions, Average, ImageOut, ImageOver, and Buttons, are currently defined in the active SPS.

The functions defined in the JavaScript Editor are available as event handler calls within the GUI. When a
component in the design document is selected, any of the defined functions can be assigned to an event
handler property in the Event property group in the Properties sidebar. How to assign a JavaScript function to
an event handler is described in the section Assigning Function to Event Handlers .

Scripts in modular SPSs
When an SPS module is added to another SPS module , the scripts in the added module are available
within the referring SPS, and can be used as event handlers via the Properties sidebar for components in the
referring SPS. For more information about using modular SPSs, see the section Modular SPSs .

364

365

202

202

364 Additional Functionality Using Scripts

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

9.5.1 Defining JavaScript Functions

To define JavaScript functions, do the following:

1. In Design View, switch to the JavaScript Editor by clicking the Design View tab and selecting
JavaScript (screenshot below).

2. In the JavaScript Editor, type in the function definitions (see screenshot below).

The screenshot above shows the definitions of two JavaScript functions: DisplayTime and
ClearStatus. These have been described for the active SPS. They will be entered in the header of the
HTML file as follows:

<script language="javascript">

<!-- function DisplayTime()
{

now = new Date();
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
result = hours + "." + mins + "." + secs;
alert(result)

}

function ClearStatus()
{

window.status="";
}
-->

</script>

© 2019-2025 Altova GmbH

Using Scripts 365Additional Functionality

Altova StyleVision 2025 Basic Edition

These functions can now be called from anywhere in the HTML document. In StyleVision, all the
defined functions are available as options that can be assigned to an event handler property in the
Event property group in the Properties sidebar. See Assigning Function to Event Handlers for
details.

9.5.2 Assigning Functions as Event Handlers

In the StyleVision GUI, you can assign JavaScript functions as event handlers for events that occur on the
HTML renditions of SPS components. These event handlers will be used in the HTML output. The event handler
for an available event—such as onclick—is set by assigning a global function as the event handler. In the
Properties sidebar, global functions defined in the JavaScript Editor are available as event handlers in the
dropdown boxes of each event in the Events property group for the selected component (screenshot below).

To assign a function to an event handler, do the following:

1. Select the component in the SPS for which the event handler is to be defined. The component can be a
node or content of any kind, dynamic or static.

2. In the Properties sidebar select the Event group. This results in the available events being displayed in
the Attribute column (screenshot above).

3. In the Value column of the required event, click the down arrow of the combo box. This drops down a
list of all the functions defined in the JavaScript Editor.

4. From the dropdown list, select the required function as the event handler for that event.

In the HTML output, when that event is triggered on the component for which the event handler is defined, the
JavaScript function is executed.

365

366 Additional Functionality Using Scripts

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

9.5.3 External JavaScript Files

An SPS can access external JavaScript files in two ways:

1. By creating a User-Defined Element or User-Defined XML Block . These design objects can contain
a SCRIPT element that accesses the external JavaScript file. Note that location of the User-Defined
Element or User-Defined XML Block is within the BODY element of the design (and therefore within the
BODY element of the HTML output, not within the HEAD element).

2. By adding a script in the Javascript Editor that accesses the external file. A script that is added in
this way will be located in the HEAD element of the HTML output.

User-Defined Elements and User-Defined XML Blocks
External JavaScript files can be accessed by means of User-Defined Elements and User-Defined XML
Blocks . Using these mechanisms, a SCRIPT element that accesses the external JavaScript file can be
inserted at any location within the BODY element of the output HTML document.

A User-Defined Element could be inserted as follows:

1. Place the cursor at the location in the design where the SCRIPT element that accesses the JavaScript
file is to be inserted.

2. From the Insert menu or context menu, select the command for inserting a User-Defined Element .

3. In the dialog that pops up (see screenshot above), enter the SCRIPT element as shown above, giving
the URL of the JavaScript file as the value of the src attribute of the SCRIPT element: for example,
script type="text/javascript" src="file:///c:/Users/mam/Desktop/test.js"

4. Click OK to finish.

You can also use a User-Defined XML Block to achieve the same result. To do this use the same procedure
as described above for User-Defined Elements, with the only differences being (i) that a User-Defined XML
Block is inserted instead of a User-Defined Element , and (ii) that the SCRIPT element is inserted as a
complete XML block, that is, with start and end tags.

366

367

116

117

116

116

117

117 116

© 2019-2025 Altova GmbH

Using Scripts 367Additional Functionality

Altova StyleVision 2025 Basic Edition

JavaScript Editor
The JavaScript Editor enables you to insert an external script in the HEAD element of the HTML output. Do
this by entering, in the JavaScript Editor, the following script fragment, outside any other function definitions
that you create.

var script = document.createElement('script');
script.type = 'text/javascript';

script.src = 'file:///c:/Users/Desktop/test.js';

var head = document.getElementsByTagName('head')[0];
head.appendChild(script)

The external JavaScript file that is located by the URL in script.src is accessed from within the HEAD element
of the output HTML document.

364

368 Additional Functionality HTML Import

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

9.6 HTML Import

In StyleVision you can import an HTML file and create the following documents based on it:

· An SPS document based on the design and structure of the imported HTML file.
· An XML Schema, in which HTML document components are created as schema elements or

attributes. Optionally, additional elements and attributes that are not related to the HTML document
can be created in the user-defined schema.

· An XML document with: (i) a structure based on the XML Schema you have created, and (ii) content
from the HTML file.

· XSLT stylesheets based on the design in Design View.

HTML-to-XML: step-by-step
The HTML Import mechanism, which enables the creation of XML files based on the imported HTML file,
consists of the following steps:

1. Creating New SPS via HTML Import . When an HTML file is imported into StyleVision, a new SPS
document is created. The HTML document is displayed in Design View with HTML markup tags. A
user-defined XML Schema with a document element called UserRoot is created in the Schema Tree

window. This is the schema on which the SPS is based. The HTML document content and markup that
is displayed in Design View at this point is included in the SPS as static content.

2. Creating the Schema and SPS Design . Create the schema by (i) dragging components from the
HTML document to the required location in the schema tree (in the Schema Tree window); and,
optionally, (ii) adding your own nodes to the schema tree. In the Design Window, HTML content that
has been used to build nodes in the schema tree will now be displayed with schema node tags around
the content. HTML content that has no corresponding schema node will continue to be displayed
without schema node tags.

3. In the Design Document, assign formatting to nodes, refine processing rules, or add static content as
required. These modifications will have an effect only on the SPS and the generated XSLT. It will not
have an effect on either the generated schema or XML file.

4. After you have completed the schema tree and the design of the SPS, you can generate and save
the following:

· an XML Schema corresponding to the schema tree you have created;
· an XML data file with a structure based on the schema and content for schema nodes that are

created with the (content) placeholder in the SPS design;
· a SPS (.sps file) and/or XSLT stylesheet based on your design.

9.6.1 Creating New SPS via HTML Import

To create a new SPS file from an HTML document, do the following:

1. Select the menu command File | New | New from HTML File.
2. In the Open dialog that pops up, browse for the HTML file you wish to import. Select it and click Open.
3. You will be asked whether relative paths should be converted to absolute paths. Make your choice by

clicking either Yes or No.

368

370

374

© 2019-2025 Altova GmbH

HTML Import 369Additional Functionality

Altova StyleVision 2025 Basic Edition

A new SPS document is created. The document is displayed in Design View and is marked up with the
predefined HTML formats available in StyleVision (screenshot below).

Note that the HTML document is displayed within the main template. There is no global template.

In the Schema Tree sidebar, a user-defined schema is created (screenshot below) with a root element
(document element) called UserRoot.

Note that there is no global element in the All Global Elements list.

SPS structure and design
The SPS contains a single template—the main template—which is applied to the document node of a
temporary internal XML document. This XML document has the structure of the user-defined schema which was
created in the Schema Tree window. In Design View, at this point, the HTML document components within the
main template are included in the SPS as static components. The representation of these HTML components

370 Additional Functionality HTML Import

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

in Authentic View will be as non-editable, non-XML content. The XSLT stylesheets will contain these HTML
components as literal result elements. The schema, at this point, has only the document element Root;
consequently, the temporary internal XML document contains only the document element Root with no child
node.

When you create HTML selections as elements and attributes in the user-defined schema, you can do this in
either of two ways:

1. By converting the selection to an element or attribute. In the design, the node tags are inserted with a
(content) placeholder within the tag. In the schema, an element or attribute is created. In the XML
document, the selection is converted to the text content of the schema node which is created in the
XML document. The contents of the node created in the XML document will be inserted dynamically
into the output obtained via the SPS.

2. By surrounding the selection with an element or attribute. In the design, the selection is surrounded
by the node tags; no (content) placeholder is inserted. This means that the selection is present in
the SPS design as static content. In the schema, an element or attribute is created. In the XML
document, the node is created, but is empty. The static text which is within the schema node tags in
the design will be output; no dynamic content will be output for this node unless a (content)
placeholder for this node is explicitly inserted in the design.

The significance of the (content) placeholder is that it indicates locations in the design where data from the
XML document will be displayed (in the output) and can be edited (in Authentic View).

9.6.2 Creating the Schema and SPS Design

The schema is created by dragging selections from Design View into the user-defined schema. You do this one
selection at a time. The selection is dropped on a node in the schema tree (relative to which the new node will
be created, either as a child or sibling). You select the type of the node to be created (element or attribute) and
whether the selection is to be converted to the new node or surrounded by it.

The selection
The selection in Design View can be any of the following:

· A node in the HTML document.
· A text string within a node.
· Adjacent text strings across nodes.
· An image.
· A link.
· A table.
· A list.
· A combination of any of the above.

In this section we explain the process in general for any selection. The special cases of tables and lists are
discussed in more detail in the section Creating Tables and Lists as Elements/Attributes .

To make a selection, click an HTML document component or highlight the required text string. If multiple
components are to be selected, click and drag over the desired components to highlight the selection. Note
that StyleVision extends the selection at the beginning and end of the selection to select higher-level elements
till the first and last selected elements belong to the same parent.

372

© 2019-2025 Altova GmbH

HTML Import 371Additional Functionality

Altova StyleVision 2025 Basic Edition

The location in the schema tree
On dragging the selection over the desired schema tree node, the mouse pointer will be changed to one of the
following symbols.

· Dropping the node when the Create as Sibling symbol appears, creates the selection as a sibling
node of the node on which the selection is dropped.

· Dropping the node when the Create as Child symbol appears, creates the selection as a child
node of the node on which the selection is dropped.

You should select the node on which the selection is to be dropped according to whether the selection is to be
created as a sibling or child of that node.

Selecting how the node is created
When you drop the selection (see previous section), a context menu pops up (screenshot below) in which you
make two choices: (i) whether the node is to be created as an element or attribute; (ii) whether the selection is
to be converted to the node or whether the node is to simply surround the selection.

The following points should be noted:

· When a selection is converted to a node (element or attribute), the node tags, together with a
contained (content) placeholder, replace the selection in the design. In the design and the output the
text content of the selection is removed from the static content. In the output, the text of the selection
appears as dynamic content of the node in the XML document.

· If an HTML node is converted to an XML node, the XML node tags are inserted within the HTML node
tags.

· When a selection (including HTML node selections) is surrounded by an XML node, the XML node tags
are inserted before and after the selection. In the design and the output, the text content of the
selection is retained as static text.

· The inserted node tags are inserted with the necessary path (that is, with ancestor node tags that
establish a path relative to the containing node). The path will be absolute or relative depending on the
context of the node in the design.

· How to create nodes from table and list selections are described in Creating Tables and Lists as
Elements/Attributes .

372

372 Additional Functionality HTML Import

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Adding and deleting nodes in the schema
You can add additional nodes (which are not based on an HTML selection) to the user-defined schema. Do this
by right-clicking on a node and selecting the required command from the context menu. Alternatively, you can
use the toolbar icons of the Schema Tree sidebar.

To delete a node, select the node and then use either the context menu or the toolbar icon. Note, however, that
when a node is deleted, some paths in the design could be invalidated.

Modifying the design
You can modify the structure of the design by dragging components around and by inserting static and
dynamic components. Styles can also be modified using the various styling capabilities of StyleVision.

9.6.3 Creating Tables and Lists as Elements/Attributes

Tables and lists in the HTML document can be converted to element or attribute nodes in the XML Schema so
that they retain the table or list structure in the schema.

Converting a table to elements/attributes
To convert a table to schema nodes, do the following:

1. Select the HTML table by highlighting some text in it.
2. Drag it to the node in the schema tree as a sibling or child of which you want to create it.

3. Drop the node when the Create as Sibling symbol or Create as Child symbol appears.
4. In the context menu that now pops up (screenshot below), select the command Convert selected

table/list to elements or Convert selected table/list to attributes according to whether you wish to
create the contents of table cells as elements or attributes, respectively.

5. In the Convert Table dialog that pops up (screenshot below), select whether the table created in the
SPS should be a static table or dynamic table.

© 2019-2025 Altova GmbH

HTML Import 373Additional Functionality

Altova StyleVision 2025 Basic Edition

If the static table option is selected, then for each cell in the table, a schema node is created. In the
design, each node is inserted with the (content) placeholder. The data in the table cells is copied to
the temporary internal XML document (and to the generated XML document). The dynamic table
option is available when the structure of all rows in the table are identical. When created in the SPS,
the rows of the dynamic table are represented by a single row in the design (because each row has the
same structure). The table data will be copied to the XML file. The dynamic table can grow top/down
(rows are arranged vertically relative to each other) or left/right (rows become columns and extend from
left to right). If you indicate that the first row/column is a header, then (i) a header row containing the
column headers as static text is included in the design; and (ii) the schema element/attribute nodes
take the header texts as their names. If the first row/column is not indicated as a header, then no
header row is included in the design.

6. After you have selected the required option/s, click Convert to finish.

Converting a list to elements/attributes
To convert a list to schema nodes, do the following:

1. Select the HTML list by highlighting some text in it.
2. Drag it to the node in the schema tree as a sibling or child of which you want to create it.

3. Drop the node when the Create as Sibling symbol or Create as Child symbol appears.
4. In the context menu that now pops up (screenshot below), select the command Convert selected

table/list to elements or Convert selected table/list to attributes according to whether you wish to
create the contents of table cells as elements or attributes, respectively.

5. In the Convert List dialog that pops up (screenshot below), select whether the list created in the SPS
should be a static list or dynamic list.

374 Additional Functionality HTML Import

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

If the static list option is selected, then for each list item, a schema node is created. In the design,
each node is inserted with the text of the HTML list item included as static content of the list item. If
the dynamic list option is selected, then each list item is represented by a single list item node in the
design. In the design, the list item element is inserted with the (content) placeholder.

6. After you have selected the required option, click Convert to finish.

9.6.4 Generating Output

After completing the SPS, you can generate the following output using the File | Save Generated Files
command:

· Generated user-defined schema, which is the schema you have created in the Schema Tree sidebar.
· Generated user-defined XML data, which is an XML document based on the schema you have created

and containing data imported from the HTML file.
· XSLT stylesheets for HTML output.
· HTML output.

© 2019-2025 Altova GmbH

ASPX Interface for Web Applications 375Additional Functionality

Altova StyleVision 2025 Basic Edition

9.7 ASPX Interface for Web Applications

If an HTML report of DB or XML data for the Internet is to be created with an SPS, then the usual procedure for
creating the report with StyleVision would be as follows:

1. If the source data is in a DB, then, with the finished SPS active in StyleVision, generate an XML file
from the DB. (If the source data is in an XML file, then this step is not required.)

2. Also from the SPS, generate the XSLT-for-HTML file.
3. Transform the XML file using the generated XSLT-for-HTML file.
4. Place the resulting HTML file on the server.

For a web application, the HTML file could become outdated if the source (DB or XML) data is modified.
Updating the HTML file on the Web server with the new data would require: (i) for DB-based data, the re-
generation of the XML file, (ii) transforming the new XML file using the XSLT-for-HTML, and (iii) placing the result
HTML file on the server.

StyleVision provides a solution to quickly update HTML web pages. This is a feature for automatically
generating an ASPX application. All the required ASPX application files (the .aspx file, XSLT file, and the code
files) are generated by StyleVision. These files can then be placed on the server together with the source DB
file or XML file and the XSLT-for-HTML file. Each time the .aspx file—which is the web interface file—is
refreshed, the following happens: (i) for DB-based data, a new XML file is generated from the DB; for XML-based
data, this step is not required; (ii) the XML file is transformed using the XSLT-for-HTML file that is on the server;
and (iii) the output of the transformation is displayed in the web interface page. In this way, the web interface
page will quickly display the latest and up-to-date DB or XML data.

Generating files for an ASPX solution
After creating the DB-based SPS or XML-based SPS, do the following to create an ASPX solution:

1. With the SPS active in StyleVision, generate the ASPX files by clicking the command, File | Web
Design | Generate ASPX Web Application. The ASPX application files will be created in the folder
location you specify. The folder in which you generate the ASPX application will contain the following
files among others:

· Readme.doc
· SPSFilename.aspx
· SPSFilename.xslt
· SPSFilename.cs

2. Place the DB file or XML file on the server, in the same folder as the ASPX application. The .aspx file
is the entry point of the application. Refreshing this file will cause the DB or XML data that is displayed
in it to be updated.

Note: You will need to have Altova's RaptorXML application installed in order for the XSLT transformation to run
correctly. If you have problems with the transformation, see the ReadMe.doc file for details about setting up
RaptorXML.

How it works
The folder in which you generate the ASPX application will contain the following files among others:

https://www.altova.com/download-current.html

376 Additional Functionality ASPX Interface for Web Applications

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Readme.doc
· SPSFilename.aspx
· SPSFilename.xslt
· SPSFilename.cs

SPSFilename.aspx is the URL of the output document. SPSFilename.aspx executes C# code stored in the file
SPSFilename.cs. This C# code reads the XML content (from files or a database as required) and passes it to
RaptorXML, together with the SPSFilename.xslt file. (RaptorXML contains Altova’s XSLT transformation
engine. It can be downloaded from the Altova website.) RaptorXML performs a transformation of the XML
content, using the provided XSLT file. The result is an HTML document, which the web application then displays
in the browser. When the XML content changes, for example because of changes made to the database,
browsing to SPSFilename.aspx (or refreshing the page in the browser) will automatically fetch the most recent
data from the database or XML file and render an updated document.

9.7.1 Example: Localhost on Windows 7

The procedure outlined below sets up your local host to serve an ASPX application. For more information, see
the file Readme.doc in the ASPX application folder. This folder and file are generated when you select the
command File | Web Design | Generate ASPX Web Application with an SPS file active.

Install RaptorXML
Make sure that the latest version of RaptorXML is installed. RaptorXML contains Altova's transformation engine.
It will be used to transform the (DB-generated) XML file.

Activate Internet Information Services (Microsoft’s web server)
If Internet Information Services (IIS) is not activated, carry out the steps below to activate it. Step 5 shows how
to test whether IIS has been activated.

1. Go to Control Panel | Programs and Features | Turn Windows features on or off.
2. Set the Internet Information Services checkbox. The tri-state checkbox will change to Partly checked.
3. Additionally, set the Internet Information Services | World Wide Web Services | Application

Development Features | ASP.NET checkbox.
4. Click OK. When the process is complete, you will have a folder named C:/inetpub/wwwroot. This is

the web server’s root folder.
5. As a test, go to localhost in a browser. This will display the IIS welcome screen

In StyleVision, generate the ASPX application
Generate the ASPX application as follows:

1. It is recommended that the database and the SPS file be in the same folder.
2. After the SPS file has been completed, issue the command Files | Web Design | Generate ASPX Web

Application.
3. In the dialog that opens, create a folder below C:/inetpub/wwwroot and select that folder, for

example: C:/inetpub/wwwroot/Test1.

© 2019-2025 Altova GmbH

ASPX Interface for Web Applications 377Additional Functionality

Altova StyleVision 2025 Basic Edition

4. On confirming your folder selection, StyleVision will generate the following files in it: <FileName>.aspx,
<FileName>_AltovaDataBaseExtractor.cs, Web.config, and a folder App_Code containing the
various files.

Note: In order to save files to C:/inetpub/wwwroot you will need to run StyleVision as an administrator. Do
this by restarting StyleVision. Right-click the StyleVision executable file or a shortcut to it and select Run as
Administrator.

Make ASPX aware of the generated application
Carry out the following steps to make ASPX aware of the application you have generated with StyleVision:

1. Go to Control Panel | Administrative Tools | Internet Information Services (IIS) Manager.
2. In the Connections panel, expand the tree to display the folder (for example, Test1). The folder’s icon

will be a standard yellow folder at this point.
3. In the folder’s context menu, issue the command Convert to Application, then click OK in the dialog.

The folder’s icon will now be a globe.
4. In the Connections panel, expand the tree to display Application Pool and select this.
5. In the context menu for DefaultAppPool (available in the main pane when you select the Application

Pools item in the Connections pane), select the command Advanced Settings.
6. For the Identity property, select Custom account and enter your Windows user name and password.
7. For the Enable 32-Bit Applications property, enter True. (This is so the database drivers have access).

This step applies only to 64-bit versions of Windows 7.

Run the application
In the browser, go to localhost/Test1/<FileName>.aspx (assuming Test1 is the name of the folder in which
the ASPX application has been saved). The transformed HTML will be displayed in the browser. Refreshing this
ASPX page will cause the latest data from the database or XML file to be displayed.

Note: If the browser hangs at this point, make sure that the RaptorXML is correctly licensed.

378 Additional Functionality PXF File: Container for SPS and Related Files

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

9.8 PXF File: Container for SPS and Related Files

An SPS design that uses XSLT 2.0 or 3.0 can be saved as a Portable XML Form (PXF) file. The PXF file format
has been specially developed by Altova to package the SPS design with related files (such as the schema file,
source XML file, image files used in the design, and XSLT files for transformation of the source XML to an
output format). The benefit of the PXF file format is that all the files required for Authentic View editing and for
the generation of output from Authentic View can be conveniently distributed in a single file.

This section describing the use of PXF files is organized in two parts:

· Creating a PXF file
· Editing a PXF File
· Deploying a PXF file

Note: PXF files can be created only from SPSs designed with XSLT 2.0 or 3.0.

9.8.1 Creating a PXF File

To create a PXF file that will contain an SPS design plus related files, open the SPS design in StyleVision and
select the command File | Save As. This pops up the Save Design dialog (screenshot below).

The SPS format is the standard Altova format for StyleVision designs. In this section we are concerned with
the PXF format and so will not consider the SPS format here. Saving a file as an SPS is described in detail in
the User Reference section .

Save as PXF
Selecting the PXF option causes the familiar Save As dialog of Windows systems to pop up. Saving works
exactly as described for the Save Design command —with the additional step of selecting the files you
wish to include in the PXF file. After you specify the PXF filename, the Configure PXF dialog (screenshot below)
will appear, in which you can select/deselect the files you wish to embed.

378

381

382

440

435 435

© 2019-2025 Altova GmbH

PXF File: Container for SPS and Related Files 379Additional Functionality

Altova StyleVision 2025 Basic Edition

In the Global Configuration pane of the Design-time Files tab, you can select/deselect the design-related
source files to be embedded/omitted. You can additionally choose to embed XSLT files generated from the
design. In the XSLT files pane, select the output formats for which you wish to generate and embed XSLT files.
If an XSLT file is included in the PXF file and the PXF file is opened in the Authentic View of an Altova product,
then the toolbar button to generate and view that output format is enabled in Authentic View (screenshot
below).

Note: If XSLT files for outputs supported only in a higher edition of StyleVision (high to low: Enterprise,
Professional, Basic) were created in a PXF file and if that PXF file is then opened in a lower edition, then on
saving the PXF file the XSLT files for outputs not supported in the lower edition will not be saved. A prompt
appears, asking whether you wish to continue saving the PXF file. You can then save without the unsupported

380 Additional Functionality PXF File: Container for SPS and Related Files

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

formats, or abort the save and retain the unsupported formats.

In the Additional Files tab (screenshot below), you can specify any additional files you wish to include that are
not design-time files. These could be, for example, image files referenced in the design by a URL generated
with an XPath expression. In the screenshot below, the image file NewsItems.bmp located in the Images folder
is selected for inclusion in the PXF file.

To include an additional file in the PXF file, click the Add Document button and then browse for the file you
want. The Open dialog (in which you browse for the required file) opens the folder in which the SPS is located.
Files from this folder or any descendant folder may be selected. After an additional file has been added to the
PXF file, it and the folder structure leading to it are displayed. The screenshot above indicates that the
additional file NewsItems.bmp is in a folder named Images, which is itself contained in the folder in which the
SPS file is located.

If a file is selected from a folder located in any level above the folder containing the SPS file, an error is
reported.

© 2019-2025 Altova GmbH

PXF File: Container for SPS and Related Files 381Additional Functionality

Altova StyleVision 2025 Basic Edition

In the SPS design, any reference to an additional file must be made with a relative path and must use the folder
structure shown in the Additional Files pane. For example, NewsItems.bmp in the screenshot above must be
referenced with the relative path: Images/NewsItems.bmp.

Note: In order to save PXF files, the option Embed Images for RTF and Word 2007+ (File | Properties |
Images) must be selected.

9.8.2 Editing a PXF File

A PXF file can be opened in StyleVision via the File | Open command and edited. These edits can be of
two types:

· The configuration of the PXF file can be edited
· The content of individual component files such as the SPS and Authentic XML can be edited in

StyleVision, while other component files (such as image and CSS files) can be edited in external
applications. All component files must however be explicitly updated in StyleVision.

Entry point for PXF editing
The entry point for editing the PXF configuration and for updating the PXF file is the PXF item in the Design
Overview sidebar (screenshot below).

Configure embedded files
Clicking the Configure Embedded Files link in Design Overview (see screenshot above) opens the Configure
Portable XML Form (PXF) dialog. The configuration options are exactly the same as described in the section,
Creating a PXF File .

Updating embedded files
Clicking the Update Embedded Files link in Design Overview (see screenshot above) opens the Portable XML
Form (PXF) Update dialog (screenshot below).

430

378

382 Additional Functionality PXF File: Container for SPS and Related Files

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

First, select whether the source files should be retrieved relative to their current PXF locations or from their
original locations. Then check the files you wish to update and click Update. A new PXF file will be created
and will overwrite the existing PXF file. Therefore, before you update, it is highly recommended that you back up
the original PXF file.

9.8.3 Deploying a PXF File

After a PXF file has been created, it can be transported, downloaded, copied, and saved like any other data file.
Since the PXF file can contain all the files required to edit an XML file in Authentic View and to generate output
reports, it is the only file an Authentic user needs in order to get started and to generate output.

A PXF file can be opened in the Authentic View of Altova products . To give you an idea of how a PXF file
may be used, here is a list of some usage scenarios in XMLSpy:

· The PXF file is opened via the File | Open command. The embedded XML file will be displayed in
Authentic View using the embedded SPS, and can be edited in Authentic View. The File | Save
command saves changes to the PXF (the embedded XML is modified).

· The PXF file contains no embedded XML file and is opened via the File | Open command. If no XML file
is included, then a Template XML file based on the SPS design is opened in Authentic View. The File |
Save command will save this XML file as an embedded file in the PXF file.

18

© 2019-2025 Altova GmbH

PXF File: Container for SPS and Related Files 383Additional Functionality

Altova StyleVision 2025 Basic Edition

· In the Altova product XMLSpy, an XML file can be associated with a PXF file so that the embedded
SPS of the PXF file is used for Authentic View editing. The association is done via the menu command
Authentic | Assign a StyleVision Stylesheet. When changes are saved, they will be saved to the
XML file; the PXF file will be unchanged.

· If an XSLT stylesheet for one of the output formats has been embedded in the PXF file, then the
Authentic View user will be able to generate output in that format. This is done with the appropriate
output-generation toolbar button (screenshot below). In Authentic View, individual output-generation
toolbar buttons will be enabled only if the PXF file was configured to contain the XSLT stylesheet for
that output. For example, if the PXF file was configured to contain the XSLT stylesheets for HTML and
PDF, then only the toolbar buttons for HTML and PDF output will be enabled while those for RTF and
DocX (Word 2007+) output will be disabled.

Note: If a PXF file is located on a web server and will be used with the Authentic Browser Plug-in, you must
ensure that the server does not block the file. You can do this by adding (via the IIS administration panel, for
example) the following MIME type for PXF (.pxf) file extensions: application/x-zip-compressed.

384 Automated Processing

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

10 Automated Processing

The functionality of StyleVision together with the various XSLT and output files generated by StyleVision provide
powerful automation possibilities. This section describes these capabilities.

StyleVision's file-generation functionality
After you have created an SPS design with StyleVision, you can generate several kinds of XSLT and output
files from within the GUI, depending on which edition of StyleVision you are using (Enterprise, Professional, or
Basic). The following files can be generated with the File | Save Generated Files command:

· XSLT files for HTML output.
· HTML output.

As you will notice from the list above, the files that can be saved with StyleVision are of two types:

1. The XSLT files generated by the SPS design, and
2. The final output files (such as HTML).

The processes to generate the final HTML output files are all one-step processes in which the XML document is
transformed by an XSLT stylesheet to the output format.

StyleVision Server and RaptorXML: generating files from outside the GUI
Additionally to generating XSLT stylesheets and the required output formats via the StyleVision GUI (File |
Save Generated Files command), you can generate output files using two other methods:

1. With StyleVision Server, which calls StyleVision's file generation functionality without opening the GUI,
you can produce various kinds of output.

2. With RaptorXML , a standalone Altova application that contains Altova's XML(+XBRL) Validator, and
XSLT and XQuery Engines. The XSLT Engines in RaptorXML can be used for transformations of XML to
an output format by processing XML documents with XSLT stylesheets. The XSLT file will have to be
created in advance so that it can be used by RaptorXML. (RaptorXML does not take an SPS as an
input parameter.) The advantages of using RaptorXML are: (i) speed, as a result enabling fast
transformations of large files; and (ii) in addition to a command line interface, RaptorXML provides
interfaces for COM, Java, and .NET, and can therefore be easily called from within these environments.
How to use RaptorXML for transformations is explained in the sub-section RaptorXML .

3. Multiple transformations can be carried out according to pre-set triggers (such as a daily time) using
Altova StyleVision Server within an Altova FlowForce Server workflow. This is described in the section
Automation with FlowForce Server .

441

441

388

388

390

© 2019-2025 Altova GmbH

Command Line Interface 385Automated Processing

Altova StyleVision 2025 Basic Edition

10.1 Command Line Interface

StyleVision functionality can be called from the command line in two ways:

· By calling the StyleVision executable . This provides a access to StyleVision's XSLT-file-generation
functionality. The XSLT files are generated from the SPS file.

· By using StyleVision Server to generate output files (HTML, etc). The output files are generated
from a PXF file, which is a package of an SPS file with its related files (XML, XSD, image files, etc).
The PXF file is generated from StyleVision.

How to use the command line
There are two ways you can use the command line:

· Commands can be entered singly on the command line and be executed immediately. For example, in
a command prompt window, you can enter a command for StyleVision or StyleVision Server , and
press Enter to execute the command.

· A series of commands can be entered in a batch file for batch processing. For example:

@ECHO OFF
CLS
StyleVision TestEN.sps -outxslt=HTML-EN.xslt
StyleVision TestDE.sps -outxslt=HTML-DE.xslt
StyleVision TestES.sps -outxslt=HTML-ES.xslt

When the batch file is processed, the commands are executed and the files are generated.

StyleVision functionality in scheduled tasks
Using the Scheduled Tasks tool of Windows, StyleVision commands can be set to execute according to a
predefined schedule. Either a single command or a batch file can be specified as the task to be executed. How
to create such commands is described in How to Automate Processing .

10.1.1 StyleVision

The syntax for command line use is:

StyleVision [<SPS File>] [<options>]

where

StyleVision calls StyleVision, which is located in the StyleVision application folder
<SPS File> specifies the SPS file
<options> One or more of the options listed below.

When a command is executed StyleVision runs silently (i.e. without the GUI being opened), generates the
required output files, and closes. If an error or warning is encountered, the GUI is opened and the corresponding
message is displayed in a message box.

385

386

386

392

386 Automated Processing Command Line Interface

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Note: For the SPS to load correctly in StyleVision, the XSD and Working XML files that the SPS uses must be
at the locations specified for them in the SPS.

Options
Options may be entered in any order. Note that FO, RTF, PDF, and Word 2007+ output-related options are
available in the Enterprise edition, or the Enterprise and Professional editions only; these options are indicated
with the words Enterprise edition or Enterprise and Professional editions in the list below.

· XSLT file output

-OutXSLT=<file> Writes XSLT-for-HTML to the specified file

-OutXSLRTF=<file> Writes XSLT-for-RTF to the specified file (Enterprise and
Professional editions)

-OutXSLText=<file> Writes XSLT-for-Text to the specified file (Enterprise and
Professional editions)

-OutXSLFO=<file> Writes XSLT-for-FO to the specified file (Enterprise edition
only)

-OutXSLWord2007=<file> Writes XSLT-for-Word 2007+ to the specified file (Enterprise
edition only)

Examples

StyleVision "QuickStart.sps" -outxslt="QuickStartHTML.xslt"

StyleVision "C:\Test\QuickStart.sps" -outxslt="C:\Test\QuickStartHTML.xslt"

Points to note
Note the following points:

· Paths may be absolute or relative and should use backslashes.
· If the filename or the path to it contains a space, then the entire path should be enclosed in quotes.

For example: "c:\My Files\MyXML.xml" or "c:\MyFiles\My XML.xml".
· Commands, paths, and folder and file names are case-insensitive.

10.1.2 StyleVision Server

StyleVision Server can be used via its command line interface (CLI) on Windows, Linux. and Mac OS systems
to transform XML files into output HTML, PDF, RTF, and DOCX documents. The StyleVision Server CLI's
generate command takes an XML file and a PXF file as its two arguments, and the desired output formats
as its parameters. The XSLT stylesheets for the transformation are obtained from the PXF file submitted as
input.

An advantage of using StyleVision Server's CLI over RaptorXML Server's CLI is that StyleVision Server can take
PXF files as its input (RaptorXML takes an XSLT file as its input). StyleVision Server is however best used
when used as part of an Altova FlowForce workflow. A FlowForce workflow can start transformation jobs

378

378

© 2019-2025 Altova GmbH

Command Line Interface 387Automated Processing

Altova StyleVision 2025 Basic Edition

according to preset triggers: Multiple files can be transformed automatically within a network when the
FlowForce job is triggered. See the section Automation with FlowForce Server for more information.

For more information about the StyleVision Server CLI, see the StyleVision Server documentation.

Output files
StyleVision Server can generate one or more of the following files from the specified PXF file:

· HTML (.html) file/s using the XML and XSLT-for-HTML files specified in the PXF, or using alternative
XML files

390

https://www.altova.com/documentation.html

388 Automated Processing Using RaptorXML

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

10.2 Using RaptorXML

Altova RaptorXML is Altova's third-generation, hyper-fast XML and XBRL processor XBRL processing is
available only in RaptorXML+XBRL Server.. It has been built to be optimized for the latest standards and parallel
computing environments. Designed to be highly cross-platform capable, the engine takes advantage of today’s
ubiquitous multi-core computers to deliver lightning fast processing of XML and XBRL data.

RaptorXML is available in two editions:

· RaptorXML Server edition, which can be accessed over a network and can transform multiple files at a
time.

· RaptorXML+XBRL Server edition, which can be accessed over a network, can transform multiple files at
a time, and additionally supports XBRL validation.

For more information about RaptorXML, see the Altova website.

Typical use-cases
The functionality of RaptorXML that would be most relevant to StyleVision users is the XSLT transformation
functionality. Typically, this functionality would be used as follows:

1. An XSLT stylesheet is generated from an SPS with the File | Save Generated Files command.
Note that RaptorXML cannot be used to generate XSLT stylesheets from an SPS file.

2. The generated XSLT stylesheet is used to transform XML documents with RaptorXML. With RaptorXML
you can generate HTML output.

Advantages of RaptorXML
The advantages of using RaptorXML are as follows:

· RaptorXML provides very fast validation and XSLT transformation, and is therefore useful for dealing with
large files.

· Easy use with command line, COM, Java, and .NET interfaces.
· Automation and scheduling with the use of batch files and the scheduling processes such as the

Scheduled Tasks process of Windows.

For a description of how RaptorXML can be used to automate the production of output documents (such as
HTML) from XML source documents, see the section How to Automate Processing .

For additional and more detailed information about using RaptorXML, including how to use RaptorXML's COM,
Java, and .NET interfaces, see the RaptorXML user documentation.

10.2.1 PDF Output

To generate PDF output from an XML document requires two steps:

1. The XML document is transformed by an XSLT stylesheet. An XSLT transformation engine (such as
that of RaptorXML) is used for this transformation. The result is an FO document.

441

392

392

https://www.altova.com/raptorxml
https://www.altova.com/documentation.html

© 2019-2025 Altova GmbH

Using RaptorXML 389Automated Processing

Altova StyleVision 2025 Basic Edition

2. The FO document is processed by an FO processor (such as Apache's FOP) to generate the PDF
output. StyleVision can be set up to pass the FO result of an XSLT transformation to an FO processor.
In StyleVision, the result of PDF generation is displayed in the PDF Preview window or can be saved
as a file (via the File | Save Generated Files command).

RaptorXML and PDF
Since RaptorXML does not provide parameters to direct the FO output of an XSLT transformation to an FO
processor, you will be left with an FO document as the result of the XSLT transformation step (the first step of
the two-step PDF-generation process).

The FO document must now be passed to an FO processor for second-step processing from FO to PDF. The
instructions for carrying out this step vary according to the processor being used. For example, in the case of
the Apache FOP processor, the following simple command can be used to identify the input FO document and
specify the name and location of the output PDF document:

fop -fo input.fo -pdf output.pdf

FOP offers other parameters, and these are listed in the FOP user reference.

FOP and XSLT
One FOP option enables you to specify an input XML file, an input XSLT file, and an output PDF file:

fop -xml input.xml -xslt input.xslt -pdf output.pdf

In this situation, FOP uses its built-in XSLT engine to carry out the first-step XML-to-FO transformation. It then
passes the result FO document to FOP for the second-step FO-to-PDF processing.

You should be aware, however, that FOP's built-in engine might not support all the XSLT features that
StyleVision and RaptorXML support. Consequently, there could errors if an XSLT stylesheet generated by
StyleVision is specified as an input for an XML transformation using FOP's built-in XSLT engine. In such cases,
use the XSLT engine of RaptorXML+XBRL) Server to transform to FO, and then supply the FO file to FOP for
processing to PDF.

Batch processing to PDF
A quick and simple way to generate PDF by using RaptorXML for the first-step XSLT transformation and FOP
for the second-step FO processing would be to write a batch file that combines the two commands. For
example:

raptorxmlserver xslt --input=Test.xml --output=Test.fo Test.xslt
fop -fo Test.fo -pdf Test.pdf

The first command calls RaptorXML and produces test.fo as output. The second command passes test.fo
to the FOP processor, which generates the PDF file test.pdf. For more information about batch processing
and how batch files can be used to automate processes, see the following section: How to Automate
Processing .

441

392

http://xmlgraphics.apache.org/fop/index.html

390 Automated Processing Automation with FlowForce Server

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

10.3 Automation with FlowForce Server

Transformations can be automated over a network by using Altova's FlowForce Server, which is available on
Windows, Linux, and Mac OS systems. The process works as follows:

1. From StyleVision, a PXF file is deployed to FlowForce Server (with the File | Deploy to
FlowForce command) as a .transformation file. The .transformation file contains all the files
and information required to carry out transformations as designed in the SPS. (In the diagram below,
the deployment is represented by the connector line running along the top.)

2. After the .transformation file has been deployed to FlowForce Server, jobs can be created in
FlowForce that use the .transformation file to generate transformations according to triggers
specified in the job definition. (A trigger could be, for example, a specific time every day.) Flow Force
jobs are created in the FlowForce Web Server interface (shown in the center of the diagram below),
which can be accessed from StyleVision or via an HTTP address. For information about creating
FlowForce jobs, see the FlowForce documentation.

3. At execution time, FlowForce Server passes the transformation instructions and relevant files to
StyleVision Server, which then carries out the transformation (see diagram below).

The role of StyleVision Server in the FlowForce workflow is shown in the diagram below. (The role of MapForce
Server in the workflow is also displayed since FlowForce jobs can be created that send Altova MapForce
mappings to the Altova MapForce Server for execution.)

378 442

442

https://www.altova.com/flowforce.html

© 2019-2025 Altova GmbH

Automation with FlowForce Server 391Automated Processing

Altova StyleVision 2025 Basic Edition

Note that additionally to being invoked by a FlowForce job, StyleVision Server can also be invoked via its
command line. Usage is described in the StyleVision Server documentation.

https://www.altova.com/documentation.html

392 Automated Processing How to Automate Processing

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

10.4 How to Automate Processing

A batch file (a text file saved with the file extension .bat) contains a sequence of commands that will be
executed from the command line. When the batch file is executed, each command in the batch file will be
executed in turn, starting with the first and progressing through the sequence. A batch file is therefore useful in
the following situations:

· Executing a series of commands automatically (see below).
· Creating a chain of processing commands, where a command requires input produced by a preceding

command. (For example, an XML file produced as output of one transformation is used as the input of
a subsequent transformation.)

· Scheduling a sequence of tasks to be executed at a particular time.

Batch file with sequence of commands
A sequence of commands to be executed is entered as follows:

@ECHO OFF
CLS
StyleVision TestEN.sps -outxslt=HTML-EN.xslt
StyleVision TestDE.sps -outxslt=HTML-DE.xslt
StyleVision TestES.sps -outxslt=HTML-ES.xslt

When the batch file is processed, the commands are executed and the files generated. The batch file above
uses StyleVision to generate three XSLT files from an SPS file.

© 2019-2025 Altova GmbH

 393Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11 Menu Commands and Reference

This section contains a complete description of StyleVision toolbars, Design View symbols, and menu
commands. It is divided into the following broad parts:

· An explanation of symbols used in Design View .
· A description of the Edit XPath Expression dialog .
· A description of all the toolbars with their icons , as well as a description of how to customize the

views of the toolbars.
· All menu commands.

While the User Reference section contains a description of individual commands, the mechanisms behind
various StyleVision features are explained in detail in the relevant sections. The mechanisms have been
organized into the following groups::

· SPS File Content
· SPS File Structure
· SPS File Advanced Features
· SPS File Presentation
· SPS File Additional Functionality

See also

· User Interface
· Quick Start Tutorial

394

398

415

103

173

240

306

338

25

51

394 Menu Commands and Reference Design View Symbols

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.1 Design View Symbols

An SPS design will typically contain several types of component. Each component is represented in the design
by a specific symbol. These symbols are listed below and are organized into the following groups:

· Nodes in the XML document
· XML document content
· Data-entry devices
· Predefined formats
· XPath objects
· URI objects

Each of these component types can:

· be moved using drag and drop;
· be cut, copied, pasted, and deleted using (i) the commands in the Edit menu , or (ii) the standard

Windows shortcuts for these commands;
· have formatting applied to it;
· have a context menu pop up when right-clicked.

Nodes in the XML document
Element and attribute nodes in the XML document are represented in the SPS design document by tags. Each
node has a start tag and end tag. Double-clicking either the start or end tag collapses that node. When a node
is collapsed all its contents are hidden. Double-clicking a collapsed node expands it and displays its content.

The following types of node are represented:

· Document node

The document node (indicated with $XML) represents the XML document as a whole. It is indicated
with a green $XML tag when the schema source is associated with an XML document, and with $DB
when the schema source is associated with a DB. The document node in the screenshot at left is
expanded and contains the OrgChart element, which is collapsed. The document node in the
screenshot at right is collapsed; its contents are hidden.

· Element node

An element node is inserted together with all its ancestor elements if the ancestors are not present
at the insertion point. In the screenshot above, the Name element node is shown expanded (left) and
collapsed (right).

· Attribute node

394

448

© 2019-2025 Altova GmbH

Design View Symbols 395Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

An attribute node is inserted together with all its ancestor elements if the ancestors are not present
at the insertion point. Attribute names contain the prefix =. In the screenshot above, the href attribute
node is shown expanded (left) and collapsed (right).

Nodes are included in the design as node templates. For information on the various kind of templates that can
be included in the design, see the section, Templates and Design Fragments .

XML document content
XML document content is represented by two placeholders:

· (contents)
· (rest-of-contents)

The contents placeholder represents the contents of a single node. All the text content of the node is output. If

the node is an attribute node or a text-only element node, the value of the node is output. If the node is an
element node that contains mixed content or element-only content, the text content of all descendants is
output. In XSLT terms, the contents placeholder is equivalent to the xsl:apply-templates element with its
select attribute set for that node..

Note: When applied to an element node, the contents placeholder does not output the values of attributes of
that element. To output attribute nodes, you must explicitly include the attribute in the template (main or
global).

The rest-of-contents placeholder applies templates to the rest of the child elements of the current node. The

template that is applied for each child element in this case will be either a global template (if one is defined for
that element) or the default template for elements (which simply outputs text of text-only elements, and applies
templates to child elements). For example, consider an element book, which contains the child elements:
title, author, isbn, and pubdate. If the definition of book specifies that only the title child element be
output, then none of the other child elements (author, isbn, and pubdate) will be output when this definition is
processed. If, however, the definition of book includes the rest-of-contents placeholder after the definition for
the title element, then for each of the other child elements (author, isbn, and pubdate), a global template (if
one exists for that element), or the default template for elements, will be applied.

Data-entry devices
In order to aid the Authentic View user edit the XML document correctly and enter valid data, data-entry devices
can be used in the design. You can assign any of the following data-entry devices to a node:

· Input fields (single line or multi-line)

· Combo boxes

216

396 Menu Commands and Reference Design View Symbols

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Check boxes

· Radio buttons

These tags can be collapsed and expanded by double-clicking an expanded and the collapsed tag,
respectively. For a detailed description of how each of these data-entry devices is used, see Data-Entry
Devices .

Predefined formats
Predefined formats are shown in mauve tags, which can be expanded/collapsed by double-clicking.

The screenshot above shows tags for the predefined format p (para), expanded (at left) and collapsed (at
right). To apply a predefined format, highlight the items around which the predefined format is to appear (by
clicking a component and/or marking text), and insert the predefined format .

XPath objects
StyleVision features two mechanisms that use XPath expressions:

· Conditional templates

Condition tags are blue. The start tag contains cells. The leftmost cell contains a question mark.
Other cells each contain either (i) a number, starting with one, for each when condition; and/or (ii) an
asterisk for the optional otherwise condition. A condition branch can be selected by clicking it. The
number of the selected condition branch is highlighted in the start tag, and the template for that branch
is displayed (within the start and end tags of the condition). The XPath expression for the selected
condition branch is also highlighted in the Design Tree. Note that tags for conditions cannot be
expanded/collapsed.

· Auto-Calculations

149

307

© 2019-2025 Altova GmbH

Design View Symbols 397Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Auto-Calculations are represented in Design View by the =(AutoCalc) object (see screenshot
above). The XPath expression for the selected Auto-Calculation is highlighted in the Design Tree. The
dialog to edit the Auto-Calculation is accessed via the Properties sidebar .

URI objects
There are three URI-based objects that can be inserted in a design:

· Images
If an image is inserted in the SPS design and can be accessed by StyleVision, it becomes visible in
Design View. If it cannot be accessed, its place in the SPS is marked by an image placeholder.

· Bookmarks (Anchors)

Bookmark tags are yellow and indicated with the character A (screenshots above). A bookmark is
created with the command Insert | Insert Bookmark, and can be empty or contain content. Content
must always be inserted after the anchor is created. Anchor tags can be expanded (screenshot above
left) or collapsed (screenshot above right).

· Links

Link tags are yellow and indicated with the character A (screenshots above). A link is created with the
command Insert | Hyperlink. The object around which the link is created can be inserted in the
design before or after the link is created. If an item is to be created as a link, it should be selected and
the link created around it. Link tags can be expanded (screenshot above left) or collapsed (screenshot
above right).

See also

· Toolbars
· Design sidebars
· Content Editing Procedures

241

415

31

103

398 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.2 Edit XPath Expression Dialog

The Edit XPath Expression dialog (screenshot below) is used to build, test, and edit XPath expressions. It is
accessible at all places in Design View where an XPath expression may be entered, such as when entering
expressions for conditional processing or the values of Styles and Properties .

The dialog automatically supports the XPath version that corresponds to the XSLT version of the SPS
(XPath 1.0 for XSLT 1.0; XPath 2.0 for XSLT 2.0; and XPath 3.1 for XSLT 3.0). To switch the XPath version,
switch the XSLT version of the SPS .

Dialog layout
The Edit XPath Expression dialog contains the following panes (see screenshot below): (i) an Expression pane
(top left); (ii) a Sources pane (top right); (iii) a Results pane (bottom). In Builder Mode, the Results pane is
augmented by additional entry helper panes.

Evaluation Mode and Debug Mode
The Edit XPath Expression dialog has two modes:

246 44 45

93

93

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 399Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

· Evaluation Mode , in which an XPath expression is evaluated with respect to the assigned Working
XML File/s. The expression is entered in the Expression pane, and the result is displayed in the
Results pane. You can click nodes in the result to go to that node in the Sources pane of the dialog.

· Debug Mode , in which you can debug an XPath expression as it applies to the assigned Working
XML File/s. You can set breakpoints and tracepoints, and go step-by-step through the evaluation. At
each step you can see the content of variables, as well as set custom Watch expressions to check
additional aspects of the evaluation.

To switch between the two modes, select the appropriate command in the Start Evaluation/Debugging
dropdown menu that is located in the left-hand corner of the window's toolbar (see screenshot below).

How to use the two modes is described in the sub-sections of this section.

XPath/XQuery Expression Builder
In both modes, the Expression Builder can be used to help you construct syntactically correct expressions.

Switch Expression Builder on/off with the Builder Mode button of the main toolbar .

11.2.1 Evaluator

Select Evaluation Mode by selecting Start Evaluation in the Start Evaluation/Debugging dropdown menu
(see screenshot below).

In Evaluation Mode, click the Evaluator button (see screenshot below). The evaluator has the following panes
(see screenshot below): (i) an Expression pane (top left); (ii) a Sources pane (top right); (iii) a Results pane
(bottom).

399

402

410

410

400 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The XPath expression and its evaluation
The XPath expression is entered in the Expression pane. The results of the evaluation are displayed in the
Results pane (see screenshot above).

Note the following points:

· In order for an expression to be evaluated against an XML file, that file must be assigned as the
Working XML file of one of the sources of the SPS .

· Results can be displayed even as you type the expression (select the Evaluate on Typing icon in the
toolbar), or they can be displayed when you click the toolbar button Start Evaluation/Debugging (F5)
(located at top left of the toolbar).

· To enter the XPath locator expression of a node in a source tree, double-click that node in the Sources
pane.

· In the Sources pane, you can switch on/off the display of: (i) processing instructions, (ii) comments,
(iii) attributes, and (iv) elements. Do this via the buttons below the Sources pane.

· The context node is that of the design component within which the expression is being created. To set
another node as the context node of the expression: (i) select the node in the Sources pane, and (ii)
click Set Evaluation Context (located below the Sources pane). To save this context node for the
expression, click the toggle command button Remember Evaluation Context (located below the

91

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 401Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Sources pane). Note, however, that the actual context node for the expression will be the context node
of the current design component, and this is the context node that will be used at runtime.

· You can use the functions of the Java and .NET programming languages in the XPath expression. The
buttons Using Java and Using .NET at the bottom of the dialog display info boxes with explanations
about how to use Java and .NET extension functions in XPath expressions. For more information about
this, see the Extension Functions section of this documentation.

· To create the expression over multiple lines (for easier readability), use the Return key.
· To increase/decrease the size of text in the expression field, click in the expression field, then press

Ctrl and turn the scroll wheel. Note that this also applies in the Results pane.
· Instead of manually entering the locator path expression of a node, you can do the following: (i) Place

the cursor at the point in the XPath expression where you want to enter the locator path; (ii) In the
Sources tree, double-click the node you want to target. This enters the locator path of the selected
node in the expression. The locator path will be an absolute path starting at the root node of the
document.

Results pane
The Results pane is shown in the screenshot below, at bottom. Note that it has its own toolbar.

The Results pane has the following functionality:

· The result list consists of two columns: (i) a node name or a datatype; (ii) the content of the node.

522

402 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· If the XPath expression returns nodes (such as elements or attributes), you can select whether the
entire contents of the nodes should be shown as the value of the node. To do this, switch on the toggle
Show Complete Result.

· When the result contains a node (including a text node)—as opposed to expression-generated literals
—clicking that node in the Results pane highlights the corresponding node in the XML document in the
Sources tree.

· You can copy both columns of a result sub-line, or only the value column. To copy all columns, right-
click a sub-line and toggle on Copying Includes All Columns. (Alternatively you can toggle the
command on/off via its icon in the toolbar of the Results pane.) Then right-click the sub-line you want to
copy and select either Copy Subline (for that subline) or Copy All (for all sublines).

Toolbar of the Results pane
The toolbar of the Results pane contains icons that provide navigation, search, and copy functionality. These
icons, starting from the left, are described in the table below. The corresponding commands are also available
in the context menu of result list items.

Icon What it does

Next, Previous Selects, respectively, the next and previous item in the result list

Copy the selected text
line to the clipboard

Copies the value column of the selected result item to the clipboard. To copy all
columns, toggle on the Copying includes all columns command (see below)

Copy all messages to
the clipboard

Copies the value column of all result items to the clipboard, including empty values.
Each item is copied as a separate line

Copying includes all
columns

Switches between copying (i) all columns, or (ii) only the value column. The column
separator is a single space

Find Opens a Find dialog to search for any string, including special characters, in the
result list

Find previous Finds the previous occurrence of the term that was last entered in the Find dialog

Find next Finds the next occurrence of the term that was last entered in the Find dialog

Expand with children Expands the selected item and all its descendants

Collapse with children Collapses the selected item and all its descendants

Clear Clears the result list

11.2.2 Debugger

The Debugger enables you to debug an XPath expression in the context of a Working XML File . To access
the Debugger, selecting Start Debugging in the Start Evaluation/Debugging dropdown menu (screenshot
below). This sets the mode to Debug Mode. You can then switch between the Builder (for help with building the
expression) and Evaluator (for debugging the expression). To start debugging, click Start
Evaluation/Debugging (F5)

91

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 403Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

After you have entered an expression, you can start debugging by clicking Start Evaluation/Debugging (F5)
(after making sure that you are in Debug Mode).

Buttons for setting up Debug Mode

Start
Evaluation/Debugging (F5)

Starts the debugger

Switch to Builder Switches to Expression Builder mode, which provides context-
sensitive entry helpers to help construct expressions

Evaluation on typing Switches on the evaluation of expressions while the
expression is being typed

Layout of Debug Mode
In Debug Mode, two additional panes are added to the Results pane (see screenshot below):

· the Call Stack and Debug Points pane, each of which has a separate tab in the pane
· the Variables and Watch Expressions pane; both watch expressions and variables are shown in the

same pane.

404 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Debugger Mode offers the following features:

· Enables you to step into the XPath evaluation process, one step at a time to see how the XPath
expression is being evaluated. Use the Step Into (F11) toolbar button for this. At each evaluation step,
the part of the expression being currently evaluated is highlighted in yellow (see screenshot above),
while the result of evaluating that step is shown in the Results pane. For example, in the screenshot
above, all the section descendant elements of the book element have been selected.

· Set breakpoints where you want to pause the evaluation and check results at these points. You can
step through the evaluation by pausing only at breakpoints. Use the Start Debugging (F5) toolbar
button for this. This is quicker than pausing at every step with Step Into (F11).

· Set tracepoints to see a report of results at the steps marked as tracepoints. The evaluation will not
pause (except at breakpoints), but the tracepoint results will be displayed in a list in the Results pane.

· Watch expressions can be used to check information (such as document data or aspects of the
evaluation). This is especially useful at breakpoints.

· Variables that are in scope, including their values, are displayed in the Variables and Watch
Expressions pane.

· Processor calls of an evaluation step are shown in the Call Stack tab of the Call Stack and Debug
Points pane.

· If breakpoints and tracepoints have been set, then these are displayed in the Debug Points tab of the
Call Stack and Debug Points pane.

For more information about these features, see their descriptions below.

Running the Debugger
The broad steps for debugging an XPath expression are as follows:

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 405Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

1. Enter the XPath expression in the expression pane.
2. Set any breakpoints or tracepoints you want. A breakpoint is a point at which the evaluation is paused.

A tracepoint is a point in the evaluation that is recorded; tracepoints thus provide a traceable path of
evaluation results.

3. If you click Start Debugger, evaluation is carried out in one step to the end unless a breakpoint has
been marked in the expression. Click Start Debugger repeatedly to progress through each breakpoint
to the end of the evaluation.

4. Use the Step Into/Out/Over functionality to go step-by-step through the evaluation.

Buttons for debugging

Start Debugger (F5) Starts the debugger. Evaluation goes directly to the end,
stopping only for breakpoints

Stop Debugger (Shift+F5) Exits the evaluation and stops the debugger

Step Into (F11) Proceeds through the evaluation, one step at a time.

Step Out (Shift+F11) Steps out of the current evaluation step, and goes to the parent
step

Step Over (Ctrl+F11) Steps over descendant steps

Insert/Remove Breakpoint
(F9)

Inserts/removes a breakpoint at the expression step where you
place the cursor

Insert/Remove Tracepoint
(Shift+F9)

Inserts/removes a tracepoint at the expression step where you
place the cursor

Stepping in, out, and over evaluation steps
The Step Into functionality enables you to go step-by-step through the evaluation. Each click of this command
takes you through the next step of the evaluation; the current step is shown by the highlighting in the
expression (see screenshot below). The Step Out functionality takes you to a step on a higher level as the
current step, whereas the Step Over functionality steps over lower-level steps and takes you to the next step
on the same level. You can try out the Stepping functionality by using the expression shown in the screenshot
below and clicking the three Step buttons to see how they work.

The screenshot below shows the evaluation when processing has been paused on reaching the locator step
newsitem. At this step, the result shows the four newsitem node.

406 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Breakpoints
Breakpoints are points where you want the Debugger to stop after it has been started with Start Debugger.
They are useful if you wish to analyze a specific part of the expression. When the Debugger stops at the
breakpoint, you can check the result and could then use the Step Into functionality to display the results of the
next steps of the evaluation. To set a breakpoint, place the cursor in the expression at the point where you
want the breakpoint, and click the Insert/Remove Breakpoint (F9) toolbar button. The breakpoint will be
marked with a dashed red overline. To remove a breakpoint, select it and click Insert/Remove Breakpoint
(F9).

Also see Debug Points below.

Tracepoints
Tracepoints are points at which the results are recorded. These results are displayed in the Traces tree of the
Result tab (see screenshot below). This enables you to see all the evaluation results of particular parts of the
expression. For example, in the screenshot below, tracepoints have been set on the team node and member

node. The results at these tracepoints are shown in the Traces tree.

To set a tracepoint, place the cursor at the point where you want the tracepoint, and click the toolbar button
Insert/Remove Tracepoint (Shift+F9). The tracepoint will be marked with a dashed blue overline (see
screenshot below). To remove a tracepoint, select it and click Insert/Remove Tracepoint (F9).

409

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 407Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Note: If both a breakpoint and a tracepoint are set on a part of the expression, then the overline is composed of
alternating red and blue dashes.

Also see Debug Points below.

Variables, Watch Expressions, and Call Stack
Variables and watch expressions are displayed in the Variables and Watch Expressions pane (bottom center
pane in the screenshot below).

409

408 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Variables
Variables that have been declared in the expression and that are in scope in the current evaluation step will be
displayed together with their respective current values. For example, in the screenshot above, processing has
been paused at the breakpoint on headline. The $i variable is in scope at this evaluation step. So $i is

displayed with its current value, which in the screenshot above is the first newsitem node.

Watch expressions
Watch expressions are expressions that you can enter, either before evaluation starts or during a pause in

evaluation. They can be used for the following purposes:

· To test specific conditions. For example in the screenshot above, the watch expression
$i/metainfo/enteredBy/@id="NED" is used to test whether this news item has been entered by the

team member with the id of NED. The result true in the case of the first news item tells us that this

condition has been met.
· To find data within a certain context. For example, within the context of a Company element, we could

enter a watch expression @id to look up that company's customer code in the target XML document.

· To generate additional data. For example, a suitable string can be generated to indicate the total
number of news items..

To enter a watch expression, click Add Watch Entry in the pane's toolbar (encircled in red in the screenshot
above), then enter the expression and click Enter when done. To remove a watch expression, select it and
click Remove Selected Watch Entry in the toolbar. If, during debugging, the expression cannot be correctly
evaluated for some reason (for example, if one of its variables is out of scope), then the watch expression turns
red.

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 409Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Call stack
The Call Stack tab of the Call Stack and Debug Points pane (bottom right pane in the screenshot above)
displays the processor calls up to that point in the debugging. The current processor call is highlighted in
yellow. Note that only the calls that directly led to the current evaluation step are displayed.

Debug Points
The Debug Points tab of the Call Stack and Debug Points pane (bottom right pane in the screenshot below)
shows the breakpoints (with solid red circles) and tracepoints (solid blue circles) that you have set on the
expression. Each debug point is listed with its line and character number. For example, AxisStep@2:12 means

that there is a debug point on line 2, character 12 of the expression in the Expression pane.

Note the following features:

· For breakpoints, you can enter a break condition by (i) double-clicking Enter break condition in the
Debug Points pane, (ii) entering the expression for the condition, and (iii) pressing Enter. That
breakpoint will be enabled only when the condition evaluates to true. For example, in the screenshot

above, the break condition $i/metainfo/enteredBy/@id="ABE" will enable the breakpoint on the

headline of each news item that was entered by the team member with the id ABE. The screenshot

shows the evaluation paused at this breakpoint. (Notice also that the Watch expression at this
breakpoint returns false.)

· You can enable/disable all debug points by clicking their respective toolbar buttons: Enable All
Debug Points and Disable All Debug Points (buttons encircled in green in the screenshot above).
When a debug point is disabled, it is deactivated for all evaluations till it is enabled again.

· You can enable/disable individual breakpoints in their respective context menus.

410 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Toolbar commands in panes
The panes of the Edit XPath Expression dialog in Debug Mode (see screenshot above) contain buttons that
provide navigation, search, and copy functionality. These buttons, starting from the left, are described in the
table below. The corresponding commands are also available in the context menu of listed items.

Icon What it does

Next, Previous Selects, respectively, the next and previous item in the result list

Copy the selected text
line to the clipboard

Copies the value column of the selected result item to the clipboard. To copy all
columns, toggle on the Copying includes all columns command (see below)

Copy all messages to
the clipboard

Copies the value column of all result items to the clipboard, including empty values.
Each item is copied as a separate line

Copying includes all
columns

Switches between copying (i) all columns, or (ii) only the value column. The column
separator is a single space

Find Opens a Find dialog to search for any string, including special characters, in the
result list

Find previous Finds the previous occurrence of the term that was last entered in the Find dialog

Find next Finds the next occurrence of the term that was last entered in the Find dialog

Expand with children Expands the selected item and all its descendants

Collapse with children Collapses the selected item and all its descendants

Clear Clears the result list

11.2.3 Expression Builder

When the Builder button in the Edit XPath Expression dialog is clicked (see screenshot below), entry helper
panes to help you build an XPath expression become visible. Double-click an entry in any of these entry
helpers to enter it at the current cursor point in the XPath expression.

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 411Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

There are three entry helper panes:

· A schema tree for entering element and attribute nodes in the XPath expression. If the Relative XPath
check box is checked, then the location path to the selected node is entered relative to the context
node (the node in the design within which the XPath expression is being built). The context node is
shown below the schema tree pane. An absolute XPath expression starts at the document root, and is
used for the selected node if the Relative XPath check box is unchecked.

· An entry helper pane for operators and expressions. These include: (i) axes (ancestor::, parent::,
etc), (ii) operators (for example eq and div), and (iii) expressions (for # in # return #, etc). The
items of the pane can be either listed alphabetically or grouped by functional category. Select the
option you want by choosing Hierarchical or Flat from the dropdown menu in the title bar of the pane.

· An entry helper with the functions of the active XPath version either listed alphabetically or grouped by
functional category. Select the option you want by choosing Hierarchical or Flat from the dropdown
menu in the title bar of the pane. The Names/Types option enables you to choose whether the
arguments of functions are displayed as names or datatypes.

Features of the Builder

· To view a text description of an item in either pane, hover over the item.

412 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Each function is listed with its signature (that is, with its arguments, the datatypes of the arguments,
and the datatype of the function's output).

· Signatures are listed using either the names or datatypes of the function's arguments and output.
Select Names or Types from the dropdown menu in the title bar of the pane.

· Double-clicking an item in any of the panes(operator, expression, or function), inserts that item at the
cursor location in the expression. Functions are inserted with their arguments indicated by
placeholders (the # symbol).

· If (i) text is selected in the XPath expression's edit field, and (ii) an expression or function that contains
a placeholder is double-clicked to insert it, then the text that was selected is inserted instead of the
placeholder.

After you have entered a function in the expression, hovering over the function name displays the function's
signature and a text description of the function. If different signatures exist for a function having the same name,
these are indicated with an overload factor at the bottom of the display. If you place the cursor within the
parentheses of the function and press Ctrl+Shift+Spacebar, you can view the signatures of the various
overloads of that function name.

Building XPath expressions
The Edit XPath Expression dialog helps you to build XPath expressions in the following ways.

· Context node and schema tree
The Selection text box in the Sources pane immediately shows you the context node. The expression
will be inserted at a location within this context node, and it will be evaluated with this node as its
context.

· Inserting a node from the schema tree
In the Sources pane, the entire schema is displayed. Double-click a node in the schema tree to insert
it in the XPath expression. If the Relative XPath check box is checked, the selected node will be
inserted with a location path expression that is relative to the context node.

· Namespace information
The schema tree in the Sources pane contains a Namespace item. Expanding this item displays all
the namespaces declared in the stylesheet. This information can be useful for checking the prefixes of
a namespace you might want to use in an XPath expression.

· Inserting XPath axes, operators and expressions
The Select Operator/Expression pane lists the XPath axes (ancestor::, parent::, etc) , operators
(for example, eq and div), and expressions (for # in # return #, etc) for the XPath version
selected as the XSLT version for the SPS. The display can be toggled between an alphabetical listing
and a hierarchical listing (which groups the items according to functionality). To insert an axis,
operator, or axis in the XPath expression, double-click the required item.

· Inserting XPath functions
The Select Function pane lists XPath functions alphabetically or grouped according to functionality
(click the respective icon at the top of the pane to switch between the two arrangements). Each
function is listed with its signature. If a function has more than one signature, that function is listed as
many times as the number of signatures. Arguments in a signature are separated by commas, and
each argument can have an occurrence indicator (? indicates a sequence of zero or one items of the

specified type; * indicates a sequence of zero or more items of the specified type). The arguments

can be displayed as names or as datatypes; select Names or Types in the title bar of the pane.Each
function also specifies the return type of that function. For example: => date ? indicates that the

© 2019-2025 Altova GmbH

Edit XPath Expression Dialog 413Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

expected return datatype is a sequence of none or one date item. Placing the mouse over a function
displays a brief description of the function. To insert a function in the XPath expression, double-click
the required function.

· Java and .NET extension functions can be used in XPath expressions, enabling you to access the
functions of these programming languages. The Java and .NET buttons at the bottom of the dialog,
pop up info boxes with explanations about how to use Java and .NET extension functions in XPath
expressions. For more information about this, see the Extension Functions section of this
documentation.

Intelligent editing during direct text entry
If you type an expression directly in the Expression text box, options that are available at that point are
displayed in a popup (see screenshot below).

These include elements, XPath functions, and XPath axes. Go up and down the list of options using the Up and
Down keys, and press Enter if you wish to select an option and enter it in the expression.

The Otherwise check box
The Otherwise toggle (see the red arrow in the screenshot below) adds an Otherwise branch to a conditional
template as its last branch. Only one Otherwise branch may be present in a conditional template. When a
conditional template is evaluated, the first branch to evaluate to true is executed. If no branch evaluates to
true, then, the Otherwise branch is executed if present, otherwise the conditional template is exited without
any of its branches being executed. Since the Otherwise branch is triggered only in the event that no preceding
branch evaluates to true, it does not need to have a condition defined for it. As a result, when the Otherwise
check box is selected, the entry field of the XPath expression is disabled.

599

414 Menu Commands and Reference Edit XPath Expression Dialog

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

For details of how to use the Otherwise condition, see Conditional Templates .246

© 2019-2025 Altova GmbH

Toolbars 415Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.3 Toolbars

A number of StyleVision commands are available as toolbar shortcuts, organized in the following toolbars:

· Formatting
· Table
· Insert Design Elements
· Design Filter
· Standard

The icons in each toolbar are listed in the sub-sections of this section, each with a brief description of the
corresponding command.

Positioning the toolbars
A toolbar can float freely on the screen or can be placed in a toolbar area along any edge of the GUI. Toolbars
are most commonly placed along the top edge of the GUI, just below the Menu bar. However, they can also be
placed along the side or bottom edges of the GUI.

To position a toolbar in a toolbar area, do the following:

1. Grab the toolbar by its handle (if the toolbar is already in a toolbar area) or by its title bar (if the toolbar
is floating).

2. Drag the toolbar to the desired toolbar area, if it exists, and drop it at the desired location in that
toolbar area. If no toolbar area exists at the edge along which you wish to place the toolbar, dragging
the toolbar to that edge will automatically create a toolbar area there when the toolbar is dropped.

To make a toolbar float freely grab it by its handle, drag it away from the toolbar area, and drop it anywhere on
the screen except at an edge or in an existing toolbar area.

Switching the display of toolbars on and off
The display of individual toolbars can be switched on and off using any of the following three methods:

· In the View | Toolbars menu (screenshot below), select or deselect a toolbar to, respectively, show or
hide that toolbar.

417

418

419

421

422

416 Menu Commands and Reference Toolbars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Right-click any toolbar area to display a context menu (screenshot below) that allows you to toggle the
display of individual toolbars on and off.

· In the Toolbars tab of the Customize dialog (Tools | Customize), toggle the display of individual
toolbars on or off by clicking a toolbar's check-box. When done, click the Close button to close the
dialog.

Adding and removing toolbar buttons
Individual toolbar buttons can be added to or removed from a toolbar, that is, they can be made visible or be
hidden. To add or remove a button from a toolbar, do the following:

1. In the toolbar where the button to be added or removed is, click the More Buttons button (if the toolbar
is in a toolbar area) or the Toolbar Options button (if the toolbar is a floating toolbar). The More
Buttons button is an arrowhead located at the right-hand side of the toolbar (in horizontal toolbar areas)
or at the bottom of the toolbar (in vertical toolbar areas). The Toolbar Options button is an arrowhead
located at the right-hand side of the floating toolbar.

2. In the Add or Remove Buttons menu that pops up, place the cursor over the Add or Remove
Buttons menu item (screenshot below). This rolls out a menu which contains the names of the
toolbars in that toolbar area plus the Customize menu item (screenshot below).

495 495

© 2019-2025 Altova GmbH

Toolbars 417Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

3. Place the cursor over the toolbar that contains the toolbar button to be added or removed (screenshot
above).

4. In the menu that rolls out (screenshot above), click on the name of the toolbar button to add or remove
that button from the toolbar.

5. Clicking the Customize item pops up the Customize dialog .

The Reset Toolbar item below the list of buttons in each toolbar menu resets the toolbar to the state it was in
when you downloaded StyleVision. In this state, all buttons for that toolbar are displayed.

Note: The buttons that a toolbar contains are preset and cannot be disassociated from that toolbar. The
process described above displays or hides the button in the toolbar that is displayed in the GUI.

11.3.1 Format

The Format toolbar (screenshot below) is enabled in Design View and contains commands that assign
commonly used inline and block formatting properties to the item/s selected in the SPS design.

Predefined HTML formats
The HTML format selected from the dropdown list is applied to the selection in Design View. For example, a
selection of div applies HTML's Block (div) element around the current selection in Design View.

Text properties
The bold, italic, underline, and strikethrough inline text properties can be directly applied to the current
selection in Design View by clicking on the appropriate button. Font style, font size, foreground and
background color can also be applied via toolbar buttons.

Alignment
Alignment properties (left-aligned, centered, right-aligned, and justified) can be directly applied to the selection
in Design View.

Lists
Lists can be inserted at the cursor insertion point, or the selection in the SPS can be converted to a list.

Hyperlinks
Inserts a hyperlink at the cursor insertion point. See Hyperlink for a description of how to use this
command.

495

468

418 Menu Commands and Reference Toolbars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.3.2 Table

The Table toolbar contains commands to structure and format static and dynamic tables in Design View.
These commands are shown in the screenshot below (which is that of the Table toolbar customization menu,
available when you click the Customize button at the right of the toolbar).

Row and Column operations
Rows and columns in any SPS table (static or dynamic) can be inserted, appended, or deleted with reference
to the cursor location. Rows and columns are inserted before the current cursor location or appended after all
rows/columns. The row/column in which the cursor is can also be deleted. These operations are achieved with
the Insert Row/Column, Append Row/Column, or Delete Row/Column buttons. You can also add table
headers and footers as either columns or rows Add Table Header/Footer Column/Row.

© 2019-2025 Altova GmbH

Toolbars 419Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Cell operations
An SPS table cell in which the cursor is located can be joined to any one of the four cells around it. The joining
operation is similar to that of spanning table cells in HTML. The buttons to be used for these operations are
Join Cell Right/Left/Above/Below. Also, an SPS table cell in which the cursor is located can be split, either
horizontally or vertically, using the Split Cell Horizontally and Split Cell Vertically buttons, respectively.
SPS table cell content can be aligned vertically at the top, in the middle, and at the bottom. The display of cell
borders can be switched on and off with the View Cell Bounds toggle.

Table operations, properties, display
Placing the cursor in a static or dynamic table and clicking Delete Table deletes that table. Table markup
can be toggled on and off with the View Table Markup command. The Table Properties command pops up the
Table Properties dialog, in which properties of the table can be defined.

11.3.3 Insert Design Elements

The Insert Design Elements toolbar contains icons for commands to insert design elements in the SPS
design, and for related commands. The various design elements that can be inserted via these toolbar icons are
shown in the screenshot below. There are three types of items in the toolbar:

1. Design elements , which are context-node-sensitive (the majority of elements in the toolbar),
2. Layout elements , which are independent of node context, and
3. Grid-related toggles to aid design.

483

420

421

421

420 Menu Commands and Reference Toolbars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Design elements
The design elements are the context-node-sensitive elements that are available in the Insert menu. To insert a
design element using its toolbar icon, do the following:

1. Select the toolbar icon for the element you wish to insert.
2. Click the location in the design where the element is to be inserted. A Insert Design Element for the

selected design element pops up. This displays the schema tree with the context node highlighted.
The context node is the node within which the cursor has been placed for the insertion of the design
element.

3. If you wish to insert the design element within the currently selected context node, click OK. If you
wish to select another context node, do so in the schema tree and then click OK.

4. In the case of some design elements, such as Auto-Calculations, a further step is required, such as
the definition of an Auto-Calculation. In other cases, such as the insertion of a user-defined template,

© 2019-2025 Altova GmbH

Toolbars 421Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

the Insert Design Element dialog is skipped. In such cases, another dialog, such as the Edit XPath
Expression dialog will pop up. Carry out the required step and press the dialog's OK button.

The design element will be inserted at the end of Step 3 or Step 4, depending on the kind of design element
being inserted.

Layout elements
There are three layout element commands in the Insert Design Elements toolbar: to insert (i) a layout
container; (ii) a layout box; and (iii) a line. Note that layout boxes and lines can only be inserted within a layout
container.

To insert a layout container, select the Insert Layout Container icon and then click at the location in the
design where you wish to insert the layout container. You will be prompted about the size of the layout
container, on selecting which the layout container will be inserted. To insert a layout box, click the Insert
Layout Box icon, then move the cursor to the location within the layout container at which you wish to insert
the layout box and click. The layout box is inserted. Click inside the layout box to start typing. To insert a line,
click the Insert Line icon, then move the cursor to the location within the layout container at which you wish to
start drawing the line. Click to define the start point of the line and then drag the cursor to the desired endpoint.
Release the cursor at the end point. The line is inserted and extends from the indicated start point to the
indicated end point.

To re-size layout containers and layout boxes, place the cursor over the right or bottom border of the layout
container or layout box and drag the border so as to obtain the desired size. To move a layout box, place the
cursor over the top or left border of the layout box and, when the cursor turns to a cross, drag the layout box to
the new location.

Grid-related toggles
The Show Grid command toggles the display of the drawing grid on and off. When the Snap to Grid
command is toggled on, elements created within the layout container, such as layout boxes and lines, snap to
grid lines and grid line intersections. The properties of the grid can be set in the Design tab of the Options
dialog (Tools | Options).

11.3.4 Design Filter

The Design Filter toolbar (screenshot below) contains commands that enable you to filter which templates
are displayed in the design. Each icon in the toolbar is explained below.

Icon Command Description

Show only one
template

Shows the selected template only. Place the cursor in a template and
click to show that template only.

Show all template
types

Shows all templates in the SPS (main, global, named, and layout) .

398

422 Menu Commands and Reference Toolbars

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Icon Command Description

Show imported
templates

Toggles the display of imported templates on and off.

Show/Hide main
template

Toggles the display of the main template on and off.

Show/Hide global
templates

Toggles the display of global templates on and off.

Show/Hide Design
Fragments

Toggles the display of Design Fragments on and off.

The Design Filter combo box (screenshot below) displays a list of all the templates in the SPS.

Selecting a template in the combo box causes the template to be selected in the design. The combo box,
therefore, enables you to quickly navigate to the desired template in the design, which is useful if the design
has several templates, some of which might be currently hidden.

11.3.5 Standard

The Standard toolbar contains buttons for commands that provide important file-related and editing
functionality. These icons are listed below with a brief description. For a fuller description of a command, click
the command to go to its description in the Reference section.

Btn Command Shortcut Description

New from XML
Schema /
DTD

Ctrl+N Creates a new SPS document based on a schema.
Clicking the dropdown arrow enables you to create the
SPS from a DB or an HTML document, or an empty
SPS.

Open Ctrl+O Opens an existing SPS document.

Save
Design

Ctrl+S Saves the active SPS document.

Save All Ctrl+Shift+S Saves all open SPS documents.

Print Ctrl+P Prints the Authentic View of the Working XML file.

424

430

435

435

445

© 2019-2025 Altova GmbH

Toolbars 423Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Btn Command Shortcut Description

Print
Preview

Displays a print preview of the Authentic View of the
Working XML File.

Cut Shift+Del Cuts the selection and places it in the clipboard.

Copy Ctrl+C Copies the selection to the clipboard.

Paste Ctrl+P Pastes the clipboard item to the cursor location.

Delete Del Deletes the selection.

Undo Alt+
Backspace

Undoes an editing change. An unlimited number of Undo
actions can be performed at a time.

Redo Ctrl+Y Redoes an undo.

Find Ctrl+F Finds text in Authentic View and Output Views.

Find Next F3 Finds the next occurrence of the searched text.

XSLT 1.0 Sets XSLT 1.0 as the stylesheet language.

XSLT 2.0 Sets XSLT 2.0 as the stylesheet language.

XSLT 3.0 Sets XSLT 3.0 as the stylesheet language.

Spelling Runs a spelling check on the SPS document.

445

448

448

448

448

448

448

448

448

93

93

93

491

424 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.4 File Menu

The File menu contains commands for working with SPSs and related files. The following commands are
available:

· New , to create a new SPS from a variety of sources.
· Open, Reload, Close, Close All , to open and close the active file, and to reload the active file.
· Save Design, Design As, All , which are commands to save the active SPS and all open SPS files.
· Export as MobileTogether Design File , to generate a MobileTogether design from the active SPS

file.
· Save Generated Files , to save output files that can be generated using the SPS.
· Web Design , generates all the files required to run an ASPX application, in the folder location you

specify.
· Properties , to set the encoding of the output documents, the CSS compatibility mode of the

browser, how relative image paths in Authentic View should be resolved, and whether images should
be embedded or linked in the RTF (Enterprise and Professional editions) and Word 2007+ (Enterprise
edition only) outputs.

· Print Preview, Print , enabled in output views, these commands print what is displayed in the
previews.

· Most Recently Used Files, Exit , respectively, to select a recently used file to open, and to exit the
program.

11.4.1 New

Placing the cursor over the New command pops out a submenu (screenshot below) that enables you to create
a new SPS document of one of different types:

· A new SPS file based on an XML Schema or DTD or XML Schema generated from an XML file (New
from XML Schema / DTD / XML). The selected schema is added to the Design Overview sidebar
and a graphical tree representation is added to the schema tree (in the Schema Tree sidebar). In
Design View , the SPS is created with an empty main template. A new SPS can also be created
from a file (schema or XML) via a URL or global resource (see below).

· A new SPS based on a user-defined schema you create node-by-node from an HTML file (New
from HTML File). The user-defined schema is added to the Design Overview sidebar and Schema
Tree sidebar . In the schema tree, it will have a single document element (root element), and the
HTML file is loaded in Design View .

· An SPS can be created from an XSLT-for-HTML or an XSLT-for-FO or an FO file. Template structure
and styling in the XSLT will be created in the SPS. You can then modify the SPS components and add
content and formatting to the SPS. See New from XSLT for details.

424

430

435

441

441

444

444

445

446

33

36

27

368

33

36

27

341

© 2019-2025 Altova GmbH

File Menu 425Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

· A new SPS that contains the content of a MS Word document as the design's static text .
· A new SPS that contains the content of a MS Excel document as the design's static text .
· A new empty SPS (New (empty)). No schema is added to either the Design Overview sidebar or the

schema tree. An empty main template will be created in Design View .

Selecting the type of design
After you have selected (XSD and XML) sources files, if required, the Create New Design dialog appears.

The Create New Design dialog (screenshot below) prompts you to select either: (i) a free-flowing document
design, or (ii) a form-based document design (in which components are positioned absolutely, as in a layout
program).

In a free-flowing document design, document content is laid out to fit the output media object or viewer (paper or
screen). Items in the document content can only be placed relative to each other, and not absolutely. This kind
of design is suited for documents such as reports, articles, and books.

In a form-based document, a single Layout Container is created, in which design components can be
positioned absolutely. The dimensions of the Layout Container are user-defined, and Layout Boxes can be
positioned absolutely within the Layout Container and document content can be placed within individual Layout
Boxes. If you wish the design of your SPS to replicate a specific form-based design, you can use an image of
the original form as a blueprint image . The blueprint image can then be included as the background image of
the Layout Container. The blueprint image is used to help you design your form; it will not be included in the
output.

108

111

27

160

160

426 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Selecting files via URLs and Global Resources
In several File Open and File Save dialogs, you can choose to select the required file or save a file via a URL or
a global resource (see screenshot below). Select the Switch to URL or Switch to Global Resource to go to
one of these selection processes.

Selecting files via URLs
To select a file via a URL, do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open dialog (screenshot
below).

© 2019-2025 Altova GmbH

File Menu 427Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

2. Enter the URL you want to access, in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this type
of server.

3. If the server is password protected, enter your User-ID and password in the User and Password fields.
4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

428 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The file URL appears in the File URL field (screenshot above). The Open button only becomes active
at this point.

6. Click the Open button to load the file. The file you open appears in the main window.

Note: The Browse function is only available on servers which support WebDAV and on Microsoft SharePoint
Servers. The supported protocols are FTP, HTTP, and HTTPS.

Note: To give you more control over the loading process, you can choose to load the file through the local
cache or a proxy server (which considerably speeds up the process if the file has been loaded before).
Alternatively, you may want to reload the file if you are working, say, with an electronic publishing or database
system; select the Reload option in this case

Microsoft® SharePoint® Server Notes
Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons have
symbols that indicate the check-in/check-out status of files.

© 2019-2025 Altova GmbH

File Menu 429Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Right-clicking a file pops up a context menu containing commands available for that file (screenshot
above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot above),
or via the context menu that pops up when you click the file tab in the Main Window of your application
(screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova application.

430 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The file is considered to be already checked out to you. The available commands at this point in any
Altova application supporting Microsoft® SharePoint® Server will be: Check In and Undo Check Out.

11.4.2 Open, Reload, Close, Close All

The Open (Ctrl+O) command allows you to open an existing SPS or PXF file. The familiar Open dialog
of Windows systems is opened and allows you to select a file with an extension of .sps.

The Reload command reloads the SPS file from the file saved to disk. Any changes made since the file was
last saved will be lost. The Working XML file will also be reloaded, enabling you to update the Working XML File
it it has been changed externally.

The Close command closes the currently active SPS document. Note that while several files can be open, only
one is active. The active document can also be closed by clicking the Close button at the top right of the Main
Window . If you have unsaved changes in the document, you will be prompted to save these changes.

The Close All command closes all the open SPS documents. If you have unsaved changes in an open
document, you will be prompted to save these changes.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

425

26

© 2019-2025 Altova GmbH

File Menu 431Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog
(the screenshot below shows the Open dialog).

432 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

© 2019-2025 Altova GmbH

File Menu 433Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

434 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

© 2019-2025 Altova GmbH

File Menu 435Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section,. For a general description of
Global Resources, see the section in this documentation.

11.4.3 Save Design, Save All

The Save Design (Ctrl+S) command saves the currently open document as an SPS file (with the file
extension .sps).

The Save All (Ctrl+Shift+S) command saves all the open SPS documents.

Selecting and saving files via URLs and Global Resources

In several File Open and File Save dialogs, you can choose to select the required file or save a file via a
URL or a global resource (see screenshot below). Click Switch to URL or Global Resource to go to one
of these selection processes.

436 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Selecting files via URLs
To select a file via a URL (either for opening or saving), do the following:

1. Click the Switch to URL command. This switches to the URL mode of the Open or Save dialog
(the screenshot below shows the Open dialog).

© 2019-2025 Altova GmbH

File Menu 437Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

2. Enter the URL you want to access in the Server URL field (screenshot above). If the server is a
Microsoft® SharePoint® Server, check the Microsoft® SharePoint® Server check box. See the
Microsoft® SharePoint® Server Notes below for further information about working with files on this
type of server.

3. If the server is password protected, enter your User-ID and password in the User and Password
fields.

4. Click Browse to view and navigate the directory structure of the server.
5. In the folder tree, browse for the file you want to load and click it.

438 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The file URL appears in the File URL field (see screenshot above). The Open or Save button only
becomes active at this point.

6. Click Open to load the file or Save to save it.

Note the following:

· The Browse function is only available on servers which support WebDAV and on Microsoft
SharePoint Servers. The supported protocols are FTP, HTTP, and HTTPS.

· To give you more control over the loading process when opening a file, you can choose to load the
file through the local cache or a proxy server (which considerably speeds up the process if the file
has been loaded before). Alternatively, you may want to reload the file if you are working, say,
with an electronic publishing or database system; select the Reload option in this case.

.

Microsoft® SharePoint® Server Notes

Note the following points about files on Microsoft® SharePoint® Servers:

· In the directory structure that appears in the Available Files pane (screenshot below), file icons
have symbols that indicate the check-in/check-out status of files.

© 2019-2025 Altova GmbH

File Menu 439Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Right-clicking a file pops up a context menu containing commands available for that file
(screenshot above).

· The various file icons are shown below:

Checked in. Available for check-out.

Checked out by another user. Not available for check-out.

Checked out locally. Can be edited and checked-in.

· After you check out a file, you can edit it in your Altova application and save it using File | Save
(Ctrl+S).

· You can check-in the edited file via the context menu in the Open URL dialog (see screenshot
above), or via the context menu that pops up when you right-click the file tab in the Main Window
of your application (screenshot below).

· When a file is checked out by another user, it is not available for check out.
· When a file is checked out locally by you, you can undo the check-out with the Undo Check-Out

440 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

command in the context menu. This has the effect of returning the file unchanged to the server.
· If you check out a file in one Altova application, you cannot check it out in another Altova

application. The file is considered to be already checked out to you. The available commands at
this point in any Altova application supporting Microsoft® SharePoint® Server will be: Check In
and Undo Check Out.

Opening and saving files via Global Resources

To open or save a file via a global resources, click Global Resource. This pops up a dialog in which you
can select the global resource. These dialogs are described in the section,. For a general description of
Global Resources, see the section in this documentation.

11.4.4 Save As

The Save As command enables the design to be saved: (i) as an SPS file or (ii) as a PXF file (Portable XML
Form file). Clicking the command pops up the Save Design dialog (screenshot below). Select the required
format and click OK.

The SPS format is the standard Altova format for StyleVision designs. The PXF format is an Altova format
that allows all files related to the design (schema files, XML files, images files, generated XSLT stylesheets,
etc) to be embedded with the design. This format is very useful for transporting all the files required to open the
design in Authentic View and/or to generate HTML output based on the design.

Save as SPS
Selecting the SPS option causes the familiar Save As dialog of Windows systems to pop up. Saving works
exactly as described for the Save Design command . The advantage of using the Save As command is
that files that have already been saved with a filename can be saved with another filename.

435 435

© 2019-2025 Altova GmbH

File Menu 441Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.4.5 Export as MobileTogether Design File

This command generates an Altova MobileTogether design file from the active SPS design. A MobileTogether
design file is used to execute solutions in the MobileTogether app for mobile devices. For example, a
MobileTogether solution can be opened in a mobile device, such as a smartphone, to view and edit the
contents of a database. A MobileTogether solution is designed in Altova MobileTogether Designer. This
command enables you to convert an SPS design into a MobileTogether design that can be edited in
MobileTogether Designer. For more information, see the MobileTogether web page and MobileTogether
Designer documentation. Conversions options are available in the MobileTogether Design tab of the Options
dialog (Tools | Options).

Note: Not all SPS design features have correspondences in MobileTogether designs. After running this
command, you should therefore open the generated file in MobileTogether Designer to review it and, if
necessary, correct it. The following design features are known not to be exported to MobileTogether designs: (i)
Sources beyond the first one listed in the StyleVision design(an Enterprise feature); (ii) global templates ; (ii)
modules .

11.4.6 Save Generated Files

The Save Generated Files command pops up a submenu which contains options for saving the following files
(screenshot below). For perspective on how the generated files fit into the general usage procedure, see Usage
Procedure | Generated Files .

Save Generated XSLT-HTML File
The Save Generated XSLT-HTML File command generates an XSLT file for HTML output from your SPS. You
can use this XSLT file subsequently to transform an XML document to HTML.

Save Generated HTML File(s)
The Save Generated HTML File(s) command generates an HTML file or files. Multiple HTML files will be
generated if multiple document output has been specified in the design. This operation requires two input
files:

· The Working XML File assigned to the currently active SPS file. If no Working XML File has been
assigned, the Save Generated HTML File command is disabled.

· An XSLT file, which is automatically generated from the currently active SPS file.

Save Generated User-Defined Schema
This command is activated when the SPS involves a user-defined schema. The schema you create in the
Schema Tree sidebar is saved as an XML Schema with the .xsd extension.

Save Generated User-Defined XML Data
The data in the imported HTML file that corresponds to the user-defined schema is saved as an XML file. The
corresponding data are the nodes in the HTML document (in Design View) that have been created as XML
Schema nodes.

499

216

202

96

232

https://www.altova.com/mobiletogether.html
https://www.altova.com/manual/en/mobiletogetherdesigner/10.1/
https://www.altova.com/manual/en/mobiletogetherdesigner/10.1/

442 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.4.7 Deploy to FlowForce

The Deploy to FlowForce command enables you to deploy a .transformation file to your Altova FlowForce
Server. The .transformation file contains all the files and information required to carry out transformations as
designed in the SPS. After the .transformation file has been deployed to the FlowForce Server, you can
create jobs in Altova FlowForce that use the .transformation file to generate transformations according to
triggers specified in the job definition. For information about creating FlowForce jobs, see the FlowForce
documentation.

A .transformation file is generated from a Portable XML Format (PXF) file. So, the Deploy to FlowForce
command can be used when a PXF file is active. (If an SPS file is active, the Deploy to FlowForce command
will be active, but clicking it will prompt you to save the SPS file as a PXF file. To create a PXF file from an
SPS file, use the File | Save As command and select PXF as the format to save as.)

Note the following points:

· When a PXF file is saved, an option is provided for including external files (such as image files) in it. If
an external file is not included in the PXF file but is required for the transformation, then the external file
must be saved on the FlowForce Server. Since the external files will be accessed from the working
directory (specified in the FlowForce job definition), they should be placed relative to the working
directory, in such a way that links originating in the working directory will correctly access them.

· When a FlowForce job requiring a StyleVision transformation is executed, the job is passed to
StyleVision Server, and StyleVision Server will extract the contents of the PXF file to the working
directory that was specified in the job's parameters. To ensure that there is no filename collision when
this extraction occurs, there should be no file in the working directory that has the same name as a file
contained in the PXF file.

Before running the Deploy to FlowForce command, make sure that Altova FlowForce Server and Altova
StyleVision Server are correctly licensed and running. See the Altova FlowForce documentation for more
information about setting up FlowForce Server. (StyleVision Server is packaged with FlowForce Server.)

The Deploy command
The Deploy to FlowForce command pops up the Deploy Transformation dialog (screenshot below).

© 2019-2025 Altova GmbH

File Menu 443Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

In this dialog, you specify the following:

· The address and port number of the FlowForce Web Server (not the FlowForce Server), together with
access details (user and password) for the FlowForce Server.

· The filename of the transformation file and the location on the FlowForce Server where it is to be saved.
The filepath must start with a slash, which represents the root directory of the FlowForce Server.

· If changes have been made to the design since the file was last saved, the Save design changes
before deploying check box will be enabled. Check the box if you wish to save these changes;
otherwise uncheck the box.

· To deploy the mapping through a SSL-encrypted connection, select the Use SSL check box. This
assumes that FlowForce Server is already configured to accept SSL connections. For more
information, refer to FlowForce Server documentation.

On clicking OK, the .transformation file is deployed to the FlowForce Server at the location specified. If you
have checked the Open web browser to create new job check box (see screenshot above), the FlowForce Web
Server interface is opened in a web browser, and the job created during the deployment step can be edited
directly in the browser.

Multiple versions of StyleVision Server
If the server where you deploy the .transformation file has multiple versions of StyleVision Server running
under FlowForce Server management (applicable to Windows servers only), then a Select StyleVision Server
dialog appears, in which you are prompted to specify the version of Stylevision Server with which you want this
mapping to be executed. You can select the version you want to use manually, or let the server select the
most suitable version automatically.

This dialog appears when the FlowForce Server installation directory contains a .tool file for each StyleVision

Server version which runs under FlowForce Server management. By default, a StyleVision Server .tool file is

added automatically to this directory when you install StyleVision Server as part of a FlowForce Server

444 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

installation. The path where the .tool files are stored in FlowForce is: C:\Program

Files\Altova\FlowForceServer2025\tools. If you have additional versions of StyleVision Server which you

want to run under FlowForce Server management, their .tool files may need to be copied manually to the

directory above. The .tool file of StyleVision Server can be found at: C:\Program

Files\Altova\StyleVisionServer2025\etc.

Note: For information about how to work with FlowForce Server, see the FlowForce documentation.

11.4.8 Web Design

The Web Design command rolls out a submenu containing the Generate ASPX Web Application command.
This latter command generates all the files required to run an ASPX application, in the folder location you
specify. A web browser will read the ASPX file that is the output document. C# code in this file will start a
process whereby data in the source database or XML file will be transformed dynamically using an XSLT file in
the ASPX package. The ASPX file (the output document of the transform process) will be updated with the
latest data in the source database or XML file.

For more information, see ASPX Interface for Web Applications .

11.4.9 Properties

The Properties command pops up the Properties dialog (screenshot below shows the dialog in the Enterprise
Edition), in which you can set various properties for the active SPS.

Output
The following properties can be set in the Output tab:

· Output Encoding: In the Output Encoding pane you can select the encoding of your output
documents. Changing the encoding in this dialog changes the encoding for the currently active SPS.
You can also specify the application-wide for all SPS documents in the Encoding tab of the Options
dialog.

· HTML output mode: You can select whether an entire HTML document or only the child elements of
the HTML body element are output. The child elements are output parallel to each other—that is, on

the same level—and will contain all descendants recursively. As a result, the output documents can
be fragments of HTML code..

· HTML output mode (DOCTYPE): You can select whether an HTML5, HTML 4.01 Transitional
document, or XHTML 1.0 Transitional document is generated for the HTML output. This setting can be
changed at any time while creating or editing the SPS document.

· Internet Explorer Compatibility and CSS support: CSS support in versions of Internet Explorer (IE)
prior to IE 6 was incomplete and in some respects incorrectly interpreted. CSS support was enhanced
and corrected in IE 6, and further improved and extended in IE 7, IE 9, and higher.

375

https://www.altova.com/manual/en/flowforceserveradvanced/2025.2/

© 2019-2025 Altova GmbH

File Menu 445Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

In an SPS, you can select the desired compatibility mode in the Properties dialog (screenshot above).
You can select either IE 5, IE 7, or IE 9. (Note that for IE 9 compatibility to apply, IE 9 or higher must
be installed.) The specified level of IE support is immediately available in HTML Preview. Note that new
SPS documents are created with IE7 compatibility selected. SPS documents created in earlier
versions of Altova StyleVision can be re-saved in the required Compatibility Mode (selected in the
Properties dialog).

XSD/XSLT
In this tab (screenshot below shows the dialog in the Enterprise Edition), you can specify which XSD validator
to use for XML validation and which XSLT version to use in the SPS.

StyleVision has both an XSD 1.0 validator and an XSD 1.1 validator. You can choose from among the following
options:

· Use the XSD 1.1 validator if the XSD document's /xs:schema/@vc:minVersion attribute is set to 1.1;
otherwise use the XSD 1.0 validator.

· Always use the XSD 1.1 validator.
· Alawys use the XSD 1.0 validator.

Select the XSLT version for the active document in this tab. Checking the option about the xsl:import-schema
statement causes the xsl:import-schema element of the XSLT 2.0 and 3.0 specifications to be included in the
XSLT document generated by StyleVision. It is recommended that you select this option in order for datatypes
to be read from the schema in the event that there is no xsi:schemaLocation attribute in the XML document.

Embedding images in HTML output
Chart, barcode, and inline images can be embedded in HTML output. If this checkbox is selected, the image
data is converted to a Base64 string that is stored in the src attribute of the HTML img element using the Data

URI scheme. This kind of embedding is available only when the XSLT version of the SPS is 2.0 or 3.0.

Paths
Default paths for various files created by the SPS file and for paths saved in the SPS file are specified in the
settings of this tab (screenshot below shows the dialog in the Enterprise Edition).

The following defaults are set in the Paths tab:

· Whether preview files are created in the directory of the SPS file or the Working XML File of the main
schema source.

· Where additionally generated files (image files, barcode image files, chart image files, etc) are created.
· Whether file paths in the SPS are relative only when the target directory is in the directory tree of the

SPS file, or relative even when the target directory is outside the directory tree of the SPS file.

11.4.10 Print Preview, Print

The Print Preview command is enabled in Design View and Authentic View (Authentic View is supported
in the Enterprise and Professional editions only). The Print Preview command opens a window containing a
preview of the SPS design (when Design View is active) or of the Authentic View of the Working XML File when
Authentic View is active). The preview will show the design with or without tags according to what is on screen.

444

446 Menu Commands and Reference File Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

You can do the following in the Print Preview window, via the toolbar commands at the top of the page
(screenshot above) and the page navigation icons at the bottom of the page. The commands in the Print
Preview toolbar are as follows, starting from the left.

· Print the page using the Print button.
· Set paper orientation to portrait or landscape.
· Set page properties by clicking the Page Setup button to get the Page Setup dialog.
· Toggle on/off the display and printout of headers and footers.
· Set the view so that either the page width or page height occupies, respectively, the full screen width or

full screen height.
· Set how many pages are to fit within the screen.
· Change the zoom factor of the preview pages using the Zoom In and Zoom Out buttons or the combo

box to select a zoom factor.

To navigate the pages of the preview, use the page navigation buttons at the bottom of the preview or by
entering the page number in the Page text-box.

The Print command is enabled in the Authentic View and output preview tabs. It prints out the selected
view of the Working XML File according to the page setup for that view. Note that the page setup for Authentic
View can be edited in the Page Setup dialog, which you access via the Print Preview window.

Note: To enable background colors and images in Print Preview, do the following: (i) In the Tools menu of
Internet Explorer, click Internet Options, and then click the Advanced tab; (ii) In the Settings box, under
Printing, select the Print background colors and images check box, and (iii) Then click OK.

11.4.11 Most Recently Used Files, Exit

The list of most recently used files, shows the file name and path information for the nine most recently used
files. Clicking one of these entries, causes that file to be opened in a new tab in the Main Window.

© 2019-2025 Altova GmbH

File Menu 447Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

To access these files using the keyboard, press ALT+F to open the File menu, and then the number of the file
you wish to open; for example, pressing 1 will open the first file in the list, 2 the second file, and so on.

The Exit command is used to quit StyleVision. If you have an open file with unsaved changes, you will be
prompted to save these changes.

448 Menu Commands and Reference Edit Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.5 Edit Menu

The Edit menu contains commands that aid the editing of SPS documents. Besides the standard editing
commands, such as Cut (Shift+Del or Ctrl+X), Copy (Ctrl+C), Paste (Ctrl+V), and Delete (Del), which are not
described in this section, the following commands are available:

· Undo, Redo, Select All , to undo or restore your previous actions, and to select all content of the
SPS.

· Find, Find Next, Replace , to find text in the SPS and XSLT stylesheet previews.
· Stylesheet Parameters , to edit parameters declared globally for the SPS.
· Collapse/Expand Markup , to collapse and expand SPS design component tags.

Commands are also available via the context menu which appears when you right-click a component or right-
click at a cursor insertion point. Additionally, some commands are available as keyboard shortcuts and/or
toolbar icons. Note, however, that commands which are not applicable in a particular document view or at a
given location are grayed out in the menu.

11.5.1 Undo, Redo, Select All

The Undo (Ctrl+Z) command enables you to undo an editing change. An unlimited number of Undo actions
is supported. Every action can be undone and it is possible to undo one command after another till the first
action that was made since the document was opened.

The Redo (Ctrl+Y) command allows you to redo any number of previously undone commands. By using the
Undo and Redo commands, you can step backward and forward through the history of commands.

The Select All command selects the entire contents of the Design Document window.

11.5.2 Find, Find Next, Replace

The Find (Ctrl+F) command enables you to find text strings in Design View, JavaScript Editor, and XSLT
stylesheets.

The Find & Replace dialog that is displayed depends on which view is currently active.

· When Design View is active, clicking the Find or Replace command will set the focus to the Find &
Replace sidebar . The search and replace functionality of Design View is described in the topic Find
& Replace sidebar .

· The search and replace functionality in JavaScript Editor and XSLT stylesheets is described in this
topic.

XSLT stylesheets and JavaScript Editor
Clicking the Find command in the XSLT-for-HTML or JavaScript Editor tab displays the following dialog:

448

448

453

454

49

49

© 2019-2025 Altova GmbH

Edit Menu 449Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

You can select from the following options:

· Match case: Case-sensitive search when toggled on (Address is not the same as address).
· Match whole word: Only the exact words in the text will be matched. For example, for the input string

fit, with Match whole word toggled on, only the word fit will match the search string; the fit in
fitness, for example, will not be matched.

· Regular expression: If toggeld on, the search term will be read as a regular expression. See Regular
expressions below for a description of how regular expressions are used.

· Find anchor: When a search term is entered, the matches in the document are highlighted and one of
these matches will be marked as the current selection. The Find anchor toggle determines whether
that first current selection is made relative to the cursor position or not. If Find anchor is toggled on,
then the first currently selected match will be the next match from the current cursor location. If Find
anchor is toggled off, then the first currently selected match will be the first match in the document,
starting from the top.

· Find in selection: When toggled on, locks the current text selection and restricts the search to the
selection. Otherwise, the entire document is searched. Before selecting a new range of text, unlock
the currently selection by toggling off the Find in Selection option.

· Replace: In the JavaScript Editor tab, click the Down Arrow button, which is located at the top left of
the dialog, to open the Replace field. Here you can enter the string that you want to substitute for the
found string.

HTML Preview
Clicking the Find command in HTML Preview opens a simple Find and Replace dialog.

Note the following:

· To match the entry with whole words, check "Match whole word only". For example, an entry of soft
will find only the whole word soft; it will not find, for example, the soft in software.

· To match the entry with fragments of words, leave the "Match whole word only" check box unchecked.
Doing this would enable you, for example, to enter soft and software.

· To make the search case-insensitive, leave the "Match case" checkbox unchecked. This would enable
you to find, say, Soft with an entry of soft.

Find Next command

The Find Next (F3) command repeats the last Find command to search for the next occurrence of the
requested text. See Find for a description of how to use the search function.

Using regular expressions
You can use regular expressions (regex) to find a text string. To do this, first, switch the Regular expression
option on (see above). This specifies that the text in the search term field is to be evaluated as a regular
expression. Next, enter the regular expression in the search term field. For help with building a regular
expression, click the Regular Expression Builder button, which is located to the right of the search term

449

49

448

450 Menu Commands and Reference Edit Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

field. Click an item in the Builder to enter the corresponding regex metacharacter/s in the search term field.
See below for a brief description of metacharacters.

Regular expression metacharacters
Given below is a list of regular expression metacharacters.

. Matches any character. This is a placeholder for a single character.

(Marks the start of a tagged expression.

) Marks the end of a tagged expression.

(abc) The (and) metacharacters mark the start and end of a tagged expression. Tagged

expressions may be useful when you need to tag ("remember") a matched region for
the purpose of referring to it later (back-reference). Up to nine expressions can be
tagged (and then back-referenced later, either in the Find or Replace field).

For example, (the) \1 matches the string the the. This expression can be literally

explained as follows: match the string "the" (and remember it as a tagged region),
followed by a space character, followed by a back-reference to the tagged region
matched previously.

\n Where n is a variable that can take integer values from 1 through 9. The expression
refers to the first through ninth tagged region when replacing. For example, if the find
string is Fred([1-9])XXX and the replace string is Sam\1YYY, this means that in the

find string there is one tagged expression that is (implicitly) indexed with the number 1;

in the replace string, the tagged expression is referenced with \1. If the find-replace

command is applied to Fred2XXX, it would generate Sam2YYY.

\< Matches the start of a word.

\> Matches the end of a word.

\x Allows you to use a character x, which would otherwise have a special meaning. For
example, \[would be interpreted as [and not as the start of a character set.

[...] Indicates a set of characters. For example, [abc] means any of the characters a, b or
c. You can also use ranges: for example [a-z] for any lower case character.

[^...] The complement of the characters in the set. For example, [^A-Za-z] means any
character except an alphabetic character.

^ Matches the start of a line (unless used inside a set, see above).

$ Matches the end of a line. Example: A+$ to find one or more A's at end of line.

* Matches 0 or more times. For example, Sa*m matches Sm, Sam, Saam, Saaam and so
on.

+ Matches 1 or more times. For example, Sa+m matches Sam, Saam, Saaam and so on.

Representation of special characters
Note the following expressions.

\r Carriage Return (CR). You can use either CR (\r) or LF (\n) to find or create a new line

\n Line Feed (LF). You can use either CR (\r) or LF (\n) to find or create a new line

\t Tab character

© 2019-2025 Altova GmbH

Edit Menu 451Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

\\ Use this to escape characters that appear in regex expression, for example: \\\n

Regular expression examples
This example illustrates how to find and replace text using regular expressions. In many cases, finding and
replacing text is straightforward and does not require regular expressions at all. However, there may be
instances where you need to manipulate text in a way that cannot be done with a standard find and replace
operation. Consider, for example, that you have an XML file of several thousand lines where you need to rename
certain elements in one operation, without affecting the content enclosed within them. Another example: you
need to change the order of multiple attributes of an element. This is where regular expressions can help you,
by eliminating a lot of work which would otherwise need to be done manually.

Example 1: Renaming elements
The sample XML code listing below contains a list of books. Let's suppose your goal is to replace the
<Category> element of each book to <Genre>. One of the ways to achieve this goal is by using regular
expressions.

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd">

 <book id="1">

 <author>Mark Twain</author>

 <title>The Adventures of Tom Sawyer</title>

 <category>Fiction</category>

 <year>1876</year>

 </book>

 <book id="2">

 <author>Franz Kafka</author>

 <title>The Metamorphosis</title>

 <category>Fiction</category>

 <year>1912</year>

 </book>

 <book id="3">

 <author>Herman Melville</author>

 <title>Moby Dick</title>

 <category>Fiction</category>

 <year>1851</year>

 </book>

</books>

To solve the requirement, follow the steps below:

1. Press Ctrl+H to open the Find and Replace dialog box.

2. Click Use regular expressions .
3. In the Find field, enter the following text: <category>(.+)</category> . This regular expression

matches all category elements, and they become highlighted.

452 Menu Commands and Reference Edit Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

To match the inner text of each element (which is not known in advance), we used the tagged
expression (.+) . The tagged expression (.+) means "match one or more occurrences of any

character, that is .+ , and remember this match". As shown in the next step, we will need the

reference to the tagged expression later.

4. In the Replace field, enter the following text: <genre>\1</genre> . This regular expression defines the

replacement text. Notice it uses a back-reference \1 to the previously tagged expression from the Find

field. In other words, \1 in this context means "the inner text of the currently matched <category>

element".

5. Click Replace All and observe the results. All category elements have now been renamed to
genre, which was the intended goal.

Example 2: Changing the order of attributes
The sample XML code listing below contains a list of products. Each product element has two attributes: id
and a size. Let's suppose your goal is to change the order of id and size attributes in each product element
(in other words, the size attribute should come before id). One of the ways to solve this requirement is by
using regular expressions.

<?xml version="1.0" encoding="UTF-8"?>
<products xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="products.xsd">

 <product id="1" size="10"/>

 <product id="2" size="20"/>

 <product id="3" size="30"/>

 <product id="4" size="40"/>

 <product id="5" size="50"/>

 <product id="6" size="60"/>

</products>

To solve the requirement, follow the steps below:

1. Press Ctrl+H to open the Find and Replace dialog box.

© 2019-2025 Altova GmbH

Edit Menu 453Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

2. Click Use regular expressions .
3. In the Find field, enter the following: <product id="(.+)" size="(.+)"/> . This regular expression

matches a product element in the XML document. Notice that, in order to match the value of each
attribute (which is not known in advance), a tagged expression (.+) is used twice. The tagged

expression (.+) matches the value of each attribute (assumed to be one or more occurrences of any

character, that is .+).

4. In the Replace field, enter the following: <product size="\2" id="\1"/> . This regular expression

contains the replacement text for each matched product element. Notice that it uses two references \1

and \2 . These correspond to the tagged expressions from the Find field. In other words, \1 means

"the value of attribute id" and \2 means "the value of attribute size".

6. Click Replace All and observe the results. All product elements have now been updated so that
attribute size comes before attribute id.

11.5.3 Stylesheet Parameters

The Stylesheet Parameters command enables you to declare and edit parameters and their default
values. The command is available in both the Design Document view and the Authentic Editor View. When you
click this command, the Edit Parameters dialog (shown below) pops up.

The following points should be noted:

454 Menu Commands and Reference Edit Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· You can insert, append, edit and delete parameters for the entire stylesheet.
· Parameter names must begin with a letter, and can contain the characters A to Z, a to z, 0 to 9, and

the underscore.
· The Edit Parameters dialog contains all the user-defined parameters in an SPS.
· Parameters can also be declared in the Design Overview sidebar .

11.5.4 Collapse/Expand Markup

The Collapse/Expand Markup command is a toggle command, which collapses and expands the selected
tag. It can be applied to any kind of tag: node, predefined format, SPS mechanism, etc. To collapse/expand a
tag, double-click the tag; the end tag of an expanded tag may also be double-clicked to collapse that tag.

The screenshots below show how a series of tags are collapsed. Double-clicking a collapsed tag expands it.

Collapsing a tag can be useful for optimizing the display according to your editing needs.

33

© 2019-2025 Altova GmbH

View Menu 455Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.6 View Menu

The View menu (screenshot below) enables you to change the look of the GUI and to toggle on and off the
display of GUI components. You can switch the display of individual toolbars, individual design sidebars, design
filters, and the status bar on and off.

11.6.1 Toolbars and Status Bar

Placing the cursor over the Toolbars item pops out a submenu (screenshot below), which enables you to turn
on and off the display of the different toolbars.

When a toolbar is checked, it is displayed. In the screenshot above all the toolbars are displayed. To toggle on
or off the display of a toolbar, click the appropriate toolbar. For a complete description of toolbars, see the
section Reference | Toolbars .

415

456 Menu Commands and Reference View Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Status Bar
The display of the Status Bar, which is located at the bottom of the application window, can be switched on or
off by clicking the Status Bar toggle command.

11.6.2 Design Sidebars

The View menu contains toggle commands to switch the display of each sidebar on and off (screenshot
below).

When a sidebar is toggled on (the command's icon is framed) it is displayed in the GUI. Click a sidebar to set
its display on or off, as required. This command is also used to make a hidden sidebar visible again. The
display setting specified for a sidebar is View-specific: a setting made in a particular View (Design View,
Output View, no document open) is retained for that particular View till changed.

11.6.3 Design Filter, Zoom

Design Filter
The Design Filter menu item rolls out a sub-menu containing commands that enable you to filter the templates
that are displayed in Design View. This is useful if your design is very long or contains several templates. Using
the Design Filter mechanism, you can specify what kinds of template to display. The following filter options are
available:

© 2019-2025 Altova GmbH

View Menu 457Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Icon Command Description

Show only one
template

Shows the selected template only. Place the cursor in a template and
click to show that template only.

Show all template
types

Shows all templates in the SPS (main, global, named, and layout) .

Show imported
templates

Toggles the display of imported templates on and off.

Show/Hide main
template

Toggles the display of the main template on and off.

Show/Hide global
templates

Toggles the display of global templates on and off.

Show/Hide Design
Fragments

Toggles the display of Design Fragments on and off.

Note that these commands are also available as toolbar icons in the Design Filters toolbar.

Zoom
The Zoom command enables you to select a Zoom factor from the submenu that rolls out. You can also zoom
in or out by changing the Zoom factor in the Zoom combo box (in the Standard toolbar), or by pressing the Ctrl
key and scrolling with the mouse.

11.6.4 Output Previews

There are three Output Preview commands:

· Output Preview, which switches Output Preview on/off
· Output Preview Horizontal, which is enabled when Output Preview has been switched on. The

command switches from a vertical split view to a horizontal split view. When the output preview
becomes available in a horizontal split, the command automatically changes to Output Preview
Vertical, which switches the split view back to a vertical split view.

· Refresh Output Preview, which immediately refresh the output preview with any changes in the
design.

421

458 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.7 Insert Menu

The Insert menu provides commands enabling you to insert a variety of design components into the SPS.
Some of these commands are available as toolbar icons . Additionally, Insert menu commands are also
available via context menus which appear when, in the SPS design, you right-click a cursor insertion point. In
the context menus, commands that are not available at that location in the SPS are disabled.

Note: Since the Insert commands are used for constructing the SPS, they are available in Design View only.

11.7.1 Contents

The Contents command inserts a (content) placeholder at the cursor location point. There (content)
placeholder can be inserted within two types of node, element and attribute, and it indicates that all children
of the current node will be processed.

· If the current node is an element node, the node's children element nodes and text nodes will be
processed. For the processing of children element nodes, global templates will be used if these exist.
Otherwise the built-in template rule for elements will be used. For the processing of text nodes, the
built-in template rule for text nodes will be used, the effect of which is to output the text. Effectively, the
built-in template rule for elements, outputs the text of all descendant text nodes. It is important to note
that the values of attributes will not be output when the (content) placeholder is used—unless a
global template is defined for the attribute's parent element or one of its ancestors and the attribute is
explicitly output, using either the (content) placeholder or any other content-rendering component.

· If the current node is an attribute node, the built-in template rule for the attribute's child text node will
be used. This template copies the text of the text node to the output, effectively outputting the
attribute's value.

The (content) placeholder can also be inserted for a node by placing the cursor inside the node tags, right-
clicking, and selecting Insert | Contents or by clicking the Insert Contents icon in the Insert Design Elements
toolbar , and then clicking the location in the design where the element is to be inserted.

Styling the contents
The (content) placeholder can be formatted by selecting it and using a predefined format and/or properties in
Styles sidebar. This formatting is visible in the design, and, in the output, it will be applied to the contents of
the node.

Replacing contents
If another node from the schema tree is dropped into a node containing a (content) placeholder, then the
existing (content) placeholder is replaced by the new node.

Deleting contents
The (content) placeholder can be deleted by selecting it and pressing the Delete key on the keyboard.

415

419

© 2019-2025 Altova GmbH

Insert Menu 459Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Note: You can create an empty template rule by deleting the (content) placeholder of a node. An empty
template rule is useful if you wish to define that some node have no template applied to it, i.e. produce no
output.

11.7.2 Rest of Contents

The Rest of Contents command inserts the (rest-of-contents) placeholder for that node. This placeholder
represents the content of unused child nodes of the current node; it corresponds to the xsl:apply-
templates rule of XSLT applied to the unused elements and text nodes of the current element. Note that
templates are not applied for child attributes. The (rest-of-contents) placeholder can also be inserted for an
element by placing the cursor inside the element tags, right-clicking, and selecting Insert Rest of Contents.

Use the (rest-of-contents) placeholder in situations where you wish to process one child element in a
specific way and apply templates to its siblings. It is important to apply templates to siblings in order to avoid
the possibility that the siblings are not processed. This enables you to reach elements lower down in the
document hierarchy.

The (rest-of-contents) placeholder can be deleted by selecting it and pressing the Delete key on the
keyboard.

11.7.3 Form Controls

Mousing over the Form Controls command rolls out a submenu (screenshot below) containing commands to
insert various form controls (data-entry devices).

How to create each of these form controls is described in the section Using Data-Entry Devices . After a
form control has been created, its properties can be edited by selecting it and then editing the required
property in the Properties sidebar .

Form controls can also be inserted in the design by right-clicking at the insertion point and selecting Insert |
Form Controls, or by clicking the respective Form Control icon in the Insert Design Elements toolbar , and
then clicking the location in the design where the element is to be inserted.

Note: CDATA sections cannot be inserted into input fields (that is, in text boxes and multiline text boxes).
CDATA sections can only be entered within elements that are displayed in Authentic View as text content
components.

149

149

45

419

460 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.7.4 Auto-Calculation

An Auto-Calculation uses an XPath expression to calculate a value. This value is displayed at the point where
the Auto-Calculation is inserted. An Auto-Calculation can be inserted in the SPS as a text value, input field, or
multiline input field. Place the cursor at the location where the Auto-Calculation is to be inserted, then either
right-click or use the command in the Insert menu. When the cursor is placed over Insert | Auto-Calculation,
a menu pops out (screenshot below), enabling you to choose how the Auto-Calculation should be inserted.
Alternatively, you can use the Auto-Calculation icon in the Insert Design Elements toolbar .

The value of the Auto-Calculation will be displayed accordingly in the output document.

The XPath expression for the Auto-Calculation
On selecting how the Auto-Calculation should be represented, the Edit XPath Expression dialog
(screenshot below) pops up.

419

398

© 2019-2025 Altova GmbH

Insert Menu 461Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

The context node for the expression being built is highlighted in the schema tree in the pane at extreme left.
You can enter the XPath expression directly in the text box, or you can double click an item (in any of the three
panes) to insert that item. Nodes inserted from the schema tree in the left-hand pane are inserted relative to the
context node (if the Relative XPath check box is checked) or as an absolute expression starting from the
document node (if the Relative XPath check box is unchecked).

After completing the XPath expression, click OK to finish inserting the Auto-Calculation.

11.7.5 Paragraph, Special Paragraph

The Paragraph command inserts an HTML paragraph <p> element around the selected component. A

component is considered selected for this purpose when the entire node is selected (by clicking either of its
tags) or when static text is selected. If the cursor is placed within static text, the paragraph element is inserted
(start and end tags) at this point. A paragraph can also be inserted by using the Insert Paragraph icon in the
Insert Design Elements toolbar .

The Special Paragraph command allows you to assign a predefined format to the selected node. The
available predefined formats can also be selected from the combo box in the toolbar.

419

462 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Each paragraph type has particular formatting features that can be used to advantage. Note that the pre format
type enables carriage returns to be output as such instead of them being normalized to whitespace.

11.7.6 Image

The Image command pops up the Insert Image dialog (see screenshots below), in which you can specify the
image to insert. The Insert Image icon in the Insert Design Elements toolbar also pops up the Insert Image
dialog.

The Insert Image dialog has four tabs, each of which provides a different way to specify the image location.
These are:

· Static: for entering the image URI directly
· Dynamic: for obtaining the image URI from the XML document or generating it with an XPath

expression
· Static and dynamic: for combining the static and dynamic methods
· Inline data: for selecting an image that is stored in an XML file as Base-16 or Base-64 encoded text

The tabs are described in detail below.

Static
The image URI is entered directly in the Address field (see screenshot below). In the screenshot below the
image URI is: http://www.altova.com/pix/Marketing/logo.png.

You can specify whether the URI is absolute (Absolute check box checked) or relative (Absolute check box
unchecked). If a relative URI is entered, it will be resolved relative to the SPS file location. To enter the
(absolute or relative) URI automatically, click Browse and browse for the image file.

Dynamic
An XPath expression returns the image URI. In the screenshot below, the XPath expression is @deptlogo. This
assumes that the image URI is stored in the deptlogo attribute of the context node. The context node is the
node within which the image is being created.

419

© 2019-2025 Altova GmbH

Insert Menu 463Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Click the Edit XPath button to pop up the XPath Expression Builder . In the schema tree of the XPath
Expression Builder, the context node will be highlighted.

If the SPS is DTD-based and uses unparsed entities, then, an unparsed entity that references the image URI
can be used. First, check the Treat as unparsed entity checkbox. Then enter an XPath expression that selects
the node containing the unparsed entity. For details of how to use unparsed entities, see Unparsed Entity
URIs .

Static and Dynamic
Use both the static and dynamic mechanisms together to generate the URI.

If the deptname attribute of the context node has a value of Marketing, then the image URI composed in the
screenshot above will be: http://www.altova.com/pix/Marketing/logo.png. Note that you can use the
XPath Expression Builder for the dynamic part.

Inline data
An image can be stored in an XML file as Base-16 or Base-64 encoded text. The XPath expression in the Insert
Image dialog (see screenshot below) selects the node containing the encoded text. The Encoding combo box
specifies the encoding used in the source XML so that StyleVision can correctly read the encoded text. And
the Image Format combo box indicates in what format the image file must be generated. (An image file is
generated from the encoded text data, and this file is then used in the output document.)

410

339

410

464 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The Image File Settings dialog (accessed by clicking the Image File Settings button) enables you to give a
name for the image file that will be created. You can choose not to provide a name, in which case StyleVision
will generate a name.

11.7.7 Horizontal Line

The Horizontal Line command inserts a horizontal line at the cursor insertion point. This command is not
available when an SPS component is selected. To set properties for the horizontal line, select the line in the
design, and in the Properties sidebar, select line, and specify values for properties in the HTML group (see
screenshot below).

You can specify the following properties for the line: its color, size (thickness), width (in the design),
alignment, and the noshade property.

© 2019-2025 Altova GmbH

Insert Menu 465Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.7.8 Table

The Insert Table command pops up the Create Table dialog (screenshot below).

According to whether you wish to create a static table or a dynamic table, select the appropriate button. How
to proceed with each type of table is described in the section: Static SPS Tables and Dynamic SPS
Tables .

Note that tables can also be created by using the Table | Insert Table menu command and the Insert
Table icon in the Insert Design Elements toolbar.

11.7.9 Bullets and Numbering

The Bullets and Numbering command allows you to create a list, either static or dynamic. The list items of a
static list are entered in the SPS, while those of dynamic lists are the values of sibling nodes in the XML
document.

To create a list do the following:

1. Place the cursor at the location where you wish to insert the list and click the Bullets and
Numbering command. This pops up a dialog asking whether you wish to create a static list or
dynamic list (screenshot below).

If you click Static List, the Bullets and Numbering dialog described in Step 3 pops up. If you click
Dynamic List, the XPath Selector dialog pops up (screenshot below).

2. In the XPath Selector dialog, notice that the XPath Context is the context of the insertion location, and
that it cannot be changed in the dialog. Select the node that is to be created as the dynamic list. In the
screenshot below, the context node is n1:Department, and the n1:Person node has been selected as

121

122

466 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

the node to be created as a list. This means that the content of each n1:Person node will be created
as an item in the list.

If you select the User-defined XPath option, then you can enter an XPath expression to select the node
to be created as the dynamic table. Clicking OK pops up the Bullets and Numbering dialog described
in the next step.

3. In the the Bullets and Numbering dialog, select the kind of list you wish to create. You can choose
from a bulleted list (with a bullet, circle, or square as the list item marker), or a numbered list. Clicking
OK creates the list with the type of list item marker you selected.

© 2019-2025 Altova GmbH

Insert Menu 467Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Note: A static list can also be created by placing the cursor at the location where the list is to be created and
then clicking the Bulleted List icon or Numbered List icon in the Insert Design Elements toolbar as required.
A dynamic list can also be created by dragging a node from the Schema Tree into the design.

11.7.10 Bookmark

The Bookmark command allows you to insert a bookmark (or anchor) anywhere in the SPS. A bookmark can
be referenced by a Hyperlink .

To insert a bookmark, do the following:

1. Place the cursor at the location where you wish to create the bookmark.
2. Select Insert | Bookmark, or right-click and select Insert | Bookmark. The Insert Bookmark dialog

appears.

419

468

468 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. In the Insert Bookmark dialog , select a tab according to whether the name of the bookmark should
be static (Static tab), dynamically obtained from the XML document (Dynamic), or composed of both
static and dynamic parts (Static and Dynamic). In the screenshot above a dynamic bookmark is
created, which has a name that is a unique ID for each Name child of the context node.

4. Click OK. The bookmark is defined.

Note: Bookmarks are created at the location specified in the design. If that location is within an element that
repeats, a bookmark is created within each instance of that repeating element. If a static name is given, then
each bookmark will have the same name. Therefore, it is better in such cases (of repeating elements) to give a
dynamic name, which can be, for example, the name of a child element of the context node (the element within
which the bookmark is created). If the node selected for the dynamic name might have the same content
across multiple instances, then the uniqueness of the bookmark name can be ensured by using the generate-
id() function to generate the name (see screenshot above). To reference such a bookmark, the same ID can
be generated as the href value of a hyperlink . In this case make sure you use the fragment-identifier # in
front of the generate-id() function. The XPath expression would be: concat('#', generate-id(nodeXXX)).

You can edit the name of a bookmark after it has been created. Do this by right-clicking the bookmark and
selecting the Edit Bookmark Name command from the context menu that appears. Alternatively, in the
Properties sidebar, in the Bookmark group of properties for the bookmark, you can click the Edit button of the
bookmark name attribute and make the required changes.

Deleting a bookmark
To delete a bookmark, select it in the design and press the Delete key.

11.7.11 Hyperlink

The Hyperlink command enables you to insert a link from any part of the output document (HTML) to an
anchor within the output document or to an external document or document fragment.

To insert a hyperlink, do the following:

299

304

© 2019-2025 Altova GmbH

Insert Menu 469Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

1. A hyperlink can be created around an existing design component or inserted at any point in the
document (with the link text inserted subsequently). Select the SPS component or text fragment to be
made into a hyperlink or place the cursor at the point where the link is to be inserted.

2. Click the Hyperlink icon in the toolbar, or select Insert | Hyperlink, or right-click and select Insert |
Hyperlink (when no design component is selected) or Enclose With | Hyperlink (when a design
component is selected). A hyperlink can also be inserted by using the Insert Hyperlink icon in the
Insert Design Elements toolbar .

3. In the Insert Hyperlink dialog that appears, specify the document or document fragment you wish to
link to. If you are linking to a document fragment (that is, to a bookmark within a document), remember
to include the # symbol. The URI for the hyperlink is specified in one of the following forms:

· As a static address (entered directly; you can select an HTML file via the Browse button, and a
fragment in the current document via the Bookmark button). Examples would be:
http://www.altova.com (static Web page URI); U:\documentation\index.html (via Browse
button); or #top_of_page (via Bookmark button).

· As a dynamic address (which comes from a node in the XML document; you specify the node). An
example would be a node such as //otherdocs/doc1. If the name of a bookmark has been
generated using the generate-id() function, then the href of the hyperlink should be generated
using the same generate-id() function. For information, see Defining Hyperlinks .

· As a combination of static and dynamic text for an address (you specify the static text and the XML
document node). An example would be www.altova.com -- department/name -- #intropara.

4. Click OK. The hyperlink is created.

Note: When specifying the node for a dynamic hyperlink entry, you can enter the XPath expression as an
absolute XPath expression by checking the Absolute Path check box. If this check box is not checked, the
XPath expression will be relative to the context node, which is the node within which the hyperlink is being
inserted.

Using unparsed entities
If you are using a DTD as your schema, then in the dynamic part of a hyperlink address, you can use the URI
declared for an unparsed entity in the DTD. For details of how to use unparsed entities, see Using unparsed
entity URIs .

Editing a hyperlink
You can edit the href of a hyperlink after it has been created. Do this by right-clicking the hyperlink and
selecting the Edit URL command. Alternatively, in the Properties sidebar, in the Link group of properties for the
link, you can click the Edit button of the URL attribute and make the required changes.

Deleting a hyperlink
To delete a hyperlink, select it in the design and press the Delete key.

11.7.12 Condition, Output-Based Condition

The Condition command enables you to insert a condition at the cursor point or around the selection. A
condition consists of one or more branches, with each branch containing a specific set of processing rules. In
this way, different sets of processing rules can be specified for different branches. For example, if the content of
a node is the string Stop, the branch can test this, and specify that the contents of the node be colored red; a

419

301

304

339

470 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

second branch can test whether the contents of the node is the string Go, and, if yes, color the contents of the
node green; a third branch can specify that if the contents of the node is neither the string Stop nor the string
Go, the contents of the node should be colored black.

To insert a condition, do the following:

1. Place the cursor at the desired location in the design or select the component around which the
condition is to be inserted.

2. Select the menu command Insert | Condition or right-click and select the context menu command
Insert | Condition.

3. In the Edit XPath Expression dialog that pops up (screenshot below), enter the XPath expression.

The context node for the expression being built is highlighted in the schema tree in the pane at
extreme left. You can enter the XPath expression directly in the text box, or you can double click an
item (in any of the three panes) to insert that item. Nodes inserted from the schema tree in the left-
hand pane are inserted relative to the context node (if the Relative XPath check box is checked) or as
an absolute expression starting from the document node (if the Relative XPath check box is
unchecked).

4. Click OK to finish inserting the condition. The condition is created with one branch, the test for which is
the XPath expression you entered.

Editing the XPath expressions of branches
To edit the XPath expression of a branch, select the branch in Design View. Then, in the Properties sidebar,

398

© 2019-2025 Altova GmbH

Insert Menu 471Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

select condition branch | when. Click the Edit button for the XPath item. This pops up the Edit XPath
Expression dialog (screenshot above), in which you can edit the expression. Click OK when done.

Adding branches, changing the order of branches, and deleting branches
To add new branches, change the order of branches, and delete branches, right-click the required branch and
select the relevant item from the context menu.

11.7.13 Disabled

The Disabled command inserts a Disabled component at the cursor location (screenshot below). (To put the
Disabled component around selected content, use the Enclose With | Disabled command.)

Content inside a Disabled component is ignored in the output. So you can add content that you want to ignore
to the Disabled component. The Disabled component thus serves as a way to comment out content.

When you want to reinstate disabled content, simply remove the Disabled tags from around the content. To do
this, select the Disabled component, right-click, and select Remove Tag Only.

11.7.14 Template

The Template command inserts, at the cursor insertion point, an empty template for the schema tree node
you select. Insert a template as follows.

1. Place the cursor in the design at the location where the template is to be inserted.
2. Click the Insert | Template command. This pops up the Insert Template dialog (screenshot below).

481

472 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. The XPath Context field contains the context node of the cursor insertion point. This node will be the
context node of the template when it is created. In the dialog, select the node for which you want to
create the template. In the screenshot above the headline node is selected. So we will be creating a
template for the headline node in the context of the newsitem element.

4. Click OK to finish.

An empty template for the selected node will be created. In the screenshot below, an empty template for the
headline node has been created.

© 2019-2025 Altova GmbH

Insert Menu 473Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.7.15 User-Defined Template

The User-Defined Template command inserts, at the cursor insertion point, an empty template that selects a
node the user specifies in an XPath expression. Insert a user-defined template as follows.

1. Place the cursor in the design at the location where the template is to be inserted.
2. Click the Insert | User-Defined Template command. This pops up the Edit XPath Expression

dialog .
3. Enter the XPath expression to select the node you want. There are a few points to note in this

connection: (i) The XPath expression will be evaluated in the context of the node within which the user-
defined template is being created; (ii) The XPath expression can select any node anywhere in the
document as well as in another XML document.

4. After you have entered the XPath expression, click OK to finish.

An empty user-defined template for the targeted node will be created.

For more detailed information, see the section, SPS File: Contents | User-Defined Templates .

11.7.16 Variable Template

A Variable Template is a template that targets a variable and, by default outputs its content. It is inserted
with the Insert | Variable Template or Enclose with | Variable command, which inserts, at the cursor
insertion point, a template for a variable defined in the SPS. The variable template (screenshot below) contains
a content placeholder by default, and this serves to output the contents of the variable. You can insert
additional content (static as well as dynamic) in the variable template as required, or modify it as you would
any other template. A variable template is indicated with a dollar symbol in its start and end tags.

To insert a variable template, do the following:

1. Place the cursor in the design at the location where the template is to be inserted.
2. Right-click and select the Insert | Variable Template command. This pops up the Insert Variable

Template dialog (screenshot below).

398

113

474 Menu Commands and Reference Insert Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. The dialog contains a list of all the user-declared parameters and variables defined in the SPS.
Select the variable for which you wish to add a variable template.

4. Click OK to finish.

11.7.17 Design Fragment

Mousing over the Design Fragment command rolls out a submenu containing all the Design Fragments
currently in the design. Clicking a Design Fragment in the submenu inserts it at the cursor insertion point.

11.7.18 Layout Container, Layout Box, Line

The Insert | Layout Container command enables a Layout Container to be inserted anywhere in the design. A
Layout Box and a Line can be inserted in a Layout Container, and both these commands are enabled only
when a Layout Container is selected.

Layout Containers, Layout Boxes, and Lines can also be inserted via the respective icons in the Insert Design
Elements toolbar . To insert via the toolbar icons, you must first select the appropriate toolbar icon and then
click in the design at the location where you wish to insert the layout item.

For a detailed description of Layout modules and how to insert and use them in the design, see the section
Layout Modules .

11.7.19 Table of Contents

Mousing over the Table of Contents command rolls out a submenu containing commands to insert various
commands relating to the creation of a Table of Contents (TOC) template, TOC bookmarks, and a design
document structure for the TOC.

The list of commands is as follows. For the details of how to use them click on the respective links, which will
take you to the section on how to use that particular TOC component.

· Insert Table of Contents
· TOC Bookmark
· TOC Bookmark (Wizard)
· TOC Reference
· TOC Reference | Entry Text / Leader / Page Reference
· Hierarchical Numbering
· Sequential Numbering
· Level
· Level Reference
· Template Serves as Level

264

419

160

282

279

275

285

285

285

285

276

284

276

© 2019-2025 Altova GmbH

Insert Menu 475Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Note: These commands are also available as commands in a context menu, depending on where you right
click in the design.

11.7.20 New Document

The Insert New Document command inserts a New Document template (screenshot below) at the cursor
insertion point.

The New Document template contains an empty Initial Document Section. Content can now be entered in the
Initial Document Section. If desired, additional Document Sections can be appended to the Initial Document
Section via the Insert | Insert Page / Column / Document Section command.

A New Document template creates a new document in the output. As a result, the output will consist of
multiple output-documents.

For a detailed description of how to work with multiple output-documents, see the section, Multiple Document
Output .

11.7.21 User-Defined Item

Mousing over the Insert | User-Defined Item command causes a sub-menu to roll out that contains
commands to insert a User-Defined Element or a User-Defined XML Text Block . How to use these two
components is described in the section SPS File: Content | User-Defined Elements, XML Text Blocks .

232

116 117

116

476 Menu Commands and Reference Enclose With Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.8 Enclose With Menu

The Enclose with menu provides commands enabling you to enclose a selection in the design with a variety of
design components. Some of these commands are available as toolbar icons that enable you to insert the
component in the design (equivalent commands are available in the Insert menu). Additionally, Enclose
with menu commands are also available via context menus which appear when, in the SPS design, you right-
click a selection. In the menus and context menus, commands that are not available at that location in the
SPS are disabled.

Note: Since the Enclose with commands are used for constructing the SPS, they are available in Design View
only.

11.8.1 Template

The Enclose with | Template command encloses the selected design component or text with a template for
the schema tree node you select. Do this as follows.

1. Select the design component or text you wish to enclose with a template.
2. Click the Enclose with | Template command. This pops up the Schema Selector dialog (screenshot

below).

415

458

© 2019-2025 Altova GmbH

Enclose With Menu 477Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

3. The XPath Context field contains the context node of the selection and will be the context node of the
template when it is created. Select the node for which you wish to create the template. In the
screenshot above the n1:Name node is selected as the node for which the template is being created.

4. Click OK to finish.

A template for the selected node will be created around the selection.

11.8.2 User-Defined Template

The Enclose with | User-Defined Template command encloses the selection with a template for a node the
user specifies in an XPath expression. Insert a user-defined template as follows.

1. Select the component in the design that you wish to enclose with a user-defined template.
2. Click the Enclose with | User-Defined Template command. This pops up the Edit XPath

Expression dialog.
3. Enter the XPath expression to select the node you want. There are a few points to note in this

connection: (i) The XPath expression will be evaluated in the context of the node within which the user-
defined template is being created; (ii) The XPath expression can select any node anywhere in the
document as well as in another XML document.

4. After you have entered the XPath expression, click OK to finish.

A user-defined template for the targeted node will be created around the selection.

For more information, see the section, SPS File: Structure | Templates and Design Fragments | User-Defined
Templates .

11.8.3 Variable Template

The Enclose with | Variable Template command encloses the selection with a template for a variable defined
in the SPS design.

1. Select the component in the design that you wish to enclose with a variable template.
2. Click the Enclose with | Variable Template command. This pops up the Enclose with Variable

Template dialog .
3. From the list in the dialog, select the variable for which you wish to create the template.
4. Click OK to finish.

A variable template will be created around the selection.

For more information, see the section, SPS File: Structure | Templates and Design Fragments | Variable
Templates .

398

220

223

223

478 Menu Commands and Reference Enclose With Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.8.4 Paragraph, Special Paragraph

The Paragraph command inserts an HTML paragraph <p> element around the selected component. A

component is considered selected for this purpose when the entire node is selected (by clicking either of its
tags) or when static text is selected. If the cursor is placed within static text, the paragraph element is inserted
(start and end tags) at this point. A paragraph can also be inserted by using the Insert Paragraph icon in the
Insert Design Elements toolbar .

The Special Paragraph command allows you to assign a predefined format to the selected node. The
available predefined formats can also be selected from the combo box in the toolbar.

Each paragraph type has particular formatting features that can be used to advantage. Note that the pre format
type enables carriage returns to be output as such instead of them being normalized to whitespace.

11.8.5 Bullets and Numbering

The Enclose with | Bullets and Numbering command creates a static list and list items around the
selection. If the selection contains a CR-LF, carriage-return and/or linefeed (inserted by pressing the Enter
key), then separate list items are created for each text fragment separated by a CR-LF.

When this command is selected, the Bullets and Numbering dialog (screenshot below) pops up.

419

© 2019-2025 Altova GmbH

Enclose With Menu 479Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Select the list item marker you want and click OK. A list is created. The number of list items in the list
corresponds to the number of CR-LFs (carriage-returns and/or linefeeds) in the selection. You can add more list
items to the list by pressing Enter.

Note: You can obtain the same results by selecting static content and then clicking the Bulleted List or
Numbered List icons in the Insert Design Elements toolbar .

11.8.6 Bookmarks and Hyperlinks

The Enclose with | Bookmark and Enclose With | Hyperlink commands are enabled when some text or
component in the SPS design is selected. These commands enable a bookmark and hyperlink, respectively, to
be created around the selection. For more information about how bookmarks and hyperlinks work and how to
create them, see the section Advanced Features | Table of Contents, Referencing, Bookmarks .

11.8.7 Condition, Output-Based Condition

The Condition command enables you to insert a condition at the cursor point or around the selection. A
condition consists of one or more branches, with each branch containing a specific set of processing rules. In
this way, different sets of processing rules can be specified for different branches. For example, if the content of
a node is the string Stop, the branch can test this, and specify that the contents of the node be colored red; a
second branch can test whether the contents of the node is the string Go, and, if yes, color the contents of the
node green; a third branch can specify that if the contents of the node is neither the string Stop nor the string
Go, the contents of the node should be colored black.

To insert a condition, do the following:

1. Place the cursor at the desired location in the design or select the component around which the
condition is to be inserted.

2. Select the menu command Insert | Condition or right-click and select the context menu command
Insert | Condition.

3. In the Edit XPath Expression dialog that pops up (screenshot below), enter the XPath expression.

419

299

398

480 Menu Commands and Reference Enclose With Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The context node for the expression being built is highlighted in the schema tree in the pane at
extreme left. You can enter the XPath expression directly in the text box, or you can double click an
item (in any of the three panes) to insert that item. Nodes inserted from the schema tree in the left-
hand pane are inserted relative to the context node (if the Relative XPath check box is checked) or as
an absolute expression starting from the document node (if the Relative XPath check box is
unchecked).

4. Click OK to finish inserting the condition. The condition is created with one branch, the test for which is
the XPath expression you entered.

Editing the XPath expressions of branches
To edit the XPath expression of a branch, select the branch in Design View. Then, in the Properties sidebar,

select condition branch | when. Click the Edit button for the XPath item. This pops up the Edit XPath
Expression dialog (screenshot above), in which you can edit the expression. Click OK when done.

Adding branches, changing the order of branches, and deleting branches
To add new branches, change the order of branches, and delete branches, right-click the required branch and
select the relevant item from the context menu.

© 2019-2025 Altova GmbH

Enclose With Menu 481Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.8.8 Disabled

The Disabled command encloses selected content (including design components) with a Disabled component
(see screenshot below).

Content inside a Disabled component is ignored in the output. So you can enclose content that you want to
ignore with a Disabled component.

When you want to reinstate disabled content, simply remove the Disabled tags from around the content. To do
this, select the Disabled component, right-click, and select Remove Tag Only.

11.8.9 TOC Bookmarks and TOC Levels

When a component in the design is selected, it can be enclosed with one or more relevant Table of Contents
(TOC) components. The list of TOC commands is as follows. For the details of how to use them click on the
respective links, which will take you to the section on how to use that particular TOC component.

· TOC Bookmark
· TOC Bookmark (Wizard)
· Level
· Level Reference

Note: These commands are also available as commands in a context menu, depending on where you right
click in the design.

11.8.10 New Document

The Enclose With New Document command encloses the current selection with a New Document template
(screenshot below).

279

275

276

284

482 Menu Commands and Reference Enclose With Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The New Document template contains an Initial Document Section that contains the design selection that was
highlighted when the Enclose With New Document command was selected. In the screenshot above, the
TOC design component was selected and enclosed with a New Document template. Content can now be
entered in the Initial Document Section. If desired, additional Document Sections can be appended to the Initial
Document Section via the Insert | Insert Page / Column / Document Section command.

A New Document template creates a new document in the output. As a result, the output will consist of
multiple output-documents.

For a detailed description of how to work with multiple output-documents, see the section, Multiple Document
Output .

11.8.11 User-Defined Element

The Enclose with | User-Defined Element command creates a User-Defined Element around the
selection in the design. How to use user-defined elements is described in the section SPS File: Content | User-
Defined Elements .

232

116

116

© 2019-2025 Altova GmbH

Table Menu 483Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.9 Table Menu

The Table menu provides commands enabling you to insert a static or dynamic table and to change the
structure and properties of static and dynamic tables. You can edit table structure by appending, inserting,
deleting, joining, and splitting rows and columns. Properties of the table as well as of individual columns, rows,
and cells are defined using CSS styles and HTML properties for tables and its sub-components .

The Table commands are available in the Table menu (see list below) and as icons in the Table toolbar .
The availability of various table commands depends on the current cursor position. A table can be inserted at
any location in the SPS by clicking the Insert Table command. To edit the table structure, place the cursor
in the appropriate cell, column, or row, and select the required editing command. To edit a formatting property,
place the cursor in the appropriate cell, column, row, or table, and, in the Styles sidebar and/or Properties
sidebar , define the required property for that table component.

The following commands are available in the Table menu:

· Insert Table, Delete Table
· Add Table Headers, Footers
· Append/Insert Row/Column
· Delete Row, Column
· Join Cell Left, Right, Below, Above
· Split Cell Horizontally, Vertically
· View Cell Bounds, Table Markup
· Table Properties
· Vertical Alignment of Cell Content

Headers and footers
When you create a dynamic table, you can specify whether you wish to include headers and/or footers.
(Footers are allowed only when the table grows top–down.) You can create a header and footer in a static table
by manually inserting a top and bottom row, respectively. The structures of headers and footers in both static
and dynamic tables can be modified by splitting and joining cells.

Navigating in tables
Use the Tab and arrow keys to navigate the table cells.

Adding cell content
Any type of SPS component can be inserted as the content of a cell. The component should be formatted
using the standard formatting tools.

11.9.1 Insert Table, Delete Table

The Insert Table command inserts an empty table in the design tab. Selecting this command opens a
dialog box in which you select whether you wish to create a static or dynamic table.

· If you choose to create a static table, a dialog prompts you for the size of the table (in terms of its rows
and columns).

129 129

418

483

129

129

483

484

484

485

485

485

486

486

487

484 Menu Commands and Reference Table Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· If you choose to create a dynamic, the XPath Selector dialog pops up, in which you can select the
node that is to be created as a dynamic table. On clicking OK, the Create Dynamic Table dialog pops
up, in which you can select the child nodes you wish to display as the fields of each table item. For
details, see Creating dynamic tables .

You can change the structure of a table subsequently by appending, inserting, and deleting rows and/or
columns.

The Delete Table command deletes the static or dynamic table in which the cursor is.

11.9.2 Add Table Headers, Footers

Table headers can appear as a header row (above the table body) or as a header column (to the left of the table
body, though markup-wise a header column might be placed inside the table body). Similarly, table footers can
appear as a footer row (below the table body) or as a footer column (to the right of the table body, though
markup-wise a footer might be placed inside the table body).

Note: In the HTML output since table headers are enclosed in th elements, they appear bold (because the bold
formatting is inherent in the th element).

The Add Table Header and Add Table Footer commands add table headers and footers as columns and rows,
as follows:

Add Table Header Column: Adds a header column to the left of the table body.

Add Table Footer Column: Adds a footer column to the right of the table body.

Add Table Header Row: Adds a header row above the table body.

Add Table Footer Row: Adds a footer row below the table body.

11.9.3 Append/Insert Row/Column

The Append Row command appends a row to the static or dynamic table in which the cursor is.

The Insert Row command inserts a row above the row in which the cursor is. This command applies to
both static and dynamic tables.

The Append Column command appends a column to the static or dynamic table in which the cursor is.

The Insert Column command inserts a column to the left of the column in which the cursor is. This
command applies to both static and dynamic tables.

122

© 2019-2025 Altova GmbH

Table Menu 485Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.9.4 Delete Row, Column

The Delete Row command deletes the row in which the cursor is. This command applies to both static
and dynamic tables.

The Delete Column command deletes the column in which the cursor is. This command applies to both
static and dynamic tables.

11.9.5 Join Cell Left, Right, Below, Above

The Join Cell Left command joins the cell in which the cursor is to the adjacent cell on the left. The
contents of both cells are concatenated in the new cell. All property values of the cell to the left are passed to
the new cell. This command applies to both static and dynamic tables.

The Join Cell Right command joins the cell in which the cursor is to the cell on the right. The contents of
both cells are concatenated in the new cell. All property values of the cell to the left are passed to the new cell.
This command applies to both static and dynamic tables.

The Join Cell Below command joins the cell in which the cursor is to the cell below. The contents of both
cells are concatenated in the new cell. All property values of the cell on the top are passed to the new cell. This
command applies to both static and dynamic tables.

The Join Cell Above command joins the cell in which the cursor is to the cell above. The contents of both
cells are concatenated in the new cell. All property values of the cell on top are passed to the new cell. This
command applies to both static and dynamic tables.

11.9.6 Split Cell Horizontally, Vertically

The Split Cell Horizontally command creates a new cell to the right of the cell in which the cursor is. The
contents of the original cell stay in the original cell. All properties of the original cell are passed to the new cell.
This command applies to both static and dynamic tables.

The Split Cell Vertically command creates a new cell below the cell in which the cursor is. The contents
of the original cell remain in the upper cell. All properties of the original cell are passed to the new cell. This
command applies to both static and dynamic tables.

486 Menu Commands and Reference Table Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.9.7 View Cell Bounds, Table Markup

The View Cell Bounds and View Table Markup commands display the boundaries of cells and table column
and row markup, respectively. With these two options switched on, you can better understand the structure of
the table. Switched off, however, you can visualize the table more accurately.

The View Cell Bounds command toggles the display of table boundaries (borders)
on and off for tables that have a table border value of 0.

The View Table Markup command toggles the display of the blue column and row
markers on and off.

11.9.8 Table Properties

The Table Properties command is enabled when the cursor is placed inside a static or dynamic table .
Clicking the command, pops up the Properties sidebar, with the Table component selected (screenshot below).

You can now edit the properties of the table. Click OK when done.

119

© 2019-2025 Altova GmbH

Table Menu 487Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.9.9 Edit CALS/HTML Tables

If the underlying schema of the SPS has an element with a sub-structure that follows the CALS table model or
HTML table model, then you can automatically generate this XML element as a table in the outputs. You
essentially need to specify which SPS schema element corresponds to which CALS or HTML table element.
The table markup in the output formats is then derived directly from the XML document.

The Edit CALS/HTML Tables command pops up the Edit CALS/HTML Tables dialog (screenshot below). In
the dialog, select the SPS schema element name that corresponds to a CALS or HTML table element. You
can specify basic table formatting styles in the dialog and can add styles subsequently in the design.

For details about CALS/HTML tables, see the section Tables .

11.9.10 Vertical Alignment of Cell Content

Commands to set the vertical alignment of cell content are available as icons in the Table toolbar. Place the
cursor anywhere in the cell, and click the required icon.

Vertically Align Top vertically aligns cell content with the top of the cell.

Vertically Align Middle vertically aligns cell content with the middle of the cell.

Vertically Align Bottom vertically aligns cell content with the bottom of the cell.

119

488 Menu Commands and Reference Properties Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.10 Properties Menu

The Properties menu contains commands that enable you to insert lists and define datatype formats for the
input formatting feature. The description of the commands is organized into the following sub-sections:

· Bullets and Numbering command, to insert lists.
· Predefined Format Strings command, to define numeric datatype formats for a given SPS.

11.10.1 Edit Bullets and Numbering

The Edit Bullets and Numbering command enables you to insert a list at the cursor location. Clicking the
command pops up the Bullets and Numbering dialog (screenshot below), in which you can select the list style;
in the case of a numbered list, the initial number can also be specified.

11.10.2 Predefined Value Formatting Strings

Any (content) placeholder, input field, or Auto-Calculation which is of a numeric, date, time, dateTime

or duration datatype can be assigned a custom format with the Value Formatting dialog. In the Value

Formatting dialog, you can either create a format directly or select from a drop-down list of predefined formats.

311

488

488

311

© 2019-2025 Altova GmbH

Properties Menu 489Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

The predefined formats that are available in the dropdown list are of two types:

· Predefined formats that have been delivered with StyleVision, and
· Predefined formats that the user creates with the Predefined Value Formatting Strings command

(this command). When a user creates predefined value formats, these are created for the currently
open SPS file—not for the entire application. After the user creates predefined value formats, the SPS
file must be saved in order for the formats to be available when the file is next opened.

Creating a predefined value formatting string
A predefined value format string is specific to a datatype. To create a predefined value formatting string, do the
following:

1. Click Properties | Predefined Value Formatting Strings. The following dialog appears:

2. Select a datatype from the drop-down list in the combo box, and then click the Append or Insert icon

as required. This pops up the Edit Format String dialog:

If you click the down arrow of the combo box, a drop-down list with the StyleVision-supplied predefined
formats for that datatype is displayed (shown in the screenshot below).

490 Menu Commands and Reference Properties Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

You can either select a format from the list and modify it, or you can enter a format directly into the
input field. The syntax for defining a format is explained in the section, Value Formatting . If you
need help with the syntax, use the Insert Field and Field Options buttons.

3. After you have defined a format, click OK and save the SPS file. The formatting string is added to the
list of predefined formats for that datatype, and it will appear as an option in the Value Formatting
dialog (of the current SPS file) when the selected element is of the corresponding datatype.

Note the following points:

· You can add as many custom format strings for different datatypes as you want.
· The sequential order of format strings in the Predefined Format Strings dialog determines the order in

which these format strings appear in the Value Formatting dialog. The customized format strings
appear above the supplied predefined formats.

· To edit a custom format string, double-click the entry in the Predefined Format Strings dialog.
· To delete a custom format string, select it, and click the Delete icon in the Predefined Value

Formatting Strings dialog.

311

© 2019-2025 Altova GmbH

Tools Menu 491Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.11 Tools Menu

The Tools menu contains the spell-check command and commands that enable you to customize StyleVision.

The description of the Tools menu commands is organized into the following sub-sections:

· Spelling
· Spelling Options
· XML Schema Manager
· Customize

11.11.1 Spelling

The Spelling command runs a spelling check on the SPS (in Design View). You can use what language to
use from the spellchecker's built-in language dictionaries (see note below).

Note: The selection of built-in dictionaries that ship with Altova software does not constitute any language
preferences by Altova, but is largely based on the availability of dictionaries that permit redistribution with
commercial software, such as the MPL, LGPL, or BSD licenses. Many other open-source dictionaries exist,
but are distributed under more restrictive licenses, such as the GPL license. Many of these dictionaries are
available as part of a separate installer located at http://www.altova.com/dictionaries. It is your choice as to
whether you can agree to the terms of the license applicable to the dictionary and whether the dictionary is
appropriate for your use with the software on your computer.

On clicking this command, the dialog shown below appears. Words that are not present in the selected
dictionary are displayed, in document order and one at a time, in the Not in Dictionary field of the dialog and
highlighted in the Design Document.

491

492

495

495

http://www.mozilla.org/MPL/
http://www.gnu.org/copyleft/lesser.html
http://en.wikipedia.org/wiki/BSD_licenses
http://www.gnu.org/licenses/gpl.html

492 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

You can then select an entry from the list in the Suggestions pane and click Change or Change All to change
the highlighted instance of this spelling or all its instances, respectively. (Double-clicking a word in the
Suggestions list causes it to replace the unknown word.) Alternatively, you can ignore this instance of the
unknown word (Ignore Once); or ignore all instances of this unknown word (Ignore All); or add this unknown
word to the user dictionary (Add to Dictionary). Adding the unknown word to the dictionary causes the spell-
checker to treat the word as correct and to pass on to the next word not found in the dictionary. You can
recheck the document from the beginning (Recheck Document) or close the dialog (Close) at any time.

The Options button opens the Spelling Options dialog, in which you can specify options for the spelling
check.

11.11.2 Spelling Options

The Spelling options command opens a dialog box (shown below) in which you specify options for the
spelling check.

Always suggest corrections:
Activating this option causes suggestions (from both the language dictionary and the user dictionary) to be
displayed in the Suggestions list box. Disabling this option causes no suggestions to be shown.

Make corrections only from main dictionary:
Activating this option causes only the language dictionary (main dictionary) to be used. The user dictionary is
not scanned for suggestions. It also disables the User Dictionary button, preventing any editing of the user
dictionary.

Ignore words in UPPER case:
Activating this option causes all upper case words to be ignored.

Ignore words with numbers:

492

© 2019-2025 Altova GmbH

Tools Menu 493Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Activating this option causes all words containing numbers to be ignored.

Split CamelCase words
CamelCase words are words that have capitalization within the word. For example the word "CamelCase" has
the "C" of "Case" capitalized, and is therefore said to be CamelCased. Since CamelCased words are rarely
found in dictionaries, the spellchecker would flag them as errors. To avoid this, the Split CamelCase words
option splits CamelCased words into their capitalized components and checks each component individually.
This option is checked by default.

Dictionary Language
Use this combo box to select the dictionary language for the spellchecker. The default selection is US English.
Other language dictionaries are available for download free of charge from the Altova website.

Adding dictionaries for the spellchecker
For each dictionary language there are two Hunspell dictionary files that work together: a .aff file and .dic
file. All language dictionaries are installed in a Lexicons folder at the following location: C:
\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons.

Within the Lexicons folder, different language dictionaries are each stored in a different folder: <language
name>\<dictionary files>. For example, files for the two English-language dictionaries (English
(British) and English (US)) will be stored as below:

C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (British)
\en_GB.dic
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.aff
C:\ProgramData\Altova\SharedBetweenVersions\SpellChecker\Lexicons\English (US)\en_US.dic

In the Spelling Options dialog, the dropdown list of the Dictionary Language combo box displays the language
dictionaries. These dictionaries are those available in the Lexicons folder and have the same names as the
language subfolders in the Lexicons folder. For example, in the case of the English-language dictionaries
shown above, the dictionaries would appear in the Dictionary Language combo box as: English (British) and
English (US).

All installed dictionaries are shared by the different users of the machine and the different major versions of
Altova products (whether 32-bit or 64-bit).

You can add dictionaries for the spellchecker in two ways, neither of which require that the files be registered
with the system:

· By adding Hunspell dictionaries into a new subfolder of the Lexicons folder. Hunspell dictionaries can
be downloaded, for example, from https://wiki.openoffice.org/wiki/Dictionaries or
http://extensions.services.openoffice.org/en/dictionaries. (Note that OpenOffice uses the zipped OXT
format. So change the extension to .zip and unzip the .aff and .dic file to the language folders in
the Lexicons folder. Also note that Hunspell dictionaries are based on Myspell dictionaries. So
Myspell dictionaries can also be used.)

· By using the Altova dictionary installer, which installs a package of multiple language dictionaries by
default to the correct location on your machine. The installer can be downloaded via the link in the
Dictionary language pane of the Spelling Options dialog (see screenshot below). Installation of the

https://www.altova.com/dictionaries
https://wiki.openoffice.org/wiki/Dictionaries
http://extensions.services.openoffice.org/en/dictionaries
https://www.altova.com/dictionaries

494 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

dictionaries must be done with administrator rights, otherwise installation will fail with an error.

Note: It is your choice as to whether you agree to the terms of the license applicable to the dictionary and
whether the dictionary is appropriate for your use with the software on your computer.

Working with the user dictionary
Each user has one user dictionary, in which user-allowed words can be stored. During a spellcheck, spellings
are checked against a word list comprising the words in the language dictionary and the user dictionary. You
can add words to and delete words from the user dictionary via the User Dictionary dialog (screenshot below).
This dialog is accessed by clicking the User Dictionary button in the Spelling Options dialog (see second
screenshot in this section).

To add a word to the user dictionary, enter the word in the Word text box and click Add. The word will be
added to the alphabetical list in the Dictionary pane. To delete a word from the dictionary, select the word in the
Dictionary pane and click Delete. The word will be deleted from the Dictionary pane. When you have finished
editing the User Dictionary dialog, click OK for the changes to be saved to the user dictionary.

Words may also be added to the User Dictionary during a spelling check. If an unknown word is encountered
during a spelling check, then the Spelling dialog pops up prompting you for the action you wish to take. If
you click the Add to Dictionary button, then the unknown word is added to the user dictionary.

The user dictionary is located at: C:\Users\<user>\Documents\Altova\SpellChecker\Lexicons\user.dic

491

© 2019-2025 Altova GmbH

Tools Menu 495Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.11.3 XML Schema Manager

This command opens the XML Schema Manager dialog, which enables you to manage your XML Schema
packages.

To install an XML schema, select the check box next to the schema you want to install and click Apply. You
can also uninstall schemas, upgrade schemas, check for new schemas, and generally manage all your
schemas in one central location.

For more information, see Schema Manager .

11.11.4 Customize

The customize command lets you customize StyleVision to suit your personal needs.

Commands tab
The Commands tab of the Customize dialog allows you to place individual commands in the menu bar and the
toolbar.

To add a command to the menu bar or toolbar, select the command in the Commands pane of the
Commands tab, and drag it to the menu bar or toolbar. When the cursor is placed over a valid position an I-
beam appears, and the command can be dropped at this location. If the location is invalid, a check mark
appears. When you drop the command it is created as an icon if the command already has an associated icon;

183

496 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

otherwise the command is created as text. After adding a command to the menu bar or toolbar, you can edit its
appearance by right-clicking it and then selecting the required action.

To delete a menu bar or toolbar item, with the Customize dialog open, right-click the item to be deleted, and
select Delete.

Note:

· The customization described above applies to the application, and applies whether a document is open
in StyleVision or not.

· To reset menus and toolbars to the state they were in when StyleVision was installed, go to the
Toolbars tab and click the appropriate Reset button.

Toolbars tab
The Toolbars tab allows you to activate or deactivate specific toolbars, to show text labels for toolbar items,
and to reset the menu bar and toolbars to their installation state.

The StyleVision interface displays a fixed menu bar and several optional toolbars (Design Filter, Format,
Standard, Table, and Table of Contents).

Each toolbar can be divided into groups of commands. Commands can be added to a toolbar via the
Commands tab. A toolbar can be dragged from its docked position to any location on the screen. Double-
clicking a toolbar's (maximized or minimized) title bar docks and undocks the toolbar.

In the Toolbars tab of the Customize dialog, you can toggle a toolbar on and off by clicking in its checkbox.
When a toolbar is selected (in the Toolbars tab), you can cause the text labels of that toolbar's items to be
displayed by clicking the Show text labels check box. You can also reset a selected toolbar to the state it

© 2019-2025 Altova GmbH

Tools Menu 497Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

was in when StyleVision was installed by clicking the Reset button. You can reset all toolbars and the menu
bar by clicking the Reset All button.

Note about Menu Bar
Commands can be added to, and items deleted from, the menu bar: see Commands above. To reset the menu
bar to the state it was in when StyleVision was installed, select Menu Bar in the Toolbars tab of the Customize
dialog, and click the Reset button. (Clicking the Reset All button will reset the toolbars as well.)

Keyboard tab
The Keyboard tab allows you to define (or change) keyboard shortcuts for any StyleVision command.

To assign a shortcut to a command

1. Select the category in which the command is by using the Category combo box.
2. Select the command you want to assign a shortcut to in the Commands list box.
3. Click in the Press New Shortcut Key input field, and press the shortcut keys that are to activate the

command. The shortcut immediately appears in the Press New Shortcut Key input field. If this shortcut
has already been assigned to a command, then that command is displayed below the input field. (For
example, in the screenshot above, Ctrl+C has already been assigned to the Copy command and
cannot be assigned to the Open File command.) To clear the New Shortcut Key input field, press any
of the control keys, Ctrl, Alt, or Shift.

4. Click the Assign button to permanently assign the shortcut. The shortcut now appears in the Current
Keys list box.

To de-assign (or delete) a shortcut

1. Select the command for which the shortcut is to be deleted.
2. Click the shortcut you want to delete in the Current Keys list box.

498 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

3. Click the Remove button (which has now become active).

To reset all keyboard assignments

1. Click the Reset All button to go back to the original, installation-time shortcuts. A dialog box appears
prompting you to confirm whether you want to reset all keyboard assignments.

2. Click Yes if you want to reset all keyboard assignments.

Set accelerator for
Currently no function is available.

Menu tab
The Menu tab allows you to customize the main menu bar as well as the context menus (right-click menus).
There are two types of main menu bar: Default (which appears when no document is open), and SPS (which
appears when an SPS document is open).

To customize a menu

1. Select the menu bar you want to customize (SPS menu in the screenshot above).
2. Click the Commands tab, and drag the commands to the menu bar of your choice.

To delete commands from a menu
1. In the Application Frame Menus pane, select either Default (which shows available menus when no

document is open) or SPS (which shows available menus when one or more documents are open).
2. With the Customize dialog open, select (i) the menu you want to delete from the application's menu

bar, or (ii) the command you want to delete from one of these menus.
3. Either (i) drag the menu from the menu bar or the menu command from the menu, or (ii) right-click the

menu or menu command and select Delete.

© 2019-2025 Altova GmbH

Tools Menu 499Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

To reset either of the menu bars
1. Select the menu entry you want to reset in the combo box of the Application Frame Menus pane.
2. Click the Reset button just below the menu name. A prompt appears asking if you are sure you want

to reset the menu bar.

To customize a context menu (a right-click menu)
1. Select the context menu from the combo box.
2. Click the Commands tab and drag the commands to the context menu that is now open.

To delete commands from a context menu
1. Click right on the command or icon representing the command.
2. Select the Delete option from the popup menu or drag the command away from the context menu and

drop it as soon as the check mark icon appears below the mouse pointer.

To reset a context menu
1. Select the context menu from the combo box, and
2. Click the Reset button just below the context menu name. A prompt appears asking if you are sure

you want to reset the context menu.

To close a context menu window
· Click on the Close icon at the top right of the title bar, or
· Click the Close button of the Customize dialog box.

Menu animations
The menu animation option specifies the way a menu is displayed when a menu is clicked. Select an option
from the drop-down list of menu animations.

Menu shadows
If you wish to have menus displayed with a shadow around it, select this option. All menus will then have a
shadow.

Options tab
The Options tab allows you to customize additional features of the toolbar.

Screen Tips for toolbar items will be displayed if the Show Screen Tips option is checked. The Screen Tips
option has a sub-option for whether shortcuts (where available) are displayed in the Screen Tips or not.

11.11.5 Restore Toolbars and Windows

This command restores toolbars, windows, entry helpers and other GUI components to their default state. You
will need to restart StyleVision for the changes to take effect.

11.11.6 Options

The Options command opens a dialog (screenshot below) in which you can specify the encoding of the HTML
output file.

500 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Design options
In the Design tab (screenshot below), you can set the application-wide general options for designs.

The following options can be set:

· Maximum width (in pixels) of markup tags. Enter the positive integer that is the required number of
pixels.

· Grid size of layout containers in absolute length units. The specified lengths are the distances between
two points on the respective grid axis.

· Default additional width and height of Layout Boxes. These additional lengths are added to all layout
boxes in order to provide the extra length that is often required to accommodate the bigger text
renditions of print formats. These values can be specified as percentage values or as absolute length
units.

· The default behavior when a node-template is created at a location where the context node is not
known. This option typically applies to User-Defined Templates in which the template has been created
for items that cannot be placed in context in the schema source of the design. If a node is created
within such a user-defined template, then the node can be created with (i) only its name, or (ii) with the
full path to it from the schema root. You can set one of these options as the default behavior, or,
alternatively, ask to be prompted each time this situation arises. The default selection for this option is
Always Ask.

© 2019-2025 Altova GmbH

Tools Menu 501Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Previews
In the Previews tab (screenshot below), you can select options for the previews.

· HTML Output: Select whether to use Edge/Webview2 or Internet Explorer as the browser for HTML
previews.

· PDF Output: Select which PDF reader to use for the PDF preview: (i) PDF.js (an open-source PDF
viewer for browsers) in Edge; (ii) Edge native (the built-in PDF reader of Microsoft Edge); or (iii) Adobe
Acrobat Reader.

· Split Preview settings: You can set a delay for the output previews that are generated on automatic
refreshes. Automatic refreshes occur when the design is modified. If you set, for example, a zero
delay, then the output preview will be regenerated with a zero delay each time the design is modified. If
the delay is a short period, then the output generation will be triggered at short intervals and therefore
occur at high frequency. This might result not only in slow output-preview generation, but also to
intermediate outputs, such as error messages that occur if a modification in progress leads to a
temporarily invalid design or invalid data. On the other hand, a long delay could lead to a long wait for
the output preview. Select an optimal value according to the size of your design and data. Note that the
delay specified in this setting does not apply when you first switch to the split preview or when you run
a manual refresh by clicking the Refresh button of the Output preview pane. In both these latter cases,
the output is generated immediately.

Schema options
In the Schema Tree, elements and attributes can be listed alphabetically in ascending order. To do this, check
the respective check boxes in the Schema Options tab. By default, attributes are listed alphabetically and
elements are listed in an order corresponding to the schema structure, as far as this is possible.

Default encoding
To set the default encoding of the output HTML file, open the dropdown menu of the combo box and select the
desired option from the list of encoding options, and click OK. Every new SPS you create from this point on,
will set the HTML output encoding as defined in this tab.

In the XSLT-for-HTML, the output encoding information is registered at the following locations:

· In the encoding attribute of the stylesheet's xsl:output element:
<xsl:output version="1.0" encoding="UTF-8" indent="no" omit-xml-declaration="no"

media-type="text/html" />
· In the charset attribute of the content-type meta element in the HTML header:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

Note: These settings are the default encodings, and will be used for new SPSs. You cannot change the
encoding of the currently open SPS using this dialog. To change the encoding of the currently open SPS, use
the File | Properties command.

XSL options
In the meta information of HTML output files, the line, 'Generated by StyleVision', will be generated by default.
Purchased versions of the product provide an option to disable the generation of this line.

444

502 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Network options
The Network section (screenshot below) enables you to configure important network settings.

IP addresses
When host names resolve to more than one address in mixed IPv4/IPv6 networks, selecting this option causes
the IPv6 addresses to be used. If the option is not selected in such environments and IPv4 addresses are
available, then IPv4 addresses are used.

Timeout
· Transfer timeout: If this limit is reached for the transfer of any two consecutive data packages of a

transfer (sent or received), then the entire transfer is aborted. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 40 seconds. If the option is not selected, then there is no time
limit for aborting a transfer.

· Connection phase timeout: This is the time limit within which the connection has to be established,
including the time taken for security handshakes. Values can be specified in seconds [s] or
milliseconds [ms], with the default being 300 seconds. This timeout cannot be disabled.

Certificate
· Verify TLS/SSL server certificate: If selected, then the authenticity of the server's certificate is checked

by verifying the chain of digital signatures until a trusted root certificate is reached. This option is
enabled by default. If this option is not selected, then the communication is insecure, and attacks (for
example, a man-in-the-middle attack) would not be detected. Note that this option does not verify that
the certificate is actually for the server that is communicated with. To enable full security, both the
certificate and the identity must be checked (see next option).

· Verify TLS/SSL server identity: If selected, then the server's certificate is verified to belong to the server
we intend to communicate with. This is done by checking that the server name in the URL is the same
as the name in the certificate. This option is enabled by default. If this option is not selected, then the
server's identify is not checked. Note that this option does not enable verification of the server's
certificate. To enable full security, both the certificate as well as the identity must be checked (see
previous option).

© 2019-2025 Altova GmbH

Tools Menu 503Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Network Proxy options
The Network Proxy section enables you to configure custom proxy settings. These settings affect how the
application connects to the Internet (for XML validation purposes, for example). By default, the application uses
the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary,
however, you can set an alternative network proxy by selecting, in the Proxy Configuration combo box, either
Automatic or Manual to configure the settings accordingly.

Note: The network proxy settings are shared among all Altova MissionKit applications. So, if you change the
settings in one application, all MissionKit applications will be affected.

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings
configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

· Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat) via DHCP or

DNS, and uses this script for proxy setup.
· Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for

proxy setup.
· Reload: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or

newer, and may need up to 30s to take effect.

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported
scheme may be included in the host name (for example: http://hostname). It is not required that the scheme

is the same as the respective protocol if the proxy supports the scheme.

504 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The following options are provided:

· HTTP Proxy: Uses the specified host name and port for the HTTP protocol. If Use this proxy server for
all protocols is selected, then the specified HTTP proxy is used for all protocols.

· SSL Proxy: Uses the specified host name and port for the SSL protocol.
· No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names, or IP

addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6
addresses have to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading dot (for

example: .example.com).

· Do not use the proxy server for local addresses: If checked, adds <local> to the No Proxy for list. If

this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::1], (iii) all host

names not containing a dot character (.).

Note: If a proxy server has been set and you want to deploy a transformation to Altova FlowForce Server, you
must select the option Do not use the proxy server for local addresses.

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the right of the
Test URL field (for example, when changing the test URL, or when the proxy settings have been changed).

· Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/O is done
with this URL. This field must not be empty if proxy-auto-configuration is used (either through Use
system proxy settings or Authomatic proxy configuration).

https://www.altova.com/flowforceserver

© 2019-2025 Altova GmbH

Tools Menu 505Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

Java options
In the Java section (see screenshot below), you can optionally enter the path to a Java VM (Virtual Machine)
on your file system. Note that adding a custom Java VM path is not always necessary. By default, StyleVision
attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the
JAVA_HOME environment variable. The custom path added in this dialog box will take priority over any other
Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does
not have an installer and does not create registry entries (e.g., Oracle's OpenJDK). You might also want to set
this path if you need to override, for whatever reason, any Java VM path detected automatically by StyleVision.

Note the following:

· The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you
change it in one application, it will automatically apply to all other Altova applications.

· The path must point to the jvm.dll file from the \bin\server or \bin\client directory, relative to the

directory where the JDK was installed.
· The StyleVision platform (32-bit, 64-bit) must be the same as that of the JDK.
· After changing the Java VM path, you may need to restart StyleVision for the new settings to take

effect.

Help
StyleVision provides Help (the user manual) in two formats:

· Online Help, in HTML format, which is available at the Altova website. In order to access the Online
Help you will need Internet access.

· A Help file in PDF format, which is installed on your machine when you install StyleVision. It is named
StyleVision.pdf and is located in the application folder (in the Program Files folder). If you do not

have Internet access, you can always open this locally saved Help fie.

The Help option (screenshot below) enables you to select which of the two formats is opened when you click
the Help (F1) command in the Help menu.

506 Menu Commands and Reference Tools Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

You can change this option at any time for the new selection to take effect. The links in this section (see
screenshot above) open the respective Help format.

© 2019-2025 Altova GmbH

Window Menu 507Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

11.12 Window Menu

The Window menu has commands to specify how StyleVision windows should be displayed in the GUI
(cascaded, tiled, or maximized). To maximize a window, click the maximize button of that window.

Additionally, all currently open document windows are listed in this menu by document name, with the active
window being checked. To make another window active, click the name of the window you wish to make active.

Windows dialog
At the bottom of the list of open windows is an entry for the Windows dialog. Clicking this entry opens the
Windows dialog, which displays a list of all open windows and provides commands that can be applied to the
selected window/s. (A window is selected by clicking on its name.)

Warning: To exit the Windows dialog, click OK; do not click the Close Window(s) button. The Close
Window(s) button closes the window/s currently selected in the Windows dialog.

508 Menu Commands and Reference Help Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

11.13 Help Menu

The Help menu contains commands to access the onscreen help manual for StyleVision, commands to
provide information about StyleVision, and links to support pages on the Altova web site. The Help menu also
contains the Registration dialog , which lets you enter your license key-code once you have purchased the
product.

The description of the Help menu commands is organized into the following sub-sections:

· Help
· Activation, Order Form, Registration, Updates
· Other Commands

11.13.1 Help

The Help (F1) command opens the application's Help documentation (its user manual). By default, the Online
Help in HTML format at the Altova website will be opened.

If you do not have Internet access or do not want, for some other reason, to access the Online Help, you can
use the locally stored version of the user manual. The local version is a PDF file named StyleVision.pdf that

is stored in the application folder (in the Program Files folder).

If you want to change the default format to open (Online Help or local PDF), do this in the Help section of the
Options dialog (menu command Tools | Options).

11.13.2 Activation, Order Form, Registration, Updates

Software Activation

License your product
After you download your Altova product software, you can license—or activate—it using either a free
evaluation key or a purchased permanent license key.

· Free evaluation license. When you first start the software after downloading and installing it, the
Software Activation dialog will pop up. In it is a button to request a free evaluation license. Click
it to get your license. When you click this button, your machine-ID will be hashed and sent to
Altova via HTTPS. The license information will be sent back to the machine via an HTTP response.
If the license is created successfully, a dialog to this effect will appear in your Altova application.
On clicking OK in this dialog, the software will be activated for a period of 30 days on this
particular machine.

· Permanent license key. The Software Activation dialog allows you to purchase a permanent
license key. Clicking this button takes you to Altova's online shop, where you can purchase a
permanent license key for your product. Your license will be sent to you by e-mail in the form of a
license file, which contains your license-data.

There are three types of permanent license: installed, concurrent user, and named user. An

508

508

508

511

© 2019-2025 Altova GmbH

Help Menu 509Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

installed license unlocks the software on a single computer. If you buy an installed license for N
computers, then the license allows use of the software on up to N computers. A concurrent-user
license for N concurrent users allows N users to run the software concurrently. (The software may
be installed on 10N computers.) A named-user license authorizes a specific user to use the
software on up to 5 different computers. To activate your software, click Upload a New License,
and, in the dialog that appears, enter the path to the license file, and click OK.

Note: For multi-user licenses, each user will be prompted to enter his or her own name.

Your license email and the different ways to license (activate) your Altova product
The license email that you receive from Altova will contain your license file as an attachment.
The license file has a .altova_licenses file extension.

To activate your Altova product, you can do one of the following:

· Save the license file (.altova_licenses) to a suitable location, double-click the

license file, enter any requested details in the dialog that appears, and finish by
clicking Apply Keys.

· Save the license file (.altova_licenses) to a suitable location. In your Altova

product, select the menu command Help | Software Activation, and then Upload a
New License. Browse for or enter the path to the license file, and click OK.

· Save the license file (.altova_licenses) to any suitable location, and upload it from

this location to the license pool of your Altova LicenseServer. You can then either: (i)
acquire the license from your Altova product via the product's Software Activation
dialog (see below) or (ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the rest of this topic.

You can access the Software Activation dialog (screenshot below) at any time by clicking the Help |
Software Activation command.

Activate your software
You can activate the software by registering the license in the Software Activation dialog or by licensing via
Altova LicenseServer (see details below).

· Registering the license in the Software Activation dialog. In the dialog, click Upload a New
License and browse for the license file. Click OK to confirm the path to the license file and to
confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking
Save.

· Licensing via Altova LicenseServer on your network: To acquire a license via an Altova
LicenseServer on your network, click Use Altova LicenseServer, located at the bottom of the
Software Activation dialog. Select the machine on which the LicenseServer you want to use has
been installed. Note that the auto-discovery of License Servers works by means of a broadcast
sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the
same subnet as the client machine for auto-discovery to work. If auto-discovery does not work,
then type in the name of the server. The Altova LicenseServer must have a license for your Altova
product in its license pool. If a license is available in the LicenseServer pool, this is indicated in
the Software Activation dialog (see screenshot below showing the dialog in Altova XMLSpy).
Click Save to acquire the license.

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver

510 Menu Commands and Reference Help Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

After a machine-specific (aka installed) license has been acquired from LicenseServer, it cannot
be returned to LicenseServer for a period of seven days. After that time, you can return the
machine license to LicenseServer (click Return License) so that this license can be acquired
from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web UI of LicenseServer.) Note that the
returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

Check out license
You can check out a license from the license pool for a period of up to 30 days so that the license
is stored on the product machine. This enables you to work offline, which is useful, for example, if
you wish to work in an environment where there is no access to your Altova LicenseServer (such
as when your Altova product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the license cannot be used
by any other machine. The license automatically reverts to the checked-in state when the check-
out period ends. Alternatively, a checked-out license can be checked in at any time via the Check
in button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click Check out
License (see screenshot above); (ii) In the License Check-out dialog that appears, select the
check-out period you want and click Check out. The license will be checked out. After checking
out a license, two things happen: (i) The Software Activation dialog will display the check-out
information, including the time when the check-out period ends; (ii) The Check out License
button in the dialog changes to a Check In button. You can check the license in again at any
time by clicking Check In. Because the license automatically reverts to the checked-in status
after the check-out period elapses, make sure that the check-out period you select adequately
covers the period during which you will be working offline.

© 2019-2025 Altova GmbH

Help Menu 511Menu Commands and Reference

Altova StyleVision 2025 Basic Edition

If the license being checked out is a Installed User license or Concurrent User license, then the
license is checked out to the machine and is available to the user who checked out the license. If
the license being checked out is a Named User license, then the license is checked out to the
Windows account of the named user. License check-out will work for virtual machines, but not for
virtual desktop (in a VDI). Note that, when a Named User license is checked out, the data to
identify that license check-out is stored in the user's profile. For license check-out to work, the
user's profile must be stored on the local machine that will be used for offline work. If the user's
profile is stored at a non-local location (such as a file-share), then the checkout will be reported as
invalid when the user tries to start the Altova application.

License check-ins must be to the same major version of the Altova product from which the license
was checked out. So make sure to check in a license before you upgrade your Altova product to
the next major version.

Note: For license check-outs to be possible, the check-out functionality must be enabled on
LicenseServer. If this functionality has not been enabled, you will get an error message to this
effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will
need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova licenses on a
network, together with the details of each license as well as client assignments and client usage of
licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-
volume Altova license management. Altova LicenseServer is available free of cost from the Altova website.
For more information about Altova LicenseServer and licensing via Altova LicenseServer, see the Altova
LicenseServer documentation.

Order Form

When you are ready to order a licensed version of the software product, you can use either the Purchase
a Permanent License Key button in the Software Activation dialog (see previous section) or the Order
Form command to proceed to the secure Altova Online Shop.

Registration

Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will
help ensure that you are always kept up to date with the latest product information.

Check for Updates

Checks with the Altova server whether a newer version than yours is currently available and displays a
message accordingly.

11.13.3 Other Commands

Support Center

A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums

https://www.altova.com/support
https://www.altova.com/
https://www.altova.com/manual/en/licenseserver/3.17/
https://www.altova.com/manual/en/licenseserver/3.17/

512 Menu Commands and Reference Help Menu

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

where problems are discussed, and access to Altova's technical support staff.

Download Components and Free Tools

A link to Altova's Component Download Center on the Internet. From here you can download a variety of
companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors
to Application Server Platforms. The software available at the Component Download Center is typically free
of charge.

StyleVision on the Internet

A link to the Altova website on the Internet. You can learn more about StyleVision, related technologies
and products on the Altova website.

About StyleVision

Displays the splash window and version number of your product. If you are using the 64-bit version of
StyleVision, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-
bit version.

https://www.altova.com/
https://www.altova.com/

© 2019-2025 Altova GmbH

 513Appendices

Altova StyleVision 2025 Basic Edition

12 Appendices

These appendices contain (i) information about the XSLT Engines used in StyleVision; (ii) information about the
conversion of DB datatypes to XML Schema datatypes; (iii) technical information about StyleVision; and (iv)
licensing information for StyleVision. Each appendix contains the sub-sections listed below:

XSLT Engine Information
Provides implementation-specific information about the Altova XSLT Engines, which are used by StyleVision to
generate output.

· Altova XSLT 1.0 Engine
· Altova XSLT 2.0 Engine
· Altova XSLT 3.0 Engine
· XSLT and XPath/XQuery Functions

Technical Data
Provides technical information about StyleVision.

· OS and memory requirements
· Altova XML Parser
· Altova XSLT and XQuery Engines
· Unicode support
· Internet usage

License Information
Contains information about the way StyleVision is distributed and about its licensing.

· Electronic software distribution
· License metering
· Copyright
· End User License Agreement

514

623

625

514 Appendices XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

12.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of StyleVision follow the W3C specifications closely and are therefore stricter
than previous Altova engines—such as those in previous versions of XMLSpy. As a result, minor errors that
were ignored by previous engines are now flagged as errors by StyleVision.

For example:

· It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and non-nodes.
· It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a sequence of

nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance document as
appropriate.

This section describes implementation-specific features of the engines, organized by specification:

· XSLT 1.0
· XSLT 2.0
· XSLT 3.0
· XQuery 1.0
· XQuery 3.1

12.1.1 XSLT 1.0

The XSLT 1.0 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XSLT 1.0
Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999. Note the
following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by default, then special
characters in the XML or XSLT file are inserted in the HTML document as HTML character references in the
output. For instance, the character U+00A0 (the hexadecimal character reference for a non-breaking space) is
inserted in the HTML code either as a character reference (or) or as an entity reference,
 .

12.1.2 XSLT 2.0

This section:

· Engine conformance
· Backward compatibility
· Namespaces
· Schema awareness
· Implementation-specific behavior

514

514

516

517

520

515

515

515

515

516

https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xslt-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116/

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 515Appendices

Altova StyleVision 2025 Basic Edition

Conformance
The XSLT 2.0 engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XSLT 2.0
Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. Typically, the backwards compatibility of the XSLT 2.0 engine
comes into play when using the XSLT 2.0 engine to process an XSLT 1.0 stylesheet or instruction. Note that
there could be differences in the outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT
2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to use the type
constructors and functions available in XSLT 2.0. The prefixes given below are conventionally used; you could
use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in the table
above) as its default functions namespace. So you can use XPath 2.0 and XSLT 2.0 functions in
your stylesheet without any prefix. If you declare the XPath 2.0 Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath 2.0 functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the xsl:validate
instruction.

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

516 Appendices XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects of certain
XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

12.1.3 XSLT 3.0

The XSLT 3.0 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XSLT 3.0
Recommendation of 8 June 2017 and XPath 3.1 Recommendation of 21 March 2017.

The XSLT 3.0 engine has the same implementation-specific characteristics as the XSLT 2.0 engine .
Additionally, it includes support for a number of new XSLT 3.0 features: XPath/XQuery 3.1 functions and
operators, and the XPath 3.1 specification.

Note: The optional streaming feature is not supported currently. The entire document will be loaded into
memory regardless of the value of the streamable attribute. If enough memory is available, then: (i) the entire
document will be processed—without streaming, (ii) guaranteed-streamable constructs will be processed
correctly, as if the execution used streaming, and (iii) streaming errors will not be detected. In 64-bit apps, non-
streaming execution should not be a problem. If memory does turn out to be an issue, a solution would be to
add more memory to the system.

Namespaces
Your XSLT 3.0 stylesheet should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XSLT 3.0. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

514

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xpath-31/
http://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xslt-30/#streaming-feature
https://www.w3.org/TR/xslt-30/#dt-guaranteed-streamable

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 517Appendices

Altova StyleVision 2025 Basic Edition

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in
the following listing:

<xsl:stylesheet version="3.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:fn="http://www.w3.org/2005/xpath-functions"

 ...
</xsl:stylesheet>

The following points should be noted:

· The XSLT 3.0 engine uses the XPath and XQuery Functions and Operators 3.1 namespace (listed in
the table above) as its default functions namespace. So you can use the functions of this
namespace in your stylesheet without any prefix. If you declare the Functions namespace in your
stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.

· When using type constructors and types from the XML Schema namespace, the prefix used in the
namespace declaration must be used when calling the type constructor (for example, xs:date).

· Some XPath/XQuery functions have the same name as XML Schema datatypes. For example, for the
XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local
names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'),
the expression evaluates as fn:string('Hello')—not as xs:string('Hello').

12.1.4 XQuery 1.0

This section:

· Engine conformance
· Schema awareness
· Encoding
· Namespaces
· XML source and validation
· Static and dynamic type checking
· Library modules
· External functions

518

518

518

515

519

519

519

519

518 Appendices XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Collations
· Precision of numeric data
· XQuery instructions support
· Implementation-specific behavior

Conformance
The XQuery 1.0 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XQuery 1.0
Recommendation of 14 December 2010. The XQuery standard gives implementations discretion about how to
implement many features. Given below is a list explaining how the XQuery 1.0 Engine implements these
features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

· The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

· Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes have been
moved, with the CRs of 23 January 2007, from the XPath Datatypes namespace to the XML Schema
namespace, so: xs:yearMonthDuration.

519

520

520

520

https://www.w3.org/TR/2010/REC-xquery-20101214/
https://www.w3.org/TR/2010/REC-xquery-20101214/

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 519Appendices

Altova StyleVision 2025 Basic Edition

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be well-formed.
However, they do not need to be valid according to an XML Schema. If the file is not valid, the invalid file is
loaded without schema information. If the XML file is associated with an external schema and is valid according
to it, then post-schema validation information is generated for the XML data and will be used for query
evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external references (e.g. for
modules) exist, whether invoked functions and variables are defined, and so on. If an error is detected in the
static analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is incompatible
with the requirement of an operation, an error is reported. For example, the expression xs:string("1") + 1
returns an error because the addition operation cannot be carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine supports modules
that are stored in a single external XQuery file. Such a module file must contain a module declaration in its
prolog, which associates a target namespace. Here is an example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the module. The
module is used by importing it into an XQuery file with the import module statement in the query prolog. The
import module statement only imports functions and variables declared directly in the library module file. As
follows:

import module namespace modlib = "urn:module-library" at "modulefilename.xq";
if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of their Unicode
codepoint. Other supported collations are the ICU collations listed here . To use a specific collation, supply522

http://site.icu-project.org/

520 Appendices XSLT and XQuery Engine Information

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

its URI as given in the list of supported collations . Any string comparisons, including for the fn:max and
fn:min functions, will be made according to the specified collation. If the collation option is not specified, the
default Unicode-codepoint collation is used.

Precision of numeric types

· The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
· The xs:decimal datatype has a limit of 20 digits after the decimal point.
· The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression is evaluated.

Implementation-specific behavior
Given below is a description of how the XQuery and XQuery Update 1.0 engines handle implementation-specific
aspects of certain functions.

unparsed-text

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64. Example: xs:base64Binary(unparsed-text('chart.png', 'x-
binarytobase64')).

unparsed-text-available

The href argument accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or
without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16
and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's predecessor
product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and
binarytobase64.

12.1.5 XQuery 3.1

The XQuery 3.1 Engine of StyleVision conforms to the World Wide Web Consortium's (W3C's) XQuery 3.1
Recommendation of 21 March 2017 and includes support for XPath and XQuery Functions 3.1. The XQuery 3.1
specification is a superset of the 3.0 specification. The XQuery 3.1 engine therefore supports XQuery 3.0
features.

Namespaces
Your XQuery 3.1 document should declare the following namespaces in order for you to be able to use all the
type constructors and functions available in XQuery 3.1. The prefixes given below are conventionally used; you
could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

522

http://www.w3.org/TR/xquery-31/
http://www.w3.org/TR/xquery-31/

© 2019-2025 Altova GmbH

XSLT and XQuery Engine Information 521Appendices

Altova StyleVision 2025 Basic Edition

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath/XQuery 3.1
functions

fn: http://www.w3.org/2005/xpath-functions

Math functions math: http://www.w3.org/2005/xpath-functions/math

Map functions map: http://www.w3.org/2005/xpath-functions/map

Array functions array: http://www.w3.org/2005/xpath-functions/array

XQuery, XSLT, and XPath
Error Codes

err: http://www.w3.org/2005/xpath-functions/xqt-errors

Serialization functions output http://www.w3.org/2010/xslt-xquery-serialization

The following points should be noted:

· The XQuery 3.1 Engine recognizes the prefixes listed above as being bound to the corresponding
namespaces.

· Since the built-in functions namespace listed above (see fn:) is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for example,

string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-
in function without having to declare the namespace in the query prolog (for example:
fn:string("Hello")).

· You can change the default functions namespace by declaring the default function namespace
expression in the query prolog.

· When using types from the XML Schema namespace, the prefix xs: may be used without having to
explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example:
xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema
namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt
= "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported.
Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and
fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the
function or type constructor is used.

Implementation-specific behavior
Implementation-specific characteristics are the same as for XQuery 1.0 .

Additionally, the Altova-specific encoding x-base64tobinary can be used to create a binary result document,
such as an image.

517

522 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

12.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in XPath and/or
XQuery expressions. Altova extension functions can be used with Altova's XSLT and XQuery engines, and
provide functionality additional to that available in the function libraries defined in the W3C standards.

This section describes XPath/XQuery extension functions that have been created by Altova to provide additional
operations, as well as other extension functions . These extension functions can be computed by
Altova's XSLT and XQuery engines according to the rules described in this section. For information about the
regular XPath/XQuery functions, see Altova's XPath/XQuery Function Reference.

General points
The following general points should be noted:

· Functions from the core function libraries defined in the W3C specifications can be called without a
prefix. That's because the Altova XSLT and XQuery engines read non-prefixed functions as belonging to
the namespace http://www.w3.org/2005/xpath-functions, which is the default functions
namespace specified in the XPath/XQuery functions specifications. If this namespace is explicitly
declared in an XSLT or XQuery document, the prefix used in the namespace declaration can also
optionally be used on function names.

· In general, if a function expects a sequence of one item as an argument, and a sequence of more than
one item is submitted, then an error is returned.

· All string comparisons are done using the Unicode codepoint collation.
· Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required by the
specification. For division operations that produce a result of type xs:decimal, the precision is 19 digits after
the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezones of the values being compared
need to be known. When the timezone is not explicitly given in such a value, the implicit timezone is used. The
implicit timezone is taken from the system clock, and its value can be checked with the implicit-
timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of their Unicode
codepoint. The engine uses the Unicode Collation Algorithm. Other supported collations are the ICU collations
listed below; to use one of these, supply its URI as given in the table below. Any string comparisons, including
for the max and min functions, will be made according to the specified collation. If the collation option is not
specified, the default Unicode-codepoint collation is used.

Language URIs

da: Danish da_DK

599 523

https://www.altova.com/xpath-xquery-reference
http://site.icu-project.org/

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 523Appendices

Altova StyleVision 2025 Basic Edition

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA, en_GB,
en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP, en_MT, en_MU,
en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT, en_UM, en_US, en_VI,
en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE, es_PR,
es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF, fr_CG,
fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN, fr_GP, fr_GQ,
fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML, fr_MQ, fr_NE, fr_RE,
fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

nb: Norwegian Bokmal nb_NO

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however, supported. To
access namespace information with XPath 2.0 mechanisms, use the in-scope-prefixes(), namespace-
uri() and namespace-uri-for-prefix() functions.

12.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension
functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions,

and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace.

Note that, in future versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath expressions in
an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this documentation we indicate the
functions that can be used in the former context (XPath in XSLT) with an XP symbol and call them XPath
functions; those functions that can be used in the latter (XQuery) context are indicated with an XQ symbol; they
work as XQuery functions. The W3C's XSLT specifications—not XPath/XQuery Functions specifications—also

524 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

define functions that can be used in XPath expressions in XSLT documents. These functions are marked with
an XSLT symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function can be
used are indicated in the description of the function (see symbols below). Functions from the XPath/XQuery and
XSLT function libraries are listed without a prefix. Extension functions from other libraries, such as Altova
extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Usage of Altova extension functions
In order to use Altova extension functions, you must declare the Altova extension functions namespace (first
highlight in code listing below) and then use the extension functions so that they are resolved as belonging to
this namespace (see second highlight). The example below uses the Altova extension function named age.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:altova="http://www.altova.com/xslt-extensions">

<xsl:output method="text" encoding="ISO-8859-1"/>

<xsl:template match="Persons">

<xsl:for-each select="Person">

 <xsl:value-of select="concat(Name, ': ')"/>

 <xsl:value-of select="altova:age(xs:date(BirthDate))"/>

 <xsl:value-of select="' years
'"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

 XSLT functions
XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT 2.0's current-
group() or key() functions). These functions are not intended for, and will not work in, a non-XSLT context (for
instance, in an XQuery context). Note that XSLT functions for XBRL can be used only with editions of Altova
products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in XQuery
expressions:

· Date/Time
· Geolocation
· Image-related
· Numeric
· Schema
· Sequence

525

527

544

556

560

562

582

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 525Appendices

Altova StyleVision 2025 Basic Edition

· String
· Miscellaneous

12.2.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not work in a non-
XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

General functions
distinct-nodes [altova:]

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with duplicate
values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples

· altova:distinct-nodes(country) returns all child country nodes less those having duplicate

values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN]) XSLT1 XSLT2
XSLT3

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the output of the
evaluated expression. For example: altova:evaluate('//Name[1]') returns the contents of the first

Name element in the document. Note that the expression //Name[1] is passed as a string by enclosing it
in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments are the values
of in-scope variables that have the names p1, p2, p3... pN. Note the following points about usage: (i) The
variables must be defined with names of the form pX, where X is an integer; (ii) the altova:evaluate
function's arguments (see signature above), from the second argument onwards, provide the values of the
variables, with the sequence of the arguments corresponding to the numerically ordered sequence of
variables: p1 to pN: The second argument will be the value of the variable p1, the third argument that of the

590

596

526 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

variable p2, and so on; (iii) The variable values must be of type item*.

Example

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

· The second argument of the altova:evaluate expression is the value assigned to the
variable $p1, the third argument that assigned to the variable $p2, and so on.

· Notice that the fourth argument of the function is a string value, indicated by its being
enclosed in quotes.

· The select attribute of the xs:variable element supplies the XPath expression. Since this
expression must be of type xs:string, it is enclosed in single quotes.

Examples to further illustrate the use of variables

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

· <xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath expression in the XSLT
stylesheet contains one or more parts that must be evaluated dynamically. For example, consider a
situation in which a user enters his request for the sorting criterion and this criterion is stored in the
attribute UserReq/@sortkey. In the stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The altova:evaluate()

function reads the sortkey attribute of the UserReq child element of the parent of the context node. Say
the value of the sortkey attribute is Price, then Price is returned by the altova:evaluate() function
and becomes the value of the select attribute: <xsl:sort select="Price" order="ascending"/>. If

this sort instruction occurs within the context of an element called Order, then the Order elements will
be sorted according to the values of their Price children. Alternatively, if the value of @sortkey were, say,
Date, then the Order elements would be sorted according to the values of their Date children. So the sort
criterion for Order is selected from the sortkey attribute at runtime. This could not have been achieved
with an expression like: <xsl:sort select="../UserReq/@sortkey" order="ascending"/>. In the

case shown above, the sort criterion would be the sortkey attribute itself, not Price or Date (or any other
current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—from the calling
environment. The base URI and default namespace are inherited.

More examples

· Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

· Dynamic XPath expression with dynamic variables:

mailto:.

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 527Appendices

Altova StyleVision 2025 Basic Edition

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

· Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as xs:boolean,

preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved according to the
boolean value specified for their respective arguments.

[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced by the input
node.

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node. The function
returns the XBRL label nodes associated with the input node.

[Top]

12.2.1.2 XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data held as XML Schema's various date and time datatypes. The functions in
this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery
contexts.

Note about naming of functions and language applicability

525

525

528 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Grouped by functionality

· Add a duration to xs:dateTime and return xs:dateTime
· Add a duration to xs:date and return xs:date
· Add a duration to xs:time and return xs:time
· Format and retrieve durations
· Remove timezone from functions that generate current date/time
· Return days, hours, minutes, and seconds from durations
· Return weekday as integer from date
· Return week number as integer from date
· Build date, time, or duration type from lexical components of each type
· Construct date, dateTime, or time type from string input
· Age-related functions
· Epoch time (Unix time) functions

Listed alphabetically

altova:add-days-to-date
altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date
altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age
altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ
altova:current-time-no-TZ
altova:date-no-TZ
altova:dateTime-from-epoch
altova:dateTime-from-epoch-no-TZ

529

531

532

531

533

534

536

536

538

540

541

543

531

529

529

532

529

532

531

529

529

532

531

529

541

541

538

538

538

533

533

533

533

543

543

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 529Appendices

Altova StyleVision 2025 Basic Edition

altova:dateTime-no-TZ
altova:days-in-month
altova:epoch-from-dateTime
altova:hours-from-dateTimeDuration-accumulated
altova:minutes-from-dateTimeDuration-accumulated
altova:seconds-from-dateTimeDuration-accumulated
altova:format-duration
altova:parse-date
altova:parse-dateTime
altova:parse-duration
altova:parse-time
altova:time-no-TZ
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

Add a duration to xs:dateTime XP3.1 XQ3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format

of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time formats separated by the
letter T. A timezone suffix (+01:00, for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in years to an xs:dateTime (see examples below). The second argument is the number of
years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2024-

01-15T14:00:00
· altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4) returns 2010-
01-15T14:00:00

add-months-to-dateTime [altova:]

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in months to an xs:dateTime (see examples below). The second argument is the number
of months to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

11-15T14:00:00
· altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2) returns 2013-

11-15T14:00:00

533

534

543

534

534

534

531

540

540

531

540

533

536

536

537

537

527

530 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as xs:dateTime

XP3.1 XQ3.1

Adds a duration in days to an xs:dateTime (see examples below). The second argument is the number of
days to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10) returns 2014-

01-25T14:00:00
· altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8) returns 2014-

01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is the number of
hours to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10) returns 2014-

01-15T23:00:00
· altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8) returns 2014-

01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument is the number
of minutes to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45) returns

2014-01-15T14:55:00
· altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5) returns

2014-01-15T14:05:00

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as xs:integer) as

xs:dateTime XP3.1 XQ3.1

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument is the
number of seconds to be added to the xs:dateTime supplied as the first argument. The result is of type
xs:dateTime.

Examples

· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20) returns

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 531Appendices

Altova StyleVision 2025 Basic Edition

2014-01-15T14:00:30
· altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5) returns

2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3.1 XQ3.1

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date XP3.1 XQ3.1

 Adds a duration in years to a date. The second argument is the number of years to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

· altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in months to a date. The second argument is the number of months to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

· altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3.1 XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added to the
xs:date supplied as the first argument. The result is of type xs:date.

Examples

· altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

· altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

[Top]

Format and retrieve durations XP3.1 XQ3.1

These functions parse an input xs:duration or xs:string and return, respectively, an xs:string or

xs:duration.

527

527

532 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

format-duration [altova:]

altova:format-duration(Duration as xs:duration, Picture as xs:string) as xs:string XP3.1

 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string submitted as
the second argument. The output is a text string formatted according to the picture string.

Examples

· altova:format-duration(xs:duration("P2DT2H53M11.7S"), "Days:[D01] Hours:[H01]

Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns "Days:02 Hours:02 Minutes:53
Seconds:11 Fractions:7"

· altova:format-duration(xs:duration("P3M2DT2H53M11.7S"), "Months:[M01] Days:[D01]

Hours:[H01] Minutes:[m01]") returns "Months:03 Days:02 Hours:02 Minutes:53"

parse-duration [altova:]

altova:parse-duration(InputString as xs:string, Picture as xs:string) as xs:duration

XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument. The input
string is parsed on the basis of the picture string, and an xs:duration is returned.

Examples

· altova:parse-duration("Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"),

"Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns
"P2DT2H53M11.7S"

· altova:parse-duration("Months:03 Days:02 Hours:02 Minutes:53 Seconds:11

Fractions:7", "Months:[M01] Days:[D01] Hours:[H01] Minutes:[m01]") returns
"P3M2DT2H53M"

[Top]

Add a duration to xs:time XP3.1 XQ3.1

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical form of

hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated Universal Time
(UTC). All other time zones are represented by their difference from UTC in the format +hh:mm, or -hh:mm. If no
time zone value is present, it is considered unknown; it is not assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in hours to a time. The second argument is the number of hours to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

· altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

527

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 533Appendices

Altova StyleVision 2025 Basic Edition

Adds a duration in minutes to a time. The second argument is the number of minutes to be added to the
xs:time supplied as the first argument. The result is of type xs:time.

Examples

· altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

· altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1

Adds a duration in seconds to a time. The second argument is the number of seconds to be added to the
xs:time supplied as the first argument. The result is of type xs:time. The Seconds component can be in
the range of 0 to 59.999.

Examples

· altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

· altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns 14:00:20.895

[Top]

Remove the timezone part from date/time datatypes XP3.1 XQ3.1

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values, respectively.

Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the case of the latter the
timezone part is required (while it is optional in the case of the former). So the format of an xs:dateTimeStamp
value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-DDThh:mm:ss.sssZ. If the date and time is read from
the system clock as xs:dateTimeStamp, the current-dateTime-no-TZ() function can be used to remove the
timezone if so required.

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-date() (which is the current
date according to the system clock) and returns an xs:date value.

Examples

If the current date is 2014-01-15+01:00:

· altova:current-date-no-TZ() returns 2014-01-15

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-dateTime() (which is the
current date-and-time according to the system clock) and returns an xs:dateTime value.

Examples

If the current dateTime is 2014-01-15T14:00:00+01:00:

527

534 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-time() (which is the current
time according to the system clock) and returns an xs:time value.

Examples

If the current time is 14:00:00+01:00:

· altova:current-time-no-TZ() returns 14:00:00

date-no-TZ [altova:]

altova:date-no-TZ(InputDate as xs:date) as xs:date XP3.1 XQ3.1

This function takes an xs:date argument, removes the timezone part from it, and returns an xs:date
value. Note that the date is not modified.

Examples

· altova:date-no-TZ(xs:date("2014-01-15+01:00")) returns 2014-01-15

dateTime-no-TZ [altova:]

altova:dateTime-no-TZ(InputDateTime as xs:dateTime) as xs:dateTime XP3.1 XQ3.1

This function takes an xs:dateTime argument, removes the timezone part from it, and returns an
xs:dateTime value. Note that neither the date nor the time is modified.

Examples

· altova:dateTime-no-TZ(xs:date("2014-01-15T14:00:00+01:00")) returns 2014-01-

15T14:00:00

time-no-TZ [altova:]

altova:time-no-TZ(InputTime as xs:time) as xs:time XP3.1 XQ3.1

This function takes an xs:time argument, removes the timezone part from it, and returns an xs:time
value. Note that the time is not modified.

Examples

· altova:time-no-TZ(xs:time("14:00:00+01:00")) returns 14:00:00

[Top]

Return the number of days, hours, minutes, seconds from durations XP3.1 XQ3.1

These functions return the number of days in a month, and the number of hours, minutes, and seconds,
respectively, from durations.

527

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 535Appendices

Altova StyleVision 2025 Basic Edition

days-in-month [altova:]

altova:days-in-month(Year as xs:integer, Month as xs:integer) as xs:integer XP3.1 XQ3.1

Returns the number of days in the specified month. The month is specified by means of the Year and
Month arguments.

Examples

· altova:days-in-month(2018, 10) returns 31

· altova:days-in-month(2018, 2) returns 28

· altova:days-in-month(2020, 2) returns 29

hours-from-dayTimeDuration-accumulated

altova:hours-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as xs:integer

XP3.1 XQ3.1

Returns the total number of hours in the duration submitted by the DayAndTime argument (which is of type
xs:duration). The hours in the Day and Time components are added together to give a result that is an
integer. A new hour is counted only for a full 60 minutes. Negative durations result in a negative hour value.

Examples

· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5D")) returns 120, which

is the total number of hours in 5 days.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H")) returns 122,

which is the total number of hours in 5 days plus 2 hours.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H60M")) returns 123,

which is the total number of hours in 5 days plus 2 hours and 60 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H119M")) returns

123, which is the total number of hours in 5 days plus 2 hours and 119 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5DT2H120M")) returns

124, which is the total number of hours in 5 days plus 2 hours and 120 mins.
· altova:hours-from-dayTimeDuration-accumulated(xs:duration("-P5DT2H")) returns -122

minutes-from-dayTimeDuration-accumulated

altova:minutes-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of minutes in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The minutes in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative minute value.

Examples

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT60M")) returns 60

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 60,

which is the total number of minutes in 1 hour.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("PT1H40M")) returns 100

· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 1440,

which is the total number of minutes in 1 day.
· altova:minutes-from-dayTimeDuration-accumulated(xs:duration("-P1DT60M")) returns -
1500

536 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

seconds-from-dayTimeDuration-accumulated

altova:seconds-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as

xs:integer XP3.1 XQ3.1

Returns the total number of seconds in the duration submitted by the DayAndTime argument (which is of
type xs:duration). The seconds in the Day and Time components are added together to give a result that
is an integer. Negative durations result in a negative seconds value.

Examples

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1M")) returns 60,

which is the total number of seconds in 1 minute.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H")) returns 3600,

which is the total number of seconds in 1 hour.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("PT1H2M")) returns 3720

· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("P1D")) returns 86400,

which is the total number of seconds in 1 day.
· altova:seconds-from-dayTimeDuration-accumulated(xs:duration("-P1DT1M")) returns -
86460

Return the weekday from xs:dateTime or xs:date XP3.1 XQ3.1

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of the week are
numbered (using the American format) from 1 to 7, with Sunday=1. In the European format, the week starts with
Monday (=1). The American format, where Sunday=1, can be set by using the integer 0 where an integer is
accepted to indicate the format.

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its single argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1),
use the other signature of this function (see next signature below).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns 2, which

would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer) as

xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as an integer. If
the second (integer) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the
second argument is an integer other than 0, then Monday=1. If there is no second argument, the function is
read as having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4) returns 1, which

would indicate a Monday
· altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0) returns 2, which

would indicate a Monday.

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 537Appendices

Altova StyleVision 2025 Basic Edition

weekday-from-date [altova:]

altova:weekday-from-date(Date as xs:date) as xs:integer XP3.1 XQ3.1

Takes a date as its single argument and returns the day of the week of this date as an integer. The
weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1), use
the other signature of this function (see next signature below).

Examples

· altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which would indicate a

Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer. If the second
(Format) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples

· altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would indicate a

Monday
· altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would indicate a

Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3.1 XQ3.1

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-numbering is
available in the US, ISO/European, and Islamic calendar formats. Week-numbering is different in these calendar
formats because the week is considered to start on different days (on Sunday in the US format, Monday in the
ISO/European format, and Saturday in the Islamic format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as xs:integer XP2

XQ1 XP3.1 XQ3.1

Returns the week number of the submitted Date argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

527

538 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Examples

· altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

· altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

· altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and Islamic
calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as xs:integer) as

xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted DateTime argument as an integer. The second argument

(Calendar) specifies the calendar system to follow.

Supported Calendar values are:

· 0 = US calendar (week starts Sunday)

· 1 = ISO standard, European calendar (week starts Monday)

· 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1) returns 12

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2) returns 13

· altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00")) returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

[Top]

Build date, time, and duration datatypes from their lexical components XP3.1 XQ3.1

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as input
arguments and combine them to build the respective datatype.

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as xs:integer) as

xs:date XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the year, month, and date. They are combined to
build a value of xs:date type. The values of the integers must be within the correct range of that particular
date part. For example, the second argument (for the month part) should not be greater than 12.

Examples

· altova:build-date(2014, 2, 03) returns 2014-02-03

527

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 539Appendices

Altova StyleVision 2025 Basic Edition

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer) as

xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. They are combined to build a value of xs:time type. The values of the integers must be
within the correct range of that particular time part. For example, the second (Minutes) argument should
not be greater than 59. To add a timezone part to the value, use the other signature of this function (see
next signature).

Examples

· altova:build-time(23, 4, 57) returns 23:04:57

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer,

TimeZone as xs:string) as xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds
(0 to 59) values. The fourth argument is a string that provides the timezone part of the value. The four
arguments are combined to build a value of xs:time type. The values of the integers must be within the
correct range of that particular time part. For example, the second (Minutes) argument should not be
greater than 59.

Examples

· altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as

xs:yearMonthDuration XP3.1 XQ3.1

Takes two arguments to build a value of type xs:yearMonthDuration. The first argument provides the
Years part of the duration value, while the second argument provides the Months part. If the second
(Months) argument is greater than or equal to 12, then the integer is divided by 12; the quotient is added to
the first argument to provide the Years part of the duration value while the remainder (of the division)
provides the Months part. To build a duration of type xs:dayTimeDuration., see the next signature.

Examples

· altova:build-duration(2, 10) returns P2Y10M

· altova:build-duration(14, 27) returns P16Y3M

· altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as xs:integer,

Seconds as xs:integer) as xs:dayTimeDuration XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The first
argument provides the Days part of the duration value, the second, third, and fourth arguments provide,
respectively, the Hours, Minutes, and Seconds parts of the duration value. Each of the three Time
arguments is converted to an equivalent value in terms of the next higher unit and the result is used for
calculation of the total duration value. For example, 72 seconds is converted to 1M+12S (1 minute and 12
seconds), and this value is used for calculation of the total duration value. To build a duration of type
xs:yearMonthDuration., see the previous signature.

Examples

540 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

· altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

· altova:build-duration(1, 0, 0, 3600) returns P1DT1H

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3.1 XQ3.1

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time datatypes. The
string is analyzed for components of the datatype based on a submitted pattern argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date XP2 XQ1 XP3.1
XQ3.1

Returns the input string Date as an xs:date value. The second argument DatePattern specifies the

pattern (sequence of components) of the input string. DatePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type xs:date, the

output will always have the lexical format YYYY-MM-DD.

Examples

· altova:parse-date(xs:string("09-12-2014"), "[D]-[M]-[Y]") returns 2014-12-09

· altova:parse-date(xs:string("09-12-2014"), "[M]-[D]-[Y]") returns 2014-09-12

· altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

· altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

· altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as

xs:dateTime XP2 XQ1 XP3.1 XQ3.1

Returns the input string DateTime as an xs:dateTime value.The second argument DateTimePattern

specifies the pattern (sequence of components) of the input string. DateTimePattern is described with the

component specifiers listed below and with component separators that can be any character. See the
examples below.

D Date

M Month

Y Year

H Hour

m minutes

527

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 541Appendices

Altova StyleVision 2025 Basic Edition

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of type

xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples

· altova:parse-dateTime(xs:string("09-12-2014 13:56:24"), "[M]-[D]-[Y] [H]:[m]:

[s]") returns 2014-09-12T13:56:24
· altova:parse-dateTime("time=13:56:24; date=09-12-2014", "time=[H]:[m]:[s];

date=[D]-[M]-[Y]") returns 2014-12-09T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time XP2 XQ1 XP3.1
XQ3.1

Returns the input string Time as an xs:time value.The second argument TimePattern specifies the

pattern (sequence of components) of the input string. TimePattern is described with the component

specifiers listed below and with component separators that can be any character. See the examples
below.

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type xs:time, the

output will always have the lexical format HH:mm:ss.

Examples

· altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

· altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

· altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns 13:56:24

· altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns 13:56:24

[Top]

Age-related functions XP3.1 XQ3.1

These functions return the age as calculated (i) between one input argument date and the current date, or (ii)
between two input argument dates. The altova:age function returns the age in terms of years, the

altova:age-details function returns the age as a sequence of three integers giving the years, months, and

days of the age.

age [altova:]

altova:age(StartDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date submitted as the
argument and ending with the current date (taken from the system clock). If the input argument is a date
anything greater than or equal to one year in the future, the return value will be negative.

Examples

527

542 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

If the current date is 2014-01-15:

· altova:age(xs:date("2013-01-15")) returns 1

· altova:age(xs:date("2013-01-16")) returns 0

· altova:age(xs:date("2015-01-15")) returns -1

· altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date that is submitted as
the first argument up to an end-date that is the second argument. The return value will be negative if the
first argument is one year or more later than the second argument.

Examples

If the current date is 2014-01-15:

· altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

· altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current date is 2014-

01-15
· altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the date that is
submitted as the argument and the current date (taken from the system clock). The sum of the returned
years+months+days together gives the total time difference between the two dates (the input date and the
current date). The input date may have a value earlier or later than the current date, but whether the input
date is earlier or later is not indicated by the sign of the return values; the return values are always
positive.

Examples

If the current date is 2014-01-15:

· altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

· altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

· altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the two argument
dates. The sum of the returned years+months+days together gives the total time difference between the
two input dates; it does not matter whether the earlier or later of the two dates is submitted as the first
argument. The return values do not indicate whether the input date occurs earlier or later than the current
date. Return values are always positive.

Examples

· altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns (0 0 1)

· altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns (0 0 1)

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 543Appendices

Altova StyleVision 2025 Basic Edition

[Top]

Epoch time (Unix time) functions XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the number of
seconds that have elapsed since 00:00:00 UTC on 1 January 1970. Altova's Epoch time extension functions
convert xs:dateTime values to Epoch time values and vice versa.

dateTime-from-epoch [altova:]

altova:dateTime-from-epoch(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-epoch

function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local timezone, and

includes the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that includes a TZ

(timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time, and

adding to it the local timezone (taken from the system clock). For example, if the function is executed on
a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC dateTime

equivalent has been calculated, one hour will be added to the result. The timezone information, which is an
optional lexical part of the xs:dateTime result, is also reported in the dateTime result. Compare this

result with that of dateTime-from-epoch-no-TZ, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is reported in
the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34+01:00

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02+01:00

dateTime-from-epoch-no-TZ [altova:]

altova:dateTime-from-epoch-no-TZ(Epoch as xs:decimal as xs:dateTime XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The dateTime-from-

epoch-no-TZ function returns the xs:dateTime equivalent of an Epoch time, adjusts it for the local

timezone, but does not include the timezone information in the result.

The function takes an xs:decimal argument and returns an xs:dateTime value that does not includes a
TZ (timezone) part. The result is obtained by calculating the UTC dateTime equivalet of the Epoch time,

and adding to it the local timezone (taken from the system clock). For example, if the function is executed
on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then after the UTC
dateTime equivalent has been calculated, one hour will be added to the result. The timezone information,

which is an optional lexical part of the xs:dateTime result, is not reported in the dateTime result.

Compare this result with that of dateTime-from-epoch, and also see the function epoch-from-dateTime.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, the UTC dateTime

527

544 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

equivalent of the submitted Epoch time will be incremented by one hour. The timezone is not reported
in the result.

· altova:dateTime-from-epoch(34) returns 1970-01-01T01:00:34

· altova:dateTime-from-epoch(62) returns 1970-01-01T01:01:02

epoch-from-dateTime [altova:]

altova:epoch-from-dateTime(dateTimeValue as xs:dateTime) as xs:decimal XP3.1 XQ3.1

Epoch time is a time system used on Unix systems. It defines any given point in time as being the
number of seconds that have elapsed since 00:00:00 UTC on 1 January 1970. The epoch-from-dateTime

function returns the Epoch time equivalent of the xs:dateTime that is submitted as the argument of the

function. Note that you might have to explicitly construct the xs:dateTime value. The submitted

xs:dateTime value may or may not contain the optional TZ (timezone) part.

Whether the timezone part is submitted as part of the argument or not, the local timezone offset (taken
from the system clock) is subtracted from the submitted dateTimeValue argument. This produces the

equivalent UTC time, from which the equivalent Epoch time is calculated. For example, if the function is
executed on a machine that has been set to be in a timezone of +01:00 (relative to UTC), then one hour is
subtracted from the submitted dateTimeValue before the Epoch value is calculated. Also see the function

dateTime-from-epoch.

Examples

The examples below assume a local timezone of UTC +01:00. Consequently, one hour will be
subtracted from the submitted dateTime before the Epoch time is calculated.

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34+01:00")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("1970-01-01T01:00:34")) returns 34

· altova:epoch-from-dateTime(xs:dateTime("2021-04-01T11:22:33")) returns 1617272553

[Top]

12.2.1.3 XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of StyleVision
and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery
document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information

527

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 545Appendices

Altova StyleVision 2025 Basic Edition

about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

format-geolocation [altova:]

altova:format-geolocation(Latitude as xs:decimal, Longitude as xs:decimal,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes the latitude and longitude as the first two arguments, and outputs the geolocation as a string. The
third argument, GeolocationOutputStringFormat, is the format of the geolocation output string; it uses

integer values from 1 to 4 to identify the output string format (see 'Geolocation output string formats'
below). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:format-geolocation(33.33, -22.22, 4) returns the xs:string "33.33 -22.22"

· altova:format-geolocation(33.33, -22.22, 2) returns the xs:string "33.33N 22.22W"

· altova:format-geolocation(-33.33, 22.22, 2) returns the xs:string "33.33S 22.22E"

· altova:format-geolocation(33.33, -22.22, 1) returns the xs:string "33°19'48.00"S 22°

13'12.00"E"

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

556

546 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

parse-geolocation [altova:]

altova:parse-geolocation(GeolocationInputString as xs:string) as xs:decimal+ XP3.1 XQ3.1

Parses the supplied GeolocationInputString argument and returns the geolocation's latitude and
longitude (in that order) as a sequence two xs:decimal items. The formats in which the geolocation input
string can be supplied are listed below.

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply the geolocation input string (see example below).

Examples

· altova:parse-geolocation("33.33 -22.22") returns the sequence of two xs:decimals

(33.33, 22.22)
· altova:parse-geolocation("48°51'29.6""N 24°17'40.2""") returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation('48°51''29.6"N 24°17''40.2"') returns the sequence of two

xs:decimals (48.8582222222222, 24.2945)
· altova:parse-geolocation(image-exif-

data(//MyImages/Image20141130.01)/@Geolocation) returns a sequence of two xs:decimals

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create

556 556

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 547Appendices

Altova StyleVision 2025 Basic Edition

a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocation-distance-km [altova:]

548 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

altova:geolocation-distance-km(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in kilometers. The formats in which the geolocation
input string can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-km("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 4183.08132372392

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

556 556

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 549Appendices

Altova StyleVision 2025 Basic Edition

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocation-distance-mi [altova:]

altova:geolocation-distance-mi(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in miles. The formats in which a geolocation input string
can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude values range
from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-distance-mi("33.33 -22.22", "48°51'29.6""N 24°17'40.2""")

returns the xs:decimal 2599.40652340653

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

556 556

550 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocations-bounding-rectangle [altova:]

altova:geolocations-bounding-rectangle(Geolocations as xs:sequence,

GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes a sequence of strings as its first argument; each string in the sequence is a geolocation. The
function returns a sequence of two strings which are, respectively, the top-left and bottom-right geolocation
coordinates of a bounding rectangle that is optimally sized to enclose all the geolocations submitted in the
first argument. The formats in which a geolocation input string can be supplied are listed below (see
'Geolocation input string formats'). Latitude values range from +90 to -90 (N to S). Longitude values range

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 551Appendices

Altova StyleVision 2025 Basic Edition

from +180 to -180 (E to W).

The function's second argument specifies the format of the two geolocation strings in the output sequence.
The argument takes an integer value from 1 to 4, where each value identifies a different geolocation string
format (see 'Geolocation output string formats' below).

Note: The image-exif-data function and the Exif metadata's attributes can be used to supply the
input strings.

Examples

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832"), 1) returns the sequence ("51°30'33.804"N 0°7'5.952"W", "48°12'51.67116"N
16°22'14.61576"E")

· altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 -

0.11832", "42.5584577 -70.8893334"), 4) returns the sequence ("51.50939 -70.8893334",
"42.5584577 16.3707266")

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

556

552 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired
format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

1

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"E/W

Example: 33°55'11.11"N 22°44'66.66"W

2

Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDE/W

Example: 33.33N 22.22W

3

Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'66.66"

4

Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional

+/-D.DD +/-D.DD

Example: 33.33 -22.22

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 553Appendices

Altova StyleVision 2025 Basic Edition

geolocation-within-polygon [altova:]

altova:geolocation-within-polygon(Geolocation as xs:string, ((PolygonPoint as

xs:string)+)) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the polygonal area described by the

PolygonPoint arguments. If the PolygonPoint arguments do not form a closed figure (formed when the

first point and the last point are the same), then the first point is implicitly added as the last point in order
to close the figure. All the arguments (Geolocation and PolygonPoint+) are given by geolocation input
strings (formats listed below). If the Geolocation argument is within the polygonal area, then the function
returns true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude
values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24", "58 -

32")) returns true()

· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48 24")) returns

true()
· altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48°51'29.6""N

 24°17'40.2""")) returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

556 556

554 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

geolocation-within-rectangle [altova:]

altova:geolocation-within-rectangle(Geolocation as xs:string, RectCorner-1 as

xs:string, RectCorner-2 as xs:string) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the rectangle defined by the second and

third arguments, RectCorner-1 and RectCorner-2, which specify opposite corners of the rectangle. All

the arguments (Geolocation, RectCorner-1 and RectCorner-2) are given by geolocation input strings

(formats listed below). If the Geolocation argument is within the rectangle, then the function returns
true(); otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude values
range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can be used
to supply geolocation input strings.

Examples

· altova:geolocation-within-rectangle("33 -22", "58 -32", "-48 24") returns true()

556 556

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 555Appendices

Altova StyleVision 2025 Basic Edition

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48 24") returns false()

· altova:geolocation-within-rectangle("33 -22", "58 -32", "48°51'29.6""S 24°

17'40.2""") returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by
whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can
be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S).
Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-
values and second-values. In such cases, the quotes that are used for indicating minute-values and
second-values must be escaped by doubling them. In the examples in this section, quotes used to
delimit the input string are highlighted in yellow (") while unit indicators that are escaped are

highlighted in blue ("").

· Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

· Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is

optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

· Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

· Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

· Decimal degrees, with suffixed orientation (N/S, E/W)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

· Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

556 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

[Top]

12.2.1.4 XPath/XQuery Functions: Image-Related

The following image-related XPath/XQuery extension functions are supported in the current version of
StyleVision and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an
XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

suggested-image-file-extension [altova:]

altova:suggested-image-file-extension(Base64String as string) as string? XP3.1 XQ3.1

Takes the Base64 encoding of an image file as its argument and returns the file extension of the image as
recorded in the Base64-encoding of the image. The returned value is a suggestion based on the image
type information available in the encoding. If this information is not available, then an empty string is
returned. This function is useful if you wish to save a Base64 image as a file and wish to dynamically
retrieve an appropriate file extension.

Examples

· altova:suggested-image-file-extension(/MyImages/MobilePhone/Image20141130.01)

returns 'jpg'
· altova:suggested-image-file-extension($XML1/Staff/Person/@photo) returns ''

544

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 557Appendices

Altova StyleVision 2025 Basic Edition

In the examples above, the nodes supplied as the argument of the function are assumed to contain a
Base64-encoded image. The first example retrieves jpg as the file's type and extension. In the second
example, the submitted Base64 encoding does not provide usable file extension information.

image-exif-data [altova:]

altova:image-exif-data(Base64BinaryString as string) as element? XP3.1 XQ3.1

Takes a Base64-encoded JPEG image as its argument and returns an element called Exif that contains

the Exif metadata of the image. The Exif metadata is created as attribute-value pairs of the Exif element.
The attribute names are the Exif data tags found in the Base64 encoding. The list of Exif-specification tags
is given below. If a vendor-specific tag is present in the Exif data, this tag and its value will also be returned
as an attribute-value pair. Additional to the standard Exif metadata tags (see list below), Altova-specific
attribute-value pairs are also generated. These Altova Exif attributes are listed below.

Examples

· To access any one attribute, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@GPSLatitude

image-exif-data(//MyImages/Image20141130.01)/@Geolocation

· To access all the attributes, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@*

· To access the names of all the attributes, use the following expression:
for $i in image-exif-data(//MyImages/Image20141130.01)/@* return name($i)

This is useful to find out the names of the attributes returned by the function.

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif
metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,

GPSLongitude, GPSLongitudeRef, with units added (see table below).

GPSLatitude GPSLatitudeRe

f

GPSLongitude GPSLongitudeRe

f

Geolocation

33 51 21.91 S 151 13 11.73 E 33°51'21.91"S 151°
13'11.73"E

Altova Exif Attribute: OrientationDegree

The Altova XPath/XQuery Engine generates the custom attribute OrientationDegree from the Exif

metadata tag Orientation.

OrientationDegree translates the standard Exif tag Orientation from an integer value (1, 8, 3, or

6) to the respective degree values of each (0, 90, 180, 270), as shown in the figure below. Note that

there are no translations of the Orientation values of 2, 4, 5, 7. (These orientations are obtained by

flipping image 1 across its vertical center axis to get the image with a value of 2, and then rotating
this image in 90-degree jumps clockwise to get the values of 7, 4, and 5, respectively).

558 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Listing of standard Exif meta tags

· ImageWidth
· ImageLength
· BitsPerSample
· Compression
· PhotometricInterpretation
· Orientation
· SamplesPerPixel
· PlanarConfiguration
· YCbCrSubSampling
· YCbCrPositioning
· XResolution
· YResolution
· ResolutionUnit
· StripOffsets
· RowsPerStrip
· StripByteCounts
· JPEGInterchangeFormat
· JPEGInterchangeFormatLength
· TransferFunction
· WhitePoint
· PrimaryChromaticities
· YCbCrCoefficients
· ReferenceBlackWhite
· DateTime
· ImageDescription
· Make

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 559Appendices

Altova StyleVision 2025 Basic Edition

· Model
· Software
· Artist
· Copyright

· ExifVersion
· FlashpixVersion
· ColorSpace
· ComponentsConfiguration
· CompressedBitsPerPixel
· PixelXDimension
· PixelYDimension
· MakerNote
· UserComment
· RelatedSoundFile
· DateTimeOriginal
· DateTimeDigitized
· SubSecTime
· SubSecTimeOriginal
· SubSecTimeDigitized
· ExposureTime
· FNumber
· ExposureProgram
· SpectralSensitivity
· ISOSpeedRatings
· OECF
· ShutterSpeedValue
· ApertureValue
· BrightnessValue
· ExposureBiasValue
· MaxApertureValue
· SubjectDistance
· MeteringMode
· LightSource
· Flash
· FocalLength
· SubjectArea
· FlashEnergy
· SpatialFrequencyResponse
· FocalPlaneXResolution
· FocalPlaneYResolution
· FocalPlaneResolutionUnit
· SubjectLocation
· ExposureIndex
· SensingMethod
· FileSource
· SceneType
· CFAPattern
· CustomRendered
· ExposureMode
· WhiteBalance
· DigitalZoomRatio
· FocalLengthIn35mmFilm
· SceneCaptureType

560 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· GainControl
· Contrast
· Saturation
· Sharpness
· DeviceSettingDescription
· SubjectDistanceRange
· ImageUniqueID

· GPSVersionID
· GPSLatitudeRef
· GPSLatitude
· GPSLongitudeRef
· GPSLongitude
· GPSAltitudeRef
· GPSAltitude
· GPSTimeStamp
· GPSSatellites
· GPSStatus
· GPSMeasureMode
· GPSDOP
· GPSSpeedRef
· GPSSpeed
· GPSTrackRef
· GPSTrack
· GPSImgDirectionRef
· GPSImgDirection
· GPSMapDatum
· GPSDestLatitudeRef
· GPSDestLatitude
· GPSDestLongitudeRef
· GPSDestLongitude
· GPSDestBearingRef
· GPSDestBearing
· GPSDestDistanceRef
· GPSDestDistance
· GPSProcessingMethod
· GPSAreaInformation
· GPSDateStamp
· GPSDifferential

[Top]

12.2.1.5 XPath/XQuery Functions: Numeric

Altova's numeric extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

556

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 561Appendices

Altova StyleVision 2025 Basic Edition

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double, Increment as

xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1 XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated the first time
the function is called, is specified by the StartsWith argument. Each subsequent call to the function
generates a new number, this number being incremented over the previously generated number by the
value specified in the Increment argument. In effect, the altova:generate-auto-number function creates
a counter having a name specified by the ID argument, with this counter being incremented each time the
function is called. If the value of the ResetOnChange argument changes from that of the previous function
call, then the value of the number to be generated is reset to the StartsWith value. Auto-numbering can
also be reset by using the altova:reset-auto-number function.

Examples

· altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will return one

number each time the function is called, starting with 1, and incrementing by 1 with each call to
the function. As long as the fourth argument remains "SomeString" in each subsequent call, the
incrementing will continue. When the value of the fourth argument changes, the counter (called
ChapterNumber) will reset to 1. The value of ChapterNumber can also be reset by a call to the
altova:reset-auto-number function, like this: altova:reset-auto-number("ChapterNumber").

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3.1 XQ3.1

This function resets the number of the auto-numbering counter named in the ID argument. The number is
reset to the number specified by the StartsWith argument of the altova:generate-auto-number
function that created the counter named in the ID argument.

Examples

· altova:reset-auto-number("ChapterNumber") resets the number of the auto-numbering

counter named ChapterNumber that was created by the altova:generate-auto-number function.
The number is reset to the value of the StartsWith argument of the altova:generate-auto-
number function that created ChapterNumber.

562 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3.1 XQ3.1

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system (Base-10), and
returns the decimal integer.

Examples

· altova:hex-string-to-integer('1') returns 1

· altova:hex-string-to-integer('9') returns 9

· altova:hex-string-to-integer('A') returns 10

· altova:hex-string-to-integer('B') returns 11

· altova:hex-string-to-integer('F') returns 15

· altova:hex-string-to-integer('G') returns an error

· altova:hex-string-to-integer('10') returns 16

· altova:hex-string-to-integer('01') returns 1

· altova:hex-string-to-integer('20') returns 32

· altova:hex-string-to-integer('21') returns 33

· altova:hex-string-to-integer('5A') returns 90

· altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3.1 XQ3.1

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples

· altova:integer-to-hex-string(1) returns '1'

· altova:integer-to-hex-string(9) returns '9'

· altova:integer-to-hex-string(10) returns 'A'

· altova:integer-to-hex-string(11) returns 'B'

· altova:integer-to-hex-string(15) returns 'F'

· altova:integer-to-hex-string(16) returns '10'

· altova:integer-to-hex-string(32) returns '20'

· altova:integer-to-hex-string(33) returns '21'

· altova:integer-to-hex-string(90) returns '5A'

[Top]

[Top]

12.2.1.6 XPath/XQuery Functions: Schema

The Altova extension functions listed below return schema information. Given below are descriptions of the
functions, together with (i) examples and (ii) a listing of schema components and their respective properties.

560

560

560

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 563Appendices

Altova StyleVision 2025 Basic Edition

They can be used with Altova's XPath 3.0 and XQuery 3.0 engines and are available in XPath/XQuery
contexts.

Schema information from schema documents
The function altova:schema has two arguments: one with zero arguments and the other with two arguments.

The zero-argument function returns the whole schema. You can then, from this starting point, navigate into the
schema to locate the schema components you want. The two-argument function returns a specific component
kind that is identified by its QName. In both cases, the return value is a function. To navigate into the returned
component, you must select a property of that specific component. If the property is a non-atomic item (that is,
if it is a component), then you can navigate further by selecting a property of this component. If the selected
property is an atomic item, then the value of the item is returned and you cannot navigate any further.

Note: In XPath expressions, the schema must be imported into the processing environment (for example, into
XSLT) with the xslt:import-schema instruction. In XQuery expressions, the schema must be explicitly

imported using a schema import.

Schema information from XML nodes
The function altova:type submits the node of an XML document and returns the node's type information from

the PSVI.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Schema (zero arguments)

altova:schema() as (function(xs:string) as item()*)? XP3.1 XQ3.1

Returns the schema component as a whole. You can navigate further into the schema component by

selecting one of the schema component's properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

The properties of the schema component are:

"type definitions"
"attribute declarations"

https://www.w3.org/TR/xslt-30/#element-import-schema
https://www.w3.org/TR/xquery-31/#prod-xquery31-SchemaImport

564 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

"element declarations"
"attribute group definitions"
"model group definitions"
"notation declarations"
"identity-constraint definitions"

The properties of all other component kinds (besides schema) are listed below.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd"; for $typedef in altova:schema()

("type definitions")

return $typedef ("name") returns the names of all simple types or complex types in the
schema

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema() ("type definitions")[1]("name") returns the name of the first of all simple

types or complex types in the schema

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 565Appendices

Altova StyleVision 2025 Basic Edition

namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

566 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 567Appendices

Altova StyleVision 2025 Basic Edition

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint string ("key"|"unique"|"keyRef")

568 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

category

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

Simple Type

Property name Property type Property value

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 569Appendices

Altova StyleVision 2025 Basic Edition

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Schema (two arguments)

altova:schema(ComponentKind as xs:string, Name as xs:QName) as (function(xs:string) as

item()*)? XP3.1 XQ3.1

Returns the component kind that is specified in the first argument which has a name that is the same as
the name supplied in the second argument. You can navigate further by selecting one of the component's

570 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

properties.

· If this property is a component, you can navigate another step deeper by selecting one of this
component's properties. This step can be repeated to navigate further into the schema.

· If the component is an atomic value, the atomic value is returned and you cannot navigate any
deeper.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema
must have been imported into the processing environment, for example, into XSLT with the xslt:import

instruction.

Examples

· import schema "" at "C:\Test\ExpReport.xsd";

altova:schema("element declaration", xs:QName("OrgChart"))("type definition")

("content type")("particles")[3]!.("term")("kind")
returns the kind property of the term of the third particles component. This particles component
is a descendant of the element declaration having a QName of OrgChart

· import schema "" at "C:\Test\ExpReport.xsd";

let $typedef := altova:schema("type definition", xs:QName("emailType"))

for $facet in $typedef ("facets")

return [$facet ("kind"), $facet("value")]

returns, for each facet of each emailType component, an array containing that facet's kind and

value

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties
("class": "Value Constraint", "variety":

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 571Appendices

Altova StyleVision 2025 Basic Edition

"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if

572 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 573Appendices

Altova StyleVision 2025 Basic Edition

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

574 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 575Appendices

Altova StyleVision 2025 Basic Edition

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

Type

576 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

altova:type(Node as item?) as (function(xs:string) as item()*)? XP3.1 XQ3.1

The function altova:type submits an element or attribute node of an XML document and returns the

node's type information from the PSVI.

Note: The XML document must have a schema declaration so that the schema can be referenced.

Examples

· for $element in //Email

let $type := altova:type($element)

return $type

returns a function that contains the Email node's type information

· for $element in //Email

let $type := altova:type($element)

return $type ("kind")

takes the Email node's type component (Simple Type or Complex Type) and returns the value of
the component's kind property

The "_props" parameter returns the properties of the selected component. For example:
· for $element in //Email

let $type := altova:type($element)

return ($type ("kind"), $type ("_props"))

takes the Email node's type component (Simple Type or Complex Type) and returns (i) the value of
the component's kind property, and then (ii) the properties of that component.

Components and their properties

Assertion

Property name Property type Property value

kind string "Assertion"

test XPath Property Record

Attribute Declaration

Property name Property type Property value

kind string "Attribute Declaration"

name string Local name of the attribute

target namespace string Namespace URI of the attribute

type definition Simple Type or Complex Type

scope A function with properties
("class":"Scope", "variety": "global" or
"local", "parent": the containing
Complex Type or Attribute Group)

value constraint If present, a function with properties

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 577Appendices

Altova StyleVision 2025 Basic Edition

("class": "Value Constraint", "variety":
"fixed" or "default", "value": atomic
value, "lexical form": string. Note that
the "value" property is not available for
namespace-sensitive types

inheritable boolean

Attribute Group Declaration

Property name Property type Property value

kind string "Attribute Group Definition"

name string Local name of the attribute group

target namespace string Namespace URI of the attribute
group

attribute uses Sequence of (Attribute Use)

attribute wildcard Optional Attribute Wildcard

Attribute Use

Property name Property type Property value

kind string "Attribute Use"

required boolean true if the attribute is required,
false if optional

value constraint See Attribute Declaration

inheritable boolean

Attribute Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Complex Type

Property name Property type Property value

kind string "Complex Type"

578 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

base type definition Complex Type Definition

final Sequence of strings
("restriction"|"extension")

context Empty sequence (not implemented)

derivation method string ("restriction"|"extension")

abstract boolean

attribute uses Sequence of Attribute Use

attribute wildcard Optional Attribute Wildcard

content type function with properties:
("class":"Content Type", "variety":string
("element-
only"|"empty"|"mixed"|"simple"), particle:
optional Particle, "open content":
function with properties ("class":"Open
Content", "mode": string
("interleave"|"suffix"), "wildcard":
Wildcard), "simple type definition":
Simple Type)

prohibited
substitutions

Sequence of strings
("restriction"|"extension")

assertions Sequence of Assertion

Element Declaration

Property name Property type Property value

kind string "Complex Type"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

type definition Simple Type or Complex Type

type table function with properties ("class":"Type
Table", "alternatives": sequence of Type
Alternative, "default type definition":
Simple Type or Complex Type)

scope function with properties ("class":"Scope",
"variety": ("global"|"local"), "parent":
optional Complex Type)

value constraint see Attribute Declaration

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 579Appendices

Altova StyleVision 2025 Basic Edition

nillable boolean

identity-constraint
definitions

Sequence of Identity Constraint

substitution group
affiliations

Sequence of Element Declaration

substitution group
exclusions

Sequence of strings
("restriction"|"extension")

disallowed
substitutions

Sequence of strings
("restriction"|"extension"|"substitution")

abstract boolean

Element Wildcard

Property name Property type Property value

kind string "Wildcard"

namespace constraint function with properties ("class":
"Namespace Constraint", "variety":
"any"|"enumeration"|"not",
"namespaces": sequence of xs:anyURI,
"disallowed names": list containing
QNames and/or the strings "defined"
and "definedSiblings"

process contents string ("strict"|"lax"|"skip")

Facet

Property name Property type Property value

kind string The name of the facet, for
example "minLength" or
"enumeration"

value depends on facet The value of the facet

fixed boolean

typed-value For the enumeration facet only,
array(xs:anyAtomicType*)

An array containing the
enumeration values, each of which
may in general be a sequence of
atomic values. (Note: for the
enumeration facet, the "value"
property is a sequence of strings,
regardless of the actual type)

Identity Constraint

Property name Property type Property value

kind string "Identity-Constraint Definition"

580 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

name string Local name of the constraint

target namespace string Namespace URI of the constraint

identity-constraint
category

string ("key"|"unique"|"keyRef")

selector XPath Property Record

fields Sequence of XPath Property Record

referenced key (For keyRef only): Identity Constraint The corresponding key constraint

Model Group

Property name Property type Property value

kind string "Model Group"

compositor string ("sequence"|"choice"|"all")

particles Sequence of Particle

Model Group Definition

Property name Property type Property value

kind string "Model Group Definition"

name string Local name of the model group

target namespace string
Namespace URI of the model
group

model group Model Group

Notation

Property name Property type Property value

kind string "Notation Declaration"

name string Local name of the notation

target namespace string Namespace URI of the notation

system identifier anyURI

public identifier string

Particle

Property name Property type Property value

kind string "Particle"

min occurs integer

max occurs integer, or string("unbounded")

term Element Declaration, Element Wildcard,
or ModelGroup

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 581Appendices

Altova StyleVision 2025 Basic Edition

Simple Type

Property name Property type Property value

kind string "Simple Type Definition"

name string Local name of the type (empty if
anonymous)

target namespace string Namespace URI of the type
(empty if anonymous)

final Sequence of
string("restriction"|"extension"|"list"|"unio
n")

context containing component

base type definition Simple Type

facets Sequence of Facet

fundamental facets Empty sequence (not implemented)

variety string ("atomic"|"list"|"union")

primitive type
definition

Simple Type

item type definition (for list types only) Simple Type

member type
definitions

(for union types only) Sequence of
Simple Type

Type Alternative

Property name Property type Property value

kind string "Type Alternative"

test XPath Property Record

type definition Simple Type or Complex Type

XPath Property Record

Property name Property type Property value

namespace bindings Sequence of functions with properties
("prefix": string, "namespace": anyURI)

default namespace anyURI

base URI anyURI The static base URI of the XPath
expression

expression string The XPath expression as a string

582 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

12.2.1.7 XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. This
means that the context node must be the parent element node.

Examples

· altova:attributes("MyAttribute") returns MyAttribute()*

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as

attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the input
argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. The
context node must be the parent element node. The second argument is a string containing option flags.
Available flags are:
r = switches to a regular-expression search; AttributeName must then be a regular-expression search

string;
f = If this option is specified, then AttributeName provides a full match; otherwise AttributeName need

only partially match an attribute name to return that attribute. For example: if f is not specified, then

MyAtt will return MyAttribute;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the namespace

prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument
(previous signature). However, an empty sequence is not allowed as the second argument.

Examples

· altova:attributes("MyAttribute", "rfip") returns MyAttribute()*

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 583Appendices

Altova StyleVision 2025 Basic Edition

· altova:attributes("MyAttribute", "pri") returns MyAttribute()*

· altova:attributes("MyAtt", "rip") returns MyAttribute()*

· altova:attributes("MyAttributes", "rfip") returns no match

· altova:attributes("MyAttribute", "") returns MyAttribute()*

· altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

· altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

altova:elements(ElementName as xs:string) as element()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The context
node must be the parent node of the element/s being searched for.

Examples

· altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as element()*

XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the input
argument, ElementName. The search is case-sensitive and conducted along the child:: axis. The
context node must be the parent node of the element/s being searched for. The second argument is a
string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-expression search

string;
f = If this option is specified, then ElementName provides a full match; otherwise ElementName need only

partially match an element name to return that element. For example: if f is not specified, then MyElem will

return MyElement;
i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the namespace prefix,

for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted.
The empty string is allowed, and will produce the same effect as the function having only one argument
(previous signature). However, an empty sequence is not allowed.

Examples

· altova:elements("MyElement", "rip") returns MyElement()*

· altova:elements("MyElement", "pri") returns MyElement()*

· altova:elements("MyElement", "") returns MyElement()*

· altova:elements("MyElem", "rip") returns MyElement()*

· altova:elements("MyElements", "rfip") returns no match

· altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

· altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as xs:boolean)) as

item()? XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any

584 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() is returned as the result of altova:find-first,

and the iteration stops.

Examples

· altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 6

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first is passed, in turn, to $a as its input value. The input value is tested on the condition in the

function definition ($a mod 2 = 0). The first input value to satisfy this condition is returned as the
result of altova:find-first (in this case 6).

· altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer 4

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns xs:string http://www.altova.com/index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),

(doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

· The doc-available function can be used for Condition, the second argument of altova:find-

first, because it takes only one argument (arity=1), because it takes an item() as input (a
string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() evaluates to true() and that string is returned as

the result of the altova:find-first function. Note about the doc-available() function: Relative

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 585Appendices

Altova StyleVision 2025 Basic Edition

paths are resolved relative to the the current base URI, which is by default the URI of the XML
document from which the function is loaded.

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence making up a

pair) as the arguments of the function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-combination. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-combination returns No

results; (ii) The result of altova:find-first-combination will always be a pair of items (of any datatype)

or no item at all.

Examples

· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns the sequence of xs:integers (11, 21)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns the sequence of xs:integers (11, 22)
· altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 34})

returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-01-

Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.

586 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned as the result of

altova:find-first-pair. Note that: (i) If the Condition function iterates through the submitted

argument pairs and does not once evaluate to true(), then altova:find-first-pair returns No results;

(ii) The result of altova:find-first-pair will always be a pair of items (of any datatype) or no item at

all.

Examples

· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32}) returns

the sequence of xs:integers (11, 21)
· altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33}) returns

No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,
23)...(20, 30). This is why the second example returns No results (because no ordered pair gives
a sum of 33).

find-first-pair-pos [altova:]

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*), (Condition(Seq-

01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3.1 XQ3.1

This function takes three arguments:

· The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of any

datatype.
· The third argument, Condition, is a reference to an XPath function that takes two arguments (has

an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the function in

Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condition function to evaluate to true() is

returned as the result of altova:find-first-pair-pos. Note that if the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then altova:find-first-

pair-pos returns No results.

Examples

· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})

returns 1
· altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})

returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12, 22) (13,

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 587Appendices

Altova StyleVision 2025 Basic Edition

23)...(20, 30). In the first example, the first pair causes the Condition function to evaluate to

true(), and so its index position in the sequence, 1, is returned. The second example returns No

results because no pair gives a sum of 33.

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as xs:boolean))

as xs:integer XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument
(has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function

referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that

causes the function in Condition to evaluate to true() has its index position in Sequence returned as the

result of altova:find-first-pos, and the iteration stops.

Examples

· altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns xs:integer 2

The Condition argument references the XPath 3.0 inline function, function(), which declares an

inline function named $a and then defines it. Each item in the Sequence argument of altova:find-

first-pos is passed, in turn, to $a as its input value. The input value is tested on the condition in

the function definition ($a mod 2 = 0). The index position in the sequence of the first input value to
satisfy this condition is returned as the result of altova:find-first-pos (in this case 2, since 6,

the first value (in the sequence) to satisfy the condition, is at index position 2 in the sequence).

· altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 1

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html

exists:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also

does not exist:

· altova:find-first-pos(("C:\Temp\Customers.xml",

"http://www.altova.com/index.html"), (doc-available#1)) returns no result

Notes about the examples given above

· The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI,
and returns true if a document node is found at the submitted URI. (The document at the

588 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

submitted URI must therefore be an XML document.)
· The doc-available function can be used for Condition, the second argument of altova:find-

first-pos, because it takes only one argument (arity=1), because it takes an item() as input
(a string which is used as a URI), and returns a boolean value.

· Notice that the doc-available function is only referenced, not called. The #1 suffix that is
attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply
means: Use the doc-availabe() function that has arity=1, passing to it as its single argument, in
turn, each of the items in the first sequence. As a result, each of the two strings will be passed
to doc-available(), which uses the string as a URI and tests whether a document node exists

at the URI. If one does, the doc-available() function evaluates to true() and the index

position of that string in the sequence is returned as the result of the altova:find-first-pos

function. Note about the doc-available() function: Relative paths are resolved relative to the the
current base URI, which is by default the URI of the XML document from which the function is
loaded.

for-each-attribute-pair [altova:]

altova:for-each-attribute-pair(Seq1 as element()?, Seq2 as element()?, Function as

function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then the pair is "disjoint", meaning that it consists of one member only. The function
item (third argument Function) is applied separately to each pair in the sequence of pairs (joint and
disjoint), resulting in an output that is a sequence of items.

Examples

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, function($a, $b)

{$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 Note: The result (2, 6) is obtained by way of the following action: (1+1, ()+2, 3+3, 4+()). If

one of the operands is the empty sequence, as in the case of items 2 and 4, then the result of the
addition is an empty sequence.

· altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, concat#2) returns

...

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 589Appendices

Altova StyleVision 2025 Basic Edition

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 2, 33, 4) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

for-each-combination [altova:]

altova:for-each-combination(FirstSequence as item()*, SecondSequence as item()*,

Function($i,$j){$i || $j}) as item()* XP3.1 XQ3.1

The items of the two sequences in the first two arguments are combined so that each item of the first
sequence is combined, in order, once with each item of the second sequence. The function given as the
third argument is applied to each combination in the resulting sequence, resulting in an output that is a
sequence of items (see example).

Examples

· altova:for-each-combination(('a', 'b', 'c'), ('1', '2', '3'), function($i, $j)

{$i || $j}) returns ('a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3')

for-each-matching-attribute-pair [altova:]

altova:for-each-matching-attribute-pair(Seq1 as element()?, Seq2 as element()?,

Function as function()) as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then no pair is built. The function item (third argument Function) is applied
separately to each pair in the sequence of pairs, resulting in an output that is a sequence of items.

Examples

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

function($a, $b){$a+b}) returns ...

 (2, 4, 6) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (2, 4, 6) if
 <Test-A att2="2" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

 (2, 6) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att3="1" />

· altova:for-each-matching-attribute-pair(/Example/Test-A, /Example/Test-B,

concat#2) returns ...

590 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

 (11, 22, 33) if
 <Test-A att1="1" att2="2" att3="3" />
 <Test-B att1="1" att2="2" att3="3" />

 (11, 33) if
 <Test-A att4="4" att1="1" att3="3" />
 <Test-B att3="3" att2="2" att1="1" />

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item()) as item()*

XP3.1 XQ3.1

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty, returns
FirstSequence.

Examples

· altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

· altova:substitute-empty((), (4,5,6)) returns (4,5,6)

12.2.1.8 XPath/XQuery Functions: String

Altova's string extension functions can be used in XPath and XQuery expressions and provide additional
functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and
XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3.1 XQ3.1

Returns the input string InputString in CamelCase. The string is analyzed using the regular expression

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 591Appendices

Altova StyleVision 2025 Basic Edition

'\s' (which is a shortcut for the whitespace character). The first non-whitespace character after a

whitespace or sequence of consecutive whitespaces is capitalized. The first character in the output string
is capitalized.

Examples

· altova:camel-case("max") returns Max

· altova:camel-case("max max") returns Max Max

· altova:camel-case("file01.xml") returns File01.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

· altova:camel-case("file01.xml -file02.xml") returns File01.xml -file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex as

xs:boolean) as xs:string XP3.1 XQ3.1

Converts the input string InputString to camel case by using SplitChars to determine the character/s

that trigger the next capitalization. SplitChars is used as a regular expression when IsRegex = true(),

or as plain characters when IsRegex = false(). The first character in the output string is capitalized.

Examples

· altova:camel-case("setname getname", "set|get", true()) returns setName getName

· altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
obtained by converting the value of the context item to xs:string. The result string will be empty if no
character exists at the index submitted by the Position argument.

Examples

If the context item is 1234ABCD:

· altova:char(2) returns 2

· altova:char(5) returns A

· altova:char(9) returns the empty string.

· altova:char(-2) returns the empty string.

altova:char(InputString as xs:string, Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position argument, in the string
submitted as the InputString argument. The result string will be empty if no character exists at the index
submitted by the Position argument.

Examples

· altova:char("2014-01-15", 5) returns -

· altova:char("USA", 1) returns U

· altova:char("USA", 10) returns the empty string.

· altova:char("USA", -2) returns the empty string.

create-hash-from-string[altova:]

592 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

altova:create-hash-from-string(InputString as xs:string) as xs:string XP2 XQ1 XP3.1
XQ3.1

altova:create-hash-from-string(InputString as xs:string, HashAlgo as xs:string) as

xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a hash string from InputString by using the hashing algorithm specified by the HashAlgo
argument. The following hashing algorithms may be specified (in upper or lower case): MD5, SHA-1, SHA-

224, SHA-256, SHA-384, SHA-512. If the second argument is not specified (see the first signature above),

then the SHA-256 hashing algorithm is used.

Examples

· altova:create-hash-from-string('abc') returns a hash string generated by using the SHA-256

hashing algorithm.
· altova:create-hash-from-string('abc', 'md5') returns a hash string generated by using the

MD5 hashing algorithm.

· altova:create-hash-from-string('abc', 'MD5') returns a hash string generated by using the

MD5 hashing algorithm.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the first X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:first-chars(2) returns 12

· altova:first-chars(5) returns 1234A

· altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the first X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:first-chars("2014-01-15", 5) returns 2014-

· altova:first-chars("USA", 1) returns U

format-string [altova:]

altova:format-string(InputString as xs:string, FormatSequence as item()*) as xs:string

XP3.1 XQ3.1

The input string (first argument) contains positional parameters (%1, %2, etc). Each parameter is replaced
by the string item that is located at the corresponding position in the format sequence (submitted as the
second argument). So the first item in the format sequence replaces the positional parameter %1, the
second item replaces %2, and so on. The function returns this formatted string that contains the
replacements. If no string exists for a positional parameter, then the positional parameter itself is returned.
This happens when the index of a positional parameter is greater than the number of items in the format
sequence.

Examples

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 593Appendices

Altova StyleVision 2025 Basic Edition

· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe')) returns "Hello

Jane, John, Joe"
· altova:format-string('Hello %1, %2, %3', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Joe"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe', 'Tom')) returns
"Hello Jane, John, Tom"

· altova:format-string('Hello %1, %2, %4', ('Jane','John','Joe')) returns "Hello
Jane, John, %4"

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the last X-Number of characters of the string obtained by converting the value
of the context item to xs:string.

Examples

If the context item is 1234ABCD:

· altova:last-chars(2) returns CD

· altova:last-chars(5) returns 4ABCD

· altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1
XQ3.1

Returns a string containing the last X-Number of characters of the string submitted as the InputString
argument.

Examples

· altova:last-chars("2014-01-15", 5) returns 01-15

· altova:last-chars("USA", 10) returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the left of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad. has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-left('AP', 1, 'Z') returns 'AP'

· altova:pad-string-left('AP', 2, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'Z') returns 'ZAP'

· altova:pad-string-left('AP', 4, 'Z') returns 'ZZAP'

· altova:pad-string-left('AP', -3, 'Z') returns 'AP'

· altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

594 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the right of the string to increase the
number of characters in StringToPad so that this number equals the integer value of the StringLength
argument. The StringLength argument can have any integer value (positive or negative), but padding will
occur only if the value of StringLength is greater than the number of characters in StringToPad. If
StringToPad has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

· altova:pad-string-right('AP', 1, 'Z') returns 'AP'

· altova:pad-string-right('AP', 2, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'Z') returns 'APZ'

· altova:pad-string-right('AP', 4, 'Z') returns 'APZZ'

· altova:pad-string-right('AP', -3, 'Z') returns 'AP'

· altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as xs:string XP2

XQ1 XP3.1 XQ3.1

Generates a string that is composed of the first InputString argument repeated Repeats number of
times.

Examples

· altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

altova:substring-after-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs after CheckString in MainString
is returned. If CheckString is not found in MainString, then the empty string is returned. If CheckString
is an empty string, then MainString is returned in its entirety. If there is more than one occurrence of
CheckString in MainString, then the substring after the last occurrence of CheckString is returned.

Examples

· altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

· altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

· altova:substring-after-last('ABCDEFGH', 'BD') returns ''

· altova:substring-after-last('ABCDEFGH', 'Z') returns ''

· altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

· altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

· altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as xs:string) as

xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs before CheckString in MainString

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 595Appendices

Altova StyleVision 2025 Basic Edition

is returned. If CheckString is not found in MainString, or if CheckString is an empty string, then the
empty string is returned. If there is more than one occurrence of CheckString in MainString, then the
substring before the last occurrence of CheckString is returned.

Examples

· altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

· altova:substring-before-last('ABCDEFGH', 'BD') returns ''

· altova:substring-before-last('ABCDEFGH', 'Z') returns ''

· altova:substring-before-last('ABCDEFGH', '') returns ''

· altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

· altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string) as

xs:integer XP3.1 XQ3.1

Returns the character position of the first occurrence of StringToFind in the string StringToCheck. The
character position is returned as an integer. The first character of StringToCheck has the position 1. If
StringToFind does not occur within StringToCheck, the integer 0 is returned. To check for the second or
a later occurrence of StringToCheck, use the next signature of this function.

Examples

· altova:substring-pos('Altova', 'to') returns 3

· altova:substring-pos('Altova', 'tov') returns 3

· altova:substring-pos('Altova', 'tv') returns 0

· altova:substring-pos('AltovaAltova', 'to') returns 3

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string, Integer as

xs:integer) as xs:integer XP3.1 XQ3.1

Returns the character position of StringToFind in the string, StringToCheck. The search for
StringToFind starts from the character position given by the Integer argument; the character substring
before this position is not searched. The returned integer, however, is the position of the found string within
the entire string, StringToCheck. This signature is useful for finding the second or a later position of a
string that occurs multiple times with the StringToCheck. If StringToFind does not occur within
StringToCheck, the integer 0 is returned.

Examples

· altova:substring-pos('Altova', 'to', 1) returns 3

· altova:substring-pos('Altova', 'to', 3) returns 3

· altova:substring-pos('Altova', 'to', 4) returns 0

· altova:substring-pos('Altova-Altova', 'to', 0) returns 3

· altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading and trailing whitespace, and returns a
"trimmed" xs:string.

Examples

596 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· altova:trim-string(" Hello World ") returns "Hello World"

· altova:trim-string("Hello World ") returns "Hello World"

· altova:trim-string(" Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

· altova:trim-string("Hello World") returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading whitespace, and returns a left-trimmed
xs:string.

Examples

· altova:trim-string-left(" Hello World ") returns "Hello World "

· altova:trim-string-left("Hello World ") returns "Hello World "

· altova:trim-string-left(" Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

· altova:trim-string-left("Hello World") returns "Hello World"

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any trailing whitespace, and returns a right-trimmed
xs:string.

Examples

· altova:trim-string-right(" Hello World ")) returns " Hello World"

· altova:trim-string-right("Hello World ")) returns "Hello World"

· altova:trim-string-right(" Hello World")) returns " Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

· altova:trim-string-right("Hello World")) returns "Hello World"

12.2.1.9 XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current version of
StyleVision and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an
XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to
the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova
extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-

extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this

namespace. Note that, in future versions of your product, support for a function might be discontinued or the

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 597Appendices

Altova StyleVision 2025 Basic Edition

behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

decode-string [altova:]

altova:decode-string(Input as xs:base64Binary) as xs:string XP3.1 XQ3.1

altova:decode-string(Input as xs:base64Binary, Encoding as xs:string) as xs:string XP3.1

 XQ3.1

Decodes the submitted base64Binary input to a string using the specified encoding. If no encoding is
specified, then the UTF-8 encoding is used. The following encodings are supported: US-ASCII, ISO-
8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-
10646-UCS4

Examples

· altova:decode-string($XML1/MailData/Meta/b64B) returns the base64Binary input as a UTF-8

encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "UTF-8") returns the base64Binary

input as a UTF-8-encoded string
· altova:decode-string($XML1/MailData/Meta/b64B, "ISO-8859-1") returns the

base64Binary input as an ISO-8859-1-encoded string

encode-string [altova:]

altova:encode-string(InputString as xs:string) as xs:base64Binaryinteger XP3.1 XQ3.1

altova:encode-string(InputString as xs:string, Encoding as xs:string) as

xs:base64Binaryinteger XP3.1 XQ3.1

Encodes the submitted string using, if one is given, the specified encoding. If no encoding is given, then
the UTF-8 encoding is used. The encoded string is converted to base64Binary characters, and the
converted base64Binary value is returned. Initially, UTF-8 encoding is supported, and support will be
extended to the following encodings: US-ASCII, ISO-8859-1, UTF-16, UTF-16LE, UTF-16BE, ISO-
10646-UCS2, UTF-32, UTF-32LE, UTF-32BE, ISO-10646-UCS4

Examples

· altova:encode-string("Altova") returns the base64Binary equivalent of the UTF-8 encoded

string "Altova"
· altova:encode-string("Altova", "UTF-8") returns the base64Binary equivalent of the UTF-8

encoded string "Altova"

get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3.1 XQ3.1

This function takes no argument. It returns the path to the temporary folder of the current user.

598 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Examples

· altova:get-temp-folder() would return, on a Windows machine, something like C:

\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

generate-guid [altova:]

altova:generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a unique string GUID string.
Examples

· altova:generate-guid() returns (for example) 85F971DA-17F3-4E4E-994E-99137873ACCD

high-res-timer [altova:]

altova:high-res-timer() as xs:double XP3.1 XQ3.1

Returns a system high-resolution timer value in seconds. A high-resolution timer, when present on a
system, enables high precision time measurements when these are required (for example, in animations
and for determining precise code-execution time). This function provides the resolution of the system's
high-res timer.

Examples

· altova:high-res-timer() returns something like '1.16766146154566E6'

parse-html [altova:]

altova:parse-html(HTMLText as xs:string) as node() XP3.1 XQ3.1

The HTMLText argument is a string that contains the text of an HTML document. The function creates an
HTML tree from the string. The submitted string may or may not contain the HTML element. In either case,
the root element of the tree is an element named HTML. It is best to make sure that the HTML code in the

submitted string is valid HTML.
Examples

· altova:parse-html("<html><head/><body><h1>Header</h1></body></html>") creates an

HTML tree from the submitted string

sleep[altova:]

altova:sleep(Millisecs as xs:integer) as empty-sequence() XP2 XQ1 XP3.1 XQ3.1

Suspends execution of the current operation for the number of milliseconds given by the Millisecs
argument.

Examples

· altova:sleep(1000) suspends execution of the current operation for 1000 milliseconds.

[Top]
596

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 599Appendices

Altova StyleVision 2025 Basic Edition

12.2.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are not available
as XQuery/XPath functions or as XSLT functions. A good example would be the math functions available in
Java, such as sin() and cos(). If these functions were available to the designers of XSLT stylesheets and
XQuery queries, it would increase the application area of stylesheets and queries and greatly simplify the tasks
of stylesheet creators. The XSLT and XQuery engines used in a number of Altova products support the use of
extension functions in Java and .NET , as well as MSXSL scripts for XSLT . This section describes
how to use extension functions and MSXSL scripts in your XSLT stylesheets. The available extension functions
are organized into the following sections:

· Java Extension Functions
· .NET Extension Functions
· MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective libraries are called;
and (ii) what rules are followed for converting arguments in a function call to the required input format of the
function, and what rules are followed for the return conversion (function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and .NET
Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine running the XSLT
transformation or XQuery execution, or must be accessible for the transformations.

12.2.2.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java constructor or
call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or instance.
How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

· Java: Constructors
· Java: Static Methods and Static Fields
· Java: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to Java
· Datatypes: Java to XPath/XQuery

Note the following
· If you are using an Altova desktop product, the Altova application attempts to detect the path to the

Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the
JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the

application; this entry will take priority over any other Java VM path detected automatically.
· If you are running an Altova server product on a Windows machine, the path to the Java virtual machine

will be read first from the Windows registry; if this is not successful the JAVA_HOME environment

variable will be used.

599 608 614

599

608

614

604

605

606

606

607

600 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

· If you are running an Altova server product on a Linux or macOS machine, then make sure that the
JAVA_HOME environment variable is properly set and that the Java Virtual Machines library (on Windows,

the jvm.dll file) can be located in either the \bin\server or \bin\client directory.

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part identifies the extension function as a Java function. It does so by associating the
extension function with an in-scope namespace declaration, the URI of which must begin with java:
(see below for examples). The namespace declaration should identify a Java class, for example:
xmlns:myns="java:java.lang.Math". However, it could also simply be:
xmlns:myns="java" (without a colon), with the identification of the Java class being left to the fname()
part of the extension function.

· The fname() part identifies the Java method being called, and supplies the arguments for the method
(see below for examples). However, if the namespace URI identified by the prefix: part does not
identify a Java class (see preceding point), then the Java class should be identified in the fname() part,
before the class and separated from the class by a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname() part. In the
second example, the prefix: part supplies the prefix java: while the fname() part identifies the class as well
as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name of a public
static method in the named Java class (java.lang.Math in the example above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently according to: (i)
whether the classes are accessed via a JAR file or a class file, and (ii) whether these files (JAR or class) are
located in the current directory (the same directory as the XSLT or XQuery document) or not. How to locate
these files is described in the sections User-Defined Class Files and User-Defined Jar Files . Note that
paths to class files not in the current directory and to all JAR files must be specified.

601 603

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 601Appendices

Altova StyleVision 2025 Basic Edition

Note: If you wish to add a namespace to an XSLT stylesheet being generated from an SPS created in
StyleVision, the namespace must be added to the top-level schema element of the XML Schema on which the
SPS is based. Note that the following namespace declaration xmlns:java="java" is created automatically by
default in every SPS created in StyleVision.

12.2.2.1.1 User-Defined Class Files

If access is via a class file, then there are four possibilities:

· The class file is in a package. The XSLT or XQuery file is in the same folder as the Java package. (See
example below .)

· The class file is not packaged. The XSLT or XQuery file is in the same folder as the class file. (See
example below .)

· The class file is in a package. The XSLT or XQuery file is at some random location. (See example
below .)

· The class file is not packaged. The XSLT or XQuery file is at some random location. (See example
below .)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or XQuery
document. In this case, since all classes in the folder are found, the file location does not need to be specified.
The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the current directory
will be loaded by default)

classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call.

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is also in the folder
JavaProject.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

601

602

602

603

602 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class. Let us say that: (i) the Car class file
is in the following folder: JavaProject/com/altova/extfunc, and (ii) that this folder is the current folder in the
example below. The XSLT file is also in the folder JavaProject/com/altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc package.
The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any location. In this case,
the location of the package must be specified within the URI as a query string. The syntax is:

java:classname[?path=uri-of-package]

where

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 603Appendices

Altova StyleVision 2025 Basic Edition

</xsl:template>

</xsl:stylesheet>

Class file referenced, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class. Let us say that the Car class file is in
the folder C:/JavaProject/com/altova/extfunc, and the XSLT file is at any location. The location of the
class file must then be specified within the namespace URI as a query string. The syntax is:

java:classname[?path=<uri-of-classfile>]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The
example below shows how to access a class file that is located in another directory than the current
directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

12.2.2.1.2 User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the class:
classNS:method()

In the above:

604 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/docs/docx.jar!/"
ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

12.2.2.1.3 Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the pseudo-
function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes , then the Java
extension function will return a sequence that is an XPath/XQuery datatype. If the result of a Java constructor
call cannot be converted to a suitable XPath/XQuery datatype, then the constructor creates a wrapped Java
object with a type that is the name of the class returning that Java object. For example, if a constructor for the
class java.util.Date is called (java.util.Date.new()), then an object having a type java.util.Date is
returned. The lexical format of the returned object may not match the lexical format of an XPath datatype and
the value would therefore need to be converted to the lexical format of the required XPath datatype and then to
the required XPath datatype.

607

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 605Appendices

Altova StyleVision 2025 Basic Edition

There are two things that can be done with a Java object created by a constructor:

· It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())" xmlns:date="java:java.util.Date" />

12.2.2.1.4 Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the method. Static
fields (methods that take no arguments), such as the constant-value fields E and PI, are accessed without
specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all three cases is
jMath:, which is associated with the namespace URI java:java.lang.Math. (The namespace URI must
begin with java:. In the examples above it is extended to contain the class name (java.lang.Math).) The
fname() part of the extension functions must match the name of a public class (e.g. java.lang.Math) followed
by the name of a public static method with its argument/s (such as cos(3.14)) or a public static field (such as
PI()).

In the examples above, the class name has been included in the namespace URI. If it were not contained in the
namespace URI, then it would have to be included in the fname() part of the extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

606

606 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

12.2.2.1.5 Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such a Java object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the date:new()
constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object per se that is
passed as an argument to the instance field. Instead, a parameter or variable is passed as the argument.
However, the parameter/variable may itself contain the value returned by a Java object. For example, the
parameter CurrentDate takes the value returned by a constructor for the class java.util.Date. This value is
then passed as an argument to the instance method date:toString in order to supply the value
of /enrollment/@date.

12.2.2.1.6 Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the function's
arguments is important in determining which of multiple Java classes having the same name is called.

In Java, the following rules are followed:

· If there is more than one Java method with the same name, but each has a different number of
arguments than the other/s, then the Java method that best matches the number of arguments in the
function call is selected.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding Java datatype. If the supplied XPath/XQuery type can be converted to more than one
Java type (for example, xs:integer), then that Java type is selected which is declared for the selected

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 607Appendices

Altova StyleVision 2025 Basic Edition

method. For example, if the Java method being called is fx(decimal) and the supplied XPath/XQuery
datatype is xs:integer, then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to Java
datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error. However, note that in some cases, it might be possible to create the required Java type by using a Java
constructor.

12.2.2.1.7 Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean type, then it is
converted to the corresponding XPath/XQuery type. For example, Java's java.lang.Boolean and boolean
datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional arrays will not be
converted, and should therefore be wrapped.

608 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you can ensure
conversion to the required XPath/XQuery type by first using a Java method (e.g toString) to convert the Java
object to a string. In XPath/XQuery, the string can be modified to fit the lexical representation of the required
type and then converted to the required type (for example, by using the cast as expression).

12.2.2.2 .NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions written in any
of the .NET languages (for example, C#). A .NET extension function can be used within an XPath or XQuery
expression to invoke a constructor, property, or method (static or instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

· .NET: Constructors
· .NET: Static Methods and Static Fields
· .NET: Instance Methods and Instance Fields
· Datatypes: XPath/XQuery to .NET
· Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

· The prefix: part is associated with a URI that identifies the .NET class being addressed.
· The fname() part identifies the constructor, property, or method (static or instance) within the .NET

class, and supplies any argument/s, if required.
· The URI must begin with clitype: (which identifies the function as being a .NET extension function).
· The prefix:fname() form of the extension function can be used with system classes and with

classes in a loaded assembly. However, if a class needs to be loaded, additional parameters
containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

610

611

611

612

613

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 609Appendices

Altova StyleVision 2025 Basic Edition

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If the
assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and omit the from
parameter.

A question mark must be inserted before the first parameter, and parameters must be separated by a semi-
colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;

ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/Altova
Projects/extFunctions/MyManagedDLL.dll;

 declare namespace cs="clitype:MyManagedDLL.testClass?from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">
 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>
 <pi><xsl:value-of select="math:PI()"/></pi>
 <e><xsl:value-of select="math:E()"/></e>
 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>
 </math>
 </xsl:template>
</xsl:stylesheet>

610 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies either a
system class or a loaded class. The math: prefix in the XPath expressions associates the extension functions
with the URI (and, by extension, the class) System.Math. The extension functions identify methods in the class
System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this case a system
class. The XQuery expression identifies the method to be called and supplies the argument.

12.2.2.2.1 .NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the pseudo-
function new(). If there is more than one constructor for a class, then the constructor that most closely
matches the number of arguments supplied is selected. If no constructor is deemed to match the supplied
argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes , then the .NET
extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped .NET object with a type that is the name of the class returning that object. For
example, if a constructor for the class System.DateTime is called (with System.DateTime.new()), then an
object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath datatype. In such
cases, the returned value would need to be: (i) converted to the lexical format of the required XPath datatype;
and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

· It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

· It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
· It can be converted to a string, number, or boolean:

607

606

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 611Appendices

Altova StyleVision 2025 Basic Edition

· <xsl:value-of select="xs:integer(date:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

12.2.2.2.2 .NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method. The name used
in the call must exactly match a public static method in the class specified. If the method name and the
number of arguments that were given in the function call matches more than one method in a class, then the
types of the supplied arguments are evaluated for the best match. If a match cannot be found unambiguously,
an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is called using
the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):
<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):
<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName()) (System.String()):
<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):
<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

12.2.2.2.3 .NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This .NET object
typically would be created by using an extension function (for example a constructor call) or a stylesheet
parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

612 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a .NET object of
type System.DateTime. This object is created twice, once as the value of the variable releasedate, a second
time as the first and only argument of the System.DateTime.ToString() method. The instance method
System.DateTime.ToString() is called twice, both times with the System.DateTime constructor (new(2008,
4, 29)) as its first and only argument. In one of these instances, the variable releasedate is used to get the
.NET object.

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance method, a .NET
object is directly passed as an argument; in an instance field, a parameter or variable is passed instead—
though the parameter or variable may itself contain a .NET object. For example, in the example above, the
variable releasedate contains a .NET object, and it is this variable that is passed as the argument of
ToString() in the second date element constructor. Therefore, the ToString() instance in the first date
element is an instance method while the second is considered to be an instance field. The result produced in
both instances, however, is the same.

12.2.2.2.4 Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the function's
arguments are important for determining which one of multiple .NET methods having the same name is called.

In .NET, the following rules are followed:

· If there is more than one method with the same name in a class, then the methods available for
selection are reduced to those that have the same number of arguments as the function call.

· The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a
corresponding .NET datatype. If the supplied XPath/XQuery type can be converted to more than one
.NET type (for example, xs:integer), then that .NET type is selected which is declared for the
selected method. For example, if the .NET method being called is fx(double) and the supplied
XPath/XQuery datatype is xs:integer, then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to .NET
datatypes.

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 613Appendices

Altova StyleVision 2025 Basic Edition

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be
converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the supplied information.
For example, consider the following case.

· The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method
mymethod(float).

· However, there is another method in the class which takes an argument of another datatype:
mymethod(double).

· Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted
correctly to either float or double, it is possible that xs:untypedAtomic is converted to double
instead of float.

· Consequently the method selected will not be the required method and might not produce the expected
result. To work around this, you can create a user-defined method with a different name and use this
method.

Types that are not covered in the list above (for example xs:date) will not be converted and will generate an
error.

12.2.2.2.5 Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean type, then it
is converted to the corresponding XPath/XQuery type. For example, .NET's decimal datatype is converted to
xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can ensure conversion
to the required XPath/XQuery type by first using a .NET method (for example System.DateTime.ToString())
to convert the .NET object to a string. In XPath/XQuery, the string can be modified to fit the lexical
representation of the required type and then converted to the required type (for example, by using the cast as
expression).

614 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

12.2.2.3 MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called from within
XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level element, that is, it must be a
child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt (see example
below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's language attribute
and the namespace to be used for function calls from XPath expressions is identified with the implements-
prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-prefix">

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages that are
installed on your machine may be used within the <msxsl:script> element. The .NET Framework 2.0
platform or higher must be installed for MSXSL scripts to be used. Consequently, the .NET scripting
languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML <script> element. If
the language attribute is not specified, then Microsoft JScript is assumed as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace. This
namespace typically will be a user namespace that has been reserved for a function library. All functions and
variables defined within the <msxsl:script> element will be in the namespace identified by the prefix specified
in the implements-prefix attribute. When a function is called from within an XPath expression, the fully
qualified function name must be in the same namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a <msxsl:script>
element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[

 ' Input: A currency value: the wholesale price

© 2019-2025 Altova GmbH

XSLT and XPath/XQuery Functions 615Appendices

Altova StyleVision 2025 Basic Edition

 ' Returns: The retail price: the input value plus 20% margin,

 ' rounded to the nearest cent

 dim a as integer = 13

 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a

 End Function

]]>

 </msxsl:script>

 <xsl:template match="/">

 <html>

 <body>

 <p>

 Total Retail Price =

 $<xsl:value-of select="user:AddMargin(50)"/>

 Total Wholesale Price =

 $<xsl:value-of select="50"/>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes. This restriction
does not apply to data passed among functions and variables within the script block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The assembly is identified

via a name or a URI. The assembly is imported when the stylesheet is compiled. Here is a simple
representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

616 Appendices XSLT and XPath/XQuery Functions

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to be written in

the script without their namespaces, thus saving you some tedious typing. Here is how the msxsl:using
element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

© 2019-2025 Altova GmbH

Datatypes in DB-Generated XML Schemas 617Appendices

Altova StyleVision 2025 Basic Edition

12.3 Datatypes in DB-Generated XML Schemas

When an XML Schema is generated from a database (DB), the datatypes specific to that DB are converted to
XML Schema datatypes. The mappings of DB datatypes to XML Schema datatypes for commonly used DBs
are given in this Appendix. Select from the list below.

· ADO
· MS Access
· MS SQL Server
· MySQL
· ODBC
· Oracle
· Sybase

12.3.1 ADO

When an XML Schema is generated from an ADO database (DB), the ADO DB datatypes are converted to XML
Schema datatypes as listed in the table below.

ADO Datatype XML Schema Datatype

adGUID xs:ID

adChar xs:string

adWChar xs:string

adVarChar xs:string

adWVarChar xs:string

adLongVarChar xs:string

adWLongVarChar xs:string

adVarWChar xs:string

adBoolean xs:boolean

adSingle xs:float

adDouble xs:double

adNumeric xs:decimal

adCurrency xs:decimal

adDBTimeStamp xs:dateTime

adDate xs:date

adBinary xs:base64Binary

adVarBinary xs:base64Binary

617

618

619

619

620

621

622

618 Appendices Datatypes in DB-Generated XML Schemas

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

adLongVarBinary xs:base64Binary

adInteger xs:Integer

adUnsignedInt xs:unsignedInt

adSmallInt xs:short

adUnsignedSmallInt xs:unsignedShort

adBigInt xs:long

adUnsignedBigInt xs:unsignedLong

adTinyInt xs:byte

adUnsignedTinyInt xs:unsignedByte

12.3.2 MS Access

When an XML Schema is generated from an MS Access database (DB), the MS Access DB datatypes are
converted to XML Schema datatypes as listed in the table below.

MS Access Datatype XML Schema Datatype

GUID xs:ID

char xs:string

varchar xs:string

memo xs:string

bit xs:boolean

Number(single) xs:float

Number(double) xs:double

Decimal xs:decimal

Currency xs:decimal

Date/Time xs:dateTime

Number(Long Integer) xs:integer

Number(Integer) xs:short

Number(Byte) xs:byte

OLE Object xs:base64Binary

© 2019-2025 Altova GmbH

Datatypes in DB-Generated XML Schemas 619Appendices

Altova StyleVision 2025 Basic Edition

12.3.3 MS SQL Server

When an XML Schema is generated from an MS SQL Server database (DB), the MS SQL Server DB datatypes
are converted to XML Schema datatypes as listed in the table below.

MS SQL Server Datatype XML Schema Datatype

uniqueidentifier xs:ID

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

ntext xs:string

sysname xs:string

bit xs:boolean

real xs:float

float xs:double

decimal xs:decimal

money xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

binary xs:base64Binary

varbinary xs:base64Binary

image xs:base64Binary

integer xs:integer

smallint xs:short

bigint xs:long

tinyint xs:byte

12.3.4 MySQL

When an XML Schema is generated from a MySQL database (DB), the MySQL DB datatypes are converted to
XML Schema datatypes as listed in the table below.

620 Appendices Datatypes in DB-Generated XML Schemas

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

MySQL Datatype XML Schema Datatype

char xs:string

varchar xs:string

text xs:string

tinytext xs:string

mediumtext xs:string

longtext xs:string

tinyint(1) xs:boolean

float xs:float

double xs:double

decimal xs:decimal

datetime xs:dateTime

blob xs:base64Binary

tinyblob xs:base64Binary

mediumblob xs:base64Binary

longblob xs:base64Binary

smallint xs:short

bigint xs:long

tinyint xs:byte

12.3.5 ODBC

When an XML Schema is generated from an ODBC database (DB), the ODBC DB datatypes are converted to
XML Schema datatypes as listed in the table below.

ODBC Datatype XML Schema Datatype

SQL_GUID xs:ID

SQL_CHAR xs:string

SQL_VARCHAR xs:string

SQL_LONGVARCHAR xs:string

SQL_BIT xs:boolean

SQL_REAL xs:float

© 2019-2025 Altova GmbH

Datatypes in DB-Generated XML Schemas 621Appendices

Altova StyleVision 2025 Basic Edition

SQL_DOUBLE xs:double

SQL_DECIMAL xs:decimal

SQL_TIMESTAMP xs:dateTime

SQL_DATE xs:date

SQL_BINARY xs:base64Binary

SQL_VARBINARY xs:base64Binary

SQL_LONGVARBINARY xs:base64Binary

SQL_INTEGER xs:integer

SQL_SMALLINT xs:short

SQL_BIGINT xs:long

SQL_TINYINT xs:byte

12.3.6 Oracle

When an XML Schema is generated from an Oracle database (DB), the Oracle DB datatypes are converted to
XML Schema datatypes as listed in the table below.

Oracle Datatype XML Schema Datatype

ROWID xs:ID

CHAR xs:string

NCHAR xs:string

VARCHAR2 xs:string

NVARCHAR2 xs:string

CLOB xs:string

NCLOB xs:string

NUMBER (with check
constraint applied)*

xs:boolean

NUMBER xs:decimal

FLOAT xs:double

DATE xs:dateTime

INTERVAL YEAR TO MONTH xs:gYearMonth

BLOB xs:base64Binary

* If a check constraint is applied to a column of datatype NUMBER, and the check constraint checks for the

622 Appendices Datatypes in DB-Generated XML Schemas

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

values 0 or 1, then the NUMBER datatype for this column will be converted to an XML Schema datatype of
xs:boolean. This mechanism is useful for generating an xs:boolean datatype in the generated XML Schema.

12.3.7 Sybase

When an XML Schema is generated from a Sybase database (DB), the Sybase DB datatypes are converted to
XML Schema datatypes as listed in the table below.

Sybase Datatype XML Schema Datatype

char xs:string

nchar xs:string

varchar xs:string

nvarchar xs:string

text xs:string

sysname-varchar(30) xs:string

bit xs:boolean

real xs:float

float xs:float

double xs:double

decimal xs:decimal

money xs:decimal

smallmoney xs:decimal

datetime xs:dateTime

smalldatetime xs:dateTime

timestamp xs:dateTime

binary<=255 xs:base64Binary

varbinary<=255 xs:base64Binary

image xs:base64Binary

integer xs:integer

smallint xs:short

tinyint xs:byte

© 2019-2025 Altova GmbH

Technical Data 623Appendices

Altova StyleVision 2025 Basic Edition

12.4 Technical Data

This section contains information on some technical aspects of your software. This information is organized
into the following sections:

· OS and Memory Requirements
· Altova Engines
· Unicode Support
· Internet Usage

12.4.1 OS and Memory Requirements

Operating System
Altova software applications are available for the following platforms:

· Windows 10, Windows 11
· Windows Server 2016 or newer

Memory
Since the software is written in C++ it does not require the overhead of a Java Runtime Environment and
typically requires less memory than comparable Java-based applications. However, each document is loaded
fully into memory so as to parse it completely and to improve viewing and editing speed. As a result, the
memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting and pasting
large selections in large documents, available memory can rapidly be depleted.

12.4.2 Altova Engines

XML Validator
When opening an XML document, the application uses its built-in XML validator to check for well-formedness,
to validate the document against a schema (if specified), and to build trees and infosets. The XML validator is
also used to provide intelligent editing help while you edit documents and to dynamically display any validation
error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0 and 1.1
specifications. New developments recommended by the W3C's XML Schema Working Group are continuously
being incorporated in the XML validator, so that Altova products give you a state-of-the-art development
environment.

XSLT and XQuery Engines
Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.1 Engines. If
one of these engines is included in the product, then documentation about implementation-specific behavior for
each engine is given in the appendices of the documentation.

623

623

624

624

624 Appendices Technical Data

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

Note: Altova MapForce generates code using the XSLT 1.0, 2.0 and XQuery 1.0 engines.

12.4.3 Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need a font that
supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and are therefore
typically targeted at the corresponding writing system. If some text appears garbled, the reason could be that
the font you have selected does not contain the required glyphs. So it is useful to have a font that covers the
entire Unicode range, especially when editing XML documents in different languages or writing systems. A
typical Unicode font found on Windows PCs is Arial Unicode MS.

In the /Examples folder of your application folder you will find an XHTML file called UnicodeUTF-8.html that
contains the following sentence in a number of different languages and writing systems:

· When the world wants to talk, it speaks Unicode
· Wenn die Welt miteinander spricht, spricht sie Unicode

·)

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also indicate what
writing systems are supported by the fonts available on your PC.

12.4.4 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

· If you click the "Request evaluation key-code" in the Registration dialog (Help | Software Activation),
the three fields in the registration dialog box are transferred to our web server by means of a regular
http (port 80) connection and the free evaluation key-code is sent back to the customer via regular
SMTP e-mail.

· In some Altova products, you can open a file over the Internet (File | Open | Switch to URL). In this
case, the document is retrieved using one of the following protocol methods and connections: HTTP
(normally port 80), FTP (normally port 20/21), HTTPS (normally port 443). You could also run an HTTP
server on port 8080. (In the URL dialog, specify the port after the server name and a colon.)

· If you open an XML document that refers to an XML Schema or DTD and the document is specified
through a URL, the referenced schema document is also retrieved through a HTTP connection (port 80)
or another protocol specified in the URL (see Point 2 above). A schema document will also be retrieved
when an XML file is validated. Note that validation might happen automatically upon opening a
document if you have instructed the application to do this (in the File tab of the Options dialog (Tools |
Options)).

· In Altova applications using WSDL and SOAP, web service connections are defined by the WSDL
documents.

· If you are using the Send by Mail command (File | Send by Mail) in XMLSpy, the current selection
or file is sent by means of any MAPI-compliant mail program installed on the user's PC.

· As part of Software Activation and LiveUpdate as further described in the Altova Software License
Agreement.

© 2019-2025 Altova GmbH

License Information 625Appendices

Altova StyleVision 2025 Basic Edition

12.5 License Information

This section contains information about:

· the distribution of this software product
· software activation and license metering
· the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you
installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

12.5.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the
following unique benefits:

· You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note:
Altova MobileTogether Designer is licensed free of charge.)

· Once you decide to buy the software, you can place your order online at the Altova website and get a
fully licensed product within minutes.

· When you place an online order, you always get the latest version of our software.
· The product package includes an onscreen help system that can be accessed from within the

application interface. The latest version of the user manual is available at www.altova.com in (i) HTML
format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days
into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder
message will be displayed once each time you start the application. If you would like to continue using the
program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form
of a license file containing a key code. Unlock the product by uploading the license file in the Software
Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that
is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in
any way. Any person who accesses the software installer that you have provided must request their own 30-
day evaluation license key code and after expiration of their evaluation period, must also purchase a license in
order to be able to continue using the product.

https://www.altova.com/legal
https://www.altova.com/
https://shop.altova.com/
https://www.altova.com/documentation
https://shop.altova.com/

626 Appendices License Information

© 2019-2025 Altova GmbHAltova StyleVision 2025 Basic Edition

12.5.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for
the purpose of transmitting license-related data at the time of installation, registration, use, or update to an
Altova-operated license server and validating the authenticity of the license-related data in order to protect
Altova against unlicensed or illegal use of the software and to improve customer service. Activation is based on
the exchange of license related data such as operating system, IP address, date/time, software version, and
computer name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any unintentional
violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user
installation, and the license-metering module makes sure that no more than the licensed number of users use
the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the
application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a short broadcast
datagram to find any other instance of the product running on another computer in the same network segment.
If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license
If more than one instance of the application is used within the same LAN, these instances will briefly
communicate with each other on startup. These instances exchange key-codes in order to help you to better
determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind
of license metering technology that is common in the Unix world and with a number of database development
tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as to not put a
burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the
IANA (see the IANA Service Name Registry for details) and our license-metering module is tested and proven
technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are
running Altova products. You are, of course, free to block such traffic between different groups in your
organization, as long as you can ensure by other means, that your license agreement is not violated.

Note about certificates
Your Altova application contacts the Altova licensing server (link.altova.com) via HTTPS. For this
communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT
department or an external agency), then your Altova application will warn you about the connection being
insecure. You could use the replacement certificate to start your Altova application, but you would be doing this
at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova
certificate should continue or not).

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

© 2019-2025 Altova GmbH

License Information 627Appendices

Altova StyleVision 2025 Basic Edition

If your organization needs to use its own certificate (for example, to monitor communication to and from client
machines), then we recommend that you install Altova's free license management software, Altova
LicenseServer, on your network. Under this setup, client machines can continue to use your organization's
certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with
Altova.

12.5.3 Altova End-User License Agreement

· The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
· Altova's Privacy Policy is available here: https://www.altova.com/privacy

12.5.4 Packaging License Files with StyleVision Installer

If you want to perform a silent installation of StyleVision, you may want to modify the MSI database so that it
includes your license file(s). This way, the installer will not only install the product but also license it. For
details about how to achieve this, download this ZIP file from the Altova website and open the PDF document in
it.

https://www.altova.com/licenseserver
https://www.altova.com/licenseserver
https://www.altova.com/legal/eula
https://www.altova.com/privacy
https://www.altova.com/documents/AltovaProducts_SilentInstallWithLicense.zip

Index

© 2019-2025 Altova GmbH

628

Index

.

.docx (Enterprise Edition only), 14, 28

.NET extension functions,

constructors, 610

datatype conversions (.NET to XPath/XQuery), 613

datatype conversions (XPath/XQuery to .NET), 612

for XSLT and XQuery, 608

in XPath expressions, 398, 410

instance methods, instance fields, 611

static methods, static fields, 611

support for, in Authentic View, 398, 410

A
Abbreviations,

used in user manual, 23

About StyleVision, 511

Activating the software, 508

Adding schema, 424

Additional editing procedures, 338

Aligning table cell content,

in SPSs, 487

Altova extensions,

chart functions (see chart functions), 523

Altova website, 511

Altova XML Parser,

about, 623

AltovaXML,

and FOP, 388

Append,

column to table in SPS, 484

row to table in SPS, 484

Appendices, 513

ASP.NET application, 375

ASPX web application, 375

Assign predefined formats,

in Quick Start tutorial, 68

Authentic Browser, 17

Authentic Desktop, 17

Authentic View,

in Altova products, 17

Auto Hide,

feature of Design Entry Helpers, 31

Auto-Calculations, 241

and conditions, 250

and output escaping, 309

command for inserting in design, 460

creating, editing, formatting, 241

example files, 243

examples, 255

formatting of date results, 360

how to use, 241

in Quick Start tutorial, 74

Java and :NET functions in (Enterprise edition only), 241

moving, 241

symbol in Design View, 394

updating node with value of, 460

Automated processing, 384

Auto-numbering, 294

B
Background Information, 623

Barcodes, 156

Base year,

in input formatting, 311

Batch files,

and scheduled tasks, 392

Blueprints for layout, 160

Bookmarks, 155, 299

command for inserting in design, 467

creating and editing, 299

deleting, 299

enclosing with, 479

Bookmarks (anchors),

symbol in Design View, 394

Borders,

of SPS tables, 486

Bullets and Numbering, 139, 141, 465, 488

enclosing with, 478

Buttons, 154

© 2019-2025 Altova GmbH

Index 629

C
CALS/HTML tables, 134, 487

Catalog customization, 99

Catalog files, 97

Catalog mechanism overview, 97

Catalogs and envirnment variables, 101

Catalogs in RaptorXML, 98

CDATA sections, 104

Cell (of table),

split horizontally, 485

split vertically, 485

Cells,

joining in SPS tables, 485

Change To command, 170

Character references,

and output escaping, 309

Check boxes, 150

Class attributes,

in Quick Start tutorial, 68

Close (SPS) command, 430

Column,

append to SPS table, 484

delete from table in SPS, 485

insert in SPS table, 484

Columns (of tables),

hiding in HTML output, 133

Combo box,

in Quick Start tutorial, 78

Combo boxes, 152

Command line, 384

and parameters, 264

and scheduled tasks, 392

Command line utility, 19

Commands,

customizing, 495

Commenting out content, 471, 481

Companion software,

for download, 511

Complex global template, 216

Component download center,

at Altova web site, 511

Composite styles, 333

Condition,

command for inserting in design, 469

Conditional templates, 469

see under: Conditions, 246

symbol in Design View, 394

Conditions,

and Auto-Calculations, 250

editing, 249

enclosing with, 479

in Quick Start tutorial, 78

setting up, 246

Consecutive markup, 27

Content editing procedures, 103

Contents,

command for inserting in design, 458

Contents placeholder,

in Quick Start tutorial, 56

inserting node as contents, 104

Context node,

in XPath dialog, 398, 410

Copy command, 448

Copyright information, 625

CoreCatalog.xml, 98

Creating new SPS document,

in Quick Start tutorial, 52

Cross references, 298

CSS files,

managing in Design Overview sidebar, 33

CSS styles,

in Modular SPSs, 206

in Quick Start tutorial, 68

see also Styles, 44

CSS stylesheets,

also see Styles, 321

external stylesheets, 321

import precedence of external, 321

media applied to, 321

Custom dictionaries,

for SPS spell-checks, 492

CustomCatalog.xml, 98

Customize dialog,

for customizing StyleVision, 455

Customizing StyleVision, 495

Cut command, 448

D
Database,

Index

© 2019-2025 Altova GmbH

630

Database,

toolbar buttons for editing, 422

Database (Enterprise and Professional editions),

see under DB, 13

Data-entry devices, 149

menu commands for inserting, 459

symbol in Design View, 394

Date,

formatting of, 311

Dates,

examples of data manipulation with XPath 2.0, 360

formatting of, 360

how to use in SPS, 360

DB Parameters,

creating and editing, 453

Decimals,

formatting of, 311

Default user dictionary,

for SPS spell-checks, 492

Delete,

column from table in SPS, 485

row from table in SPS, 485

table in SPS, 483

Delete command, 448

Design elements, 419

Design Entry Helper windows,

docking, 31

floating, 31

Design Entry Helpers,

Auto Hide, 31

description of, 31

Hide, 31

switching display on and off, 456

Design Filters,

switching on and off, 456

Design Fragment,

insert, 474

Design Fragments, 226

Design Overview,

sidebar window, 33

Design structure, 173

Design Tree,

and Modular SPSs, 206

see also Design Entry Helpers, 31

sidebar window, 38

Design View,

and JavaScript Editor, 27

description of, 27

display of markup, 27

symbols in SPS design, 394

Dictionaries,

for SPS spell-checks, 492

Disabled command, 471, 481

disable-output-escaping, 309

Distribution,

of Altova's software products, 625

Docking,

Design Entry Helper windows, 31

Document element,

definition of, 20

Document elements (see Root elements), 175

Document node,

definition of, 20

Document properties, 239

Document styles, 239

Document views,

in GUI, 26

Documentation,

overview of, 23

Documents,

opening and closing, 26

DPI, 444

DTD,

declaring unparsed entities, 339

DTDs,

as SPS source, 176

DTDs and catalogs, 97

Dynamic content,

in Quick Start tutorial, 56

Dynamic lists, 139, 141, 465

Dynamic table,

toolbar buttons for editing, 418

Dynamic tables, 119

and global templates, 122

difference from appended/inserted rows, 122

headers and footers in, 122

nested dynamic tables, 122

see also SPS tables, 122

see also Tables, 129

E
Edit menu, 448

Edit Parameters dialog, 453

© 2019-2025 Altova GmbH

Index 631

Edit Template Match command, 113

Edit XPath Expression dialog,

see XPath dialog, 398

Element templates,

user-defined, 116

Elements,

user-defined, 116

Embedded images, 444

Enclose With menu, 476

Encoding,

for output files, 499

Encoding command, 444

Encoding of output documents, 444

End User License Agreement, 625, 627

Entities,

unparsed, 339

using as URI holders, 339

Entity references,

and output escaping, 309

Entry helpers in Design View,

switching display on and off, 456

Environment variables used in catalogs, 98

Environnment variables, 101

Evaluation key,

for your Altova software, 508

Evaluation period,

of Altova's software products, 625

Event handlers,

assigning functions to, 365

Excel table content,

copy-pasting into design, 108

Exit command, 446

Extension functions for XSLT and XQuery,

Altova extensions, 523

Java extension functions, 599, 608

see under .NET extension functions, 608

see under Java extension functions, 599

Extension Functions in MSXSL scripts, 614

F
FAQs on StyleVision, 511

Features,

of StyleVision, 14

File menu, 424

command Exit, 446

File | Close, 430

File | Encoding, 444

File | New, 424

File | Open, 430

File | Print, 445

File | Print Preview, 445

File | Save As, 440

File | Save Design, 435

File | Save Generated Files, 441

File modification alerts,

in Modular SPSs, 206

Files,

open recently used, 446

Filters,

for viewing templates selectively, 421

Filters for design templates,

switching on and off, 456

Filters on node-templates, 224

Find,

using regular expressions, 448

Find & Replace sidebar, 49

Find command, 448

Find in Design View, 49

Find Next command, 448

Floating,

Design Entry Helper Windows, 31

FO processor (Enterprise edition),

setting up, 19

FO transformations, 388

Footers,

adding in table, 484

in tables, 129

Form controls,

menu commands for inserting, 459

Format strings,

defining for Input Formatting, 488

Formatting,

also see Presentation, 306

for tables, 129

lists, 417

nodes on insertion, 106

of numeric fields, 311

overview of procedures, 306

predefined HTML formats, 417

text alignment, 417

text properties, 417

toolbar buttons for, 417

Formatting numbers,

Index

© 2019-2025 Altova GmbH

632

Formatting numbers,

in Auto-Numbering, 294

Form-based designs, 160, 424

Functions,

in XPath, defined by user, 345

G
General usage procedure, 90

Generated files, 96

Global styles,

see under Styles, 324

Global templates, 216

effect on rest-of-contents, 107

in Quick Start tutorial, 85

Global types,

in templates, 216

Graphics,

overview of use in SPS, 144

see also under Images, 144

Grouping, 251

group-by example (Persons.sps), 253

group-by example (Scores.sps), 255

GUI,

description of, 25

document views in, 26

Main Window of, 26

multiple documents in, 26

H
Headers,

adding in table, 484

in tables, 129

Help menu, 508

Hide,

feature of Design Entry Helpers, 31

Hide markup, 27

Horizontal line,

command for inserting in design, 464

in Quick Start tutorial, 63

HTML document properties, 336

HTML import, 368

creating a new SPS, 368

generating files from SPS, 374

of HTML lists, 372

of HTML tables, 372

schema structure, 370

SPS design, 370

HTML output, 96

and image support, 146

HTML page content,

copy-pasting into design, 108

HTML tables, 134, 487

HTML to XML conversion, 368

Hyperlink,

command for inserting in design, 468

Hyperlinks, 155, 299

and unparsed entities, 301

creating and editing, 301

enclosing with, 479

linking to bookmarks, 301

linking to external resources, 301

locating via hyperlinks, 339

removing and deleting, 301

symbol in Design View, 394

I
IE 9,

see under Internet Explorer compatibility, 94

Image,

command for inserting in design, 462

Image embedding, 444

Images,

accessing for output rendering, 144

and unparsed entity URIs, 144

example files, 148

in Quick Start tutorial, 63

locating via unparsed entities, 339

specifying URIs for, 144

supported types, 146

symbol in Design View, 394

Import of XSLT templates,

into SPS, 230

Input fields, 150

Input formatting,

defining format strings for, 488

of dates, 360

Insert,

© 2019-2025 Altova GmbH

Index 633

Insert,

column in SPS table, 484

row in SPS table, 484

Insert menu, 458

Bullets and Numbering, 465

Insert | Auto-Calculation, 460

Insert | Bookmarks, 467

Insert | Condition, 469

Insert | Contents, 458

Insert | Design Fragment, 474

Insert | Disabled, 471

Insert | Horizontal Line, 464

Insert | Hyperlink, 468

Insert | Image, 462

Insert | Paragraph, 461

Insert | Rest of contents, 459

Insert | Special Paragraph, 461

Inserting design elements via the toolbar, 419

Integer,

formatting of, 311

Interface,

see GUI, 25

Internet Explorer compatibility, 94

Internet usage,

in Altova products, 624

J
Java and .NET functions (Enterprise edition only),

in Auto-Calculations, 241

Java extension functions,

constructors, 604

datatype conversions, Java to Xpath/XQuery, 607

datatype conversions, XPath/XQuery to Java, 606

for XSLT and XQuery, 599

in XPath expressions, 398, 410

instance methods, instance fields, 606

static methods, static fields, 605

support for, in Authentic View, 398, 410

user-defined class files, 601

user-defined JAR files, 603

JavaScript,

see under Scripts, 363

JavaScript Editor, 363, 364

in Design View, 27

Joining cells,

in SPS tables, 485

K
Keyboard shortcuts,

customizing for commands, 495

Key-codes,

for your Altova software, 508

L
Layout,

of views in the GUI, 31

Layout Box, 474

Layout Boxes, 163

Layout Container, 474

Layout Containers, 160

Layout containers and elements, 419

Layout Modules,

steps for creating, 160

Legal information, 625

License, 627

information about, 625

License metering,

in Altova products, 626

Licenses,

for your Altova software, 508

Licensing,

package license files with installer, 627

Line,

in Layout Containers, 474

Links,

see under Hyperlinks, 155, 299

List properties, 488

Lists, 139

enclosing with, 478

imported from HTML document, 372

in Quick Start tutorial, 78

Lists (static and dynamic), 465

Local styles,

see under Styles, 326

Local template, 216

Index

© 2019-2025 Altova GmbH

634

M
Main schema, 216

Main schema (Enterprise Edition only), 36

Main template, 216

definition of, 20

Markup tags in Design View, 27

Memory requirements, 623

Menu,

customizing, 495

Menu bar,

moving, 25

Messages sidebar, 49

Metadata of output HTML document, 336

Microsoft Office 2007 (Enterprise Edition only), 14, 28

MobileTogether design,

export to, 441

Modular SPS,

activating and de-activating, 206

adding the SPS module, 206

and CSS styles, 203, 206

and file modification alerts, 206

and module objects, 203

and namespace declarations, 203

and schema sources, 203, 206

and Scripts, 203

and Template XML Files, 203

and Working XML Files, 203

creating, 206

effect of order on precedence, 206

example project, 210

overview, 202

the SPS module to add, 206

working with, 206

Modules,

managing in Design Overview sidebar, 33

MS Word document content,

copy-pasting into design, 108

msxsl:script, 614

Multiline input fields, 150

Multiple document-outputs, 475

Multiple output-documents, 232

and output previews, 236

linking between, 234

location of fiiles, 236

N
Named templates, 216

Namespaces,

adding to the SPS, 36, 91, 96, 175

in the SPS, 36

overview of, 38

Network Proxy, 499

New command, 424

New document templates, 232

and design structure, 234

inserting, 233

URLs of, 234

New from XSLT, 341

Node,

changing what it is created as, 170

Node-templates,

and chaining to child templates, 224

and global templates, 224

and XPath filters, 224

operations on, 224

User-Defined, 113

Numbering nodes automatically, 294

Numbers,

formatting of, 311

Numeric fields,

formatting of, 311

O
Office Open XML (Enterprise Edition only), 14, 28

Online Help, 499, 508

OOXML (Enterprise Edition only), 14, 28

Open,

recently used files, 446

Open (SPS) command, 430

Ordering Altova software, 508

OS,

for Altova products, 623

Otherwise condition branch, 246

Output encoding, 444

Output escaping, 309

Output files,

© 2019-2025 Altova GmbH

Index 635

Output files,

generating, 96

Output previews, 457

Output Views,

description of, 28

P
Paragraph,

command for inserting in design, 461

enclosing with, 478

Parameters, 264

and Authentic View, 264

and command line, 264

creating and editing, 453

for design fragments, 265

for schema sources, 268

general description, 264

in SPS, 264

locating nodes in in multiple documents with, 268

managing in Design Overview sidebar, 33

overview of user-defined parameters, 38

Parser,

built into Altova products, 623

Paste command, 448

PDF Help, 499, 508

PDF output (Enterprise edition), 96

and image supportt, 146

Pixels,

and print media lengths, 444

and screen resolution, 444

Platforms,

for Altova products, 623

Precedence,

of styles, 42

Predefined format strings,

for input formatting, 488

Predefined formats,

command for inserting in design, 461

on inserting a node, 106

symbol in Design View, 394

Presentation,

also see Formats, Formatting, 306

overview of procedures, 306

Print command, 445

Print Preview command, 445

Problems with preview, 19

Processors,

for download, 511

Product features,

listing of, 14

Project options, 499

Properties,

and property groups, 45

defining, 45

of SPS tables, 418, 486

see also Design Entry Helpers, 31

sidebar window, 45

Properties Entry Helper,

Event group, 365

Properties menu, 488

Bullets and Numbering, 488

Properties of output documents, 239

Proxy settings, 499

PXF files, 378

creating, 378

deploying, 382

editing, 381

saving as, 440

Q
Quick Start tutorial,

Auto-Calculations, 74

class attributes, 68

combo boxes, 78

conditions, 78

contents placeholder, 56

creating new SPS document, 52

CSS styles, 68

dynamic content, 56

generating XSLT stylesheets, 89

global templates, 85

horizontal lines, 63

images, 63

introduction, 51

lists, 78

predefined formats, 68

required files, 51

rest-of-contents, 85

setting up new SPS document, 52

static content, 63

Index

© 2019-2025 Altova GmbH

636

Quick Start tutorial,

static text, 63

testing Authentic View (Enterprise and Professional
editions), 89

R
Radio buttons, 154

RaptorXML, 384

and FOP, 388

Recently used files, 446

Redo command, 448

Registering your Altova software, 508

Regular expressions,

find and replace using, 448

Replace,

using regular expressions, 448

Replace command (Enterprise and Professional
editions), 448

Replace in Design View, 49

Rest-of-contents, 107

and global templates, 216

command for inserting in design, 459

in Quick Start tutorial, 85

Restore toolbars and windows, 499

Root elements, 36

Root elements (aka document elements),

and schema sources, 175

selecting for schema, 175

RootCatalog.xml, 98

Row,

append to SPS table, 484

delete from table in SPS, 485

insert in SPS table, 484

Rows (of tables),

expanding/collapsing in HTML output, 133

RTF output (Enterprise and Professional editions), 96

RTF output (Enterprise edition),

and image support, 146

S
Save Design command, 435

Save Generated Files command, 441

Scheduled task,

creating a StyleVisionBatch command as, 392

StyleVisionBatch batch files in, 392

Schema Manager,

CLI Help command, 192

CLI Info command, 193

CLI Initialize command, 193

CLI Install command, 194

CLI List command, 194

CLI overview, 192

CLI Reset command, 195

CLI Uninstall command, 196

CLI Update command, 197

CLI Upgrade command, 197

how to run, 186

installing a schema, 190

listing schemas by status in, 188

overview of, 183

patching a schema, 190

resetting, 191

status of schemas in, 188

uninstalling a achema, 191

upgrading a schema, 190

Schema sources, 91, 424

and root elements (document elements), 175

changing sources, 268

managing in Design Overview sidebar, 33

multiple in SPS (Enterprise edition), 175

multiple sources and locating nodes, 268

multiple sources and XPath, 268

overview of, 38

selecting for SPS, 175

sidebar window, 36

Schema Sources window,

see also Design Entry Helpers, 31

Schema tree options, 499

Schemas,

as SPS source, 176

looking up via catalogs, 99

user-defined, 181

Schemas and catalogs, 97

Scripts,

and JavaScript functions, 363

defining JavaScript functions, 364

in the Design Tree, 363

JavaScript functions as event handlers, 365

overview of, 38

using in an SPS, 363

Scroll buttons,

© 2019-2025 Altova GmbH

Index 637

Scroll buttons,

in Main Window, 26

Select All command, 448

Setting up new SPS document,

in Quick Start tutorial, 52

Setting up StyleVision, 19

Shortcuts,

customizing for keyboard, 495

Show markup, 27

Silent Installation,

modify MSI file, 627

package license files with installer, 627

Simple global template, 216

Software product license, 627

Sorting, 259

example files, 261

of groups and within groups, 251, 253, 255

Sorting mechanism, 259

Sort-keys, 259

Sort-keys, 259

Source files for SPS, 91

Special paragraph,

command for inserting in design, 461

enclosing with, 478

Spell-checker,

in StyleVision, 491

Spell-checker options,

for SPSs, 492

Split Preview, 28

Split table cell,

horizontally, 485

vertically, 485

SPS,

and Authentic View (Enterprise and Professional editions),
18

and StyleVision, 18

and XSLT stylesheets, 18

closing, 430

general description of, 18

opening, 430

reloading, 430

SPS design overview, 92

SPS file structure, 173

SPS tables,

see also Dynamic tables, 119

see aslo Static tables, 119

Static content,

in Quick Start tutorial, 63

Static lists, 139, 465, 478

Static table,

inserting, 483

inserting in SPS, 418

toolbar buttons for editing, 418

Static tables, 119

see also SPS tables, 121

see also Tables, 129

Static text,

and output escaping, 309

in Quick Start tutorial, 63

Status bar, 455

Structure of SPS design, 173

Style Repository,

and external CSS stylesheets, 321

and global styles, 324

see also Design Entry Helpers, 31

sidebar window, 42

Styles,

and property groups, 44

assigning CSS stylesheets to SPS, 321

cascading order, 320

combining several, 333

CSS rules combined, 333

defining, 44

defining global styles in SPS, 324

defining local styles, 326

from XML data, 330

media for assigned external stylesheets, 321

precedence of, 42

precedence of styles, 324

see also Design Entry Helpers, 31

sidebar window, 44

terminology of, 320

via XPath expressions, 330

working with in StyleVision, 320

Styles of output documents, 239

Stylesheets,

also see under CSS stylesheets, 321

also see under XSLT stylesheets, 321

StyleVision,

product features, 14

user manual, 13

StyleVision Power Stylesheet,

see under SPS, 13

StyleVisionBatch, 19, 384

Support for StyleVision, 511

Support options, 23

Index

© 2019-2025 Altova GmbH

638

Symbols in Design View,

of Auto-Calculations, 394

of bookmarks (anchors), 394

of conditional templates, 394

of data-entry devices, 394

of hyperlinks, 394

of images, 394

of predefined formats, 394

of XML document content, 394

of XML document nodes, 394

T
Table,

adding headers and footers, 484

append column to, 484

append row to, 484

cell content, 483

delete column from, 485

delete row from, 485

deleting in SPS, 483

editing properties of, 486

headers and footers, 483

insert column in, 484

insert row in, 484

inserting a static table, 483

navigating, 483

show/hide borders in StyleVision, 486

vertical alignment of cell content, 487

Table menu, 483

Table of contents,

see under TOC, 272

Tables,

Close button to hide columns, 133

conditional processing in, 126

creating, 465

creating dynamic tables, 122

creating static tables, 121

expanding/collapsing rows, 133

formatting, 129

headers and footers in PDF, 129

hiding empty columns, 133

imported from HTML document, 372

joining cells in, 485

overview, 119

styles for alternate rows, 330

Tables (SPS),

editing of properties, 418

toolbar buttons for editing, 418

Tables in Design View,

enclosing with and removing templates, 127

representation of, 127

Tags,

expanding and collapsing, 454

Technical Information, 623

Technical support for StyleVision, 511

Template,

changing the node match for, 170

enclosing with, 476

inserting, 471

Template filters, 421

Template XML File (Enterprise and Professional
editions), 91

definition of, 20

Templates,

enclosing table rows and columns with, 127

removing from around table rows and columns, 127

switching view on and off, 456

tree of, 38

Templates for nodes,

see Node-templates, 224

Temporary output document, 19

Terminology,

used in StyleVision, 20

Text output (Enterprise and Professional editions), 96

Text references, 298

TOC,

example, hierarchical and sequential, 291

example, simple, 287

marking items for inclusion, 275

menu commands, 474

overview of usage, 272

TOC Bookmarks, 275

and levels, 279

creating, 279

enclosing with, 481

wizard for, 279

TOC items,

constructing, 285

formatting, 285

TOC Levels, 275, 276

enclosing with, 481

TOC references, 285

TOC template,

© 2019-2025 Altova GmbH

Index 639

TOC template,

creating and editing, 282

formatting, 285

level references in, 284

reflevels in, 284

structuring, 284

TOCrefs,

see under TOC references, 285

Toolbar buttons,

adding and removing, 416

Toolbars, 415

adding/removing icons in, 415

customizing, 455

Formatting toolbar, 417

Insert Design Elements toolbar, 419

moving, 25

positioning in GUI, 415

resetting, 415

Standard toolbar, 422

switching display on and off, 455

switching display on/off, 415

Table toolbar, 418

Tools menu, 491

Type-based templates, 216

Types as processing units,

in global templates, 216

U
Ueser-Defined Elements, 116

Ueser-Defined XML Text Blocks, 117

Undo command, 448

Unicode support,

in Altova products, 624

unparsed-entity-uri function of XSLT, 339

Updating nodes (Enterprise and Professional editions),

with an Auto-Calculation result, 241

URIs,

holding in unparsed entities, 339

Usage, 90

User Interface,

see GUI, 25

User manual, 499, 508

User reference, 393

User-Defined Elements, 116, 475, 482

User-defined schemas, 181

User-defined template,

enclosing with, 477

inserting, 473

User-Defined Templates, 113

User-Defined Text Blocks, 116, 475

User-defined XPath functions, 345

V
Validator,

in Altova products, 623

Value formatting, 311

Variable template, 223

enclosing with, 477

inserting, 473

Variables, 264, 269

Vertical alignment of table cell content,

in SPSs, 487

Vertical text,

in layout boxes, 163

in table cells, 129

View menu, 455

Views,

layout of in GUI, 31

W
Window menu, 507

Windows,

support for Altova products, 623

Word 2007 (Enterprise Edition only), 14, 28

Word 2007+ output (Enterprise edition), 96

Word document content,

copy-pasting into design, 108

WordML (Enterprise Edition only), 14, 28

Working XML File, 36, 91

and Output Views, 28

definition of, 20

print preview, 445

printing, 445

Index

© 2019-2025 Altova GmbH

640

X
XML,

inserting in design, 117

XML data,

inserting in SPS design, 104

merging from multiple sources, 199

XML document content,

symbol in Design View, 394

XML document nodes,

symbol in Design View, 394

XML Parser,

about, 623

XML Schemas and DTDs,

as SPS source, 176

XML tables (Enterprise and Professional editions), 119

XMLSpy, 17

XPath,

locating nodes in multiple documents, 268

XPath 1.0,

and dates, 360

XPath 2.0,

and dates, 360

XPath dialog,

debugging expressions in, 402

description of, 398, 410

testing expressions in, 399

XPath expressions,

and styles, 330

building in Edit XPath Expression dialog, 398, 410

XPath filter,

on global templates, 216

XPath filters on node-templates, 224

XPath functions,

in XPath dialog, 398, 410

user-defined, 345

XPath operators,

in XPath dialog, 398, 410

XPath version in SPS, 93

XSLT,

inserting code fragment in design, 117

XSLT import, 341

XSLT stylesheet preview,

in Output Views, 28

XSLT Templates, 38

importing into SPS, 230

managing in Design Overview sidebar, 33

XSLT to SPS, 341

XSLT transformations, 388

XSLT version,

setting for SPS, 422

XSLT version in SPS, 93

XSLTelements,

inserting as code in design, 116

	Altova StyleVision 2025 Basic Edition User Manual
	Table of Contents
	Introduction
	Product Features
	Authentic View in Altova Products
	What Is an SPS?
	Setting up StyleVision
	Terminology
	About This Documentation

	User Interface
	Main Window
	Design View
	Output Views

	Sidebars
	Design Overview
	Schema Tree
	Design Tree
	Style Repository
	Styles
	Properties
	Messages
	Find and Replace

	Quick Start Tutorial
	Creating and Setting Up a New SPS
	Inserting Dynamic Content (from XML Source)
	Inserting Static Content
	Formatting the Content
	Using Auto-Calculations
	Using Conditions
	Using Global Templates and Rest-of-Contents
	That's It!

	Usage Overview
	SPS and Sources
	Creating the Design
	XSLT and XPath Versions
	Internet Explorer Compatibility
	Generated Files
	Catalogs in StyleVision
	How Catalogs Work
	Catalog Structure in StyleVision
	Customizing Your Catalogs
	Variables for Windows System Locations

	SPS Content
	Inserting XML Content as Text
	Inserting Content with a Predefined Format
	Rest-of-Contents

	Inserting MS Word Content
	Inserting MS Excel Content
	User-Defined Templates
	User-Defined Elements, XML Text Blocks
	User-Defined Elements
	User-Defined XML Text Blocks

	Tables
	Static Tables
	Dynamic Tables
	Conditional Processing in Tables
	Tables in Design View
	Table Formatting
	Row and Column Display
	CALS/HTML Tables

	Lists
	Static Lists
	Dynamic Lists

	Graphics
	Images: URIs and Inline Data
	Image Types and Output
	Example: A Template for Images

	Form Controls
	Input Fields, Multiline Input Fields
	Check Boxes
	Combo Boxes
	Radio Buttons, Buttons

	Links
	Barcodes
	Layout Modules
	Layout Containers
	Layout Boxes
	Lines

	The Change-To Feature

	SPS Structure
	Schema Sources
	DTDs and XML Schemas
	User-Defined Schemas
	Schema Manager
	Run Schema Manager
	Status Categories
	Patch or Install a Schema
	Uninstall a Schema, Reset
	Command Line Interface (CLI)
	help
	info
	initialize
	install
	list
	reset
	uninstall
	update
	upgrade

	Merging XML Data from Multiple Sources
	Modular SPSs
	Available Module Objects
	Creating a Modular SPS
	Example: An Address Book

	Templates and Design Fragments
	Main Template
	Global Templates
	User-Defined Templates
	Variable Templates
	Node-Template Operations
	Design Fragments

	XSLT Templates
	Multiple Document Output
	Inserting a New Document Template
	New Document Templates and Design Structure
	URLs of New Document Templates
	Preview Files and Output Document Files
	Document Properties and Styles

	Advanced Features
	Auto-Calculations
	Editing and Moving Auto-Calculations
	Example: An Invoice

	Conditions
	Setting Up the Conditions
	Editing Conditions
	Conditions and Auto-Calculations

	Grouping
	Example: Group-By (Persons.sps)
	Example: Group-By (Scores.sps)

	Sorting
	The Sorting Mechanism
	Example: Sorting on Multiple Sort-Keys

	Parameters and Variables
	User-Declared Parameters
	Parameters for Design Fragments
	SPS Parameters for Sources
	Variables

	Table of Contents, Referencing, Bookmarks
	Bookmarking Items for TOC Inclusion
	Structuring the Design in TOC Levels
	Creating TOC Bookmarks

	Creating the TOC Template
	Levelrefs in the TOC Template
	TOC References: Name, Scope, Hyperlink
	Formatting TOC Items

	Example: Simple TOC
	Example: Hierarchical and Sequential TOCs
	Auto-Numbering in the Document Body
	Cross-referencing
	Bookmarks and Hyperlinks
	Inserting Bookmarks
	Defining Hyperlinks

	Presentation and Output
	Predefined Formats
	Output Escaping
	Value Formatting (Formatting Numeric Datatypes)
	The Value Formatting Mechanism
	Value Formatting Syntax

	Working with CSS Styles
	External Stylesheets
	Global Styles
	Local Styles
	Setting Style Values
	Style Properties Via XPath
	Composite Styles

	HTML Document Properties

	Additional Functionality
	Unparsed Entity URIs
	New from XSLT, XSL-FO or FO File
	User-Defined XPath Functions
	Defining an XPath Function
	Reusing Functions to Locate Nodes
	Parameters in XPath Functions
	Parameters and Sequences
	Parameters and Nodes

	Working with Dates
	Formatting Dates

	Using Scripts
	Defining JavaScript Functions
	Assigning Functions as Event Handlers
	External JavaScript Files

	HTML Import
	Creating New SPS via HTML Import
	Creating the Schema and SPS Design
	Creating Tables and Lists as Elements/Attributes
	Generating Output

	ASPX Interface for Web Applications
	Example: Localhost on Windows 7

	PXF File: Container for SPS and Related Files
	Creating a PXF File
	Editing a PXF File
	Deploying a PXF File

	Automated Processing
	Command Line Interface
	StyleVision
	StyleVision Server

	Using RaptorXML
	PDF Output

	Automation with FlowForce Server
	How to Automate Processing

	Menu Commands and Reference
	Design View Symbols
	Edit XPath Expression Dialog
	Evaluator
	Debugger
	Expression Builder

	Toolbars
	Format
	Table
	Insert Design Elements
	Design Filter
	Standard

	File Menu
	New
	Open, Reload, Close, Close All
	Save Design, Save All
	Save As
	Export as MobileTogether Design File
	Save Generated Files
	Deploy to FlowForce
	Web Design
	Properties
	Print Preview, Print
	Most Recently Used Files, Exit

	Edit Menu
	Undo, Redo, Select All
	Find, Find Next, Replace
	Stylesheet Parameters
	Collapse/Expand Markup

	View Menu
	Toolbars and Status Bar
	Design Sidebars
	Design Filter, Zoom
	Output Previews

	Insert Menu
	Contents
	Rest of Contents
	Form Controls
	Auto-Calculation
	Paragraph, Special Paragraph
	Image
	Horizontal Line
	Table
	Bullets and Numbering
	Bookmark
	Hyperlink
	Condition, Output-Based Condition
	Disabled
	Template
	User-Defined Template
	Variable Template
	Design Fragment
	Layout Container, Layout Box, Line
	Table of Contents
	New Document
	User-Defined Item

	Enclose With Menu
	Template
	User-Defined Template
	Variable Template
	Paragraph, Special Paragraph
	Bullets and Numbering
	Bookmarks and Hyperlinks
	Condition, Output-Based Condition
	Disabled
	TOC Bookmarks and TOC Levels
	New Document
	User-Defined Element

	Table Menu
	Insert Table, Delete Table
	Add Table Headers, Footers
	Append/Insert Row/Column
	Delete Row, Column
	Join Cell Left, Right, Below, Above
	Split Cell Horizontally, Vertically
	View Cell Bounds, Table Markup
	Table Properties
	Edit CALS/HTML Tables
	Vertical Alignment of Cell Content

	Properties Menu
	Edit Bullets and Numbering
	Predefined Value Formatting Strings

	Tools Menu
	Spelling
	Spelling Options
	XML Schema Manager
	Customize
	Restore Toolbars and Windows
	Options

	Window Menu
	Help Menu
	Help
	Activation, Order Form, Registration, Updates
	Other Commands

	Appendices
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XSLT 3.0
	XQuery 1.0
	XQuery 3.1

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: Geolocation
	XPath/XQuery Functions: Image-Related
	XPath/XQuery Functions: Numeric
	XPath/XQuery Functions: Schema
	XPath/XQuery Functions: Sequence
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Datatypes in DB-Generated XML Schemas
	ADO
	MS Access
	MS SQL Server
	MySQL
	ODBC
	Oracle
	Sybase

	Technical Data
	OS and Memory Requirements
	Altova Engines
	Unicode Support
	Internet Usage

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Altova End-User License Agreement
	Packaging License Files with StyleVision Installer

	Index

