Table of Contents

1 Introduction
1.1 What's new ... 19
1.2 Support Notes .. 26
1.3 What Is MapForce? .. 29
1.4 Basic Concepts .. 34
1.5 User Interface Overview .. 36
1.6 Conventions .. 45

2 Tutorials
2.1 Convert XML to New Schema 47
2.2 Map Multiple Sources to One Target 57
2.3 Work with Multiple Target Schemas 63
2.4 Process and Generate Files Dynamically 71

3 Common Tasks
3.1 Working with Mappings ... 81
3.1.1 Adding Components to the Mapping 81
3.1.2 Adding Components from a URL 82
3.1.3 About Data Streaming .. 85
3.1.4 Selecting a Transformation Language 86
3.1.5 Validating Mappings .. 87
3.1.6 Validating the Mapping Output 88
3.1.7 Previewing the Output .. 90
3.1.8 Text View Features .. 91
3.1.9 Searching in Text View 96
3.1.10 Previewing the XSLT Code 99
3.1.11 Generating XSLT Code 99
3.1.12 Previewing the XQuery Code 100
4.2.3 Copy-All Connections.. 152

4.3 Chained Mappings... 155
 4.3.1 Example: Pass-Through Active.. 157
 4.3.2 Example: Pass-Through Inactive.. 161

4.4 Processing Multiple Input or Output Files Dynamically... 164
 4.4.1 Mapping Multiple Input Files to a Single Output File... 166
 4.4.2 Mapping Multiple Input Files to Multiple Output Files... 168
 4.4.3 Supplying File Names as Mapping Parameters... 168
 4.4.4 Previewing Multiple Output Files.. 169
 4.4.5 Example: Split One XML File into Many.. 170
 4.4.6 Example: Split Database Table into Many XML Files.. 171

4.5 Supplying Parameters to the Mapping.. 174
 4.5.1 Adding Simple Input Components... 175
 4.5.2 Simple Input Component Settings... 176
 4.5.3 Creating a Default Input Value... 177
 4.5.4 Example: Using File Names as Mapping Parameters.. 178

4.6 Returning String Values from a Mapping... 183
 4.6.1 Adding Simple Output Components... 184
 4.6.2 Example: Previewing Function Output... 185

4.7 Using Variables... 187
 4.7.1 Adding Variables.. 189
 4.7.2 Changing the Context and Scope of Variables... 192
 4.7.3 Example: Counting Database Table Rows.. 194
 4.7.4 Example: Filtering and Numbering Nodes... 195
 4.7.5 Example: Grouping and Subgrouping Records.. 196

4.8 Sorting Data... 199
 4.8.1 Sorting by Multiple Keys... 201
 4.8.2 Sorting with Variables.. 202

4.9 Grouping Data... 205
 4.9.1 Example: Grouping Records by Key... 208

4.10 Filters and Conditions... 211
 4.10.1 Example: Filtering Nodes... 213
 4.10.2 Example: Returning a Value Conditionally... 215

4.11 Joining Data... 217
 4.11.1 Adding Join Conditions.. 219
5 Debugging Mappings

5.1 Debugger Preparation ... 307
5.2 Debugger Commands .. 308
5.3 About the Debug Mode .. 310
5.4 Adding and Removing Breakpoints ... 313
5.5 Using the Values Window .. 315
5.6 Using the Context Window .. 317
6 Data Sources and Targets 327

6.1 XML and XML schema 328

- 6.1.1 Generating an XML Schema 328
- 6.1.2 XML Component Settings 329
- 6.1.3 Using DTds as "Schema" Components 333
- 6.1.4 Derived XML Schema Types 334
- 6.1.5 QNames 336
- 6.1.6 Nil Values / Nillable 336
- 6.1.7 Comments and Processing Instructions 339
- 6.1.8 CDATA Sections 340
- 6.1.9 Wildcards - xs:any / xs:anyAttribute 342
- 6.1.10 Merging Data from Multiple Schemas 346
- 6.1.11 Declaring Custom Namespaces 348

6.2 Databases and MapForce 351

- 6.2.1 Connecting to a Data Source 353
- 6.2.2 Introduction to Database Mappings 437
- 6.2.3 Mapping Data to Databases 471
- 6.2.4 Joining Database Data 522
- 6.2.5 Filtering and Sorting Database Data (SQL WHERE/ORDER) 539
- 6.2.6 SQL SELECT Statements as Virtual Tables 545
- 6.2.7 Mapping XML Data to / from Database Fields 554
- 6.2.8 Browsing and Querying Databases 565
- 6.2.9 Stored Procedures 583
- 6.2.10 Handling Database Exceptions 608
- 6.2.11 Database Tracing and Error Logging 620

6.3 CSV and Text Files 630
6.3.1 Example: Mapping CSV Files to XML ... 630
6.3.2 Example: Iterating Through Items ... 632
6.3.3 Example: Creating Hierarchies from CSV and Fixed-Length Text Files 635
6.3.4 Setting the CSV Options ... 638
6.3.5 Example: Mapping Fixed-Length Text Files to Databases 642
6.3.6 Setting the FLF Options .. 649
6.4 Binary Files .. 655
6.4.1 Example: Read Binary Files ... 656
6.4.2 Example: Write Binary Files ... 658

7 Functions ... 660
7.1 How To ... 662
 7.1.1 Add a Function to the Mapping ... 662
 7.1.2 Add a Constant to the Mapping ... 663
 7.1.3 Search for a Function .. 664
 7.1.4 View a Function's Type and Description ... 665
 7.1.5 Add or Delete Function Arguments ... 666
7.2 Defaults and Node Functions .. 667
 7.2.1 Creating Defaults and Node Functions .. 667
 7.2.2 Editing and Deleting Existing Rules ... 671
 7.2.3 How Defaults and Node Functions Work ... 673
 7.2.4 Applying Node Functions and Defaults Conditionally 679
 7.2.5 Supplying Node Metadata to Node Functions ... 684
 7.2.6 Example: Replace Empty CSV Fields .. 688
7.3 User-Defined Functions ... 694
 7.3.1 Creating User-Defined Functions ... 696
 7.3.2 Parameters in User-Defined Functions ... 699
 7.3.3 Inline and Regular User-Defined Functions ... 704
 7.3.4 Navigating User-Defined Functions ... 706
 7.3.5 Editing User-Defined Functions ... 707
 7.3.6 Deleting User-Defined Functions ... 707
 7.3.7 Calling and Importing User-Defined Functions 708
 7.3.8 Copy-Pasting UDFs Between Mappings .. 710
 7.3.9 Example: Look-up and Concatenation ... 711
7.3.10 Example: Recursive Search ... 715
7.4 Importing Custom XSLT 1.0 or 2.0 Functions.. 720
 7.4.1 Example: Adding Custom XSLT Functions .. 721
 7.4.2 Example: Summing Node Values ... 724
7.5 Importing Custom XQuery 1.0 Functions .. 728
 7.5.1 Example: Import Custom XQuery Function 729
7.6 Importing Custom Java and .NET Libraries ... 734
 7.6.1 Example: Import Custom Java Class ... 737
 7.6.2 Example: Import Custom .NET DLL Assembly 739
7.7 Referencing Java, C# and C++ Libraries Manually 742
 7.7.1 Configuring the .mff File ... 742
 7.7.2 Importing .mff Libraries ... 748
 7.7.3 Data Type Mapping .. 749
 7.7.4 Example: Adapting C# to .mff ... 751
 7.7.5 Example: Adapting C++ to .mff ... 752
 7.7.6 Example: Adapting Java to .mff .. 755
7.8 Managing Function Libraries .. 757
 7.8.1 Local and Global Libraries .. 759
 7.8.2 Relative Library Paths .. 760
7.9 Regular Expressions ... 762
7.10 Function Library Reference ... 766
 7.10.1 core | aggregate functions .. 781
 7.10.2 core | conversion functions ... 787
 7.10.3 core | file path functions .. 802
 7.10.4 core | generator functions .. 806
 7.10.5 core | logical functions ... 808
 7.10.6 core | math functions ... 814
 7.10.7 core | node functions ... 819
 7.10.8 core | QName functions ... 825
 7.10.9 core | sequence functions .. 827
 7.10.10 core | string functions ... 853
 7.10.11 db ... 868
 7.10.12 lang | datetime functions .. 871
 7.10.13 lang | file functions ... 890
 7.10.14 lang | generator functions .. 892
8 Automating Mappings and MapForce

8.1 Automation with RaptorXML Server
8.2 Automation with MapForce Server
8.3 Preparing Mappings for Server Execution
8.4 Compiling Mappings to MapForce Server Execution Files
8.5 Deploying Mappings to FlowForce Server
8.6 MapForce Command Line Interface

9 Altova Global Resources

9.1 Creating Global Resources
9.2 Databases as Global Resources
9.3 MapForce and StyleVision Transformation Result as Global Resource
9.4 The Global Resources XML File
9.5 Global Resources in Various Execution Environments
 9.5.1 Global Resources in XSLT, XSLT 2, XQuery
 9.5.2 Global Resources in C++, C#, Java
 9.5.3 Global Resources in MapForce Server
13 Menu Reference

13.1 File.. 1057
13.2 Edit.. 1060
13.3 Insert... 1061
13.4 Project.. 1063
13.5 Component... 1064
13.6 Connection... 1066
13.7 Function.. 1067
13.8 Output... 1068
13.9 Debug... 1070
13.10 View... 1071
13.11 Tools... 1073
13.12 Window.. 1074
13.13 Help Menu.. 1075

14 Code Generator

14.1 Introduction to code generator... 1081
14.2 What's new ... 1083
14.3 Generating C++ code.. 1085
 14.3.1 Generating code from a mapping... 1086
 14.3.2 Generating code from a mapping project .. 1087
 14.3.3 Building the project.. 1087
 14.3.4 Running the application.. 1088
14.4 Generating C# code... 1090
 14.4.1 Generating code from a mapping... 1091
 14.4.2 Generating code from a mapping project .. 1092
 14.4.3 Building the project.. 1092
 14.4.4 Running the application.. 1093
14.5 Generating Java code... 1094
 14.5.1 Generating code from a mapping... 1095
 14.5.2 Generating code from a mapping project .. 1096
 14.5.3 Building the project with Ant ... 1096
14.5.4 Handling JDBC references... 1098
14.5.5 Example: Generate and run Java code.. 1100

14.6 Integrating MapForce-Generated Code.. 1108
14.6.1 Java example.. 1109
14.6.2 C# example... 1111
14.6.3 C++ example.. 1113
14.6.4 Changing Input and Output Programmatically................................. 1114

14.7 Generating Code from XML Schemas or DTDs.................................... 1121
14.7.1 About Schema Wrapper Libraries (C++)... 1123
14.7.2 About Schema Wrapper Libraries (C#).. 1126
14.7.3 About Schema Wrapper Libraries (Java).. 1128
14.7.4 Integrating Schema Wrapper Libraries... 1130
14.7.5 Example: Book Library... 1133
14.7.6 Example: Purchase Order... 1157

14.8 Reference to Generated Classes (C++).. 1165
14.8.1 altova::DateTime.. 1165
14.8.2 altova::Duration.. 1168
14.8.3 altova::DayTimeDuration.. 1170
14.8.4 altova::YearMonthDuration... 1171
14.8.5 altova::meta::Attribute... 1171
14.8.6 altova::meta::ComplexType.. 1172
14.8.7 altova::meta::Element... 1173
14.8.8 altova::meta::SimpleType... 1173
14.8.9 [YourSchema]::[CDoc].. 1175
14.8.10 [YourSchema]::[ElementType].. 1177
14.8.11 [YourSchema]::MemberAttribute.. 1178
14.8.12 [YourSchema]::MemberElement... 1179

14.9 Reference to Generated Classes (C#).. 1180
14.9.1 Altova.Types.DateTime.. 1180
14.9.2 Altova.Types.DateTimeFormat... 1183
14.9.3 Altova.Types.Duration... 1184
14.9.4 Altova.Xml.Meta.Attribute... 1187
14.9.5 Altova.Xml.Meta.ComplexType.. 1187
14.9.6 Altova.Xml.Meta.Element... 1188
14.9.7 Altova.Xml.Meta.SimpleType... 1189
14.9.8 [YourSchema].[Doc]... 1190
14.9.9 [YourSchema].[ElementType].. 1192
14.9.10 [YourSchemaType].MemberAttribute.................................... 1193
14.9.11 [YourSchemaType].MemberElement...................................... 1193
14.10 Reference to Generated Classes (Java)...................................... 1195
 14.10.1 com.altova.types.DateTime.. 1195
 14.10.2 com.altova.types.Duration... 1199
 14.10.3 com.altova.xml.meta.Attribute.. 1203
 14.10.4 com.altova.xml.meta.ComplexType....................................... 1203
 14.10.5 com.altova.xml.meta.Element.. 1204
 14.10.6 com.altova.xml.meta.SimpleType... 1204
 14.10.7 com.[YourSchema].[Doc].. 1205
 14.10.8 com.[YourSchema].[ElementType].. 1207
 14.10.9 com.[YourSchema],[YourSchemaType].MemberAttribute.......... 1208
 14.10.10 com.[YourSchema],[YourSchemaType].MemberElement.......... 1208
14.11 Code Generation Tips... 1210
14.12 Code Generator Options.. 1211
14.13 SPL Reference.. 1213
 14.13.1 Basic SPL structure... 1213
 14.13.2 Declarations.. 1214
 14.13.3 Variables... 1216
 14.13.4 Predefined variables.. 1217
 14.13.5 Creating output files... 1218
 14.13.6 Operators.. 1220
 14.13.7 Conditions... 1221
 14.13.8 Collections and foreach.. 1222
 14.13.9 Subroutines... 1223
 14.13.10 Built in Types... 1226

15 The MapForce API .. 1231
15.1 Accessing the API.. 1232
15.2 The Object Model.. 1235
15.3 Error Handling.. 1236
15.4 Example C# Project.. 1238
16 ActiveX Integration

16.1 Prerequisites ... 1413
16.2 Adding the ActiveX Controls to the Toolbox................................. 1415
16.3 Integration at Application Level .. 1417
16.4 Integration at Document Level .. 1420
16.5 ActiveX Integration Examples .. 1424
 16.5.1 C# .. 1424
 16.5.2 HTML .. 1431
 16.5.3 Java ... 1438
 16.5.4 VB.NET .. 1448
16.6 Command Reference .. 1451
 16.6.1 "File" Menu .. 1451
 16.6.2 "Edit" Menu .. 1452
 16.6.3 "Insert" Menu .. 1453
 16.6.4 "Project" Menu ... 1453
 16.6.5 "Component" Menu .. 1454
 16.6.6 "Connection" Menu .. 1455
 16.6.7 "Function" Menu .. 1456
 16.6.8 "Output" Menu .. 1456
 16.6.9 "Debug" Menu .. 1457
 16.6.10 "View" Menu ... 1457
 16.6.11 "Tools" Menu ... 1458
16.6.12 "Window" Menu ... 1459
16.6.13 "Help" Menu .. 1459
16.7 Object Reference .. 1460
 16.7.1 MapForceCommand ... 1460
 16.7.2 MapForceCommands .. 1462
 16.7.3 MapForceControl ... 1463
 16.7.4 MapForceControlDocument ... 1471
 16.7.5 MapForceControlPlaceHolder 1477
 16.7.6 Enumerations ... 1479

17 Appendices ... 1481
 17.1 Engine information .. 1482
 17.1.1 XSLT and XQuery Engine Information 1482
 17.1.2 XSLT and XPath/XQuery Functions 1487
 17.2 Technical Data ... 1579
 17.2.1 OS and Memory Requirements 1579
 17.2.2 Altova Engines ... 1579
 17.2.3 Unicode Support ... 1580
 17.2.4 Internet Usage .. 1580
 17.3 License Information .. 1581
 17.3.1 Electronic Software Distribution 1581
 17.3.2 Software Activation and License Metering 1582
 17.3.3 Altova End-User License Agreement 1583

18 Glossary ... 1584
 18.1 C .. 1585
 18.2 F .. 1586
 18.3 G .. 1587
 18.4 I .. 1588
 18.5 J .. 1589
 18.6 M .. 1590
 18.7 O .. 1591
 18.8 P .. 1592
Index

18.9 S ... 1593
18.10 T ... 1594

1595
1 Introduction

MapForce® 2021 Professional Edition is a visual data mapping tool for advanced data integration projects. MapForce® is a 32/64-bit Windows application that runs on Windows 7 SP1 with Platform Update, Windows 8, Windows 10, and Windows Server 2008 R2 SP1 with Platform Update or newer. 64-bit support is available for the Enterprise and Professional editions. MapForce also integrates with Visual Studio and Eclipse, as well as Microsoft Office products, see Support Notes.

Last updated: 7 October 2020
1.1 What's new...

New in MapForce 2021:

- A MapForce mapping can read BLOB (binary large object) data from binary files and write binary files to the disk. This makes it possible, for example, to read BLOB fields from a database and save them as image files on the disk, or to read binary files such as PDFs from the disk and save them as xs:base64Binary fields within an XML file. See Binary Files for more information.
- New database versions are supported: MariaDB 10.4, 10.5
- New Eclipse versions are supported: 2019.09, 2019.12, 2020.03, 2020.06
- When joining multiple database tables or views using SQL join components in a mapping, you can set the join mode either as LEFT OUTER JOIN or INNER JOIN, see Changing the Join Mode.
- Internal updates and optimizations.

New in MapForce 2020 Release 2:

- A new Manage Libraries window is available that enables you to view and manage all function libraries imported at document and at program level (this includes MapForce user-defined functions and other kinds of libraries). This makes it possible, for example, to easily copy-paste user-defined functions from one mapping to another, see Copy-Pasting UDFs Between Mappings.
- When a mapping file imports libraries, the path of imported library files is relative to the mapping file by default, see Relative Library Paths. You can still import mappings at application level, like in previous releases, but in this case the library path is always absolute.
- If a mapping file imports XSLT or XQuery libraries, you can generate XSLT or XQuery code that references the imported library files using a relative path. The new option is available in the Mapping Settings dialog box.
- The MapForce API has been enhanced with new members that enable you to manage imported libraries programmatically (for example, add or remove them).
- Code generated for XML schema wrapper libraries now provides more control over element namespaces and prefixes. New methods are available to declare or override namespaces for an element, or to append an element with a prefixed namespace. See Example: Purchase Order.
- New database versions are supported: PostgreSQL 12.1 and Informix 14.10.
- Internal updates and optimizations.

New in MapForce 2020:

- Support for Eclipse 4.9 - 4.12, see MapForce Plugin for Eclipse.
- If an Oracle package contains public stored procedures or functions, those are also available to the mapping, see Adding Stored Procedures to the Mapping.
- You can configure a database component so that database object names are treated as relative to the default schema, not bound to a particular schema. This helps save time if you need to switch to a different database in future, see Switching Databases and Schemas.
- You can deploy Global Resources created in MapForce to FlowForce Server, see Deploying Global Resources to FlowForce Server.
- When replacing values with the help of a look-up table, you can paste tabular data (key-value pairs) from external sources such as CSV or Excel into the mapping. Also, it is easier to handle cases when a value is not found in the predefined look-up table—processing such values no longer requires the use of substitute-missing function. See Using Value-Maps.
Introduction

What's new...

- Internal updates and optimizations

New in MapForce 2019 Release 3:

- Major parts of the graphical user interface are now optimized for monitors with high pixel density (HiDPI)
- Support for Database Tracing and Error Logging
- Better support for database transaction handling in generated program code and server execution. If an error occurs when a mapping updates a database, it is possible to continue the mapping execution even if some operations failed, see Handling Database Exceptions.
- A mapping can encode or decode Base64 data with the help of the new charset-encode and charset-decode functions.
- New database versions are supported: PostgreSQL 11, Db2 for i 7.2 and 7.3
- Support for Eclipse 4.7 - 4.10, see MapForce Plug-in for Eclipse
- Support for explicitly setting the Java Virtual Machine path from MapForce, see Java Settings
- Internal updates and optimizations

New in MapForce 2019:

- New database versions are supported: Firebird 3.0, Informix 12.10, MariaDB 10.2, MySQL 8.0, PostgreSQL 10, SQL Server 2017, SQL Server for Linux (adds to support for previous versions)
- You can selectively apply a default value or node function to specific nodes that meet your custom-defined criteria. For example, you can apply a node function only to nodes of specific type whose name matches a regular expression, see Applying Node Functions and Defaults Conditionally.
- When creating node functions, you can process data conditionally based on metadata such as node name or node annotation, see Supplying Node Metadata to Node Functions.
- Mappings that contain grouping functions run much faster in generated C#, C++, or Java code
- Internal updates and optimizations

New in MapForce 2018 Release 2:

- Support for the following databases: MariaDB 10.2, Teradata 16
- Built-in functions, user-defined functions, and constants can be conveniently added to the mapping by double-clicking an empty area on the mapping (see Add a Built-in Function to the Mapping and Add a Constant to the Mapping).
- Internal updates and optimizations

New in MapForce 2018:

- Support for generating program code for Visual Studio 2013, 2015, and 2017, see Code Generator
- Support for the following database versions: Sybase ASE 16, PostgreSQL 9.6, MySQL 5.7
- Internal updates and optimizations

New in MapForce 2017 Release 3:
• A new component type (Join) has been introduced which can be used to join data from two or more different structures based on custom-defined conditions (see Joining Data). When the mapping reads data from a database, it is possible to join database tables or views in SQL JOIN mode, see Joining Database Data.

• The text search options in the Output pane, the XQuery pane, as well as the XSLT pane have been enhanced (see Searching in Text View). Also, text highlighting is available in the above-mentioned panes (see Text Highlighting).

• Mappings which update databases can be optionally configured to compare data in a NULL-aware manner. NULL-aware comparisons provide a better way (tailored to each specific database) to handle data that contains null values (see Handling Nulls in Database Table Actions).

• In the MapForce ActiveX control, the structure of the MapForceCommand object has been enhanced to include a new Name property, which can be used to get the unique name of the command. This simplifies retrieving information about MapForce commands programmatically (see Retrieving Command Information).

• Internal updates and optimizations

New in MapForce 2017:

• It is possible to read node names from a source XML (or field names from a CSV/Fixed-length field file) and map this information to a target. It is also possible to dynamically create new XML attributes or elements in a target based on values supplied from a source. See Mapping Node Names.

• XML instance files can be created with custom namespaces, at element level (see Declaring Custom Namespaces).

• MapForce Server execution files (.mfx) can be compiled for specific MapForce Server versions (see Compiling mappings for a specific MapForce Server version).

• Mappings can connect to PostgreSQL databases through native connections (see Setting up a PostgreSQL Connection).

• Mappings can connect to SQL Server and other database types through ADO.NET providers (see Setting up an ADO.NET Connection).

• A new database type is supported: Progress OpenEdge. See Connecting to Progress OpenEdge (ODBC) and Connecting to Progress OpenEdge (JDBC).

• When connecting to a database through JDBC, the search path to .jar libraries can be specified directly in the database connection dialog box (see Setting up a JDBC Connection).

• When a database is updated by the mapping through "Update if... Insert Rest" actions, MERGE statements are created for selected databases (see MERGE statements).

• Internal updates and optimizations

New in MapForce 2016 R2:

• More intuitive code folding in the XSLT pane: collapsed text is displayed with an ellipsis symbol and can be previewed as a tooltip. The same rules apply for text in the XQuery pane and the SQL Editor.

• You can search for all occurrences of a function within the active mapping (in the Libraries window, right-click the function, and select Find All Calls).

• Internal updates and optimizations
New features in MapForce 2016:

- Improved generation of XSLT 1.0 code (generated stylesheets are easier to read and often faster to execute)
- Two new aggregate functions are available in the MapForce core library: `min-string` and `max-string`. These functions enable you to get the minimum or maximum value from a sequence of strings.
- Mappings written for the Built-in execution engine can be debugged (see Debugging Mappings)
- The MapForce Plug-in for Visual Studio supports Visual Studio 2015 (adds to support for previous versions)
- New database versions are supported: SQL Server 2014, Oracle 12c, IBM DB2 10.5, PostgreSQL 9.4, MySQL 5.6 (adds to support for previous versions)
- Firebird databases are supported (see Connecting to Firebird (ODBC) and Connecting to Firebird (JDBC))

New features in MapForce Version 2015 R4:

- In the MapForce plug-in for Eclipse, the commands specific to MapForce files are now available under a new MapForce menu (see Accessing Common Menus and Functions)
- Internal updates and optimizations

New features in MapForce Version 2015 R3 include:

- Option to suppress the `<?xml ... ?>` declaration in XML output
- Text-based components (including EDI, CSV, fixed-length field, JSON, and XML) can parse and serialize strings in addition to plain files
- SQLite database support (see Setting up a SQLite connection)
- New string padding functions: `pad-string-left` and `pad-string-right`
- New component type: Simple Output
- Internal updates and optimizations

New features in MapForce Version 2015 include:

- New language argument available in the `format-date` and `format-dateTime` functions
- New sequence function: `replicate-item`

New features in MapForce Version 2014 R2 include:

- New `sequence functions`: generate sequence, item-at, etc.
- Ability to define `CDATA` sections in output components
- Ability to define timeout values for database execution
- Keeping connections after deleting components
- Bulk transfer of database data (bulk Insert all)
- Automatic highlighting of mandatory items in target components

New features in MapForce Version 2014 include:

- Integration of RaptorXML validator and basic support for XML Schema 1.1
- Integration of new RaptorXML XSLT and XQuery engines
• **XML Schema Wildcard support**, `xs:any` and `xs:anyAttribute`
• Support for **Comments and Processing Instructions** in XML target components
• **Age** function
• Ability to always insert **quote character** for CSV files

New features in MapForce Version 2013 R2 SP1 include:

• New super-fast transformation engine **RaptorXML Server**

New features in MapForce Version 2013 R2 include:

• **MapForce Server** support.
• Ability to generate a **MapForce Server execution** file from the command line and File menu, to be executed by MapForce Server.
• Ability to **deploy** MapForce mappings to FlowForce Server.
• Support for Informix 11.7 databases, and **extended support** for other databases.
• User defined **end-of-line** settings for output files.
• Internal updates and optimizations.

New features in MapForce Version 2013 include:

• Ability to call **stored procedures** in mappings
• Support for database functions (functionally similar to stored procedures)
• Support for **SELECT statements** with parameters
• Internal updates and optimizations

New features in MapForce Version 2012 R2 include:

• New **Sort component** for XSLT 2.0, XQuery, and the Built-in execution engine
• User defined component names
• Extended SQL-Where functionality: **ORDER BY**
• MapForce supports logical files of the IBM iSeries database and shows logical files as views
• Support for IBM DB2 logical files. A logical file in IBM iSeries editions of the DB2 database represents one or more physical files. A logical file allows users to access data in a sequence or format that can be different from the physical file. Users who connect to IBM iSeries computers may encounter existing databases constructed with logical files. These were previously not accessible, but are now supported in Version 2012 Release 2.

New features in MapForce Version 2012 include:

• **Data streaming** for XML, CSV and fixed-length field files (when using the built-in execution engine)
• New database engine supports direct ODBC and JDBC connections
• **Auto-alignment** of components in the mapping window
• New functions: **parse-date** and **parse-time**
• **Find items** in Project tab/window
• Prompt to connect to **target parent** node
• Specific rules governing the **sequence** that components are processed in a mapping
New features in MapForce Version 2011R3 include:

- Intermediate variables support for .NET Framework 4.0 assembly files
- Ability to output StyleVision formatted documents from the command line

New features in MapForce Version 2011R2 include:

- Built-in Execution Engine now supports streaming output
- Find function capability in Libraries window
- Reverse mapping
- Extendable IF-ELSE function
- Node Name and parsing functions in Core Library

New features in MapForce Version 2011 include:

- Ability to preview intermediate components in a mapping chain of two or more components connected to a target component (pass-through preview).
- Formatting functions for dateTime and numbers for all supported languages
- Enhancement to auto-number function
- New timezone functions: remove-timezone and convert-to-utc
- Ability to preview target components using StyleVision Power Stylesheets containing StyleVision Charts

New features in MapForce Version 2010 Release 3 include:

- Support for generation of Visual Studio 2010 project files for C# and C++ added
- Support for MSXML 6.0 in generated C++ code
- Support for Nullable values, and xsi:nil attribute in XML instance files
- Ability to disable automatic casting to target types in XML documents

New features in MapForce Version 2010 Release 2 include:

- 64-bit MapForce Enterprise / Professional editions on 64-bit operating systems
- Automatic connection of identical child connections when moving a parent connection
- Support for fields in the SQL Where component
- Ability to add compiled Java .class and .NET assembly files
- Ability to tokenize input strings for further processing

New features in MapForce Version 2010 include:

- Multiple input/output files per component
- Upgraded relative path support
- xsi:type support allowing use of derived types
- New internal data type system
- Improved user-defined function navigation (see Navigating User-Defined Functions)
Introduction

- Enhanced handling of mixed content in XML elements

New features in MapForce Version 2009 SP1 include:

- Parameter order in user-defined functions can be user-defined (see Parameters in User-Defined Functions)
- Ability to process XML files that are not valid against XML Schema
- Regular (standard) user-defined functions now support complex hierarchical parameters (see Inline and Regular User-Defined Functions)
- Apache Xerces 3.x support when generating C++ code

New features in MapForce Version 2009 include:

- Documentation of mapping projects
- Native support for XML fields in SQL Server
- Grouping of nodes or node content
- Ability to filter data based on a node’s position in a sequence
- QName support
- Item/node search in components

New features in MapForce Version 2008 Release 2 include:

- Ability to automatically generate XML Schemas for XML files
- Support for stream objects as input/output in generated Java and C# code
- Generation of Visual Studio 2008 project files for C++ and C#
- Ability to strip database schema names from generated code
- SQL SELECT Statements as virtual tables in database components
- Local Relations - on-the-fly creation of primary/foreign key relationships
- Support for Altova Global Resources
- Performance optimizations

New features in MapForce Version 2008 include:

- Aggregate functions
- Value-Map lookup component
- Enhanced XML output options: pretty print XML output, omit XML schema reference and Encoding settings for individual components
- Various internal updates

New features in MapForce Version 2007 Release 3 include:

- XML data mapping to/from database fields (see Mapping XML Data to/from Database Fields)
- Direct querying of databases
- SQL-WHERE filter and SQL statement wizard
- Code generator optimization and improved documentation
1.2 Support Notes

MapForce® is a 32/64-bit Windows application that runs on the following operating systems:

- Windows 7 SP1 with Platform Update, Windows 8, Windows 10
- Windows Server 2008 R2 SP1 with Platform Update or newer

64-bit support is available for the Enterprise and Professional editions.

MapForce is optionally available as a plug-in to the following integrated development environments:

MapForce integrates with Microsoft Office products as follows:

- It can map data to or from Access databases. For supported versions, see Databases and MapForce
- It can generate mapping documentation in Word 2000 or later format, see Generating and Customizing Mapping Documentation.

Supported data sources and targets

When you change the transformation language of a MapForce mapping, certain features may not be supported for that specific language. The following table summarizes the supported data source and data target formats, by language, in MapForce Professional Edition.

Remarks:

- "Built-in" means that you can execute the mapping by clicking the Output tab in MapForce, or run it with MapForce Server.

<table>
<thead>
<tr>
<th>Mapping format</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery</th>
<th>C++</th>
<th>C#</th>
<th>Java</th>
<th>BUILT-IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML1</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>CSV and text</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Binary files</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Databases2</td>
<td>ADO</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>ADO.NET</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Native SQLite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Mapping format

<table>
<thead>
<tr>
<th>Mapping format</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery</th>
<th>C++</th>
<th>C#</th>
<th>Java</th>
<th>BUILT-IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native PostgreSQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

1. XML with digital signatures processing is supported only by MapForce Enterprise Edition using BUILT-IN as transformation language.
2. Limitations apply depending on the database kind and the target environment. For more information, see [Database mappings in various execution environments](#).

Supported features in generated code

The following table lists the features relevant for code generation and the extent of support in each language in MapForce Professional Edition.

<table>
<thead>
<tr>
<th>Feature</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery</th>
<th>C++</th>
<th>C#</th>
<th>Java</th>
<th>BUILT-IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply parameters to the mapping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply the input file names</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dynamically from the mapping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply wildcard file names as</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapping input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generate the output file names</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dynamically from the mapping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return string values from the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mapping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sort components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grouping functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Join components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Map components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defaults and node functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>XSLT 1.0</td>
<td>XSLT 2.0</td>
<td>XQuery</td>
<td>C++</td>
<td>C#</td>
<td>Java</td>
<td>BUILT-IN</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Mapping exceptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String parsing and serialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic node names</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database bulk inserts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database SQL SELECT without input parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database SQL SELECT with input parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database stored procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database exception handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Database tracing and error logging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generate MapForce Server execution files</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deploy mappings to FlowForce Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read data from binary files</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write data to binary files</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:

1. XSLT 2.0 and XQuery use the `fn:collection` function. The implementation in the Altova XSLT 2.0 and XQuery engines resolves wildcards. Other engines may behave differently.
2. For JSON, parsing and serialization is additionally supported in Java and C#.
3. Database exception handling is possible when the mapping language is supported by the currently connected database driver, as indicated in the previous table.
1.3 What Is MapForce?

Altova website: Data mapping tool

MapForce is a Windows-based, multi-purpose IDE (integrated development environment) that enables you to transform data from one format to another, or from one schema to another, by means of a visual, “drag-and-drop”-style graphical user interface that does not require writing any program code. In fact, MapForce generates for you the program code which performs the actual data transformation (or data mapping). When you prefer not to generate program code, you can just run the transformation using the MapForce built-in transformation language (available in the MapForce Professional or Enterprise Editions).

Any data mapping designed for the built-in transformation language qualifies for automation with MapForce Server. With MapForce Server, you can run mappings on Windows, Linux, and macOS not only from the command-line, but also through API calls (.NET, Java, COM), or as scheduled or recurring jobs under the management of FlowForce Server. For more information, see Automation with MapForce Server.

Mappings designed with MapForce enable you to conveniently convert and transform data from and to a variety of file-based and other formats. Regardless of the technology you work with, MapForce typically determines automatically the structure of your data, or gives you the option to supply a schema for your data. MapForce can also generate schemas from a sample instance file. For example, if you have an XML instance file but no schema definition, MapForce can generate it for you, thus making the data inside the XML file available for mapping to other files or formats.

The technologies supported as mapping sources or targets are as follows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• XML and XML schema</td>
<td>• XML and XML schema</td>
<td>• XML and XML schema</td>
</tr>
<tr>
<td></td>
<td>• Flat files, including comma-separated values (CSV) and fixed-length field (FLF) format</td>
<td>• Flat files, including comma-separated values (CSV) and fixed-length field (FLF) format</td>
</tr>
<tr>
<td></td>
<td>• Databases (all major relational databases, including Microsoft Access and SQLite databases)</td>
<td>• Databases (all major relational databases, including Microsoft Access and SQLite databases)</td>
</tr>
<tr>
<td></td>
<td>• Binary files (raw BLOB content)</td>
<td>• Binary files (raw BLOB content)</td>
</tr>
</tbody>
</table>
Based on the MapForce edition, you can choose the preferred language for your data transformation as follows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT 1.0</td>
<td>MapForce built-in transformation language</td>
<td>MapForce built-in transformation language</td>
</tr>
<tr>
<td>XSLT 2.0</td>
<td>XSLT 1.0</td>
<td>XSLT 1.0</td>
</tr>
<tr>
<td></td>
<td>XSLT 2.0</td>
<td>XSLT 2.0</td>
</tr>
<tr>
<td></td>
<td>XQuery</td>
<td>XQuery</td>
</tr>
<tr>
<td></td>
<td>Java</td>
<td>Java</td>
</tr>
<tr>
<td></td>
<td>C#</td>
<td>C#</td>
</tr>
<tr>
<td></td>
<td>C++</td>
<td>C++</td>
</tr>
</tbody>
</table>

You can preview the result of all transformations, as well as the generated XSLT or XQuery code without leaving the graphical user interface. Note that, as you design or preview mappings, MapForce validates the integrity of your schemas or transformations and displays any validation errors in a dedicated window, so that you can immediately review and address them.

When you choose Java, C#, or C++ as transformation language, MapForce generates the required projects and solutions so that you can open them directly in Visual Studio or Eclipse, and run the generated data mapping program. For advanced data integration scenarios, you can also extend the generated program with your own code, using Altova libraries and the MapForce API.

When you change the transformation language of a MapForce mapping, certain features may not be supported for that specific language, see Support Notes.

In MapForce, you design all mapping transformations visually. For example, in case of XML, you can connect any element, attribute, or comment in an XML file to an element or attribute of another XML file, thus instructing MapForce to read data from the source element (or attribute), and write it to the target element (or attribute).

Sample data transformation between two XML files

Likewise, when working with databases in MapForce Professional or Enterprise Editions, you can see any database column in the MapForce mapping area and map data to or from it by making visual connections. As
with other Altova MissionKit products, when setting up a database connection from MapForce, you can flexibly choose the database driver and the connection type (ADO, ADO.NET, ODBC, or JDBC) according to your existing infrastructure and data mapping needs. Additionally, you can visually build SQL queries, use stored procedures, or query a database directly (support varies by database type, edition and driver).

![Diagram of a data transformation between a database and an XML file]

Sample data transformation between a database and an XML file

In a very simple scenario, a mapping design created with MapForce could be resumed as "read data from X and write it to Y". However, you can easily design MapForce scenarios such as "read data from X and write it to Y, and then read data from Y and write it to Z". These are known as "pass-through", or "chained" mappings, and enable you to access your data at an intermediary stage in the transformation process (in order to save it to a file, for example).

Note that the data mappings you can create in MapForce are not limited to single, predefined files. In the same transformation, you can process dynamically multiple input files from a directory and generate multiple output files. Therefore, you can have scenarios such as "read data from multiple X files and write it to a single Y file", or "read file X and generate multiple files Y", and so on.

Importantly, in the same transformation, you can mix multiple sources and multiple targets, which can be of any type supported by your MapForce edition. For example, in case of MapForce Professional or Enterprise, this makes it possible to merge data from two different databases into a single XML file. Or, you can merge data from multiple XML files, and write some of the data to one database, and some of the data to another database. You can preview the SQL statements before committing them to the database.

Direct conversion of data from a source to a target is not typically the only thing you want to achieve. In many cases, you might want to process your data in a particular way (for example, sort, group or filter it) before it reaches the destination. For this reason, MapForce includes, on one hand, miscellaneous functional components that are simplified programming language constructs (such as constants, variables, SQL-WHERE conditions, Filter and Sort components). On the other hand, MapForce includes rich and extensible function libraries which can assist you with virtually any kind of data manipulation.

If necessary, you can extend the built-in library either with functions you design in MapForce directly (the so-called User-Defined Functions, or UDF), or with functions or libraries created externally in XSLT, XQuery, Java, or C# languages.
When your data mapping design files become too many, you can organize them into mapping projects (available in MapForce Professional and Enterprise edition). This allows for easier access and management. Importantly, you can generate program code from entire projects, in addition to generating code for individual mappings within the project.

For advanced data processing needs (such as when running mapping transformations with the MapForce Server API), you can design a mapping so that you can pass values to it at run-time, or get a simple string value from it at run-time. This feature also enables you to quickly test the output of functions or entire mappings that produce a simple string value. The Professional and Enterprise editions of MapForce also include components that enable you to perform run-time string parsing and serialization, similar to how this works in many other programming languages.

With MapForce Enterprise Edition, you can visually design SOAP 1.0 and SOAP 2.0 Web services based on Web Service Language Definition (WSDL) files. You can also call WSDL-style or REST-style Web services from within a mapping.

With MapForce Professional and Enterprise Editions, you can generate detailed documentation of your mapping design files, in HTML, Word, and RTF formats. Documentation design can be customized (for example, you can choose to include or exclude specific components from the documentation).

If you are using MapForce alongside other Altova MissionKit products, MapForce integrates with them as well as with the Altova server-based products, as shown in the following table.
What Is MapForce?

---|---|---
You can choose to run the generated XSLT directly in MapForce and preview the data transformation result immediately. When you need increased performance, you can process the mapping using RaptorXML Server, an ultra-fast XML transformation engine.

If XMLSpy is installed on the same machine, you can conveniently open and edit any supported file types, by opening XMLSpy directly from the relevant MapForce contexts (for example, the Component | Edit Schema Definition in XMLSpy menu command is available when you click an XML component).

You can run data transformations either directly in MapForce, or deploy them to a different machine and even operating system for command-line or automated execution. More specifically, you can design mappings on Windows, and run them on a Windows, Linux, or Mac server machine which runs MapForce Server (either standalone or under FlowForce Server management).

If StyleVision is installed on the same machine, you can design or reuse existing StyleVision Power Stylesheets and preview the result of the mapping transformations as HTML, RTF, PDF, or Word 2007+ documents.

MapForce Professional and Enterprise edition can be installed as a plug-in of Visual Studio and Eclipse integrated development environments. This way, you can design mappings and get access to MapForce functionality without leaving your preferred development environment.

In MapForce, you can completely customize not only the look and feel of the development environment (graphical user interface), but also various other settings pertaining to each technology and to each mapping component type, for example:

- When mapping to or from XML, you can choose whether to include a schema reference, or whether the XML declaration must be suppressed in the output XML files. You can also choose the encoding of the generated files (for example, UTF-8).
- When mapping to or from databases, you can define settings such as the time-out period for executing database statements, whether MapForce should use database transactions, or whether it should strip the database schema name from table names when generating code.
- In case of XBRL, you can select the structure views MapForce should display (such as the “Presentation and definition linkbases” view, the “Table Linkbase” View, or the “All concepts” view).

All editions of MapForce are available as a 32-bit application. The MapForce Professional and Enterprise editions are additionally available as a 64-bit application.
1.4 Basic Concepts

This section outlines the basic concepts that will help you get started with data mapping.

Mapping

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to be transformed from one format to another. A mapping consists of components that you add to the MapForce mapping area in order to create your data transformations (for example, convert XML documents from one schema to another). A valid mapping consists of one or several source components connected to one or several target components. You can run a mapping and preview its result directly in MapForce. You can generate code and execute it externally. You can also compile a mapping to a MapForce execution file and automate mapping execution using MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

Basic structure of a MapForce mapping
Component
In MapForce, the term "component" is what represents visually the structure (schema) of your data, or how data is to be transformed (functions). Components are the central building pieces of any mapping. On the mapping area, components appear as rectangles. The following are examples of MapForce components:

- Constants
- Databases
- Filters
- Conditions
- Function components
- EDI documents (UN/EDIFACT, ANSI X12, HL7)
- Excel 2007+ files
- Simple input components
- Simple output components
- XML Schemas and DTDs

Connector
A connector is a small triangle displayed on the left or right side of a component. The connectors displayed on the left of a component provide data entry points to that component. The connectors displayed on the right of a component provide data exit points from that component.

Connection
A connection is a line that you can draw between two connectors. By drawing connections, you instruct MapForce to transform data in a specific way (for example, read data from an XML document and write it to another XML document).

Source component
A source component is a component from which MapForce reads data. When you run the mapping, MapForce reads the data supplied by the connector of the source component, converts it to the required type, and sends it to the connector of the target component.

Target component
A target component is a component to which MapForce writes data. When you run the mapping, a target component instructs MapForce to either generate a file (or multiple files) or output the result as a string value for further processing in an external program. A target component is the opposite of a source component.
1.5 User Interface Overview

The graphical user interface of MapForce is organized as an integrated development environment. The main interface components are illustrated below. You can change the interface settings by using the menu command Tools | Customize.

Use the buttons displayed in the upper-right corner of each window to show, hide, pin, or dock it. If you need to restore toolbars and windows to their default state, use the menu command Tools | Restore Toolbars and Windows.

The image below illustrates the main parts of the MapForce graphical user interface.

Menu Bar and Toolbars
The Menu Bar displays the menu items. Each toolbar displays a group of buttons representing MapForce commands. You can reposition the toolbars by dragging their handles to the desired locations.
Libraries window

The Libraries window lists the MapForce built-in functions, organized by library. The list of available functions changes based on the transformation language you select either from the Output menu or from the Language Selection toolbar, see also Selecting a Transformation Language. If you have created user-defined functions, or if you imported external libraries, they also appear in the Libraries window.

To search functions by name or by description, enter the search value in the text box at the bottom of the Libraries window. To find all occurrences of a function (within the currently active mapping), right-click the function, and select Find All Calls from the context menu. You can also view the function data type and description directly from the Libraries window. For more information, see Functions.

Manage Libraries window

From this window you can view and manage all user-defined functions (UDFs) and imported custom libraries (including compiled Java .class files and .NET DLL assembly files) that are used by currently open mappings.

By default, the Manage Libraries window is not visible. To display it, do one of the following:

- On the View menu, click Manage Libraries.
- Click Add/Remove Libraries at the base of the Libraries window.
You can choose to view UDFs and libraries only for the mapping document (.mfd file) that is currently in focus (active), or for all open mapping documents. To view imported functions and libraries for all of the currently open mapping documents, right-click inside the window and select **Show Open Documents** from the context menu.

To display the path of the open mapping document instead of the name, right-click inside the window and select **Show File Paths** from the context menu.

For more information, see [Managing Function Libraries](#).

Project window

MapForce supports the Multiple Document Interface, and allows you to group your mappings into mapping projects. The Project window shows all files and folders that have been added to the project. Project files have the extension *.mfp* (MapForce Project). To search for mappings inside projects, click anywhere inside the Projects window, and press **CTRL + F**. For more information, see [Working with Mapping Projects](#).
User Interface Overview

Introduction

Altova MapForce 2021 Professional Edition

Mapping pane
The Mapping pane is the working area where you design mappings. You can add mapping components (such as files, schemas, constants, variables, and so on) to the mapping area from the Insert menu (see Adding Components to the Mapping). You can also drag into the Mapping pane functions displayed in the Libraries window (see Working with Functions).

XSLT (XSLT2) pane
The XSLT (or XSLT2) pane displays the XSLT 1.0 (or 2.0) transformation code generated from your mapping. To switch to this pane, select XSLT (or XSLT 2) as transformation language, and then click the XSLT tab (or XSLT2 tab, respectively).

This pane provides line numbering and code folding functionality. To expand or collapse portions of code, click the "+" and "-" icons at the left side of the window. Any portions of collapsed code are displayed with an ellipsis symbol. To preview the collapsed code without expanding it, move the mouse cursor over the ellipsis. This opens a tooltip that displays the code being previewed, as shown in the image below. Note that, if the previewed text is too big to fit in the tooltip, an additional ellipsis appears at the end of the tooltip.
To configure the display settings (including indentation, end of line markers, and others), right-click the pane, and select **Text View Settings** from the context menu. Alternatively, click the **Text View Settings** toolbar button.

XQuery pane

The XQuery pane displays the XQuery transformation code generated from your mapping, when you click the **XQuery** button. This pane is available when you select XQuery as transformation language. This pane also provides line numbering and code folding functionality, which works in a similar way as in the XSLT pane (see above).

DB Query pane

The DB Query pane allows you to directly query any major database. You can work with multiple active connections to different databases.
For more information, see Browsing and Querying Databases.

Output pane
The Output pane displays the result of the mapping transformation (for example, an XML file), when you click the Output button. If the mapping generates multiple files, you can navigate sequentially through each generated file.
This pane also provides line numbering and code folding functionality, which works in a similar way as in the XSLT pane (see above).

StyleVision Output buttons
If you have installed Altova StyleVision (https://www.altova.com/stylevision.html), the StyleVision output buttons enable you to preview and save the mapping output in HTML, RTF, PDF, and Word 2007+ formats. This is possible by means of StyleVision Power Stylesheet (SPS) files designed in StyleVision and assigned to a mapping component in MapForce.

Overview window
The Overview window gives a bird's-eye view of the Mapping pane. Use it to navigate quickly to a particular location on the mapping area when the size of the mapping is very large. To navigate to a particular location on the mapping, click and drag the red rectangle.
Introduction

Messages window
The Messages window shows messages, errors, and warnings when you preview or validate a mapping.

![Messages window](image)

To highlight on the mapping area the component or structure which triggered the information, warning, or error message, click the underlined text in the Messages window.

The results of a mapping execution or validation operation is displayed in the Messages window with one of the following status icons:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operation completed successfully.</td>
</tr>
<tr>
<td></td>
<td>Operation completed with warnings.</td>
</tr>
<tr>
<td></td>
<td>Operation has failed.</td>
</tr>
</tbody>
</table>

The Message window may additionally display any of the following message types: information messages, warnings, and errors.
Introduction

User Interface Overview

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Denotes an information message. Information messages do not stop the mapping execution.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Denotes a warning message. Warnings do not stop the mapping execution. They may be generated, for example, when you do not create connections to some mandatory input connectors. In such cases, output will still be generated for those component where valid connections exist.</td>
</tr>
<tr>
<td>🔄</td>
<td>Denotes an error. When an error occurs, the mapping execution fails, and no output is generated. The preview of the XSLT or XQuery code is also not possible.</td>
</tr>
</tbody>
</table>

Other buttons in the Messages window enable you to take the following actions:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔗</td>
<td>Filter messages by severity (information messages, errors, warnings). Select Check All to include all severity levels (this is the default behaviour). Select Uncheck All to remove all severity levels from the filter. In this case, only the general execution or validation status message is displayed.</td>
</tr>
<tr>
<td>👇</td>
<td>Jump to next line.</td>
</tr>
<tr>
<td>👆</td>
<td>Jump to previous line.</td>
</tr>
<tr>
<td>📋</td>
<td>Copy the selected line to clipboard.</td>
</tr>
<tr>
<td>📋</td>
<td>Copy the selected line to clipboard, including any lines nested under it.</td>
</tr>
<tr>
<td>📋</td>
<td>Copy the full contents of the Messages window to clipboard.</td>
</tr>
<tr>
<td>🔍</td>
<td>Find a specific text in the Messages window. Optionally, to find only words, select Match whole word only. To find text while preserving the upper or lower case, select Match case.</td>
</tr>
<tr>
<td>🔍</td>
<td>Find a specific text starting from the currently selected line up to the end.</td>
</tr>
<tr>
<td>🔍</td>
<td>Find a specific text starting from the currently selected line up to the beginning.</td>
</tr>
<tr>
<td>✗</td>
<td>Clear the Messages window.</td>
</tr>
</tbody>
</table>

When you work with multiple mapping files simultaneously, you might want to display information, warning, or error messages in individual tabs for each mapping. In this case, click the numbered tabs available on the left side of the Messages window before executing or validating the mapping.

Application status bar

The application status bar appears at the bottom of the application window, and shows application-level information. The most useful of this information are the tooltips that are displayed here when you move the mouse over a toolbar button. If you are using the 64-bit version of MapForce, the application name appears in the status bar with the suffix (x64). There is no suffix for the 32-bit version.
1.6 Conventions

Example files
Most of the data mapping design files (files with .mfd extension, as well as other accompanying instance files) illustrated or referenced in this documentation are available in the following folders:

- C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples
- C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\Tutorials

The example mappings and instance files accompanying MapForce illustrate most aspects of how it works, and you are highly encouraged to experiment with them as you learn about MapForce. When in doubt about the possible effects of making changes to the MapForce original examples, create back-ups before changing them.

Graphical user interface
Some of the images (screen shots) accompanying this documentation depict graphical user interface elements that may not be applicable to your MapForce edition. In relevant contexts, images typically include the name of the source mapping design (*.mfd) file, as well as the edition of MapForce in which the graphic was produced.
2 Tutorials

The MapForce tutorials are intended to help you understand and use the basic data transformation capabilities of MapForce in a short amount of time. You can regard these tutorials as a "crash course" of MapForce. While the goal is not to illustrate completely all MapForce features, you will be guided through the MapForce basics step-by-step, so it is recommended that you follow the tutorials sequentially. It is important that you understand each concept before moving on to the next one, as the tutorials gradually grow in complexity. Basic knowledge of XML and XML schema will be advantageous.

Convert XML to New Schema
This tutorial shows you how to convert data from an XML structure to another using the XSLT 2.0 language, without writing any code. You will also learn about MapForce sequences and items, creating mapping connections, using a function, validating and previewing a mapping, as well as saving the resulting output to the disk.

Map Multiple Sources to One Target
This tutorial shows you how to read data from two XML files with different schema and merge it into a single target XML file. You will also learn how to change the name and instance files of each mapping component, and the concept of "duplicate inputs".

Work with Multiple Target Schemas
This tutorial shows you how to work with more complex mappings that produce two or more target outputs. More specifically, you will learn how to generate, in the same mapping, an XML file that stores a list of book records, and another XML file that contains only a subset of the books in the first file, filtered by a specific publication year. To support filtering data, you will use a Filter component, a function and a numeric constant.

Process and Generate Files Dynamically
This tutorial shows you how to read data from multiple XML instance files located in the same folder and write it to multiple XML files generated on the fly. You will also learn about stripping the XML and schema declarations and using functions to concatenate strings and extract file extensions.
2.1 Convert XML to New Schema

This tutorial shows you how to convert data between two XML files, while helping you learn the basics of the MapForce development environment. Both XML files store a list of books, but their elements are named and organized in a slightly different way (that is, the two files have different schemas).

Abstract model of the data transformation

The code listing below shows sample data from the file that will be used as data source (for the sake of simplicity, the XML and the namespace declarations are omitted).

```
<books>
  <book id="1">
    <author>Mark Twain</author>
    <title>The Adventures of Tom Sawyer</title>
    <category>Fiction</category>
    <year>1876</year>
  </book>
  <book id="2">
    <author>Franz Kafka</author>
    <title>The Metamorphosis</title>
    <category>Fiction</category>
    <year>1912</year>
  </book>
</books>

books.xml

This is how data should look in the target (destination) file:

```
<library>
 <last_updated>2015-06-02T16:26:55+02:00</last_updated>
 <publication>
 <id>1</id>
 <author>Mark Twain</author>
 <title>The Adventures of Tom Sawyer</title>
 <genre>Fiction</genre>
 </publication>
</library>

library.xml
As you may have noticed, some element names in the source and target XML are not the same. Our goal is to populate the `<author>`, `<title>`, `<genre>` and `<publish_year>` elements of the target file from the equivalent elements in the source file (`<author>`, `<title>`, `<category>`, `<year>`). The attribute `id` in the source XML file must be mapped to the `<id>` element in the target XML file. Finally, we must populate the `<last_updated>` element of the target XML file with the date and time when the file was last updated.

To achieve the required data transformation, let's take the following steps.

Step 1: Select XSLT2 as transformation language

You can do this in one of the following ways:

- Click the XSLT2 (XML) toolbar button.
- On the Output menu, click XSLT 2.0.

Step 2: Add the source XML file to the mapping

The source XML file for this mapping is located at the following path:
`<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\books.xml`. You can add it to the mapping in one of the following ways:

- Click the Insert XML Schema/File (XML) toolbar button.
- On the Insert menu, click XML Schema/File.
- Drag the XML file from Windows Explorer into the mapping area.

Now that the file has been added to the mapping area, you can see its structure at a glance. In MapForce, this structure is known as a mapping component, or simply component. You can expand elements in the component either by clicking the collapse (折叠) and expand icons (展开), or by pressing the + and - keys on the numeric keypad.
To move the component inside the mapping pane, click the component header and drag the mouse to a new position. To resize the component, drag the corner of the component. You can also double-click the corner so that MapForce adjusts the size automatically.

The top level node represents the file name; in this particular case, its title displays the name of the XML instance file. The XML elements in the structure are represented by the icon, while XML attributes are represented by the icon.

The small triangles displayed on both sides of the component represent data inputs (if they are on the left side) or outputs (when they are on the right side). In MapForce, they are called input connectors and output connectors, respectively.

Step 3: Add the target XML schema to the mapping

To generate the target XML, we will use an existing XML schema file. In a real-life scenario, this file may have been provided to you by a third party, or you can create it yourself with a tool such as XMLSpy. If you don’t have a schema file for your XML data, MapForce prompts you to generate it whenever you add to the mapping an XML file without an accompanying schema or schema reference.

For this particular example, we are using an existing schema file available at: \Documents\Altova\MapForce2021\MapForceExamples\Tutorial\library.xsd. To add it to the mapping, follow the same steps as with the source XML file (that is, click the Insert XML Schema/File toolbar button). Click Skip when prompted by MapForce to supply an instance file.
At this stage, the mapping design looks as follows:

![Mapping design diagram]

Step 4: Make the connections

For each `<book>` in the source XML file, we want to create a new `<publication>` in the target XML file. We will therefore create a mapping connection between the `<book>` element in the source component and the `<publication>` element in the target component. To create the mapping connection, click the output connector (the small triangle) to the right of the `<book>` element and drag it to the input connector of the `<publication>` element in the target.

When you do this, MapForce may automatically connect all elements which are children of `<book>` in the source file to elements having the same name in the target file; therefore, four connections are being created simultaneously. This behavior is called "Auto Connect Matching Children" and it can be disabled and customized if necessary.

![Connection diagram]

You can enable or disable the "Auto Connect Matching Children" behavior in one of the following ways:

- Click the **Toggle auto connect of children** button.
- On the **Connection** menu, click **Auto Connect Matching Children**.
Notice that some of the input connectors on the target component have been highlighted by MapForce in orange, which indicates that these items are mandatory. To ensure the validity of the target XML file, provide values for the mandatory items as follows:

- Connect the `<category>` element in the source with the `<genre>` element in the target
- Connect the `<year>` element in the source with the `<publish_year>` element in the target

Finally, you need to supply a value to the `<last_updated>` element. If you move the mouse over its input connector, you can see that the element is of type `xs:dateTime`. Note that, for tips to be displayed, the Show tips () toolbar button must be enabled.

You can also make the data type of each item visible at all times, by clicking the Show Data Types () toolbar button.

You can get the current date and time (that is, the `xs:dateTime` value) by means of a date and time XSLT function. To find the XSLT function to the mapping, start typing "date" in the text box located in the lower part of the Libraries window. Alternatively, double-click an empty area on the mapping and start typing "current-date".
As shown above, if you move the mouse over the "result" part of the function, you can see its description. For tips to be displayed, make sure that the **Show tips** (info) toolbar button is enabled.

To add the function to the mapping, drag the function into the mapping pane, and connect its output to the input of the `<last_updated>` element.

You have now created a MapForce mapping design (or simply a "mapping") which converts data from the books.xml instance file (having the books.xsd schema) to the new library.xml file (having the library.xsd schema). If you double-click the header of each component, you can view these and other settings in the Component Settings dialog box, as shown below.
Step 5: Validate and save the mapping

Validating a mapping is an optional step that enables you to see and correct potential mapping errors and warnings before you run the mapping. To check whether the mapping is valid, do one of the following:

- On the File menu, click Validate Mapping.
- Click the Validate () toolbar button.

The Messages window displays the validation results:
At this point, you might also want to save the mapping to a file. To save the mapping, do one of the following:

- On the File menu, click Save.
- Click the Save () toolbar button.

For your convenience, the mapping created in this tutorial is available at the following path: `\<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\BooksToLibrary.mfd`. Therefore, from this point onwards, you can either continue with the mapping file you created, or with the `BooksToLibrary.mfd` file.

Step 6: Preview the mapping result

You can preview the result of the mapping directly in MapForce. To do this, click the Output button located in the lower part of the mapping pane. MapForce runs the transformation and displays the result of the mapping in the Output pane.
Output pane

You can now see the result of the transformation in MapForce.

By default, the files displayed for preview in the Output pane are not written to the disk. Instead, MapForce creates temporary files. To save the file displayed in the Output pane to the disk, select the menu command Output | Save Output File, or click the Save generated output toolbar button.

To configure MapForce to write the output directly to final files instead of temporary, go to Tools | Options | General, and then select the Write directly to final output files check box. Note that enabling this option is not recommended while you follow this tutorial, because you may unintentionally overwrite the original tutorial files.
You can also preview the generated XSLT code that performs the transformation. To preview the code, click the XSLT2 button located in the lower area of the mapping pane.

To generate and save the XSLT2 code to a file, select the menu item File | Generate Code in | XSLT 2.0. When prompted, select a folder where the generated code must be saved. After code generation completes, the destination folder includes the following two files:

1. An XSLT transformation file, named after the target schema (in this example, MappingMaptolibrary.xslt).
2. A DoTransform.bat file. The DoTransform.bat file enables you to run the XSLT transformation in RaptorXML Server (for more information, see https://www.altova.com/raptorxml.html).
2.2 Map Multiple Sources to One Target

In the previous tutorial, you have converted data from a source file (books.xml) to a target file (library.xml). The target file (library.xml) did not exist before running the mapping; it was generated by the mapping transformation. Let's now imagine a scenario where you already have some data in the library.xml file, and you want to merge this data with data converted from the books.xml. The goal in this tutorial is to design a mapping that generates a file called merged_library.xml. The generated file will include data from two sources: the books.xml file and the library.xml file. Note that the files used as source (books.xml and library.xml) have different schemas. If the source files had the same schema, you could also merge their data using a different approach (see Process and Generate Files Dynamically).

Abstract model of the data transformation

To achieve the required goal, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the BooksToLibrary.mfd mapping from the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder. You have already designed this mapping in the Convert XML to New Schema tutorial. To begin, open the BooksToLibrary.mfd file in MapForce, and save it with a new name.

Make sure to save the new mapping in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder, because it references several files from it.
Step 2: Create a second source component

First, select the target component and copy it (press Ctrl + C), and then paste it (press Ctrl + V) into the same mapping. Click the header of the new component and drag it under the books component.
The mapping now has two source components: **books** and **library**, and one target component: **library**.

You can always move the mapping components in any direction (left, right, top, bottom). Nevertheless, placing a source component to the left of a target component will make your mapping easier to read and understand by others. This is also the convention for all mappings illustrated in this documentation, as well as in the sample mapping files accompanying your MapForce installation.

Step 3: Verify and set the input/output files

In the previous step, the new source component was copy-pasted from the target component, so it inherits the same settings. To ensure that the name input/output instance files are correctly set, double-click the header of each component, and, in the Component Settings dialog box, verify and change the name and the input/output files of each component as shown below.
Components settings for the first source (*books*).

Components settings for the second source (*library*).
As shown above, the first source component reads data from `books.xml`. The second source component reads data from `library.xml`. Finally, the target component outputs data to a file called `merged_library.xml`.

Step 4: Make the connections

To instruct MapForce to write data from the second source to the target, click the output connector (small triangle) of the `publications` item in the source `library` component and drag it to the input connector of the `publications` item in the target `library` component. Because the target input connector already has a connection to it, the following notification message appears.

In this particular tutorial, replacing the connection is not what we want to achieve; our goal is to map data from two sources. Therefore, click **Duplicate Input**. By doing so, you configure the target component to accept data from the new source as well. The mapping now looks as follows:
Notice that the publication item in the target component has now been duplicated. The new publication(2) node will accept data from the source library component. Importantly, even though the name of this node appears as publication(2) in the mapping, its name in the resulting XML file will be publication, which is the intended goal.

You can now click the Output button at the bottom of the mapping pane, and view the mapping result. You will notice that data from both library.xml and books.xml files has now been merged into the new merged_library.xml file.
2.3 Work with Multiple Target Schemas

In the previous tutorial, Map Multiple Sources to One Target, you have seen how to map data from multiple source schemas to a single target schema. You have also created a file called merged_library.xml, which stores book records from two sources. Now let's assume that someone from another department has asked you to provide a subset of this XML file. Specifically, you must deliver an XML file that includes only the books published after 1900.

For convenience, you can modify the existing MultipleSourcesToOneTarget.mfd mapping so that, whenever required, you can generate both the complete XML library, and the filtered library.

In the diagram above, the data is first merged from two different schemas (books.xsd and library.xsd) into a single XML file called merged_library.xml. Secondly, the data is transformed using a filtering function and passed further to the next component, which creates an XML file called filtered_library.xml. The "intermediate" component acts both as data target and source. In MapForce, this technique is known as "chaining mappings", which is also the subject of this tutorial.

Our goal is to make it possible to generate at any time both the merged_library.xml and the filtered_library.xml. To achieve the goal, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the MultipleSourcesToOneTarget.mfd mapping from the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder. You have already designed this mapping in the Map Multiple Sources to One Target tutorial. To begin, open the MultipleSourcesToOneTarget.mfd file in MapForce, and save it with a new name.
Make sure to save the new mapping in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder, because it references several files from it.

Step 2: Add and configure the second target component

To add the second target component, click the **Insert XML Schema/File** toolbar button, and open the `library.xsd` file located in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder. Click **Skip** when prompted to supply a sample instance file. The mapping now looks as follows:
As shown above, the mapping now has two source components: books and library, and two target components. To distinguish between the target components, we will rename the second one to filtered_library, and also set the name of the XML file that should be generated by it. To do this, double-click the header of the right-most component and edit the component settings as follows:

Notice that the new name of the component is filtered_library, and the output XML file is named filtered_library.xml.
Step 3: Make the connections

Create a connection from the item publication in the merged_library to the item publication in the filtered_library. When you do this, a notification message is displayed.

Click OK. Notice that new buttons are now available in the upper-right corner of both target components: Preview () and Pass-through (). These buttons will be used and explained in the following steps.
Step 4: Filter data

To filter data before supplying it to the filtered_library, we will use a Filter component. To add a filter component, right-click the connection between merged_library and filtered_library, and select Insert Filter: Nodes/Rows from the context menu.

The filter component has now been added to the mapping.
As shown above, the bool input connector is highlighted in orange, which suggests that an input is required. If you move the mouse over the connector, you can see that an input of type `xs:boolean` is required. Note that, for tips to be displayed, the **Show tips** button must be enabled.

The filter component requires a condition that returns either `true` or `false`. When the Boolean condition returns `true`, data of the current publication sequence will be copied over to the target. When the condition returns `false`, data will not be copied.

In this tutorial, the required condition is to filter all books which were published after 1900. To create the condition, do the following:

1. Add a constant of numeric type having the value “1900” (On the **Insert** menu, click **Constant**). Choose **Number** as type.
2. In the Libraries window, locate the function `greater` and drag it to the mapping pane.
3. Make the mapping connections to and from the function `greater` as shown below. By doing this, you are instructing MapForce: “When `publish_year` is greater than 1900, copy the current `publication` source item to the `publication` target item”.

Step 5: Preview and save the output of each target component

You are now ready to preview and save the output of both target components. When multiple target components exist in the same mapping, you can choose which one to preview by clicking the `Preview` button. When the `Preview` button is in a pressed state, it indicates that that specific component is currently enabled for preview (and this particular component will generate the output in the Preview pane). Only one component at a time can have the preview enabled.

Therefore, when you want to view and save the output of the `merged_library` (that is, the “intermediate”) component, do the following:

1. Click the `Preview` button on the `merged_library` component.
2. Click the `Output` button at the bottom of the mapping pane.
3. On the `Output` menu, click `Save Output File` if you want to save the output to a file.
When you want to view and save the output of the `filtered_library` component:

1. Click the Pass-through button (appears) on the `merged_library` component.
2. Click the Preview button (appears) on the `filtered_library` component.
3. Click the Output button at the bottom of the mapping pane.
4. On the Output menu, click Save Output File if you want to save the output to a file.

Notice the Pass-through (appears) button—clicking or not clicking it makes a big difference in any mapping which has multiple target components, including this one. When this button is in a pressed state (appears), MapForce lets data pass through the intermediate component, so that you can preview the result of the entire mapping.

Release the button (appears) if you want to preview only the portion of the mapping between the `merged_library` and the `filtered_library`. In the latter case, an error will be generated. This behavior is expected, because the intermediate component does not have a valid input XML file from which it should read data. To solve the problem, double-click the header of the component and edit so as to supply a valid input XML file, as shown below:

![Component Settings](image)

You have now finished designing a mapping which has multiple target components, and you can view and save the output of each target, which was the intended goal of this tutorial. For further information about working with pass-through components, see [Chained mappings / pass-through components](#).
2.4 Process and Generate Files Dynamically

This tutorial shows you how to read data from multiple source XML files and write it to multiple target files in the same transformation. To illustrate this technique, we will now create a mapping with the following goals:

1. Read data from multiple XML files in the same directory.
2. Convert each file to a new XML schema.
3. For each source XML file, generate a new XML target file under the new schema.
4. Strip the XML and namespace declaration from the generated files.

Abstract model of the data transformation

We will use three source XML files as example. The files are located in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder, and they are named `bookentry1.xml`, `bookentry2.xml`, and `bookentry3.xml`. Each of the three files stores a single book.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:noNamespaceSchemaLocation="books.xsd">
   <book id="1">
     <author>Mark Twain</author>
     <title>The Adventures of Tom Sawyer</title>
     <category>Fiction</category>
     <year>1876</year>
   </book>
</books>
```

`bookentry1.xml`
Tutorials Process and Generate Files Dynamically

The source XML files use the books.xsd schema available in the following folder: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\. To convert the source files to a new XML schema, we will use the library.xsd schema (available in the same folder). After the transformation, the mapping will generate three files according to this new schema (see the code listings below). We will also configure the mapping so that the name of the generated files will be: publication1.xml, publication2.xml, and publication3.xml. Notice that the XML declaration and the namespace declaration must be stripped.

publication1.xml
To achieve the goals, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the `BooksToLibrary.mfd` mapping from the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder. You have already designed this mapping in the Convert XML to New Schema tutorial. To begin, open the `BooksToLibrary.mfd` file in MapForce, and save it with a new name, in the same folder.

```
<library>
  <publication>
    <id>2</id>
    <author>Franz Kafka</author>
    <title>The Metamorphosis</title>
    <genre>Fiction</genre>
    <publish_year>1912</publish_year>
  </publication>
</library>
```

publication2.xml

```
<library>
  <publication>
    <id>3</id>
    <author>Herman Melville</author>
    <title>Moby Dick</title>
    <genre>Fiction</genre>
    <publish_year>1851</publish_year>
  </publication>
</library>
```

publication3.xml
Step 2: Configure the input

To instruct MapForce to process multiple XML instance files, double-click the header of the source component. In the Component Settings dialog box, enter `bookentry*.xml` as input file.

The asterisk (`*`) wildcard character in the file name instructs MapForce to use as mapping input all the files that have the `bookentry-` prefix. Because the path is a relative one, MapForce will look for all `bookentry-` files in the same directory as the mapping file. Note that you could also enter an absolute path if necessary, while still using the `*` wildcard character.

Step 3: Configure the output

To create the file name of each output file, we will use the `concat` function. This function concatenates (joins) all the values supplied to it as argument.
To build the file name using the `concat` function:

1. Search for the `concat` function in the Libraries window and drag it to the mapping area. By default, this function is added to the mapping with two parameters; however, you can add new parameters if necessary. Click the **Add parameter** symbol inside the function component and add a third parameter to it. Note that clicking the **Delete parameter** symbol deletes a parameter.

2. Insert a constant (on the **Insert** menu, click **Constant**). When prompted to supply a value, enter "publication" and leave the **String** option unchanged.

3. Connect the constant with `value1` of the `concat` function.

4. Connect the `id` attribute of the source component with `value2` of the `concat` function.
5. Search for the **get-fileext** function in the Libraries window and drag it to the mapping area. Create a connection from the top node of the source component (File: books.xml) to the **filepath** parameter of this function. Then create a connection from the result of the **get-fileext** function to **value3** of the **concat** function. By doing this, you are extracting only the extension part (in this case, .xml) from the source file name.

So far, you have provided as parameters to the **concat** function the three values which, when joined together, will create the generated file name (for example, **publication1.xml**):
The constant "publication" supplies the constant string value "publication".

The attribute id of the source XML file supplies a unique identifier value for each file. This is to prevent all files from being generated with the same name.

The get-fileext function returns the extension of the file name to be generated.

You can now instruct MapForce to actually build the file name when the mapping runs. To do this, click the File (File) or File/String (File/String) button of the target component and select **Use Dynamic File Names Supplied by Mapping**.

You have now instructed MapForce to generate the instance files dynamically, with whatever name will be provided by the mapping. In this particular example, the name is created by the concat function; therefore, we will connect the result of the concat function with the File: <dynamic> node of the target component.
If you double-click the target component header at this time, you will notice that the **Input XML File** and **Output XML File** text boxes are disabled, and their value shows `<File names supplied by the mapping>`.

This serves as an indication that you have supplied the instance file names dynamically from a mapping, so it is no longer relevant to define them in the component settings.

Finally, you need to strip the XML namespace and schema declaration from the target. To achieve this, clear the selection from the **Add schema/DTD reference...** and **Write XML Declaration** check boxes on the Component Settings dialog box.
You can now run the mapping and see the result, as well as the name of generated files. This mapping generates multiple output files. You can navigate through the output files using the left and right buttons in the upper left corner of the output pane, or by picking a file from the adjacent drop-down list.

```
<library>
  <last_updated>2015</last_updated>
  <publication>
    <id>1</id>
    <author>Mark Twain</author>
    <title>The Adventures of Tom Sawyer</title>
    <genre>Fiction</genre>
    <publish_year>1876</publish_year>
  </publication>
</library>
```
3 Common Tasks

This chapter describes common MapForce tasks and concepts, such as working with mappings, components, connections, and mapping projects.
3.1 Working with Mappings

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to be transformed from one format to another. A mapping consists of components that you add to the MapForce mapping area in order to create your data transformations (for example, convert XML documents from one schema to another). A valid mapping consists of one or several source components connected to one or several target components. You can run a mapping and preview its result directly in MapForce. You can generate code and execute it externally. You can also compile a mapping to a MapForce execution file and automate mapping execution using MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

To create a new mapping:

1. Do one of the following:
 o On the File menu, click New.
 o Click the New toolbar button.
2. Click Mapping, and then click OK.

Your mapping is now created; however, it does not yet do anything because it is empty. A mapping requires at least two connected components to become valid, so the next step is to add components to the mapping (see Adding Components to the Mapping) and draw connections between components (see Working with Connections).

3.1.1 Adding Components to the Mapping

In MapForce, the term “component” is what represents visually the structure (schema) of your data, or how data is to be transformed (functions). Components are the central building pieces of any mapping. On the mapping area, components appear as rectangles. The following are examples of MapForce components:

- Constants
- Databases
- Filters
- Conditions
- Function components
- EDI documents (UN/EDIFACT, ANSI X12, HL7)
- Excel 2007+ files
- Simple input components
- Simple output components
82 Common Tasks Working with Mappings

- XML Schemas and DTDs

To add a component to the mapping, do one of the following:

- On the Insert menu, click the option relevant for the component type you wish to add (for example, XML Schema/File).
- Drag a file from Windows File Explorer onto the mapping area. Note that this operation is possible only for compatible file-based components.
- Click the relevant button on the Insert Component toolbar.

Each component type has specific purpose and behavior. For component types where that is necessary, MapForce walks you through the process by displaying contextual wizard steps or dialog boxes. For example, if you are adding an XML schema, a notification dialog box prompts you to optionally select an instance file as well.

For an introduction to components, see Working with Components. For specific information about each technology supported as mapping source or target, see Data Sources and Targets. For information about MapForce built-in components used to store data temporarily or transform it (such as filtering or sorting), see Designing Mappings.

3.1.2 Adding Components from a URL

In addition to adding local files as mapping components, you can also add files from a URL. Note that this operation is supported when you add a component as source component (that is, your mapping reads data from the remote file). The supported protocols are HTTP, HTTPS, and FTP.

To add a component from a URL:

1. On the Insert menu, select the type of the component type you wish to add (for example, XML Schema/File).
2. On the Open dialog box, click Switch to URL.
3. Enter the URL of the file in the **File URL** text box, and click **Open**.
Make sure that the file type in the File URL text box is the same as the file type you specified in step 1.

If the server requires password authentication, you will be prompted to enter the user name and password. If you want the user name and password to be remembered next time you start MapForce, enter them in the Open dialog box and select the Remember password between application starts check box.

The Open As setting defines the grammar for the parser when opening the file. The default and recommended option is Auto.

If the file you are loading is not likely to change, select the Use cache/proxy option to cache data and speed up loading the file. Otherwise, if you want the file to be reloaded each time when you open the mapping, select Reload.

For servers with Web Distributed Authoring and Versioning (WebDAV) support, you can browse files after entering the server URL in the Server URL text box and clicking Browse. Although the preview shows all file types, make sure that you choose to open the same file type as specified in step 1 above; otherwise, errors will occur.
If the server is a Microsoft SharePoint Server, select the **This is a Microsoft SharePoint Server** check box. Doing so displays the check-in or check-out state of the file in the preview area. If you want to make sure that no one else can edit the file on the server while you are using it in MapForce to read data from it, right-click the file and select **Check Out**. To check in any file that was previously checked out by you, right-click the file and select **Check In**.

![Open dialog box (in Switch to URL mode)](image)

3.1.3 About Data Streaming

Data streaming is a MapForce built-in mechanism that allows you to use arbitrarily large data sources as input or output to your mappings. Data streaming should not be confused with [stream objects](#) in MapForce generated code. (The latter represent a possible way of handling data if you integrate MapForce generated code with a custom C# and Java application.)

Data streaming applies to the following data sources:

- XML files
- CSV files
- Fixed-length field files
- Databases
When you use any of the above data sources as input or output in your mappings, MapForce treats the data source as an open stream of data, and processes its contents sequentially, instead of loading all data into the memory.

Note: Data streaming is possible only if you have selected BUILT-IN as transformation language (see Selecting a transformation language).

Memory usage considerations

When you work with mapping inputs and outputs that are data streaming candidates, “Out of memory” errors can occur if your mapping requires random access to the input source.

For example, let’s assume that your mapping contains a component that applies a `group-by` function on the source data. If you apply the `group-by` function on the entire tree structure of the input file, this would require the entire source file to be loaded into memory, and, consequently, file streaming would no longer be possible. The same is true for any operation which would require the whole contents of the mapping source to be loaded into memory, such as sorting.

When situations such as the one described above occur, the transformation will nevertheless complete successfully if there is enough virtual memory and disk space available on your system.

3.1.4 Selecting a Transformation Language

You can choose one of the following as data transformation language:

- XSLT 1.0
- XSLT 2.0
- XQuery
- C++
- C#
- Java
- BUILT-IN (the default native transformation engine in MapForce)

To select a transformation language, do one of the following:

- On the **Output** menu, click the name of the language you wish to use for transformation.
- Click the name of the language in the Language Selection toolbar.

When you change the transformation language of the mapping, certain MapForce features may not be supported for that language. BUILT-IN supports most MapForce features compared to other languages. For more information, see [Support Notes](#).
The BUILT-IN transformation language

When you select BUILT-IN as transformation language for your mapping, MapForce uses its native transformation engine to execute the data mapping. MapForce also uses this option implicitly, whenever you preview the output of a mapping where the selected transformation language is Java, C#, or C++.

The BUILT-IN engine executes mappings without the need for any external processors, and it may be a good choice if memory usage is a concern. If you don't need to generate program code in a specific language, use BUILT-IN as default option, because it supports most MapForce features compared to other languages, as outlined in Support Notes. Furthermore, selecting BUILT-IN as transformation language has the advantage that the mapping qualifies for execution with MapForce Server, see Automating Mappings and MapForce.

3.1.5 Validating Mappings

MapForce validates mappings automatically, when you click the Output tab to preview the transformation result. You can also validate a mapping explicitly, before attempting to preview its result. This helps you identify and correct potential mapping errors and warnings before the mapping is run. Note that running a mapping may generate additional runtime errors or warnings depending on the processed data, for example, when values mapped to attributes are overwritten.

To validate a mapping explicitly, do one of the following:

- On the File menu, click Validate Mapping.
- Click the Validate toolbar button.

The Messages window displays the validation results, for example:

![Messages window](image)

When you validate a mapping, MapForce checks for the validity of the mapping (such as incorrect or missing connections, unsupported component kinds), and the validation result is then displayed in the Messages window with one of the following status icons:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>Validation has completed successfully.</td>
</tr>
</tbody>
</table>
Common Tasks Working with Mappings

Validation of Messages

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢</td>
<td>Validation has completed with warnings.</td>
</tr>
<tr>
<td>🔴</td>
<td>Validation has failed.</td>
</tr>
</tbody>
</table>

The Message window may additionally display any of the following message types: information messages, warnings, and errors.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Denotes an information message. Information messages do not stop the mapping execution.</td>
</tr>
<tr>
<td>🔄</td>
<td>Denotes a warning message. Warnings do not stop the mapping execution. They may be generated, for example, when you do not create connections to some mandatory input connectors. In such cases, output will still be generated for those component where valid connections exist.</td>
</tr>
<tr>
<td>🔄</td>
<td>Denotes an error. When an error occurs, the mapping execution fails, and no output is generated. The preview of the XSLT or XQuery code is also not possible.</td>
</tr>
</tbody>
</table>

To highlight on the mapping area the component or structure which triggered the information, warning, or error message, click the underlined text in the Messages window.

For components that transform data (such as functions or variables), MapForce validation works as follows:

- If a mandatory **input connector** is unconnected, an error message is generated and the transformation is stopped.
- If an **output connector** is unconnected, then a warning is generated and the transformation process continues. The offending component and its data are ignored and are not mapped to the target document.

To display the result of each validation in an individual tab, click the numbered tabs available on the left side of the Messages window. This may be useful, for example, if you work with multiple mapping files simultaneously.

Other buttons in the Messages window enable you to take the following actions:

- Filter the message by types (for example, to show only errors or warnings)
- Move up or down through the entries
- Copy the message text to the clipboard
- Find a specific text in the window
- Clear the Messages window.

For general information about the Messages window, see User Interface Overview.

3.1.6 Validating the Mapping Output

After you click the **Output** tab to preview the mapping, the resulting output becomes available in the Output pane. You can validate this output against the schema associated with it. For example, if the mapping
transformation generates an XML file, then the resulting XML document can be validated against the XML schema.

For XML files, you can specify the schema associated with the instance file in the Add Schema/DTD reference field of the Component Settings dialog box (see XML Component Settings). The path specifies where the schema file referenced by the produced XML output is to be located. This ensures that the output instance can be validated when the mapping is executed. You can enter an http:// address in this field, as well as an absolute or relative path. If you do not select the Add Schema/DTD reference field, then the validation of the output file against the schema is not possible. If you select this check box but leave it empty, then the schema filename of the Component Settings dialog box is generated into the output and the validation is done against it.

To validate the mapping output, do one of the following:

- Click the Validate Output toolbar button.
- On the Output menu, click Validate Output File.

Note: The Validate Output button and its corresponding menu command (Output | Validate Output File) are enabled only if the output file supports validation against a schema.

The result of the validation is displayed in the Messages window, for example:

\"C:\\Documents and Settings\\My Documents\\Altova\\MapForce2011\\MapForceExamples\\Tutorial\\Tutorial\\ExpReport-Target.xml\": Output file validation successful. - 0 error(s), 0 warning(s)

If the validation was not successful, the message contains detailed information on the errors that occurred.

The validation message contains a number of hyperlinks you can click for more detailed information:

- Clicking the file path opens the output of the transformation in the Output tab of MapForce.
- Clicking <ElementName> link highlights the element in the Output tab.
Common Tasks Working with Mappings

- Clicking the icon opens the definition of the element in XMLSpy (if installed).
- Clicking the hyperlinks in the Details subsection (e.g., cvc-model-group) opens a description of the corresponding validation rule on the https://www.w3.org/ website.

3.1.7 Previewing the Output

When working with MapForce mappings, you can preview the resulting output without having to run and compile the generated code with an external processor or compiler. In general, it is a good idea to preview the transformation output within MapForce before attempting to process the generated code externally.

When you choose to preview the mapping results, MapForce executes the mapping and populates the Output pane with the resulting output.

Once data is available in the Output pane, you can validate and save it if necessary (see Validating the Mapping Output). You can also use the Find command (Ctrl + F key combination) to quickly locate a particular text pattern within the output file (see also Searching in Text View).

Any errors, warning, or information messages related to the mapping execution are displayed in the Messages window (see User Interface Overview).

To preview the transformation output:

- Click the Output tab under the Mapping window. MapForce executes the mapping using the transformation language selected in the Language toolbar and populates the Output pane with the resulting output.

Note: If you select C++, C#, or Java as transformation language, MapForce executes the mapping using its built-in transformation engine. The result that appears in the Output pane is the same as if the Java, C++, or C# code had been generated, compiled and executed.

To save the transformation output, do one of the following:

- On the Output menu, click Save Output File.
- Click the Save Generated Output toolbar button.

Partial output preview

When you are previewing large output files, MapForce limits the amount of data displayed in the Output pane. More specifically, MapForce displays only a part of the file in the Output pane, and a Load more... button appears in the lower area of the pane. Clicking the Load more... button appends the next file part to the currently visible data, and so on.

![Result file size: 324.3 MB. 3% of the result are displayed.](Load more)

Note: The Pretty-print button becomes active when the complete file has been loaded into the Output pane.

You can configure the preview settings from the General tab of the Options dialog box (see Changing the MapForce Options).
3.1.8 Text View Features

The **Output** pane, the **XSLT** pane, as well as the **XQuery** pane have multiple visual aids to make the display of text easier. These include:

- Line Numbers
- Syntax Coloring
- Bookmarks
- Source Folding
- Indentation Guides
- End-of-Line and Whitespace Markers
- Zooming
- Pretty-printing
- Word wrapping
- Text highlighting

Where applicable, you can toggle or customize the features above from the **Text View Settings** dialog box. Settings in the **Text View Settings** dialog box apply to the entire application—not only to the active document.

Text View Settings dialog box

To open the **Text View settings** dialog box, do one of the following:

- On the **Output** menu, select **Text View Settings**.
• Click the Text View Settings toolbar button.
• Right-click the Output pane, and select Text View Settings from the context menu.

Some of the navigation aids can also be toggled from the Text View toolbar, the application menu, or keyboard shortcuts.

Text View toolbar

For reference to all applicable shortcuts, see the "Key Map" section of the Text View Settings dialog box illustrated above.

Line numbers
Line numbers are displayed in the line numbers margin, which can be toggled on and off in the Text View Settings dialog box. When a section of text is collapsed, the line numbers of the collapsed text are also hidden.

Syntax coloring
Syntax coloring is applied according to the semantic value of the text. For example, in XML documents, depending on whether the XML node is an element, attribute, content, CDATA section, comment, or processing instruction, the node name (and in some cases the node's content) is colored differently.

Bookmarks
Lines in the document can be bookmarked for quick reference and access. If the bookmarks margin is toggled on, bookmarks are displayed in the bookmarks margin.
Otherwise, bookmarked lines are highlighted in cyan.

The bookmarks margin can be toggled on or off in the Text View Settings dialog box.
You can edit and navigate bookmarks using the following commands:

- **Insert/Remove Bookmark (Ctrl + F2)**
- **Go to Next Bookmark (F2)**
- **Go to Previous Bookmark (Shift + F2)**
- **Delete All Bookmarks (Ctrl + Shift + F2)**

The commands above are available in the **Output** menu. Bookmark commands are also available through the context menu, when you right-click the **Output** (or **XSLT**, or **XQuery**) pane.

Source folding

Source folding refers to the ability to expand and collapse nodes and is displayed in the source folding margin. The margin can be toggled on and off in the Text View Settings dialog box. To expand or collapse portions of text, click the “+” and “−” nodes at the left side of the window. Any portions of collapsed code are displayed with an ellipsis symbol. To preview the collapsed code without expanding it, move the mouse cursor over the ellipsis. This opens a tooltip that displays the code being previewed, as shown in the image below. Note that, if the previewed text is too big to fit in the tooltip, an additional ellipsis appears at the end of the tooltip.

```
<?xml version="1.0" encoding="UTF-8"?>
<Customers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="Customers.xsd">
  <Customer>
    <Number>1</Number>
    <FirstName>Fred</FirstName>
    <LastName>Landis</LastName>
    <Address>Oakstreet</Address>
  </Customer>
  <Customer>
    <Number>2</Number>
    <City>Boston</City>
    <ZIP>23320</ZIP>
    <State>MA</State>
    <LastName>Dotter</LastName>
  </Customer>
</Customers>
```

Indentation guides

Indentation guides are vertical dotted lines that indicate the extent of a line’s indentation. They can be toggled on and off in the **Text View Settings** dialog box.

Note: The **Insert tabs** and **Insert spaces** options take effect when you use the **Output** | **Pretty-Print XML text** option.
Common Tasks

End-of-line markers, whitespace markers
End-of-line (EOL) markers and whitespace markers can be toggled on in the Text View Settings dialog box. The image below shows a document where both end-of-line and whitespace markers are visible. An arrow represents a tab character, a "CR" is a carriage return, and a dot represents a space character.

```
<xml version="1.0" encoding=",UTF-8" CR
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" CR
   xsi:noNamespaceSchemaLocation="books.xsd"> CR
   <book id="1"> CR
     <author>Mark·Twain</author> CR
     <title>The Adventures of Tom·Sawyer</title> CR
     <category>Fiction</category> CR
     <year>1876</year> CR
   </book> CR
 </books> CR
```

Zooming in and out
You can zoom in and out by scrolling (with the scroll-wheel of the mouse) while holding the Ctrl key pressed. Alternatively, press the "-" or "+" keys while holding the Ctrl key pressed.

Pretty-printing
The Pretty-Print XML Text command reformats the active XML document in Text View to give a structured display of the document. By default, each child node is offset from its parent by four space characters. This can be customized from the Text View Settings dialog box.

To pretty-print an XML document, select the Output | Pretty-Print XML Text menu command, or click the Pretty Print toolbar button.

Word wrapping
To toggle word wrapping in the currently active document, select the Output | Word Wrap menu command, or click the Word Wrap toolbar button.

Text highlighting
When you select text, all matches in the document of the text selection that you make are highlighted automatically. The selection is highlighted in pale blue, and matches are highlighted in pale orange. The selection and its matches are indicated in the scroll bar by gray marker-squares. The current cursor position is given by the blue cursor-marker in the scroll bar.

To switch text highlighting on, select Enable auto-highlighting in the Text View Settings dialog box. A selection can be defined to be an entire word or a fixed number of characters. You can also specify whether casing should be taken into account or not.

For a character selection, you can specify the minimum number of characters that must match, starting from the first character in the selection. For example, you can choose to match two or more characters. In this case, one-character selections will not be matched, but a selection consisting of two or more characters will be
matched. So, in this case, if you select \texttt{t}, then no matches will be shown; selecting \texttt{ty} will show all \texttt{ty} matches; selecting \texttt{typ} will show all \texttt{typ} matches; and so on.

For word searches, the following are considered to be separate words: element names (without angular brackets), the angular brackets of element tags, attribute names, and attribute values without quotes.

3.1.9 Searching in Text View

The text in the **Output** pane, the **XQuery** pane, as well as the **XSLT** pane can be searched using an extensive set of options and visual aids.

To start a search, press **Ctrl+F** (or select the menu command **Edit | Find**). You can then search in the entire document or within a text selection for a search term that you enter in the dialog.

- Enter a string to find, or use the combo box to select a string from one of the last 10 strings.
- When you enter or select a string to find, all matches are highlighted and the positions of the matches are indicated by beige markers in the scroll bar.
- The currently selected match has a different highlight color than the other matches, and its position is indicated in the scroll bar by the dark blue cursor-marker.
- The total number of matches is listed below the search term field, together with the index position of the currently selected match. For example, \textit{2 of 4} indicates that the second of four matches is currently selected.
- You can move from one match to the next, in both directions, by selecting the **Previous** (Shift+F3) and **Next** (F3) buttons at bottom right.
To close the Find dialog, click the Close button at top right, or press Esc.

Note the following points:

- The Find dialog is modeless. This means that it can remain open while you continue to use Text View.
- If text is selected prior to opening the dialog box, then the selected text is automatically inserted into the search term field.
- To search within a selection, do the following: (i) Mark the selection; (ii) Toggle on the Find in Selection option to lock the selection; (iii) Enter the search term. To search within another selection, unlock the current selection by toggling off the Find in Selection option, then make the new selection and toggle on the Find in Selection option.
- After the Find dialog is closed, you can repeat the current search by pressing F3 for a forward search, or Shift+F3 for a backward search. The Find dialog will appear again in this case.

Find options
Find criteria can be specified via buttons located below the search term field. When an option is toggled on, its button color changes to blue. You can select from the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match case</td>
<td>Aa</td>
<td>Performs a case-sensitive search when toggled on ("Address" is not the same as "address").</td>
</tr>
<tr>
<td>Match whole word</td>
<td>Abc</td>
<td>Only the exact words in the text will be matched. For example, for the input string fit, with Match whole word toggled on, only the word fit will match the search string; the fit in fitness, for example, will not.</td>
</tr>
<tr>
<td>Regular expression</td>
<td>⌂</td>
<td>If toggled on, the search term will be read as a regular expression. See “Using regular expressions” below.</td>
</tr>
<tr>
<td>Find anchor</td>
<td>⌂</td>
<td>When a search term is entered, the matches in the document are highlighted and one of these matches will be marked as the current selection. The Find anchor toggle determines whether that first current selection is made relative to the cursor position or not. If Find anchor is toggled on, then the first currently selected match will be the next match from the current cursor location. If Find anchor is toggled off, then the first currently selected match will be the first match in the document, starting from the top.</td>
</tr>
<tr>
<td>Find in selection</td>
<td>⌂</td>
<td>When toggled on, locks the current text selection and restricts the search to the selection. Otherwise, the entire document is searched. Before selecting a new range of text, unlock the current selection by toggling off the Find in Selection option.</td>
</tr>
</tbody>
</table>

Using regular expressions
You can use regular expressions (regex) to find a text string. To do this, first, switch the Regular expression option on. This specifies that the text in the search term field is to be evaluated as a regular expression. Next, enter the regular expression in the search term field. For help with building a regular expression, click the
Regular Expression Builder button, which is located to the right of the search term field. Click an item in the Builder to enter the corresponding regex metacharacter/s in the search term field. The screenshot below shows a simple regular expression to find email addresses.

The following custom set of regular expression metacharacters are supported when finding and replacing text.

<table>
<thead>
<tr>
<th></th>
<th>Matches any character. This is a placeholder for a single character.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(abc)</td>
<td>The () metacharacters mark the start and end of a tagged expression. Tagged expressions may be useful when you need to tag (“remember”) a matched region for the purpose of referring to it later (back-reference). Up to nine sub-expressions can be tagged (and then back-referenced later). For example, (the) \1 matches the string the the. This expression can be literally explained as follows: match the string “the” (and remember it as a tagged region), followed by a space character, followed by a back-reference to the tagged region matched previously.</td>
</tr>
<tr>
<td>\n</td>
<td>Where n is 1 through 9, n refers to the first through ninth tagged region (see above).</td>
</tr>
<tr>
<td><</td>
<td>Matches the start of a word.</td>
</tr>
<tr>
<td>></td>
<td>Matches the end of a word.</td>
</tr>
<tr>
<td>\</td>
<td>Escapes the character following the backslash. In other words, the expression \x allows you to use the character x literally. For example, \1 would be interpreted as \ and not as the start of a character set.</td>
</tr>
</tbody>
</table>
Finding special characters

You can search for any of the following special characters within text, provided that the **Regular expression** option is enabled:

- \t (Tab)
- \r (Carriage Return)
- \n (New line)
- \ (Backslash)

For example, to find a tab character, press **Ctrl + F**, select the \t option, and then enter \t in the Find dialog box.

3.1.10 Previewing the XSLT Code

You can preview the XSLT code generated by MapForce if you selected XSLT 1.0 or XSLT 2.0 as data transformation language.

To preview the generated XSLT 1.0 (or XSLT 2.0) code, do one of the following:

- To preview the XSLT 1.0 code, click the **XSLT** tab under the Mapping window.
- To preview the XSLT 2.0 code, click the **XSLT2** tab under the Mapping window.

Note: The XSLT (or XSLT2) tab becomes available if you have selected XSLT (or XSLT2, respectively) as transformation language.

3.1.11 Generating XSLT Code

You can generate XSLT 1.0 and 2.0 code from a mapping, provided that you have designed the mapping for that respective language, see also Selecting a Transformation Language.
To generate XSLT code:

1. Select the menu item File | Generate code in | XSLT 1.0 (XSLT 2.0).
2. Select the folder you want to save the generated XSLT file, and click OK. MapForce generates the code and displays the result of the operation in the Messages window.

The name of the generated .xslt file has the form `<A>MapTo.xslt`, where:

- "<A>" is the value of the Application Name field in mapping settings.
- "" is the name of the target mapping component. To change this value, open the settings of the target component and edit the value of the Component Name field (see Changing the Component Settings).

See also Library paths in generated code.

Automation with RaptorXML Server

After you generate XSLT code, a batch file called DoTransform.bat is created in the same directory with the .xslt file. You can run DoTransform.bat with RaptorXML Server, see also Automation with RaptorXML Server.

To run the transformation with RaptorXML Server:

1. Download and install RaptorXML from the download page (https://www.altova.com/download#server).
2. Start the DoTransform.bat batch file located in the previously designated output folder.

Note that you might need to add the RaptorXML installation location to the path environment variable of the operating system. You can find the RaptorXML documentation at https://www.altova.com/documentation.

3.1.12 Previewing the XQuery Code

You can preview the XQuery code generated by MapForce if you selected XQuery as data transformation language.

To preview the generated XQuery code:

- Click the XQuery tab under the Mapping window.

Note: The XQuery tab becomes available if you have selected XQuery as transformation language.

3.1.13 Working with Multiple Mapping Windows

MapForce uses a Multiple Document Interface (MDI). Each mapping file you open in MapForce has a separate window. This enables you to work with multiple mapping windows and arrange or resize them in various ways inside the main (parent) MapForce window. You can also arrange all open windows using the standard Windows layouts: Tile horizontally, Tile vertically, Cascade.
When multiple mappings are open in MapForce, you can quickly switch between them using the tabs displayed in the lower part of the Mapping pane.

Window management options are available both on the **Window** menu and on the **Windows** dialog box. From the **Windows** dialog box, you can take actions against any or all currently open mapping windows (including saving, closing, or minimizing them).

You can open the Windows dialog box using the menu command **Window** | **Windows**. To select multiple windows in the Windows dialog box, click the required entries while holding the **Ctrl** key pressed.
3.1.14 Changing the Mapping Settings

You can change the document-specific settings of the currently active mapping design file from the Mapping Settings dialog box. This information is stored in the *.mfd file.

To open the Mapping Settings dialog box:

- On the File menu, click Mapping Settings.

![Mapping Settings dialog box]

The available settings are as follows.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Name</td>
<td>Defines the XSLT 1.0/2.0 file name prefix or the Java, C# or C++ application name for the generated transformation files.</td>
</tr>
<tr>
<td>Base Package Name</td>
<td>Defines the base package name for the Java output.</td>
</tr>
<tr>
<td>Make paths absolute in generated code</td>
<td>This check box affects all paths in mapping components, except paths to external library files (such as XSLT libraries).</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **Reference libraries with paths relative to the generated XSLT / XQuery files** | This check box is applicable when the mapping language is either XSLT or XQuery*.
This option is typically useful if your mapping references an XSLT or XQuery library, and you plan to generate XSLT or XQuery files from the mapping. If you want the library paths to be relative to the directory of the generated XSLT or XQuery code, select the check box.
If the check box is not selected, the library paths will be absolute in the generated XSLT or XQuery code. See also [Library paths in generated code](#). |
| **Ensure Windows path convention for file path** | This check box is applicable when the mapping language is either XSLT 2.0 or XQuery*.
The check box makes sure that Windows path conventions are followed. When outputting XSLT 2.0 (and XQuery), the currently processed file name is internally retrieved using the document-uri function, which returns a path in the form file:// URI for local files.
When this check box is active, a file:// URI path specification is automatically converted to a complete Windows file path (e.g. "C:\...") to simplify further processing. |
| **Line ends** | This combo box allows you to specify the line endings of the output files. "Platform default" is the specific default for the target operating system, e.g. Windows (CR+LF), macOS (LF), or Linux (LF). You can also select a specific line ending manually. The settings you select here are important when you compile a mapping to a MapForce Server Execution file (.mfx) or when you deploy a mapping to FlowForce Server running on a different operating system. |
| **XML Schema Version** | Lets you define the XML schema version used in the mapping file. You can define if you always want to load the schemas conforming to version 1.0 or 1.1. |
Note that not all version 1.1 specific features are currently supported.

If the `xs:schema vc:minVersion="1.1"` declaration is present, then version 1.1 will be used; if not, version 1.0 will be used.

![XML Schema Version]

If the XSD document has no `vc:minVersion` attribute or the value of the `vc:minVersion` attribute is other than 1.0 or 1.1, then XSD 1.0 will be the default mode.

Note: Do not confuse the `vc:minVersion` attribute with the `xsd:version` attribute. The former holds the XSD version number, while the latter holds the document version number.

Changing this setting in an existing mapping causes a reloading of all schemas of the selected XML schema version, and might also change its validity.

* Requires MapForce Professional or Enterprise Edition
3.2 Working with Components

Components are the central elements of any mapping design in MapForce. Generally, the term "component" is a convenient way to call any object which acts as a data source, or as a data target, or represents your data in the mapping at an intermediary processing stage.

There are two main categories of components: structure components and transformation components.

The structure components represent the abstract structure or schema of your data. For example, when you add an XML file to the mapping area (using the menu command Insert | XML Schema/File), it becomes a mapping component. For further information about structure components and their specifics, see Data Sources and Targets. With a few exceptions, structure components consist of items and sequences. An item is the lowest level mapping unit (for example, a single attribute in the XML file, or an element of simple type). A sequence is a collection of items.

The transformation components either transform data (for example, functions), or assist you in transformations (for example, constants or variables). For information on how you can use these components to achieve various data transformation tasks, see Designing Mappings.

With the help of structure components, you can either read data from files or other sources, write data to files or other sources, or store data at some intermediary stage in the mapping process (for example, in order to preview it). Consequently, structure components can be of the following types:

- **Source.** You declare a component as source by placing it on the left of the mapping area, and, thus, instructing MapForce to read data from it.
- **Target.** You declare a component as target by placing on the right of the mapping area, and, thus, instructing MapForce to write data to it.
- **Pass-through.** This is a special component type which acts both as a source and target (for further information, see Chained mappings / pass-through components).

On the mapping area, components appear as rectangles. The following sample mapping illustrates three source components, one target XML component, and various transformation components (functions and filters) through which data goes before being written to the source.
3.2.1 Searching within Components

To search for a specific node/item in a component:

1. Click the component you want to search in, and press the CTRL+F keys.
2. Enter the search term and click **Find Next**.
Use the Advanced options to define which items (nodes) are to be searched, as well as restrict the search options based on the specific connections.

3.2.2 Aligning Components

When you move components in the mapping pane, MapForce displays auto-alignment guide lines. These guide lines help you align a component to any other component in the mapping window.

In the sample mapping below, the lower component is being moved. The guide lines show that it can be aligned to the component on the left side of the mapping.
To enable or disable this option:

1. On the Tools menu, click Options.
2. In the Editing group, select the Align components on mouse dragging check box.

3.2.3 Changing the Component Settings

After you add a component to the mapping area, you can configure the settings applicable to it from the Component Settings dialog box. You can open the Component settings dialog box in one of the following ways:

- Select the component and, on the Component menu, click Properties.
- Double-click the component header.
- Right-click the component header, and then click Properties.

Note that the available options depend on the type of the component. For reference to the settings applicable to each component type, see:

- XML Component Settings
- Database Component Settings
- CSV Component Settings
- Fixed-Length Field Component Settings

For any file-based component, such as XML, a File/String (File/String) button appears next to the root node. This button specifies advanced options applicable if you want to process or generate multiple files in a single mapping (see Processing Multiple Input or Output Files Dynamically). Additionally, it enables advanced options for parsing strings or serializing data to strings (see Parsing and Serializing Strings).
3.2.4 Duplicating Input

Sometimes, you may need to configure a component to accept data from more than one source. For example, you may need to convert data from two different XML schemas into a single schema. To make the destination schema accept data from both source schemas, you can duplicate any of the input items in the component. Duplicating input is meaningful only for a component which is a target component. On any given target component, you can duplicate as many items as required.

To duplicate a particular input item, right-click it and select Add Duplicate Input After/Before from the context menu.

In the image above, the item LineItem is being duplicated in order to provide the ability to map data from a second source.

Once you duplicate an input, you can make connections both to the original input and to the duplicate input. For example, this would enable you to copy data from source A to original input, and data from source B to the duplicate input.

Note: Duplication of XML attributes is not allowed, as it would make the resulting XML instance invalid. In case of XML elements, duplicating input is allowed regardless of the value of the element's maxOccurs attribute in the schema. This behaviour is intentional, since the schema could change later, or the source data could be optional. For example, a mapping could generate a single XML element, even if the input is duplicated on the mapping.

For a step-by-step example, see Map Multiple Sources to One Target.
3.3 Working with Connections

A mapping is ultimately about transforming data from one format or structure into another. In a very basic mapping scenario, you add to the mapping area the components which represent your source and your target data (for example, a source XML schema and a destination one), and then draw visually the mapping connections between the two structure. A connection is, therefore, the visual representation of how data is mapped from a source to a destination.

Components have inputs and outputs which appear on the mapping as small triangles, called connectors. Input connectors are positioned to the left of any item to which you can draw a connection. Output connectors are positioned to the right of any item from which you can draw a connection.

To draw a connection between two items:

- Click the output connector of a source item and drag it to a destination item. When the drop action is allowed, a link tooltip appears next to the text cursor.

An input connector accepts only one incoming connection. If you try to add a second connection to the same input, a message box appears asking if you want to replace the connection with a new one or duplicate the input item. An output connector can have several connections, each to a different input.

To move a connection to a different item:

- Click the stub of the connection (the straight section closer to the target) and drag it to the destination.

To copy a connection to a different item:

- Click the stub of the connection (the straight section closer to the target), and drag it to the destination while holding down the Ctrl key.
To view the item(s) at the other end of a connection:

- Point to the straight section of a connection (close to the input/output connector). A tooltip appears which displays the name(s) of the item(s) at the other end of the connection. If multiple connections have been defined from the same output, then a maximum of ten item names are displayed. In the sample below, the two target items are SinglePrice and value2 of the multiply function.

![Connection Diagram]

To change the connection settings, do one of the following:

- On the Connection menu, click Properties (this menu item becomes enabled when you select a connection).
- Double-click the connection.
- Right-click the connection, and then click Properties.

See also Connection Settings.

To delete a connection, do one of the following:

- Click the connection, and then press the Delete key.
- Right-click the connection, and then click Delete.

3.3.1 About Mandatory Inputs

To aid you in the mapping process, MapForce highlights in orange the mandatory inputs in target components:

- In XML and EDI components, these are items where the minOccurs parameter is equal/greater than 1.
- In databases, these are fields that have been defined as "not null".
- WSDL calls and WSDL response (all nodes).
- XBRL nodes that have been defined as mandatory.
- In functions, these are the specific mandatory parameters such that once one parameter has been mapped, then the other mandatory ones will be highlighted to show that a connection is needed. E.g. once one of the filter input parameters is mapped, then the other one is automatically highlighted.
- Worksheet names in MS Excel sheets.
Example
When creating a mapping like CompletePO.mfd, available in the ...\MapForceExamples folder, the inserted XML Schema files exist as shown below.

The Number element of the Customers component is then connected to the Number element of the CompletePO component. As soon as the connection has been made, the mandatory items/nodes of the CompletePO component are highlighted. Note that the collapsed “Article” node/icon is also highlighted.
3.3.2 Changing the Connection Display Preferences

You can selectively view the connections in the mapping window.

Show selected component connectors switches between showing:

- all mapping connectors in black, or
- those connectors relating to the currently selected component in black. Other connectors appear dimmed.

Show connectors from source to target switches between showing:

- connectors that are directly connected to the currently selected component, or
- connectors linked to the currently selected component, originating from source and terminating at the target components.

3.3.3 Annotating Connections

Individual connections can be labeled allowing you to comment your mapping in great detail. This option is available for all connection types.

To annotate to a connection:

1. Right-click the connection, and select **Properties** from the context menu.
2. Enter the name of the currently selected connection in the **Description** field. This enables all the options in the Annotation Settings group.
3. Use the remaining groups to define the **starting location**, **alignment** and **position** of the label.
4. Activate the **Show annotations** icon in the View Options toolbar to see the annotation text.

Note: If the **Show annotations** icon is inactive, you can still see the annotation text if you place the mouse cursor over the connection. The annotation text will appear in a callout if the **Show tips** toolbar button is active in the View Options toolbar.

3.3.4 Connection Settings

Right-clicking a connection and selecting **Properties** from the context menu, or double-clicking a connection, opens the Connection Settings dialog box in which you can define the settings of the current connection. Note that unavailable options are disabled.
For items of complexType, you can choose one of the following connection types for mapping (note that these settings also apply to complexType items which do not have any text nodes):

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Driven (Standard)</td>
<td>Changes the connection type to "Target-driven" (see Target-driven / Standard mapping).</td>
</tr>
<tr>
<td>Copy-all (Copy child items)</td>
<td>Changes the connection type to "Copy-all" and automatically connects all identical items in the source and target components (see Copy-all connections).</td>
</tr>
<tr>
<td>Source Driven (mixed content)</td>
<td>Changes the connection type to "Source-driven", and enables the selection of additional elements to be mapped. The additional elements must be child items of the mapped item in the XML source file, to qualify for mapping. Activating the Map Processing Instructions or Map Comments check boxes enables you to include these data groups in the output file.</td>
</tr>
</tbody>
</table>
The Annotation Settings group enables you to annotate the connection (see Annotating Connections).

3.3.5 Connection Context Menu

When you right-click a connection, the following context commands are available:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect matching children</td>
<td>Opens the “Connect Matching Children” dialog box (see Connecting Matching Children). This command is enabled when the connection is eligible to have matching children.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes the selected connection.</td>
</tr>
<tr>
<td>Go to source: <item name></td>
<td>Selects the source connector of the current connection.</td>
</tr>
<tr>
<td>Go to target: <item name></td>
<td>Selects the target connector of the current connection.</td>
</tr>
</tbody>
</table>
Target Driven (Standard)
Changes the connection type to “Target-driven” (see Target-driven connections).

Copy-All (Copy Child Items)
Changes the connection type to "Copy-all" and automatically connects all identical items in the source and target components (see Copy-all connections).

This command is enabled (and meaningful) when both the source item and the target item have children items.

Source Driven (Mixed Content)
Changes the connection type to "Source-driven" (see Source-driven connections).

This command is enabled (and meaningful) when both the source item and the target item have children items.

Insert Sort: Nodes/Rows
Adds a Sort component between the source and the target item (see Sorting Data).

Insert Filter: Nodes/Rows
Adds a Filter component between the source and the target item (see Filters and Conditions).

Insert SQL-Where Condition
Adds a SQL-Where component between the source and the target item (see SQL WHERE / ORDER Component).

Insert Value-Map
Adds a Value-Map component between the source and the target item (see Using Value-Maps).

Properties
Opens the Connections Settings dialog box (see Connection Settings).

3.3.6 Connecting Matching Children

You can create multiple connections between items of the same name in both the source and target components. Note that a "Copy-all" connection (see Copy-all connections) is created by default.

To toggle the "Auto Connect Matching Children" option on or off, do one of the following:

- Click the Auto Connect Matching Children toolbar button.
- On the Connection menu, click Auto Connect Matching Children.

To change the settings for "Connect Matching Children":

1. Connect two (parent) items that share identically named child items in both components.
2. Right click the connection and select the Connect matching child elements option.
3. Select the required options (see the table below), and click OK. Connections are created for all the child items that have identical names and adhere to the settings defined in the dialog box.

Note: The settings you define here are applied when connecting two items if the **Toggle auto connect of children** toolbar button is active.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore Case</td>
<td>Ignores the case of the child item names.</td>
</tr>
<tr>
<td>Ignore Namespaces</td>
<td>Ignores the namespaces of the child items.</td>
</tr>
<tr>
<td>Recursive</td>
<td>Creates new connections between any matching items recursively. That is, a connection is created no matter how deep the items are nested in the hierarchy, as long as they have the same name.</td>
</tr>
<tr>
<td>Mix Attributes and Elements</td>
<td>When enabled, allows connections to be created between attributes and elements which have the same name. For example, a connection is created if two "Name" items exist, even though one is an element, and the other is an attribute.</td>
</tr>
<tr>
<td>Create copy-all connections</td>
<td>This setting is active by default. It creates (if possible) a connection of type "Copy-all" between source and target items.</td>
</tr>
<tr>
<td>Ignore existing output connections</td>
<td>Creates additional connections for any matching items, even if they already have outgoing connections.</td>
</tr>
<tr>
<td>Retain</td>
<td>Retains existing connections.</td>
</tr>
<tr>
<td>Overwrite</td>
<td>Recreates connections according to the settings defined. Existing connections are discarded.</td>
</tr>
<tr>
<td>Delete all existing</td>
<td>Deletes all existing connections, before creating new ones.</td>
</tr>
</tbody>
</table>
Deleting connections
Connections that have been created using the Connect Matching Children dialog, or during the mapping process, can be removed as a group.

To delete connections:
1. Right-click the item name in the component, not the connection itself (“Person” in this example).
2. Select Delete Connections | Delete all ... connections.

Delete all direct connections	Deletes all connections directly mapped to, or from, the current component to any other source or target components.
Delete all incoming child connections	Only active if you have right clicked an item in a target component. Deletes all incoming child connections.
Delete all outgoing child connections	Only active if you have right clicked an item in a source component. Deletes all outgoing child connections.

3.3.7 Notifications on Missing Parent Connections
When you create connections between source and target items manually, MapForce automatically analyzes the possible mapping outcomes. If you are mapping two child items, a notification message can appear suggesting that you also connect the parent of the source item with the parent in the target item.

This notification message helps you prevent situations where a single child item appears in the Output window when you preview the mapping. This will generally be the case if the source node supplies a sequence instead of a single value.

To understand how this works, open the sample mapping Tut-OrgChart.mfd available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder. If you connect the source text() item to the target text() item, a notification message appears, stating that the parent item “para” is not connected and will only be generated once in the output.
To generate multiple para items in the target, connect the source and target para items to each other.

To disable such notifications, do the following:

1. On the Tools menu, click Options.
2. Click the Messages group.
3. Click to clear the When creating a connection, suggest connecting ancestor items check box.

3.3.8 Moving Connections and Child Connections

When you move a connection to a different component, MapForce automatically matches identical child connections and will prompt you whether it should move them to the new location as well. A common use of this feature is if you have an existing mapping and then change the root element of the target schema. Normally, when this happens, you would need to remap all descending connections manually. This feature helps you prevent such situations.

This example uses the Tut-ExpReport.mfd file available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder.
To understand how it works, do the following:

2. Edit the ExpReport-Target.xsd schema outside MapForce so as to change the `Company` root element of the target schema to `Company-EU`. You do not need to close MapForce.
3. After you have changed the `Company` root element of the target schema to `Company-EU`, a “Changed files” prompt appears in MapForce.
4. Click the **Reload** button to reload the updated Schema. Since the root element was deleted, the component displays multiple missing nodes.

5. Click **Select new root element** at the top of the component. (You can also change the root element by right clicking the component header and selecting **Change Root Element** from the context menu.)

6. Select **Company-EU** as new root element and click **OK** to confirm. The **Company-EU** root element is now visible at the top of the component.
7. Click the target stub of the connection that exists between the expense-report item of the source component and the Company item of the target component, and then drag-and-drop it on the Company-EU root element of the target component.

A notification dialog box appears.

8. Click Include descendent connections. This instructs MapForce to re-map the correct child items under the new root element, and the mapping becomes valid again.

Note: If the node to which you are mapping has the same name as the source node but is in a different namespace, then the notification dialog box will contain an additional button: "Include descendants and map namespace". Clicking this button moves the child connections of the same namespace as the source parent node to the same child nodes under the different namespace node.

3.3.9 Keeping Connections After Deleting Components

You can decide what happens when you delete a component that has multiple (child) connections to another component, e.g. a filter or sort component. This is very useful if you want to keep all the child connections and not have to restore each one individually.

You can opt to keep/restore the child connections after the component is deleted, or to delete all child connections immediately.
Select **Tools | Options | Editing** (tab) to see the current setting. The default setting for the check box is **inactive**, i.e. "Smart component deletion (keep useful connections)" is disabled.

E.g. using the CompletePO.mfd mapping in the `...\MapForceExamples` folder, and the check box is active, the Customer filter is a **copy-all** connection with many connected child items, as shown below.

Deleting the Customer filter opens a prompt asking if you really want to delete it. If you select Yes, then the filter is deleted but all the child connectors remain.
Note that the remaining connectors are still selected (i.e. shown in red). If you want to delete them as well, hit the Del. key.

Clicking anywhere in the mapping area deselects the connectors.

If the "Smart component deletion..." check box is inactive, then deleting the filter will delete all child connectors immediately.

Note: If a filter component has both "on-true" and "on-false" outputs connected, then the connectors for both outputs will be retained.

3.3.10 Dealing with Missing Items

Over time, it is likely that the structure of one of the components in a mapping may change e.g. elements or attributes are added/deleted to an XML schema. MapForce uses placeholder items to retain all the connectors, and any relevant connection data between components, when items have been deleted.

Example

Using the **MFCompany.xsd** schema file as an example. The schema is renamed to **MyCompany.xsd** and a connector is created between the Company item in both schemas. This creates connectors for all child items between the components, if the Autoconnect Matching Children is active.
While editing MyCompany.xsd, in XMLSpy, the First and Last items in the schema are deleted. Returning to MapForce opens a Changed Files notification dialog box, prompting you to reload the schema. Clicking Reload updates the components in MapForce.

The deleted items and their connectors are now marked in the MyCompany component. You could now reconnect the connectors to other items if necessary, or delete the connectors.

Note that you can still preview the mapping (or generate code), but warnings will appear in the Messages window if you do so at this point. All connections to, and from, missing items are ignored during preview or code-generation.

Clicking one of the highlighted connectors and deleting it, removes the "missing" item from the component, e.g. Last, in MyCompany.
Renamed items
If a parent item is renamed e.g. Person to ZPerson, then the original parent item connector is retained and the child items and their connectors are deleted.

"Copy all" connectors and missing items
Copy all connections are treated in the same way as normal connections, with the only difference being that the connectors to the missing child items are not retained or displayed.
Renamed or deleted component sources

If the **data source** of a component i.e. schema, database etc. has been renamed or deleted, then all items it contained are highlighted. The red frame around the component denotes that there is no valid connection to a schema or database file and prevents preview and code generation.

Placing the mouse cursor over the highlighted component, opens a popup containing pertinent information.
Double-click the title bar of the highlighted component to open the Component Settings dialog box and select a different schema, see also Changing the Component Settings.

Clicking the Change button in the dialog box that opens if the component is a database, allows you to select a different database, or change the tables that appear in the database component. Connectors to tables of the same name will be retained.

All valid/correct connections (and relevant database data, if the component is a database) will be retained if you select a schema or database of the same structure.
3.4 Working with Mapping Projects

In addition to creating standalone mappings, you can also create mapping projects that include multiple mappings. Mappings added to a project are easily accessible from the Project window.

The main advantage of projects is that you can define common code generation settings (such as the target language and the output directory) for all the mapping files included in that particular project. You can also create folders inside projects, and specify custom code generation settings for each individual folder in a
For more information about the MapForce-generated program code (in C++, C#, and Java), see Code Generator.

In MapForce Enterprise edition, you can additionally create Web Service projects. Such projects enable you to generate Java or C# program code that implements SOAP Web services, based on existing Web Services Description Language (WSDL) files.

3.4.1 Opening, Searching, and Closing Projects

MapForce project files have the *.mfp extension. You can open existing MapForce projects in the same way as you open mappings (on the **File** menu, click **Open**).

When a mapping project is opened in MapForce, the Project window shows all files and folders that have been added to the project. By default, when you run MapForce for the first time, it loads the **MapForceExamples.mfp** project in the Project window.

To search for files within a project:

1. In the Project window, click the project or the folder to be searched.
2. Press **Ctrl + F**.
3. Optionally, select your search options. For example, if you want to include folder names in the search, select the **Find in folder names** option.

To close a project:

- On the **Project** menu, click **Close Project**.

3.4.2 Creating a New Project

To create a new project:

1. On the **File** menu, click **New**.
2. Select **Project File**, and then click **OK**.
3. Enter the project name in the **Save Project As** dialog box, and click **Save**. The new project is now displayed in the Project window.

You can now add mappings to the project.

To add the currently active mapping to the project, do one of the following:

- On the **Project** menu, click **Add Active File to Project**.
- Right-click the project, and select **Add Active File to Project**.

To add existing mapping files to the project, do one of the following:

- On the **Project** menu, click **Add Files to Project**.
- Right-click the project, and select **Add Files to Project**.

Tip: To open multiple files, hold the **Ctrl** key while selecting the files in the Open dialog box.

To remove a file or folder from a project, do one of the following:

- Right-click the file in the Project window, and select **Delete** from the context menu.
- Select the file in the Project window, and press **Delete**.
3.4.3 Setting the Code Generation Settings

For any project, you can specify code generation settings that will affect all the mappings inside a project. To open the **Project Settings** dialog box, do one of the following:

- Right-click the project name in the **Project** window and choose **Properties** from the context menu.
- On the **Project** menu, click **Properties**.

![Project Settings dialog box](image)

The available settings are as follows. Note that the project name and the project directory cannot be changed after the project has been created.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output name</td>
<td>The value entered here determines the name of the generated project or solution, as well as other objects names in the generated code.</td>
</tr>
<tr>
<td>Output directory</td>
<td>Defines the Windows folder where the generated code (from all mappings in this project) will be saved. By default, output is saved to the output/ directory located in the project directory.</td>
</tr>
<tr>
<td>Language</td>
<td>Defines the code generation language for all mapping files in this project.</td>
</tr>
<tr>
<td>Base package name</td>
<td>This setting is applicable if you selected Java as transformation language. It defines the name of the base package in the generated Java project.</td>
</tr>
</tbody>
</table>
3.4.4 Managing Project Folders

If you want to organize the mappings inside a project into folders, you can create as many folders as required, and add mappings to (or drag mappings into) them. Such folders are “virtual” and meaningful only inside a MapForce project; they do not correspond to actual folders on your operating system. One of the advantages of creating folders is that you can define common code generation settings (such as the target language and the output directory) for all the mapping files under that particular folder.

Folder Properties dialog box

To create a folder inside a MapForce project:

1. Do one of the following:
 - On the Project menu, click Create Folder.
 - Right-click the project, and select Create Folder.
2. In the Properties dialog box, enter the required code generation settings, and click OK.

The settings you can define in the Folder Properties dialog box are as follows.

<table>
<thead>
<tr>
<th>Name</th>
<th>The name of the folder.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use default project settings</td>
<td>This is the default option and it means that the code generation settings in the current folder are the same as for the entire project. Therefore, when you generate code from your project, MapForce will use the code generation settings defined at the project level, not at the folder level.</td>
</tr>
</tbody>
</table>
If your folder requires custom code generation settings (other than those set at the project level), select **Use the following settings** and specify the code output directory and language as required.

<table>
<thead>
<tr>
<th>Output directory</th>
<th>Defines the Windows folder where the generated code (from all mappings in this folder) will be saved.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Defines the code generation language for all mapping files in this folder.</td>
</tr>
</tbody>
</table>
4 Designing Mappings

Altova website: [Data integration tool](#)

This chapter describes how to design data mappings, and ways in which you can transform data on the mapping area. It also includes various considerations applicable to mapping design. Use the following roadmap for quick access to specific tasks or concepts:

<table>
<thead>
<tr>
<th>I want to...</th>
<th>Read this topic...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create or edit path references to miscellaneous schema, instance, and other files used by a mapping.</td>
<td>Using Relative and Absolute Paths 137</td>
</tr>
<tr>
<td>Fine-tune the data mapping for specific needs (for example, influence the sequence of items in a target component).</td>
<td>Connection Types 134</td>
</tr>
<tr>
<td>Use the output of a component as input of another component.</td>
<td>Chained mappings / pass-through components 133</td>
</tr>
<tr>
<td>Process multiple files (for example, all files within a directory) in the same mapping, either as a source or a target.</td>
<td>Processing Multiple Input or Output Files Dynamically 134</td>
</tr>
<tr>
<td>Pass an external value (such as a string parameter) to the mapping.</td>
<td>Supplying Parameters to the Mapping 134</td>
</tr>
<tr>
<td>Get a string value out of the mapping, instead of a file.</td>
<td>Returning String Values from a Mapping 133</td>
</tr>
<tr>
<td>Store some mapping data temporarily for later processing (similar to variables in a programming language).</td>
<td>Using Variables 132</td>
</tr>
<tr>
<td>Sort data in ascending or descending order.</td>
<td>Sorting Data 132</td>
</tr>
<tr>
<td>Filter nodes/rows based on specific criteria, or process values conditionally.</td>
<td>Filters and Conditions 131</td>
</tr>
<tr>
<td>Merge or join data from multiple sources with different schema.</td>
<td>Joining Data 137, Merging Data from Multiple Schemas 138</td>
</tr>
<tr>
<td>Process key-value pairs, for example, to convert months from numerical representation (01, 02, and so on) to text representation (January, February, and so on).</td>
<td>Using Value-Maps 132</td>
</tr>
<tr>
<td>Configure a mapping to return an error when a specific condition occurs.</td>
<td>Adding Exceptions 133</td>
</tr>
<tr>
<td>Learn how to avoid undesired results when designing complex mappings.</td>
<td>Mapping rules and strategies 133</td>
</tr>
<tr>
<td>I want to...</td>
<td>Read this topic...</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Convert output generated by a mapping to reader-friendly formats such as Word 2007+, HTML, or PDF.</td>
<td>Styling Mapping Output with StyleVision</td>
</tr>
<tr>
<td>Generate documentation from a mapping.</td>
<td>Generating Mapping Documentation</td>
</tr>
</tbody>
</table>

Importantly, MapForce additionally includes an extensive built-in function library (see Function Library Reference) to help you with a wide array of processing tasks. When the built-in library is not sufficient, you can always build your own custom functions in MapForce, or re-use external XSLT files, as well as .dll or Java .class libraries. For further information, see Using Functions.
4.1 Using Relative and Absolute Paths

A mapping design file (*.mfd) may have references to several schema and instance files. The schema files are used by MapForce to determine the structure of the data to be mapped, and to validate it. The instance files, on the other hand, are required to read, preview, and validate the source data against the schema.

Mappings may also include references to StyleVision Power Stylesheets (*.sps) files, used to format data for outputs such as PDF, HTML and Word. Also, mappings may have references to file-based databases such as Microsoft Access or SQLite.

All references to files used by a mapping design are created by MapForce when you add a component to the mapping. However, you can always set or change such path references manually if required.

This section provides instructions for setting or changing the path to miscellaneous file types referenced by a mapping, and the implications of using relative versus absolute paths.

4.1.1 Using Relative Paths on a Component

The Component Settings dialog box (illustrated below for an XML component) provides the option to specify either absolute or relative paths for various files which may be referenced by the component:

- Input files (that is, files from which MapForce reads data)
- Output files (that is, files to which MapForce writes data)
- Schema files (applicable to components which have a schema)
- Structure files (applicable to components which may have a complex structure, such as input or output parameters of user-defined functions, or variables)
- StyleVision Power Stylesheet (*.sps) files, used to format data for outputs such as PDF, HTML and Word.
- Database trace files, in case of database components

You can enter relative paths directly in the relevant text boxes (shown enclosed in a red frame in the image below).

Before entering relative file paths, make sure to save the mapping file (.mfd) first. Otherwise, all relative paths are resolved against the personal application folder of Windows (Documents\Altova\MapForce2021), which may not be the intended behavior.

You can also instruct MapForce to save all above-mentioned file paths relative to the mapping .mfd file. In the sample image below, notice the option Save all file paths relative to MFD file. If the check box is enabled (which is the default and recommended option), the paths of any files referenced by the component will be saved relative to the path of the mapping design file (.mfd). This affects all files referenced by the component (shown enclosed in a red frame in the image).
Component Settings dialog box

Although the component illustrated above is an XML component, the setting **Save all file paths relative to MFD file** works in the same way for the following files:
• Structure files used by complex input or output parameters of user-defined functions and variables of complex type
• Input or output flat files *
• Schema files referenced by database components which support XML fields *
• Database trace files *
• Input or output XBRL, FlexText, EDI, Excel 2007+, JSON files **

* MapForce Professional and Enterprise Edition
** MapForce Enterprise Edition only

Taking the component above as an example, if the .mfd file is in the same folder as the books.xsd and books.xml files, the paths will be changed as follows:

C:\Users\altova\Documents\MyMapping\books.xsd will change to books.xsd
C:\Users\altova\Documents\MyMapping\books.xml will change to books.xml

Paths that reference a non-local drive or use a URL will not be made relative.

When the check box is selected, MapForce will also keep track of the files referenced by the component if you save the mapping to a new folder using the Save as menu command. Also, if all files are in the same directory as the mapping, path references will not be broken when you move the entire directory to a new location on the disk.

Using relative paths (and, therefore, enabling the Save all file paths relative to MFD file check box) may be important in many cases, for example:

• The location of the mapping on your operating system is likely to change in future.
• The mapping is stored in a directory which is under source control (using a version control system such as SVN, for example).
• You intend to deploy the mapping for execution with MapForce Server to a different machine or even to a different operating system.

If the Save all file paths relative to MFD file check box is not selected, saving the mapping does not modify the file paths (that is, they remain as they appear in the Component Settings dialog box).

4.1.2 Setting the Path to File-Based Databases

When you add a database file such as Microsoft Access or SQLite to the mapping (see Starting the Database Connection Wizard), you can use a relative path instead of an absolute one. To use a relative path, enter the required relative path instead of clicking Browse in the Database Connection Wizard.

Before entering relative file paths, make sure to save the mapping file (.mfd) first. Otherwise, all relative paths are resolved against the personal application folder of Windows (Documents\Altova\MapForce2021), which may not be the intended behavior.
If the database is a SQLite database, the **Connect** button becomes enabled if the following is true:

- The path points to a file that can be resolved relatively to the mapping (.mfd) file
- The referenced file is a SQLite database.

To change the path of a database component which is already in the mapping, do the following:

1. Right-click the header of the database component, and select **Properties** (see also [Changing the Component Settings](#)). Alternatively, double-click the component title bar.
2. On the Component Settings dialog box, click **Change**.
This re-opens the Database Connection Wizard, from where you can change the database connection properties (including the path) as already shown above.

Note: When you generate program code, or when you compile MapForce Server execution files (.mfx), or when you deploy the mapping to FlowForce Server, a relative path will be converted to an absolute path if the check box **Make paths absolute in generated code** is selected from the mapping settings (see **About Paths in Generated Code**).

4.1.3 Fixing Broken Path References

When you add or change a file reference in a mapping, and the path cannot be resolved, MapForce displays a warning message. This way, MapForce diminishes the chance for broken path references to happen. Nevertheless, broken path references may still occur in cases such as:

- You use relative paths, and then move the mapping file to a new directory without moving the schema and instance files.
- You use absolute paths to files in the same directory as the mapping file, and then move the directory to another location.

When this happens, MapForce highlights the component in red, for example:

The solution in this case is to double-click the component header and update any broken path references in the **Component Settings** dialog box (see also **Changing the Component Settings**).
4.1.4 Paths in Various Execution Environments

If you generate code from mappings, compile mappings to MapForce Server execution files (.mfx), or deploy mappings to FlowForce Server, the generated files are no longer run by MapForce. Instead, the mappings are run by the target environment you have chosen (for example, RaptorXML Server, MapForce Server, or a C# application). The implication is that, for the mapping to run successfully, any relative paths must be meaningful in the environment where the mapping runs.

Consequently, when the mapping uses relative paths to instance or schema files, consider the base path to be as follows for each target language:

<table>
<thead>
<tr>
<th>Target language</th>
<th>Base path</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT/XSLT2</td>
<td>Path of the XSLT file.</td>
</tr>
<tr>
<td>XQuery*</td>
<td>Path of the XQuery file.</td>
</tr>
<tr>
<td>C++, C#, Java*</td>
<td>Working directory of the generated application.</td>
</tr>
<tr>
<td>BUILT-IN* (when previewing the mapping in MapForce)</td>
<td>Path of the mapping (.mfd) file.</td>
</tr>
<tr>
<td>BUILT-IN* (when running the mapping with MapForce Server)</td>
<td>The current working directory.</td>
</tr>
<tr>
<td>BUILT-IN* (when running the mapping with MapForce Server under FlowForce Server control)</td>
<td>The working directory of the job or the working directory of FlowForce Server.</td>
</tr>
</tbody>
</table>

Languages available in MapForce Professional and Enterprise editions

If required, you can instruct MapForce to convert all paths from relative to absolute when generating code for a mapping. This option might be useful if you run the mapping code (or the MapForce Server execution file) on the same operating system, or perhaps on another operating system where any absolute path references used by the mapping can still be resolved.

To convert all paths to absolute in the generated code:

1. Right-click an empty area on the mapping. The Mapping Settings dialog box appears.
2. Select the **Make paths absolute in generated code** check box.

When you generate code and the check box is selected, MapForce resolves any relative paths based on the directory of the mapping file (.mfd), and makes them absolute in the generated code. This setting affects the path of the following files:

- Input and output instance files for all file-based component kinds
- Access and SQLite database files used as mapping components

When the check box is not selected, the file paths will be preserved as they are defined in the component settings.
Library paths in generated code

Mapping files may optionally contain path references to libraries of various kinds. For example, a mapping file may import user-defined functions from another mapping file, or functions from custom XSLT, XQuery*, C#*, or Java* libraries, or functions from .mff* (MapForce Function) files, see also Managing Function Libraries.

* Features available in MapForce Professional and Enterprise editions

Importantly, the option Make paths absolute in generated code applies only to mapping components, and it does not affect paths to external libraries. Instead, for all libraries other than XSLT and XQuery, the library path will be resolved and converted to an absolute path in generated code. For example, if your mapping file contains library references such as .NET .dll or Java .class files, and if you want to run the generated code in some other environment (perhaps, on another computer), then the referenced libraries must exist at the same path in the target environment.

If you plan to generate an XSLT or XQuery file from a mapping, you can make the library path relative to the generated XSLT or XQuery file, as follows:

1. Right-click an empty area on the mapping. The Mapping Settings dialog box appears.
2. Select the check box Reference libraries with paths relative to generated XSLT / XQuery file.

If you select the check box above, make sure that the XSLT or XQuery library file actually exists at that path.

To make the path to the XSLT or XQuery library file absolute in generated code, clear the check box.

4.1.5 Copy-Paste and Relative Paths

When you copy a component from a mapping and paste it into another, a check is performed to ensure that relative paths of schema files can be resolved against the folder of the destination mapping. If the path cannot be resolved, you will be prompted to make the relative paths absolute by means of the folder of the source mapping. It is recommended to save the destination mapping first, otherwise relative paths are resolved against the personal application folder.
4.2 Connection Types

When you create a mapping connection (and both the source and the target item have child items), you can optionally choose the type of the connection to be one of the following.

- Target Driven (Standard)
- Source Driven (Mixed Content)
- Copy-All (Copy Child Items).

The connection type determines the sequence of children items in the output generated by the mapping. This section provides information about each connection type and the scenarios when they are useful.

4.2.1 Target-driven connections

When a connection is “target-driven” (or “standard”), the sequence of child nodes in the mapping output is determined by the sequence of nodes in the target schema. This connection type is suitable for most mapping scenarios and is the default connection type used in MapForce.

On a mapping, target-driven connections are shown with a solid line.

Target-driven connections might not be suitable when you want to map XML nodes that contain mixed context (character data as well as child elements), for example:

```xml
<p>This is our <i>best-selling</i> product.</p>
```

With mixed content, it is likely that you want to preserve the sequence of items as they appear in the source file, in which case a source-driven connection is recommended (see Source-driven connections).

4.2.2 Source-driven connections

Source-driven (Mixed Content) mapping enables you to automatically map text and child nodes in the same sequence that they appear in the XML source file.

- Mixed content text node content is supported/mapped.
- The sequence of child nodes is dependent on the source XML instance file.
Mixed content mappings are shown with a dotted line.

Source-driven / mixed content mapping can also be applied to XML schema **complexType** items. Child nodes will then be mapped according to their sequence in the XML source file.

Source-driven / mixed content mapping supports:

Mappings from

- **As source** components:
 - XML schema complexTypes (including mixed content, i.e. mixed=true)
 - XML schema complexTypes (including mixed content) in embedded schemas of a database field

- **As target** components:
 - XML schema complexTypes (including mixed content),
 - XML schema complexTypes (including mixed content) in embedded schemas of a database field

Note: CDATA sections are treated as text.

4.2.2.1 Mapping mixed content

The files used in the following example (**Tut-OrgChart.mfd**, **Tut-OrgChart.mfd.xml**, **Tut-OrgChart.mfd.xsd**, **Tut-Person.xsd**) are available in the ...\MapForceExamples\Tutorial\ folder.

Source XML instance

A portion of the **Tut-OrgChart.xml** file used in this section is shown below. Our area of concern is the mixed content element "para", along with its child nodes "bold" and "italic".

The **para** element also contains a Processing Instruction (\<?sort alpha-ascending?>) as well as Comment text (<!--Company details... -->) which can also be mapped, as shown below.

Note the sequence of the text and bold/italic nodes in the XML instance file:

\begin{verbatim}
<para> The company...
\end{verbatim}
<bold>Vereno</bold> in 1995 ...
<italic>multi-core... </italic>February 1999
<bold>Nano-grid.</bold>The company ...
<italic>offshore... </italic>to drive...
</para>

Initial mapping

The initial state of the mapping when you open Tut-Orgchart.mfd is shown below.

Output of above mapping

The result of the initial mapping is shown below: Organization Chart as well as the individual office names have been output.

```
<?xml version="1.0" encoding="UTF-8"?>
<Company-Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNames=
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   <Name>Organization Chart</Name>
<Office>
| <Name>Nanonull, Inc.</Name>
| <Office>
| <Name>Nanonull Europe, AG</Name>
</Office>
</Company-Person>
```

Mapping the para element

The image below shows an example of mixed content mapping. The para element is of mixed content, and the connector is shown as a dotted line to highlight this. The text() node contains the textual data and needs to be mapped for the text to appear in the target component.
To annotate (add a label to) any connection, right-click it and select **Properties** (see **Annotating Connections**).

The image below shows the content model of the Description element (Desc) of the Tut-OrgChart.xsd schema file. This definition is identical in both the source and target schemas used in this example.

![Content Model Diagram](image)

Note the following properties of the **para** element in the Content model:

- **para** is a complexType with mixed="true", of type "TextType"
- **bold** and **italic** elements are both of type "xs:string", they have not been defined as recursive in this example, i.e. neither **bold**, nor **italic** are of type "TextType"
- **bold** and **italic** elements can appear any number of times in any sequence within **para**
- any number of text nodes can appear within the **para** element, interspersed by any number of **bold** and **italic** elements.

To create mixed content connections between items:

1. Select the menu option **Connection | Auto Connect Matching Children** to activate this option, if it is not currently activated.
2. Connect the **para** item in the source schema, with the **para** item in the target schema. A message appears, asking if you would like MapForce to define the connectors as source driven.
3. Click Yes to create a mixed content connection.

Note: Para is of mixed content, and makes the message appear at this point. The mixed-content message also appears if you only map the para items directly, without having the autoconnect option activated.

All child items of para have been connected. The connector joining the para items is displayed as a dotted line, to show that it is of type mixed content.

4. Click the Output tab to see the result of the mapping.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<Company-Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNames="true">
  <Name>Organization Chart</Name>
  <Office>
    <Name>Nanonul, Inc.</Name>
    <Desc>
      <para>The company was established in <bold>Verona</bold> in 1995. Nanonul developers will be provided with the most recent technologies and further information will be made available in the near future.</para>
    </Desc>
  </Office>
  <Office>
    <Name>Nanoneurope, AG</Name>
    <Desc>
      <para>In May 2000, Nanonul (Europe) was set up in Vienna. The teams consist of 80 employees working in a variety of locations. The company has grown significantly in the past years, mainly due to targeted R&D activities.</para>
    </Desc>
  </Office>
</Company-Person>
```

5. Click the word Wrap icon in the Output tab icon bar, to view the complete text in the Output window.
The mixed content text of each office description has been mapped correctly; the text, as well as the bold and italic tag content, have been mapped as they appear in the XML source file.

6. Switch back to the Mapping view.

To remove text nodes from mixed content items:

1. Click the `text()` node connector and press Del. to delete it.

2. Click the Output tab to see the result of the mapping.
To map the Processing Instructions and Comments:

1. Right-click the mixed content connection, and select Properties.
2. Under Source-Drive (Mixed content), select the Map Processing Instructions and Map Comments check boxes.

4.2.2.2 Mixed content example

The following example is available as ”ShortApplicationInfo.mfd” in the ...\MapForceExamples folder.

A snippet of the XML source file for this example is shown below.

```xml
<Page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
     xsi:noNamespaceSchemaLocation="SectionedPage.xsd">
  <Item>
    <Title>XMLSpy</Title>
    <MainSection author="altova">
      Altova <Trademark>XMLSpy</Trademark> 2005 Enter is the industry standard development environment editing, debugging and transforming all technolo automatically generating runtime code in multiple programming languages
    </MainSection>
  </Item>
</Page>
```

The mapping is shown below. Please note the following:
- The "SubSection" item connector is of mixed content, and is mapped to the Description item in the target XML/schema.
- The text() nodes are mapped to each other
- Trademark text is mapped to the Bold item in the target
- Keyword text is mapped to the italic item in the target

4.2.2.3 Using standard connections on mixed content items

As mentioned before, source-driven (not standard) connections are normally used when mapping data from mixed content nodes. Otherwise, the resulting output may be undesirable. To see the consequences of using a standard (target-driven) connection when mapping data from a mixed content node, follow the steps below:

1. Open the mapping `Tut-OrgChart.mfd` from the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder.
2. Create a connection between the `para` node in the source and the `para` node in the target. A message appears, asking if you would like MapForce to define the connections as source-driven. Click **No** (this disregards the MapForce suggestion and creates a standard connection).

![Diagram showing connections between nodes](image)

Note: Make sure that the connection is standard (target-driven), as shown above. If a Copy-All connection is created automatically, right-click the connection, and select **Target Driven (Standard)** from the context menu.

3. Click the **Output** tab to see the result of the mapping.

```xml
<Office>
  <Name>Nanovull, Inc.</Name>
  <Desc>
    The company was established in 1995. Nanovull develops nanoelectronic technology, unveiling the first prototype. The company hopes to expand its operations to drive down operating costs.
    <bold>Verano</bold>
    <bold>Nanogrid</bold>
    <italic>multi-core processors</italic>
    <italic>offshore</italic>
  </Desc>
  <para>White papers and further information will be made available in the near future.</para>
</Office>
```

As illustrated above, mapping mixed content nodes using standard connections produces the following result:

- The content of the `text()` source item is copied to the target; however, the sequence of child nodes (`bold` and `italic`, in this case) in the output corresponds to the sequence in the target XML schema. In other words, the child nodes (`bold` and `italic`, in this case) appear after the mixed content node `text`.
- For each `para` element, MapForce has mapped the `text()` node first, then all `bold` items, and, finally, all `italic` items. As a result, multiple `bold` and `italic` items appear stacked on each other. Note that the content of each item is mapped if a connection exists to it from the source.

4.2.3 Copy-All Connections

Copy-All connections map data between complex structures (nodes with children items) that are very similar or identical. The main benefit of "Copy-All" connections is that they simplify the mapping workspace (one "thick" connection is created instead of multiple).

On the mapping, a "Copy-All" connection appears as a single bold line (with input and output "forks" for each child item) that connects two identical or similar structures.
Copy-All connection

When you draw a mapping connection between two structures on the mapping, MapForce creates a "Copy-All" connection automatically if it detects that the source and target structure are assignment compatible (that is, when both structures are either of the same type, or the target is a subtype of the source type). At mapping runtime, all instance data will be copied from the source to the target recursively, including children.

To create a "Copy-All" connection manually, right-click an existing connection between two similar nodes with child items, and select **Copy-All (Copy Child Items)** from the context menu.

Note the following:

- In contexts where a "Copy-All" connection is not meaningful or not supported, it is not possible to create this kind of connection manually.
- A "Copy-All" connection cannot be created to the root element of an XML/Schema component.
- When creating "Copy-All" connections between a schema and a parameter of a user-defined function, the two components must be based on the same schema. It is not necessary that they both have the same root elements, however.

For an example of a "Copy-All" connection created manually, take the following steps:

1. Create a new mapping.
2. On the **Insert** menu, click **XML Schema/File** and browse for the **books.xml** file located in the folder `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\`.
3. On the **Insert** menu, click **XML Schema/File** and browse for the **library.xsd** file located in the folder `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\`.
4. Draw a mapping connection between the **book** node of the "books" component to the **publication** node of the "library" component.
5. Right-click the new connection, and select **Copy-All (Copy Child Items)** from the context menu.
If there are slight differences between the source and the target structures, the "Copy-All" connection will enumerate, at mapping runtime, the source items (such as elements and attributes) and will copy only those that exist in the target type. This is repeated recursively.

For example, in the mapping above, only two child items are identical between the two structures (author and title) and thus they are mapped to the target. The item id is not included automatically because it is an attribute in the source and an element in the target. If you need to map, for example, category to genre, the "Copy-All" connection is no longer possible, because these are different items.

When an input connector (the small triangle to the side of the component) receives a "Copy-All" connection, it cannot accept any other connections. In the example above, if you attempt to create a connection between category and genre, MapForce prompts you to either replace it, or duplicate the input.

Duplicating input is meaningful only if you want the target to accept data from more than one input, which is not required here (see also Duplicating Input). If you choose to replace the "Copy-All" connection, a message box prompts you again to either resolve or delete the "Copy-All" connection.

Click Resolve copy-all connection if you want to replace the "Copy-All" connection by standard individual target-driven connections to corresponding child items. If you prefer to remove the "Copy-All" connection completely, click Delete child connections.
4.3 Chained Mappings

MapForce supports mappings that consist of multiple components in a mapping chain. Chained mappings are mappings where at least one component acts both as a source and a target. Such a component creates output which is later used as input for a following mapping step in the chain. Such a component is called an "intermediate" component.

For example, the mapping illustrated below shows an expense report (in XML format) that is being processed in two stages. The part of the mapping from A to B filters out only those expenses that are marked as "Travel". The mapping from B to C filters out only those "Travel" expenses that have a travel cost less than 1500. Component B is the "intermediate" component, as it has both input and output connections. This mapping is available at the following path:

`<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ChainedReports.mfd`

Chained mappings introduce a feature called "pass-through". "Pass-through" is a preview capability allowing you to view the output produced at each stage of a chained mapping in the Output window. For example, in the mapping above, you can preview and save the XML output resulting from A to B, as well as the XML output resulting from B to C.

Note: The "pass-through" feature is available only for file-based components (for example, XML, CSV, and text). Database components can be intermediate, but the pass-through button is not shown. The intermediate component is always regenerated from scratch when previewing or generating code. This would not be feasible with a database as it would have to be deleted prior to each regeneration.

If the mapping is executed by MapForce Server, or by generated code, then the full mapping chain is executed. The mapping generates the necessary output files at each step in the chain, and the output of a step of a mapping chain is forwarded as input to the following mapping step.
It is also possible for intermediate components to generate dynamic file names. That is, they can accept connections to the "File:" item from the mapping, provided that the component is configured correspondingly. For more information, see Processing Multiple Input or Output Files Dynamically.

Preview button

Both the component B and the component C have preview buttons. This allows you to preview in MapForce the intermediate mapping result of B, as well as the final result of the chained mapping. Click the preview button of the respective component, then click Output to see the mapping result.

"Intermediate" components with the pass-through button active cannot be previewed. Their preview button is automatically disabled, because it is not meaningful to preview and let data pass through at the same time. To see the output of such a component, first click the "pass-through" button to deactivate it, and then click the preview button.

Pass-through button

The intermediate component B has an extra button in the component title bar called "pass-through".

If the pass-through button is **active**, MapForce maps all data into the preview window in one go; from component A to component B, then on to component C. Two result files will be created:

- the result of mapping component A to intermediate component B
- the result of the mapping from the intermediate component B, to target component C.

If the pass-through button is **inactive**, MapForce will execute only parts of the full mapping chain. Data is generated depending on which preview buttons are active:

- If the preview button of component B is active, then the result of mapping component A to component B is generated. The mapping chain actually stops at component B. Component C is not involved in the preview at all.
- If the preview button of component C is active, then the result of mapping intermediate component B to the component C is generated. Because pass-through is inactive, automatic chaining has been interrupted for component B. Only the right part of the mapping chain is executed. Component A is not used.

When the "pass-through" button is inactive, it is important that the intermediate component has identical file names in the "Input XML File" and "Output XML File" fields. This ensures that the file generated as output when you preview the portion of the mapping between A and B is used as input when you preview the portion of the mapping between B and C. Also, in generated code, or in MapForce Server execution, this ensures that the mapping chain is not broken.

As previously mentioned, if the mapping is executed by MapForce Server, or by generated code, then the output of all components is generated. In this case, the settings of the pass-through button of component B, as well as the currently selected preview component, are disregarded. Taking the mapping above as example, two result files will be generated, as follows:

1. The output file resulting from mapping component A to B
2. The output file resulting from mapping component B to C.
The following sections, Example: Pass-Through Active and Example: Pass-Through Inactive, illustrate in more detail how the source data is transferred differently when the pass-through button is active or inactive.

4.3.1 Example: Pass-Through Active

The mapping used in this example (ChainedReports.mfd) is available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder. This mapping processes an XML file called ReportA.xml that contains travel expenses and looks as shown below. For simplicity, the namespace declaration and some expense-item elements have been omitted:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<expense-report currency="USD" detailed="true">
  <Person>
    <First>Fred</First>
    <Last>Landis</Last>
    <Title>Project Manager</Title>
    <Phone>123-456-78</Phone>
    <Email>f.landis@nanonull.com</Email>
  </Person>
  <expense-item type="Travel" expto="Development">
    <Date>2003-01-02</Date>
    <Travel Trav-cost="337.88">
      <Destination/>
    </Travel>
    <description>Biz jet</description>
  </expense-item>
  <expense-item type="Lodging" expto="Sales">
    <Date>2003-01-01</Date>
    <Lodging Lodge-cost="121.2">
      <Location/>
    </Lodging>
    <description>Motel mania</description>
  </expense-item>
  <expense-item type="Travel" expto="Marketing">
    <Date>2003-02-02</Date>
    <Travel Trav-cost="2000">
      <Destination/>
    </Travel>
    <description>Hong Kong</description>
  </expense-item>
</expense-report>
```

ReportA.xml

The goal of the mapping is to produce, based on the file above, two further reports:

- **ReportB.xml** - this report should contain only those travel expenses that are of type "Travel".
- **ReportC.xml** - this report should contain only those travel expenses that are of type "Travel" and do not exceed 1500.
To achieve this goal, the intermediate component of the mapping (component B) has the pass-through button active, as shown below. This causes the mapping to be executed in stages: from A to B, and then from B to C. The output created by the intermediate component will be used as input for the mapping between B and C.

The names of generated output files at each stage in the mapping chain is determined by the settings of each component. (To open the component settings, right-click it, and then select Properties from the context menu). Namely, the first component is configured to read data from an XML file called ReportA.xml. Because this is a source component, the Output XML File field is irrelevant and it was left empty.

As shown below, the second component (ReportB) is configured to create an output file called ReportB.xml. Notice that the Input XML File field is grayed out. When pass-through is active (as in this example), the Input XML File field of the intermediate component is automatically deactivated. An input file name need not exist for the mapping to execute, because the output created at this stage in the mapping is stored in a temporary file and reused further in the mapping. Also, if an Output XML File is defined (as illustrated below), then it is used for the file name of the intermediate output file. If no Output XML File is defined, a default file name will be automatically used.
Finally, the third component is configured to produce an output file called **ReportC.xml**. The **Input XML File field** is irrelevant here, because this is a target component.

If you preview the mapping by clicking the **Output** tab in the mapping window, two files are shown in the output, as expected:

1. **ReportB.xml**, which represents the result of the mapping A to B
2. **ReportC.xml**, which represents the result of mapping B to C.

To select which of the two generated output files should be displayed in the Output window, either click the arrow buttons, or select the desired entry from the dropdown list.
When the mapping is executed by MapForce, the setting "Write directly to final output file" (configured from Tools | Options | General) determines whether the intermediate files are saved as temporary files or as physical files. Note that this is only valid when the mapping is previewed directly in MapForce. Had this mapping been executed by MapForce Server or by generated code, actual files would be produced at each stage in the mapping chain.

If StyleVision is installed, and if a StyleVision Power Stylesheet (SPS) file has been assigned to the target component (as in this example), then the final mapping output can be viewed (and saved as) HTML, RTF file. To generate and view this output in MapForce, click the tab with the corresponding name.
4.3.2 Example: Pass-Through Inactive

The mapping used in this example (ChainedReports.mfd) is available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder. This example illustrates how output is generated differently when the pass-through button is deactivated on the intermediate component.
As explained in Example: Pass-Through Active, the goal of the mapping is to produce two separate reports. In the previous example, the pass-through button was active, and both reports were generated as expected and could be viewed in the Output tab. However, if you want to preview only one of the reports (either ReportB.xml or ReportC.xml), then the pass-through button must be deactivated. More precisely, deactivating the pass-through button may be useful if you want to achieve the following:

- Preview only output generated from A to B, and disregard the portion of the mapping from B to C
- Preview only output generated from B to C, and disregard the portion of the mapping from A to B.

When you deactivate the pass-through button as shown above, you can choose whether to preview either ReportB or ReportC (notice that both have preview buttons).

Deactivating the pass-through button also lets you to choose what input file should be read by the intermediate component. In most cases, this should be the same file as defined in Output XML File field (as in this example).

Settings of the intermediate component

Having the same input and output file on the intermediate component is particularly important if you intend to generate code from the mapping, or run the mapping with MapForce Server. As previously mentioned, in these environments, all outputs created by each component in the mapping chain are generated. So, it usually makes sense for the intermediate component to receive one file for processing (in this case ReportB.xml) and forward the same file to the subsequent mapping, rather than look for a different file name. Be aware that, not having the same input and output file names on the intermediate component (when the pass-through button is inactive) might cause errors such as "The system cannot find the file specified" in generated code or in MapForce Server execution.

If you click the preview button on the third component (ReportC), and attempt to preview the mapping in MapForce, you will notice that an execution error occurs. This is expected, since, according to the settings above, a file called ReportB.xml is expected as input. However, the mapping did not produce yet such a file (because the pass-through button is not active, and only the portion of the mapping from B to C is executed). You can easily fix this problem as follows:
1. Click the preview button on the intermediate component.
2. Click the Output tab to preview the mapping.
3. Save the resulting output file as ReportB.xml, in the same folder as the mapping (<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\).

Now, if you click again the preview button on the third component (ReportC), the error is no longer shown.

When the pass-through button is inactive, you can also preview the StyleVision-generated output for each component that has an associated StyleVision Power StyleSheet (SPS) file. In particular, you can view the HTML version of the intermediate report as well (in addition to that of the final report):

![HTML output of the intermediate component](image-url)
4.4 Processing Multiple Input or Output Files Dynamically

You can configure MapForce to process multiple files (for example, all files in a directory) when the mapping runs. Using this feature, you can solve tasks such as:

- Supply to the mapping a list of input files to be processed
- Generate as mapping output a list of files instead of a single output file
- Generate a mapping application where both the input and output file names are defined at runtime
- Convert a set of files to another format
- Split a large file (or database) into smaller parts
- Merge multiple files into one large file (or load them into a database)

You can configure a MapForce component to process multiple files in one of the following ways:

- Supply the path to the required input or output file(s) using wildcard characters instead of a fixed file name, in the component settings (see Changing the Component Settings). Namely, you can enter the wildcards * and ? in the Component Settings dialog box, so that MapForce resolves the corresponding path when the mapping runs.
- Connect to the root node of a component a sequence which supplies the path dynamically (for example, the result of the `replace-fileext` function). When the mapping runs, MapForce will read dynamically all the input files or generate dynamically all the output files.

Depending on what you want to achieve, you can use either one or both of these approaches on the same mapping. However, it is not meaningful to use both approaches at the same time on the same component. To instruct MapForce which approach you want to use for a particular component, click the `File` or `File/String` button available next to the root node of a component. This button enables you to specify the following behavior:

<table>
<thead>
<tr>
<th>Use File Names from Component Settings</th>
<th>If the component should process one or several instance files, this option instructs MapForce to process the file name(s) defined in the Component Settings dialog box. If you select this option, the root node does not have an input connector, as it is not meaningful.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If you did not specify yet any input or output files in the Component Settings dialog box, the name of the root node is <code>File: (default)</code>. Otherwise, the root node displays the name of the input file, followed by a semi-colon (<code>;</code>), followed by the name of the output file.</td>
</tr>
</tbody>
</table>
Designing Mappings

If the name of the input is the same with that of the output file, it is displayed as name of the root node.

Note that you can select either this option or the **Use Dynamic File Names Supplied by Mapping** option.

Use Dynamic File Names Supplied by Mapping

This option instructs MapForce to process the file name(s) that you define on the mapping area, by connecting values to the root node of the component.

If you select this option, the root node gets an input connector to which you can connect values that supply dynamically the file names to be processed during mapping execution. If you have defined file names in the Component Settings dialog box as well, those values are ignored.

When this option is selected, the name of the root node is displayed as `File: <dynamic>`.

This option is mutually exclusive with the **Use File Names from Component Settings** option.

Parse Strings to XML, Parse Strings to JSON, Parse Strings to CSV, Parse Strings to FLF, Parse Strings to EDI

When switched on, this option enables the component to accept a string value as input to the root node, and convert it to an XML, JSON, CSV, FLF, or EDI structure, respectively. For more information, see Parsing and Serializing Strings.

Serialize XML to Strings, Serialize JSON to Strings, Serialize CSV to Strings, Serialize FLF to Strings, Serialize EDI to Strings

When switched on, this option enables the component to accept a structure as input, and convert it to string. The input structure can be XML, JSON, CSV, Fixed-length Field, or EDI, respectively. For more information, see Parsing and Serializing Strings.
Multiple input or output files can be defined for the following components:

- XML files
- Text files (CSV*, FLF* files and FlexText** files)
- EDI documents**
- Excel spreadsheets**
- XBRL documents**
- JSON files**
- Protocol Buffers files**

* Requires MapForce Professional Edition
** Requires MapForce Enterprise Edition

The following table illustrates support for dynamic input and output file and wildcards in MapForce languages.

<table>
<thead>
<tr>
<th>Target language</th>
<th>Dynamic input file name</th>
<th>Wildcard support for input file name</th>
<th>Dynamic output file name</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT 1.0</td>
<td>*</td>
<td>Not supported by XSLT 1.0</td>
<td>Not supported by XSLT 1.0</td>
</tr>
<tr>
<td>XSLT 2.0</td>
<td>*</td>
<td>*(1)</td>
<td>*</td>
</tr>
<tr>
<td>XQuery</td>
<td>*</td>
<td>*(1)</td>
<td>Not supported by XQuery</td>
</tr>
<tr>
<td>C++</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>C#</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Java</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BUILT-IN</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Legend:

* Supported
(1) XSLT 2.0 and XQuery use the fn:collection function. The implementation in the Altova XSLT 2.0 and XQuery engines resolves wildcards. Other engines may behave differently.

4.4.1 Mapping Multiple Input Files to a Single Output File

To process multiple input files, do one of the following:

- Enter a file path with wildcards (* or ?) as input file in the Component Settings dialog box. All matching files will be processed. The example below uses the * wildcard character in the Input XML file field to supply as mapping input all files whose name begins with "Nanonull-". Multiple input files are being merged into a single output file because there is no dynamic connector to the target component, while the source component accesses multiple files using the wildcard *. Notice that the name of the root node in the target component is File: <default>, indicating that no output file path has been defined in the Component Settings dialog box. The multiple source files are thus appended in the target document.
MergeMultipleFiles.mfd (MapForce Basic Edition)

- Map a sequence of strings to the File node of the source component. Each string in the sequence represents one file name. The strings may also contain wildcards, which are automatically resolved. A sequence of file names can be supplied by components such as an XML file, database text fields.
4.4.2 Mapping Multiple Input Files to Multiple Output Files

To map multiple files to multiple target files, you need to generate unique output file names. In some cases, the output file names can be derived from strings in the input data, and in other cases it is useful to derive the output file name from the input file name, e.g. by changing the file extension.

In the following mapping, the output file name is derived from the input file name, by adding the prefix “Persons-“ with the help of the `concat` function.

![Diagram](image)

MultipleInputToMultipleOutputFiles.mfd (MapForce Basic Edition)

Note: Avoid simply connecting the input and output root nodes directly, without using any processing functions. Doing this will overwrite your input files when you run the mapping. You can change the output file names using functions such as the `concat` function, as shown above.

The menu option **File | Mapping Settings** allows you to define globally the file path settings used by the mapping (see Changing the mapping settings).

4.4.3 Supplying File Names as Mapping Parameters

To supply custom file names as input parameters to the mapping, do the following:

1. Add a simple input component to the mapping (On the **Function** menu, click **Insert Input**). For more information about such components, see Supplying Parameters to the Mapping.
2. Click the File (File) or File/String (File/String) button of the source component and select **Use Dynamic File Names Supplied by Mapping**.

3. Connect the simple input component to the root node of the component which acts as mapping source.

For a worked example, see [Example: Using File Names as Mapping Parameters](#).

4.4.4 Previewing Multiple Output Files

Click the Output tab to display the mapping result in a preview window. If the mapping produces multiple output files, each file has its own numbered pane in the Output tab. Click the arrow buttons to see the individual output files.

To save the generated output files, do one of the following:

- On the **Output** menu, click **Save All Output Files** (), or
- Click the **Save all generated outputs** () toolbar button.
4.4.5 Example: Split One XML File into Many

This example shows you how to generate dynamically multiple XML files from a single source XML file. The accompanying mapping for this example is available at the following path:
<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Tut-ExpReport-dyn.mfd.

The source XML file (available in the same folder as the mapping) consists of the expense report for a person called "Fred Landis" and contains five expense items of different types. The aim of the example is to generate a separate XML file for each of the expense items listed below.

```
<mf-ExpReport.xml>(as shown in XMLSpy Grid view)
  <Person>
    <First>Fred</First>
    <Last>Landis</Last>
    <Title>Project Manager</Title>
    <Phone>123-456-78</Phone>
    <Email>f.landis@nanonull.com
  </Person>
  <expense-item>
    <type>Travel</type>
    <dept>Development</dept>
    <date>2003-01-02</date>
    <amt>337.88</amt>
    <type>Lodging</type>
    <dept>Lodging</dept>
    <date>2003-01-01</date>
  </expense-item>
  <expense-item>
    <type>Travel</type>
    <dept>Accounting</dept>
    <date>2003-07-07</date>
    <amt>1014.22</amt>
    <type>Lodging</type>
    <dept>Lodging</dept>
    <date>2003-07-07</date>
  </expense-item>
  <expense-item>
    <type>Travel</type>
    <dept>Marketing</dept>
    <date>2003-02-02</date>
    <amt>2000</amt>
  </expense-item>
  <expense-item>
    <type>Meal</type>
    <dept>Sales</dept>
    <date>2003-03-03</date>
  </expense-item>
```

As the `type` attribute defines the specific expense item type, this is the item we will use to split up the source file. To achieve the goal of this example, do the following:

1. Insert a `concat` function (you can drag it from the `core | string functions` library of the Libraries pane).
2. Insert a constant (on the Insert menu, click `Constant`) and enter ".xml" as its value.
3. Insert the `auto-number` function (you can drag it from the `core | generator functions` library of the Libraries pane).
4. Click the `File` (File) or `File/String` (File/String) button of the target component and select Use Dynamic File Names Supplied by Mapping.
5. Create the connections as shown below and then click the `Output` tab to see the result of the mapping.
Note that the resulting output files are named dynamically as follows:

- The `type` attribute supplies the first part of the file name (for example, "Travel").
- The `auto-number` function supplies the sequential number of the file (for example, "Travel1", "Travel2", and so on).
- The constant supplies the file extension, which is ".xml", thus “Travel1.xml” is the file name of the first file.

4.4.6 Example: Split Database Table into Many XML Files

This example shows you how to generate dynamically multiple XML files, one for each record of a database table. The accompanying mapping for this example is available at the following path:

`<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\PersonDB-dyn.mfd`.
The source database file (available in the same folder as the mapping) includes a Person table which contains 21 records. The aim of the example is to generate a separate XML file for each record in the Person table.

As the "PrimaryKey" field uniquely identifies each person in the table, this is the item we will use to split up the source database into separate files. To achieve the goal of this example, do the following:

1. Insert a `concat` function (you can drag it from the `core | string functions` library of the Libraries pane).
2. Insert a constant (on the Insert menu, click Constant) and enter ".xml" as its value.
3. Click the File (File) or File/String (File/String) button of the target component and select Use Dynamic File Names Supplied by Mapping.
4. Create the connections as shown below and then click the Output tab to see the result of the mapping.

Note that the resulting output files are named dynamically as follows:
• The **PrimaryKey** field supplies the first part of the file name (for example, "1").
• The constant supplies the file extension (".xml"), thus "1.xml" is the file name of the first file.
4.5 Supplying Parameters to the Mapping

If you need to create a mapping that takes parameters as input, you can do so by adding a special component type called "simple input component". Simple input components always have a simple data type (for example, string, integer, and so on) instead of a structure of items and sequences. For example, in the mapping illustrated below, there is a simple input component `count`. Its role is to supply as parameter the maximum number of rows that should be retrieved from the source XML file (with value 10 as default). Importantly, the nodes supplied as input to the `first-items` function are sorted with the help of a sort component, so the mapping outputs the highest N temperatures only, where N is the parameter's value.

You can use simple input components in any of the following MapForce transformation languages:

- BUILT-IN (when you preview the mapping transformation directly in MapForce, from the Preview tab)
- BUILT-IN (when you run a compiled MapForce Server execution file)
- XSLT 1.0, XSLT 2.0
- XQuery
- C++
- C#
- Java

In case of mappings executed with MapForce Server or by means of generated code, simple input components become command line parameters. In case of mappings generated as XSLT transformations, simple input components correspond to stylesheet parameters in the generated XSLT file.

You can create each simple input component (or parameter) as optional or mandatory, see Adding Simple Input Components. If necessary, you can also create default values for the mapping input parameters, see Creating a Default Input Value. This enables you to safely run the mapping even if you do not explicitly supply a parameter value at mapping execution time. For an example, see Example: Using File Names as Mapping Parameters.
Input parameters added on the main mapping area should not be confused with input parameters in user-defined functions. There are some similarities and differences between the two, as follows.

<table>
<thead>
<tr>
<th>Input parameters on the mapping</th>
<th>Input parameters of user-defined functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added from **Function</td>
<td>Insert Input** menu.</td>
</tr>
<tr>
<td>Can have simple data types (string, integer, and so on).</td>
<td>Can have simple as well as complex data types.</td>
</tr>
<tr>
<td>Applicable to the entire mapping.</td>
<td>Applicable only in the context of the function in which they were defined.</td>
</tr>
</tbody>
</table>

When you create a reversed mapping (using the menu command **Tools | Create Reversed Mapping**), a simple input component becomes a simple output component.

4.5.1 Adding Simple Input Components

To add a simple input to the mapping:

1. Make sure that the mapping window displays the main mapping (not a user-defined function).
2. Do one of the following:
 - On the **Function** menu, click **Input**.
 - On the **Insert** menu, click **Insert Input**.
 - Click the **Insert Input** toolbar button.

3. Enter a name and select the data type required for this input. If the input should be treated as a mandatory mapping parameter, select the **Input is required** check box. For a complete list of settings, see [Simple Input Component Settings](#).
Note: The parameter name can contain only letters, digits, and underscores; no other characters are allowed. This makes it possible for a mapping to work across all code generation languages.

4. Click OK.

You can change later any of the settings defined here (see Simple Input Component Settings).

4.5.2 Simple Input Component Settings

You can define the settings applicable to a simple input component when adding it to the mapping area. You can also change the settings at a later time, from the Edit Input dialog box.

To open the Edit Input dialog box, do one of the following:

- Select the component, and, on the Component menu, click Properties.
- Double-click the component.
- Right-click the component, and then click Properties.

The available settings are as follows.

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a descriptive name for the input parameter corresponding to this component. At mapping execution time, the value entered in this text box becomes the name of the parameter supplied to the mapping; therefore, no spaces or special characters are allowed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datatype</td>
<td>By default, any input parameter is treated as string data type. If the parameter should have a different data type, select the respective value from the list. When the mapping is executed, MapForce casts the input parameter to the data type selected here.</td>
</tr>
</tbody>
</table>
Supplying Parameters to the Mapping

<table>
<thead>
<tr>
<th>Input is required</th>
<th>When enabled, this setting makes the input parameter mandatory (that is, the mapping cannot be executed unless you supply a parameter value). Clear this check box if you want to specify a default value for the input parameter (see Creating a Default Input Value).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify value</td>
<td>This setting is applicable only if you execute the mapping during design time, by clicking the Preview tab. It allows you to enter directly in the component the value to use as mapping input.</td>
</tr>
<tr>
<td>Value</td>
<td>This setting is applicable only if you execute the mapping during design time, by clicking the Preview tab. To enter a value to be used by MapForce as mapping input, select the Specify Value check box, and then type the required value. Note: If you click the Specify value check box and enter a value in the adjacent box, the entered value takes precedence over the default value when you preview the mapping (that is, at design-time execution). However, the design-time value has no effect in the generated XSLT, XQuery, or program code, in execution by MapForce Server, or deployment to FlowForce Server.</td>
</tr>
</tbody>
</table>

4.5.3 Creating a Default Input Value

After you add an Input component to the mapping area, notice the default item to the left of the component.

Simple input component

The default item enables you to connect an optional default value to this input component, as follows:

1. Add a constant component (on the Insert menu, click Constant), and then connect it to the default item of the input component.

2. Double-click the input component and clear the Input is required check box. When you create a default input value, this setting is not meaningful and causes mapping validation warnings.
3. Click **OK**.

Note: If you click the **Specify value** check box and enter a value in the adjacent box, the entered value takes precedence over the default value when you preview the mapping (that is, at design-time execution). However, the design-time value has no effect in the generated XSLT, XQuery, or program code, in execution by MapForce Sener, or deployment to FlowForce Server.

4.5.4 Example: Using File Names as Mapping Parameters

This example walks you through the steps required to execute a mapping that takes input parameters at runtime. The mapping design file used in this example is available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\FileNamesAsParameters.mfd`.

This mapping reads data from a source XML file and writes it to a target XML file. The data is written to the target file almost unchanged; only the attributes **PrimaryKey** and **Name** are populated with some constant values from the mapping. The main goal of the mapping is to enable the caller to specify the name of the input file and the name of the output file, as mapping parameters, at mapping runtime.

To achieve this, the mapping has two input components: **InputFileName** and **OutputFileName**. These supply the input file name (and the output file name, respectively) of the source and target XML file. For this reason, they are connected to the **File**: `<dynamic>` item. You can switch a component to this mode by clicking the **File/String** (\File\String\) button, and selecting **Use Dynamic File Names Supplied by Mapping**.
If you double-click the title bar of either **InputFileName** and **OutputFileName** components, you can view or edit their properties. For example, you can specify the data type of the input parameter or change the input parameter name, as described in Simple Input Component Settings. In this example, the input and output parameters are configured as follows:

- The **InputFileName** parameter is of type "string" and it has a default value supplied by a constant defined in the same mapping. The constant is of type "string" and its value is "Altova_Hierarchical.xml". Therefore, when this mapping runs, it will attempt to read data from a file called "Altova_Hierarchical.xml", assuming that you do not supply some other value as parameter.

- The **OutputFileName** parameter is of type "string" and it also has a default value supplied by a constant defined in the same mapping. The constant is of type "string" and its value is "Altova_Hierarchical_output.xml". Therefore, the mapping will create an XML output file called "Altova_Hierarchical_output.xml" when it runs, assuming that you do not supply some other value as parameter.

The following sections illustrate how to run the mapping and supply parameters in the following transformation languages:

- **XSLT 2.0**, using RaptorXML Server
- **Built-in (MapForce Server Execution File)**, using MapForce Server
- **Java**
- **C#**
- **C++**
XSLT 2.0
If you generate code in XSLT 1.0 or XSLT 2.0, a DoTransform.bat batch file is generated in the chosen target directory, in addition to the XSLT file. The DoTransform.bat lets you execute the mapping with RaptorXML Server, see Automation with RaptorXML Server.

To use a different input (or output) file, edit the DoTransform.bat file to include the required parameters, as follows:

1. First, generate the XSLT 2.0 code (On the File menu, click Generate Code In | XSLT 2.0).
2. Copy the Altova_Hierarchical.xml file from <Documents>\Altova\MapForce2021\MapForceExamples\ to the directory where you generated the XSLT 2.0 code (in this example, c:\codegen\examples\xslt2). As stated previously, the mapping will attempt to read this file if you do not supply a custom value to the InputFileName parameter.
3. Edit DoTransform.bat to include the custom input parameter either before or after %*. Note that the parameter value is enclosed with single quotes. The available input parameters are listed in the rem (Remark) section. Let's suppose that you would like to generate an output file called output.xml. To achieve this, change the DoTransform.bat file as follows:

```bash
@echo off
RaptorXML xslt --xslt-version=2
--input="MappingMapToAltova_Hierarchical.xslt"
--param=OutputFileName:'output.xml' %* "MappingMapToAltova_Hierarchical.xslt"
rem --param=InputFileName:
rem --param=OutputFileName:
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
```

When you run the DoTransform.bat file, RaptorXML Server completes the transformation using Altova_Hierarchical.xml as input. If you followed the steps above, the name of the generated output file will be output.xml.

MapForce Server Execution File
To supply custom input parameters to a MapForce Server execution file:

1. If you haven't done that already, open the FileNamesAsParameters.mfd example from the <Documents>\Altova\MapForce2021\MapForceExamples\ directory.
2. On the File menu, click Compile to MapForce Server Execution File, see also Compiling Mappings to MapForce Server Execution Files. When prompted, save the .mfx execution file to a directory on your computer (in this example, c:\codegen\examples\mfx).
3. Copy the `Altova_Hierarchical.xml` file from the `<Documents>\Altova\MapForce2021\MapForceExamples` directory to the directory where you saved the `.mfx` file.

4. Run MapForce Server with the following command:

```
MapForceServer.exe run "C:\codegen\examples\mfx\FileNamesAsParameters.mfx"
    -p=InputFileName:"C:\codegen\examples\mfx\Altova_Hierarchical.xml"
    -p=OutputFileName:"C:\codegen\examples\mfx\OutputFile.xml"
```

In the MapForce Server command above, `-p=InputFileName` and `-p=OutputFileName` are the input parameters to the mapping. You can use any file name as the value of `-OutputFileName`. However, the file name supplied in `-InputFileName` parameter must exist as a physical file; otherwise, the mapping will fail.

Note: If you see the message "MapForceServer.exe is not recognized as an internal or external command, operable program, or batch file", change the current directory to the one where the MapForce Server executable is installed. To avoid changing path every time when you run a mapping, add to your operating system's PATH environment variable the path of the directory where MapForce Server executable is installed (for example, `C:\Program Files (x86)\Altova\MapForceServer2021\bin`).

With MapForce Server, running a mapping is also possible by calling the MapForce Server API (which is invokable from languages such as C++, C#, or Java). For further information about this scenario, refer to the MapForce Server documentation (https://www.altova.com/documentation).

Java

To supply a custom input parameter to a Java .jar application:

1. If you haven't done that already, open the `FileNamesAsParameters.mfd` example from the `<Documents>\Altova\MapForce2021\MapForceExamples` directory.
2. On the File menu, click Generate Code In | Java.
3. Compile the Java code into an executable JAR file. For an example of how to do this in Eclipse, see Example: Generate and Run Java Code.
4. Copy the `Altova_Hierarchical.xml` file from `<Documents>\Altova\MapForce2021\MapForceExamples` to the directory where the .jar file is. As stated previously, the mapping will attempt to read this file if you do not supply a custom value to the `InputFileName` parameter.
5. Run the Java application with the following command:

```
java -jar Mapping.jar /OutputFileName "output.xml"
```

In the command above, the input parameter `/OutputFileName` supplies the name of the output file to be generated.

Note: If you use wildcards when passing parameters to .jar files, enclose the wildcard parameters within quotes, for example:

```
java -jar Mapping.jar /InputFileName "altova-*\.xml"
```

C#

To supply a custom input parameter to a C# command line application generated by MapForce:
1. If you haven't done that already, open the <FileNamesAsParameters.mfd> example from the
<Documents>\Altova\MapForce2021\MapForceExamples> directory.
2. On the File menu, click Generate Code In | C#, and select a target directory (C:
\codegen\examples\cs, in this example).
3. Open the solution in Visual Studio and build it (Ctrl + Shift + B).
4. Copy the <Altova_Hierarchical.xml> file from
<Documents>\Altova\MapForce2021\MapForceExamples> to the directory where Mapping.exe was generated (in this example, C:\codegen\examples\cs\Mapping\bin\Debug). As stated previously, the mapping will attempt to read this file if you do not supply a custom value to the InputFileName parameter.
5. Open a Command Prompt window and change to the directory where Mapping.exe is.

```
cd C:\codegen\examples\cs\Mapping\bin\Debug
```

6. Run the application with the following command:

```
Mapping.exe /OutputFileName output.xml
```

In the command above, the input parameter /OutputFileName supplies the name of the output file to be generated.

C++

To supply a custom input parameter to a C++ command line application generated by MapForce:

1. If you haven't done that already, open the <FileNamesAsParameters.mfd> example from the
<Documents>\Altova\MapForce2021\MapForceExamples> directory.
2. On the File menu, click Generate Code In | C++, and select a target directory (C:
\codegen\examples\cpp, in this example).
3. Open the solution in Visual Studio and build it (Ctrl + Shift + B).
4. Copy the <Altova_Hierarchical.xml> file from
<Documents>\Altova\MapForce2021\MapForceExamples> to the directory where Mapping.exe was generated (in this example, C:\codegen\examples\cpp\Mapping\Debug). As stated previously, the mapping will attempt to read this file if you do not supply a custom value to the InputFileName parameter.
5. Open a Command Prompt window and change to the directory where Mapping.exe is.

```
cd C:\codegen\examples\cpp\Mapping\Debug
```

6. Run the application with the following command:

```
Mapping.exe /OutputFileName output.xml
```

In the command above, the input parameter /OutputFileName supplies the name of the output file to be generated.
4.6 Returning String Values from a Mapping

Use a simple output component when you need to return a string value from the mapping. On the mapping area, simple output components play the role of a target component which has a string data type instead of a structure of items and sequences. Consequently, you can create a simple output component instead of (or in addition to) a file-based target component. For example, you can use a simple output component to quickly test and preview the output of a function (see Example: Testing Function Output). The main purpose of a simple output component is, however, to get back a string when calling the MapForce Server API, without writing any files.

Simple output components should not be confused with output parameters of user-defined functions (see User-Defined Functions). There are some similarities and differences between the two, as follows.

<table>
<thead>
<tr>
<th>Output components</th>
<th>Output parameters of user-defined functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added from Function</td>
<td>Insert Output menu.</td>
</tr>
<tr>
<td>Have “string” as data type.</td>
<td>Can have simple as well as complex data types.</td>
</tr>
<tr>
<td>Applicable to the entire mapping.</td>
<td>Applicable only in the context of the function in which they were defined.</td>
</tr>
</tbody>
</table>

If necessary, you can add multiple simple output components to a mapping. You can also use simple output components in combination with file-based and database target components. When your mapping contains multiple target components, you can preview the data returned by a particular component by clicking the Preview button in the component title bar, and then clicking the Output tab on the Mapping window.

You can use simple output components as follows in MapForce transformation languages:

<table>
<thead>
<tr>
<th>Language</th>
<th>How it works</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILT-IN (when previewing the mapping transformation)</td>
<td>You can preview Output components in the same way as you would preview a file-based mapping output—by clicking the Output tab on the Mapping window.</td>
</tr>
<tr>
<td>BUILT-IN (when running the MapForce Server execution file)</td>
<td>When you run a compiled MapForce Server execution file (see Compiling a MapForce mapping), the mapping output is returned in the standard output stream (stdout), so you can view it or redirect to a file. For example, assuming that the name of the MapForce server execution file is MyMapping.mfx, use the following syntax to redirect the mapping output to output.txt file and any errors to the log.txt file:</td>
</tr>
<tr>
<td>XSLT 1.0, XSLT 2.0</td>
<td>If the generated XSLT files, a simple output components defined in the mapping becomes the output of the XSLT transformation.</td>
</tr>
</tbody>
</table>
If you are using RaptorXML Server, you can instruct RaptorXML Server to write the mapping output to the file passed as value to the `--output` parameter.

To write the output to a file, add or edit to the `--output` parameter in the `DoTransform.bat` file. For example, the following `DoTransform.bat` file has been edited to write the mapping output to the `Output.txt` file (see highlighted text).

```bash
RaptorXML xslt --xslt-version=2 --input="MappingMapToResult1.xslt" --output="Output.txt" %*
"MappingMapToResult1.xslt"
```

If an `--output` parameter is not defined, the mapping output will be written to the standard output stream (stdout) when the mapping is executed.

| C++, C#, Java | In the generated C++, C#, and Java code, the mapping output is written to the standard output of the generated application. If the mapping contains multiple target components, the generated application concatenates the standard output of each target component and returns it as one unified standard output. |

When you create a reversed mapping (using the menu command Tools | Create Reversed Mapping), the simple output component becomes a simple input component.

4.6.1 Adding Simple Output Components

To add an output component to the mapping area:

1. Make sure that the mapping window displays the main mapping (not a user-defined function).
2. Do one of the following:
 a. On the Function menu, click Insert Output.
 b. Click the Insert output toolbar button.
3. Enter a name for the component.
4. Click OK.
You can change the component name at any time later, in one of the following ways:

- Select the component, and, on the Component menu, click Properties.
- Double-click the component header.
- Right-click the component header, and then click Properties.

4.6.2 Example: Previewing Function Output

This example illustrates how to preview the output returned by MapForce functions with the help of simple output components. You will make the most of this example if you already have a basic understanding of functions in general, and of MapForce functions in particular. If you are new to MapForce functions, you may want to refer to Using Functions before continuing.

Our aim is to add a number of functions to the mapping area, and learn how to preview their output with the help of simple output components. In particular, the example uses a few simple functions available in the core library. Here is a summary of their usage:

- **string-length**
 - Returns the number of characters in the string provided as argument. For example, if you pass to this function the value "Lorem ipsum", the result is "11", since this is the number of characters that the text "Lorem ipsum" takes.

- **substring-after**
 - Returns the part of the string that occurs after the separator provided as argument. For example, if you pass to this function the value "Lorem ipsum" and the space character (" "), the result is "ipsum".

- **substring-before**
 - Returns the part of the string that occurs before the separator provided as argument. For example, if you pass to this function the value "Lorem ipsum" and the space character (" "), the result is "Lorem".

To test each of these functions against a custom text value ("Lorem ipsum", in this example), follow the steps below:

1. Add a constant with the value "Lorem ipsum" to the mapping area (use the menu command Insert | Constant). The constant will be the input parameter for each of the functions to be tested.
2. Add the `string-length`, `substring-after`, and `substring-before` functions to the mapping area, by dragging them to the mapping area from the core library, `string functions` section.

3. Add a constant with an empty space (" ") as value. This will be the separator parameter required by the `substring-after` and `substring-before` functions.

4. Add three simple output components (use the menu command `Function | Insert Output`). In this example, they have been named `Result1`, `Result2`, and `Result3`, although you can give them another title.

5. Connect the components as illustrated below.

![Diagram of mapping with string functions](image)

Testing function output with simple output components

As shown in the sample above, the "Lorem ipsum" string acts as input parameter to each of the `string-length`, `substring-after`, and `substring-before` functions. In addition to this, the `substring-after` and `substring-before` functions take a space value as second input parameter. The `Result1`, `Result2`, and `Result3` components can be used to preview the result of each function.

To preview the output of any function:

- Click the Preview (اظن) button in the component title bar, and then click the Output tab on the Mapping window.
4.7 Using Variables

Variables are a special type of component used to store an intermediate mapping result for further processing. They might be necessary in situations where you want to temporarily "remember" some data on the mapping and process it in some way (for example, filter it, or apply some functions) before it is copied to the target component.

Variables can be of simple type (for example, string, integer, boolean, etc) or complex type (a tree structure).

Simple variable

You can create a variable of complex type by supplying an XML schema which expresses the structure of the variable. If the schema defines any elements globally, you can choose which one should become the root node of the variable structure. Note that a variable does not have any associated instance XML file; the data of the variable is computed at mapping runtime.

Complex variable created from an XML schema

It is also possible to create variables of complex type from databases. In case of databases, you can choose a specific database table as root item for the variable structure.

Complex variable created from a database table
In the images above, you may notice that each variable has an item called `compute-when`. Connecting this item is optional; this enables you to control how the variable value should be computed on the mapping (see Changing the Context and Scope of Variables).

When necessary, items of a variable structure can be duplicated to accept data from more than one source connection, similar to how this is done for standard components (see Duplicating Input). This does not apply, however, to variables created from database tables.

One of the most important things about variables is that they are sequences, and can be used to create sequences. The term "sequence" here means a list of zero or more items (see also Mapping Rules and Strategies). This makes it possible for a variable to process multiple items for the duration of the mapping lifetime. If, however, you want to assign a value once to a variable and keep it the same for the rest of the mapping, it is also possible (see Changing the Context and Scope of Variables).

To some extent, variables can be compared to intermediate components of a chained mapping (see Chained Mappings). However, they are more flexible and convenient if you don't need to produce intermediary files at each stage in the mapping. The following table outlines differences between variables and chained mappings.

<table>
<thead>
<tr>
<th>Chained mappings</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chained mappings involve two totally independent steps. For example, let's assume a mapping that has three components A, B, and C. Running the mapping involves two stages: executing the mapping from A to B, and then executing the mapping from B to C.</td>
<td>While the mapping is executed, variables are evaluated according to their context and scope. Their context and scope can be influenced (see Changing the Context and Scope of Variables).</td>
</tr>
<tr>
<td>When the mapping is executed, intermediate results are stored externally in files.</td>
<td>When the mapping is executed, intermediate results are stored internally. No external files containing a variable's results are produced.</td>
</tr>
<tr>
<td>The intermediate result can be previewed using the preview button.</td>
<td>A variable's result cannot be previewed, since it is computed at mapping runtime.</td>
</tr>
</tbody>
</table>

Note: Variables are not supported if the mapping transformation language is set to XSLT 1.0.
4.7.1 Adding Variables

There are several ways to add variables to a mapping, as shown below.

Using a menu or toolbar command

1. On the Insert menu, click Variable. (Alternatively, click the Variable toolbar button).

2. Select the type of variable you want to insert (simple or complex type).

If you select "Complex type", there are a few additional steps:

3. Click Choose to select the source which should provide the structure of the variable (for example, an XML Schema or database).
4. When prompted, specify a root item of the structure. In case of XML Schemas, the root item can be any element defined globally. In case of databases, the root item can be any table.
Using a context menu

- Right-click the output connector of a component (in this example, "Article") and select **Create Variable from Source node**.

This creates a complex variable using the same source schema and automatically connects all items with a Copy-All connection.
Right-click the input connector of a target component and select **Create Variable for Target Node**. This creates a complex variable using the same schema as the target, and automatically connects all items with a Copy-All connection.

Right-click the output connector of a filter component (on-true/on-false) and select **Create Variable from Source Node**. This creates a complex component using the source schema, and automatically uses the item linked to the filter input as the root element of the intermediate component.

4.7.2 Changing the Context and Scope of Variables

Every variable has a `compute-when` input item which allows you to control the scope of the variable; in other words, when and how often the variable value is computed when the mapping is executed. You do not have to connect this input in many cases, but it can be essential to override the default context, or to optimize the mapping performance.

The **"compute-when" item**

In the following text, a *subtree* means the set of an item/node in a target component and all of its descendants, for example, a `<Person>` element with its `<FirstName>` and `<LastName>` child elements.

A *variable value* means the data that is available at the output side of the variable component.

- For simple variables, it is a sequence of atomic values that have the datatype specified in the component properties.
- For complex variables, it is a sequence of root nodes (of the type specified in the component properties), each one including all its descendant nodes.

The sequence of atomic values (or nodes) may contain one or even zero elements. This depends on what is connected to the input side of the variable, and to any parent items in the source and target components.

"Compute-when" is not connected (default)

If the `compute-when` input item is not connected (to an output node of a source component), the variable value is computed *whenever it is first used in a target subtree* (either directly via a connector from the variable component to a node in the target component, or indirectly via functions). The same variable value is also used for all target child nodes inside the subtree.
The actual variable value depends on any connections between parent items of the source and target components.

This default behavior is the same as that of complex outputs of regular user-defined functions and Web service function calls.

If the variable output is connected to multiple unrelated target nodes, the variable value is computed *separately for each of them*. This can produce different results in each case, because different parent connections influence the context in which the variable's value is evaluated.

"Compute-when" is connected

By connecting an output connector of a source component to compute-when, the variable is computed *whenever that source item is first used in a target subtree*.

The variable actually acts as if it were a child item of the item connected to compute-when. This makes it possible to bind the variable to a specific source item. That is, at runtime the variable is re-evaluated whenever a new item is read from the sequence in the source component. This relates to the general rule governing connections in MapForce: "for each source item, create one target item". With compute-when, it means "for each source item, compute the variable value" (see Mapping Rules and Strategies).

"Compute-once"

If necessary, you can choose to compute the variable value *once before each of the target components*, making the variable essentially a global constant for the rest of the mapping. To do this, right-click the compute-when item and select **Compute Once** from the context menu:

![Compute Once](image)

When you change the scope of a variable to compute-when=once, the input connector is removed from the compute-when item, since such a variable is only evaluated once.

In a user-defined function, the compute-when=once variable is evaluated each time the function is called, before the actual function result is evaluated.

Parent-context

Adding a parent-context may be necessary, for example, if your mapping uses multiple filters and you need an additional parent node to iterate over, see also Example: Changing the Parent Context.

To add a parent-context to a variable, right-click the root node (in this example, "PersonList") and select **Add Parent Context** from the context menu. This adds a new node, parent-context, to the existing hierarchy.
The parent context adds a virtual "parent" node to the hierarchy within the component. This allows you to iterate over an additional node in the same, or in a different source component.

4.7.3 Example: Counting Database Table Rows

The mapping illustrated in this example is available as `DB_UserList.mfd` in the `<Documents>\Altova\MapForce2021\MapForceExamples` folder. This mapping extracts user records from a database table called "Users" and writes them to an XML file. The database column "Username" contains both the first name and the surname of a person (for example, "Vernon Callaby"). This mapping has the following goals:

1. For each record in the "Users" table, create a new `Person` element in the XML file.
2. Split the value extracted from the database field "Username" into two separate fields in the XML file ("First" and "Last").
3. For each record, find its sequential number compared to the number of total records present in the database (for example, "Record 1 of 4") and write this information to the `Details` element.

As illustrated above, in order to achieve the first goal, a connection is drawn between the source "Users" table and the `Person` element of the target XML file. This ensures that, for each record in the source table, a new `Person` element will be created in the target.
The value of the field "Username" is supplied to the `substring-before` and `substring-after` functions. These two functions extract the text before and after the space character (" "), respectively, which takes care of the second mapping goal.

Finally, to achieve the third goal, the mapping uses the `count` function. The result of the count function is passed on to a variable. The variable ensures that this result is stored on the mapping and available when writing the "Details" element of each person to the target XML. Note that, for efficiency reasons, database records should be counted only once, so the variable scope is set to `compute-when=once` (see Changing the Context and Scope of Variables).

4.7.4 Example: Filtering and Numbering Nodes

The mapping illustrated in this example is available as `PositionInFilteredSequence.mfd` in the `<Documents>\Altova\MapForce2021\MapForceExamples` folder.

This mapping reads an XML file which contains contact data of several people, filters them, and writes them to a target XML file. The goal of the mapping is to filter from the source XML file only those people whose last name begins with letter "M" or a subsequent letter. Secondly, the extracted contacts must be numbered. The number is going to act as the unique identifier of each contact in the target XML file.

To achieve the goal above, the following component types were added to the mapping:

- A filter (see Filters and Conditions)
- A complex variable (see Adding Variables)
- The functions `greater` and `position` (see Add a Function to the Mapping)
- A constant (To add a constant, select the menu command Insert | Constant).

The variable uses the same schema as the source component. If your right-click the variable and select Properties from the context menu, notice that the node `BranchOffices/Office/Contact` is selected as root node for this variable structure.

First, data of the source component is passed on to the filter. The filter passes onwards to the variable only those records that meet the filter condition. Namely, the filter is configured to get only those `Contact` nodes.
where the first name is equal or greater than M”. To achieve this, the function `greater` compares each last item with the constant value "M”.

The variable has the compute-when input connected to the root item of the source component (BranchOffices). At runtime, this causes the variable to be re-evaluated whenever a new item is read from the sequence in the source component. In this mapping, however, connecting or not connecting the compute-when item does not make a difference. The reason is that the variable is connected to the Contact source item (indirectly through the filter), and it would compute as many times as there are instances of Contact which meet the filter condition.

The `position` function returns, for each iteration of the variable, the number of the current sequence. Only eight contacts meet the filter condition; therefore, if you preview the mapping and look at the output, notice how IDs 1 through 8 were written to the ID element of the target component.

In case you were wondering why the variable was necessary at all, it is because of the requirement to number all records. Had we connected the filter result directly to the target component, there would have been no way to number each occurrence of Contact. The purpose of the variable in this mapping is, therefore, to store each instance of Contact temporarily on the mapping, so that it can be numbered before it is written to the target.

4.7.5 Example: Grouping and Subgrouping Records

The mapping illustrated in this example is available as `DividePersonsByDepartmentIntoGroups.mfd` in the `<Documents>\Altova\MapForce2021\MapForceExamples\` folder.

This mapping processes an XML file that contains employee records of a fictitious company. The company has two offices: "Nanonull, Inc.” and "Nanonull Partners, Inc”. Each office has several departments (for example, “IT”, “Marketing”, and so on), and each department has one or more employees. The goal of the mapping is to create groups of maximum three people from each department, regardless of the office. The size of each group is three by default; however, it should be easy to change if necessary. Each group must be saved as a separate XML file, with the name having the format "<Department Name>_GroupN” (for example, `Marketing_Group1.xml`, `Marketing_Group2.xml`, and so on).
As illustrated above, in order to achieve the mapping goal, a complex variable was added to the mapping, and a few other component types (primarily functions). The variable has the same structure as a Department item in the source XML. If you right-click the variable in order to view its properties, you will notice that it uses the same XML schema as the source component, and has Department as root element. Importantly, the variable has two nested parent-context items, which ensure that the variable is computed first in the context of each department, and then in the context of each group within each department (see also Changing the Context and Scope of Variables).

Initially, the mapping iterates through all departments in order to obtain the name of each department (this will be subsequently required to create the file name corresponding to each group). This is achieved by connecting the group-by function to the Department source item, and by supplying the department name as grouping key.

Next, within the context of each department, a second grouping takes place. Namely, the mapping calls the group-into-blocks function in order to create the required groups of people. The size of each group is supplied by a simple input component which has a default value of "3". The default value is supplied by a constant. In this example, in order to change the size of each group, one can easily modify the constant value as required. However, the "size" input component can also be modified so that, if the mapping is run by generated code or with MapForce Server, the size of each group could be conveniently supplied as a parameter to the mapping. For more information, see Supplying Parameters to the Mapping.

Next, the value of the variable is supplied to the target PersonList XML component. The file name for each created group was computed by concatenating the following parts, with the help of the concat function:

1. The name of each department
2. The string "_Group"
3. The number of the group in the current sequence (for example, "1" if this is the first group for this department)
4. The string ".xml"

The result of this concatenation is stored in the Name item of the variable, and then supplied as a dynamic file name to the target component. This causes a new file name to be created for each received value. In this example, the variable computes eight groups in total, so eight output files are created when the mapping runs, as required. For more information about this technique, see Processing Multiple Input or Output Files Dynamically.
4.8 Sorting Data

To sort input data based on a specific sort key, use a Sort component. The Sort component supports the following target languages: XSLT2, XQuery, and Built-in. When the transformation language is "Built-in", the Sort component can be used to sort database table data. Better performance is, however, achieved using an SQL-WHERE/ORDER component. For more details, see Filtering and Sorting Database Data (SQL WHERE/ORDER).

To add a sort component to the mapping, do one of the following:

- Right-click an existing connection, and select Insert Sort: Nodes/Rows from the context menu. This inserts the Sort component and automatically connects it to the source and target components. For example, in the mapping below, the Sort component was inserted between a variable and an XML component. The only thing that remains to be connected manually is the sorting key (the field by which you want to sort).

![Sort component inserted between a variable and an XML component]

- On the Insert menu, click Sort (alternatively, click the Sort toolbar button). This inserts the Sort component in its "unconnected" form.

![Sort component in unconnected form]

As soon as a connection is made to the source component, the title bar name changes to that of the item connected to the nodes/rows item.

To define the item by which you want to sort:

- Connect the item by which you want to sort to the key parameter of the Sort component. For example, in the mapping below, the Person nodes/rows are sorted by the field Last.
To change the sort order:

- Click the A→Z icon in the Sort component. It changes to Z→A to show that the sort order has been reversed.

To sort input data consisting of simple type items:

- Connect the item to both the nodes/rows and key parameters of the sort component. In the mapping below, the element of simple type first is being sorted.

To sort strings using language-specific rules:

- Double-click the header of the Sort component to open the Sort Properties dialog box.
Unicode codepoint collation: This (default) option compares/orders strings based on code point values. Code point values are integers that have been assigned to abstract characters in the Universal Character Set adopted by the Unicode Consortium. This option allows sorting across many languages and scripts.

Language-specific collation: This option allows you to define the specific language and country variant you want to sort by. This option is supported when using the BUILT-IN execution engine. For XSLT, support depends on the specific engine used to execute the code.

4.8.1 Sorting by Multiple Keys

After you add a Sort component to the mapping, one sorting key called key is created by default.

If you want to sort by multiple keys, adjust the Sort component as follows:

- Click the Add Key () icon to add a new key (for example, key2 in the mapping below).
- Click the Delete Key () icon to delete a key.
- Drop a connection onto the icon to add a key and also connect to it.

A mapping which illustrates sorting by multiple key is available at the following path:
<Documents>\Altova\MapForce2021\MapForceExamples\SortByMultipleKeys.mfd>
In the mapping above, Person records are sorted by three sorting keys:

1. Shares (number of shares a person holds)
2. Last (last name)
3. First (first name)

Note that the position of the sorting key in the Sort component determines its sort priority. For example, in the mapping above, records are initially sorted by the number of shares. This is the sorting key with the highest priority. If the number of shares is the same, people are then sorted by their last name. Finally, when multiple people have the same number of shares and the same last name, the person's first name is taken into account.

The sort order of each key can be different. In the mapping above, the key Shares has a descending sort order (Z-A), while the other two keys have ascending sort order (A-Z).

4.8.2 Sorting with Variables

In some cases, it may be necessary to add intermediate variables to the mapping in order to achieve the desired result. This example illustrates how to extract records from an XML file, and sort them, with the help of intermediate variables. The example is accompanied by a mapping sample located at the following path:

<Documents>\Altova\MapForce2021\MapForceExamples\Altova_Hierarchical_Sort.mfd
This mapping reads data from a source XML file called `Altova_Hierarchical.xml` and writes it to a target XML file. As shown above, the source XML contains information about a fictitious company. The company is divided into offices. Offices are sub-divided into departments, and departments are further divided into people.

The target XML component, `PersonList`, contains a list of `Person` records. The `Details` item is meant to store information about the office and department where the person belongs.

The aim is to extract all persons from the source XML and sort them alphabetically by last name. Also, the office and department name where each person belongs must be written to the `Details` item.

To achieve this goal, this example makes use of the following component types:

1. The `concat` function. In this mapping, this function returns a string in the format `Office(Department)`. It takes as input the office name, the department name, and two constants which supply the start and end brackets. See also Add a Function to the Mapping.
2. An intermediate variable. The role of the variable is to bring all data relevant to a person into the same mapping context. The variable causes the mapping to look up the department and office of each person, in the context of each person. To put it differently, the variable "remembers" the office and
department name to which a person belongs. Without the variable, the context would be incorrect, and the mapping would produce unwanted output (for more information about how a mapping is executed, see Mapping Rules and Strategies). Notice that the variable replicates the structure of the target XML file (it uses the same XML schema). This makes it possible to connect the sort result to the target, through a Copy-All connection. See also Using Variables and Copy-All Connections.

3. A Sort component, which performs the actual sorting. Notice that the key input of the Sort component is connected to the Last item of the variable, which sorts all person records by their last name.
4.9 Grouping Data

When your mapping must group nodes or rows, you can achieve this with the help of the following MapForce built-in functions:

- `group-by`
- `group-adjacent`
- `group-into-blocks`
- `group-starting-with`
- `group-ending-with`

To use any of these functions on the mapping, drag them from the Libraries window onto the mapping area. See also Add a Function to the Mapping.

Note: Grouping functions are available in the following languages: XSLT 2.0, C++, C#, Java, Built-In.

The following sections provide typical examples of use for grouping functions. These examples are accompanied by the following demo mapping:
<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\GroupingFunctions.mfd. Note that the demo mapping contains multiple transformations, one for each function. Since only one output can be previewed at a time, remember to click the Preview button applicable to the desired transformation before clicking the Output tab.

group-by

The `group-by` function creates groups of records according to some grouping key that you specify.

```
<key>group-by</key>
```

For example, in the abstract transformation illustrated below, the grouping key is "Department". Since there are three unique departments in total, applying the group-by function would create three groups:

<table>
<thead>
<tr>
<th>Department</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>Vernon Callaby</td>
</tr>
<tr>
<td>Administration</td>
<td>Frank Further</td>
</tr>
<tr>
<td>Marketing</td>
<td>Susi Sanna</td>
</tr>
<tr>
<td>Engineering</td>
<td>Michelle Butler</td>
</tr>
<tr>
<td>Engineering</td>
<td>Fred Landis</td>
</tr>
<tr>
<td>Administration</td>
<td>Frank Further</td>
</tr>
</tbody>
</table>

For more information, see the reference to the `group-by` function.
group-adjacent

The `group-adjacent` function requires a grouping key as argument, similar to the `group-by` function. Unlike `group-by`, this function creates a new group whenever the next key is different. If two adjacent records have the same key, they will be placed into the same group.

For example, in the abstract transformation illustrated below, the grouping key is "Department". The left side of the diagram shows the input data while the right side shows the output data after grouping. The following takes place when the transformation runs:

- Initially, the first key, "Administration", creates a new group.
- The next key is different, so a second group is created, "Marketing".
- The third key is also different, so another group is created, "Engineering".
- The fourth key is the same as the third; therefore, this record is placed in the already existing group.
- Finally, the fifth key is different from the fourth, and this creates the last group.

As illustrated below, "Michelle Butler" and "Fred Landis" were grouped together because they have the same key and are adjacent. However, "Vernon Callaby" and "Frank Further" are in separate groups because they are not adjacent, even though they have the same key.

For more information, see the reference to the `group-adjacent` function.

group-into-blocks

The `group-into-blocks` function creates equal groups that contain exactly N items, where N is the value you supply to the `block-size` argument. Note that the last group may contain N items or less, depending on the number of items in the source.

In the example below, `block-size` is 2. Since there are five items in total, each group contains exactly two
items, except for the last one.

For more information, see the reference to the group-into-blocks function.

group-starting-with

The **group-starting-with** function takes a Boolean condition as argument. If the Boolean condition is true, a new group is created, starting with the record that satisfies the condition.

In the example below, the condition is that "Key" must be equal to "heading". This condition is true for the first and fourth records, so two groups are created as a result:

Note: One additional group is created if records exist before the first one that satisfies the condition. For example, if there were more "line" records before the first "heading" record, these would all be placed into a new group.

For more information, see the reference to the group-starting-with function.

group-ending-with

The **group-ending-with** function takes a Boolean condition as argument. If the Boolean condition is true, a
new group is created, ending with the record that satisfies the condition.

In the example below, the condition is that "Key" must be equal to "trailing". This condition is true for the third and fifth records, so two groups are created as a result:

Note: One additional group is created if records exist after the last one that satisfies the condition. For example, if there were more "line" records after the last "trailing" record, these would all be placed into a new group.

For more information, see the reference to the `group-ending-with` function.

4.9.1 Example: Grouping Records by Key

This example shows you how to group records with the help of the `group-by` function, and also illustrates how to aggregate data. This example is accompanied by a demo mapping available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\GroupTemperaturesByYear.mfd`. This mapping reads data from an XML file that contains a log of monthly temperatures, as illustrated in the code listing below:

```xml
<Temperatures>
  <data temp="-3.6" month="2006-01" />
  <data temp="-0.7" month="2006-02" />
  <data temp="7.5" month="2006-03" />
  <data temp="12.4" month="2006-04" />
  <data temp="16.2" month="2006-05" />
  <data temp="19" month="2006-06" />
  <data temp="22.7" month="2006-07" />
  <data temp="23.2" month="2006-08" />
  <data temp="18.7" month="2006-09" />
  <data temp="11.2" month="2006-10" />
  <data temp="9.1" month="2006-11" />
  <data temp="0.8" month="2006-12" />
  <data temp="-3.2" month="2007-01" />
</Temperatures>
```
The business requirement of this mapping is two-fold:

1. Group temperatures of each year together.
2. Find out the minimum, maximum, and the average temperature of each year.

To achieve the first goal, the mapping calls the `group-by` function. To achieve the second goal, it calls the `min`, `max`, and `avg` aggregation functions. All of these functions are MapForce built-in functions, and you can add them to any mapping by dragging them from the Libraries window, see How to Add a Function to the Mapping.

The way MapForce executes a mapping (and the recommended approach to start reading one) is by looking at the topmost item of the target component. In this example, an `YearlyStats` item will be created for each group returned by the `group-by` function. The `group-by` function takes as first argument all `data` items from the source and groups them by whatever is connected to the `key` input. Since the requirement is to group temperatures by year, the year must be obtained first. To achieve this, the `substring-before` function extracts the year part from the `month` attribute of each `data` element. Namely, it takes as argument the value
of `month` and returns the part before the first occurrence of `substr`. As illustrated above, in this example, `substr` is set to the dash character; therefore, if given the value "2006-01", the function will return "2006".

Finally, the values of `MinimumTemp`, `MaximumTemp`, and `AverageTemp` are obtained by connecting these items with the respective aggregate functions: `min`, `max`, and `avg`. All three functions take as input the sequence of temperatures read from the source component. These functions do not need a `parent-context` argument, because they already work in the context of each group. In other words, there is a parent connection—from `data` to `YearlyStats`— which provides the context for each aggregation function to work on.

To preview the mapping output, click the **Output** tab. Notice that the number of groups coincides with the number of years obtained by reading the source file, for example:

```xml
<Temperatures>
  <YearlyStats Year="2006">
    <MinimumTemp>-3.6</MinimumTemp>
    <MaximumTemp>23.2</MaximumTemp>
    <AverageTemp>11.375</AverageTemp>
  </YearlyStats>
  <YearlyStats Year="2007">
    <MinimumTemp>-3.2</MinimumTemp>
    <MaximumTemp>22.3</MaximumTemp>
    <AverageTemp>11.5</AverageTemp>
  </YearlyStats>
</Temperatures>
```

Note: For simplicity, the code listings above contain less data than the actual input and output used by the demo mapping.
4.10 Filters and Conditions

When you need to filter data, or get a value conditionally, you can use one of the following component types:

- Filter: Nodes/Rows
- SQL WHERE/ORDER
- If-Else Condition

You can add these components to the mapping either from the Insert menu, or from the Insert Component toolbar. Importantly, each of the components above has specific behavior and requirements. The differences are explained in the following sections.

Filtering nodes or rows

When you need to filter data, including XML nodes or CSV rows, use a Filter Nodes/Rows component. The Filter Nodes/Rows component enables you to retrieve a subset of nodes from a larger set of data, based on a true or false condition. Its structure on the mapping area reflects this:

In the structure above, the condition connected to bool determines whether the connected node/row goes to the on-true or on-false output. Namely, if the condition is true, the node/row will be redirected the on-true output. Conversely, if the condition is false, the node/row will be redirected to the on-false output.

When your mapping needs to consume only items that meet the filter condition, you can leave the on-false output unconnected. If you need to process the items that do not meet the filter condition, connect the on-false output to a target where such items should be redirected. If you want to add an exception when the filter condition is not met, connecting the on-false output is mandatory (see Adding Exceptions).

For a step-by-step mapping example, see Example: Filtering Nodes.

Filtering database data

Filter Nodes/Rows components can filter data from any other component structure supported by MapForce, including databases. However, if you want to filter data from a database, it is recommended to use a SQL WHERE/ORDER component instead. The SQL WHERE/ORDER component is optimized for working with databases and provides better performance than a Filter Nodes/Rows component.

For more information about such components, see SQL WHERE / ORDER Component.

Returning a value conditionally

If you need to get a single value (not a node or row) conditionally, use an If-Else Condition. Note that If-Else conditions are not suitable for filtering nodes or rows. Unlike Filter Nodes/Rows components, an If-Else
Condition returns a value of simple type (such as a string or integer). Therefore, **If-Else Conditions** are only suitable for scenarios where you need to process a simple value conditionally. For example, let's assume you have a list of average temperatures per month, in the format:

```xml
<Temperatures>
  <data temp="19.2" month="2010-06" />  
  <data temp="22.3" month="2010-07" />  
  <data temp="19.5" month="2010-08" />  
  <data temp="14.2" month="2010-09" />  
  <data temp="7.8" month="2010-10" />  
  <data temp="6.9" month="2010-11" />  
  <data temp="-1.0" month="2010-12" />
</Temperatures>
```

An **If-Else Condition** would enable you to return, for each item in the list, the value "high" if temperature exceeds 20 degrees Celsius, and value "low" if temperature is lower than 5 degrees Celsius.

On the mapping, the structure of the **If-Else Condition** looks as follows:

```
<if-else>
  <bool>true</bool>
  <value-true>result</value-true>
  <value-false>result</value-false>
</if-else>
```

If the condition connected to **bool** is true, then the value connected to **value-true** is output as **result**. If the condition is false, the value connected to **value-false** is output as **result**. The data type of **result** is not known in advance; it depends on the data type of the value connected to **value-true** or **value-false**. The important thing is that it should always be a simple type (string, integer, and so on). Connecting input values of complex type (such as nodes or rows) is not supported by **If-Else Conditions**.

If-Else Conditions are extendable. This means that you can add multiple conditions to the component, by clicking the **Add** button. To delete a previously added condition, click the **Delete** button. This feature enables you to check for multiple conditions and return a different value for each condition, if it is true.

```
<if-else>
  <bool>true</bool>
  <value-true1>result</value-true1>
  <bool2>true</bool2>
  <value-true2>result</value-true2>
  <bool3>true</bool3>
  <value-true3>result</value-true3>
  <otherwise>result</otherwise>
</if-else>
```

Expanded **If-Else Conditions** are evaluated from top to bottom (first conditions is checked first, then the second one, and so on). If you want to return a value when none of the conditions are true, connect it to **otherwise**.

For a step-by-step mapping example, see **Example: Returning a Value Conditionally**.
4.10.1 Example: Filtering Nodes

This example shows you how to filter nodes based on a true/false condition. A **Filter: Nodes/Rows** component is used to achieve this goal. The technique illustrated in this example works in the same way not only for XML, but also for other component types, such as CSV or text. In case of databases, although you can use a filter, it is recommended to use a SQL WHERE/ORDER component instead, for better performance (see [SQL WHERE / ORDER Component](#)).

The mapping described in this example is available at the following path:
<Documents>\Altova\MapForce2021\MapForceExamples\MarketingExpenses.mfd.

As shown above, the mapping reads data from a source XML which contains an expense report ("ExpReport") and writes data to a target XML ("MarketingExpenses"). There are several other components between the target and source. The most relevant component is the **expense-item** filter, which represents the subject of this topic.

The goal of the mapping is to filter out only those expense items that belong to the Marketing department. To achieve this goal, a filter component has been added to the mapping. (To add a filter, click the **Insert** menu, and then click **Filter: Nodes/Rows**.)

To identify whether each expense item belongs to Marketing, this mapping looks at the value of the "expto" attribute in the source. This attribute has the value "Marketing" whenever the expense is a marketing expense. For example, in the code listing below, the first and third expense item belongs to Marketing, the second belongs to Development, and the fourth belongs to Sales:

```xml
...<expense-item type="Meal" expto="Marketing"/>
<Date>2003-01-01</Date>
```
On the mapping area, the node/row input of the filter is connected to the expense-item node in the source component. This ensures that the filter component gets the list of nodes that it must process.

To add the condition based on which filtering should occur, we have added the equal function from the MapForce core library, see also Add a Function to the Mapping. The equal function compares the value of the "type" attribute to a constant which has the value "Marketing". (To add a constant, click the Insert menu, and then click Constant.)

Since we need to filter only those items that satisfy the condition, we connected only the on-true output of the filter to the target component.

When you preview the mapping result, by clicking the Output tab, MapForce evaluates, for each expense-item node, the condition connected to the bool input of the filter. When the condition is true, the expense-item node is passed on to the target; otherwise, it is ignored. Consequently, only the expense items matching the criteria are displayed in the output:

...
<expense-item>
 <type>Meal</type>
 <Date>2003-01-01</Date>
 <expense>122.11</expense>
</expense-item>
<expense-item>
 <type>Lodging</type>
 <Date>2003-01-02</Date>
 <expense>299.45</expense>
</expense-item>
</expense>

XML output after the mapping is executed
4.10.2 Example: Returning a Value Conditionally

This example shows you how to return a simple value from a component, based on a true/false condition. An If-Else Condition is used to achieve the goal. Note that If-Else Conditions should not be confused with filter components. If-Else Conditions are only suitable when you need to process simple values conditionally (string, integer, etc.). If you need to filter complex values such as nodes, use a filter instead (see Example: Filtering Nodes).

The mapping described in this example is available at the following path:
<Documents>\Altova\MapForce2021\MapForceExamples\ClassifyTemperatures.mfd.

This mapping reads data from a source XML which contains temperature data ("Temperatures") and writes data to a target XML which conforms to the same schema. There are several other components between the target and source, one of them being the if-else condition (highlighted in red), which is also the subject of this topic.

The goal of the mapping is to add short description to each temperature record in the target. Specifically, if temperature is above 20 degrees Celsius, the description should be "high". If the temperature is below 5 degrees Celsius, the description should be "low". For all other cases, no description should be written.

To achieve this goal, conditional processing is required; therefore, an If-Else Condition has been added to the mapping. (To add an If-Else Condition, click the insert menu, and then click If-Else Condition.) In this mapping, the If-Else Condition has been extended (with the help of the button) to accept two conditions: bool1 and bool2.
The conditions themselves are supplied by the `greater` and `less` functions, which have been added from the MapForce core library, see also Add a Function to the Mapping. These functions evaluate the values provided by two input components, called "upper" and "lower". (To add an input component, click the Insert menu, and then click Insert Input. For more information about input components, see Supplying Parameters to the Mapping.)

The `greater` and `less` functions return either true or false. The function result determines what is written to the target instance. Namely, if the value of the "temp" attribute in the source is greater than 20, the constant value "high" is passed to the if-else condition. If the value of the "temp" attribute in the source is less than 5, the constant value "low" is passed on to the if-else condition. The otherwise input is not connected. Therefore, if none of the above conditions is met, nothing is passed to the result output connector.

Finally, the result output connector supplies this value (once for each temperature record) to the "desc" attribute in the target.

When you are ready to preview the mapping result, click the Output tab. Notice that the resulting XML output now includes the "desc" attribute, whenever the temperature is either greater than 20 or lower than 5.

```
...<data temp="-3.6" month="2006-01" desc="low"/>
<data temp="-0.7" month="2006-02" desc="low"/>
<data temp="7.5" month="2006-03"/>
<data temp="12.4" month="2006-04"/>
<data temp="16.2" month="2006-05"/>
<data temp="19" month="2006-06"/>
<data temp="22.7" month="2006-07" desc="high"/>
<data temp="23.2" month="2006-08" desc="high"/>
...
```

XML output after the mapping is executed
4.11 Joining Data

Sometimes, you may need to combine data from two or more structures based on some condition (for example, if field A in the first structure has the same value as field B in the second structure). For such mapping requirements, a Join component can be used.

A Join component is a MapForce component which enables joining two or more structures on the mapping based on custom-defined conditions. It returns the association (joined set) of items that satisfy the condition. Joins are particularly useful to combine data from two structures which share a common field (such as an identity).

For example, on the mapping illustrated below, the middle component is a “Join” component. In this mapping, two XML structures (a list of people and a list of addresses) are being joined. The goal here is to get the full details of each person into a target XML file. The FirstName and LastName fields act as joining keys. Namely, if value of FirstName and LastName (under Person) is the same as that of FirstName and LastName (under Address), the address details belong to one and the same person and they become "joined". Any items from the joined structure can further be mapped to a subsequent target (in this case, an XML file). The join condition itself is defined in the properties of the Join component, by clicking the Define Join Condition button. This example is accompanied by a mapping sample and is explained in more detail in Example: Join XML Structures.

As illustrated above, the source structures and the Join component are connected by means of "Copy-All" connection, which reduces the mapping clutter. In general, such connections are created automatically by MapForce when the context is relevant (for more information, see Copy-All Connections).

The structures that are to be joined may either be from separate components (as in the mapping above), or belong to the same component. The structures to be joined may also be of different kinds (for example, an XML
structure and a database table). For more information about database-related joins, see Joining Database Data.

To add a Join component:

1. Set the mapping transformation language to BUILT-IN (to do this, either click the toolbar button, or use the Output | Built-In Execution Engine menu command).

2. On the Insert menu, click Join. Alternatively, click the Join toolbar button. The Join component appears on the mapping. By default, it accepts data from two structures, so it has two nodes/rows inputs. If necessary, you can add new inputs to the join by clicking the Add Input button, see Joining Three or More Structures.

3. Connect the structures that are to be joined to the nodes/rows items of the join component.

4. Add the condition for the join (or multiple conditions). To do this, right-click the Join component and select Properties. Join conditions can also be added directly from the mapping, by connecting the Boolean result of some function to the condition item of the Join component. In certain cases when database tables are joined, the join condition (or conditions) can be created automatically by MapForce. For further information, see Adding Join Conditions.

Notes:

- Join components are supported when the target language of the mapping is set to BUILT-IN. Code generation in C#, C++, or Java is not supported.
- When a structure is not a valid or supported input source for the join, MapForce displays hints either immediately directly on the mapping, or in the Messages window, when you validate the mapping (see Validating Mappings).
- Join components should not be connected to input parameters or results of inline user-defined functions. If such connections exist, validation errors will occur during mapping validation.
- When you connect eligible database components (such as tables or views) directly to a Join component, an SQL mode button automatically appears at the top-right corner of the Join component. When enabled, this button provides special SQL features applicable to the join operation (see Joins in SQL Mode).
- It is not possible to connect the output of the joined item to another Join component. If necessary, however, you can connect a partial result of one join to another one.

Join components compared to other component types

In some cases, complex variables or filters can be used instead of Join components to achieve the same results (see Using Variables and Filters and Conditions, respectively). However, unlike other component types, Join components make the mapping easier to understand, because you can see at a glance the data that is being joined. Additionally, if SQL mode is enabled on the join component, the mapping performance improves significantly (this applies to database joins, see Joining Database Tables).
Adding a parent context

In some special cases, in order to achieve a specific mapping result, you can explicitly provide a mapping context (a so-called “parent context”) for data connected to the Join component. To add a parent context, right-click the joined item of the Join component, and select Add Parent Context from the context menu. The Join component changes appearance to include an additional parent-context input where you can connect the required source item. For more information, see Example: Changing the Parent Context.

4.11.1 Adding Join Conditions

A join works by combining items of two or more structures according to a condition, so a join always requires at least one condition. There are several ways to add join conditions, as shown below.

Note: When database tables are joined in SQL mode, MapForce will create the join condition (or conditions) automatically, based on foreign key relationships detected between tables. For automatic join conditions to happen, the database tables must be in a child-parent relationship on the MapForce component (that is, one table must be “parent” or “child” of another one on the component), see Example: Join Tables in SQL Mode.

Approach 1: Add a join condition from the component properties

1. On the mapping, make sure that at least two structures (or database tables) are connected to the Join component. The Join component illustrated in this example is part of the JoinPeopleInfo.mfd mapping available in the folder `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial`. This mapping is discussed in more detail in Example: Join XML Structures.
2. On the Join component, click the Define Join Condition button (or right-click the header of the component, and select Properties from the context menu).
3. Select an item from the left structure and another one from the right structure (that is, whenever the comparison of this pair returns true, the left and right structures become joined).
If you need to add multiple conditions, click **Add Condition**, and then select a new pair of items. For example, in the image above, two join conditions are defined:

1. **FirstName** in the Structure 1 must be equal to **FirstName** in Structure 2, and
2. **LastName** in Structure 1 must be equal to **LastName** in Structure 2.

To remove a join condition, click the **Delete** button next to it.

Notes:

- When multiple join conditions exist, all of them must be satisfied in order for the two structures to be joined. In other words, multiple conditions are joined by a logical AND operation. This also includes optional conditions that were added from the mapping (see Approach 2 below).
- If more than two structures are connected to the Join component, such additional structures appear in the drop-down list below “Structure 2”. When you select such an additional structure from the drop-
down list, the left pane displays all structures that occur before it on the Join component. This way you can define join conditions between any of the multiple structures. For an example, see Example: Create CSV Report from Multiple Tables.

- To view the data type of items in each structure, select the Show types check box. The Show annotations option displays additional information about items, provided that such information exists in the underlying schema (or database). If both check boxes are selected, the layout changes to accommodate the display of both annotations and types, for example:

![Define Join Condition](image)

Approach 2: Add a join condition from the mapping

- On the mapping, add components which produce a Boolean value, and then connect the Boolean output to the input of the condition item. For example, the equal function may compare a value with some mapping item, and supply the Boolean result as input to the condition item of the join component.
Note: If no condition is defined from the join component properties (Approach 1), the condition item of the join component must be connected (Approach 2).

Approach 3: Mixed approach
In the same mapping, it is possible to define some join conditions in component properties (Approach 1) and combine them with the one from the mapping (Approach 2). However, if you intend to join database tables in SQL mode, the conditions must be defined strictly using Approach 1, see also Joins in SQL Mode.

4.11.2 Joining Three or More Structures

When you add a Join component to the mapping using the menu command Insert | Join, it accepts two structures by default (that is, the component contains only two nodes/rows inputs).

If you need to join more than two structures, click the Add input (/button and create as many nodes/rows as necessary. If you need to remove a nodes/rows input, click the Delete input (button. Note that a join requires at least two structures, so the button is only available when more than two inputs exist.
When a join has multiple inputs, the join conditions must accordingly take into consideration each of the inputs that you want to be joined, see Adding Join Conditions. For a step-by-step example of how to join multiple database tables, see Example: Create CSV Report from Multiple Tables.

4.11.3 Example: Join XML Structures

This example shows you how to combine data from two XML structures conditionally, by using a join component. The example is accompanied by a mapping sample which is available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\JoinPeopleInfo.mfd.

The purpose of this mapping is to collect people data (name, surname, address, email, and phone) from two source XML files into a single target XML file.

The first XML file stores the name and surname of each person, as well as their email and phone, as shown in the sample code listing below (note that the XML declaration, namespaces, and some records have been omitted, for simplicity):

```xml
<People>
  <Person>
    <FirstName>Marquita</FirstName>
    <LastName>Bailey</LastName>
    <Email>m.bailey@nanonull.com</Email>
    <Phone>555323698</Phone>
  </Person>
  <Person>
    <FirstName>Totie</FirstName>
    <LastName>Rea</LastName>
    <Email>t.rea@nanonull.com</Email>
    <Phone>555598653</Phone>
  </Person>
</People>

People.xml
```

The second XML file stores the name and surname of each person, as well as their address details:

```xml
<Addresses>
  <Address>
    <FirstName>Marquita</FirstName>
    <LastName>Bailey</LastName>
  </Address>
</Addresses>
```
The goal of the mapping is to combine the <Person> information from the first file with <Address> information from the second file, wherever the first and last names match. Specifically, for each <Person> in the first file, and for each <Address> in the second file, the FirstName and LastName must be compared. If both values are the same, then the corresponding <Person> and <Address> records refer to the same person, and must be joined. The target XML structure should look like this:

```
<Address>
  <City>Bridgedell</City>
  <Street>Olive Street</Street>
  <Number>4</Number>
</Address>
<Address>
  <FirstName>Totie</FirstName>
  <LastName>Rea</LastName>
  <City>Roseford</City>
  <Street>Evergreen Lane</Street>
  <Number>34</Number>
</Address>
</Addresses>
```

Addresses.xml

This mapping goal can be easily achieved by adding a Join component to the mapping. Note that it is also possible to achieve the same result using other component types; however, in the steps below, you will be using a Join component, which is the subject of this example.

To create the required mapping, follow the steps below.
Step 1: Add the source XML files to the mapping
1. On the **Insert** menu, click **XML Schema/File**, and browse for the following source file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\People.xml`
2. Repeat the step above for **Addresses.xml** (the second source file).

Step 2: Add the target schema file to the mapping
- On the **Insert** menu, click **XML Schema/File**, and browse for `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\PeopleInfo.xsd` (the target XSD schema file). When prompted to supply a sample XML file, click **Skip**. When prompted to select a root element, select **PeopleInfo** as root element.

Step 3: Add the Join component
1. On the **Insert** menu, click **Join**. (Alternatively, click the **Join** toolbar button). At this stage, the mapping should look as follows (you will need to drag and resize the components in order to make them look as illustrated below):

 Observe the structure of the Join component. It has two `nodes/rows` items, which makes it possible to connect to it the two structures that need to be compared (in this case, the **Person** and the **Address** structures).

2. Draw a connection from **Person** to the first `nodes/rows` item of the Join component. Likewise, connect **Address** to the second `nodes/rows` item.
3. As mentioned earlier, the join should take place only if the FirstName and LastName values are equal in both structures. To define this condition, click the Define Join Condition button.

4. Select the pair of items that define the first join condition (FirstName under Structure 1, and FirstName under Structure 2).

5. Click Add Condition, and repeat the step above for LastName.
In some mappings, a condition consisting of one comparison may be sufficient to perform the join. However, in this example, it is important that two comparisons are created:

1) \(\text{FirstName in Structure 1} = \text{FirstName in Structure 2} \)
2) \(\text{LastName in Structure 1} = \text{LastName in Structure 2} \).

When multiple conditions are defined, all of them must be true in order for the join to take place. Therefore, in this example, a join will happen only when both comparisons are true (which is the intended behaviour). Otherwise, if only one of the comparisons above were defined, a join could happen for persons that have the same first name but different last names.

Step 4: Map the Join component to the target schema

Now that the two structures are joined, you can define which items of the joined structure should be mapped to the target. To do this, create connections from items of both joined structures to the target component, as
shown below. The connection between joined and Row has the following purpose: whenever the join condition is satisfied, it creates a new Row item in the target.

To preview the mapping output, click the Output tab. As expected, each person record (<Row>) now includes the full address details, joined from two different sources.
4.12 Using Value-Maps

The Value-Map component enables you to replace a value by another value with the help of a predefined look-up table. Such a component processes only one value at a time; therefore, it has one input and one result on the mapping.

A Value-Map is very useful when you would like to map individual items within two sets in order to replace items. For example, you could map the days of the week expressed as numbers (1, 2, 3, 4, 5, 6, and 7) to the name of each day of the week (“Monday”, “Tuesday”, and so on). Likewise, you could map the month names (“January”, “February”, “March”, etc) to the numeric representation of each month (1, 2, 3, etc). At mapping run time, the matching values will be replaced according to your custom look-up table. The values in both sets can be of different type, but each set must store values of the same data type.

Value-Map components are suitable for simple look-ups, where each value in the first set corresponds to a single value in the second set. If a value is not found in the look-up table, you can either replace it with a custom value or an empty value, or pass it on as is. If you need to look up or filter values based on more complex criteria, use one of the filtering components instead.

Importantly, when you generate code or compile a MapForce Server Execution file from the mapping, the look-up table data is embedded into the generated code or file. Consequently, defining a look-up table directly on the mapping is a good choice only if your data does not change frequently and is not very big (less than maybe a few hundred entries). If the look-up data changes regularly, you may find it difficult to maintain both the mapping and the generated code regularly—it is easier to maintain the look-up data as text, XML, database, or perhaps Excel.

If the look-up table is huge, the mapping execution will be slowed down by the look-up table. In this case, it is recommended to use a database component with SQL-Where instead. SQLite databases are good candidates for this, given their portability. On the server side, you can improve the performance of look-up tables by running a mapping with MapForce Server or MapForce Server Advanced Edition.

Creating Value-Maps

To add a Value-Map component to the mapping, do one of the following:

- Click the Insert Value-Map toolbar button.
- On the Insert menu, click Value-Map.
- Right-click a connection, and select Insert Value-Map from the context menu.

This adds a new Value-Map component to the mapping. You can now start adding pairs of items to the look-up table. To do this, double-click the component’s title bar or right-click it and select Properties from the context menu.
At mapping run time, MapForce checks each value that reaches the input of the Value-Map. If there is a matching value in the left column of the look-up table, then it replaces the original input value with the value from the right column. Otherwise, you can optionally configure it to return one of the following:

- A replacement value. In the example above, the replacement value is the text “incorrect date”. You can also set the replacement value to be empty, by not entering any text at all.
- The original input value. This means that, if no match is found in the look-up table, the original input value will be passed further on to the mapping, unchanged.

If you do not configure an "Otherwise" condition, the Value-Map returns an empty node whenever a match is not found. In this case, nothing will be passed to the target component and the output will contain missing fields. To prevent this from happening, you should either configure the "Otherwise" condition, or use the substitute-missing function.

There is a difference between setting an empty replacement value and not specifying the "Otherwise" condition. In the first case, the field will be generated in the output, but it will have an empty value. In the latter case, the field (or XML element) enclosing the value will not be created at all. For more information, see Example: Replacing Job Titles.

Populating a Value-Map
In a look-up table, you can define as many pairs of values as needed. You can enter the values manually, or copy-paste tabular data from text, CSV, or Excel files. Copy-pasting tables from an HTML page using a
common browser will also work in most cases. You can also paste data from the database grid in the DB Query pane. If you copy data from text files, the fields must be separated by tab characters. In addition, MapForce will recognize text separated by commas or semicolons in most cases.

Keep in mind the following when creating look-up tables:

1. All items in the left column must be unique. Otherwise, it would not be possible to determine which item you want to match specifically.
2. Items that belong to the same column must be of the same data type. You can choose the data type from the drop-down list at the top of each column in the look-up table. If you need to convert Boolean types, enter the text "true" or "false" literally. For an illustration of this case, see Example: Replacing Weekdays.

If MapForce encounters invalid data in the look-up table, it displays an error message and highlights the invalid rows in pink color, for example:

To import data from an external source into the Value-Map component:

1. Select the cells of interest in the source program (for example, Excel). This can be either a single column of data or two adjacent columns.
2. Copy data to clipboard using the Copy command of the external program.
3. On the Value-Map component, click the row before which you would like to paste the data.
4. Click the Paste table from clipboard button on the Value-Map component. Alternatively, press Ctrl+V or Shift+Insert.

Note: The Paste table from clipboard button is enabled only if you have copied data from some source first (that is, if there is data on the clipboard).

When your clipboard data contains multiple columns, then only data from the first two columns are inserted into the look-up table; any other subsequent columns will be ignored. If you paste data from a single column on top of any existing values, a context menu appears, asking whether the clipboard data should be inserted as new rows or the existing rows should be overwritten. Therefore, if you need to overwrite existing values in the look-up table as opposed to inserting new rows, ensure that the clipboard contains only one column, not multiple.

To insert rows manually before an existing row, first click the row of interest, and then click the Insert button.
To move an existing row to some other position, drag the row to the new position (upwards or downwards) while holding the left mouse button pressed.

To copy or cut rows for subsequent pasting at some other position, first select the row, and then click the Copy button (or Cut button, respectively). You can also copy or cut multiple rows that are not necessarily consecutive. To select multiple rows, hold the Ctrl key pressed while clicking the rows. Note that the cut or copied text always contains values from both columns; you cannot cut or copy values from one column only.

To remove a row, click it, and then click the Delete button.

To swap the left and right columns, click the Swap button.

Renaming Value-Map parameters

By default, the input parameter of a Value-Map component is called "input" and the output parameter is called "result". To make the mapping clearer, you can optionally rename any of these parameters by clicking the Edit button next to the respective name. The following is an example of a Value-Map with custom parameter names:

![Value-Map preview](image)

Previewing a Value-Map

After you have finished creating a Value-Map, you can quickly preview its implementation directly from the mapping by holding the mouse over the component's title bar:

![Value-Map preview](image)
4.12.1 Example: Replacing Weekdays

This example illustrates a Value-Map that replaces integer values with weekday names (1 = Sunday, 2 = Monday, and so on). This example is accompanied by a mapping which is available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Expense-valmap.mfd`.

Expensive-valmap.mfd

This mapping extracts the day of the week from the **Date** item in the source file, converts the numerical value into text, and writes it to the **Weekday** item of the target component. More specifically, the following happens:

- The **weekday** function extracts the weekday number from the **Date** item in the source file. The result of this function are integers ranging from 1 to 7.
- The first Value-Map component transforms the integers into weekdays (1 = Sunday, 2 = Monday, and so on). If the component encounters an invalid integer outside of the 1-7 range, then it will return the text "incorrect date".
If the weekday contains "Tuesday", then the text "Prepare Financial Reports" is written to the Notes item in the target component. This is achieved with the help of the contains function, which passes a Boolean true or false value to a second Value-Map component. The second Value-Map has the following configuration:

The Value-Map illustrated above should be understood as follows:

- Whenever a Boolean true is encountered, convert it to the text "-- Prepare financial reports -- !". For all other cases, return the text "--".

Notice that the data type of the first column is set to "boolean". This ensures that the input Boolean value true is recognized as such.
4.12.2 Example: Replacing Job Titles

This example shows you how to replace values of specific elements in an XML file with the help of Value-Map components (that is, using a predefined look-up table).

The XML file required for this example is available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\MFCCompany.xml. It stores, among other data, information about company employees and their job titles, for example:

```xml
<Person>
    <First>Michelle</First>
    <Last>Butler</Last>
    <Title>Software Engineer</Title>
</Person>
<Person>
    <First>Lui</First>
    <Last>King</Last>
    <Title>Support Engineer</Title>
</Person>
<Person>
    <First>Steve</First>
    <Last>Meier</Last>
    <Title>Office Manager</Title>
</Person>
```

Let's assume that you need to replace some of the job titles in the XML file above. Specifically, the title "Software Engineer" must be replaced with "Code Magician". Also, the title "Support Engineer" must be replaced with "Support Magician". All the other job titles must remain unchanged.

To achieve the goal, add the XML file to the mapping area, by clicking the Insert XML Schema/File toolbar button or by running the Insert | XML Schema/File menu command. Next, copy-paste the XML component on the mapping and create the connections as shown below. Note that you might need to turn off the Toggle auto-connect of children toolbar option first, in order to prevent unnecessary connections from being created automatically.
The mapping created so far simply copies the Person elements to the target XML file, without making any changes to the First, Last, and Title elements.

To replace the required job titles, let's add a Value-Map component. Right-click the connection between the two Title elements, and select Insert Value-Map from the context menu. Set up the Value-Map properties as shown below:

According to the setup above, each occurrence of “Software Engineer” will be replaced with “Code Magician”, and each occurrence of “Support Engineer” will be replaced with “Support Magician”. Notice that the Otherwise condition was not specified yet. For this reason, the Value-Map returns an empty node whenever the job title is other than “Software Engineer” and “Support Engineer”. Consequently, if you click the Output tab and preview the mapping, some of the Person elements will have a missing the Title, for example:

```xml
<Person>
  <First>Vernon</First>
  <Last>Callaby</Last>
</Person>
<Person>
```
As stated before, empty nodes cause missing entries in the generated output; therefore, in the XML fragment above, only Michelle Butler had the title replaced, because her title was present in the look-up table. The configuration created so far still does not fulfill the original requirement. The correct setup is as follows:

With the configuration above, the following happens at mapping run time:

- Each occurrence of "Software Engineer" will be replaced with "Code Magician"
- Each occurrence of "Support Engineer" will be replaced with "Support Magician"
- If the original title is not found in the look-up table, the Value-Map will return it unchanged.

For illustrative purpose only, we can also change all the job titles other than "Software Engineer" and "Support Engineer" to a custom value, for example "N/A". To achieve this, set the Value-Map properties as shown below:

When you preview the mapping this time, each job title is present in the output, but those that were not matched have the "N/A" value, for example:
This concludes the Value-Map example. By applying the logic above, you can now achieve the desired result in other mappings.
4.13 Adding Exceptions

An exception is a special component type that enables you to stop the mapping process and display an error when a condition returned by a filter occurs. You can add an exception when your mapping includes a filter that checks for a true/false condition (see Filters and Conditions). For example, you may want to throw an exception if the value of some mapping item is greater than some custom threshold.

To add an exception to the mapping:

1. On the Insert menu, click Exception.
2. Click the Insert Exception toolbar button.
3. Connect the throw input of the exception either to an on-true or on-false output of a filter.
4. Optionally, connect the error-text input of the exception to another component (typically, a constant) that supplies the text of the error when this exception is thrown.

Note: Both the on-true and on-false outputs of the filter must be connected. Specifically, one of these outputs must be connected directly to the exception (without any intermediary functions or components). The other output must be connected to the target component, either directly, or through other intermediary components.

When the mapping encounters an exception, you are notified about it as follows:

- In MapForce, the Messages window displays an error, and the exception text (in this case, "Expense limit exceeded").

 ![Messages Window with Exception Message](image)

 If the mapping language is XSLT 2.0 or XQuery, an "Execution failed" error appears in the Messages window, and the respective XSLT2 or XQuery tab is opened. The error line is highlighted in the Messages window.

- If you run the mapping with MapForce Server, the error "Exception was thrown!" is returned, followed by the custom exception text you have defined in MapForce.

  ```
  c:\codegen\mfx\ExpenseLimit.mfx:C:\Program Files (x86)\Altova\MapForceServer2016\bin\MapForceServer.exe" run ExpenseLimit.mfx
  Exception was thrown! Expense limit exceeded!
  ```

- If you run the mapping from the generated C#, C++, or Java code, the error "USER EXCEPTION" is returned, followed by the custom exception text you have defined in MapForce.

  ```
  C:\codegen\cs\ExpenseLimit\Mapping\bin\Debug\Mapping.exe
  USER EXCEPTION: Expense limit exceeded!
  ```
4.13.1 Example: Exception on "Greater Than" Condition

This example illustrates a mapping that throws an exception when a "Greater Than" condition occurs. The sample mapping accompanying this example can be found at:
\texttt{<Documents>\Altova\MapForce2021\MapForceExamples\ExpenseLimit.mfd}.

This mapping throws an exception whenever the \texttt{expense} item in the source XML instance has a value greater than 200. The value "200" is provided by a constant. The \texttt{less} function is then used to compare the two values. If the value of \texttt{expense} is less than 200, then its parent, the \texttt{expense-item}, is passed on to the filter, and no exception is thrown. Otherwise, an exception is thrown, with the custom text "Expense limit exceed".

As shown above, the exception is identified by the \textbullet{} icon and it consists of two items: \texttt{throw} and \texttt{error-text}. The \texttt{throw} item must be connected to the \texttt{on-false} or \texttt{on-true} output of a filter. The \texttt{error-text} is connected to a constant which provides the custom text of the exception.

Importantly, both outputs of the filter are connected; otherwise, the exception would not be thrown. In this particular example, the \texttt{on-false} output is connected to the exception, while the \texttt{on-true} output is connected to the target component.

4.13.2 Example: Exception When Node Does Not Exist

This example illustrates how to throw an exception when a node in the source XML schema does not exist. For the sake of simplicity, this example uses the same XML schema both as source and target component.
To add the source schema to the mapping:

1. On the Insert menu, click XML Schema/File, and browse for `<Documents>\Altova\MapForce2021\MapForceExamples\BookList.xsd`.
2. When prompted to provide an instance file, click Skip.
3. When prompted to select a schema root element, select BookList as root element.

To add the target schema, follow the same steps. Then, using the corresponding commands from Insert menu (or the corresponding toolbar buttons), add the following:

- A Filter: Nodes/Rows component (see also Filters and Conditions)
- A constant with the text “No year defined!”
- An exception

Finally, drag the exists function from the Libraries window into the mapping area, and make the connections as illustrated below.

According to the XML schema, all attributes of the Book element are optional, except the book title. Therefore, the “Year” attribute may or may not exist in a valid XML instance. The goal of the mapping is to process successfully an XML instance where the “Year” attribute exists for each book. Otherwise, the mapping must throw an exception.

To test the successful execution of the mapping:

1. Double-click the header of the source component and, next to Input XML file, browse for the following file: `<Documents>\Altova\MapForce2021\MapForceExamples\BookList.xml`.
2. Click the Output button to run the mapping.

To test the exception:

1. Create, in the same directory, a copy of the BookList.xml file called BookListInvalid.xml.
2. Modify it so as to remove the "Year" attribute from a Book element.
3. Double-click the header of the source component, and, next to Input XML file, browse for the BookListInvalid.xml file.
4. Click the Output button to run the mapping.

Let's now have a closer look at how the mapping works.

Connection A ensures that a book in the target instance is created for each book in the source instance. Connections B, C, D, E ensure that the "Title", "Year", "Price", and "Author" are copied from the source to the target, for each book.

Connection F triggers the exists function to check for the existence of the "Year" attribute. Connection G passes the function result (true or false) to the filter. If the result is true, the "Year" attribute exists, and the book is passed on to the filter, and subsequently to the target through connection H.

Notice that the filter was not connected directly to the Year output of the source component. Had we done so, the filter would filter the Year by its own existence, which is not meaningful, and the exception would never be thrown.

Connection I is there because the exception must be connected either to an on-false or on-true output of a filter, according to the rules. Finally, connection K passes the custom error text from the constant to the exception component.
4.14 Parsing and Serializing Strings

String parsing and serialization is an advanced mapping technique that enables you to configure the component to either parse data from a string, or serialize data to a string. This technique can be regarded as an alternative to reading data from (or writing data to) files. MapForce components which parse strings or serialize data to strings can be useful in a variety of situations, for example:

- You need to insert structures such as XML into database fields.
- You need to convert XML fragments stored in database fields into standalone XML files.
- You have legacy data stored as text (for example, fixed-length content in a single database field), and you would like to convert this data into a fully sortable, field-based structure.

String parsing and serialization is available for the following MapForce component types:

- Text (CSV, fixed-length field text)
- XML schema files

For all component types above, string parsing and serialization is supported in the BUILT-IN target language. In addition, parsing strings to JSON or serializing JSON from strings is supported in BUILT-IN, C#, and Java.

4.14.1 About the Parse/Serialize Component

A Parse/Serialize component in MapForce is a hybrid component which is neither a source nor a target component. Given the role they play in the mapping design, such components must be placed in between other source and target components.

You can use a "Parse/Serialize String" component for string parsing when, for some reason, you need to convert a string that has structure (for example, some XML stored as string in a database) into another format. Parsing data from the source string to the "Parse/Serialize" component means that the source string is turned into a MapForce structure, and, thus, you get access to any element or attribute of the source XML stored as string.
Generic "Parse String" component

The diagram above illustrates the typical structure of a MapForce component which parses a string. Note that the "Parse/Serialize String" component is placed in between the source and target of the mapping. What this component does is accept some string structure as input, by means of a single MapForce connector which is connected to its top String node. The output structure can be any of the data targets supported by MapForce.

When you serialize data from a component to string, the reverse happens. Specifically, the entire structure of the MapForce component becomes a string structure which you can further manipulate as necessary. For example, this enables you to write an XML file (or XML fragment) to a database field or to a single cell of an Excel spreadsheet.

Generic "Serialize to String" component

The diagram above illustrates a generic MapForce "Serialize to String" component. What this component does is accept as input any data source supported by MapForce (by means of standard MapForce connectors). The output structure is a string which you can pass further by means of a single MapForce connector drawn from
You can designate a component for string parsing or serialization at any time from the mapping window. To do so, click the **File/String** (File/String) button adjacent to the root node, and then select the desired option.

Changing the component mode

Note: A "Parse/Serialize String" component cannot read data from a string and write to a string simultaneously. Therefore, the root node can have either an incoming connector or an outgoing connector (not both). An error will be generated if you attempt to use the same component for both operations.

When you designate a component for string parsing or serialization, the appearance of component changes as follows:

- The component gets the **parse** or **serialize** prefix in the title.
- The title bar has yellow background color, similar to function components.
- The top node begins with the **String:** prefix and is identified by the icon.
- If the component parses a string, the output connector from the root node is not meaningful and thus it is not available.
- If the component serializes to a string, the input connector to the root node is not meaningful and thus it is not available.

When a component is in "Parse/Serialize String" mode, you can change its settings in a similar way as if it were in a file-based mode (see Changing the Component Settings). Note that not all component settings are available when a component is in either "Parse" or "Serialize" mode.

4.14.2 Example: Serialize to String (XML to Database)

This example walks you through the steps required to create a mapping design which serializes data to a string. The example is accompanied by a sample file. If you want to look at the sample file before starting this example, you can open it from the following path:

```
<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\SerializeToString.mfd
```
Let's assume you have an XML file (and its related schema) which consists of multiple `<Person>` elements. Each `<Person>` element describes a person's first name, last name, job title, phone extension, and email address, as follows:

```xml
<Person>
    <First>Joe</First>
    <Last>Firstbread</Last>
    <Title>Marketing Manager Europe</Title>
    <PhoneExt>621</PhoneExt>
    <Email>j.firstbread@nanonull.com</Email>
</Person>
```

Your goal is to extract each `<Person>` element from the XML file and insert it literally (including XML tags) as a new database record in the `PEOPLE` table of a SQLite database. The `PEOPLE` table contains only two columns: `ID` and `PERSON`. Its full definition is as follows:

```sql
CREATE TABLE PEOPLE (ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, PERSON TEXT);
```

After the mapping is executed, the expected result is that the `PEOPLE` table will have the same number of rows as the number of `<Person>` elements in the XML file.

To achieve the goal, do the following:

1. Add to the mapping area the source XML component (use the **Insert | XML Schema/File** menu command). The sample file is available at: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\MFCompany.xml`.
2. Duplicate (copy-paste) the XML component.
3. On the duplicated XML component, click `File/String`, and then select **Serialize XML to Strings**.
4. Right-click the duplicated component and select **Change Root Element** from the context menu. Then change the root element to `<Person>`.
In general, you can change the root element to any element that has a global (not local) declaration in the XML schema. Any elements that are not defined globally in your schema are not listed in the "Select Root Element" dialog box.

5. Double-click the component and clear the Write XML Declaration check box. This prevents the XML declaration from being written for each `<Person>` element.
6. Add to the mapping area the target SQLite database component, from the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\dbserialize.db`. (To add the database component, use the Insert | Database menu command, see also Connecting to a Database). When prompted to insert a database object, select the PEOPLE table.
7. Link the components as shown below. On the left side of the mapping, the `<Person>` element maps to the serialization component. On the right side of the mapping, the serialized string value is inserted into the `PERSON` column of the `PEOPLE` database table. Finally, the connector drawn from `<Person>` to `PEOPLE` table instructs MapForce to create a new record for each `<Person>` element encountered.

8. Click the `A:In` button on the database component, and do the following:
 a. Select the **Delete all records** option. At mapping runtime, this will delete any existing records from the database before new ones are inserted.
 b. Select the **DB-generated** option next to the `ID` column. This ensures that the ID of the record will be generated by the database. Note that the **DB-generated** option appears only if the column supports this option. For columns that are not an identity or auto-incremented field, the `max+1` option is available instead—this option will check what is the maximum value already existing in that column, and insert the next available integer, incremented by 1.
You have now created a mapping design which serializes data to string. If you click the **Output** tab, the preview SQL query indicates that separate records will be inserted into the database for each `<Person>` element in the XML file, which was the goal of this mapping.
4.15 Mapping Node Names

Most of the time when you create a mapping with MapForce, the goal is to read values from a source and write values to a target. However, there might be cases when you want to access not only the node values from the source, but also the node names. For example, you might want to create a mapping which reads the element or attribute names (not values) from a source XML and converts them to element or attribute values (not names) in a target XML.

Consider the following example: you have an XML file that contains a list of products. Each product has the following format:

```xml
<product>
  <id>1</id>
  <color>red</color>
  <size>10</size>
</product>
```

Your goal is to convert information about each product into name-value pairs, for example:

```xml
<product>
  <attribute name="id" value="1" />
  <attribute name="color" value="red" />
  <attribute name="size" value="10" />
</product>
```

For such scenarios, you would need access to the node name from the mapping. With dynamic access to node names, which the subject of this topic, you can perform data conversions such as the one above.

Note: You can also perform the transformation above by using the `node-name` and `static-node-name` core library functions. However, in this case, you need to know exactly what element names you expect from the source, and you need to connect every single such element manually to the target. Also, these functions might not be sufficient, for example, when you need to filter or group nodes by name, or when you need to manipulate the data type of the node from the mapping.

Accessing node names dynamically is possible not only when you need to read node names, but also when you need to write them. In a standard mapping, the name of attributes or elements in a target is always known before the mapping runs; it comes from the underlying schema of the component. With dynamic node names, however, you can create new attributes or elements whose name is not known before the mapping runs. Specifically, the name of the attribute or element is supplied by the mapping itself, from any source supported by MapForce.

For dynamic access to a node's children elements or attributes to be possible, the node must actually have children elements or attributes, and it must not be the XML root node.

Dynamic node names are supported when you map to or from the following component types:

- XML
- CSV/FLF*
When the mapping target is a CSV or FLF (fixed-length field) file, the fields must be defined in the component settings (and it is not possible to change the name, order, or number of the target fields). Unlike XML, the format of text files is fixed, so only the actual field value can be manipulated, not the field name, number or order.

Dynamic node names are supported in any of the following mapping languages: Built-In*, XSLT2, XQuery*, C#*, C++*, Java*.

* Requires MapForce Professional or Enterprise Edition.

For information about how dynamic node names work, [Getting Access to Node Names](#). For a step-by-step mapping example, see [Example: Map Element Names to Attribute Values](#).

4.15.1 Getting Access to Node Names

When a node in an XML component (or a field in a CSV/FLF component) has children nodes, you can get both the name and value of each child node directly on the mapping. This technique is called "dynamic node names". "Dynamic" refers to the fact that processing takes place "on the fly", during mapping runtime, and not based on the static schema information which is known before the mapping runs. This topic provides details on how to enable dynamic access to node names and what you can do with it.

When you read data from a source, "dynamic node names" means that you can do the following:

- Get a list of all children nodes (or attributes) of a node, as a sequence. In MapForce, "sequence" is a list of zero or more items which you can connect to a target and create as many items in the target as there are items in the source. So, for example, if a node has five attributes in the source, you could create five new elements in the target, each corresponding to an attribute.
- Read not only the children node values (as a standard mapping does), but also their names.

When you write data to a target, "dynamic node names" means that you can do the following:

- Create new nodes using names supplied by the mapping (so-called "dynamic" names), as opposed to names supplied by the component settings (so-called "static" names).

To illustrate dynamic node names, this topic makes use of the following XML schema: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Products.xsd`. This schema is accompanied by a sample instance document, `Products.xml`. To add both the schema and the instance file to the mapping area, select the **Insert | XML Schema/File** menu command and browse for `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Products.xml`. When prompted to select a root element, choose `products`.

To enable dynamic node names for the `product` node, right-click it and select one of the following context menu commands:
- **Show Attributes with Dynamic Name**, if you want to get access to the node's attributes
- **Show Child Elements with Dynamic Name**, if you want to get access to the node's children elements

![Fig. 1 Enabling dynamic node names (for child elements)](image)

Note: The commands above are available only for nodes that have children nodes. Also, the commands are not available for root nodes.

When you switch a node into dynamic mode, a dialog box such as the one below appears. For the purpose of this topic, set the options as shown below; these options are further discussed in [Accessing Nodes of Specific Type](#).
Fig. 2 "Dynamically Named Children Settings” dialog box

Fig. 3 illustrates how the component looks when dynamic node names are enabled for the product node. Notice how the appearance of the component has now significantly changed.
Fig. 3 Enabled dynamic node names (for elements)

To switch the component back to standard mode, right-click the product node, and disable the option Show Child Elements with Dynamic Name from the context menu.

The image below shows how the same component looks when dynamic access to attributes of a node is enabled. The component was obtained by right-clicking the product element, and selecting Show Attributes with Dynamic Name from the context menu.

Fig. 4 Enabled dynamic node names (for attributes)

To switch the component back to standard mode, right-click the product node, and disable the option Show Attributes with Dynamic Name from the context menu.

As illustrated in Fig. 3 and Fig. 4, the component changes appearance when any node (in this case, product) is switched into "dynamic node name" mode. The new appearance opens possibilities for the following actions:

- Read or write a list of all children elements or attributes of a node. These are provided by the element() or attribute() item, respectively.
• Read or write the name of each child element or attribute. The name is provided by the `nodeName()` and `localName()` items.
• In case of elements, read or write the value of each child element, as specific data type. This value is provided by the type cast node (in this case, the `text()` item). Note that only elements can have type cast nodes. Attributes are treated always as "string" type.
• Group or filter child elements by name. For an example, see Example: Group and Filter Nodes by Name.

The node types that you can work with in "dynamic node name" mode are described below.

element()

This node has different behaviour in a source component compared to a target component. In a source component, it supplies the child elements of the node, as a sequence. In Fig.3, `element()` provides a list (sequence) of all children elements of `product`. For example, the sequence created from the following XML would contain three items (since there are three child elements of `product`):

```xml
<product>
  <id>1</id>
  <color>red</color>
  <size>10</size>
</product>
```

Note that the actual name and type of each item in the sequence is provided by the `nodeName()` node and the type cast node, respectively (discussed below). To understand this, imagine that you need to transform data from a source XML into a target XML as follows:

Fig. 6 Mapping XML element names to attribute values (requirement)

The mapping which would achieve this goal looks as follows:
The role of `element()` here is to supply the sequence of child elements of `product`, while `node-name()` and `text()` supply the actual name and value of each item in the sequence. This mapping is accompanied by a tutorial sample and is discussed in more detail in Example: Map Element Names to Attribute Values.

In a target component, `element()` does not create anything by itself, which is an exception to the basic rule of mapping "for each item in the source, create one target item". The actual elements are created by the type cast nodes (using the value of `node-name()`) and by name test nodes (using their own name).

`attribute()`

As shown in Fig. 4, this item enables access to all attributes of the node, at mapping runtime. In a source component, it supplies the attributes of the connected source node, as a sequence. For example, in the following XML, the sequence would contain two items (since `product` has two attributes):

```
<product id="1" color="red"/>
```

Note that the `attribute()` node supplies only the value of each attribute in the sequence, always as string type. The name of each attribute is supplied by the `node-name()` node.

In a target component, this node processes a connected sequence and creates an attribute value for each item in the sequence. The attribute name is supplied by the `node-name()` node. For example, imagine that you need to transform data from a source XML into a target XML as follows:
The mapping which would achieve this goal looks as follows:

Note: This transformation is also possible without enabling dynamic access to a node's attributes. Here it just illustrates how `attribute()` works in a target component.

If you want to reconstruct this mapping, it uses the same XML components as the `ConvertProducts.mfd` mapping available in the `<Documents>|Altova\MapForce2021\MapForceExamples\Tutorial\` folder. The only difference is that the target has now become the source, and the source has become the target. As input data for the source component, you will need an XML instance that actually contains attribute values, for example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<products>
  <product>
    <attribute name="id" value="1"/>
    <attribute name="color" value="red"/>
    <attribute name="size" value="big"/>
  </产品>
</products>
```
Note that, in the code listing above, the namespace and schema declaration have been omitted, for simplicity.

node-name()

In a source component, `node-name()` supplies the name of each child element of `element()`, or the name of each attribute of `attribute()`, respectively. By default, the supplied name is of type `xs:QName`. To get the name as string, use the `local-name()` node (see Fig. 3), or use the function `QName-as-string`.

In a target component, `node-name()` writes the name of each element or attribute contained in `element()` or `attribute()`.

local-name()

This node works in the same way as `node-name()`, with the difference that the type is `xs:string` instead of `xs:QName`.

Type cast node

In a source component, the type cast node supplies the value of each child element contained in `element()`. The name and structure of this node depends on the type selected from the "Dynamically Named Children Settings" dialog box (Fig. 2).

To change the type of the node, click the Change Selection button and select a type from the list of available types, including a schema wildcard (`xs:any`). For more information, see Accessing nodes of specific type.

In a target component, the type cast node writes the value of each child element contained in `element()`, as specific data type. Again, the desired data type can be selected by clicking the Change Selection button.

Name test nodes

In a source component, name test nodes provide a way to group or filter child elements from a source instance by name. You may need to filter child elements by name in order to ensure that the mapping accesses the instance data using the correct type (see Accessing Nodes of Specific Type). For an example, see Example: Group and Filter Nodes by Name.

In general, the name test nodes work almost like normal element nodes for reading and writing values and subtree structures. However, because the mapping semantics is different when dynamic access is enabled, there are some limitations. For example, you cannot concatenate the value of two name test nodes.

On the target side, name test nodes create as many elements in the output as there are items in the connected source sequence. Their name overrides the value mapped to `node-name()`.

If necessary, you can hide the name test nodes from the component. To do this, click the Change Selection button next to the `element()` node. Then, in the "Dynamically Named Children Settings" dialog box (Fig. 2), clear the Show name test nodes... check box.
4.15.2 Accessing Nodes of Specific Type

As mentioned in the previous section, Getting Access to Node Names, you can get access to all child elements of a node by right-clicking the node and selecting the Show Child Elements with Dynamic Name context menu command. At mapping runtime, this causes the name of each child element to be accessible through the node-name() node, while the value—through a special type cast node. In the image below, the type cast node is the text() node.

Importantly, the data type of each child element is not known before the mapping runtime. Besides, it may be different for each child element. For example, a product node in the XML instance file may have a child element id of type xs:integer and a child element size of type xs:string. To let you access the node content of a specific type, the dialog box shown below opens every time when you enable dynamic access to a node's child elements. You can also open this dialog box at any time later, by clicking the Change Selection button next to the element() node.
To access the content of each child element at mapping runtime, you have several options:

1. Access the content as string. To do this, select the `text()` check box on the dialog box above. In this case, a `text()` node is created on the component when you close the dialog box. This option is suitable if the content is of simple type (xs:int, xs:string, etc.) and is illustrated in the Example: Map Element Names to Attribute Values. Note that a `text()` node is displayed only if a child node of the current node can contain text.

2. Access the content as a particular complex type allowed by the schema. When custom complex types defined globally are allowed by the schema for the selected node, they are also available in the dialog box above, and you can select the check box next to them. In the image above, there are no complex types defined globally by the schema, so none are available for selection.

3. Access the content as any type. This may be useful in advanced mapping scenarios (see "Accessing deeper structures" below). To do this, select the check box next to `xs:anyType`.

Be aware that, at mapping runtime, MapForce (through the type cast node) has no information as to what the actual type of the instance node is. Therefore, your mapping must access the node content using the correct type. For example, if you expect that the node of a source XML instance may have children nodes of various complex types, do the following:

a) Set the type cast node to be of the complex type that you need to match (see item 2 in the list above).
b) Add a filter to read from the instance only the complex type that you need to match. This technique is illustrated in Example: Group and Filter Nodes by Name.

Accessing deeper structures

It is possible to access nodes at deeper levels in the schema than the immediate children of a node. It is useful for advanced mapping scenarios. In simple mappings such as Example: Map Element Names to Attribute Values, you don't need this technique because the mapping accesses only the immediate children of an XML node. However, if you need to access deeper structures dynamically, such as "grandchildren", "grand-grandchildren", and so on, this is possible as shown below.

1. Create a new mapping.
2. On the Insert menu, click Insert XML Schema/File and browse for the XML instance file (in this example, the Articles.xml file from the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder).
3. Right-click the Articles node and select the Show Child Elements with Dynamic Name context command.
4. Select xs:anyType from the "Dynamically Named Children Settings" dialog box.
5. Right-click the xs:anyType node and select again the Show Child Elements with Dynamic Name context command.
6. Select text() from the "Dynamically Named Children Settings" dialog box.

In the component above, notice there are two element() nodes. The second element() node provides dynamic access to grandchildren of the <Articles> node in the Articles.xml instance.
Articles.xml

For example, to get "grandchildren" element names (Number, Name, SinglePrice), you would draw a connection from the local-name() node under the second element() node to a target item. Likewise, to get "grandchildren" element values (1, T-Shirt, 25), you would draw a connection from the text() node.

Although not applicable to this example, in real-life situations, you can further enable dynamic node names for any subsequent xs:anyType node, so as to reach even deeper levels.

Note the following:

- The TYPE button allows you to select any derived type from the current schema and display it in a separate node. This may only be useful if you need to map to or from derived schema types (see Derived XML Schema Types).
- The Change Selection button next to an element() node opens the “Dynamically Named Children Settings” dialog box discussed in this topic.
- The Change Selection button next to xs:anyAttribute allows you to select any attribute defined globally in the schema. Likewise, the Change Selection button next to xs:any element allows you to select any element defined globally in the schema. This works in the same way as mapping to or from schema wildcards (see also Wildcards - xs:any / xs:anyAttribute). If using this option, make sure that the selected attribute or element can actually exist at that particular level according to the schema.

4.15.3 Example: Map Element Names to Attribute Values

This example shows you how to map element names from an XML document to attribute values in a target XML document. The example is accompanied by a sample mapping, which is available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ConvertProducts.mfd.
To understand what the example does, let's assume you have an XML file that contains a list of products. Each product has the following format:

```
<product>
  <id>1</id>
  <color>red</color>
  <size>10</size>
</product>
```

Your goal is to convert information about each product into name-value pairs, for example:

```
<product>
  <attribute name="id" value="1" />
  <attribute name="color" value="red" />
  <attribute name="size" value="10" />
</product>
```

To perform a data mapping such as the one above with minimum effort, this example uses a MapForce feature known as "dynamic access to node names". "Dynamic" means that, when the mapping runs, it can read the node names (not just values) and use these names as values. You can create the required mapping in a few simple steps, as shown below.

Step 1: Add the source XML component to the mapping
- On the **Insert** menu, click **XML Schema/File**, and browse for the following file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Products.xml`. This XML file points to the `Products.xsd` schema located in the same folder.

Step 2: Add the target XML component to the mapping
- On the **Insert** menu, click **XML Schema/File**, and browse for the following schema file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ProductValuePairs.xsd`. When prompted to supply an instance file, click **Skip**. When prompted to select a root element, select `products` as root element.

At this stage, the mapping should look as follows:
Step 3: Enable dynamic access to child nodes

1. Right-click the `product` node on the source component, and select **Show Child Elements with Dynamic Name** from the context menu.
2. In the dialog box which opens, select `text()` as type. Leave other options as is.

Notice that a `text()` node has been added on the source component. This node will supply the content of each child item to the mapping (in this case, the value of "id", "color", and "size").
Step 4: Draw the mapping connections

Finally, draw the mapping connections A, B, C, D as illustrated below. Optionally, double-click each connection, starting from the top one, and enter the text "A", "B", "C", and "D", respectively, into the Description box.

In the mapping illustrated above, connection A creates, for each product in the source, a product in the target. So far, this is a standard MapForce connection that does not address the node names in any way. The connection B, however, creates, for each encountered child element of `product`, a new element in the target called `attribute`.

Connection B is a crucial connection in the mapping. To reiterate the goal of this connection, it carries a sequence of child elements of `product` from the source to the target. It does not carry the actual names or values. Therefore, it must be understood as follows: if the source `element()` has N child elements, create N instances of that item in the target. In this particular case, `product` in the source has three children elements (`id`, `color` and `size`). This means that each `product` in the target will have three child elements with the name `attribute`.

Although not illustrated in this example, the same rule is used to map child elements of `attribute()`: if the source `attribute()` item has N child attributes, create N instances of that item in the target.

Next, connection C copies the actual name of each child element of `product` to the target (literally, "id", "color", and "size").

Finally, connection D copies the value of each child element of `product`, as string type, to the target.

To preview the mapping output, click the Output tab and observe the generated XML. As expected, the output contains several products whose data is stored as name-value pairs, which was the intended goal of this mapping.
Example: Group and Filter Nodes by Name

This example shows you how to design a mapping that reads key-value pairs from an XML property list (or XML plist) and writes them to a CSV file. (XML property lists represent a way of storing macOS and iOS object information in XML format, see https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXML.plist.html). The example is accompanied by a mapping sample which is available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ReadPropertyList.mfd.

The code listing below represents the source XML file.
The goal of the mapping is to create a new line in the CSV file from certain key-value pairs found under `<dict>` node in the property list file. Specifically, the mapping must filter only `<key>` - `<string>` pairs. Other key-value pairs (for example, `<key>` - `<integer>`) must be ignored. In the CSV file, the line must store the name of the property, separated from the value of the property by a comma. In other words, the output must look as follows:

First Name,William
Last Name,Shakespeare
Profession,Playwright

To achieve this goal, the mapping uses dynamic access to all children nodes of the `dict` node. Secondly, the mapping uses the group-starting-with function to group the key-value pairs retrieved from the XML file. Finally, the mapping uses a filter to filter only those nodes where the node name is "string".

The following steps show how the required mapping can be created.

Step 1: Add the source XML component to the mapping

1. Set the mapping transformation language to BUILT-IN (see Selecting a Transformation Language).
2. On the Insert menu, click XML Schema/File, and browse for the following file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\plist.xml`. This XML file points to the plist.dtd schema located in the same folder.

Step 2: Add the target CSV component to the mapping

1. On the Insert menu, click Text File. When prompted, select the Use simple processing for standard CSV... option.
2. Add a CSV field to the component, by clicking Append field.
3. Double-click the name of each field, and enter "Key" as name of the first field, and "Value" as name of the second field. The "Key" field will store the name of the property, while the "Value" field will store the property value. For more information about CSV components, see CSV and Text Files.
Step 3: Add the filter and functions

1. Drag the \texttt{equal}\quad\mathbb{E}\quad\texttt{exists}\quad\mathbb{E}\quad\texttt{group-starting-with}\quad\mathbb{E}\ functions from the Libraries window into the mapping. For general information about functions, see Functions.
2. To add the filter, click the \textbf{Insert} menu, and then click \textbf{Filter: Nodes/Rows}. For general information about filters, see Filters and Conditions.
3. On the \textbf{Insert} menu, click \textbf{Constant}, and then enter the text "string".
4. In the source component, right-click the \texttt{dict} node select \textbf{Show Child Elements with Dynamic Name} from the context menu. On the “Dynamically Named Children Settings” dialog box, make sure that the check box \textit{Show name test nodes to filter or create elements by fixed node name} is selected.

5. Draw the connections as shown below.
The mapping explained

The `element()` item on the source component provides all children of the `dict` node, as a sequence, to the `group-starting-with` function. The `group-starting-with` function creates a new group whenever a node with the name `key` is encountered. The `exists` function checks for this condition and returns the result as Boolean `true/false` to the grouping function.

For each group, the filter checks if the name of the current node is equal to "string", with the help of the `equal` function. The name itself is read from the `local-name()`, which supplies the node's name as a string.

The connections to the target component have the following role:

- Only when the filter condition is true, a new row is created in the target CSV.
- `Key` (property name) is taken from the value of the `key` element in the source.
- `Value` (property value) is taken from the `string` name test node.
4.16 Styling Mapping Output with StyleVision

In mappings where the target component is XML, it is possible to preview and save the mapping output as HTML, RTF, PDF and Word 2007+ documents, provided that Altova StyleVision is installed on your computer. If you are using the Enterprise edition of StyleVision, then charts will also be rendered in these previews.

When a mapping supports preview in any of these formats, additional tabs become available next to the Output tab, for example:

![Image](StyleVision_preview_tabs_MapForce_Enterprise_Edition.png)

StyleVision preview tabs (MapForce Enterprise Edition)

Note the following:

- When StyleVision Professional is installed, it is possible to preview HTML and RTF output. With StyleVision Enterprise, it is possible to preview HTML, RTF, PDF, and Word 2007+ output.
- Previewing mapping output as PDF requires Java, Acrobat Reader, and FOP (Formatting Objects Processor) version 0.93 or 1.0. FOP is installed together with StyleVision, unless you opted not to install it when installing StyleVision.
- In the 64-bit edition of MapForce, the Word 2007+ and RTF previews are opened as a non-embedded application.
- If your mapping contains components that act both as source and target (pass-through components), the StyleVision preview will only be possible for those components where the Preview button of the component has been set as active. For more information about such mappings, see Chained Mappings.

In order to preview data from a mapping in this way, the following is required:

- Altova StyleVision must be installed on your computer, either as a standalone installation, or as part of Altova MissionKit.
- The target component must have a StyleVision Power Stylesheet (SPS) file associated to it. The stylesheet file can be created or edited with StyleVision. You cannot edit or change the stylesheet in MapForce directly, but you can open it via MapForce in StyleVision. Once the stylesheet is ready, you can assign it to a target MapForce component, as shown below.

Assigning a StyleVision Power Stylesheet to a target component

1. In StyleVision, create the required stylesheet file. Make sure to use as source the same XML schema as that of the MapForce component.
2. In MapForce, right-click the target XML component, and select Properties.
3. On the Component Settings dialog box, next to StyleVision Power Stylesheet file, browse for the stylesheet file created previously.

![Image](StyleVision_Browse_Edit.png)

Note: The path to the StyleVision Power Stylesheet file can be absolute or relative, see Using Relative and Absolute Paths.
Saving the StyleVision-generated output
You can save the StyleVision-generated HTML, PDF, RTF, or Word 2007+ output to a file in a similar way as saving the result of any other mapping. Namely, after previewing the mapping, do one of the following:

- Click the Save generated output toolbar button.
- On the Output menu, click Save Output File.

Automating generation of HTML, PDF, RTF, Word 2007+ files with Altova product suite
If your mapping should generate HTML, PDF, RTF, and Word 2007+ files automatically (either on the same or on a different computer or even platform), this is possible with MapForce Server and StyleVision Server (these are separately licensed server products that extend the functionality of MapForce and StyleVision, respectively). In this scenario, each application plays the following distinct role:

- MapForce - enables you to design the mapping (.mfd file) which defines the data transformation inputs and outputs (for example, database to XML)
- MapForceServer - runs the executable mapping (.mfx file) at the command-line or from an API (either on the same or a different operating system)
- StyleVision - enables you to design the stylesheet (.sps file) required to transform mapping output to HTML, PDF, RTF, Word 2007+
- StyleVision Server - runs the .sps stylesheet which transforms the mapping output to a target desired format. This happens at the command line or from an API (either on the same or a different operating system).
- Both StyleVision Server and MapForce Server can optionally run under the management of FlowForce Server (licensed separately). In this scenario, MapForce mappings and StyleVision transformations can run as scheduled, triggered, or on-demand jobs, and thus be fully automated.

4.16.1 Examples of Mappings with StyleVision Stylesheets
Many of the mappings included in the MapForce examples folder (`<Documents>`\Altova\MapForce2021\MapForceExamples) have StyleVision Power Stylesheets (.sps files) assigned to their target components. When that is the case, the mapping contains the additional StyleVision preview tabs.

StyleVision preview tabs (MapForce Enterprise Edition)
One such example is CompletePO.mfd available at the following path: `<Documents>`\Altova\MapForce2021\MapForceExamples\CompletePO.mfd. This mapping produces a purchase order in XML format. Right-click the target component, select Properties, and notice that it has an .sps file assigned to it.
Click the **Output** tab to view the output data in HTML format.
Fax +1 (321) 555 5155 - 9
office@nanonull.com
www.nanonull.com

Purchase Order Number: PO - __________

TO: Mrs./Mr. Ted Little
 Long Way
 Los-Angeles
 CA 34424
 Our Customer Identifier: ID-3

Order Date: ______________________
Shipping Date: ____________________

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Name</th>
<th>Unit Price ($)</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>Pants</td>
<td>34</td>
<td>170</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>T-Shirt</td>
<td>25</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>595</td>
</tr>
</tbody>
</table>

Other Comments: _______________________________________

Authorized Signature __________________________________
Date: ____________________

HTML preview of CompletePO.mfd (MapForce Enterprise edition)
4.17 Generating Mapping Documentation

You can generate detailed documentation about any mapping in HTML, Microsoft Word (.doc), or RTF format. If StyleVision is installed, you can additionally generate documentation in PDF format.

Prerequisites
- Microsoft Word 2000 or later must be installed if you would like to generate documentation in Microsoft Word format.
- StyleVision must be installed if you would like to generate documentation in PDF format or customize the design of the generated documentation.

By default, documentation is generated with a fixed design, where you can configure basic options such as the components to include, the depth of displayed paths, and other settings. If StyleVision is installed, you can additionally benefit from several included StyleVision Power Stylesheets (SPS) files, or even create your own design in StyleVision.

To generate mapping documentation:

1. On the **File** menu, click **Generate Documentation**. This opens the “Generate documentation” dialog box.
2. Select the required settings and click **OK**.

The settings you can configure are described below.

Documentation Design

- Select "Use fixed design..." to use the built-in documentation template.
- Select "Use user-defined..." to use a predefined StyleVision Power Stylesheet created in StyleVision. The SPS files are available in the ...\Documents\Altova\MapForce2021\Documentation\MapForce\ folder. For details, see Predefined StyleVision Power Stylesheets.
- Click **Browse** to browse for a predefined SPS file.
- Click **Edit** to launch StyleVision and open the selected SPS in a StyleVision window.

Output Format

- Select one of the following output formats: HTML, Microsoft Word, RTF, or PDF. Microsoft Word documents are created with the .doc file extension when generated using a fixed design, and with a .docx file extension when generated using a StyleVision SPS. The PDF output format requires StyleVision and is available only if you selected a StyleVision SPS.
- Select **Split output to multiple files** if you would like to generate multiple documentation files, one file for each individual component such as input or output component. If using a fixed design, links between multiple documents are created automatically.
• If the **Show result file after generation** option is selected, MapForce will open the generated files in the default browser or application, as applicable.

Path length limit

Use these options to define the maximum path length to be shown for input or output items or connections. For example, with the default length 3, an item path would be shown as .../ShortPO/LineItems/LineItem.

Include

Select here the specific components that should be included in the generated documentation.

Details

Use these options to customize the level of detail in the generated documentation. The **Library Names** option inserts the "core" prefix for functions.

4.17.1 Predefined StyleVision Power Stylesheets

When StyleVision is installed on your computer, you can generate mapping documentation by selecting one of the predefined StyleVision Power Stylesheet (SPS) files as template, instead of the built-in fixed design. The following predefined SPS stylesheets are available:

- **FunctionCallGraph.sps** - shows the call graph of the main mapping and any user-defined functions.
- **FunctionsUsedBy.sps** - shows which functions are used directly or indirectly in the mapping.
- **ImpactAnalysis.sps** - lists every source and target node, and the route taken via various functions to the target node.
- **OverallDocumentation.sps** - shows all nodes, connections, functions, and target nodes. This template outputs the maximum detail and is identical to the built-in "fixed design" output.

You can select the required stylesheet each time before generating documentation, as shown below. The files are located in the ...\MapForce2021\Documentation\MapForce folder.
The examples below illustrate output produced by each of these stylesheets. The examples were generated from one of the demo mappings installed with MapForce, PersonListByBranchOffice.mfd. Although these examples illustrate HTML output specifically, the layout is similar with other formats. For information about creating or customizing SPS files, see Custom Stylesheets.

Stylesheet "FunctionCallGraph.sps"

This report shows call graphs of the main mapping and all user-defined functions.

Expand all functions Collapse all functions

Main mapping
|---core.equal
|---core.filter
---user.LookupPerson
 |---core.filter
 |---user.EqualAnd
 | |---core.equal
 | |---core.logical-and
 |---user.Person2Details
 | |---core.concat

user.EqualAnd
|---core.equal
|---core.logical-and
Stylesheet "FunctionsUsedBy.sps"

This report lists all functions and their direct and indirect use in another functions. This is especially important for planning changes in user-defined functions in order to see what other functions can be affected.

<table>
<thead>
<tr>
<th>Function</th>
<th>Directly used by</th>
<th>Indirectly used by</th>
</tr>
</thead>
<tbody>
<tr>
<td>core.concat</td>
<td>user.Person2Details</td>
<td>Main mapping user.LookupPerson</td>
</tr>
<tr>
<td>core.equal</td>
<td>Main mapping user.EqualAnd</td>
<td>user.LookupPerson</td>
</tr>
<tr>
<td>core.filter</td>
<td>Main mapping user.LookupPerson</td>
<td></td>
</tr>
<tr>
<td>core.logical-and</td>
<td>user.EqualAnd</td>
<td>Main mapping user.LookupPerson</td>
</tr>
</tbody>
</table>
Stylesheet "ImpactAnalysis.sps"

This report lists every input and output node connection independently and is perfect for further impact analysis with modelling tools.

<table>
<thead>
<tr>
<th>Input Node</th>
<th>Functions</th>
<th>Output Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>OfficeName</td>
<td>core.equal, core.filter</td>
<td>PersonList</td>
</tr>
<tr>
<td>OfficeName</td>
<td>user.LookupPerson</td>
<td>PersonList/Person/Details</td>
</tr>
<tr>
<td>BranchOffices/Office</td>
<td>core.filter</td>
<td>PersonList</td>
</tr>
<tr>
<td>BranchOffices/Office/Name</td>
<td>core.equal, core.filter</td>
<td>PersonList</td>
</tr>
<tr>
<td>BranchOffices/Office/Contact</td>
<td></td>
<td>PersonList/Person</td>
</tr>
<tr>
<td>…/Office/Contact/first</td>
<td></td>
<td>PersonList/Person/First</td>
</tr>
<tr>
<td>…/Office/Contact/first</td>
<td>user.LookupPerson</td>
<td>PersonList/Person/Details</td>
</tr>
<tr>
<td>…/Office/Contact/last</td>
<td></td>
<td>PersonList/Person/Last</td>
</tr>
<tr>
<td>…/Office/Contact/last</td>
<td>user.LookupPerson</td>
<td>PersonList/Person/Details</td>
</tr>
</tbody>
</table>
4.17.2 Custom Stylesheets

In addition to the built-in fixed design, you can create custom stylesheets for the generated mapping documentation with StyleVision (https://www.altova.com/stylevision). You can also change any of the predefined stylesheets, for example, by adjusting the fonts and other styles.

A custom design is a StyleVision Power StyleSheet (SPS). The advantage of using an SPS for generating mapping documentation is that you have complete control over the design of the documentation.

To create a custom SPS file, the following is required:

1. The XML Schema that provides the structure of the generated MapForce documentation. This schema is called MapForceDocumentation.xsd and is delivered with your MapForce installation package. It is stored in the ...\Documents\Altova\MapForce2021\Documentation\MapForce folder. Note that the MapForceDocumentation.xsd includes the Documentation.xsd file located in the folder above it.
2. Some sample data to test and preview the custom design. You can use the following XML file as sample data:

```
\Documents\Altova\MapForce2021\Documentation\MapForce\SampleData\PersonListByBranchOffice.xml
```

The files mentioned above must be referenced in the Design Overview window in StyleVision, for example:

![Design Overview Window](image)

In StyleVision, you create a design by dragging nodes from the Schema Tree window onto the design area and assigning styles and properties to them.

![Schema Tree Window](image)
You can also add additional components such as links and images to the SPS design. To preview the design in a specific format, click any of the following tabs: HTML, RTF, PDF, or Word 2007+. For more details, refer to StyleVision documentation (https://www.altova.com/documentation).
4.18 Mapping Rules and Strategies

In general, MapForce maps data in an intuitive way, but you may come across situations where the output contains too many or too few items. This chapter is meant to help you avoid situations when the mapping produces undesired output due to incorrect connections or mapping context.

Mapping rules

In order to be valid, a mapping must include at least one source and at least one target component. A source component is one that reads data, typically from a file or database. A target component is one that writes data, typically to a file or database. If you attempt to save a mapping where the above is not true, an error appears in the Message window: “A mapping requires at least two connected structures, for example, a schema or a database structure”.

To create a data mapping, you draw mapping connections between items in the source and target components.

All mapping connections that you draw make together a mapping algorithm. At mapping runtime, MapForce evaluates the algorithm and processes data based on it. The integrity and the efficiency of the mapping algorithm depends primarily on the connections. You can also tweak some settings at mapping level, at component level, or even at connection level, but, essentially, the mapping connections determine how your data is processed.

Keep in mind the following rules when creating connections:

1. When you draw a connection from a source item, the mapping reads data associated with that item from the source file or database. The data may have zero, one, or multiple occurrences (in other words, it may be a sequence, as further described below). For example, if the mapping reads data from an XML file containing books, the source XML file may contain zero, one, or multiple book elements. In the mapping below, notice that the book item appears only once on the mapping component, even though the source (instance) file may contain multiple book elements, or none.

2. When you draw a connection to a target item, the mapping generates instance data of that kind. If the source item contains simple content (for example, string or integer) and if the target item accepts simple content, MapForce copies the content to the target item and, if necessary, converts the data type. Zero, one, or multiple values can be generated, depending on the incoming source data, see the next bullet.
3. For each (instance) item in the source, one (instance) item is created in the target. **This is the general mapping rule in MapForce.** Taking the mapping above as example, if the source XML contains three `book` elements, then three `publication` elements will be created on the target side. Note that there are also a few special cases, see [Sequences](#).

4. Each connection creates a **current mapping context**. The context determines which data is available *at the current moment, for the current target node*. The context, therefore, determines which source items are actually copied from the source to the target component. By drawing or omitting a connection, you may inadvertently change the current context and thus affect the output of the mapping. For example, your mapping might unnecessarily call a database or a Web service multiple times in the same mapping execution. This concept is further described below, see [The mapping context](#).

4.18.1 Sequences

As mentioned before, the general mapping rule is "for each item in the source, create one in the target". Here, "item" means one of the following:

- a single instance node of the input file or database
- a sequence of zero to multiple instance nodes of the input file or database

During mapping execution, if a sequence reaches a target item, this creates a loop that generates as many target nodes as there are source nodes. There are some exceptions to this rule, however:

- If the target item is an XML root element, it is created once and only once. If you connect a sequence to it, the result might not be schema valid. If attributes of the root element are also connected, the XML serialization will fail at mapping runtime. Therefore, avoid connecting a sequence to the root XML element.
- If the target item accepts only one value, it is created only once. Examples of items that accept only one value: XML attributes, database fields, simple output components. For example, the mapping below generates a sequence of three integers (1, 2, 3) with the help of the `generate-sequence` function. Nevertheless, the output will contain only one integer, because the target is a simple output component that accepts a single value. The other two values are ignored.

```
| C = 1 |
| C = 2 |
| C = 3 |
```

- If the source schema specifies that a specific item occurs only once, but the instance file contains many, MapForce may extract the first item from the source (which must exist according to the schema) and create only one item in the target. To disable this behavior, clear the check box **Enable input processing optimizations based on min/maxOccurs** from the component settings, see also [XML Component Settings](#).

If the sequence is empty, nothing is generated on the target side. For example, if the target is an XML document and the source sequence is empty, no XML elements would be created in the target at all.

Functions work in a similar way: if they get a sequence as input, then they are called as many times as (and produce as many results as) there are items in the sequence.

If a function gets an empty sequence as input, it returns an empty result as well, and consequently...
However, there are some categories of functions that, by virtue of their design, return a value even if they get an empty sequence as input:

- `exists`, `not-exists`, `substitute-missing`
- `is-null`, `is-not-null`, `substitute-null` (these three functions are aliases of the previous three)
- aggregate functions (`sum`, `count`, and so on)
- user-defined functions that accept sequences and are regular (not inlined) functions

If you need to replace an empty value, add the `substitute-missing` function to the mapping and replace the empty value with a substitute value of choice. Alternatively, you can achieve the same result by using Defaults and Node Functions.

Functions may have multiple inputs. If a sequence is connected to each input, this produces a Cartesian product of all inputs, which is typically not the desired outcome. To avoid this, connect only one sequence to a function with multiple parameters; all other parameters must be connected to “singular” items from parents or other components.

4.18.2 The Mapping Context

Mapping components are hierarchical structures that may contain many levels of depth. On the other hand, a mapping may have multiple source and components, plus any intermediary components such as functions, filters, value-maps, and so on. This adds complexity to the mapping algorithm, especially when multiple unrelated components are connected. To make it possible to execute the mapping in portions, one step at a time, a current context must be established for each connection.

We could also say that multiple “current contexts” are established for the duration of the mapping execution, since the current context changes with each processed connection.

MapForce always establishes the current context starting from the target root item (node). This is where the mapping execution actually begins. The connection to the target root item is traced back to all source items that are directly or indirectly connected to it, including via functions or other intermediary components. All the source items and results produced by functions are added to the current context.

After it finishes processing the target node, MapForce works down the hierarchy. Namely, it processes all mapped items of the target component from top to bottom. For each new item, a new context is established that initially contains all items of the parent context. Thus, all mapped sibling items in a target component are independent of each other, but have access to all source data of their parent items.

Let’s see how the above applies in practice, based on an example mapping, `PersonListByBranchOffice.mfd`. You can find this mapping in the `<Documents>\Altova\MapForce2021\MapForceExamples` directory.
In the mapping above, both the source and the target component are XML. The source XML file contains two Office elements.

As mentioned previously, the mapping execution always begins from the target root node (PersonList, in this example). By tracing back the connection (via the filter and the function) to a source item, you can conclude that the source item is Office. (The other connection path leads to an input parameter and its purpose is further explained below).

Had there been a straightforward connection between Office and PersonList, then, according to the general mapping rule, the mapping would have created as many PersonList instance items as there are Office items in the source file. However, this does not happen here, because there is a filter in between. The filter supplies to the target component only data that satisfies the Boolean condition connected to the bool input of the filter. The equal function returns true if the office name is equal to "Nanonull, Inc.". This condition is satisfied only once, because there is only one such office name in the source XML file.

Consequently, the connection between Office and PersonList defines a single office as the context for the entire target document. This means that all descendants of the PersonList item have access to data of the office "Nanonull, Inc." office, and no other office exists in the current context.

The next connection is between Contact and Person. According to the general mapping rule, it will create one target Person for each source Contact. On each iteration, this connection establishes a new current context; therefore, the child connections (first to First, last to Last) supply data from the source to the target item in the context of each Person.

If you left out the connection between Contact and Person, then the mapping would create only one Person with multiple First, Last, and Details nodes. In such cases, MapForce issues a warning and a suggestion in the Messages window, for example:
Finally, the mapping includes a user-defined function, `LookupPerson`. The user-defined function is also executed in the context of each `Person`, because of the parent connection between `Contact` and `Person`. Specifically, each time when a new `Person` item is created on the target side, the function is called to populate the `Details` element of the person. This function takes three input parameters. The first one (`OfficeName`) is set to read data from the input parameter of the mapping. The source data for this parameter could as well be provided by the `Name` source item, without changing in any way the mapping output. In either case, the source value is the same and it is taken from a parent context. Internally, the look-up function concatenates the values received as arguments and produces a single value. For more information about how the `LookupPerson` function works, see the Example: Look-up and Concatenation.

4.18.2.1 Databases

To improve efficiency and decrease usage of hardware or network resources, you will typically want to avoid calling the same database multiple times in the same mapping unnecessarily. There may still be situations where you simply cannot avoid calling a database multiple times because of the nature of the mapping, but here are some general considerations:

- If you need only one database call, avoid placing the database component in a parent context that would demand calling the database multiple times. This could happen, for example, if you add a database component inside a user-defined function that receives a sequence of values as input and thus gets called for each item in the sequence, see also User-Defined Functions below. Variables are typically helpful to gather data into the same context before you pass it on to the target component.
- If you need to aggregate values from a database (for example, to count the number of records using the `count` function), it is recommended to connect the output of the aggregate function to a variable where `compute-when=once`. This prevents repetitive calls to the database, as described in the Example: Counting Database Table Rows.
- Try to extract all database data in one call (for example, a SQL-SELECT statement, or a stored procedure), as opposed to adding the same database component multiple times on the mapping.
- If you need to extract data from multiple tables or views from the same database, it's advisable to use either a Join component (in SQL mode), or a SQL-SELECT statement. The latter is more convenient if you prefer to write the SQL SELECT statement yourself. If you need to join database data to some non-database data, or data from different databases, use non-SQL joins. To optimize execution of non-SQL joins in data-intensive mappings, run mappings with MapForce Server Advanced Edition.
- If you need to filter data from a database, it's more efficient to use a SQL-WHERE component instead of a standard filter, since the former component is optimized for working with databases specifically, in the grammar of the respective database.
4.18.2.2 User-Defined Functions

User-defined functions (UDFs) are custom functions embedded into the mapping, where you define the inputs, outputs, and processing logic. Each user-defined function may contain the same component kinds as a main mapping, including Web services and databases.

By default, if a UDF contains a database or a Web service component, and if the input data to the UDF is a sequence of multiple values, then each input value will call the UDF and consequently will result in a database or Web service call.

The behavior above may be acceptable for those mappings where you really need the UDF to be called as many times as there are input values and there is simply no other alternative way.

If you do not want the above to happen, you can configure the UDF so that it is called only once even if gets a sequence of values as input. You will typically want to do this for those UDFs that operate on a set of values before they can return (such as functions that calculate averages or totals).

Configuring a UDF to accept multiple input values in the same function call is possible if the UDF is of type "regular", not "inlined". (For details, see the User-Defined Functions chapter.) With regular functions, you can specify that the input parameter is a sequence by selecting the Input is a sequence check box. This check box is visible on the component settings, after you double-click the title bar of an input parameter. The check box affects how often the function is called, as follows:

- When input data is connected to a sequence parameter, the user-defined function is called only once and the complete sequence is passed into the user-defined function.
- When input data is connected to a non-sequence parameter, the user-defined function is called once for each single item in the sequence.

For an example, open the following demo mapping:
<Documents>\Altova\MapForce2021\MapForceExamples\InputIsSequence.mfd.
The mapping above illustrates a typical case of a UDF that operates on a set of values and thus requires all the input values in one call. Specifically, the Calculate user-defined function returns the minimum, maximum and average temperatures, taking as input data from a source XML file. The expected mapping output is as follows:

```xml
<Temperatures>
  <YearlyStats Year="2008">
    <MinimumTemp>-0.5</MinimumTemp>
    <MaximumTemp>24</MaximumTemp>
    <AverageTemp>11.6</AverageTemp>
  </YearlyStats>
</Temperatures>
```

As usual, the mapping execution begins with the top item of the target component (YearlyStats, in this example). To populate this node, the mapping attempts to obtain source data from the UDF, which in its turn, triggers the filter. The filter's role in this mapping is to pass onto the UDF only temperatures from year 2008.

The check box Input is sequence was selected for the input parameter of the UDF (To view this check box, double-click the title bar of the Calculate function to enter the function's mapping; then double-click the title bar of the input parameter). As mentioned before, the Input is sequence option causes the complete sequence of values to be supplied as input to the function and the function is called only once.

Had the Input is sequence check box not been selected, the UDF would have been called for each value in the source. As a result, the minimum, maximum and average would be calculated for each single value individually and incorrect output would be produced.

By applying the same logic in more complex UDFs that include database or Web service calls, it may be possible to optimize the execution and avoid unnecessary calls to the database or Web service. Nevertheless, be aware that the Input is sequence check box does not control what happens to the sequence of values after
it enters the function. In other words, there is nothing to prevent you from connecting the incoming sequence of values to the input of a Web service and thus call it multiple times. Consider the following example:

The UDF illustrated above receives a sequence of values from the external mapping. Specifically, the data supplied to the input parameter originates from a database. The input parameter has the option Input is sequence selected, so the entire sequence is supplied to the function in one call. The function is supposed to add up multiple quantity values and post the result to a Web service. Exactly one Web service call is expected. However, the Web service will be incorrectly called multiple times when the mapping runs. The reason is that the Request input of the Web service receives a sequence of values, not a single value.

To fix this problem, connect the Request input of the Web service to the result of the sum function. The function produces one single value, so the Web service will also be called once:

Normally, aggregate functions like sum, count, etc produce a single value. Nevertheless, if there is a parent connection that allows it, they may produce a sequence of values as well, as described further in the Example: Changing the Parent Context.

4.18.2.3 Example: Changing the Parent Context

Some mapping components have an optional parent-context item. With the help of this item you can influence the mapping context in which that component should operate and consequently change the mapping output. The components that have an optional parent-context are: aggregate functions, variables, and Join components.
For a demo of how changing the parent context is useful, open the following mapping:

<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ParentContext.mfd.

In the source XML of the mapping above, there is a single Company node which contains two Office nodes. Each Office node contains multiple Department nodes, and each Department contains multiple Person nodes. If you open the XML file in an XML editor, you can see that the distribution of people by office and department is as follows:

<table>
<thead>
<tr>
<th>Office</th>
<th>Department</th>
<th>Number of people</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanonull, Inc.</td>
<td>Administration</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Marketing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>IT & Technical Support</td>
<td>4</td>
</tr>
<tr>
<td>Nanonull Partners, Inc.</td>
<td>Administration</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Marketing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IT & Technical Support</td>
<td>3</td>
</tr>
</tbody>
</table>
The mapping counts all people in all departments. For this purpose, it uses the `count` function from the `core` library. If you click the Output tab to preview the mapping, you will notice that it produces a single value, 21, which corresponds to the total number of people in the source XML file.

The mapping works as follows:

- As usual, the mapping execution starts from the top node of the target component (rows, in this example). There is no incoming connection to rows. As a result, an implicit mapping context is established between Company (top item of the source component) and rows (top item of the target component).
- The function's result is a single value, because there is only one company in the source file.
- To populate the col1 target item, MapForce executes the `count` function in the implicit parent context mentioned above, so it will count all Person nodes from all offices and from all departments.

The `parent-context` argument of the function lets you change the mapping context. This enables you, for example, to count the number of people in each department. To do this, draw two more connections as shown below:

In the mapping above, connection A changes the parent context of the `count` function to Department. As a result, the function will count the number of people in each department. Very importantly, the function will now return a sequence of results instead of a single result, because multiple departments exist in the source. This is the reason why connection B exists: for each item in the resulting sequence it creates a new row in the target file. The mapping output has now changed accordingly (notice the numbers corresponds exactly to the count of people in each department):

```xml
<rows>
  <row>
    <col1>3</col1>
  </row>
</rows>
```
Given that the current mapping creates a row for each department, you can optionally copy the office name and the department name as well into the target file, by drawing connections C and D:

This way, the output will display not only the count of people but also the corresponding office and department name.
If you would like to count the number of people in each office, connect the parent context of `count` function to the `Office` item in the source.

With the connections shown above, the `count` function returns one result for each office. There are two offices in the source file, so the function will now return two sequences. Consequently, there will be two rows in the output, where each row is the number of people in that office:

```
<rows>
  <row>
    <col1>15</col1>
    <col2>Nanonull, Inc.</col2>
  </row>
  <row>
    <col1>6</col1>
    <col2>Nanonull Partners, Inc.</col2>
  </row>
</rows>
```

4.18.3 Priority context

Priority context is a way to influence the order in which input parameters of a function are evaluated. Setting a priority context may be necessary if your mapping joins data from two unrelated sources.

To understand how priority context works, recall that, when a mapping runs, the connection to an input item may carry a `sequence` of multiple values. For functions with two input parameters, this means that MapForce must create two loops, one of which must be processed first. The loop that is processed first is the "outer"
loop. For example, the **equal** function receives two parameters: \(a \) and \(b \). If both \(a \) and \(b \) get a sequence of values, then MapForce processes as follows:

- For each occurrence of \(a \)
 - For each occurrence of \(b \)
 - Is \(a \) equal to \(b \)?

As you can see from above, each \(b \) is evaluated in the context of each \(a \). Priority context lets you alter the processing logic so that each \(a \) is evaluated in the context of each \(b \). In other words, it lets you swap the inner loop with the outer loop, for example:

- For each occurrence of \(b \)
 - For each occurrence of \(a \)
 - Is \(a \) equal to \(b \)?

Let’s now examine a mapping where priority context affects the mapping output. In the mapping below, the **concat** function has two input parameters. Each input parameter is a sequence that was generated with the help of the **generate-sequence** function. The first sequence is “1,2” and the second sequence is “3,4”.

First, let’s run the mapping without setting a priority context. The **concat** function starts evaluating the top sequence first, so it combines values in the following order:

- 1 with 3
- 1 with 4
- 2 with 3
- 2 with 4

This is reflected in the mapping output as well:

```xml
<data>
   <value>13</value>
   <value>14</value>
   <value>23</value>
   <value>24</value>
</data>
```

If you right-click the second input parameter and select **Priority Context** from the context menu, it will become the priority context. As illustrated below, the priority context input is encircled.
This time, the second input parameter will be evaluated first. The `concat` function will still concatenate the same values, but this time it will process the sequence `3,4` first. Consequently, the output becomes:

```xml
<data>
  <value>13</value>
  <value>23</value>
  <value>14</value>
  <value>24</value>
</data>
```

So far, you have seen only the theoretical part behind priority context. For a more practical scenario, see Example: Filter with priority context.

4.18.3.1 Example: Filter with priority context

When a function is connected to a filter, priority context affects not only the function itself, but also the evaluation of the filter. The mapping below illustrates a typical case when it's required to set a priority context in order to get the correct output. You can find this mapping at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\FilterWithPriority.mfd`.

Note: This mapping uses XML components, but the same logic as described below applies for all other component types in MapForce, including EDI, JSON, and so on. For databases, it's advisable to perform filtering using SQL WHERE components rather than standard filters.
The aim of the mapping above is to copy people data from `Articles.xml` into a new XML file with a different schema, `articledata.xml`. At the same time, the mapping should look up the details of each article in the `Products.xml` file and join them to the respective article record. Note that each record in `Articles.xml` has a `Number` and each record in `Products.xml` has an `id`. If these two values are equal, then all the other values (`Name`, `SinglePrice`, `color`, `size`) should be copied to the same row in the target.

This goal has been accomplished by adding a filter. Each filter requires a Boolean condition as input; only those nodes/rows that satisfy the condition will be copied over to the target. For this purpose, there is an `equal` function on the mapping. The `equal` function checks if the article number and product ID are equal in both sources. The result is then supplied as input to the filter. If `true`, then the `Article` item is copied to the target.

Notice that a priority context has been defined on the second input parameter of the second `equal` function. In this mapping, the priority context makes a big difference, and not setting it will result in incorrect mapping output.

Initial mapping: No priority context

Here is the mapping logic without priority context:

- According to the general mapping rule, for each `Article` that satisfies the filter condition, a new `row` is created in the target. The connection between `Article` and `row` (via the function and filter) takes care of this part.
- The filter checks the condition for each article. To do this, it iterates through all products, and brings multiple products in the current context.
- To populate the `id` on the target side, MapForce follows the general rule (for each item in the source, create an item in the target). However, as explained above, all products from `Products.xml` are in the current context. There is no connection between `product` to anywhere else in the target so as to read the `id` of a specific product only. As a consequence, multiple `id` elements will be created for each `Article` in the target. The same happens with `color` and `size`.
To summarize: items from Products.xml have the filter's context (which must iterate through each product); therefore, the id, color, and size values will be copied to each target row as many times as there are products in the source file, and generate incorrect output like the one below:

```
<rows>
  <row>
    <id>1</id>
    <id>2</id>
    <id>3</id>
    <name>T-Shirt</name>
    <color>red</color>
    <color>blue</color>
    <color>green</color>
    <size>10</size>
    <size>20</size>
    <size>30</size>
    <price>25</price>
  </row>
</rows>
```

Solution A: Use priority context

The problem above was solved by adding a priority context to the function that computes the filter's Boolean condition.

Specifically, if the second input parameter of the equal function is designated as priority context, the sequence incoming from Products.xml is prioritized. This translates to the following mapping logic:

- For each product, populate input \(b \) of the equal function (in other words, prioritize \(b \)). At this stage, the details of the current product are in context.
- For each article, populate input \(a \) of the equal function and check if the filter condition is true. If yes, then put the article details as well into the current context.
- Next, copy the article and product details from the current context to the respective items in the target.

The mapping logic above produces correct output, for example:

```
<rows>
  <row>
    <id>1</id>
    <name>T-Shirt</name>
    <color>red</color>
    <size>10</size>
    <price>25</price>
  </row>
</rows>
```

Solution B: Use a variable

As an alternative solution, you could bring each article and product that matches the filter's condition into the same context with the help of an intermediate variable. Variables are suitable for scenarios like this one.
because they let you store data temporarily on the mapping, and thus help you change the context as necessary.

For scenarios like this one, you can add to the mapping a variable that has the same schema as the target component. On the **Insert** menu, click **Variable**, and supply the **articledata.xsd** schema as structure when prompted.

In the mapping above, the following happens:

- Priority context is not used any longer. There is a variable instead, which has the same structure as the target component.
- As usual, the mapping execution starts from the target root node. Before populating the target, the mapping collects data into the variable.
- The variable is computed in the context of each product. This happens because there is a connection from **product** to the **compute-when** input of the variable.
- The filter condition is thus checked in the context of each product. Only if the condition is true will the variable's structure be populated and passed on to the target.

4.18.4 Multiple target components

A mapping may have multiple source and target components. When there are multiple target components, you can preview only one component output at a time in MapForce, the one that you indicate by clicking the **Preview** button. In other execution environments (MapForce Server or generated code), all of the target components will be executed sequentially, and the respective output of each component will be produced.

By default, target components are processed from top to bottom and from left to right. If necessary, you can influence this order by changing the position of target components in the mapping window. The point of reference is each component's top left corner. Note the following:

- If two components have the same vertical position, then the leftmost takes precedence.
- If two components have the same horizontal position, then the highest takes precedence.
- In the unlikely event that components have the exact same position, then an unique internal component ID is automatically used, which guarantees a well-defined order but which cannot be changed.
For an example of how this works, open the following demo mapping:

<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\GroupingFunctions.mfd. This mapping consists of multiple source and multiple target components; only a fragment is shown below.

![Mapping Diagram](image)

According to the rules, the default processing order of this mapping in MapForce Server and in generated code is from top to bottom. You can check that this is the case by generating XSLT 2.0 code, for example.

1. On the **File** menu, click **Generate code in | XSLT 2.0**.
2. When prompted, select a target directory for the generated code.

After generation, the target directory includes several XSLT files and a **DoTransform.bat** file. The latter can be executed by RaptorXML Server (requires a separate license). The **DoTransform.bat** file processes components in the same order as they were defined on the mapping, from top to bottom. This can be verified by looking at the **--output** parameter of each transformation.

```
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-by.xml" --xml-validation-error-as-warning=true %* "MappingMapTogroups.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-adjacent.xml" --xml-validation-error-as-warning=true %* "MappingMapTogroups2.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-into-blocks.xml" --xml-validation-error-as-warning=true %* "MappingMapTogroups3.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records-v2.xml" --output="group-starting-with.xml" --xml-validation-error-as-warning=true %* "MappingMapTogroups4.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records-v3.xml" --output="group_ending_with.xml" --xml-validation-error-as-warning=true %* "MappingMapTogroups5.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
```
The last transformation produces an output file called `group-ending-with.xml`. Let's now move this target component on the mapping to the very top:

If you now generate the XSLT 2.0 code again, the processing order changes accordingly:

```
RaptorXML xslt --xslt-version=2 --input="records-v3.xml" --output="group-ending-with.xml" --xml-validation-error-as-warning=true \* "MappingMapTogroups.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-by.xml" --xml-validation-error-as-warning=true \* "MappingMapTogroups2.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-adjacent.xml" --xml-validation-error-as-warning=true \* "MappingMapTogroups3.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records.xml" --output="group-into-blocks.xml" --xml-validation-error-as-warning=true \* "MappingMapTogroups4.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
RaptorXML xslt --xslt-version=2 --input="records-v2.xml" --output="group-starting-with.xml" --xml-validation-error-as-warning=true \* "MappingMapTogroups5.xslt"
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%
```

In the code listing above, the first call now produces `group-ending-with.xml`.

You can change the processing order in a similar way in other code languages and in compiled MapForceServer execution files (.mfx).

Chained mappings

The same processing sequence as described above is followed for chained mappings. The chained mapping group is taken as one unit, however. Repositioning the intermediate or final target component of a single chained mapping has no effect on the processing sequence. Only if multiple "chains" or multiple target components exist in a mapping does the position of the final target components of each group determine which is processed first.
If two final target components have the same vertical position, then the leftmost takes precedence.
If two final target components have the same horizontal position, then the highest takes precedence.
In the unlikely event that components have the exact same position, then an unique internal component ID is automatically used, which guarantees a well-defined order but which cannot be changed.
5 Debugging Mappings

MapForce includes a mapping debugger available for the MapForce BUILT-IN transformation language. The mapping debugger helps you achieve the following goals:

- View and analyze the values produced by the mapping at each individual connector level.
- Highlight on the mapping the context (set of nodes) responsible for producing a particular value.
- Execute a mapping step-by-step, in order to see how MapForce processes or computes each value in real time, and preview the mapping output as it is being generated.
- Set milestones (breakpoints) at which the mapping execution should stop and display the value(s) currently being processed.
- View the history of values processed by a connector since mapping execution began up until the current execution position.

The mapping debugger is available when the transformation language of the mapping is BUILT-IN. If you start debugging a mapping designed for a different language, you will be prompted to change the mapping language to BUILT-IN. You can also convert a mapping to BUILT-IN by selecting the menu command Output | Built-in Execution Engine. In either case, the conversion to BUILT-IN will be successful if the mapping does not include components that are not available in the BUILT-IN language (for example, XSLT functions).

The MapForce debugger is unlike a traditional debugger in that it does not traverse your program code line by line (since you do not write any code with MapForce). Instead, the debugger exposes the results of MapForce-generated code produced from the mappings you design. More specifically, the debugger logs values that are passed from and to mapping components through their input and output connectors. The logged values are then available for your analysis directly on the mapping or through dedicated windows.

The following sections highlight various ways in which you can use the mapping debugger.

Debug with breakpoints

When you need to stop the debugging execution at a particular place in the mapping, you can set breakpoints, similar to how you would do that in a traditional development environment. The difference is that breakpoints are added not to a line of code, but to an input or output connector of a mapping component. You can also add conditions to breakpoints (this can be useful if you want to stop the execution only if the set condition is satisfied).

You can define breakpoints on the desired connectors and execute the mapping up to the first encountered breakpoint, then go to the next one, and so on. This way you can analyze the mapping context and values associated with chosen connectors. You can also speed up or slow down the execution by means of the Step Into, Step Out, Step Over, and Minimal Step commands provided by the debugger. These commands
enable you to skip portions of the mapping, or, on the contrary, execute portions of the mapping in a more granular way if necessary.

Debug step-by-step
You can debug a mapping step-by-step, and analyze the mapping context and values associated with each step. This scenario is similar to the previous one, in that you can speed up or slow down execution using the **Step Into**, **Step Out**, **Step Over**, and **Minimal Step** commands.

Analyze the log of values
You can configure MapForce to remember the log of all values (trace history) that were processed by all connectors while you debug a mapping. Keeping the full trace history may not be suitable for mappings that are data-intensive, so this option can be disabled if necessary. When the option is enabled, you can analyze the full log of values processed by each connector up until the current execution position. You can also instruct MapForce to recreate the mapping context associated with any particular value, which would help you understand why that value was produced.

Set the context to a value related to the current execution position
When the debugger is at a particular execution position on the mapping, it is possible to analyze the context of a past value relative to the current execution position (this can be compared to stepping slightly back in time):
A context is meant to explain why a value is computed; in other words, it describes how a particular value on the mapping came to be generated. The context is normally the current execution position, although it can also be a context in the recent past that MapForce enables you to set. When the context is set to a particular value, MapForce highlights directly on the mapping the nodes that are relevant to it, provides tips next to mapping connectors, and exposes additional information in debugger-related windows (the Values, Context, and Breakpoints windows).

After you have inspected a mapping context that is not the same as the current execution position, you can reset the context back to the current execution position:

Limitations

- When MapForce executes a mapping, it may internally optimize code (for example, by caching data, or by calculating intermediate results at arbitrary points). This may cause certain connectors (and thus breakpoints) to be unreachable for debugging, in which case MapForce displays a notification. Note that the MapForce code optimizations (and, consequently, the behavior exposed by the debugger) may be different from one MapForce release to the other, even though the mapping output is the same for a given mapping.

- The debugger can debug the output generation for one target component at a time. If there are multiple target components on the mapping, you will need to select which one should be executed by the debugger.

- Currently, debugging is not supported for the database table actions (such as "Insert All", "Update If", etc.) of database components.

- Breakpoints cannot be added on any of the following entities: constants, the core | position function, descendent items of "Copy-all" connections, parameters of "inline" user-defined functions.
5.1 Debugger Preparation

Debugging preparation is primarily required for big data mappings that are likely to need a lot of system memory to execute. This is the case of mappings that either process very big input or output files, or repeatedly iterate through large collections of data.

To make debugging faster and reduce memory requirements, it is recommended to do the following before you start debugging:

- If the mapping is complex, remove or disconnect parts of the mapping that need not be debugged.
- If the mapping uses big input files, replace them with files of smaller size.
- Ensure that the Keep full trace history option is disabled (see Debugger Settings).

Also, to ensure you are debugging the right output, check the following if applicable:

- If the mapping has multiple target components, select the target component to be debugged by clicking the Preview button.
- If the mapping is a chained mapping (see Chained Mappings), release the Pass-Through button on the intermediary component. Debugging Pass-Through components is currently not supported.

Optionally, if you want the debugger to stop at some important connectors whose value you want to analyze, add breakpoints to these connectors (see Adding and Removing Breakpoints).
5.2 Debugger Commands

You can access the debugger commands as follows:

- In the **Debug** menu
- As keyboard shortcuts
- In the Debug toolbar.

<table>
<thead>
<tr>
<th>Menu Command</th>
<th>Keyboard Shortcut</th>
<th>Toolbar button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>Start debugging</td>
<td>F5</td>
<td></td>
</tr>
<tr>
<td>Debug</td>
<td>Stop debugging</td>
<td>Shift + F5</td>
<td></td>
</tr>
<tr>
<td>Debug</td>
<td>Step Into</td>
<td>F11</td>
<td></td>
</tr>
<tr>
<td>Debug</td>
<td>Step Over</td>
<td>F10</td>
<td></td>
</tr>
<tr>
<td>Debug</td>
<td>Step Out</td>
<td>Shift + F11</td>
<td></td>
</tr>
<tr>
<td>Debug</td>
<td>Minimal Step</td>
<td>Ctrl + F11</td>
<td></td>
</tr>
</tbody>
</table>
Debug toolbar
5.3 About the Debug Mode

When you start debugging (by pressing F5, or F11, or Ctrl + F11), MapForce executes the mapping in debug mode.

While MapForce is in debug mode, the mapping is read-only. Although you can move components on the mapping area, most commands are not available. This includes commands such as mapping validation and deployment, code generation, documenting mappings, adding new components to the mapping area or reloading existing ones, and others.

The debug mode enables you to analyze the context responsible for producing a particular value. This information is available directly on the mapping, as well as in the Values, Context, and Breakpoints windows. By default, these windows are displayed when you start debugging and are hidden when you stop debugging.

MapForce is in debug mode (and the mapping is read-only) until you stop debugging, by pressing Shift + F5 (or by clicking the Stop debugging toolbar button).

The following image illustrates a sample mapping (SimpleTotal.mfd, from the <Documents>\Altova\MapForce2021\MapForceExamples\ directory) that is debugged in steps (by pressing F11 to advance a step).

The MapForce development environment in debug mode

The visual clues and other information provided by MapForce while in debug mode are described below.
The mapping pane

While debugging, the mapping pane displays additional information:

- Data overlays (see below) show the current value and related values near their connectors.
- The current context (shown as a structure in the Context window) is highlighted as follows:
 - Connectors in the context are striped magenta (
 - Connectors in ambiguous context are dotted magenta ().
 - Connections in the context are striped magenta.
 - Connections in ambiguous context are striped magenta but lighter.
- The current execution location is displayed with a green connector icon ().

Data overlays

The values processed by each connector are displayed as data overlays (small rectangles) near their corresponding connector. A currently selected data overlay is displayed with thick red border. Values changed from the last step are displayed in dark red. For nodes with simple content, the data overlay combines two values - the node name and the value. If the node name has been iterated multiple times before the current execution position, the index of the current iteration is indicated by the number in square brackets.

Data overlays have the following behavior:

- Pointing the mouse to a data overlay brings it temporarily to the foreground, clicking it does it permanently. Clicking also selects the corresponding connector.
- Data overlays can be moved by dragging.
- Data overlays move when a component is moved. Therefore, if the data overlays appear stacked because the components are too close to each other, drag the components around the mapping area to make more space, and the data overlays will move together with the component.
- Clicking a data overlay shows its value in the Values window.
- Clicking a connector also selects its data overlay.

Breakpoints

Breakpoints are designated milestones at which the mapping should break during execution in debug mode. This term may be already familiar to you by analogy with other integrated development environments. Unlike other development environments where you add breakpoints to a line of code, a breakpoint in MapForce can be added to an input or output connector (small triangle to the left or right of the connection). On the mapping pane, breakpoints are represented as red circles. Any defined breakpoints are also displayed in the Breakpoints window. See also Adding and Removing Breakpoints.

Current debugger position

The green triangle () indicates the position of the debugger. This position is either an input or an output connector of any given component.

The value currently being processed is also displayed in the Values window, on the Context tab.

The set of connections and/or connectors colored in striped magenta indicate the current mapping context. The same information is also displayed as a hierarchical structure in the Context window (see Using the Context Window).
When you set manually the context of a value, the current debugger position is in a position in the past relative to the most current execution position. To help you distinguish between the most current execution position and the one in the past, the "current position" connector may appear with the following colors in the debugger interface.

| 🟢 | Green is "the present"; it indicates the current execution position (see Viewing the Current Value of a Connector). |
| 🟠 | Yellow is "the past"; it indicates that you are looking at some connector in the past, relative to the current execution position. This may happen after you set a context manually (see Setting the Context to a Value). |

Values window

The Values window provides information about the values processed by the mapping. It enables you to see what the mapping processes at the current execution position, or in a particular context that you can set yourself. See also Using the Values Window.

Context window

The Context window provides a hierarchical view of the set of nodes and functions that are relevant for the current debugger position. See also Using the Context Window.

Breakpoints window

The Breakpoints window displays the list of debugging breakpoints created since MapForce was started. If you have defined breakpoints on multiple mappings, all of them appear in the Breakpoints window. See also Using the Breakpoints Window.
5.4 Adding and Removing Breakpoints

Breakpoints are designated milestones at which the mapping should break during execution in debug mode. Any breakpoints you create are stored globally for all mappings and are displayed in the Breakpoints window. Breakpoints are valid until you either explicitly delete them, or close MapForce.

Note: Breakpoints cannot be added on any of the following entities: constants, the core | position function, descendent items of “Copy-all” connections, parameters of “inline” user-defined functions.

Breakpoints can be simple or conditional. Simple breakpoints stop the mapping execution unconditionally. Conditional breakpoints stop the mapping execution only when the condition assigned to them is satisfied. Conditions take the form of MapForce built-in library functions to which you supply custom values. In other words, if the condition returns true, the breakpoint will stop the mapping execution.

To create a simple breakpoint, do one of the following:

- Right-click an input or output connector (the small triangles to the left or right of a component), and select **Debugger Breakpoint**.
- Click an input or output connector, and then press **F9**.

To create a conditional breakpoint:

1. Right-click a connector, and select **Breakpoint properties**.

2. Click to select both the **Breakpoint** and **Condition** check boxes.
3. Select the required function from the list, and enter the function value (if applicable). For example, in the example above, the breakpoint will stop the mapping execution if the value passing through it is greater than 2.

If the data type of the connector where you add the conditional breakpoint does not match the type(s) expected by the function, MapForce will attempt to convert the data type automatically. If automatic conversion is not possible, mapping execution will fail. To avoid this, make sure to use compatible data types. For example, the function `core.starts-with` expects a string value, so the breakpoint’s connector must have the same type.

Removing breakpoints

To remove a breakpoint, right-click the connector on which the breakpoint exists, and select **Debugger Breakpoint**. Alternatively, click the input or output connector on which the breakpoint exists, and then press F9.

You can also remove breakpoints from the Breakpoints window (see [Using the Breakpoints Window](#)).

Unreachable breakpoints

There may be cases when MapForce displays a "Breakpoints cannot be reached" message:

This indicates that breakpoints cannot be reached by the debugger, because of one of the following reasons:

- A breakpoint has been defined on a connector that does not take part in the mapping.
- The breakpoint cannot be reached by MapForce because of execution optimizations (see [Limitations](#)).

Click **Continue** to advance to the next defined breakpoint (or go to the end of debugging execution). Click **Step** to start debugging in steps.

You can disable notifications about unreachable breakpoint encountered by the debugger, either by clicking **Don’t show this message again**, or as follows:

1. On the **Tools** menu, click **Options**.
2. Click **Messages**.
3. Click to clear the **Inform about unreachable breakpoints** check box.
5.5 Using the Values Window

The Values window displays information about the values processed by the mapping when in debug mode. The information displayed in the Values window depends on the current debugger position, and on the user interface elements that you clicked. The Values window contains the following tabs:

The "Context" tab

The Context tab displays the value currently being processed (the same value whose context is shown in the Context window). This is either the value at the current execution position of the debugger, or the value of a connector processed in the past. MapForce helps you distinguish between the two using colors:

| Color | Meaning
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>"the present"; it indicates the current execution position (see Viewing the Current Value of a Connector).</td>
</tr>
<tr>
<td>Yellow</td>
<td>"the past"; it indicates that you are looking at some connector in the past, relative to the current execution position. This may happen after you set a context manually (see Setting the Context to a Value).</td>
</tr>
</tbody>
</table>

The "Related" tab

The Related tab displays values that are related to (or represent the "near past" of) the currently processed value. Normally, you do need to explicitly click this tab; MapForce switches to it automatically when you click the data overlay of a connector that is related to the current execution position of the debugger. See Stepping back into Recent Past.

The "Sequence" tab

When present, the Sequence tab enables you to get access to the values of a connector that processes a sequence. This tab is visible only when a connector has processed a sequence of items (for example, an aggregate function such as `sum` or `count` does that). When you click the data overlay of a connector that processed a sequence of items, the Values window displays an entry in the format "n items", where n is the number of items processed by the connector. To get access to each value, double-click this entry (or right-click it, and select Expand Sequence from the context menu).

The values are then displayed in the Sequence tab.
The "History" tab

The History tab displays values have been processed by a particular node since debugging started and up to the current execution position. See Viewing the History of Values Processed by a Connector.
5.6 Using the Context Window

While MapForce is in debug mode, the Context window displays a structure of connectors that are relevant to the current position of the debugger. In other words, it provides the mapping context responsible for producing the current mapping value.

MapForce builds the current context as follows:

1. Start with the root node of the target structure.
2. Descend to the current target node.
3. From the current target node, move left inside the mapping through any components that lead to the current position. These components may be filter or sort components, built-in or user-defined functions, variables, and so on.

The Context window serves both as informational and as a navigational aid. To select a particular node in the mapping directly from the current context, right-click the node in the Context window, and click Select in mapping. This might be especially useful when the mapping is large, so as to avoid extensive scrolling.

The Context window may display the following special icons and notation:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔗</td>
<td>Represents the mapping to which the context belongs. This can be either the main mapping or the mapping of a user-defined function.</td>
</tr>
<tr>
<td>🛡️</td>
<td>Represents a connector. The target nodes processed so far have their position displayed in square brackets.</td>
</tr>
</tbody>
</table>

```text
<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔗</td>
<td>Represents the mapping to which the context belongs. This can be either the main mapping or the mapping of a user-defined function.</td>
</tr>
<tr>
<td>🛡️</td>
<td>Represents a connector. The target nodes processed so far have their position displayed in square brackets.</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Represents the current connector (the most recent execution position). This is the source of the current value in the Values window. In some rare situations, it is possible that a computed value is used for multiple connectors. In this case, multiple green icons may appear.</td>
</tr>
<tr>
<td></td>
<td>Represents the current connector when the debugger is at some position in the past relative to the most recent execution post. This may happen after you set the context to a value (see Setting the Context to a Value).</td>
</tr>
</tbody>
</table>

In addition to the icons above, the Context window includes the standard icons of any component types that are present in the mapping.

Context window and user-defined functions

If the current context includes any user-defined functions, they are displayed in the Context window as well. Note that if the current context is for computing an input value of a user-defined function, the context is determined as follows:

1. From the target to the output connector of the user-defined function to the input connector of the user-defined function
2. From there further to the left.

Note: A user-defined function may occur multiple times in the context. This happens either because several function calls are chained or because the user-defined function is defined as recursive.

The number indicates the count of items already processed by the debugger.
5.7 Using the Breakpoints Window

The Breakpoints window enables you to view and manage breakpoints globally. By default, the Breakpoints window is displayed when MapForce is in debug mode. To make the Breakpoints window visible at all times, select the menu command View | Debug Windows | Breakpoints.

The Breakpoints window displays all breakpoints created since you started MapForce, grouped by the mapping file to which they belong. While MapForce is open, any breakpoints associated with any mapping are "remembered" by MapForce and displayed in the Breakpoints window, even if you closed the mapping file in the meanwhile. The mapping that is currently being debugged is represented with standard text color in the Breakpoints window, while other mappings (the ones that are closed or not active) are grayed out.

You can quickly open any mapping by double-clicking it (or any of its breakpoints) in the Breakpoints window.

Note: Once you close or restart MapForce, all breakpoints are removed.

Information about breakpoints is displayed as a grid with the following columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the node where the breakpoint belongs.</td>
</tr>
<tr>
<td>Parent</td>
<td>The name of the mapping component where the breakpoint belongs.</td>
</tr>
<tr>
<td>Trace value</td>
<td>The value that passes through the connector on which the breakpoint is. The trace value is displayed during debugging execution.</td>
</tr>
<tr>
<td>Condition</td>
<td>If the breakpoint is conditional, this column displays the condition of the breakpoint.</td>
</tr>
</tbody>
</table>

Breakpoints may be associated with any of the following icons:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅</td>
<td>Active breakpoint. Denotes a breakpoint from the mapping that is currently being debugged.</td>
</tr>
<tr>
<td>⚫</td>
<td>Inactive breakpoint. Denotes a breakpoint from a mapping that is open, but is not currently being debugged.</td>
</tr>
</tbody>
</table>
Debugging Mappings Using the Breakpoints Window

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚫</td>
<td>Inaccessible breakpoint. Denotes a breakpoint that cannot be reached by the debugger.</td>
</tr>
<tr>
<td>🚭</td>
<td>Conditional breakpoint. Denotes a breakpoint with a condition attached to it.</td>
</tr>
</tbody>
</table>

To view or change the properties of a breakpoint:

- Right-click it, and select **Breakpoint Properties** from the context menu.

To delete a breakpoint:

- Right-click the breakpoint you want to delete, and then select **Delete Breakpoint** from the context menu.
- Click a breakpoint, and then press **Delete**.

The context command **Delete All Breakpoints** removes all breakpoints displayed in the Breakpoints window, regardless of the mapping where they belong.

See also: **Adding and Removing Breakpoints** 313
5.8 Previewing Partially Generated Output

When you are debugging in steps or using breakpoints, you can view the mapping output generated up to the current debugger position. Previewing partially generated output is supported by XML, flat text, and EDI target components.

By default, when you press F5 (without having defined any breakpoints), MapForce executes the entire mapping in debug mode, and then switches to the Output tab, displaying the final generated output. However, if you have defined breakpoints, or if you are debugging in steps (F11, or Ctrl + F11), the debugger execution stops while the mapping output is still being generated. Even if the mapping output is partially written at this stage, you can still click to the Output tab, and preview it.

Limitations

- The currently computed target node is not always displayed in the Output tab. For example, XML attributes are collected internally and written at once.
- If the output produces multiple files, only the currently written file can be displayed; switching to another output file is disabled.
When the current execution position of the debugger (uder) is on a particular connector (either because you are debugging in steps, or because there is a breakpoint defined on the connector), the current value processed by the connector is displayed in the Context tab of the Values window. This is the value that is about to be written to the output, that is, "the present". It is also the value whose context is displayed in the Context window (see Using the Context Window).

To understand this case, open the PreserveFormatting.mfd sample from the <Documents>\Altova\MapForce2021\MapForceExamples directory. Click the input connector of the Number node on the target component, and press F9 to add a breakpoint on it.

Then press F5 to start debugging and observe the results.

As shown in the image, the current debugger position (uder) and the breakpoint (dot) is on the Number node of the target component. The Values window indicates that this node processes the value "1" (this value is also highlighted with a thick red border on the mapping).
5.10 Stepping back into Recent Past

When you click a data overlay (small rectangular box) next to a mapping connector, the **Values** window displays the name and, optionally, the value associated with the selected connector. The focus now is no longer on the current debugger position, but on the selected data overlay. You can consider this view as stepping slightly back in the debugging history. This is the "near" past, since the mapping displays data overlays only for the last few connectors related to the current debugger position. When you click such a "related" data overlay, the Values window switches automatically to the **Related** tab.

For an illustration of this scenario, open the mapping `PreserveFormatting.mfd` from the `<Documents>\Altova\MapForce2021\MapForceExamples` directory.

After opening the mapping, click the connector next to the **Number** node on the target component, and press **F9** to add a breakpoint on it. Press **F5** to start debugging, and then click the data overlay (small rectangular box) next to the **Number** node of the source component.

Because a connector is typically iterated multiple times for the lifetime of a mapping, the current index of the iteration is displayed enclosed with square brackets: `<Number>[1]`. Also, because the connector carries a value, its value is also represented after the equal sign: `<Number>[1]=1`. The same value is displayed on a new row in the Values window, as shown below.

If you need additional information about a particular value, remember that you can recreate the context that produced it (see Setting the Context to a Value).
5.11 Viewing the History of Values Processed by a Connector

If the option Keep full trace history is enabled (see Debugger Settings), you can view the history of all values that were processed by that connector (up to the current execution position).

The history is displayed when you click a connector, and then click the History tab of the Values window. Note that this operation is meaningful only for connectors that have processed values since the beginning of mapping execution until the current debugger position.

To illustrate this case, let's debug a mapping from begging till end without using any breakpoints, and then watch the history of all values that were processed by a particular connector. First, open the mapping PreserveFormatting.mfd from the <Documents>\Altova\MapForce2021\MapForceExamples\ directory. If it is already open, make sure to do the following:

- Clear any breakpoints, if such exist (see Adding and Removing Breakpoints)
- Stop debugging if it is currently in progress, by pressing Shift + F5.

When ready, press F5 start a new debugging operation. When you press F5, MapForce executes the mapping in debug mode, and switches to the Output tab. Click the Mapping tab to go back to the main mapping window, and then click the result node of the format-number function (highlighted in red in the image below). Finally, click the History tab of the Values window, and notice the displayed values.

As shown in the image above, this particular node (result) has processed four values in total. If you need additional information about a particular value, remember that you can recreate the context that produced it (see Setting the Context to a Value).
5.12 Setting the Context to a Value

Setting the context to a value is an action that can be compared to stepping into the past, in order to view more details about the mapping context that produced that value. You can set the context to any value displayed in the Values window (in the Related tab, Sequence tab, or History tab). If you have enabled the Keep full trace history option (see Debugger Settings), the History tab displays all values processed by the currently selected connector; therefore, in this case, you can additionally set the context to any value in the past for that connector.

To set the context to a value, do one of the following:

- Right-click the value, and select Set Context from the context menu.
- Double-click the value.

When you set the context to a value, MapForce highlights the mapping area so as to recreate the situation that produced that value, and populates the Values window and the Context window according to the selected context. For a legend to visual clues used on the mapping area while in a context, see About the Debug Mode. For information about the context itself, see Using the Context Window.

The connector of a manually-set context is yellow (), which indicates that you are no longer at the most recent execution position. To switch back to the most recent execution position (when applicable), click the Reset to Current button on the Context tab of the Values window.
5.13 Debugger Settings

To access the settings applicable to the MapForce debugger, select the menu command **Tools | Options**, and then click **Debugger**. The available settings are as follows:

Maximum storage length of values
 Defines the string length of values displayed in the Values window (at least 15 characters). Note that setting the storage length to a high value may deplete available system memory.

Keep full trace history
 Instructs MapForce to keep the history of all values processed by all connectors of all components in the mapping for the duration of debugging. If this option is enabled, all values processed by MapForce since the beginning of debug execution will be stored in memory and available for your analysis in the Values window, until you stop debugging. It is not recommended to enable this option if you are debugging data-intensive mappings, since it may slow down debugging execution and deplete available system memory. If this option is disabled, MapForce keeps only the most recent trace history for nodes related to the current execution position.
6 Data Sources and Targets

This chapter provides information specific to various data formats that MapForce Professional Edition can map from or to:

- XML and XML Schema 638
- Databases 651
- CSV and Text Files 636
6.1 XML and XML schema

Altova website: XML mapping

In the introductory part of this documentation, you have seen examples of simple mappings that use XML and XML schema files as source or target components. This section provides further information about using XML components in your mappings. It includes the following topics:

- Generating an XML Schema
- XML Component Settings
- Using DTDs as "Schema" Components
- Derived XML Schema Types
- QName
- Nil Values / Nillable
- Comments and Processing Instructions
- CData Sections
- Wildcards - xs:any / xs:anyAttribute
- Merging Data from Multiple Schemas
- Declaring Custom Namespaces

6.1.1 Generating an XML Schema

MapForce can automatically generate an XML schema based on an existing XML file if the XML Schema is not available. Whenever you add to the mapping area an XML file without a schema (using the menu command Insert | XML Schema/File), the following dialog box appears.

![MapForce dialog box](image)

Click Yes to generate the schema. You will then be prompted to select the directory where the generated schema should be saved.

When MapForce generates a schema from an XML file, data types for elements/attributes must be inferred from the XML instance document and may not be exactly what you expect. It is recommended that you check whether the generated schema is an accurate representation of the instance data.

If elements or attributes in more than one namespace are present, MapForce generates a separate XML Schema for each distinct namespace; therefore, multiple files may be created on the disk.
6.1.2 XML Component Settings

After you add an XML component to the mapping area, you can configure the settings applicable to it from the Component Settings dialog box. You can open the Component settings dialog box in one of the following ways:

- Select the component on the mapping, and, on the Component menu, click Properties.
- Double-click the component header.
- Right-click the component header, and then click Properties.
XML Component Settings dialog box

The available settings are as follows.

| Component name | The component name is automatically generated when you create the... |
component. However, you can change the name at any time.

The component name can contain spaces and full stop characters. It may not contain slashes, backslashes, colons, double quotes, leading or trailing spaces. If you want to change the name of the component, be aware of the following:

- If you intend to deploy the mapping to FlowForce Server, the component name must be unique.
- It is recommended to use only characters that can be entered at the command line. National characters may have a different encoding in Windows and at the command line.

| **Schema file** | Specifies the name or path of the XML schema file used by MapForce to validate and map data.
To change the schema file, click **Browse** and select the new file. To edit the file in XMLSpy, click **Edit**. |
| **Input XML file** | Specifies the XML instance file from which MapForce will read data. This field is meaningful for a source component and is filled when you first create the component and assign to it an XML instance file.
In a source component, the instance file name is also used to detect the XML root element and the referenced schema, and to validate against the selected schema.
To change the location of the file, click **Browse** and select the new file. To edit the file in XMLSpy, click **Edit**. |
| **Output XML file** | Specifies the XML instance file to which MapForce will write data. This field is meaningful for a target component.
To change the location of the file, click **Browse** and select the new file. To edit the file in XMLSpy, click **Edit**. |
| **Prefix for target namespace** | Allows you to enter a prefix for the target namespace. Ensure that the target namespace is defined in the target schema, before assigning the prefix. |
| **Add schema/DTD reference** | Adds the path of the referenced XML Schema file to the root element of the XML output. The path of the schema entered in this field is written into the generated target instance files in the xsi:schemaLocation attribute, or into the DOCTYPE declaration if a DTD is used.
Note that, if you generate code in XQuery or C++, adding the DTD reference is not supported.
Entering a path in this field allows you to define where the schema file referenced by the XML instance file is to be located. This ensures that the output instance can be validated at the mapping destination when... |
the mapping is executed. You can enter an http:// address as well as an absolute or relative path in this field.

Deactivating this option allows you to decouple the XML instance from the referenced XML Schema or DTD (for example, if you want to send the resulting XML output to someone who does not have access to the underlying XML Schema).

Write XML declaration

This option enables you to suppress the XML declaration from the generated output. By default, the option is enabled, meaning that the XML declaration is written to the output.

This feature is supported as follows in MapForce target languages and execution engines.

<table>
<thead>
<tr>
<th>Target language / Execution engine</th>
<th>When output is a file</th>
<th>When output is a string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MapForce Server</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>XSLT, XQuery</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Code generator (C++, C#, Java)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Cast values to target types

Allows you to define if the target XML schema types should be used when mapping, or if all data mapped to the target component should be treated as *string* values. By default, this setting is enabled.

Deactivating this option allows you to retain the precise formatting of values. For example, this is useful to satisfy a pattern facet in a schema that requires a specific number of decimal digits in a numeric value.

You can use mapping functions to format the number as a string in the required format, and then map this string to the target.

Note that disabling this option will also disable the detection of invalid values, e.g. writing letters into numeric fields.

Pretty print output

Reformats the output XML document to give it a structured look. Each child node is offset from its parent by a single tab character.

Output Encoding

Allows you to specify the following settings of the output instance file:

- Encoding name
- Byte order
- Whether the byte order mark (BOM) character should be included.
By default, any new components have the encoding defined in the **Default encoding for new components** option. You can access this option from **Tools | Options**, General tab.

If the mapping generates XSLT 1.0/2.0, activating the **Byte Order Mark** check box does not have any effect, as these languages do not support Byte Order Marks.

StyleVision Power Stylesheet file

This option allows you to select or create an Altova StyleVision stylesheet file. Such files enable you to output data from the XML instance file to a variety of formats suitable for reporting, such as HTML, RTF, and others.

See also **Using Relative Paths on a Component**.

Enable input processing optimizations based on min/maxOccurs

This option allows special handling for sequences that are known to contain exactly one item, such as required attributes or child elements with `minOccurs` and `maxOccurs` "1". In this case, the first item of the sequence is extracted, then the item is directly processed as an atomic value (and not as a sequence).

If the input data is **not valid** against the schema, an empty sequence might be encountered in a mapping, which stops the mapping with an error message. To allow the processing of such **invalid input**, disable this check box.

Save all file paths relative to MFD file

When this option is enabled, MapForce saves the file paths displayed on the Component Settings dialog box relative to the location of the **MapForce Design (.mfd) file**. See also **Using Relative Paths on a Component**.

6.1.3 Using DTDs as "Schema" Components

Starting with MapForce 2006 SP2, namespace-aware DTDs are supported for source and target components. The namespace-URIs are extracted from the DTD "xmlns"-attribute declarations, to make mappings possible.

However, some DTDs contain xmlns*-attribute declarations without namespace-URIs (for example, DTDs used by StyleVision). Such DTDs have to be extended to make them useable in MapForce. Specifically, you can make such DTDs useable by defining the xmlns-attribute with the namespace-URI, as shown below:

```xml
<!ATTLIST fo:root
   xmlns:fo CDATA #FIXED 'http://www.w3.org/1999/XSL/Format'
   ...
>```
6.1.4 Derived XML Schema Types

MapForce supports the mapping to/from derived types of a complex type. Derived types are complex types of an XML Schema that use the `xsi:type` attribute to identify the specific derived types.

The screenshot below shows the definition of a derived type called US-Address, in XMLSpy. The base type (or originating complex type) is AddressType. Two extra elements were added to create the derived type US-Address: Zip and State.

![Sample derived type (XMLSpy schema view)](image)

The following example shows you how to map data to or from derived XML schema types.

1. On the Insert menu, click XML Schema/File, and open the following XML Schema: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\MFCompany.xsd`.
2. When prompted to supply an instance file, click Skip, and then select Company as the root element.

![XML schema tree](image)

3. Click the TYPE button next to the Address element. This button indicates that derived types exist for this element in the schema.
4. Select the check box next to the derived type you want to use (US-Address, in this case), and confirm with OK. A new element Address xsi:type="US-Address" has been added to the component.

You can now map data to or from the US-Address derived type.

Note that you can also include multiple derived types by selecting them in the Derived Types dialog box. In this case, each would have its own xsi:type element in the component.
6.1.5 QName

MapForce resolves QName (qualified name) prefixes (https://www.w3.org/TR/xml-names/#ns-qualnames) when reading data from XML files at mapping execution run-time.

QNames are used to reference and abbreviate namespace URIs in XML instance documents. There are two types of QNames: Prefixed and Unprefixed QNames.

- **PrefixedName**: Prefix 'LocalPart
- **UnPrefixedName**: LocalPart

where LocalPart is an Element or Attribute name.

For example, in the listing below, `<x:p/>` is a QName, where:

- the prefix "x" is an abbreviation of the namespace "http://myCompany.com".
- `p` is the local part.

```xml
<?xml version='1.0'?>
<doc xmlns:x="http://myCompany.com">
 <x:p/>
</doc>
```

MapForce also includes several QName-related functions in the core QName functions library.

6.1.6 Nil Values / Nillable

The XML Schema specification allows for an element to be valid without content if the `nillable="true"` attribute has been defined for that specific element in the schema. In the instance XML document, you can then indicate that the value of an element is nil by adding the `xsi:nil="true"` attribute to it. This section describes how MapForce handles nil elements in source and target components.

`xsi:nil` versus `nillable`

The `xsi:nil="true"` attribute is defined in the XML instance document.
The xsi:nil="true" attribute indicates that, although the element exists, it has no content. Note that the xsi:nil="true" attribute applies to element values, and not to attribute values. An element with xsi:nil="true" may still have other attributes, even if it does not have content.

The xsi:nil attribute is not displayed explicitly in the MapForce graphical mapping, because it is handled automatically in most cases. Specifically, a "nilled" node (one that has the xsi:nil="true" attribute) exists, but its content does not exist.

Nullable elements as mapping source
MapForce checks the xsi:nil attribute automatically, whenever a mapping reads data from nilled XML elements. If the value of xsi:nil is true, the content will be treated as non-existent.

When you create a target-driven connection from a nillable source element to a nillable target element with simple content (a single value with optional attributes, but without child elements), where xsi:nil is set on a source element, MapForce adds the xsi:nil attribute to the target element (for example, <OrderID xsi:nil="true"/>).

When you create a Copy-All connection from a nillable source element to a nillable target element, where xsi:nil is set on a source element, MapForce adds the xsi:nil attribute to the target element (for example, <OrderID xsi:nil="true"/>).

To check explicitly whether a source element has the xsi:nil attribute set to true, use the is-xsi-nil function. It returns true for nilled elements and false for other nodes.

To substitute a nilled (non-existing) source element value with something specific, use the substitute-missing function.

Notes:
- Connecting the exists function to a nilled source element returns true, since the element node actually exists, even if it has no content.
- Using functions that expect simple values (such as multiply and concat) on elements where xsi:nil has been set does not yield a result, as no element content is present and no value can be extracted. These functions behave as if the source node did not exist.

Nullable elements as mapping target
When you create a target-driven connection from a nillable source element to a nillable target element with simple content (a single value with optional additional attributes, but without child elements), where xsi:nil is set on a source element, MapForce inserts the xsi:nil attribute into the target element (for example, <OrderID xsi:nil="true"/>). If the xsi:nil="true" attribute has not been set in the XML source element, then the element content is mapped to the target element in the usual fashion.

When mapping to a nillable target element with complex type (with child elements), the xsi:nil attribute will not be written automatically, because MapForce cannot know at the time of writing the element's attributes if any child elements will follow. For such cases, define a Copy-All connection to copy the xsi:nil attribute from the source element.

When mapping an empty sequence to a target element, the element will not be created at all, independent of its nullable designation.
To force the creation of an empty target element with `xsi:nil` set to `true`, connect the `set-xsi-nil` function directly to the target element. This works for target elements with simple and complex types.

If the node has simple type, use the `substitute-missing-with-xsi-nil` function to insert `xsi:nil` in the target if no value from your mapping source is available. This can happen if the source node does not exist at all, or if a calculation (for example, multiply) involved a nilled source node and therefore yielded no result.

```
Functions which generate xsi:nil cannot be passed through functions or components which only operate on values (such as the if-else function).
```

**Mapping NULL database fields to xsi:nil**

If you map a NULL database field to an nillable element of an XML schema, MapForce generates only those target elements which actually contain database data. Elements of NULL database fields are not created in the target component. Connecting the `exists` node function to such a source element results in `false` for the NULL fields.

To force the creation of all elements in the target component, use the `substitute-missing-with-xsi-nil` function from the node functions of the core library.

The screenshot above illustrates how the `substitute-missing-with-xsi-nil` function is used to create target elements for all database fields:

- All missing/NULL database fields contain `<OrderID xsi:nil="true"/>` in the target element.
- Existing data from database fields is mapped directly to the target element e.g. `<OrderID>1</OrderID>`.

To see the NULL fields of a database component, click the **Database Query** button and run a query on the database table(s). Null fields are shown as `[NULL]` in the Results window.
Mapping xsi:nil to NULL database fields
If you map a nilled XML element to a database column, MapForce writes a NULL value to the database. You can also use the `set-null` function if you want to set a database field to NULL unconditionally.

6.1.7 Comments and Processing Instructions

Comments and Processing Instructions can be inserted into target XML components. Processing instructions are used to pass information to applications that further process XML documents. Note that Comments and Processing instructions cannot be defined for nodes that are part of a copy-all mapped group.

To insert a Processing Instruction:

1. Right-click an element in the target component and select Comment/Processing Instruction, then one of the Processing Instruction options from the menu (Before, After).
2. Enter the Processing Instruction (target) name in the dialog and press OK to confirm, e.g. `xml-stylesheet`. This adds a node of this name to the component tree.

3. You can use, for example, a constant component to supply the value of the Processing Instruction attribute, e.g. `href="book.css" type="text/css"`.

Note: Multiple Processing Instructions can be added before or after any element in the target component.

To insert a comment:

1. Right-click an element in the target component and select Comment/Processing Instruction, then one of the Comment options from the menu (Before, After).
This adds the comment node \( <!--\text{comment}() --> \) to the component tree.

2. Use a constant component to supply the comment text, or connect a source node to the comment node.

**Note:** Only one comment can be added before and after a single target node. To create multiple comments, use the duplicate input function.

**To delete a Comment/Processing Instruction:**

- Right-click the respective node, select Comment/Processing Instruction, then select Delete Comment/Processing Instruction from the flyout menu.

### 6.1.8 CDATA Sections

CDATA sections are used to escape blocks of text containing characters which would normally be interpreted as markup. CDATA sections start with "<![CDATA[" and end with the "]]>".

Target nodes can now write the input data that they receive as CDATA sections. The target node components can be any of the following:

- XML data
- XML data embedded in database fields
- XML child elements of typed dimensions in an XBRL target

**To create a CDATA section:**

1. Right-click the target node that you want to define as the CDATA section and select "Write Content as CDATA section".
A prompt appears warning you that the input data should not contain the CDATA section close delimiter `]]>`, click OK to close the prompt. The `[C.. icon shown below the element tag shows that this node is now defined as a CDATA section.

**Note:** CDATA sections can also be defined on duplicate nodes, and xsi:type nodes.

**Example**
The HTMLinCDATA.mfd mapping file available in the `...\MapForceExamples` folder shows an example of where CDATA sections can be very useful.

In this example:

- Bold start (`<b>`) and end (`</b>`) tags are added to the content of the `Trademark` source element.
- Italic start (`<i>`) and end (`</i>`) tags are added to the content of the `Keyword` source element.
- The resulting data is passed on to duplicate `text()` nodes in the order that they appear in the source document, due to the fact the Subsection element connector, has been defined as a **Source Driven** (Mixed content) node.
- The output of the MixedContent node is then passed on to the `Description` node in the ShortInfo target component, which has been defined as a CDATA section.
Clicking the Output button shows the CDATA section containing the marked-up text.

6.1.9 Wildcards - xs:any / xs:anyAttribute

The wildcards `xs:any` (and `xs:anyAttribute`) allow you to use any elements/attributes from schemas. The screenshot shows the "any" element in the Schema view of XMLSpy.
In MapForce, a **Change Selection** button appears to the right of the `xs:any` element (or `xs:anyAttribute`).

When clicked, the **Change Selection** button opens the "Wildcard selections" dialog box. The entries in this list show the global elements and attributes declared in the current schema.
Clicking one or more of the check boxes and confirming with OK, inserts that element/attribute (and any other child nodes) into the component. The wildcard elements or attributes are inserted immediately after the node whose Change Selection button was clicked.

You can now map to/from these nodes as with any other element.

On a component, the wildcard elements or attributes can be recognized by the \textit{(xs:any)} text appended to their name.

To remove a wildcard element, click the Change Selection button, and then deselect it from the "Wildcard selections" dialog box.

**Wildcards and dynamic node names**

Mapping data to or from wildcards is generally suitable where all possible elements or attributes that appear in the XML instance are declared by the component’s XML schema (or can be imported from external schemas). However, there may be situations where elements or attributes appearing in an instance are too many to be declared in the schema. Consider the following instance where the number of child elements of \texttt{<message>} is arbitrary:
For such situations, use dynamic access to node names (see Mapping Node Names) instead of wildcards.

Adding elements from a different schema as wildcards

Elements from a schema other than the one assigned to the component can also be used as wildcards. To make such elements visible on the component, click the **Import a different schema** button on the “Wildcard selections” dialog box. This opens a new dialog box where you have two options:

1. Import schema
2. Generate wrapper schema

For example, the image below illustrates what happens if you attempt to import an external schema called **HasExpenses.xsd** into a current schema assigned to a component.

The **Import schema** option imports the external schema into the current schema assigned to the component. Be aware that this option overrides the existing schema of the component on the disk. If the current schema is a remote schema that was opened from a URL (see **Adding Components from a URL**), and not from the disk, it cannot be modified. In this case, use the **Generate wrapper schema** option.
The **Generate wrapper schema** option creates a new schema file called a "wrapper" schema. The advantage of using this option is that the existing schema of the component is not modified. Instead, a new schema will be created (that is, the wrapper schema) which will include both the existing schema and the schema to be imported. When you select this option, you are prompted to choose where the wrapper schema should be saved. By default, the wrapper schema has a name in the form `somefile-wrapper.xsd`. After you save the wrapper schema, it is by default automatically assigned to the component, and a dialog box prompts you:

![MapForce dialog box](image)

Click **Yes** to revert to the previous schema; otherwise click **No** to keep the newly created wrapper schema assigned to the component.

### 6.1.10 Merging Data from Multiple Schemas

This example illustrates how to merge multiple files into a single target file. Specifically, it merges multiple source components having different schemas to a target schema. To merge an arbitrary number of files using the same schema, see [Processing Multiple Input or Output Files Dynamically](#).

The `CompletePO.mfd` file available in the `...\MapForceExamples` folder shows how three XML files are merged into one purchasing order XML file.
Note that multiple source component data are combined into one target XML file, **CompletePO.xml**.

- **ShortPO** is a schema with an associated XML instance file and contains only customer number and article data, such as line item, number and amount. (Note that there is only one customer in this file.)
- **Customers** is a schema with an associated XML instance file and contains customer number and customer information details, such as name and address information.
- **Articles** is a schema with an associated XML instance and contains article data, such as article name, number and price.
- **CompletePO** is a schema file without an instance file; all the data is supplied by the three XML instance files. The hierarchical structure of this file makes it possible to merge and output all XML data.

This schema file has to be created in an XML editor such as XMLSpy, it is not generated by MapForce (although it would be possible to create if you had a **CompletePO.xml** instance file).

The structure of CompletePO is a combination of the source XML file structures.
The filter component (Customer) is used to find/filter the data where the customer numbers are identical in both the ShortPO and Customers XML files, and pass on the associated data to the target CompletePO component.

- The CustomerNr in "ShortPO" is compared with the Number in "Customers" using the equal function.
- As "ShortPO" only contains one customer (number 3), only customer and article data for customer number 3 can be passed on to the filter component.
- The node/row parameter of the filter component passes the Customer data to "on-true" when the bool parameter is true, specifically, when the same number has been found, in this case customer number 3.
- The rest of the customer and article data are passed on to the target schema through the two other filter components.

### 6.1.11 Declaring Custom Namespaces

By default, when a mapping produces XML output, the namespace (or set of namespaces) of each element and attribute is automatically derived by MapForce from the schema associated with the target component. This is the default behavior in MapForce and is suitable for most mapping scenarios that involve generation of XML output.

However, there might be cases when you want to have more control over namespaces of elements in the resulting XML output. For example, you may want to manually declare the namespace of an element directly from the mapping.

To understand how this works, open the BooksToLibrary.mfd mapping available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ directory. Right-click the library node, and select Add Namespace from the context menu.

Notice that two new nodes are now available under the library node: a namespace and a prefix.
You can now map to them string values from the mapping. In the image below, two constants were defined (from Insert | Constant menu command) that provide the namespace “altova.library” and the prefix “lib”:

The result is that, in the generated output, an xmlns:<prefix>="<namespace>" attribute is added to the element, where <prefix> and <namespace> are values that come from the mapping (in this case, from constants). The generated output will now look as follows (notice the highlighted part):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<library xmlns:lib="altova.library" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="library.xsd">
 ...
</library>
```

**Note:** Declaring custom namespaces (and the Add Namespace command) is meaningful only for target XML components, and applies to elements only. The Add Namespace command is not available for
attributes and wildcard nodes. It is also not available for nodes which receive data by means of a Copy-All connection.

You can also declare multiple namespaces for the same element, if necessary. To do this, right-click the node again, and select Add Namespace from the context menu. A new pair of namespace and prefix nodes become available, to which you can connect the new prefix and namespace values.

To remove a previously added namespace declaration, right-click the ns:namespace node, and select Remove Namespace from the context menu.

Both the namespace and prefix input connectors must be mapped, even if you provide empty values to them.

If you want to declare a default namespace (that is, one in the format xmlns="mydefaultnamespace"), map an empty string value to prefix. To see this case in action, edit the example mapping above so as to make the second constant an empty string.

The resulting output would then looks as follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="altova.library" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="library.xsd">
 ...
</library>
```

If you need to create prefixes for attribute names, for example `<number prod:id="prod557">557</number>`, you can achieve this by either enabling dynamic access to node's attributes (see Mapping Node Names), or by editing the schema so that it has a prod:id attribute for `<number>`.
6.2 Databases and MapForce

Altova website: Database mapping

MapForce 2021 provides powerful support for mapping databases to XML, flat files, and other database formats. With MapForce Enterprise edition, you can additionally map databases to EDI formats, Excel 2007+, JSON, XBRL, and Web services.

The following databases are supported. While Altova endeavors to support other databases, successful connection and data processing have only been tested with the databases listed below. If your Altova application is a 64-bit version, ensure that you have access to the 64-bit database drivers needed for the specific database you are connecting to.

<table>
<thead>
<tr>
<th>Database</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firebird 2.5.4, 3.0</td>
<td></td>
</tr>
<tr>
<td>IBM DB2 8.x, 9.1, 9.5, 9.7, 10.1, 10.5</td>
<td></td>
</tr>
<tr>
<td>IBM Db2 for i 6.1, 7.1, 7.2, 7.3</td>
<td>Logical files are supported and shown as views.</td>
</tr>
<tr>
<td>IBM Informix 11.70, 12.10, 14.10</td>
<td>Informix supports connections via ADO, JDBC and ODBC. The implementation does not support large object data types in any of the code generation languages. MapForce will generate an error message (during code generation) if any of these data types are used.</td>
</tr>
<tr>
<td>MariaDB 10.2, 10.3, 10.4, 10.5</td>
<td></td>
</tr>
<tr>
<td>Microsoft Access 2003, 2007, 2010, 2013, 2016, 2019</td>
<td>At the time of writing (early September 2019), there is no Microsoft Access Runtime available for Access 2019. You can connect to an Access 2019 database from Altova products only if Microsoft Access 2016 Runtime is installed and only if the database does not use the &quot;Large Number&quot; data type.</td>
</tr>
<tr>
<td>Microsoft Azure SQL Database</td>
<td>SQL Server 2016 codebase</td>
</tr>
<tr>
<td>Microsoft SQL Server on Linux</td>
<td></td>
</tr>
<tr>
<td>MySQL 5.0, 5.1, 5.5, 5.6, 5.7, 8.0</td>
<td></td>
</tr>
<tr>
<td>Oracle 9i, 10g, 11g, 12c, 18, 19</td>
<td></td>
</tr>
<tr>
<td>PostgreSQL 8.0, 8.1, 8.2, 8.3, 9.0.10, 9.1.6, 9.2.1, 9.4, 9.5, 9.6, 10, 11, 12.1</td>
<td>PostgreSQL connections are supported both as native connections and driver-based connections through interfaces (drivers) such as ODBC or JDBC. Native connections do not require any drivers.</td>
</tr>
<tr>
<td>Progress OpenEdge 11.6</td>
<td></td>
</tr>
<tr>
<td>SQLite 3.31.1</td>
<td>SQLite connections are supported as native, direct connections</td>
</tr>
</tbody>
</table>
### Database mappings in various execution environments

When you generate program code from a mapping, or when you compile a mapping to MapForce Server execution files, or when you deploy a mapping to FlowForce Server, the database connection details saved with the generated files are adapted to drivers applicable or supported for the chosen target environment, as shown in the table below. For example, if the mapping transformation language is set to Java, ADO connections are converted to JDBC when Java code is generated from the mapping.

When the mapping is executed in an environment other than MapForce, you will need to make sure that the database connection details are meaningful on the machine which executes the mapping (for example, the database driver is installed, the database path is correct, the database server is accessible, etc.).

Some database connection types are not supported in some target environments, as shown in the table below.

<table>
<thead>
<tr>
<th>Connection type/Execution Environment</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>MapForce Server on Windows</th>
<th>MapForce Server on Linux/Mac</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADO</td>
<td>ADO bridge</td>
<td>As is</td>
<td>Converted to JDBC</td>
<td>As is</td>
<td>Converted to JDBC</td>
</tr>
<tr>
<td>ADO.NET</td>
<td>As is</td>
<td>User defined</td>
<td>Converted to JDBC</td>
<td>As is</td>
<td>Converted to JDBC</td>
</tr>
<tr>
<td>JDBC</td>
<td>User defined</td>
<td>User defined</td>
<td>As is</td>
<td>As is</td>
<td>As is</td>
</tr>
<tr>
<td>ODBC</td>
<td>ODBC bridge</td>
<td>ODBC bridge</td>
<td>Converted to JDBC</td>
<td>As is</td>
<td>Converted to JDBC</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>As is</td>
<td>As is</td>
</tr>
<tr>
<td>SQLite</td>
<td>Not supported</td>
<td>Not supported</td>
<td>Not supported</td>
<td>As is</td>
<td>As is</td>
</tr>
</tbody>
</table>

Table legend:

- "As is" means that the database connection type (for example, JDBC, ODBC) remains as defined in MapForce.
- "Converted to JDBC" means that the database connection will be converted into a JDBC-like database connection URL.
"ADO bridge" or "ODBC bridge" means that the connection string remains as defined in MapForce, but the generated code will use a suitable class which acts as an ADO bridge (or ODBC bridge, respectively), for example, `System.Data.OleDb.OleDbConnection` or `System.Data.Odbc.OdbcConnection`.

"User defined" means that, in order for the connection to work in generated code, you will need to manually enter the connection details into the Database Component Settings dialog box. Depending on the case, these connection details must be entered under ADO/OLE-DB-specific settings or under JDBC-specific settings.

See also:

- Preparing Mappings for Server Execution
- Compiling Mappings to MapForce Server Execution Files
- Deploying Mappings to FlowForce Server
- Code Generator

### 6.2.1 Connecting to a Data Source

In the most simple case, a database can be a local file such as a Microsoft Access or SQLite database file. In a more advanced scenario, a database may reside on a remote or network database server which does not necessarily use the same operating system as the application that connects to it and consumes data. For example, while MapForce runs on a Windows operating system, the database from which you want to access data (for example, MySQL) might run on a Linux machine.

To interact with various database types, both remote and local, MapForce relies on the data connection interfaces and database drivers that are already available on your operating system or released periodically by the major database vendors. In the constantly evolving landscape of database technologies, this approach caters for better cross-platform flexibility and interoperability.

The following diagram illustrates, in a simplified way, data connectivity options available between MapForce (illustrated as a generic client application) and a data store (which may be a database server or database file).
Direct native connections are supported for SQLite and PostgreSQL databases. To connect to such databases, no additional drivers are required to be installed on your system.

As shown in the diagram above, MapForce can access any of the major database types through the following data access technologies:

- ADO (Microsoft® ActiveX® Data Objects), which, in its turn, uses an underlying OLE DB (Object Linking and Embedding, Database) provider
- ADO.NET (A set of libraries available in the Microsoft .NET Framework that enable interaction with data)
- JDBC (Java Database Connectivity)
- ODBC (Open Database Connectivity)

Some ADO.NET providers are not supported or have limited support. See ADO.NET Support Notes.

The data connection interface you should choose largely depends on your existing software infrastructure. You will typically choose the data access technology and the database driver which integrates tighter with the database system to which you want to connect. For example, to connect to a Microsoft Access 2013 database, you would build an ADO connection string that uses a native provider such as the Microsoft Office Access Database Engine OLE DB Provider. To connect to Oracle, on the other hand, you may want to download and install the latest JDBC, ODBC, or ADO.NET interfaces from the Oracle website.

While drivers for Windows products (such as Microsoft Access or SQL Server) may already be available on your Windows operating system, they may not be available for other database types. Major database vendors routinely release publicly available database client software and drivers which provide cross-platform access to...
the respective database through any combination of ADO, ADO.NET, ODBC, or JDBC. In addition to this, several third party drivers may be available for any of the above technologies. In most cases, there is more than one way to connect to the required database from your operating system, and, consequently, from MapForce. The available features, performance parameters, and the known issues will typically vary based on the data access technology or drivers used.

6.2.1.1 Starting the Connection Wizard

MapForce provides a wizard that guides you through the steps required to set up a connection to a data source.

Before you go through the wizard steps, be aware that for some database types it is necessary to install and configure separately several database prerequisites, such as a database driver or database client software. These are normally provided by the respective database vendors, and include documentation tailored to your specific Windows version. For a list of database drivers grouped by database type, see Database Drivers Overview.

To add the database as a source or target component on a mapping:

- On the Insert menu, click Database.
To add the database as a reusable global resource:

1. On the **Tools** menu, click **Global Resources**.
2. Click **Add**, and then click **Database**.
3. Click **Choose Database**.

After you select a database type and click **Next**, the on-screen instructions will depend on the database kind, technology (ADO, ADO.NET, ODBC, JDBC) and driver used.
For examples applicable to each database type, see [Database Connection Examples](#). For instructions applicable to each database access technology, refer to the following topics:

- Setting up an ADO Connection
- Setting up an ADO.NET Connection
- Setting up an ODBC Connection
- Setting up a JDBC Connection

### 6.2.1.2 Database Drivers Overview

The following table lists common database drivers you can use to connect to a particular database through a particular data access technology. Note that this list does not aim to be either exhaustive or prescriptive; you can use other native or third party alternatives in addition to the drivers shown below.

Even though a number of database drivers might be already available on your Windows operating system, you may still need to download an alternative driver. For some databases, the latest driver supplied by the database vendor is likely to perform better than the driver that shipped with the operating system.

Database vendors may provide drivers either as separate downloadable packages, or bundled with database client software. In the latter case, the database client software normally includes any required database drivers, or provides you with an option during installation to select the drivers and components you wish to install. Database client software typically consists of administration and configuration utilities used to simplify database administration and connectivity, as well as documentation on how to install and configure the database client and any of its components.

Configuring the database client correctly is crucial for establishing a successful connection to the database. Before installing and using the database client software, it is strongly recommended to read carefully the installation and configuration instructions of the database client; these may vary for each database version and for each Windows version.

To understand the capabilities and limitations of each data access technology with respect to each database type, refer to the documentation of that particular database product and also test the connection against your specific environment. To avoid common connectivity issues, note the following:

- Some ADO.NET providers are not supported or have limited support. See [ADO.NET Support Notes](#).
- When installing a database driver, it is recommended that it has the same platform as the Altova application (32-bit or 64-bit). For example, if you are using a 32-bit Altova application on a 64-bit operating system, install the 32-bit driver, and set up your database connection using the 32-bit driver, see also [Viewing the Available ODBC Drivers](#).
- When setting up an ODBC data source, it is recommended to create the data source name (DSN) as System DSN instead of User DSN. For more information, see [Setting up an ODBC Connection](#).
- If the target database is MySQL or MariaDB through ODBC, the option **Return matched rows instead of affected rows** must be enabled in the **Cursor/Results** tab of MySQL ODBC Connector. Alternatively, if you enter the connection string manually through the Database Connection wizard, add `Option=2` to the connection string, for example: `Dsn=mydsn;Option=2`.
- When setting up a JDBC data source, ensure that JRE (Java Runtime Environment) or Java Development Kit (JDK) is installed and that the CLASSPATH environment variable of the operating system is configured. For more information, see [Setting up a JDBC Connection](#).
- For the installation instructions and support details of any drivers or database client software that you install from a database vendor, check the documentation provided with the installation package.
<table>
<thead>
<tr>
<th>Database</th>
<th>Interface</th>
<th>Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firebird</td>
<td>ADO.NET</td>
<td>Firebird ADO.NET Data Provider (<a href="https://www.firebirdsql.org/en/additional-downloads/">https://www.firebirdsql.org/en/additional-downloads/</a>)</td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td>Firebird JDBC driver (<a href="https://www.firebirdsql.org/en/jdbc-driver/">https://www.firebirdsql.org/en/jdbc-driver/</a>)</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>Firebird ODBC driver (<a href="https://www.firebirdsql.org/en/odbc-driver/">https://www.firebirdsql.org/en/odbc-driver/</a>)</td>
</tr>
<tr>
<td>IBM DB2</td>
<td>ADO</td>
<td>IBM OLE DB Provider for DB2</td>
</tr>
<tr>
<td></td>
<td>ADO.NET</td>
<td>IBM Data Server Provider for .NET</td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td>IBM Data Server Driver for JDBC and SQLJ</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>IBM DB2 ODBC Driver</td>
</tr>
<tr>
<td>IBM DB2 for i</td>
<td>ADO</td>
<td>• IBM DB2 for i5/OS IBMDA400 OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IBM DB2 for i5/OS IBMDARLA OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IBM DB2 for i5/OS IBMDASQL OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td>ADO.NET</td>
<td>.NET Framework Data Provider for IBM i</td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td>IBM Toolbox for Java JDBC Driver</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>iSeries Access ODBC Driver</td>
</tr>
<tr>
<td>IBM Informix</td>
<td>ADO</td>
<td>IBM Informix OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td>IBM Informix JDBC Driver</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>IBM Informix ODBC Driver</td>
</tr>
<tr>
<td>Microsoft Access</td>
<td>ADO</td>
<td>• Microsoft Jet OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Microsoft Access Database Engine OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td>ADO.NET</td>
<td>.NET Framework Data Provider for OLE DB</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>• Microsoft Access Driver</td>
</tr>
<tr>
<td>MariaDB</td>
<td>ADO.NET</td>
<td>In the absence of a dedicated .NET connector for MariaDB, use Connector/NET for MySQL (<a href="https://dev.mysql.com/downloads/connector/net/">https://dev.mysql.com/downloads/connector/net/</a>).</td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td>MariaDB Connector/J (<a href="https://downloads.mariadb.org/">https://downloads.mariadb.org/</a>)</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>MariaDB Connector/ODBC (<a href="https://downloads.mariadb.org/">https://downloads.mariadb.org/</a>)</td>
</tr>
<tr>
<td>Microsoft SQL Server</td>
<td>ADO</td>
<td>• Microsoft OLE DB Provider for SQL Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SQL Server Native Client</td>
</tr>
<tr>
<td></td>
<td>ADO.NET</td>
<td>• .NET Framework Data Provider for SQL Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• .NET Framework Data Provider for OLE DB</td>
</tr>
<tr>
<td>Database</td>
<td>Interface</td>
<td>Drivers</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Oracle</td>
<td>ADO</td>
<td>· Oracle Provider for OLE DB</td>
</tr>
<tr>
<td></td>
<td>ADO.NET</td>
<td>· Microsoft OLE DB Provider for Oracle</td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td>Oracle Data Provider for .NET (<a href="http://www.oracle.com/technetwork/topics/dotnet/index-085163.html">http://www.oracle.com/technetwork/topics/dotnet/index-085163.html</a>)</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td></td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>JDBC</td>
<td>PostgreSQL JDBC Driver (<a href="https://jdbc.postgresql.org/download.html">https://jdbc.postgresql.org/download.html</a>)</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>psqLODBC (<a href="https://odbc.postgresql.org/">https://odbc.postgresql.org/</a>)</td>
</tr>
<tr>
<td></td>
<td>Native</td>
<td>Available. There is no need to install any drivers if using native connection.</td>
</tr>
<tr>
<td>Progress</td>
<td>JDBC</td>
<td>JDBC Connector (<a href="https://www.progress.com/jdbc/openedge">https://www.progress.com/jdbc/openedge</a>)</td>
</tr>
<tr>
<td>OpenEdge</td>
<td>ODBC</td>
<td>ODBC Connector (<a href="https://www.progress.com/odbc/openedge">https://www.progress.com/odbc/openedge</a>)</td>
</tr>
<tr>
<td>SQLite</td>
<td>Native</td>
<td>Available. There is no need to install any drivers if using native connection.</td>
</tr>
<tr>
<td>Sybase</td>
<td>ADO</td>
<td>Sybase ASE OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td>JDBC</td>
<td>jConnect™ for JDBC</td>
</tr>
<tr>
<td></td>
<td>ODBC</td>
<td>Sybase ASE ODBC Driver</td>
</tr>
</tbody>
</table>
6.2.1.3 Setting up an ADO Connection

Microsoft ActiveX Data Objects (ADO) is a data access technology that enables you to connect to a variety of data sources through OLE DB. OLE DB is an alternative interface to ODBC or JDBC; it provides uniform access to data in a COM (Component Object Model) environment. ADO is the typical choice for connecting to Microsoft native databases such as Microsoft Access or SQL Server, although you can also use it for other data sources.

To set up an ADO connection:

1. Start the database connection wizard.
2. Click ADO Connections.
3. Click Build.
4. Select the data provider through which you want to connect. The table below lists a few common scenarios.

<table>
<thead>
<tr>
<th>To connect to this database...</th>
<th>Use this provider...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Access</td>
<td>- Microsoft Office Access Database Engine OLE DB Provider</td>
</tr>
<tr>
<td></td>
<td>When connecting to Microsoft Access 2003, you can also use the Microsoft Jet OLE DB Provider.</td>
</tr>
<tr>
<td>SQL Server</td>
<td>- SQL Server Native Client</td>
</tr>
<tr>
<td></td>
<td>- Microsoft OLE DB Provider for SQL Server</td>
</tr>
<tr>
<td>Other database</td>
<td>Select the provider applicable to your database.</td>
</tr>
<tr>
<td></td>
<td>If an OLE DB provider to your database is not available, install the required driver from the database vendor (see Database Drivers Overview). Alternatively, set up an ODBC or JDBC connection.</td>
</tr>
<tr>
<td></td>
<td>If the operating system has an ODBC driver to the required database, you can also use the Microsoft OLE DB Provider for ODBC Drivers.</td>
</tr>
</tbody>
</table>

5. Click **Next** and complete the wizard.
The subsequent wizard steps are specific to the provider you chose. For SQL Server, you will need to provide or select the host name of the database server, as well as the database username and password. For Microsoft Access, you will be asked to browse for or provide the path to the database file.

The complete list of initialization properties (connection parameters) is available in the All tab of the connection dialog box—these properties vary depending on the chosen provider. The following sections provide guidance on configuring the basic initialization properties for Microsoft Access and SQL Server databases:

- Setting up the SQL Server Data Link Properties
- Setting up the Microsoft Access Data Link Properties

### 6.2.1.3.1 Connecting to an Existing Microsoft Access Database

This approach is suitable when you want to connect to a Microsoft Access database which is not password-protected. If the database is password-protected, set up the database password as shown in Connecting to Microsoft Access (ADO).

To connect to an existing Microsoft Access database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select Microsoft Access (ADO), and then click Next.
3. Browse for the database file, or enter the path to it (either relative or absolute).
4. Click Connect.

### 6.2.1.3.2 Setting up the SQL Server Data Link Properties

When you connect to a Microsoft SQL Server database through ADO (see Setting up an ADO Connection), ensure that the following data link properties are configured correctly in the All tab of the Data Link Properties dialog box.
6.2.1.3.3 Setting up the Microsoft Access Data Link Properties

When you connect to a Microsoft Access database through ADO (see Setting up an ADO Connection), ensure that the following properties are configured correctly in the All tab of the Data Link Properties dialog box.

<table>
<thead>
<tr>
<th>Property</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Security</td>
<td>If you selected the SQL Server Native Client data provider on the Provider tab, set this property to a space character.</td>
</tr>
<tr>
<td>Persist Security Info</td>
<td>Set this property to True.</td>
</tr>
</tbody>
</table>

Data Link Properties dialog box
<table>
<thead>
<tr>
<th>Property</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
<td>This property stores the path to the Microsoft Access database file. To avoid database connectivity issues, it is recommended to use the UNC (Universal Naming Convention) path format, for example: \anyserver\share$\filepath</td>
</tr>
<tr>
<td>Jet OLEDB:System Database</td>
<td>This property stores the path to the workgroup information file. You may need to explicitly set the value of this property before you can connect to a Microsoft Access database. If you cannot connect due to a “workgroup information file” error, locate the workgroup information file (System.MDW) applicable to your user profile, and set the property value to the path of the System.MDW file.</td>
</tr>
<tr>
<td>Property</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Jet OLEDB:Database Password</strong></td>
<td>If the database is password-protected, set the value of this property to the database password.</td>
</tr>
</tbody>
</table>

### 6.2.1.4 Setting up an ADO.NET Connection

ADO.NET is a set of Microsoft .NET Framework libraries designed to interact with data, including data from databases. To connect to a database from MapForce through ADO.NET, Microsoft .NET Framework 4 or later is required. As shown below, you connect to a database through ADO.NET by selecting a .NET provider and supplying a connection string.

A .NET data provider is a collection of classes that enables connecting to a particular type of data source (for example, a SQL Server, or an Oracle database), executing commands against it, and fetching data from it. In other words, with ADO.NET, an application such as MapForce interacts with a database through a data provider. Each data provider is optimized to work with the specific type of data source that it is designed for. There are two types of .NET providers:

1. Supplied by default with Microsoft .NET Framework.
2. Supplied by major database vendors, as an extension to the .NET Framework. Such ADO.NET providers must be installed separately and can typically be downloaded from the website of the respective database vendor.

**Note:** Certain ADO.NET providers are not supported or have limited support. See [ADO.NET Support Notes](#).
To set up an ADO.NET connection:

1. Start the database connection wizard.
2. Click ADO.NET Connections.
3. Select a .NET data provider from the list.

The list of providers available by default with the .NET Framework appears in the "Provider" list. Vendor-specific .NET data providers are available in the list only if they are already installed on your system. To become available, vendor-specific .NET providers must be installed into the GAC (Global Assembly Cache), by running the .msi or .exe file supplied by the database vendor.

4. Enter a database connection string. A connection string defines the database connection information, as semicolon-delimited key/value pairs of connection parameters. For example, a connection string such as `Data Source=DBSQLSERV;Initial Catalog=ProductsDB;UserID=dbuser;Password=dbpass` connects to the SQL Server database `ProductsDB` on server `DBSQLSERV`, with the user name `dbuser` and password `dbpass`. You can create a connection string by typing the key/value pairs directly into the "Connection String" dialog box. Another option is to create it with Visual Studio (see Creating a Connection String in Visual Studio).

The syntax of the connection string depends on the provider selected from the "Provider" list. For examples, see Sample ADO.NET Connection Strings.
5. Click **Connect**.

### 6.2.1.4.1 Creating a Connection String in Visual Studio

In order to connect to a data source using ADO.NET, a valid database connection string is required. The following instructions show you how to create a connection string from Visual Studio.

**To create a connection string in Visual Studio:**

1. On the **Tools** menu, click **Connect to Database**.
2. Select a data source from the list (in this example, Microsoft SQL Server). The Data Provider is filled automatically based on your choice.
3. Click **Continue**.
4. Enter the server host name and the user name and password to the database. In this example, we are connecting to the database `ProductsDB` on server `DBSQLSERV`, using SQL Server authentication.
5. Click OK.

If the database connection is successful, it appears in the Server Explorer window. You can display the Server Explorer window using the menu command View | Server Explorer. To obtain the database connection string, right-click the connection in the Server Explorer window, and select Properties. The connection string is now displayed in the Properties window of Visual Studio. Note that, before pasting the string into the "Connection String" box of MapForce, you will need to replace the asterisk ( * ) characters with the actual password.
6.2.1.4.2 Sample ADO.NET Connection Strings

To set up an ADO.NET connection, you need to select an ADO.NET provider from the database connection dialog box and enter a connection string (see also Setting up an ADO.NET Connection). Sample ADO.NET connection strings for various databases are listed below under the .NET provider where they apply.

.NET Data Provider for Teradata

This provider can be downloaded from Teradata website (https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata). A sample connection string looks as follows:

```
Data Source=ServerAddress;User Id=user;Password=password;
```

.NET Framework Data Provider for IBM i

This provider is installed as part of IBM i Access Client Solutions - Windows Application Package. A sample connection string looks as follows:

```
DataSource=ServerAddress;UserID=user;Password=password;DataCompression=True;
```

For more information, see the ".NET Provider Technical Reference" help file included in the installation package above.

.NET Framework Data Provider for MySQL

This provider can be downloaded from MySQL website (https://dev.mysql.com/downloads/connector/net/). A sample connection string looks as follows:

```
Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;
```


.NET Framework Data Provider for SQL Server

A sample connection string looks as follows:

```
Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User ID=dbuser;Password=dbpass
```

See also: https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

IBM DB2 Data Provider 10.1.2 for .NET Framework 4.0

```
Database=PRODUCTS;UID=user;Password=password;Server=localhost:50000;
```
Note: This provider is typically installed with the IBM DB2 Data Server Client package. If the provider is missing from the list of ADO.NET providers after installing IBM DB2 Data Server Client package, refer to the following technical note: https://www-01.ibm.com/support/docview.wss?uid=swg21429586.


Oracle Data Provider for .NET (ODP.NET)
The installation package which includes the ODP.NET provider can be downloaded from the Oracle website (see http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html). A sample connection string looks as follows:

```
Data Source=DSORCL;User Id=user;Password=password;
```

Where **DSORCL** is the name of the data source which points to an Oracle service name defined in the **tnsnames.ora** file, as described in Connecting to Oracle (ODBC).

To connect without configuring a service name in the **tnsnames.ora** file, use a string such as:

```
Data Source=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=host)(PORT=port)))
(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID)));User
Id=user;Password=password;
```

See also: https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

6.2.1.4.3 ADO.NET Support Notes

The following table lists known ADO.NET database drivers that are currently not supported or have limited support in MapForce.

<table>
<thead>
<tr>
<th>Database</th>
<th>Driver</th>
<th>Support notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>All databases</td>
<td>.Net Framework Data Provider for ODBC</td>
<td>Limited support. Known issues exist with Microsoft Access connections. It is recommended to use ODBC direct connections instead.</td>
</tr>
<tr>
<td></td>
<td>.Net Framework Data Provider for OleDb</td>
<td>Limited support. Known issues exist with Microsoft Access connections. It is recommended to use ADO direct connections instead.</td>
</tr>
<tr>
<td>Firebird</td>
<td>Firebird ADO.NET Data Provider</td>
<td>Limited support. It is recommended to use ODBC or JDBC instead.</td>
</tr>
<tr>
<td>Informix</td>
<td>IBM Informix Data Provider for</td>
<td>Not supported. Use DB2 Data Server</td>
</tr>
<tr>
<td>Database</td>
<td>Driver</td>
<td>Support notes</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Oracle</td>
<td>.Net Framework Data Provider for Oracle</td>
<td>Limited support. Although this driver is provided with the .NET Framework, its usage is discouraged by Microsoft, because it is deprecated.</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>-</td>
<td>No ADO.NET drivers for this vendor are supported. Use a native connection instead.</td>
</tr>
<tr>
<td>Sybase</td>
<td>-</td>
<td>No ADO.NET drivers for this vendor are supported.</td>
</tr>
</tbody>
</table>

### 6.2.1.5 Setting up an ODBC Connection

ODBC (Open Database Connectivity) is a widely used data access technology that enables you to connect to a database from MapForce. It can be used either as primary means to connect to a database, or as an alternative to native, OLE DB, or JDBC-driven connections.

To connect to a database through ODBC, first you need to create an ODBC data source name (DSN) on the operating system. This step is not required if the DSN has already been created, perhaps by another user of the operating system. The DSN represents a uniform way to describe the database connection to any ODBC-aware client application on the operating system, including MapForce. DSNs can be of the following types:

- System DSN
- User DSN
- File DSN

A System data source is accessible by all users with privileges on the operating system. A User data source is available to the user who created it. Finally, if you create a File DSN, the data source will be created as a file with the .dsn extension which you can share with other users, provided that they have installed the drivers used by the data source.

Any DSNs already available on your machine are listed by the database connection dialog box when you click ODBC connections on the ODBC connections dialog box.
ODBC Connections dialog box

If a DSN to the required database is not available, the MapForce database connection wizard will assist you to create it; however, you can also create it directly on your Windows operating system. In either case, before you proceed, ensure that the ODBC driver applicable for your database is in the list of ODBC drivers available to the operating system (see Viewing the Available ODBC Drivers).

To connect by using a new DSN:

1. Start the database connection wizard.
2. On the database connection dialog box, click ODBC Connections.
3. Select a data source type (User DSN, System DSN, File DSN).

To create a System DSN, you need administrative rights on the operating system, and MapForce must be run as administrator.

4. Click Add.
5. Select a driver, and then click User DSN or System DSN (depending on the type of the DSN you want to create). If the driver applicable to your database is not listed, download it from the database vendor and install it (see Database Drivers Overview).
6. On the dialog box that pops up, fill in any driver specific connection information to complete the setup.

For the connection to be successful, you will need to provide the host name (or IP address) of the database server, as well as the database username and password. There may be other optional connection parameters—these parameters vary between database providers. For detailed information about the parameters specific to
each connection method, consult the documentation of the driver provider. Once created, the DSN becomes available in the list of data source names. This enables you to reuse the database connection details any time you want to connect to the database. Note that User DSNs are added to the list of User DSNs whereas System DSNs are added to the list of System DSNs.

To connect by using an existing DSN:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Choose the type of the existing data source (User DSN, System DSN, File DSN).
4. Click the existing DSN record, and then click Connect.

To build a connection string based on an existing .dsn file:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select Build a connection string, and then click Build.
4. If you want to build the connection string using a File DSN, click the File Data Source tab. Otherwise, click the Machine Data Source tab. (System DSNs and User DSNs are known as “Machine” data sources.)
5. Select the required .dsn file, and then click OK.

To connect by using a prepared connection string:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select Build a connection string.
4. Paste the connection string into the provided box, and then click Connect.

6.2.1.5.1 Viewing the Available ODBC Drivers

You can view the ODBC drivers available on your operating system in the ODBC Data Source Administrator. You can access the ODBC Data Source Administrator (Odbcad32.exe) from the Windows Control Panel, under Administrative Tools. On 64-bit operating systems, there are two versions of this executable:

- The 32-bit version of the Odbcad32.exe file is located in the C:\Windows\SysWoW64 directory (assuming that C: is your system drive).
- The 64-bit version of the Odbcad32.exe file is located in the C:\Windows\System32 directory.

Any installed 32-bit database drivers are visible in the 32-bit version of ODBC Data Source Administrator, while 64-bit drivers—in the 64-bit version. Therefore, ensure that you check the database drivers from the relevant version of ODBC Data Source Administrator.
If the driver to your target database does not exist in the list, or if you want to add an alternative driver, you will need to download it from the database vendor (see Database Drivers Overview). Once the ODBC driver is available on your system, you are ready to create ODBC connections with it (see Setting up an ODBC Connection).

### 6.2.1.6 Setting up a JDBC Connection

JDBC (Java Database Connectivity) is a database access interface which is part of the Java software platform from Oracle. JDBC connections are generally more resource-intensive than ODBC connections but may provide features not available through ODBC.

**Prerequisites**

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application Options, see Java Settings; b) The JVM path found in the Windows registry; c) The JAVA_HOME environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
- The JDBC drivers from the database vendor must be installed. These may be JDBC drivers installed as part of a database client installation, or JDBC libraries (.jar files) downloaded separately, if available and supported by the database, see also Database Connection Examples.
The `CLASSPATH` environment variable must include the path to the JDBC driver (one or several .jar files) on your Windows operating system. When you install some database clients, the installer may configure this variable automatically. See also Configuring the `CLASSPATH`.

Connecting to SQL Server via JDBC with Windows credentials
If you connect to SQL Server through JDBC with Windows credentials (integrated security), note the following:

- The `sqljdbc_auth.dll` file included in the JDBC driver package must be copied to a directory that is on the system PATH environment variable. There are two such files, one for the x86 and one for x64 platform. Make sure that you add to the PATH the one that corresponds to your JDK platform. Also, make sure that you restart MapForce (or the program that runs the mapping, if applicable) after changing the environment variable.
- The JDBC connection string must include the property `integratedSecurity=true`. You can add this property from various places:
  - from the database connection wizard, see below
  - from the database component settings
  - if applicable, by editing the database connection string in generated Java code.

For further information, refer to [Microsoft JDBC driver for SQL Server documentation](https://docs.microsoft.com/en-us/sql/connect/jdbc/building-the-connection-url).

Setting up a JDBC connection
1. Start the database connection wizard.
2. Click JDBC Connections.
3. Optionally, enter a semicolon-separated list of .jar file paths in the "Classpaths" text box. The .jar libraries entered here will be loaded into the environment in addition to those already defined in the `CLASSPATH` environment variable. When you finish editing the "Classpaths" text box, any JDBC drivers found in the source .jar libraries are automatically added to the "Driver" list (see the next step).
4. Next to "Driver", select a JDBC driver from the list, or enter a Java class name. Note that this list contains any JDBC drivers configured through the CLASSPATH environment variable (see Configuring the CLASSPATH), as well as those found in the "Classpaths" text box.

The JDBC driver paths defined in the CLASSPATH variable, as well as any .jar file paths entered directly in the database connection dialog box are all supplied to the Java Virtual Machine (JVM). The JVM then decides which drivers to use in order to establish a connection. It is recommended to keep track of Java classes loaded into the JVM so as not to create potential JDBC driver conflicts and avoid unexpected results when connecting to the database.

5. Enter the username and password to the database in the corresponding boxes.
6. In the Database URL text box, enter the JDBC connection URL (string) in the format specific to your database type. The following table describes the syntax of JDBC connection URLs (strings) for common database types.

<table>
<thead>
<tr>
<th>Database</th>
<th>JDBC Connection URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firebird</td>
<td>jdbc:firebirdsql://&lt;host&gt;[:&lt;port&gt;]/&lt;database path or alias&gt;</td>
</tr>
<tr>
<td>IBM DB2</td>
<td>jdbc:db2://hostName:port/databaseName</td>
</tr>
<tr>
<td>IBM DB2 for i</td>
<td>jdbc:as400://[host]</td>
</tr>
</tbody>
</table>
### Database JDBC Connection URL

<table>
<thead>
<tr>
<th>Database</th>
<th>JDBC Connection URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Informix</td>
<td>jdbc:informix-sqli://hostName:port/databaseName:INFORMIXSERVER=myserver</td>
</tr>
<tr>
<td>MariaDB</td>
<td>jdbc:mariadb://hostName:port/databaseName</td>
</tr>
<tr>
<td>Microsoft SQL Server</td>
<td>jdbc:sqlserver://hostName:port;databaseName=name</td>
</tr>
<tr>
<td>MySQL</td>
<td>jdbc:mysql://hostName:port/databaseName</td>
</tr>
<tr>
<td>Oracle</td>
<td>jdbc:oracle:thin:@hostName:port:service</td>
</tr>
<tr>
<td>Oracle XML DB</td>
<td>jdbc:oracle:oci:@hostName:port:service</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>jdbc:postgresql://hostName:port/databaseName</td>
</tr>
<tr>
<td>Progress OpenEdge</td>
<td>jdbc:datadirect:openedge://host:port;databaseName=db_name</td>
</tr>
<tr>
<td>Sybase</td>
<td>jdbc:sybase:Tds:hostName:port/databaseName</td>
</tr>
<tr>
<td>Teradata</td>
<td>jdbc:teradata://databaseServerName</td>
</tr>
</tbody>
</table>

**Note:** Syntax variations to the formats listed above are also possible (for example, the database URL may exclude the port or may include the username and password to the database). Check the documentation of the database vendor for further details.

7. Click **Connect**.

### 6.2.1.6.1 Configuring the CLASSPATH

The **CLASSPATH** environment variable is used by the Java Runtime Environment (JRE) or the Java Development Kit (JDK) to locate Java classes and other resource files on your operating system. When you connect to a database through JDBC, this variable must be configured to include the path to the JDBC driver on your operating system, and, in some cases, the path to additional library files specific to the database type you are using.

The following table lists sample file paths that must be typically included in the **CLASSPATH** variable. Importantly, you may need to adjust this information based on the location of the JDBC driver on your system, the JDBC driver name, as well as the JRE/JDK version present on your operating system. To avoid connectivity problems, check the installation instructions and any pre-installation or post-installation configuration steps applicable to the JDBC driver installed on your operating system.

<table>
<thead>
<tr>
<th>Database</th>
<th>Sample CLASSPATH entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firebird</td>
<td>C:\Program Files\Firebird\Jaybird-2.2.8-JDK_1.8\jaybird-full-2.2.8.jar</td>
</tr>
<tr>
<td>IBM DB2</td>
<td>C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc.jar;C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc_license_cu.jar;</td>
</tr>
<tr>
<td>IBM DB2 for i</td>
<td>C:\jt400\jt400.jar;</td>
</tr>
<tr>
<td>Database</td>
<td>Sample CLASSPATH entries</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>IBM Informix</td>
<td>C:\Informix_JDBC_Driver\lib\ifxjdbc.jar;</td>
</tr>
<tr>
<td>Microsoft SQL Server</td>
<td>C:\Program Files\Microsoft JDBC Driver 4.0 for SQL Server\sqljdbc_4.0\enu\sqljdbc.jar</td>
</tr>
<tr>
<td>MariaDB</td>
<td>&lt;installation directory&gt;\mariadb-java-client-2.2.0.jar</td>
</tr>
<tr>
<td>MySQL</td>
<td>&lt;installation directory&gt;\mysql-connector-java-version-bin.jar;</td>
</tr>
<tr>
<td>Oracle</td>
<td>ORACLE_HOME\jdbc\lib\ojdbc6.jar;</td>
</tr>
<tr>
<td>Oracle (with XML DB)</td>
<td>ORACLE_HOME\jdbc\lib\ojdbc6.jar; ORACLE_HOME\LIB\xmlparserv2.jar; ORACLE_HOME\RDBMS\jlib\xdb.jar;</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>&lt;installation directory&gt;\postgresql.jar</td>
</tr>
<tr>
<td>Progress OpenEdge</td>
<td>%DLC%\java\openedge.jar; %DLC%\java\pool.jar;</td>
</tr>
<tr>
<td></td>
<td>Note: Assuming the Progress OpenEdge SDK is installed on the machine, %DLC% is the directory where OpenEdge is installed.</td>
</tr>
<tr>
<td>Sybase</td>
<td>C:\sybase\jConnect-7.0\classes\jconn4.jar</td>
</tr>
<tr>
<td>Teradata</td>
<td>&lt;installation directory&gt;\tdgssconfig.jar; &lt;installation directory&gt;\terajdbc4.jar</td>
</tr>
</tbody>
</table>

- Changing the CLASSPATH variable may affect the behavior of Java applications on your machine. To understand possible implications before you proceed, refer to the Java documentation.
- Environment variables can be user or system. To change system environment variables, you need administrative rights on the operating system.
- After you change the environment variable, restart any running programs for settings to take effect. Alternatively, log off or restart your operating system.

To configure the CLASSPATH on Windows 7:

1. Open the Start menu and right-click Computer.
2. Click Properties.
3. Click Advanced system settings.
4. In the Advanced tab, click Environment Variables.
5. Locate the CLASSPATH variable under user or system environment variables, and then click Edit. If the CLASSPATH variable does not exist, click New to create it.
6. Edit the variable value to include the path on your operating system where the JDBC driver is located. To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable, use the semi-colon separator (;).

To configure the CLASSPATH on Windows 10:

1. Press the Windows key and start typing "environment variables".
2. Click the suggestion **Edit the system environment variables**.
3. Click **Environment Variables**.
4. Locate the CLASSPATH variable under user or system environment variables, and then click **Edit**. If the CLASSPATH variable does not exist, click **New** to create it.
5. Edit the variable value to include the path on your operating system where the JDBC driver is located. To separate the JDBC driver path from other paths that may already be in the CLASSPATH variable, use the semi-colon separator ( ; ).

### 6.2.1.7 Setting up a PostgreSQL Connection

Connections to PostgreSQL databases can be set up either as native connections, or connections via ODBC, JDBC, and other drivers. The advantage of setting up a native connection is that no drivers are required to be installed on your system. Also, if you intend to deploy files for execution on a Linux or macOS server, no drivers are required to be installed on the target server as well.

If you prefer to establish a connection by means of a non-native driver, see the following topics:

- [Setting up a JDBC Connection](#)
- [Connecting to PostgreSQL (ODBC)](#)

Otherwise, if you want to set up a native connection to PostgreSQL, follow the steps below. To proceed, you need the following prerequisites: host name, port, database name, username, and password.

**To set up a native PostgreSQL connection:**

1. **Start the database connection wizard**.
2. Click **PostgreSQL Connections**.
3. Enter the host (localhost, if PostgreSQL runs on the same machine), port (typically 5432, this is optional), the database name, username, and password in the corresponding boxes.
4. Click **Connect**.

If the PostgreSQL database server is on a different machine, note the following:

- The PostgreSQL database server must be configured to accept connections from clients. Specifically, the `pg_hba.conf` file must be configured to allow non-local connections. Secondly, the `postgresql.conf` file must be configured to listen on specified IP address(es) and port. For more information, check the PostgreSQL documentation (https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html).
- The server machine must be configured to accept connections on the designated port (typically, 5432) through the firewall. For example, on a database server running on Windows, a rule may need to be created to allow connections on port 5432 through the firewall, from **Control Panel > Windows Firewall > Advanced Settings > Inbound Rules**.
6.2.1.8 Setting up a SQLite Connection

SQLite (https://www.sqlite.org/index.html) is a file-based, self-contained database type, which makes it ideal in scenarios where portability and ease of configuration is important. Since SQLite databases are natively supported by MapForce, you do not need to install any drivers to connect to them.

SQLite database support notes

- SQLite databases are supported in the MapForce BUILT-IN transformation language (either when you preview the mapping or when you run a MapForce Server execution file).
- SQLite databases are not supported in user-defined functions (UDF).
- On Linux, statement execution timeout for SQLite databases is not supported.
- Full text search tables are not supported.
- SQLite allows values of different data types in each row of a given table. In MapForce, all processed values must be compatible with the declared column type; therefore, run-time errors may occur if your SQLite database has row values which are not the same as the declared column type.
- If your mapping should write data to a SQLite database, and if you don't have the target database file already, you will need to create it separately. In this case, you can either create it with a tool such as DatabaseSpy (https://www.altova.com/databasespy) or download the SQLite command-line shell from the official website, and create the database file from the command line (see also Example: Mapping data from XML to SQLite). For complete reference to SQLite command syntax, refer to the official SQLite documentation.

6.2.1.8.1 Connecting to an Existing SQLite Database

To connect to an existing SQLite database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select SQLite, and then click Next.
3. Browse for the SQLite database file, or enter the path (either relative or absolute) to the database. The Connect button becomes enabled once you enter the path to a SQLite database file.
4. Click Connect.

6.2.1.9 Using a Connection from Global Resources

Altova Global Resources are portable references to files, folders, and databases. If you have already configured a database connection to be available as a Global Resource, you can reuse the connection at any time (even across different Altova applications). For more information, see Altova Global Resources.

To use a database connection from Global Resources:

1. Start the database connection wizard.
2. Click Global Resources. Any database connections previously configured as global resources are listed.
3. Select the database connection record, and click **Connect**.

**Tip:** To get additional information about each global resource, move the mouse cursor over the global resource.

### 6.2.1.10 Database Connection Examples

This section includes examples for connecting to a database from MapForce through ADO, ODBC, or JDBC. The ADO.NET connection examples are listed separately, see Sample ADO.NET Connection Strings. For instructions about establishing a native connection to PostgreSQL and SQLite, see Setting up a PostgreSQL Connection and Setting up a SQLite Connection, respectively.

Note the following:

- The instructions may differ if your Windows configuration, network environment and the database client or server software are not the same as the ones described in each example.
- For most database types, it is possible to connect using more than one data access technology (ADO, ADO.NET, ODBC, JDBC) or driver. The performance of the database connection, as well as its features and limitations will depend on the selected driver, database client software (if applicable), and any additional connectivity parameters that you may have configured outside MapForce.
6.2.1.10.1 Connecting to Firebird (JDBC)

This example illustrates how to connect to a Firebird database server through JDBC.

Prerequisites:

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application Options, see Java Settings; b) The JVM path found in the Windows registry; c) The JAVA_HOME environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
- The Firebird JDBC driver must be available on your operating system (it takes the form of a .jar file which provides connectivity to the database). The driver can be downloaded from the Firebird website (https://www.firebirdsql.org/). This example uses Jaybird 2.2.8.
- You have the following database connection details: host, database path or alias, username, and password.

To connect to Firebird through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to “Classpaths”, enter the path to the .jar file which provides connectivity to the database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the required .jar file is located at the following path: C:\jdbc\firebird\jaybird-full-2.2.8.jar. Note that you can leave the “Classpaths” text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH).
4. In the “Driver” box, select org.firebirdsql.jdbc.FBDriver. Note that this entry is available if a valid .jar file path is found either in the "Classpath" text box, or in the operating system’s CLASSPATH environment variable (see the previous step).
5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the highlighted values with the ones applicable to your database server.

   jdbc:firebirdsql://<host>[:<port>]/<database path or alias>

7. Click Connect.

6.2.1.10.2 Connecting to Firebird (ODBC)

This example illustrates how to connect to a Firebird 2.5.4 database running on a Linux server.

Prerequisites:

- The Firebird database server is configured to accept TCP/IP connections from clients.
- The Firebird ODBC driver must be installed on your operating system. This example uses the Firebird ODBC driver version 2.0.3.154 downloaded from the Firebird website (https://www.firebirdsql.org/).
- The Firebird client must be installed on your operating system. Note that there is no standalone installer available for the Firebird 2.5.4 client; the client is part of the Firebird server installation package. You can download the Firebird server installation package from the Firebird website (https://www.firebirdsql.org/), look for "Windows executable installer for full Superclassic/Classic or Superserver". To install only the client files, choose "Minimum client install - no server, no tools" when going through the wizard steps.
Important:

- The platform of both the Firebird ODBC driver and client (32-bit or 64-bit) must correspond to that of MapForce.
- The version of the Firebird client must correspond to the version of Firebird server to which you are connecting.

- You have the following database connection details: server host name or IP address, database path (or alias) on the server, user name, and password.

To connect to Firebird via ODBC:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select User DSN (or System DSN, if you have administrative privileges), and then click Add.

   Create an ODBC DSN

   Select a Driver and click on either User or System to determine what kind of DSN you want to create.

   Firebird/InterBase(r) driver

   User DSN  System DSN  Cancel

4. Select the Firebird driver, and then click User DSN (or System DSN, depending on what you selected in the previous step). If the Firebird driver is not available in the list, make sure that it is installed on your operating system (see also Viewing the Available ODBC Drivers).
5. Enter the database connection details as follows:

<table>
<thead>
<tr>
<th>Data Source Name (DSN)</th>
<th>Enter a descriptive name for the data source you are creating.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Database</strong></td>
<td>Enter the server host name or IP address, followed by a colon, followed by the database alias (or path). In this example, the host name is <code>firebirdserv</code>, and the database alias is <code>products</code>, as follows:</td>
</tr>
</tbody>
</table>

```
firbirdserv:products
```

Using a database alias assumes that, on the server side, the database administrator has configured the alias `products` to point to the actual Firebird (.fdb) database file on the server (see the Firebird documentation for more details).

You can also use the server IP address instead of the host name, and a path instead of an alias; therefore, any of the following sample connection strings are valid:

```
firebirdserver:/var/Firebird/databases/butterflies.fdb
127.0.0.1:D:\Misc\Lenders.fdb
```
If the database is on the local Windows machine, click **Browse** and select the Firebird (.fdb) database file directly.

<table>
<thead>
<tr>
<th>Client</th>
<th>Enter the path to the <strong>fbclient.dll</strong> file. By default, this is the bin subdirectory of the Firebird installation directory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Account</td>
<td>Enter the database user name supplied by the database administrator (in this example, <strong>PROD_ADMIN</strong>).</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the database password supplied by the database administrator.</td>
</tr>
</tbody>
</table>

6. Click **OK**.

**6.2.1.10.3 Connecting to IBM DB2 (JDBC)**

This example illustrates how to connect to an **IBM DB2** database server through JDBC.

**Prerequisites:**

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application **Options**, see **Java Settings**; b) The JVM path found in the Windows registry; c) The **JAVA_HOME** environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK. This example uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of MapForce.
- The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on your operating system. This example uses the JDBC driver available after installing the **IBM Data Server Client** version 10.1 (64-bit). For the JDBC drivers to be installed, choose a **Typical** installation, or select this option explicitly on the installation wizard.
If you did not change the default installation path, the required .jar files will be in the \Program Files\IBM\SQLLIB\java directory after installation.

- You need the following database connection details: host, port, database name, username, and password.

To connect to IBM DB2 through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. This examples refers to \Program Files\IBM\SQLLIB\java\db2jcc.jar. You may need to refer to the db2jcc4.jar driver, depending on the database server version. For driver compatibility, refer to IBM documentation (http://www-01.ibm.com/support/docview.wss?uid=swg21363866). Note that you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH).
4. In the "Driver" box, select com.ibm.db2.jdbc.DB2Driver. This entry becomes available only if a valid .jar file path was found either in the "Classpaths" text box, or in the operating system's CLASSPATH environment variable (see the previous step).
5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the **Database URL** text box. Make sure to replace the connection details with the ones applicable to your database server.

```
jdbc:db2://hostName:port/databaseName
```

7. Click **Connect**.

### 6.2.1.10.4 Connecting to IBM DB2 (ODBC)

This example illustrates how to connect to an IBM DB2 database through ODBC.

**Prerequisites:**

- IBM Data Server Client must be installed and configured on your operating system (this example uses IBM Data Server Client 9.7). For installation instructions, check the documentation supplied with your IBM DB2 software. After installing the IBM Data Server Client, check if the ODBC drivers are available on your machine (see Viewing the Available ODBC Drivers).
- Create a database alias. There are several ways to do this:
  - From IBM DB2 Configuration Assistant
  - From IBM DB2 Command Line Processor
  - From the ODBC data source wizard (for this case, the instructions are shown below)
- You have the following database connection details: host, database, port, username, and password.

**To connect to IBM DB2:**

1. Start the database connection wizard and select **IBM DB2 (ODBC/JDBC)**.
2. Click **Next**.
3. Select **ODBC**, and click **Next**. If prompted to edit the list of known drivers for the database, select the database drivers applicable to IBM DB2 (see Prerequisites), and click **Next**.
4. Select the IBM DB2 driver from the list, and then click **Connect**. (To edit the list of available drivers, click **Edit Drivers**, and then check or uncheck the IBM DB2 drivers you wish to add or remove, respectively.)
5. Enter a data source name (in this example, **DB2DSN**), and then click **Add**.

6. On the **Data Source** tab, enter the user name and password to the database.
7. On the **TCP/IP** tab, enter the database name, a name for the alias, the host name and the port number, and then click OK.
8. Enter again the username and password, and then click OK.
6.2.1.10.5  Connecting to IBM DB2 for i (JDBC)

This example illustrates how to connect to an IBM DB2 for i database server through JDBC.

Prerequisites:

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application Options, see Java Settings; b) The JVM path found in the Windows registry; c) The JAVA_HOME environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK. This example uses Oracle's OpenJDK 11.0 64-bit, and, consequently, the 64-bit version of MapForce.
- The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on your operating system. This example uses the open source Toolbox for Java/JTOpen version 9.8 (http://jt400.sourceforge.net/). After you download the package and unpack to a local directory, the required .jar files will be available in the lib subdirectory.
- You need the following database connection details: host, username, and password.

To connect to IBM DB2 for i through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. In this example, the required .jar file is at the following path: C:\jdbc\jtopen_9_8\jt400.jar. Note that you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH).
4. In the "Driver" box, select com.ibm.as400.access.AS400JDBCDriver. This entry becomes available only if a valid .jar file path was found either in the "Classpaths" text box, or in the operating system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password of the database user in the corresponding text boxes.
6. Enter the JDBC connection string in the Database URL text box. Make sure to replace host with the host name or IP address of your database server.
7. Click **Connect**.

### 6.2.1.10.6 Connecting to IBM DB2 for i (ODBC)

This example illustrates how to connect to an *IBM DB2 for i* database through ODBC.

**Prerequisites:**

- *IBM System i Access for Windows* must be installed on your operating system (this example uses *IBM System i Access for Windows V6R1M0*). For installation instructions, check the documentation supplied with your *IBM DB2 for i* software. After installation, check if the ODBC driver is available on your machine (see [Viewing the Available ODBC Drivers](#)).

- You have the following database connection details: the I.P. address of the database server, database user name, and password.

- Run *System i Navigator* and follow the wizard to create a new connection. When prompted to specify a system, enter the I.P. address of the database server. After creating the connection, it is recommended to verify it (click on the connection, and select **File > Diagnostics > Verify Connection**). If you get connectivity errors, contact the database server administrator.

**To connect to IBM DB2 for i:**

1. Start the database connection wizard.
2. Click **ODBC connections**.
3. Click **User DSN** (alternatively, click **System DSN**, or **File DSN**, in which case the subsequent instructions will be similar).

4. Click **Add**.

5. Select the **iSeries Access ODBC Driver** from the list, and click **User DSN** (or **System DSN**, if applicable).

6. Enter a data source name and select the connection from the System combo box. In this example, the data source name is **iSeriesDSN** and the System is **192.0.2.0**.

   ![Driver Selection Screen](image)

   - **Data source name:** `SeriesDSN`
   - **Description:** `System i Access for Windows ODBC data source`
   - **System:** `192.0.2.0`

**Note:** When adding an ODBC data source for an **IBM DB2 for i** database, a default flag is set which enables query timeouts. This setting must be disabled for MapForce to correctly load mapping files. To disable
the setting, select the **Performance** tab, click **Advanced**, and clear the **Allow query timeout** check box.

7. Click **Connection Options**, select **Use the User ID specified below** and enter the name of the database user (in this example, **DBUSER**).

![Connection Options](image)

8. Click **OK**. The new data source becomes available in the list of DSNs.

9. Click **Connect**.

10. Enter the user name and password to the database when prompted, and then click **OK**.

### 6.2.1.10.7 Connecting to IBM Informix (JDBC)

This example illustrates how to connect to an IBM Informix database server through JDBC.

**Prerequisites:**

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application **Options**, see [Java Settings](#); b) The JVM path found in the Windows registry; c) The `JAVA_HOME` environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
- The JDBC driver (one or several .jar files that provide connectivity to the database) must be available on your operating system. In this example, IBM Informix JDBC driver version 3.70 is used. For the driver's
You have the following database connection details: host, name of the Informix server, database, port, username, and password.

To connect to IBM Informix through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the required .jar file is located at the following path: C:\Informix_JDBC_Driver\lib\ifxjdbc.jar. Note that you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH).
4. In the “Driver” box, select com.informix.jdbc.IfxDriver. Note that this entry is available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH environment variable (see the previous step).
5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the highlighted values with the ones applicable to your database server.

```
jdbc:informix-sqli://hostName:port/databaseName:INFORMIXSERVER=myserver;
```
7. Click Connect.

6.2.1.10.8 Connecting to MariaDB (ODBC)

This example illustrates how to connect to a MariaDB database server through ODBC.

Prerequisites:

- The MariaDB Connector/ODBC (https://downloads.mariadb.org/connector-odbc/) must be installed.
- You have the following database connection details: host, database, port, username, and password.

To connect to MariaDB through ODBC:

1. Start the database connection wizard.
2. Select MariaDB (ODBC), and then click Next.
3. Select Create a new Data Source Name (DSN) with the driver, and choose MariaDB ODBC 3.0 Driver. If no such driver is available in the list, click Edit Drivers, and select any available MariaDB drivers (the list contains all ODBC drivers installed on your operating system).
4. Click Connect.
5. Enter name and, optionally, a description that will help you identify this ODBC data source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and then click **Test DSN**. Upon successful connection, a message box appears:
7. Click **Next** and complete the wizard. Other parameters may be required, depending on the case (for example, SSL certificates if you are connecting to MariaDB through a secure connection).

**Note:** If the database server is remote, it must be configured by the server administrator to accept remote connections from your machine's IP address.

### 6.2.1.10.9 Connecting to Microsoft Access (ADO)

A simple way to connect to a Microsoft Access database is to follow the wizard and browse for the database file, as shown in [Connecting to an Existing Microsoft Access Database](#). An alternative approach is to set up an ADO connection explicitly, as shown in this topic. This approach is useful if your database is password-protected.

It is also possible to connect to Microsoft Access through an ODBC connection, but it has limitations, so it is best to avoid it.

**To connect to a password-protected Microsoft Access database:**

1. Start the database connection wizard.
2. Click **ADO Connections**.
3. Click **Build**.
4. Select the **Microsoft Office 15.0 Access Database Engine OLE DB Provider**, and then click **Next**.
5. In the Data Source box, enter the path to the Microsoft Access file in UNC format, for example, `\myserver\mynetworkshare\Reports\Revenue.accdb`, where `myserver` is the name of the server and `mynetworkshare` is the name of the network share.

6. On the All tab, double click the Jet OLEDB:Database Password property and enter the database password as property value.

**Note:** If you are still unable to connect, locate the workgroup information file (System.MDW) applicable to your user profile, and set the value of the Jet OLEDB: System database property to the path of the System.MDW file.
6.2.1.10.10 Connecting to Microsoft SQL Server (ADO)

This example illustrates how to connect to a SQL Server database through ADO. These instructions are applicable when you use a native SQL Server provider such as SQL Server Native Client 11.0 and also when you use the Microsoft OLE DB Provider for SQL Server provider.

To connect to SQL Server:

1. Start the database connection wizard.
2. Select Microsoft SQL Server (ADO), and then click Next. The list of available ADO drivers is displayed. In this example, the SQL Server Native Client 11.0 is used as provider. You can also select the Microsoft OLE DB Provider for SQL Server provider.

3. Click Next. The Data Link Properties dialog box appears.
4. Select or enter the name of the database server, for example, **SQLSERV01**. If you are connecting to a named SQL Server instance, the server name looks like **SQLSERV01\SOMEINSTANCE**. To view the list of all servers on the network, expand the drop-down list.

5. If the database server was configured to allow connections from users authenticated on the Windows domain, select **Use Windows NT Integrated security**. Otherwise, select **Use a specific user name and password**, clear the **Blank password** check box, and enter the credentials in the relevant boxes.

6. Select the database to which you are connecting (in this example, **Nanonull**).
7. To test the connection at this time, click **Test Connection**. This is an optional, recommended step.

Even if the connection test is successful at this time, you must still persist the security info, see the next step.

8. Click the **All** tab, and change the **Persist Security Info** property to **True**.
6.2.1.10.11 Connecting to Microsoft SQL Server (ODBC)

This example illustrates how to connect to a SQL Server database through ODBC.

Prerequisites:

- Download and install the [Microsoft ODBC Driver for SQL Server](https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server) from the Microsoft website. This example uses [Microsoft ODBC Driver 17 for SQL Server](https://docs.microsoft.com/en-us/SQL/connect/odbc/download-odbc-driver-for-sql-server) to connect to a SQL Server 2016 database. You might want to download a different ODBC driver version, depending on the version of SQL Server where you want to connect. For information about ODBC driver versions supported by your SQL Server database, refer to the driver's system requirements.

To connect to SQL Server using ODBC:

1. Start the database connection wizard.

9. Click **OK**.
2. Click **ODBC Connections**.

3. Select **User DSN** (or **System DSN**, if you have administrative privileges), and then click **Add**.

4. Select the driver from the list. Note that the driver appears in the list only after it has been installed.

5. Click **User DSN** (or **System DSN** if you are creating a System DSN).

Creating a **System DSN** requires that MapForce be run as an administrator. Therefore, in order to create a **System DSN**, cancel the wizard, make sure that you run MapForce as an administrator, and perform the steps above again.

6. Enter a name and, optionally, a description to identify this connection, and then select from the list the SQL Server to which you are connecting (**SQLSERV01** in this example).
7. If the database server was configured to allow connections from users authenticated on the Windows domain, select **With Integrated Windows authentication**. Otherwise, select one of the other options, as applicable. This example uses **With SQL Server authentication**... , which requires that the user name and password be entered in the relevant boxes.
8. Optionally, select the Change the default database to check box and enter the name of the database to which you are connecting (in this example, Sandbox).
9. Click **Next** and, optionally, configure additional parameters for this connection.
10. Click **Finish**. A confirmation dialog box listing the connection details opens.
11. Click OK. The data source now appears in the list of User or System data sources, as configured, for example:

![ODBC Microsoft SQL Server Setup](image)

6.2.1.10.12 Connecting to MySQL (ODBC)

This example illustrates how to connect to a MySQL database server from a Windows machine through the ODBC driver. The MySQL ODBC driver is not available on Windows, so it must be downloaded and installed separately. This example uses MySQL Connector/ODBC 8.0.
Prerequisites:

- MySQL ODBC driver must be installed on your operating system. Check the MySQL documentation for the driver version recommended for your database server version (see https://dev.mysql.com/downloads/connector/odbc/).
- You have the following database connection details: host, database, port, username, and password.

If you installed MySQL Connector/ODBC for 64-bit platform, make sure to install MapForce for 64-bit platform as well.

To connect to MySQL via ODBC:

1. Start the database connection wizard.
2. Select MySQL (ODBC), and then click Next.

   ![Connecting to MySQL]

3. Select Create a new Data Source Name (DSN) with the driver, and select a MySQL driver. If no MySQL driver is available in the list, click Edit Drivers, and select any available MySQL drivers (the list contains all ODBC drivers installed on your operating system).

   If you installed MapForce 64-bit, then the 64-bit ODBC drivers are shown in the list. Otherwise, the 32-bit ODBC drivers are shown. See also Viewing the Available ODBC Drivers.

4. Click Connect.
5. In the Data Source Name box, enter a descriptive name that will help you identify this ODBC data source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a database, and then click **OK**.

**Note:** If the database server is remote, it must be configured by the server administrator to accept remote connections from your machine's IP address. Also, if you click **Details>>**, there are several additional parameters available for configuration. Check the driver's documentation before changing their default values.

6.2.1.10.13 Connecting to Oracle (JDBC)

This example shows you how to connect to an Oracle database server from a client machine, using the JDBC interface. The connection is created as a pure Java connection, using the **Oracle Instant Client Package (Basic)** available from the Oracle website. The advantage of this connection type is that it requires only the Java environment and the .jar libraries supplied by the Oracle Instant Client Package, saving you the effort to install and configure a more complex database client.

**Prerequisites:**

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you
may have set in application Options, see Java Settings; b) The JVM path found in the Windows registry; c) The JAVA_HOME environment variable.

- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
- The Oracle Instant Client Package (Basic) must be available on your operating system. The package can be downloaded from the official Oracle website. This example uses Oracle Instant Client Package version 12.1.0.2.0, for Windows 32-bit and, consequently, Oracle JDK 32-bit.
- You have the following database connection details: host, port, service name, username, and password.

To connect to Oracle through the Instant Client Package:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the required .jar file is located at the following path: `C:\jdbc\instantclient_12_1\ojdbc7.jar`. Note that you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH).
4. In the "Driver" box, select either `oracle.jdbc.OracleDriver` or `oracle.jdbc.driver.OracleDriver`. Note that these entries are available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH environment variable (see the previous step).
5. Enter the username and password to the database in the corresponding text boxes.

6. Enter the connection string to the database server in the Database URL text box, by replacing the highlighted values with the ones applicable to your database server.
7. Click **Connect**.

### 6.2.1.10.14 Connecting to Oracle (ODBC)

This example illustrates a common scenario where you connect from MapForce to an Oracle database server on a network machine, through an Oracle database client installed on the local operating system.

The example includes instructions for setting up an ODBC data source (DSN) using the database connection wizard in MapForce. If you have already created a DSN, or if you prefer to create it directly from the ODBC Data Source administrator in Windows, you can do so, and then select it when prompted by the wizard. For more information about ODBC data sources, see Setting up an ODBC Connection.

**Prerequisites:**

- The Oracle database client (which includes the ODBC Oracle driver) must be installed and configured on your operating system. For instructions on how to install and configure an Oracle database client, refer to the documentation supplied with your Oracle software.
- The `tnsnames.ora` file located in Oracle home directory contains an entry that describes the database connection parameters, in a format similar to this:

```
ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = server01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SID = orcl)
 (SERVER = DEDICATED)
)
)
```

The path to the `tnsnames.ora` file depends on the location where Oracle home directory was installed. For Oracle database client 11.2.0, the default Oracle home directory path could be as follows:

```
C:\app\username\product\11.2.0\client_1\network\admin\tnsnames.ora
```

You can add new entries to the `tnsnames.ora` file either by pasting the connection details and saving the file, or by running the Oracle Net Configuration Assistant wizard (if available).

**To connect to Oracle using ODBC:**

1. Start the database connection wizard.
2. Select **Oracle (ODBC / JDBC)**, and then click **Next**.
3. Select **ODBC**.

4. Click **Edit Drivers**.
5. Select the Oracle drivers you wish to use (in this example, **Oracle in OraClient11g_home1**). The list displays the Oracle drivers available on your system after installation of Oracle client.

6. Click **Back**.

7. Select **Create a new data source name (DSN) with the driver**, and then select the Oracle driver chosen in step 4.
Avoid using the Microsoft-supplied driver called Microsoft ODBC for Oracle driver. Microsoft recommends using the ODBC driver provided by Oracle (see http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx)

8. Click Connect.
9. In the Data Source Name text box, enter a name to identify the data source (in this example, **Oracle DSN 1**).

10. In the TNS Service Name box, enter the connection name as it is defined in the *tnsnames.ora* file (see [prerequisites](#)). In this example, the connection name is **ORCL**.

11. Click **OK**.

12. Enter the username and password to the database, and then click **OK**.

### 6.2.1.10.15 Connecting to PostgreSQL (ODBC)

This example illustrates how to connect to a PostgreSQL database server from a Windows machine through the ODBC driver. The PostgreSQL ODBC driver is not available on Windows, so it must be downloaded and installed separately. This example uses the psqLODBC driver (version 11.0) downloaded from the official website (see also [Database Drivers Overview](#)).
Note: You can also connect to a PostgreSQL database server directly (without the ODBC driver), see Setting up a PostgreSQL Connection.

Prerequisites:

- psqlODBC driver must be installed on your operating system.
- You have the following database connection details: server, port, database, user name, and password.

To set up a connection to PostgreSQL using ODBC:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select the User DSN option.
4. Click Create a new DSN and select the driver from the drop-down list. If no PostgreSQL driver is available in the list, make sure that the PostgreSQL ODBC driver is installed on your operating system, as mentioned in the prerequisites above.

5. Click User DSN.
6. Fill in the database connection credentials (these must be supplied by the database owner), and then click **Save**.

The connection is now available in the list of ODBC connections. To connect to the database, you can either double-click the connection or select it, and then click **Connect**.

---

### 6.2.1.10.16 Connecting to Progress OpenEdge (JDBC)

This example illustrates how to connect to a Progress OpenEdge 11.6 database server through JDBC.

**Prerequisites**

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application **Options**, see Java Settings; b) The JVM path found in the Windows registry; c) The **JAVA_HOME** environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
- The operating system's **PATH** environment variable must include the path to the **bin** directory of the JRE or JDK installation directory, for example `C:\Program Files (x86)\Java\jre1.8.0_51\bin`.
- The Progress OpenEdge JDBC driver must be available on your operating system. In this example, JDBC connectivity is provided by the `openedge.jar` and `pool.jar` driver component files available in `C:\Progress\OpenEdge\java` as part of the OpenEdge SDK installation.
- You have the following database connection details: host, port, database name, username, and password.
Connecting to OpenEdge through JDBC

1. **Start the database connection wizard**.
2. **Click JDBC Connections**.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the required .jar file paths are: `C:\Progress\OpenEdge\java\openedge.jar;C:\Progress\OpenEdge\java\pool.jar`. Note that you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also **Configuring the CLASSPATH**).
4. In the "Driver" box, select `com.ddtek.jdbc.openedge.OpenEdgeDriver`. Note that this entry is available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH environment variable (see the previous step).

![Database Connection Wizard](image)

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the highlighted values with the ones applicable to your database server.

   ```
 jdbc:datadirect:openedge://host:port;databaseName=dbname
   ```

7. **Click Connect**.
6.2.1.10.17 Connecting to Progress OpenEdge (ODBC)

This example illustrates how to connect to a Progress OpenEdge database server through the Progress OpenEdge 11.6 ODBC driver.

Prerequisites:

- The ODBC Connector for Progress OpenEdge driver must be installed on your operating system. The Progress OpenEdge ODBC driver can be downloaded from the vendor's website (see also Database Drivers Overview). Make sure to download the 32-bit driver when running the 32-bit version of MapForce, and the 64-bit driver when running the 64-bit version. After installation, check if the ODBC driver is available on your machine (see also Viewing the Available ODBC Drivers).

- You have the following database connection details: host name, port number, database name, user ID, and password.

Connecting to Progress OpenEdge through ODBC

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the subsequent instructions will be similar).
4. Click Add.
5. Select the **Progress OpenEdge Driver** from the list, and click **User DSN** (or **System DSN**, if applicable).

6. Fill in the database connection credentials (Database, Server, Port, User Name, Password), and then click **OK**. To verify connectivity before saving the entered data, click **Test Connect**.

7. Click **OK**. The new data source now appears in the list of ODBC data sources.
8. Click **Connect**.

### 6.2.1.10.18 Connecting to Sybase (JDBC)

This example illustrates how to connect to a Sybase database server through JDBC.

**Prerequisites:**

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application **Options**, see [Java Settings](#); b) The JVM path found in the Windows registry; c) The `JAVA_HOME` environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
- Sybase `jConnect` component must be installed on your operating system (in this example, `jConnect 7.0` is used, installed as part of the *Sybase Adaptive Server Enterprise PC Client* installation). For the installation instructions of the database client, refer to Sybase documentation.
- You have the following database connection details: host, port, database name, username, and password.
To connect to Sybase through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the required .jar file path is: C:sybase\jConnect-7_0\classes\jconn4.jar. Note that you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH).
4. In the "Driver" box, select com.sybase.jdbc4.jdbc.SybDriver. Note that this entry is available if a valid .jar file path is found either in the "Classpaths" text box, or in the operating system's CLASSPATH environment variable (see the previous step).
5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the highlighted values with the ones applicable to your database server.
7. Click Connect.
6.2.1.10.19 Connecting to Teradata (JDBC)

This example illustrates how to connect to a Teradata database server through JDBC.

Prerequisites:

- JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. This may be either Oracle JDK or an open source build such as Oracle OpenJDK. MapForce will determine the path to the Java Virtual Machine (JVM) from the following locations, in this order: a) The custom JVM path you may have set in application Options, see Java Settings; b) The JVM path found in the Windows registry; c) The JAVA_HOME environment variable.
- Make sure that the platform of MapForce (32-bit, 64-bit) matches that of the JRE/JDK.
- The JDBC driver (one or more .jar files that provide connectivity to the database) must be available on your operating system. In this example, Teradata JDBC Driver 16.20.00.02 is used. For more information, see https://downloads.teradata.com/download/connectivity/jdbc-driver.
- You have the following database connection details: host, database, port, username, and password.

To connect to Teradata through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In this example, the .jar files are located at the following path: C:\jdbc\teradata. Note that you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH environment variable of the operating system (see also Configuring the CLASSPATH).
4. In the "Driver" box, select com.teradata.jdbc.TeraDriver. Note that this entry is available if a valid .jar file path is found either in the "Classpath" text box, or in the operating system's CLASSPATH environment variable (see the previous step).
5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by replacing the highlighted value with the one applicable to your database server.

```
jdbc:teradata://databaseServerName
```

7. Click Connect.
6.2.1.10.20 Connecting to Teradata (ODBC)

This example illustrates how to connect to a Teradata database server through ODBC.

Prerequisites:

- The Teradata ODBC driver must be installed (see https://downloads.teradata.com/download/connectivity/odbc-driver/windows. This example uses Teradata ODBC Driver for Windows version 16.20.00.
- You have the following database connection details: host, username, and password.

To connect to Teradata through ODBC:

1. Press the Windows key, start typing "ODBC", and select Set up ODBC data sources (32-bit) from the list of suggestions. If you have a 64-bit ODBC driver, select Set up ODBC data sources (64-bit) and use 64-bit MapForce in the subsequent steps.

2. Click the System DSN tab, and then click Add.
3. Select **Teradata Database ODBC Driver** and click **Finish**.
4. Enter name and, optionally, a description that will help you identify this ODBC data source in future. Also, enter the database connection credentials (Database server, User, Password), and, optionally, select a database.

5. Click OK. The data source now appears in the list.
6. Run MapForce and start the database connection wizard.
7. Click ODBC Connections.
8. Click **System DSN**, select the data source created previously, and then click **Connect**.

Note: If you get the following error: "The driver returned invalid (or failed to return) SQL_DRIVER_ODBC_VER: 03.80", make sure that the path to the ODBC client (for example, \Program Files\Teradata\Client\16.10\bin, if you installed it to this location) exists in your system's PATH environment variable. If this path is missing, add it manually.

### 6.2.2 Introduction to Database Mappings

This section is an introduction to working with databases in MapForce. It shows you how to work with a database after the connection to it is successfully established (see Connecting to a Database). This includes selecting the database objects that you want to appear on the mapping, handling database relationships, and configuring the database settings applicable to the mapping process. Examples of how to achieve specific goals when mapping data to or from database components are also included.
6.2.2.1 Adding Databases to the Mapping

Before adding a database to the mapping, make sure to select a transformation language where database mappings are supported. This can be either the BUILT-IN transformation language, or any of the following languages: C++, C#, Java (see also Selecting a Transformation Language). Note that, if you intend to deploy the mapping to FlowForce Server or execute it with MapForce Server, or use features such as Bulk Transfer and stored procedures, BUILT-IN must be selected as transformation language.

Once the desired transformation language is selected, you can add a database to the mapping in one of the following ways:

- On the Insert menu, click Database.
- Click the Insert Database toolbar button.

When you take any of these actions, a database connection wizard appears, guiding you through the steps required to connect to the database.

Note: In some advanced scenarios, databases can also be added to the mapping as variables (see Using Variables). When you choose to add a database structure as a variable, the same database connection wizard mentioned above appears.
For instructions about setting up a connection to any of the databases supported by MapForce, see Connecting to a Database.

Once the database connection is successfully established, you are prompted to select the database objects that should appear on the mapping. See Adding, Editing, and Removing Database Objects for further information.

6.2.2.2 Example: Adding the "altova.mdb" Database to the Mapping

This example shows you how to add a sample Microsoft Access database to a mapping. The sample database is called altova.mdb and can be found in the <Documents>\Altova\MapForce2021\MapForceExamples folder. The altova.mdb database supports various database-related actions and concepts described in this documentation.

To add the altova.mdb database to the mapping:

1. On the Insert menu, click Database. Alternatively, click the Insert Database toolbar button.

2. Click Microsoft Access (ADO), and then click Next.
3. Browse for the **altova.mdb** file available in the `<Documents>\Altova\MapForce2021\MapForceExamples>` folder, and then click **Connect**.

4. When prompted to select the database objects, select **User Tables**.
6.2.2.3 Adding, Editing, and Removing Database Objects

Some databases can have a large number of objects (such as schemas, tables, views, and so on). This topic shows you how to get on the mapping only those database objects that are required for mapping purposes. Below, we will be using a sample Access database; the instructions are similar for other database types.

1. On the Insert menu, click Database.
2. Click Connection Wizard, and then click Microsoft Access (ADO).
3. Click Next, and browse for the altova.mdb available in the `<Documents>\Altova\MapForce2021\MapForceExamples` folder.

A dialog box appears, enabling you to select the database objects to be included into the mapping.

![Insert Database Objects dialog box](image)

The top node in the structure indicates the database connection. The subsequent structure varies depending on the database kind. For example, Oracle and IBM DB2 databases have a schema node under the connection node, while other database kinds have a catalog (database) node. Bold font indicates the default catalog (database) or schema, as applicable.

If your database user account has access to multiple databases or schemas on the server, you can switch to the required one by clicking the icon. The example below is illustrative of SQL Server; the structure may vary in other database kinds.
To include a database object (for example, a table) in the mapping, select the check box next to it. For the purpose of this example, select the check box next to User Tables.

The Object Locator button allows you to find specific database items. Select a particular object (or type its name) in the combo box which appears in the lower area of dialog box.

The Filter button allows you to filter objects by name. Once you click the Filter button, a filter icon is available next to objects which supports filtering (in this example, "Tables"). Click the filter icon to choose whether the object name should begin with, end with, be equal with, or contain the search text. Now you can enter the search text next to the filter (in this example, "A"): 

The Show checked objects only button displays those items where a check box is active.

The Add/Edit SELECT Statement button enables you to add or edit custom SELECT statements for the current database. The data returned by such statements then becomes available as mapping source. For more information, see SQL SELECT Statements as Virtual Tables.

The Add/Edit Relations button enables you to define local primary and foreign key relationships between fields in the database, in addition to those that may already be present. For more information, see Defining Local Relationships.

The Add/Edit Recordset Structures button applies for databases that support stored procedures. It is only enabled if a stored procedure is currently selected from the database tree. For more information, see Stored Procedures.
The **Show Preview** button enables you to quickly preview the data of the currently selected table or view. Note that you can also browse and query a database independently of the mapping process, by using the Database Browser. For more information, see [Browsing and Querying Databases](#).

The **Strip schema from table name** check box is enabled only for databases that support qualifying objects with a relative name. This is useful if you plan to switch to a different database later. For more information, see [Switching Databases and Schemas](#).

When you are ready to add the database objects to the mapping, click **OK**. Only the selected tables, views, etc. will appear on the database component, and you can draw mapping connections to or from them in the standard MapForce way.

To change at any time the database objects, right-click the component, and select **Add/Remove/Edit Database Objects**.
6.2.2.4 Switching Databases and Schemas

To change a database component on the mapping so that it uses a new database connection, open the data base component settings, click Change, and follow the wizard steps to connect to the new database. If you need to change only the database objects that are displayed on the mapping, right-click the title bar of the database component, and select Add/Edit/Remove Database Objects from the context menu, see also Adding, Editing, and Removing Database Objects.

Be aware that, by default, changing the database does not remap all existing mapping connections to or from the database component. With most database kinds, however, it is possible to preserve the mapping connections after switching a database, if you take some preparation steps as described in this topic.

When selecting database objects as described in Adding, Editing, and Removing Database Objects, you can optionally choose whether database object names should be considered as relative to a default schema. In the context of databases, a "schema" is a logical grouping of database objects, typically, for security purposes such as assigning permissions. Schemas have slightly different behavior depending on the database kind.

In MapForce, treating database objects names as relative to a schema is important if you plan to switch the mapping to a different database later (for example, to a production database). This is also useful if the database schema has been renamed on the server at some point, and so you need to update the mapping accordingly. If the new schema has the same structure as the one used at mapping design time, you can switch to it without having to change manually all mapping connections. This is possible only if you configure the object names to be relative to a default schema as described below.

Note the following:

- Using object names relative to a default schema is possible for those database types that support schemas: IBM DB2, IBM Informix, IBM Db2 for i (iSeries), Oracle, PostgreSQL, Progress OpenEdge, SQL Server and Sybase.
- This feature is supported starting with MapForce version 2020.
- It is not possible to use relative names if the database component includes local relationships or SELECT Statements as Virtual Tables.

To treat database objects names as relative to the default schema:

1. Right-click the title bar of the database component on the mapping, and select Add/Remove/Edit Database Objects from the context menu.
2. Select one or more objects that belong to the default schema, or to the default catalog (database) and schema, as applicable. The default database and schema are shown in bold. In the example below, the default catalog is Sandbox and the default schema is user. This structure is specific for SQL Server databases and may vary in other database kinds. For more information about the displayed structure, see Adding, Editing, and Removing Database Objects.
3. Select the **Use object names relative to default schema** check box. Note that this check box is grayed out if the database does not support relative object names.

If the objects that you require on the mapping are in a different schema (not the default one), you have the following alternatives:

- Connect as another database user that has access to the required default schema.
- Reconfigure the database server so as to change the default schema of the existing database user, provided that you have the required privileges.

Taking SQL Server as example, a database administrator could change the default schema of a database user with a statement such as the one below (which assumes the current catalog is "Sandbox" and both the user and the schema already exist).

```
USE [Sandbox]
GO
ALTER USER [test_user] WITH DEFAULT_SCHEMA=[test_schema]
GO
```

Database objects that are relative to the default schema are shown on the mapping with a relative name. Consider differences between the following two database components:
In the left component, the **Use object names relative to default schema** check box was selected, therefore, the table is shown with a relative name. In the right component, the check box was not selected, so the table name includes the schema name.

When database objects are referenced in a relative way, it becomes possible to switch the mapping to a new database or schema **without losing the mapping connections**, as follows:

- Open the **database component settings** and click **Change**. Follow the wizard steps to connect to the new database *as a new user*. If you have qualified the objects with a relative name, and if the new database has the same structure, then all the connections on the mapping will be updated automatically. Specifically, they will **now match the default catalog and schema of the new database user**.

- If you need to perform the switch on a recurrent basis, it is recommended to define the database connection as a **Global Resource**. For example, the Global Resource could have two configurations: a default one for the development database, and a production configuration. Assuming that both databases have the same structure, you can switch between databases by changing the required configuration from a drop-down list:

  For more information about this scenario, see [Example: Switch Databases](#).

If database objects appear in red after switching, this indicates that they do not exist in the new database schema.

### Code generation

The **Use object names relative to default schema** check box affects the generated C#, C++, or Java program code. When this check box is selected, all the database references become relative in the generated code also. The following is an example of a generated SQL statement (in C#) when the check box is not selected. Note that the table name includes the schema name.

```csharp
var3_NewStatement = (Altova.Db.Dbs.NewStatement(closure.var1_Connection_Instance, 1,
"SELECT [id], [val], [user_data] FROM [user].[table]");
```

The following is an example of a generated SQL statement (in C#) with the check box selected:

```csharp
var3_NewStatement = (Altova.Db.Dbs.NewStatement(closure.var1_Connection_Instance, 1,
"SELECT [id], [val], [user_data] FROM [table]");
```

**Note:** There is also a legacy way to strip schema names in generated code, by selecting the **Strip schema names from table names** check box from the **database component settings**. The legacy approach is supported only for backward compatibility and should be avoided.

### Handling Database Relationships

Relational databases, as their name implies, normally have relationships defined between their tables. Taking as example the **altova.mdb** database found in the folder
Several relationships exist in the Altova database, for example:

- The sample company (corresponding to the table "Altova") consists of one or more offices (for example, in Brenton and in Vereno). In database terminology, there is a one-to-many relationship between the "Altova" and "Office" tables. In other words, for each PrimaryKey record in "Altova" table there can be multiple ForeignKey records in the "Office" table. Any "Office" record where ForeignKey value corresponds to PrimaryKey value in "Altova" should therefore be considered an office of "Altova".
- Each office consists of one or several departments (for example, "Marketing", "IT", "Development"). Again, there is a one-to-many relationship between "Office" and "Department" tables.
- Finally, each department consists of one or several people. Hence, the one-to-many relationship between the "Department" and "Person" tables.

Table relationships in altova.mdb database (Microsoft Access "Relationships" view)

Relationships between database tables are important for mapping purposes. MapForce keeps track of such database relationships when you add a database to the mapping. This enables you to preserve the database relationships when mapping data to or from a database. To understand this concept better, add the altova.mdb database to the mapping (using the Insert | Database menu command). Let us call each of the tables below a "root" table:
Expanding a "root" table displays all related tables beneath it in a tree view. For example, if you expand the **Office** table, notice how the related table hierarchy is displayed:

- A left arrow (←) in front of a table denotes that this is a child table. For example, **Address** is a child of **Office**. **Department** is also a child of **Office**, as well as a "sibling" table of **Address**, so both have the same indentation level. As you can see, the relationship on the mapping corresponds to the "Relationships" diagram above.
- A right arrow (→) in front of a table denotes a parent table. For example, **Altova** is a parent of **Office**.
This hierarchical representation of tables helps you preserve the existing database relationships when your mapping reads from or writes to a database. For example, let's assume you want to get all the records from the Person table into an XML file, grouped by their department. Specifically, your XML file should link every person to a department, similar to the altova.mdb database used in this example:
As illustrated above, the "Administration" department has three people, "Marketing" has two people, "Engineering" has six people, etc.

When mapping data from this database, if you want every person to be distributed to the correct department, it is important that you use **Department** as "root" table, and then map from the **Person** table which is child of **Department**: 

<table>
<thead>
<tr>
<th>PrimaryKey</th>
<th>FirstName</th>
<th>Last</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vernon</td>
<td></td>
<td>Office Manag</td>
</tr>
<tr>
<td>2</td>
<td>Frank</td>
<td></td>
<td>Accounts Re</td>
</tr>
<tr>
<td>3</td>
<td>Matise</td>
<td></td>
<td>Accounting M</td>
</tr>
<tr>
<td>4</td>
<td>Joe</td>
<td></td>
<td>Marketing M</td>
</tr>
<tr>
<td>5</td>
<td>Susi</td>
<td></td>
<td>Art Directo</td>
</tr>
<tr>
<td>6</td>
<td>Fred</td>
<td></td>
<td>Program Mana</td>
</tr>
<tr>
<td>7</td>
<td>Michelle</td>
<td></td>
<td>Software En</td>
</tr>
<tr>
<td>8</td>
<td>Ted</td>
<td></td>
<td>Software En</td>
</tr>
<tr>
<td>9</td>
<td>Ann</td>
<td></td>
<td>Technical W</td>
</tr>
<tr>
<td>10</td>
<td>Liz</td>
<td></td>
<td>Software En</td>
</tr>
<tr>
<td>11</td>
<td>Paul</td>
<td></td>
<td>Software En</td>
</tr>
<tr>
<td>12</td>
<td>Alex</td>
<td></td>
<td>IT Manager</td>
</tr>
<tr>
<td>13</td>
<td>George</td>
<td></td>
<td>Web Develope</td>
</tr>
<tr>
<td>14</td>
<td>Jessica</td>
<td></td>
<td>Support Engi</td>
</tr>
<tr>
<td>15</td>
<td>Lui</td>
<td></td>
<td>Support Engi</td>
</tr>
</tbody>
</table>
The mapping above is a modified DB_Altova_Hierarchical.mfd from the <Documents>\Altova\MapForce2021\MapForceExamples folder. When you preview the mapping, the result is that each person is grouped by department, which was the intended behaviour. That is, "Administration" has three people, "Marketing" has two people, "Engineering" has six people, etc.
Now have a look at the slightly modified mapping below, where connections have been deliberately drawn so that both **Department** and **Person** are “root” tables.
This time, when you preview the mapping, all persons (regardless of their source department) are grouped under each target department, which was not the intended behaviour. That is, "Administration" has 21 people, "Marketing" has 21 people, "Engineering" has 21 people, etc.
In the second example, the database relationships are disregarded, due to the way the connections were made.

Therefore, when you want to preserve database relationships, make sure that connections are drawn to or from the same "root" table, which contains the child tables whose relationships you want to preserve. This works in the same way for both source and target databases. For examples of database mappings which preserve relationships, see the DB_Altova_Hierarchical.mfd and Altova_Hierarchical_DB.mfd files available in the <Documents>\Altova\MapForce2021\MapForceExamples\ folder (see also Inserting Data into Multiple Linked Tables).

There might also be cases when you do not want to preserve database relationships. For example, let's assume that you want to export all data from the altova.mdb database to a flat XML file adhering to the SQL/XML specification (Part 14 of the Structured Query Language (SQL) specification). This kind of mapping is illustrated by the DB_Altova_SQLXML.mfd sample, available in the <Documents>\Altova\MapForce2021\MapForceExamples\ folder. The goal of the mapping is to get database data as flat XML file. The target SQL/XML schema was generated with XMLSpy, using the Convert | Create XML Schema from DB Structure menu command.
As illustrated above, every database table has a corresponding element in the target XML. When you preview the mapping result, you can see that the actual database rows from each table are written to "row" elements in the target.
As the XML output shows, no hierarchies exist between the XML elements; it is a flat SQL/XML structure. The database relationships were ignored, because we intentionally mapped data from multiple "root" tables.

### 6.2.2.6 Defining Local Relationships

When database tables do not have explicitly defined relationships between them, you can define such relationships locally in MapForce. In particular, you can create, from MapForce, primary and foreign key
relationships between columns of different tables, without affecting the database in any way. Any database columns can be used as primary or foreign keys. Also, new relations can be created, in addition to those existing in the database. Locally defined relationships are saved together with the mapping.

These "on-the-fly" relationships are called **Local Relations** in MapForce. The following table lists all the possible fields between which you can define local relations. Mixed relationships are possible (for example, mapping the output of a stored procedure to a database column). The fields taking part in the relationship must have the same, or a compatible, data type.

<table>
<thead>
<tr>
<th>Primary/unique key</th>
<th>Foreign key</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Column of a database table or view</td>
<td>• Column of a database table or view</td>
</tr>
<tr>
<td>• Output parameter or return value of a stored procedure, see also <a href="#">Stored Procedures</a></td>
<td>• Input parameter of a stored procedure</td>
</tr>
<tr>
<td>• Column of a recordset returned by a stored procedure*</td>
<td>• Input parameter of a user-defined SELECT statement</td>
</tr>
<tr>
<td>• Column of a user-defined SELECT statement, see also <a href="#">SQL SELECT Statements as Virtual Tables</a></td>
<td></td>
</tr>
</tbody>
</table>

* Applicable if the stored procedure is called either as data source (without parameters) or as a function (with input and output parameters). In order for the recordset to become available for selection, you must execute the stored procedure once, to retrieve the recordset.

The **altova-no-relation.mdb** database used in this example is a simplified version of the **altova.mdb** database supplied with MapForce. The "Person" and "Address" tables, as well as all table relationships have been removed in Microsoft Access. As illustrated below, none of the tables visible in the **altova-no-relation** tree have any child tables; all tables are on the same "root" level. The content of each table is limited to the fields it contains.
The aim of the example is to display the offices of "Altova" and show the departments in each office. Note that, in the altova-no-relation.mdb, the primary and foreign key relationships do not exist explicitly, as mentioned above. They exist only logically (implicitly), so we will be re-creating them locally in MapForce to achieve the goal of the mapping.

Local relations can be defined while adding a database to the mapping, or by right-clicking an existing database component and selecting **Add/Remove/Edit Database Objects** from the context menu, as illustrated in the steps below.

1. On the **Insert** menu, click **Database**.
2. In the connection wizard, click **Microsoft Access (ADO)**, and then click **Next**.
3. Browse for the altova-no-relation.mdb database available in the \Documents\Altova\MapForce2021\MapForceExamples\Tutorial\ folder, and click **Connect**.
4. Select the **User Tables** check box.
5. Click the **Add/Edit Relations** button in the icon bar.
6. The "Add/Edit Table Relations" dialog box opens. Click **Add Relation**.

7. Select values from the two drop-down lists so as to create a primary and foreign key relationship between the "Altova" and "Office" tables, as illustrated below. The two drop-down lists allow you to select the tables or database objects you want to create relations for. The left list specifies the object which stores the primary/unique key, while the right one specifies the foreign key object. The Primary/Unique Key object will be the parent object in MapForce, and the Foreign Key object will be shown as child in the database component (see also **Handling Database Relationships**).
8. Click **OK** to complete the local relation definition, and then click the **Insert** button to insert the database into the mapping area.

At this stage, you have created a local relationship between the **PrimaryKey** column of the "Altova" table and the **ForeignKey** column of the "Office" table. As illustrated below, the "Altova" root table is now a parent to the "Office" table. Namely, the Office table is shown as a related table below the Altova table with its own expand icon.

However, the mapping goal is not yet complete. To complete the mapping goal, use the same method to create a relationship between the **Office** and **Department** tables, as shown below.
To open again the "Add/Edit Relations" dialog box, right-click the database component, and select **Add/Remove/Edit Database Objects** from the context menu.

Finally, add the target schema to the mapping as follows:

1. On the **Insert** menu, click **Insert XML Schema/File**.
2. Browse for the *Altova_Hierarchical.xsd* file available in the `<Documents>\Altova\MapForce2021\MapForceExamples` folder. When prompted to supply a sample XML file, click **Skip**. When prompted to select a root element, select "Altova".

Notice that, in order to preserve relationships between tables in the target XML, all connections were drawn from the same "root" table, hierarchically (in this case, "Altova"). For more information, see [Handling Database Relationships](#).
Having defined the mapping as shown above, click the **Output** tab, to preview the result. The mapping result shows the department elements nested under each respective office, which was the intended goal of this mapping.
6.2.2.7 Executing Mappings Which Modify Databases

When a mapping modifies database data in any way (for example, by inserting, updating, or deleting records), the changes are applied to the database by the engine that executes the mapping. The engine that executes the mapping can be MapForce, MapForce Server (both standalone or under FlowForce Server management), or the execution environment of the code generated for C++, C#, or Java.

When you preview the mapping result directly in MapForce (by clicking the Output tab), an update script is displayed. The script is not actually executed against the database until you take this action explicitly; it is available for preview only.
The following SQL statements are only for preview and may not be executed in another SQL query tool. To execute these statements use function "Run SQL-script" from menu "Output".

Connect to database using the following connection-string:

```
Data Source=C:\Users\altova\Documents\Altova\MapForce\MapForceExamples\AltovaTarget.mdb;Provider=Microsoft.Jet.OLEDB.4.0
```

-- begin transaction

```
DELETE FROM [Address]
DELETE FROM [Person]
DELETE FROM [Department]
DELETE FROM [Office]
DELETE FROM [Altova]
```

```
SELECT IF(MAX([Altova] [PrimaryKey]) IS NULL, 0, MAX([Altova] [PrimaryKey]))+1 AS [PrimaryKey] FROM [Altova]
```

--->>> %PrimaryKey1%

```
INSERT INTO [Altova]([Name], [PrimaryKey]) VALUES ('Organization Chart', '%PrimaryKey1%')
```

Output preview of a mapping which modifies a database (Altova_Hierarchical_DB.mfd)

The script shows pseudo-SQL statements just for information purpose; it does not directly reflect the statements that are to be executed. For example, if multiple actions are defined against a table (such as "Update if... Insert Rest"), only the first action is shown in the preview, since the second action is executed conditionally.

The pseudo-SQL script must not be manually applied to the database using SQL tools other than the execution engines mentioned above. The script may contain formatting of values not "understood" by external SQL editors.

If you want to apply the mapping changes to the database directly from MapForce, click the Run SQL-Script command available in the Output menu. Remember that this action will actually modify the database with immediate effect.

When the mapping is executed with MapForce Server (both standalone or under FlowForce Server management), the changes to the database are applied with immediate effect. The same happens in the generated code: the database changes are applied when you compile and run the code (for example, by clicking the Run command in Visual Studio).

Your MapForce installation includes several example databases (Microsoft Access or SQLite files) available in the `<Documents>\Altova\MapForce2021\MapForceExamples` folder. It is advisable not to apply database changes from MapForce, using the Run SQL-Script command, against any of the example databases supplied with MapForce; this may render the examples unusable. A simple way to avoid overriding original data is to back up the entire `<Documents>\Altova\MapForce2021\MapForceExamples` folder before updating any files in it.

For information about running mappings in execution environments other than MapForce, see:
6.2.2.8 Replacing Special Characters

When transforming database data, you might need to remove specific special characters, such as the carriage return/line feed (CR/LF) characters, from the data source. To achieve this, you can use any of the following approaches:

1. Define a node function for the specific database field (or even multiple fields) that you need to process. The node function will receive the value of the database field as input, apply to it some processing, and then return the outcome to the mapping. For more information about this technique, see Defaults and Node Functions.

2. Process database values with the help of MapForce built-in functions. For example, to identify specific characters, including control characters, you can use the `char-from-code` function from the "core" library. To replace values, use the `replace` function from the "lang" library.

This topic illustrates the second approach. The database used in this example is Microsoft Access but the same strategy can be applied with other database types as well.

Consider a Microsoft Access database consisting of a table "Lines" which has two columns: "ID" and "Description".

The goal is to extract each description to a CSV file (one description per line); therefore, a mapping to achieve this goal could look as follows:

However, because each "Description" row in Access contains multiple lines separated by CR/LF characters, the mapping output includes line breaks also, which is not the intended result:
To overcome this problem, we are going to add to the mapping the `char-from-code` and `replace` functions from the MapForce built-in library (see also Add a Function to the Mapping). Every description must be processed so that, whenever the characters above are encountered, they should be replaced by a space character.

In the Unicode chart (http://www.unicode.org/charts/), the LF and CR characters correspond to `hex 0A | dec 10` and `hex 0D | dec 13` characters, respectively. Therefore, the mapping has to be modified to convert the decimal Unicode values 13 and 10 to a string, so as to allow further processing by the `replace` function.

If you preview the mapping now, notice that the CR/LF characters within each database field have been replaced by a space.

6.2.2.9 Handling Null Values

To check at mapping runtime whether a database field is null, use the `is-null` and `is-not-null` MapForce library functions. To see from MapForce if a table has null fields, query it using the Database Browser (see Browsing and Querying Databases).

To set a database field to null, use the `set-null` function.
To replace null database values with a string, use the `substitute-null` function. A sample mapping that illustrates this is `DB_ApplicationList.mfd` available in the `<Documents>`\Altova\MapForce2021\MapForceExamples\ folder.

For information about handling NULL value comparisons in mappings which update databases, see Handling Nulls in Database Table Actions.

For information about handling nulls when mapping database to or from XML documents, see Nil Values / Nillable.

### 6.2.2.10 Generating Sequential and Unique Values

When inserting data or updating a database, sometimes you might need to create “on-the-fly” sequential or unique values for those database fields which do not have any input from the mapped source. For such cases, use the following built-in MapForce library functions:

- **auto-number** (available in the "core | generator functions" library). This function is generally used to generate primary key values for a numeric field.
- **create-guid** (available in the "lang | generator functions" library). This function creates a globally-unique identifier (as a hex-encoded string) for the specific field.

Note that values for database fields can also be written using database-generated values. This option is available on the Database Table actions dialog box (see Database Table Actions Settings) and is particularly useful when generating primary keys.

### 6.2.2.11 SQL Auto-Completion Suggestions

When you type SQL statements in certain contexts, MapForce may suggest text entries automatically. Auto-completion is available in the following contexts:

- SQL Editor (see Browsing and Querying Databases)
- "Custom SQL" text box in the "Database Table Actions" dialog box (see Database Table Actions Settings)
- "Enter a SQL SELECT statement" dialog box (see Creating SELECT Statements)

**Auto-completion**

Use the **Up** and **Down** keyboard keys to navigate through the list of suggestions. To pick a suggested entry, click it or press **Enter**.

**To disable auto-completion suggestions:**

1. On the **Tools** menu, click **Options** (or press **Ctrl+Alt+O**).
2. Under **Database**, click **SQL Editor**.
3. Under **Entry Helpers**, clear the **Automatically open** check box.
To invoke auto-completion suggestions manually as and when required:

- Press **Ctrl+Space**.

### 6.2.2.12 Database Component Settings

After you add a database component to the mapping area, you can configure the settings applicable to it from the Component Settings dialog box. You can open the Component settings dialog box in one of the following ways:

- Select the component on the mapping, and then, on the **Component** menu, click **Properties**.
- Double-click the component title bar.
- Right-click the component, and then click **Properties**.

**Database Component Settings dialog box**

The available settings are as follows.

**Database**

This group displays database connection information. Click **Change** to select a different database, or to redefine the database objects in the existing database component. Connectors to tables of the same name will
be retained. You can also change the tables in the component, by right-clicking a database component and selecting **Add/Remove/Edit Database Objects**.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Specifies the name of the current data source. For file-based databases, this can be a path on the file system. Use this setting to determine whether a file-based database was added to the mapping using an absolute or relative path. In case of relative paths, &quot;Data Source&quot; contains a path; in case of absolute paths, it contains just the database filename.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>Specifies the name of the connection. This name is generated automatically by MapForce. Typically it is the same as the data source name, but it may also be a so-called &quot;alias&quot; name if you are connecting with <a href="https://www.altova.com/globalresources">Altova Global Resources</a>. If there are multiple database components with the same connection name on the mapping, then the name will take the form &quot;&lt;connection1&gt;&quot;, &quot;&lt;connection2&gt;&quot;, etc.</td>
</tr>
<tr>
<td>Database Kind</td>
<td>Specifies the kind of the database.</td>
</tr>
<tr>
<td>Connection String</td>
<td>Displays the current database connection string. This read-only field is generated based on the information you supply when creating or changing the database connection.</td>
</tr>
</tbody>
</table>

**Login Settings**

The login settings are used for all code generation targets and the built-in execution engine.

<table>
<thead>
<tr>
<th>User</th>
<th>Enables you to change the user name for connecting to the database. Mandatory if the database requires a user name to connect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>Enables you to change the password for connecting to the database. Mandatory if the database requires a password to connect.</td>
</tr>
</tbody>
</table>

**JDBC-Specific Settings**

These settings are used to connect to the database if the mapping contains a JDBC connection and is executed by generated Java code or by MapForce Server.

**Note:** ADO, ADO.NET, and ODBC connections are converted to JDBC (and the JDBC settings below apply) when the mapping is run on a Linux or macOS machine, see [Database mappings in various execution environments](https://www.altova.com/).
**Database URL**
URL of the currently selected database. Make sure that this entry conforms to the JDBC driver syntax, of the specific driver entered in the JDBC-driver field.

**ADO/OLEDB-Specific Settings**
These settings are used to connect to the database if the mapping contains an ADO connection and it is executed by generated C# or C++ code, or by MapForce Server running on Windows, see [Database mappings in various execution environments](#). The **Data Source** and **Catalog** settings are not used by the built-in execution engine.

- **Data Source**
  Displays the name of the ADO data source.

- **Catalog**
  Displays the name of the ADO catalog.

- **Provider**
  Displays the currently active provider for the database component.

- **Add. Options**
  Displays any additional database options.

**Generation settings**
Generation settings apply to all code generation targets as well as the built-in execution engine.

- **Strip schema names from table names**
  Allows you to strip database schema names from generated code, only retaining the table names for added flexibility.

  Note that this option works only for SQL Select statements generated by MapForce. User-defined SQL-Statements, when creating virtual tables, will not be modified.

  This option is supported for backward compatibility and should be avoided. To treat database object names as relative to the default schema, use the approach described in [Switching Databases and Schemas](#).

**Timeout for statement execution**
When a database is used as a target component, execution timeouts can occur due to server availability, traffic, long-running triggers, and other factors. This setting allows you to define how long the timeout period can be before the database connection is closed. The setting takes effect when querying database data as well as in generated C#, Java, and C++ code.

- **Timeout**
  Defines the time period, in seconds, that the execution engine must wait for a database response before aborting the execution of the database statement. The default setting for the execution timeout is 60 seconds.

- **Infinite**
  When enabled, this option instructs the execution engine to never time out.
Note: Timeout for statement execution is not applicable to SQLite databases.

Database transaction handling

| Use transactions | Enables transaction processing when using a database as a target. Transaction processing is enabled for all tables of the database component when you select this option. For more information, see Handling Database Exceptions. |

Traces

| Trace level | Applicable for target database components. When tracing is enabled, the actions performed by the mapping against the database are logged in a trace file. You can choose to log all actions, only errors, or disable tracing completely. For more information, see Database Tracing and Error Logging. |
| Trace file | Specifies the file to which database trace information will be written when the mapping runs. The trace file is in XML format, see Trace File Structure. This path can be either absolute or relative, and is influenced by the Save all file paths relative to MFD file checkbox. |

Save all file paths relative to MFD file

When this option is enabled, MapForce saves the file paths displayed on the Component Settings dialog box relative to the location of the MapForce Design (.mfd) file. Use relative paths if you intend to run the mapping with MapForce Server on a different operating system. See also Using Relative Paths on a Component.

6.2.3 Mapping Data to Databases

This section provides instructions and examples for transferring data from any mapping source supported by MapForce (for example, an XML file) to a target database. Use the following roadmap for a summary of available options.

I want to...	Read this topic...
I want to...	Read this topic...
Insert data into a target database table based on data supplied by the mapping...	• Inserting Data into a Table
Control how primary key values are to be created...	• Inserting Data into a Table
Run a "preliminary" SQL statement to be executed before a table is modified by the mapping (for example, delete all records in the table, or a custom SQL statement)...	• Inserting Data into Multiple Linked Tables
	• Database Table Actions Settings
I want to... | Read this topic...
---|---
Preserve the hierarchical relationship of records in tables linked by foreign keys... | Inserting Data into Multiple Linked Tables
Update a table conditionally... | Updating a Table
Merge records into a database table (update some records, and also insert some other records into the same table), based on a condition... | "Update if... Insert Rest" Action, MERGE statements
Preserve database integrity when updating tables that are linked to other tables through foreign key relationships... | Options for Child Tables When Updating a Parent Table
Define multiple actions against the same table (for example, delete a record if a condition is satisfied, otherwise insert a new record)... | "Delete if..." Action, "Ignore if..." Action
Preserve data integrity in case of failed mapping execution... | Handling Database Exceptions
Insert multiple records into a database table in bulk (combine multiple INSERT statements in one query)... | Bulk Inserts (MapForce Server)
Avoid undesired results when mapping data to target database tables that contain null values... | Handling Nulls in Database Table Actions
View an example of how to create a mapping which updates a database. | Example: Mapping Data from XML to SQLite

6.2.3.1 Inserting Data into a Table

A mapping can insert data into a database table from any of the source components supported by MapForce, including other databases. You can flexibly configure how the primary key of newly inserted records should be created. For example, the primary key can be taken from the mapping, generated by the database, or calculated based on existing key values in the database table.

This example shows you how to insert new records into an existing database table from an XML file. You will also configure how the primary key is to be generated. The example uses the following files:

- altova-cmpy.xml — contains the source data to be inserted into the database.
- Altova_Hierarchical.xsd — the schema used to validate the instance file above.
- altova.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2021\MapForceExamples> folder. Below, the complete path to them will be omitted, for simplicity.
The goal of the mapping is to insert companies found in the **Altova-cmpy.xml** as new records in the "Altova" table of the **altova.mdb** database. If you open the source XML file, you will notice that it contains only one company, called "Microtech OrgChart". Therefore, the mapping must add a new record to the "Altova" table with the name "Microtech OrgChart". Also, a new primary key must be generated for it.

To achieve the mapping goal, we will take the steps below.

**Step 1: Insert the source XML component**
- On the **Insert** menu, click **XML Schema/File**, and browse for **Altova_Hierarchical.xsd**. When prompted to supply an instance file, browse for **Altova-cmpy.xml**.

**Step 2: Insert the target database**
- On the **Insert** menu, click **Database**, and go through the wizard steps to connect to **altova.mdb** (see Example: Adding the "altova.mdb" Database to the Mapping).

**Step 3: Draw the connections**
- Draw the mapping connections as shown below.

```
Note: If unwanted connections are automatically drawn for descending items, the option "Auto-connect children" is active. In this case, to undo the last action, select the menu option Edit | Undo. To disable the auto-connect option, select the menu option Connection | Auto-connect matching children.
```

**Step 4: Configure the Insert action**
1. On the target component, notice the **Action: Insert** button. This button appears for each table that has a connection from the mapping (in this case, the "Altova" table). Click this button to configure in more detail the database action to be executed (in this case, the insert action). The Database Table Actions dialog box appears.
2. In the Database Table Actions dialog box, under **Insert All**, next to **PrimaryKey**, select the \texttt{max()} + 1 option.
The options available in this list have the following meaning:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapped value</td>
<td>Allows source data to be mapped to the database field directly, and is the standard setting for all database fields. It is also possible to use a stored procedure to supply a key value by defining a relation, see <a href="#">Using Stored Procedures to Generate Keys</a>.</td>
</tr>
<tr>
<td>max() + 1</td>
<td>Generates the key values based on the existing keys in the database. For example, if the table has three records, with primary keys 1, 2, and 3, then \textbf{max()} + 1 is 4. In this example, the &quot;Altova&quot; table has only one record with primary key 1, so \textbf{max()} + 1 is 2, which is the expected value of the new primary key.</td>
</tr>
<tr>
<td>DB-generated</td>
<td>The database uses the \textit{Identity function} to generate key values.</td>
</tr>
</tbody>
</table>

The option \textbf{mapped value} next to "Name" signifies that this column will get the value directly from the mapping. For reference to other options available on the Database Table Actions dialog box, see [Database Table Actions Settings](#).

Step 5: Preview the mapping and update the database

Click the \textbf{Output} tab to preview the mapping. A SQL script is generated, containing actions to be executed against the database. The script has not modified the database yet; it is only for preview.

```
/*
The following SQL statements are only for preview and may not be executed in another SQL query tool
To execute these statements use function "Run SQL-script" from menu "Output".
Connect to database using the following connection-string:
Data Source=\Webs\00Documentation\Public\ExampleFiles\EMMapForce09\InsertAltova.mdb;Provider=Microsoft.Jet.OLEDB.4.0 */

SELECT IFNULL(MAX([Altova].[PrimaryKey]) IS NULL, MAX([Altova].[PrimaryKey]))+1 AS [PrimaryKey] FROM [Altova]
----------- %PrimaryKey1%

INSERT INTO [Altova] ([Name], [PrimaryKey]) VALUES ("Microtech OrgChart", %PrimaryKey1%)
```

To run the script against the database:
On the **Output** menu, click **Run SQL-Script**.

**Note:** Running the SQL script directly from MapForce is just one of the ways to update the database, see also Executing Mappings Which Modify Databases.

To see the result, open the **altova.mdb** database in DatabaseSpy or Access. Notice that a new "Microtech OrgChart" record has been added to the "Altova" table with the new primary key 2. The data for this record originated in the input XML instance.

You have now finished creating a mapping which inserts data into a database table. For a mapping example which inserts data both into the current table and a dependent child table, see Inserting Data into Multiple Related Tables.

### 6.2.3.2 Inserting Data into Multiple Linked Tables

A database table may be a "parent" table; that is, it might be referred by other tables in the database through foreign key relationships. In such scenarios, you can configure the mapping to insert records not only into the parent table, but also into dependent child tables. For example, when inserting a new "company" record into a database table, you can also insert records for offices linked to this company, as well as their children departments, people, and so on.

This example shows you how to insert data into several tables while preserving the database relationships. It is a slightly more elaborate version of the previous example, Inserting Data into a Table. The example is accompanied by a sample mapping, and it uses the following files:

- **Altova_Hierarchical.mfd** — the actual mapping file.
- **Altova_Hierarchical.xml** — contains the source data to be inserted into the database.
- **Altova_Hierarchical.xsd** — the schema used to validate the instance file above.
- **AltovaTarget.mdb** — the target database to be updated.

All files are available in the `<Documents>\Altova\MapForce2021\MapForceExamples\` folder. Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to back up the original database and start with a new copy before following the steps below. This ensures that the original examples are not overridden and that you get the same results as below. For more information, see Executing Mappings Which Modify Databases.
The goal of the mapping is to replace data in the target database (AltovaTarget.mdb) with data from a source XML file. The XML file structure roughly corresponds to the hierarchical structure of tables in the database. It is an organization chart, structured as follows: the top element is a company which contains two offices. Each office contains departments, and each department contains people. The same hierarchy exists in the AltovaTarget.mdb, where the "Altova" table corresponds to the company. This table is linked, through a foreign key relationship, to records in the "Office" table. Likewise, the "Office" links to "Department", and "Department" links to "Person". To view a relationship diagram of the AltovaTarget.mdb database, open it in the "Relationships" view of Access (see also Handling Database Relationships).

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component
- On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd. When prompted to supply an instance file, browse for Altova_Hierarchical.xml.

Step 2: Insert the target database
- On the Insert menu, click Database, and go through the wizard steps to connect to AltovaTarget.mdb. The instructions for connecting to this database are the same as for altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

Step 3: Draw the connections
- Draw the mapping connections as shown below. Notice that the primary and foreign keys are not mapped; they will be generated on the fly, as shown below.
Note: If unwanted connections are automatically drawn for descending items, the option “Auto-connect children” is active. In this case, to undo the last action, select the menu option Edit | Undo. To disable the auto-connect option, select the menu option Connection | Auto-connect matching children.

Step 4: Configure the Insert actions

1. On the target component, click the Action: Insert (Action) button next to the “Altova” table and configure the max() + 1 setting of the primary key as shown below. This setting was explained in more detail in the previous example, see Inserting Data into a Table.

![Diagram of database and target components with connections and actions configured.](image-url)
Also, notice that the DELETE all records option is enabled. This clears all existing records from the table, before new ones are entered, which is the desired behavior in this example. If you disable this option, new records (with a new primary key) will be added to the database in addition to existing ones, every time you run the mapping, which is not the desired behaviour.

For the scope of this example, the option also delete all records from child tables is also enabled. This ensures that not only records from the "Altova" table are deleted, but also all records in tables that are linked to "Altova" table through a foreign key relationship. If the child tables have their own child tables, those will also be deleted, and so on, down to the last table in the dependency tree. If you attempted to delete only records from the root "Altova" table, this would violate the database integrity, and the mapping execution would fail.

For reference to other options available on the Database Table Actions dialog box, see Database Table Actions Settings.

2. Click OK to close the dialog box. Notice that, on the mapping area, the appearance of the button has now changed to DEL Altova. This indicates that a "Delete" statement is configured to take place before the "Insert" action.
3. Click the Altova button next to the "Office" table and configure the max() + 1 setting of the primary key.
4. Perform step 3 for each table descending from "Office", namely: "Address", "Department", and "Person". Make sure that all these tables are immediate descendants of the root "Altova" table. For an explanation of what is a "root" table and why it is necessary, see Handling Database Relationships.

Step 5: Preview the mapping and update the database
Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be executed against the database. The script has not modified the database yet; it is only for preview.

To run the script against the database:

- On the Output menu, click Run SQL-Script.

Note: Running the SQL script directly from MapForce is just one of the ways to update the database, see also Executing Mappings Which Modify Databases.

To see the result, open the "Altova" table in Microsoft Access, and observe how relationships from the XML file have now been propagated to the database, from the "Altova" table down to the "Person" table.
You have now finished creating a mapping which inserts data into multiple database tables, while preserving the table integrity relationships.

### 6.2.3.3 Updating a Table

This example shows you how to update data of an existing database table with data coming from an XML source. The example uses the following files:

- **altova-cmpy.xml** — contains the source data to be inserted into the database.
- **Altova_Hierarchical.xsd** — the schema used to validate the instance file above.
- **altova.mdb** — the target database to be updated.

All files are available in the `<Documents>\Altova\MapForce2021\MapForceExamples` folder. Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to back up the original database and start with a new copy before following the steps below. This ensures that the original examples are not overridden and that you get the same results as below. For more information, see [Executing Mappings Which Modify Databases](#).

The goal of the mapping is to update all records in "Person" table with instances of "Person" from the XML document. Each person in the XML file has a `PrimaryKey` child element. Each person in the "Person" table has a `PrimaryKey` column. Only those records where a person's `PrimaryKey` in the XML file corresponds to a person's `PrimaryKey` in the database must be updated.

To achieve the mapping goal, we will take the steps below.
Step 1: Insert the source XML component
- On the **Insert** menu, click **XML Schema/File**, and browse for *Altova_Hierarchical.xsd*. When prompted to supply an instance file, browse for *altova-cmpy.xml*.

Step 2: Insert the target database
- On the **Insert** menu, click **Database**, and go through the wizard steps to connect to *altova.mdb* (see Example: Adding the "altova.mdb" Database to the Mapping).

Step 3: Draw the connections
- Draw the mapping connections as shown below.

Step 4: Configure the Update action
1. On the target component, click the **Action: Insert** button next to the "Person" table.
2. Next to **Action on record**, select **Update if**... This changes the database table action to a conditional update action. That is, the current record will only be updated when a condition is satisfied (see next step).

3. Next to **PrimaryKey**, select the value **equal**, as shown below. This defines the update condition: that is, the database record will be updated only when its **PrimaryKey** value is equal to the **PrimaryKey** value coming from the mapping.

![Actions for each record](image)

In this example, the equality operator is applied to the **PrimaryKey** field, which is a likely scenario when updating databases. Note that conditions can also be defined on other fields which are not necessarily primary keys. For example, by selecting **equal** next to the **First** and **Last** fields, you would update only those records where both the first and last name is equal to that in the source XML.

Optionally, select the **NULL equal** check box. In this example, this check box is irrelevant, because neither the **PrimaryKey** field in the source XML nor the **PrimaryKey** field in the database contains any null values. However, you should select this check box if your data contains null values, and if you want to treat such null values as equal; otherwise, you may get undesired results. For more information, see **Handling Nulls in Database Table Actions**.

4. Click **OK** to close the dialog box. Notice that, back on the mapping, the **Action: Insert** button has now changed to an **Action: Update** button. This indicates that an update action is configured to take place for this table.

**Step 5: Preview the mapping and update the database**

Click the **Output** tab to preview the mapping. A SQL script is generated, containing actions to be executed against the database. The script has not modified the database yet; it is only for preview.
To run the script against the database:

- On the **Output** menu, click **Run SQL-Script**.

**Note:** Running the SQL script directly from MapForce is just one of the ways to update the database, see also **Executing Mappings Which Modify Databases**.

### 6.2.3.4 "Update if... Insert Rest" Action

Sometimes, it is necessary not only to update existing records, but also to insert new records into the same database table. For such cases, MapForce provides an "Update if... Insert Rest" action. This works as follows:

- If the **Update if** condition is true, then the existing database record is updated with data from the mapping.
- If the **Update if** condition is false, and an **Insert Rest** condition exists, then a new record is inserted.
- If records exist in the database with no counterpart in the source file, then these records remain unchanged.

**MySQL / MariaDB ODBC note**

If the target database is MySQL or MariaDB through ODBC, the option **Return matched rows instead of affected rows** must be enabled in the **Cursor/Results** tab of MySQL ODBC Connector. Alternatively, if you enter the connection string manually through the Database Connection wizard, add `Option=2` to the connection string, for example:

```
Dsn=mydsn;Option=2;
```

To enable this option from MySQL ODBC Connector:
1. Press the **Windows** key and start typing “ODBC”.
2. Run the ODBC Data Sources Administrator (either 32-bit or 64-bit, depending on the platform of the installed MySQL ODBC Connector).
3. Click the Data Source Name (DSN) used by the MapForce mapping, and then click **Configure**.

4. Click **Details >>** to make the advanced options available.
5. Click the **Cursors/Results** tab, and then select the check box **Return matched rows instead of affected rows**.

**Example**

The following example shows you how to merge (both update and insert) data from an XML source into a database table. The example uses the following files:

- **altova-cmpy-extra.xml** — contains the source data to be inserted into the database.
- **Altova_Hierarchical.xsd** — the schema used to validate the instance file above.
- **altova.mdb** — the target database to be updated.

All files are available in the folder `<Documents>\Altova\MapForce2021\MapForceExamples`. Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to back up the original database and start with a new copy before following the steps below. This ensures that the original examples are not overridden and that you get the same results as below. For more information, see
The goal of the mapping is to merge all records from a source XML document into a target “Person” table. Namely, for each record in the source XML data, the mapping must do the following:

- If the person's `PrimaryKey` in the XML file corresponds to a person's `PrimaryKey` in the database, then update the record.
- Any existing records in the Person table which do not meet the above condition must not be affected.
- If the person's `PrimaryKey` in the XML file does not have a match in the target database table, then add a new record to the database table.

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component

Step 2: Insert the target database
- On the `Insert` menu, click `Database`, and go through the wizard steps to connect to `altova.mdb` (see Example: Adding the “altova.mdb” Database to the Mapping).

Step 3: Draw the connections
- Draw the mapping connections as shown below.
Step 4: Configure the "Update if... Insert Rest" actions

1. On the target component, click the **Action: Insert** button next to the "Person" table.
2. Next to **Action on record**, select **Update if...**. This changes the database table action to a conditional update action. That is, the current record will only be updated when a condition is satisfied (see next step).
3. Next to **PrimaryKey**, select the value **equal**, as shown below. This defines the update condition: that is, the database record will be updated only when its **PrimaryKey** value is equal to the **PrimaryKey** value coming from the mapping.
4. Optionally, select the **NULL equal** check box. In this example, this check box is irrelevant, because neither the **PrimaryKey** field in the source XML nor the **PrimaryKey** field in the database contains any null values. However, you should select this check box if your data contains null values, and if you want to treat such null values as equal; otherwise, you may get undesired results. For more information, see [Handling Nulls in Database Table Actions](#).  

5. Click **Append Action**. This adds a new action to the right of the existing **Update If** action. Configure the new action as **Insert Rest**:

![Database Table Actions Configuration](image)

In the image above, the database table actions have been configured in accordance with the goals of the mapping. That is, only when the **Update If**... condition is satisfied will the record be updated; otherwise, it will be inserted. The option "mapped value" specifies that values from the mapping will be used to populate all fields of the record.

It is also possible to define more than two actions against the same database table (this is not necessary in this example, however). At mapping runtime, actions are executed from left to right. The last **Insert** action is considered final; any other actions added after it will be ignored.

Note that the **Append Action** button on the dialog box adds the new action after the selected one. **Insert Action** adds the new action before the selected one. To delete an existing action, click anywhere inside it, and then click **Delete Action**.

6. Click **OK** to close the dialog box. Notice that, back on the mapping, the **Action: Insert** button has now changed to an **Action: Update; Insert** button. This indicates that both an update and an insert action is configured to take place for this table.

**Step 5: Preview the mapping and update the database**

Click the **Output** tab to preview the mapping. A SQL script is generated, containing actions to be executed against the database. The script has not modified the database yet; it is only for preview.
You may notice that no INSERT statements are visible in the preview script. This is normal behavior, because records are inserted conditionally, and the INSERT statements depend on the result of the Update If action (which is not known before the mapping runs).

**Note:** For certain database types, MapForce creates MERGE statements instead of UPDATE statements. For further information, see [MERGE statements](#).

To run the script against the database:

- On the **Output** menu, click **Run SQL-Script**.

Now that the mapping has been executed and the script applied against the database, notice that INSERT statements are visible in the **Output** tab.
The following SQL statements were executed during "Generate output" function.
Every single result is written right to the "-->" string.
These statements are only for preview and may not be executed in another SQL query tool.
The database was connected using the following connection-string:
Data Source=\v1 peux\06\Documentation\Public\ExampleFiles\EntMapForce\DB Update if... Insert Rest\altova.mdb;Provider=Microsoft.Jet.OLEDB.4.0

```
/*
[PhoneExt] = 582, [Title] = 'Manager' WHERE ([Person].[PrimaryKey] = 1)
--> OK. 1 row(s).

[Title] = 'Accounts Receivable' WHERE ([Person].[PrimaryKey] = 2)
--> OK. 1 row(s).

[Title] = 'Accounting Manager' WHERE ([Person].[PrimaryKey] = 3)
--> OK. 1 row(s).

[PhoneExt] = 765, [Title] = 'HR' WHERE ([Person].[PrimaryKey] = 30)
--> OK. 1 row(s).

INSERT INTO [Person] ([PrimaryKey], [ForeignKey], [EMail], [First], [Last], [PhoneExt], [Title]) VALUES (30, 1,
'c.Cicada@microtech.com', 'Camilla ', 'Cicada', 765, 'HR')
--> OK. 1 row(s).
```

SQL script (partial view) after updating the database

**Note:** Running the SQL script directly from MapForce is just one of the ways to update the database, see also Executing Mappings Which Modify Databases.

If you open the "Person" table in the DB query tab of MapForce (see Browsing and Querying Databases), you can see the result of the mapping as follows:

- All database records which had corresponding primary keys in the XML file have been updated. Examples are records with primary key 1, 2, 3, 4, and 5.
- All database records which had no corresponding keys in the XML file remained unaffected. Examples are records with primary key 6, 7, 8, and 9.
- New records have been inserted to the "Person" table (where key did not already exist in the database). Examples are records with primary key 30 and 31.
6.2.3.5 MERGE Statements

For certain mappings which both update and insert data into a database table (see also "Update if... Insert Rest" Action), MapForce generates MERGE statements to be executed against the database at mapping runtime. The execution engine may not necessarily be MapForce, see Executing Mappings Which Modify Databases.

MERGE statements are supported for the following database types:

- SQL Server 2008 and later
- Oracle
- DB2
- Firebird

The "Person" table after updating the database
MERGE statements reduce the number of database server calls, since they combine the INSERT and UPDATE statements into one. Also, in case of MERGE statements, the consistency check is done by the database.

To see whether the mapping will execute database MERGE statements at runtime (as opposed to applying a combination of INSERT and UPDATE statements):

1. Create a mapping which uses an Update if... as well as an Insert Rest action. For an example, see “Update if... Insert Rest” Action.
2. Preview the mapping, by clicking the Output tab.

If MERGE is supported by the database type, the generated SQL script includes MERGE statements, for example:

```
/*
The following SQL statements are only for preview and may not be executed in another SQL query tool!
To execute these statements use function "Run SQL-script" from menu "Output".
Connect to database using the following connection-string:
DataSource=Initial Catalog=DB MERGE;MultipleActiveResultSets=True;Password=*****;Persist Security Info=True;UserID=
*/

SET QUOTED_IDENTIFIER ON

UPDATE [dbo].[Users] SET [FirstName] = (CAST('Despine' AS nvarchar(50))), [LastName] = (CAST('Butler' AS nvarchar(50))) WHERE ([dbo].[Users].[UserID] = 1)

->>> %UserID%

MERGE INTO [dbo].[Addresses] AS T USING (VALUES ('%UserID%', 1, 1, (CAST('Home' AS nvarchar(20))), (CAST('Louisville' AS nvarchar(50))), (CAST('Elm Street' AS nvarchar(50))), (CAST('12' AS nvarchar(20))))) AS S ([UserID], [iShipping], [iBilling], [AddressType], [City], [Street], [Number]) ON (S.[UserID] = T.[UserID]) WHEN MATCHED THEN UPDATE SET [iShipping] = S. [iBilling], [AddressType] = S. [City], [Street] = S. [Street], [Number] = S. [Number] WHEN NOT MATCHED THEN INSERT ([UserID], [iShipping], [iBilling], [AddressType], [City], [Street], [Number]) VALUES (S.[UserID], S.[iShipping], S.[iBilling], S.[AddressType], S.[City], S.[Street], S.[Number]);
```

If MERGE is not supported by the database type, the generated SQL script includes UPDATE statements only. No INSERT statements are visible for preview, since those are to be executed only if the Update If... condition is not satisfied (and this is not known before the mapping execution).

Notes

- MapForce creates MERGE statements automatically when it detects a supported database type; it is not possible to manually influence whether MapForce should create a MERGE statement.
- If you are updating multiple tables having parent-child relationships, merges are created only for “leaf” tables. A “leaf” table is the deepest child table that is mapped. For example, in the mapping below, Update If... Insert Rest... actions have been defined for both Users table and Addresses table. However, MERGE statements will be generated only for the leaf table, Addresses. The parent table, Users, gets UPDATE or INSERT statements instead of MERGE.
With MERGE statements, the “Bulk Transfer” option (see Bulk Inserts (MapForce Server) is supported only for ODBC and JDBC database connections.

6.2.3.6 Options for Child Tables When Updating a Parent Table

When the mapping updates a table which is a "parent" table (that is, it has foreign key relationships to other tables), you can configure how the dependent records should be treated both in the source data and in the target table. For example, let's assume that you want to update the "Department" table in the altova.mdb database. Because every person is linked to a department by means of a foreign key, you will likely want to take action against the "Person" table as well (which could be an insert, update, or delete). Doing so would help you maintain the database integrity and avoid mapping errors.

This topic discusses the options available for the "Person" table when you update the parent "Department" table. It makes use of the following example files:

- altova-cmpy-extra.xml — contains the source data to be inserted into the database.
- Altova_Hierarchical.xsd — the schema used to validate the instance file above.
- altova.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2021\MapForceExamples folder. Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to back up the original database and start with a new copy before following the steps below. This ensures that the original examples are not overridden and that you get the same results as below. For more information, see Executing Mappings Which Modify Databases.
First, add the source XML schema and instance as well as the target database to the mapping (see Example: Adding the "altova.mdb" Database to the Mapping). Follow the same steps as in "Update if... Insert Rest" Action. Secondly, draw the mapping connections as shown below:

As illustrated above, the mapping updates the "Department" table in the target database. The "Department" table is chosen as "root" table. For more information about what a root table is and why it is necessary, see Handling Database Relationships. The action to be taken against the child "Person" table is the subject of this topic.

The following tables illustrate various configuration options and the corresponding mapping result. These options can be selected from the Database Table Actions dialog box of the parent "Department" table and the child "Person" table.
### Configuration A

<table>
<thead>
<tr>
<th>Settings</th>
<th>Mapping result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Updates Department records where PrimaryKey in the source XML corresponds to the PrimaryKey in the database table.</td>
</tr>
<tr>
<td></td>
<td>Does not update existing Department records which do not have a counterpart in the input XML file (no such key exists in the source).</td>
</tr>
<tr>
<td></td>
<td>Inserts, from the input XML instance, all Person records that do not already exist in the database.</td>
</tr>
<tr>
<td></td>
<td>Deletes child data (Person records) of those Department records which satisfy the Update if... condition.</td>
</tr>
</tbody>
</table>

#### "Department" table

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>Update if... equal</td>
</tr>
<tr>
<td>ForeignKey</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Delete data in child tables</td>
<td>✔</td>
</tr>
<tr>
<td>Ignore input child data</td>
<td>❌</td>
</tr>
</tbody>
</table>

#### "Person" table

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>mapped value</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>foreign key</td>
</tr>
<tr>
<td>Email</td>
<td>mapped value</td>
</tr>
<tr>
<td>First</td>
<td>mapped value</td>
</tr>
<tr>
<td>Last</td>
<td>mapped value</td>
</tr>
<tr>
<td>PhoneExt</td>
<td>mapped value</td>
</tr>
<tr>
<td>Title</td>
<td>mapped value</td>
</tr>
</tbody>
</table>
Configuration B

<table>
<thead>
<tr>
<th>Settings</th>
<th>Mapping result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action on record</td>
<td>InsertAll</td>
</tr>
<tr>
<td>PrimaryKey</td>
<td>mapped value</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>foreign key</td>
</tr>
<tr>
<td>EMail</td>
<td>mapped value</td>
</tr>
<tr>
<td>First</td>
<td>mapped value</td>
</tr>
<tr>
<td>Last</td>
<td>mapped value</td>
</tr>
<tr>
<td>PhoneExt</td>
<td>mapped value</td>
</tr>
<tr>
<td>Title</td>
<td>mapped value</td>
</tr>
</tbody>
</table>

The mapping fails with an SQL execution error. The reason is that the mapping attempts to insert new Person records with the same primary key as the existing Person records. If you want to insert records from the input XML in addition to those already in the database, see the next option.
Configuration C

<table>
<thead>
<tr>
<th>Settings</th>
<th>Mapping result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Updates Department records where PrimaryKey in the source XML corresponds to the PrimaryKey in the database table.</td>
</tr>
<tr>
<td></td>
<td>• Does not update existing Department records which do not have a counterpart in the input XML file (no such key exists in the source).</td>
</tr>
<tr>
<td></td>
<td>• New Person records (with generated primary keys) are inserted into the Person table in addition to existing ones.</td>
</tr>
</tbody>
</table>

"Department" table

<table>
<thead>
<tr>
<th>Action on record</th>
<th>InsertAll</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>max() + 1</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>foreign key</td>
</tr>
<tr>
<td>EMail</td>
<td>mapped value</td>
</tr>
<tr>
<td>First</td>
<td>mapped value</td>
</tr>
<tr>
<td>Last</td>
<td>mapped value</td>
</tr>
<tr>
<td>PhoneExt</td>
<td>mapped value</td>
</tr>
<tr>
<td>Title</td>
<td>mapped value</td>
</tr>
</tbody>
</table>

"Person" table
### Configuration D

<table>
<thead>
<tr>
<th>Settings</th>
<th>Mapping result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Updates Department records where PrimaryKey in the source XML corresponds to the PrimaryKey in the database table.</td>
</tr>
<tr>
<td></td>
<td>• Does not update existing Department records which do not have a counterpart in the input XML file (no such key exists in the source).</td>
</tr>
<tr>
<td></td>
<td>• No records are inserted in the Person table because the option <strong>Ignore input child data</strong> is enabled for the parent Departments table.</td>
</tr>
</tbody>
</table>

#### "Department" table

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Update if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>equal</td>
</tr>
<tr>
<td>ForeignKey</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
</tbody>
</table>

#### "Person" table

<table>
<thead>
<tr>
<th>Action on record</th>
<th>InsertAll</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>mapped value</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>foreign key</td>
</tr>
<tr>
<td>EMail</td>
<td>mapped value</td>
</tr>
<tr>
<td>First</td>
<td>mapped value</td>
</tr>
<tr>
<td>Last</td>
<td>mapped value</td>
</tr>
<tr>
<td>PhoneExt</td>
<td>mapped value</td>
</tr>
<tr>
<td>Title</td>
<td>mapped value</td>
</tr>
</tbody>
</table>
### Configuration E

#### Settings

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Update if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>equal</td>
</tr>
<tr>
<td>ForeignKey</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
</tbody>
</table>

**Delete data in child tables**: **Yes**

**Ignore input child data**: **No**

**"Department" table**

- Updates Department records where PrimaryKey in the source XML corresponds to the PrimaryKey in the database table.
- Does not update existing Department records which do not have a counterpart in the input XML file (no such key exists in the source).
- Deletes all Person records linked to a Department which has a corresponding PrimaryKey in the source XML. The reason is that the **Delete data in child tables** option is enabled for the parent Department table.
- Person records linked to a department that did not meet the **Update if...** condition remain in the database.
- No records in the Person table are updated.

#### "Person" table

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Update if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>equal</td>
</tr>
<tr>
<td>Foreign Key</td>
<td>foreign key</td>
</tr>
<tr>
<td>FirstName</td>
<td></td>
</tr>
<tr>
<td>LastName</td>
<td></td>
</tr>
<tr>
<td>Phone Ext</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td></td>
</tr>
</tbody>
</table>
Configuration F

<table>
<thead>
<tr>
<th>Settings</th>
<th>Mapping result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Updates Department records where PrimaryKey in the source XML corresponds to the PrimaryKey in the database table.</td>
</tr>
<tr>
<td></td>
<td>Does not update existing Department records which do not have a counterpart in the input XML file (no such key exists in the source).</td>
</tr>
<tr>
<td></td>
<td>Deletes all Person records linked to a Department which has a corresponding PrimaryKey in the source XML. The reason is that the <strong>Delete data in child tables</strong> option is enabled for the parent Department table.</td>
</tr>
<tr>
<td></td>
<td>Person records linked to a department that did not meet the <strong>Update if...</strong> condition remain in the database.</td>
</tr>
</tbody>
</table>

**“Department” table**

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Update if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>equal</td>
</tr>
<tr>
<td>ForeignKey</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
</tbody>
</table>

**“Person” table**

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Delete if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>equal</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>foreign key</td>
</tr>
<tr>
<td>EMail</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td></td>
</tr>
<tr>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>PhoneExt</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td></td>
</tr>
</tbody>
</table>
Configuration G

<table>
<thead>
<tr>
<th>Settings</th>
<th>Mapping result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action on record</td>
<td>Update if...</td>
</tr>
<tr>
<td>PrimaryKey</td>
<td>equal</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>equal</td>
</tr>
<tr>
<td>Name</td>
<td>equal</td>
</tr>
<tr>
<td>Delete data in child tables</td>
<td>Updates Department records where PrimaryKey in the source XML corresponds to the PrimaryKey in the database table.</td>
</tr>
<tr>
<td>Ignore input child data</td>
<td>Does not update existing Department records which do not have a counterpart in the input XML file (no such key exists in the source).</td>
</tr>
</tbody>
</table>

*Department* table

<table>
<thead>
<tr>
<th>Action on record</th>
<th>Delete if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKey</td>
<td>equal</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>foreign key</td>
</tr>
<tr>
<td>EMail</td>
<td>foreign key</td>
</tr>
<tr>
<td>First</td>
<td>foreign key</td>
</tr>
<tr>
<td>Last</td>
<td>foreign key</td>
</tr>
<tr>
<td>PhoneExt</td>
<td>foreign key</td>
</tr>
<tr>
<td>Title</td>
<td>foreign key</td>
</tr>
</tbody>
</table>

*Person* table

6.2.3.7 "Delete if..." Action

The table action Delete if... is used to delete data from a database table conditionally. You can define this action from the Database Table Actions dialog box (see Database Table Actions Settings). For example, when mapping data from a source XML to a target database, you can configure a Delete if... condition to check whether a certain field in the source XML is equal to a field in the target database record (typically, a primary key value). If the Delete if... condition is true (that is, the two fields are equal), the database record will be deleted when the mapping runs.

Note: The Delete if... table action should not be confused with the Delete data in child tables option available in the Database Table Actions dialog box. The Delete if... table action only affects the table for which the action is defined; no other tables are affected.

This example shows you how to delete data from a database table conditionally, and also insert records into the same database table based on the outcome of the delete condition.

This example uses the following files:

- altova-cmpy-extra.xml — contains the source data to be inserted into the database.
- Altova_Hierarchical.xsd — the schema used to validate the instance file above.
- altova.mdb — the target database to be updated.
Data Sources and Targets

All files are available in the <Documents>\Altova\MapForce2021\MapForceExamples\ folder. Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to back up the original database and start with a new copy before following the steps below. This ensures that the original examples are not overridden and that you get the same results as below. For more information, see Executing Mappings Which Modify Databases.

The goal of the mapping is as follows:

- If any person records with the same PrimaryKey exist both in the source XML and the target Person table, they must be deleted from the Person table.
- All other records from the source XML must be inserted into the Person table.

To achieve the mapping goal, we will take the steps below.

**Step 1: Insert the source XML component**

**Step 2: Insert the target database**
- On the Insert menu, click Database, and go through the wizard steps to connect to altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

**Step 3: Draw the connections**
- Draw the mapping connections as shown below.
Step 4: Configure the "Delete if... Insert Rest" actions

1. On the target component, click the **Action: Insert** button next to the "Person" table.
2. Next to **Action on record**, select **Delete if...**. This changes the database table action to a conditional delete action. That is, the current record will only be deleted when a condition is satisfied (see next step).
3. Next to **PrimaryKey**, select the value **equal**, as shown below. This defines the update condition: that is, the database record will be deleted only when its **PrimaryKey** value is equal to the **PrimaryKey** value coming from the mapping.
4. Optionally, select the **NULL equal** check box. In this example, this check box is irrelevant, because neither the **PrimaryKey** field in the source XML nor the **PrimaryKey** field in the database contains any null values. However, you should select this check box if your data contains null values, and if you want to treat such null values as equal; otherwise, you may get undesired results. For more information, see [Handling Nulls in Database Table Actions](#).

5. Click **Append Action**. This adds a new action to the right of the existing **Delete If** action. Configure the new action as **Insert Rest**:

![Actions to execute for each record](image)

In the image above, the database table actions have been configured in accordance with the goals of the mapping. That is, only when the **Delete If**... condition is satisfied will the record be deleted; otherwise, it will be inserted. The option "mapped value" specifies that values from the mapping will be used to populate all fields of the record.

6. Click **OK** to close the dialog box. Notice that, back on the mapping, the **Action: Insert** button has now changed to an **Action: Delete; Insert** button. This indicates that both a delete and an insert action is configured for this table.

---

**Step 5: Preview the mapping and update the database**

Click the **Output** tab to preview the mapping. A SQL script is generated, containing actions to be executed against the database. The script has not modified the database yet; it is only for preview. To run the script against the database:

- On the **Output** menu, click **Run SQL-Script**.

**Note:** Running the SQL script directly from MapForce is just one of the ways to update the database, see also [Executing Mappings Which Modify Databases](#).

If you open the "Person" table in the DB query tab of MapForce (see [Browsing and Querying Databases](#)), you can see the result of the mapping as follows:

- All database records which had corresponding primary keys in the XML file have been deleted. Examples are records with primary key 1, 2, 3, 4, and 5.
- All database records which had no corresponding keys in the XML file remained unaffected. Examples are records with primary key 6, 7, 8, 9, 10, 11, 12, and 13.
- New records have been inserted to the "Person" table (where key did not already exist in the database). Examples are records with primary key 30 and 31.
6.2.3.8 "Ignore if..." Action

The table action *Ignore if...* is used to prevent certain records in a database table from being updated, based on a defined condition. The *Ignore if...* action is only meaningful when used in combination with another database table action (such as the *Insert Rest* action). For example, when mapping data from a source XML to a target database, you can configure an *Ignore if...* condition to check whether a certain field in the source XML is equal to a field in the target database record (typically, a primary key value). If the *Ignore if...* condition is true (that is, the two fields are equal), the database record will be ignored when the mapping runs, and the next defined action (*Insert Rest*, for example) will be executed.

This example shows you how insert records into a database table based on the outcome of the *Ignore if...* condition. It uses the following files:

- **altova-cmyxtra.xml** — contains the source data to be inserted into the database.
- **Altova_Hierarchical.xsd** — the schema used to validate the instance file above.
- **altova.mdb** — the target database to be updated.

All files are available in the `<Documents>`\Altova\MapForce2021\MapForceExamples\ folder. Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to back up the original database and start with a new copy before following the steps below. This ensures that the original examples are not overridden and that you get the same results as below. For more information, see [Executing Mappings Which Modify Databases](#).

The goal of the mapping is as follows:

- If any person records with the same *PrimaryKey* exist both in the source XML and the target Person table, no action must be taken against them (that is, they must be ignored).
• If any person records which do not meet the above condition exist in the Person table, no action must be taken against them either.
• Records from the source XML which do not have a counterpart (no primary key) in the Person table must be treated as new and inserted into the Person table with a new primary key.

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component
• On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd. When prompted to supply an instance file, browse for altova-cmpy-extra.xml.

Step 2: Insert the target database
• On the Insert menu, click Database, and go through the wizard steps to connect to altova.mdb (see Example: Adding the “altova.mdb” Database to the Mapping).

Step 3: Draw the connections
• Draw the mapping connections as shown below.
Step 4: Configure the "Ignore if... Insert Rest" actions

1. On the target component, click the Action: Insert ( ) button next to the "Person" table.
2. Next to Action on record, select Ignore if... . This changes the database table action to a conditional ignore action. That is, the current record will only be ignored when a condition is satisfied (see next step).
3. Next to PrimaryKey, select the value equal, as shown below. This defines the ignore condition: that is, the database record will be ignored only when its PrimaryKey value is equal to the PrimaryKey value coming from the mapping.

![Image of Ignore If... action configuration]

4. Optionally, select the NULL equal check box. In this example, this check box is irrelevant, because neither the PrimaryKey field in the source XML nor the PrimaryKey field in the database contains any null values. However, you should select this check box if your data contains null values, and if you want to treat such null values as equal; otherwise, you may get undesired results. For more information, see Handling Nulls in Database Table Actions.
5. Click Append Action. This adds a new action to the right of the existing Ignore If action. Configure the new action as Insert Rest, with the primary key set to max() + 1, as shown below:

![Image of Append Action configuration]

In the image above, the database table actions have been configured in accordance with the goals of the mapping. That is, only when the Ignore If... condition is satisfied will the record be skipped; otherwise, it will be inserted. The option "mapped value" specifies that values from the mapping will be used to populate all fields of the record. The option max() + 1 generates a unique, new primary key value for the record.

6. Click OK to close the dialog box. Notice that, back on the mapping, the Action: Insert ( ) button has now changed to an Action: Ignore; Insert ( ) button. This indicates that both the ignore and insert actions are configured for this table.

Step 5: Preview the mapping and update the database

Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be executed against the database. The script has not modified the database yet; it is only for preview. To run the script against the database:
On the **Output** menu, click **Run SQL-Script**.

**Note:** Running the SQL script directly from MapForce is just one of the ways to update the database, see also [Executing Mappings Which Modify Databases](#).

If you open the "Person" table in the DB query tab of MapForce (see [Browsing and Querying Databases](#)), you can see the result of the mapping as follows:

- All database records which had corresponding primary keys in the XML file satisfied the **Ignore if...** and remained unaffected. Examples are records with primary key 1, 2, 3, 4, and 5.
- All database records which had no corresponding keys in the XML file did not satisfy the **Ignore if...** condition but nevertheless remained unaffected. Examples are records with primary key 6, 7, 8, 9, 10, 11, 12, and 13.
- New records have been inserted to the "Person" table (where key did not already exist in the database). Examples are records with primary key 30 and 31 in the source XML file. These were inserted into the database with the new primary key 22 and 23, respectively.

<table>
<thead>
<tr>
<th>PrimaryKey</th>
<th>ForeignKey</th>
<th>Email</th>
<th>First</th>
<th>Last</th>
<th>PhoneExt</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td><a href="mailto:v.calby@nanonull.com">v.calby@nanonull.com</a></td>
<td>Vernon</td>
<td>Calby</td>
<td>582</td>
<td>Office Manager</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td><a href="mailto:f.further@nanonull.com">f.further@nanonull.com</a></td>
<td>Frank</td>
<td>Further</td>
<td>471</td>
<td>Accounts Receivable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td><a href="mailto:l.matis@nanonull.com">l.matis@nanonull.com</a></td>
<td>Loby</td>
<td>Matis</td>
<td>903</td>
<td>Accounting Manager</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td><a href="mailto:j.firstbread@nanonull.com">j.firstbread@nanonull.com</a></td>
<td>Joe</td>
<td>Firstbread</td>
<td>621</td>
<td>Marketing Manager Europe</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td><a href="mailto:s.sanna@nanonull.com">s.sanna@nanonull.com</a></td>
<td>Susi</td>
<td>Sanna</td>
<td>753</td>
<td>Art Director</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td><a href="mailto:f.landis@nanonull.com">f.landis@nanonull.com</a></td>
<td>Fred</td>
<td>Landis</td>
<td>951</td>
<td>Program Manager</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td><a href="mailto:m.landis@nanonull.com">m.landis@nanonull.com</a></td>
<td>Michelle</td>
<td>Butler</td>
<td>854</td>
<td>Software Engineer</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td><a href="mailto:l.little@nanonull.com">l.little@nanonull.com</a></td>
<td>Ted</td>
<td>Little</td>
<td>852</td>
<td>Software Engineer</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td><a href="mailto:a.way@nanonull.com">a.way@nanonull.com</a></td>
<td>Ann</td>
<td>Way</td>
<td>951</td>
<td>Technical Writer</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td><a href="mailto:t.gardner@nanonull.com">t.gardner@nanonull.com</a></td>
<td>Liz</td>
<td>Gardner</td>
<td>753</td>
<td>Software Engineer</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td><a href="mailto:p.smith@nanonull.com">p.smith@nanonull.com</a></td>
<td>Paul</td>
<td>Smith</td>
<td>334</td>
<td>Software Engineer</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td><a href="mailto:a.martin@nanonull.com">a.martin@nanonull.com</a></td>
<td>Alex</td>
<td>Martin</td>
<td>778</td>
<td>IT Manager</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td><a href="mailto:g.hammer@nanonull.com">g.hammer@nanonull.com</a></td>
<td>George</td>
<td>Hammer</td>
<td>223</td>
<td>Web Developer</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td><a href="mailto:j.band@nanonull.com">j.band@nanonull.com</a></td>
<td>Jessica</td>
<td>Band</td>
<td>241</td>
<td>Support Engineer</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td><a href="mailto:l.king@nanonull.com">l.king@nanonull.com</a></td>
<td>Lui</td>
<td>King</td>
<td>345</td>
<td>Support Engineer</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td><a href="mailto:s.meier@nanonull.com">s.meier@nanonull.com</a></td>
<td>Stove</td>
<td>Meier</td>
<td>114</td>
<td>Office Manager</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td><a href="mailto:t.bone@nanonull.com">t.bone@nanonull.com</a></td>
<td>Theo</td>
<td>Bone</td>
<td>331</td>
<td>Accounts Receivable</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td><a href="mailto:m.naffa@nanonull.com">m.naffa@nanonull.com</a></td>
<td>Max</td>
<td>Naffa</td>
<td>122</td>
<td>PR &amp; Marketing Manager US</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td><a href="mailto:v.bass@nanonull.com">v.bass@nanonull.com</a></td>
<td>Valentin</td>
<td>Bass</td>
<td>716</td>
<td>IT Manager</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td><a href="mailto:c.franken@nanonull.com">c.franken@nanonull.com</a></td>
<td>Carl</td>
<td>Franken</td>
<td>147</td>
<td>Support Engineer</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td><a href="mailto:m.redgreen@nanonull.com">m.redgreen@nanonull.com</a></td>
<td>Mark</td>
<td>Redgreen</td>
<td>152</td>
<td>Support Engineer</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td><a href="mailto:c.cicada@microtech.com">c.cicada@microtech.com</a></td>
<td>Camila</td>
<td>Cicada</td>
<td>765</td>
<td>HR</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td><a href="mailto:c.corrigan@microtech.com">c.corrigan@microtech.com</a></td>
<td>Carol</td>
<td>Corrigan</td>
<td>629</td>
<td>Admin</td>
</tr>
</tbody>
</table>

The "Person" table after updating the database
### 6.2.3.9 Bulk Inserts (MapForce Server)

The **Use Bulk Transfer** option allows you to insert data at very high speed from a MapForce component (TXT, CSV, DAT, etc.) into a database table. Using this option dramatically speeds up the Insert process, as only one statement needs to be executed instead of many.

The **Use Bulk Transfer** option can be enabled in MapForce, at mapping design time, as shown below. A mapping where this option is enabled can be executed in MapForce, but no bulk insert applies at this stage. The actual bulk transfer of data occurs when the mapping is run by MapForce Server.

Bulk transfer is supported when the following conditions are true:

- The mapping transformation language is set to BUILT-IN. For further information, see [Selecting a Transformation Language](#).
- The mapping is run by MapForce Server (either standalone or under FlowForce Server management). This means that the mapping must be either compiled to .mfx format or deployed to FlowForce Server. For further information, see [Compiling Mappings to MapForce Server Execution Files](#) and [Deploying Mappings to FlowForce Server](#).
- The MapForce Server license is not limited to "single thread execution" on a multi-core machine. That is, the **Limit to single thread execution** check box in the "Server Management" tab of Altova LicenseServer must be inactive.
- The database action is "Insert all", see also [Database Table Actions Settings](#).
- The table into which the data is to be bulk loaded must be a "leaf" table, that is, on the lowest hierarchy of the database. There should not be any related tables, views, or stored procedures referencing the table in the mapping.
- The database driver supports bulk insert on WHERE conditions.

The following table summarizes support for bulk inserts depending on the database kind and the driver used.

<table>
<thead>
<tr>
<th>Database</th>
<th>ADO</th>
<th>ODBC</th>
<th>JDBC</th>
<th>ADO.NET</th>
<th>Native</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>No</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>DB2</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>Firebird</td>
<td>n/a</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>n/a</td>
</tr>
<tr>
<td>Informix</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>iSeries</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>MariaDB</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>MySQL</td>
<td>n/a</td>
<td>Yes*</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>Oracle</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>n/a</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>Progress</td>
<td>n/a</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>SQL Server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
</tbody>
</table>
This example shows you how create a mapping which bulk loads data from a sample `source.txt` file into a target database. The example uses SQL Server 2014 and the AdventureWorks 2014 database. The latter can be downloaded from the AdventureWorks samples page on GitHub (https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks).

To define a bulk insert:

1. Set the transformation language to BUILT-IN (BUILT-IN).
2. Connect to the AdventureWorks 2014 database and add the "Production.Location" table to the mapping. For more information, see Adding Databases to the Mapping.
3. On the Insert menu, click Text, and add a source text file (such as the `source.txt` sample above) to the mapping. For more information, see CSV and Text Files. Make sure that the data types of both the source and the target components are compatible. Data types are visible on component when the Show Data Types toolbar button must be enabled.
4. Draw the mapping connections as shown below. Note that the **Database Actions** button is now visible to the right of the table name.

5. Click the **Database Actions** button, select the **Use Bulk Transfer** check box, and click OK to confirm.
In the dialog box above, notice that the "Action on record" is "Insert All". The **Batch size** field defines the number of records to be inserted per action.

**Note:** When the **Use Bulk Transfer** option is enabled, the **Use Transactions** option becomes disabled, and vice versa. If you want to enable transaction processing, click to clear the **Use Bulk Transfer** check box.

Now that bulk insert is enabled, the next step is to execute the mapping in MapForce Server (either standalone or under FlowForce Server management). For further information, see [Compiling Mappings to MapForce Server Execution Files](#) and [Deploying Mappings to FlowForce Server](#).
6.2.3.10 Handling Nulls in Database Table Actions

When a mapping updates a target database by means of table actions such as "Ignore If", "Update If", "Delete If", MapForce compares the source data against the target data and generates internal database update queries as a result. These internal queries are available for preview in the Output pane of MapForce, see Executing Mappings Which Modify Databases. The generated queries reflect the comparison conditions that were defined from the "Database Table Actions" dialog box.

If your source or the target data contains nullable fields, you have two options to compare null values from the source with those in the target data:

1. treat null values as equal
2. treat null values as not equal

For this purpose, the dialog box above displays a NULL equal check box next to some fields. Selecting or not selecting this check box might affect the mapping result, and is the subject of this topic. Be aware that the check box can be selected only for fields which are nullable, and when at least one table action has an "equal" or "equal (ignore case)" condition.

To avoid undesired results, you should select the NULL equal check box if all of the following conditions are true:

1. The "Database Table Actions" dialog box contains "Ignore if", "Update if", "Delete if" actions, and
2. These actions are taken against records that may contain null values, and
3. Your mapping requires that null values in the source must be treated as equal with null values in the target.
By default, the **NULL equal** check box is not selected. If the conditions above are true and the check box is not selected, the target database table might not be updated as expected (for example, more rows would be inserted than necessary). This happens because null values affect the data comparison. For example, in the image above, let's suppose that a record has a null email both in the source and target. If you select the **NULL equal** check box, that record will satisfy the **Ignore If...** condition and will be ignored (skipped). However, if you don't select the **NULL equal** check box, the record will no longer satisfy the **Ignore If...** condition and will be inserted into the database.

**Example**

To better understand null awareness in mappings, let's analyze an example where comparison of null data occurs. This example uses a Microsoft SQL Server database; however, it is also applicable for any other supported database type. Optionally, if you have Microsoft SQL Server, you can create the tables and data used in this example by running the following database script: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\CreateNullableFields.sql`.

For convenience, the database tables are illustrated below. Both tables store people data and have the same columns. Also, the column email can contain null data in both tables.

<table>
<thead>
<tr>
<th>id</th>
<th>firstname</th>
<th>lastname</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toby</td>
<td>Hughey</td>
<td><a href="mailto:t.hughey@nanonull.com">t.hughey@nanonull.com</a></td>
</tr>
<tr>
<td>2</td>
<td>Mia</td>
<td>Dahill</td>
<td>NULL</td>
</tr>
<tr>
<td>3</td>
<td>Fred</td>
<td>Weinstein</td>
<td><a href="mailto:f.weinstein@nanonull.com">f.weinstein@nanonull.com</a></td>
</tr>
</tbody>
</table>

**The SOURCE table**

<table>
<thead>
<tr>
<th>id</th>
<th>firstname</th>
<th>lastname</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mia</td>
<td>Dahill</td>
<td>NULL</td>
</tr>
<tr>
<td>2</td>
<td>Fred</td>
<td>Weinstein</td>
<td><a href="mailto:f.weinstein@nanonull.com">f.weinstein@nanonull.com</a></td>
</tr>
</tbody>
</table>

**The TARGET table**

Let's suppose your task is to merge data from the **SOURCE** table into the **TARGET** table. Only the new records must be inserted into the **TARGET** table (in this example, "Tobie Hughey"). The records which exist in both tables ("Mia Dahill" and "Fred Weinstein") must be ignored.

The task can be accomplished as follows.

1. On the **Insert** menu, select **Database**. Follow the wizard steps to connect to the database (see also [Connecting to a Database](#)). When prompted to add database objects, select the table **SOURCE**.
2. On the **Insert** menu, select **Database**. Connect to the database again and add the table **TARGET** to the mapping.
3. Draw the mapping connections between the source and target components.
4. Click the **Action: Insert** button and configure the database table actions as follows:

As illustrated above, a combination of "Ignore if.. Insert Rest" actions are defined. This configuration means that, for each record, the mapping checks if:

- `firstname` in the source is equal to `firstname` in the target, AND
- `lastname` in the source is equal to `lastname` in the target, AND
- `email` in the source is equal to `email` in the target.

If all the conditions above are true, the record is ignored (according to the requirement). Otherwise, a new record is inserted into the target table. The `id` of the new record is generated by the database, while the other fields (`firstname`, `lastname`, `email`) are populated with values mapped from the source.

Importantly, the check box next to `email` enables or disables NULL-aware comparison for this field. This check box must be selected, because `email` can contain null values (namely, "Mia Dahill" has a null email address). To see the role played by this check box, try updating the database two times: first time, with the check box selected, and a second time with the cleared check box.

To update the database, click the **Output** tab and run the menu command **Output | Run SQL-Script**.

If the check box is selected, MapForce has explicit indication that you want to treat the null values as equal. Therefore, the record "Mia Dahill" is not inserted in the target table, which is the intended result.

If the check box is not selected, the record "Mia Dahill" is inserted in the target table (despite that fact that it exists already), which is not the intended result. The reason is that no explicit indication was given to MapForce that you want to treat null values as equal. A similar situation would occur if you ran the following query against the database (this query retrieves no records because the null value is compared with the "=" operator so it is not NULL-aware):
SELECT firstname, lastname, email FROM TARGET WHERE firstname = 'Mia' AND lastname = 'Dahill' AND email = NULL;

In order to be NULL-aware, the query above would have to be rewritten as follows:

SELECT firstname, lastname, email FROM TARGET WHERE firstname = 'Mia' AND lastname = 'Dahill' AND email IS NULL;

**Note:** The queries above are only for illustrative purposes and do not reflect the actual syntax of internal queries generated by MapForce. MapForce adapts the syntax of generated queries according to the database type (since various database vendors have different approaches to handling null comparisons).

6.2.3.11 Database Table Actions Settings

Whenever you create a mapping connection to a database table, a Database Actions button appears next to the affected table. Clicking this button opens Database Table Actions dialog box, from where you can configure the database insert, update, and delete actions, as well as other options.
Below is a description of the settings available on the Database Table Actions dialog box.

**SQL statement to execute before first record**

In this group box, you can define SQL statements that are executed before any actions defined under **Actions to execute for each record**. Select the desired radio button:

- **None** — No action is carried through. This is the default setting.
- **DELETE all records** — All records from the selected table are deleted before any specific table action defined in the **Actions to execute for each record** group box is performed. Activate the **also delete**
all records in all child tables check box if you also want to get rid of the data stored in child tables of the selected table. For an example, see Inserting Data into Multiple Linked Tables.

- **Custom SQL** — Write a custom SQL statement to affect the complete table. Note that support for multiple SQL statements in one query depends on the database, connection method, and the driver used.

**Actions to execute for each record**

This group of settings specify the database actions that are to take place against this table when the mapping runs. To manage table actions, click the **Append Action**, **Insert Action**, or **Delete Action** buttons. Multiple actions can be defined if necessary (for example, an "Update if..." action followed by an "Insert Rest" action).

The defined table actions are processed from left to right. In the example above, the "Update if..." action is processed first. If the update condition is not satisfied, then the following action is processed (in this example, the "Insert Rest" action). Note the following:

- All the defined conditions of one action must be satisfied for the table action to be executed. When this is the case, all those fields are updated where a connection exists between the source and target items on the mapping. Any subsequent table actions (to the right of an action whose condition matched) are ignored for that record.
- If the defined condition is not satisfied, then the table action is skipped, and the next action (to the right) is processed.
- If none of the conditions are satisfied, no table action takes place.

Any table actions defined after "Insert All" or "Insert Rest" actions will never be executed, because no column conditions exist for insert actions. A dialog box appears if this is the case, stating that the subsequent table action columns will be deleted.

The **NULL Equal** check box next to each record, where applicable, instructs MapForce that null values in the source record must be treated as equal with null values in the target record. Not selecting this check box may lead to incorrect results, see Handling Nulls in Database Table Actions.

When the mapping updates a table which has foreign key relationships to other tables, the following options can be used:

<table>
<thead>
<tr>
<th><strong>Delete data in child tables</strong></th>
<th>This option is meaningful when you select the &quot;Update if...&quot; action for a parent table. It might be necessary if the number of records in the source file is different from the number of records in the target database, and you want to keep the database synchronized (no orphaned data in child tables). See also Options for Child Tables When Updating a Parent Table.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ignore input child data</strong></td>
<td>Use this option when you want to update a target parent table, without affecting any of the child tables/records of that table. See also Options for Child Tables When Updating a Parent Table.</td>
</tr>
</tbody>
</table>

For examples which illustrate various combinations of actions, see:

- Inserting Data into a Table
- Inserting Data into Multiple Linked Tables
6.2.3.12 Example: Mapping Data from XML to SQLite

This example walks you through the steps required to create a MapForce mapping which reads data from an XML file and writes it to a SQLite database. The example is accompanied by a sample mapping design (.mfd) file. If you want to look at the sample file before starting this example, you can open it from the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\XMLtoSQLite.mfd`.

The goal of the example is to insert data from an XML file into a SQLite database. To accomplish the goal of the example, you will need an empty SQLite database to which data will be written. As illustrated below, you can create and explore the SQLite database either with Altova DatabaseSpy, or with the command-line shell available from the official SQLite website.

**To create the SQLite database:**

If DatabaseSpy is installed on your computer (either standalone or as part of Altova MissionKit), you can create the new SQLite database as follows:

1. Run DatabaseSpy.
2. On the **File** menu, click **Create a Database Connection**.
3. Click **Connection Wizard**, and then click **SQLite**.
4. Click **Create a new SQLite database**, enter `c:\sqlite\articles.sqlite` as path, and then click **Connect**.
5. When prompted to set a data source name, leave the default name as is.
6. Open a new SQL editor (**Ctrl+N**) and run the following query against the database:

   ```
 create table articles (number smallint, name varchar(10), singleprice real);
   ```

Otherwise, follow the steps below to create the database:

1. Download the SQLite command-line shell for Windows from the SQLite download page ([http://www.sqlite.org/download.html](http://www.sqlite.org/download.html)) and unpack the .zip archive to a directory on your local machine (for the scope of this example, use `c:\sqlite`).
2. Run `c:\sqlite\sqlite3.exe` and enter the following statement:
create table articles (number smallint, name varchar(10), singleprice real);

This creates the table articles in the in-memory database. The table articles consists of three columns: number, name, and singleprice. The purpose of these columns is to store data from the elements with the same name defined in the source XML schema. Each column is declared with a data type suitable for the data expected to be stored in that column.

3. Run the command:

.save articles.sqlite

This saves the in-memory database to the current working path: `c:\sqlite\articles.sqlite`. Note that you will need to refer to this path in subsequent steps.

You have now finished creating the sample SQLite database required for this example.

To create the XML to SQLite mapping design:

1. Run MapForce and make sure that the transformation language is set to BUILT-IN (use the menu command Output | Built-in Execution Engine).
2. Add to the mapping area the file Articles.xml located in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial folder (use the menu command Insert | XML Schema/File).
3. Add to the mapping area the database articles.sqlite created in previous steps (use the menu command Insert | Database), and then select SQLite.
4. Click Connect. When prompted to choose the database objects, select the articles table.
5. Draw the connections as shown below:

![Diagram of connections between databases and XML data]

6. Click the **A:In** button on the database component and select the **Delete All records** option. This ensures that, every time the mapping is executed, all existing database rows are first deleted, in order to prevent duplication.

![Database Table Actions - articles]

7. Click the **Output** tab of the main mapping window. MapForce executes the mapping using the built-in execution engine and displays the create SQL query in the Output window.
8. Run the SQL script to populate the database (use the menu command Output | Run SQL-Script). If MapForce does not encounter any runtime errors, the records are inserted into the SQLite database.

```sql
/*
The following SQL statements were only for preview and may not be executed in another SQL query tool.
To execute these statements use function "Run SQL-script" from menu "Output".
Connect to database using the following connection-string:
C:/sqlite/articles.sqlite
*/

PRAGMA foreign_keys = ON;

DELETE FROM "articles"

INSERT INTO "articles" ("number", "name", "singleprice") VALUES (1, 'T-Shirt', 25)
INSERT INTO "articles" ("number", "name", "singleprice") VALUES (2, 'Socks', 2.3)
INSERT INTO "articles" ("number", "name", "singleprice") VALUES (3, 'Pants', 34)
INSERT INTO "articles" ("number", "name", "singleprice") VALUES (4, 'Jacket', 57.5)

/*
The following SQL statements were executed during "Generate output" function.
Every single result is written right to the "--> >" string.
These statements are only for preview and may not be executed in another SQL query tool.
The database was connected using the following connection-string:
C:/sqlite/articles.sqlite
*/

PRAGMA foreign_keys = ON;
--> > OK. 0 row(s).

DELETE FROM "articles"
--> > OK. 0 row(s).

INSERT INTO "articles" ("number", "name", "singleprice") VALUES (1, 'T-Shirt', 25)
--> > OK. 1 row(s).

INSERT INTO "articles" ("number", "name", "singleprice") VALUES (2, 'Socks', 2.3)
--> > OK. 1 row(s).

INSERT INTO "articles" ("number", "name", "singleprice") VALUES (3, 'Pants', 34)
--> > OK. 1 row(s).

INSERT INTO "articles" ("number", "name", "singleprice") VALUES (4, 'Jacket', 57.5)
--> > OK. 1 row(s).
```

To check whether data was correctly inserted into the SQLite database:

1. Click the **DB Query** tab of MapForce.
2. Select the **articles** entry from the drop-down list at the top of the **DB Query** pane.
3. Enter the following query in the SQL Editor:

   ```sql
 select * from articles;
   ```
Alternatively, follow the steps below:

1. Run the file `c:\sqlite\sqlite3.exe` and open the database with the command:
   ```
 .open articles.sqlite
   ```

2. Run the following select statement:
   ```
 select * from articles;
   ```

Regardless of the approach you choose to select the table data (MapForce or SQLite shell), the query should return four rows now. This corresponds to the number of records in the source XML file, which was the intended goal of this example.

### 6.2.4 Joining Database Data

In mappings that read data from databases, you can join database objects such as tables or views by adding a Join component to the mapping. For example, you could combine data from two or more tables bound by foreign key relationships, which is the typical way data is stored in relational databases. The result would be the same as if you ran against the database an SQL query where two or more tables are joined by means of an INNER JOIN (or LEFT JOIN, if applicable) operation.

Depending on the kind of data connected to the join component, the join operation can happen either in standard (non-SQL) mode, or in SQL mode. Joins in non-SQL mode are undertaken by MapForce, while joins in SQL mode are undertaken by the database from which the mapping reads data.

Joins in non-SQL mode are more flexible because they support more component types as input (for example, the join can be between tables from different databases, or between XML structures and database tables). For an example of a non-SQL join, see Example: Join XML Structures. On the other hand, a non-SQL join causes the mapping engine to perform memory-costly comparisons (because the total number of comparisons represents the cross-join, or Cartesian product, of all joined structures). Usually this process takes place very fast and is negligible in mappings which are not data-intensive; however, if the joined data sources consist of a huge number of records, then the mapping will require significant time to execute. If your mappings must process a very large number of records, consider licensing MapForce Server Advanced Edition, which includes dedicated join optimization to speed up the mapping execution.

A join in SQL mode accepts only eligible database objects as input (such as tables or views), so it is not as flexible as a non-SQL join. However, it offers better mapping performance because it is executed natively by the database. For further information, see Joins in SQL Mode.

**Note:** Using a Join component is not the only way to join database tables or views. Joins applicable to databases can also be performed by using SQL SELECT statements, see SQL SELECT Statements as Virtual Tables. A major difference between SQL SELECT statements and Join components is that the former are written by hand so they might provide more flexibility. Join components are a simpler alternative if you do not feel comfortable writing SQL statements by hand.

**To add a Join component:**

1. Set the mapping transformation language to BUILT-IN (to do this, either click the toolbar button, or
use the Output | Built-In Execution Engine menu command).

2. On the Insert menu, click Join. Alternatively, click the Join (▼) toolbar button. The Join component appears on the mapping. By default, it accepts data from two structures, so it has two nodes/rows inputs. If necessary, you can add new inputs to the join by clicking the Add Input (▼) button, see Joining Three or More Structures.

3. Connect the structures that are to be joined to the nodes/rows items of the join component.

4. Add the condition for the join (or multiple conditions). To do this, right-click the Join component and select Properties. Join conditions can also be added directly from the mapping, by connecting the Boolean result of some function to the condition item of the Join component. In certain cases when database tables are joined, the join condition (or conditions) can be created automatically by MapForce. For further information, see Adding Join Conditions.

Notes:

- Join components are supported when the target language of the mapping is set to BUILT-IN. Code generation in C#, C++, or Java is not supported.
- When a structure is not a valid or supported input source for the join, MapForce displays hints either immediately directly on the mapping, or in the Messages window, when you validate the mapping (see Validating Mappings).
- Join components should not be connected to input parameters or results of inline user-defined functions. If such connections exist, validation errors will occur during mapping validation.
- When you connect eligible database components (such as tables or views) directly to a Join component, an SQL mode (SQL) button automatically appears at the top-right corner of the Join component. When enabled, this button provides special SQL features applicable to the join operation (see Joins in SQL Mode).
- It is not possible to connect the output of the joined item to another Join component. If necessary, however, you can connect a partial result of one join to another one.

6.2.4.1 Joins in SQL Mode

When you connect eligible database components (such as tables or views) directly to a join component, an SQL mode (SQL) button appears at the top-right corner of the join component. When SQL mode is enabled, the join operation is undertaken by the database from where the mapping reads data. In other words, MapForce will internally send to the database a query with the appropriate SQL syntax to select and combine data from all tables that take part in the join. Importantly, you do not need to write any SQL; the required query is produced based on how you visually designed the Join component on the mapping, as you will see in subsequent examples.

For SQL mode to be possible, the following conditions must be met:

1. Both objects (tables or views) that are to be joined must be from the same database.
2. Both objects that are to be joined must originate from the same MapForce component. (Note that you can quickly add/remove database objects in a component as follows: right-click the database component, and select Add/Remove/Edit Database Objects from the context menu.)

3. The Join condition (or conditions) must defined only from the component properties (by right-clicking the header of the join component, and selecting Properties), and not on the mapping (see also Adding Join Conditions).

Note: When database tables are joined in SQL mode, MapForce will create the join condition (or conditions) automatically, based on foreign key relationships detected between tables. For automatic join conditions to happen, the database tables must be in a child-parent relationship on the MapForce component (that is, one table must be "parent" or "child" of another one on the component), see Example: Join Tables in SQL Mode.

4. All database tables must not yet be in the current target context. When the join result is used in a target component, none of the joined tables may be connected directly or indirectly to any target parent nodes. For more information about how a mapping is executed, see Mapping Rules and Strategies.

You can view or control the SQL mode through the SQL (button at the top-right corner of the join component, as follows:

- SQL: SQL mode is disabled (join will be executed by MapForce (or, if applicable, by MapForce Server).
- SQL: SQL mode is enabled (join will be executed by the database).

If the SQL button is missing, this means that SQL mode is not meaningful or not supported for the data that is being joined.

In certain cases, the SQL mode must be explicitly disabled (SQL), for example:

- When your mapping requires join conditions outside of the join component properties (that is, conditions defined on the mapping and connected to the condition item of the join component).
- When you want to join tables from different databases. Use a standard (non-SQL) join if you need to join tables from different databases.

Changing the Join mode

When the Join component is in SQL mode, you can join database tables or views in one of the following ways:

- INNER JOIN - Only records which satisfy the condition in both input sets are returned by the Join component.
- LEFT OUTER JOIN - The Join component includes all records from the "leftmost" table (in MapForce, this is the topmost table of a Join component), plus those records from the subsequently joined table that satisfy the join condition.

To view the join mode of a table or view on the Join component, observe the icon shown in front the joined table or view. One of the following icons can be shown for any joined table or view except the first one:

- Inner Join
- Left Join
To display a tooltip with details about the join, move the cursor over the icon:

![Join Mode: Inner Join](image)

To change the join mode, do one of the following:

- Click the **Inner Join** or **Left Join** icon in front of each joined table or view, and select **Inner Join** or **Left Outer Join** from the context menu.
- Right-click the second (or third, fourth, etc) joined table or view on the Join component, and select **Join Type | Inner Join**, or **Join Type | Left Outer Join** from the context menu.

Note the following:

- If you changed the join mode to LEFT OUTER JOIN, then the upper table or view represents the "left" side of the join.
- Changing the join mode affects the data returned by the join component in the same way that INNER JOIN or LEFT JOIN affects the result of a SQL query in a database.

**Alias names**

It is often the case that joined database tables or views contain identical field names in both joined structures. When SQL mode is enabled, such items appear on the component prefixed by the keyword "AS". For example, if two joined tables contain an "id" field, this field appears as "id" on the first joined table and as "id"
AS id2" on the second joined table. Joined tables can also produce alias names, for example, if the same table is joined to itself.

The alias field or table names are important if you need to refer to them subsequently on a mapping. For example, imagine a case when you want to filter or sort the result of the join. To achieve this, the output of the join component can be connected to a SQL WHERE/ORDER component, where you would enter the SQL WHERE and ORDER BY clauses.

To refer to a field from the WHERE clause, write the table name, followed by a dot (.) character, followed by the field name. To refer to a table alias, use the alias name as it appears on the Join component. In the ORDER BY clause, you can either use the same technique (table.field), or write just the alias field name (the name that appears after "AS").

For an example mapping which uses SQL WHERE/ORDER clauses, see Example: Join Tables in SQL Mode.

**Note:** SQL WHERE/ORDER components are not allowed between a database table and the join component; they can be added only after (but not before) a join component. For more information about SQL WHERE/ORDER components, see Filtering and Sorting Database Data (SQL WHERE/ORDER).

### 6.2.4.2 Example: Join Tables in SQL Mode

This example illustrates how to join data from two database tables, using a MapForce join component. The join operation is performed in SQL mode, as described in Joins in SQL Mode. Note that joining three or more tables works in a very similar way, see also Example: Create CSV Report from Multiple Tables.

The example is accompanied by a mapping sample which is available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\JoinDatabaseTables.mfd.
The purpose of the mapping above is to combine data from two source database tables into a single target CSV file. As illustrated in the database diagram below, the first table (users) stores people's addresses and the second table (addresses) stores people names and email addresses. The two tables are linked by a common field (id in users corresponds to user_id in addresses). In database terminology, this kind of relation is also known as a "foreign key relationship".
For convenience, the image below illustrates the actual data in both tables.
Each user record in the users table can have zero or more addresses in the addresses table. For example, a user may have one address of type "home", or two addresses (one of type "home" and another of type "work"), or no address at all.

The goal of the mapping is to retrieve full data (name, surname, email, city, street, number) of all users that have at least one address in the addresses table. It should also be possible to easily retrieve only addresses of a specific kind (for example, only home addresses, or only work addresses). The kind of addresses to retrieve ("home" or "work") should be supplied as a parameter to the mapping. The retrieved people records must be sorted alphabetically by last name.

The mapping requirement will be accomplished with the help of a Join component, as illustrated in the steps below.

**Note:** Using a Join component is not the only way to join database tables or views. Joins applicable to databases can also be performed by using SQL SELECT statements, see [SQL SELECT Statements as Virtual Tables](https://www.altova.com/mapforce/docs/sqlselect-statements.html). A major difference between SQL SELECT statements and Join components is that the former are written by hand so they might provide more flexibility. Join components are a simpler alternative if you do not feel comfortable writing SQL statements by hand.
Step 1: Add the source database

1. On the Insert menu, click Database. (Alternatively, click the Insert Database toolbar button).
2. Select "SQLite" as database kind, and click Next.
3. Browse for the Nanonull.sqlite file available in the folder:
   `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\`, and click Connect.
4. When prompted, select the addresses and users tables.

![Database Connection](image)

Step 2: Add the join component

1. On the Insert menu, click Join. (Alternatively, click the Join toolbar button).
2. Draw a connection from the users table to the first input of the join component.
3. Expand the users table and draw a connection from the addresses table (child of users) to the second input of join component. The button enables you to add more tables if necessary; however, in this example, only two tables are being joined.

![Join Component](image)

**Note:** It is also possible to add the connection directly from the addresses table (the one which is not child of users); however, in this case, the join conditions would have to be defined manually, as described in Adding Join Conditions. For the purpose of this example, make sure to create the connections as shown above. This ensures the required join condition is created automatically.

4. Click the Define Join Condition button available on the join component. Notice that the join condition has been created automatically (`users.id = addresses.user_id`).

![Join Conditions](image)
Step 3: Add the target CSV component

1. On the Insert menu, click Text File. (Alternatively, click the Insert Text File toolbar button).
2. When prompted to choose a text processing mode, select Use simple processing for standard CSV...
3. Click Append Field several times to create seven CSV fields. Leave all other settings as is.
4. Double-click the title cell of each field to give it a descriptive name (this will make your mapping easier to read).
5. Draw the mapping connections between the Join component and the CSV component as shown below. The connection between the **joined** item of the join component and the **Rows** item of the target component means "create as many records (rows) in the target as there are records that meet the join condition".

---

**Step 4: Add the SQL WHERE/ORDER condition and input parameter**

1. Right-click the connection between the **joined** item of the Join component and the **Rows** item of the target CSV component, and select **Insert SQL-WHERE/ORDER.**
2. Enter the WHERE and ORDER BY clauses as shown below.
3. On the mapping, add an input component (using the **Insert** | **Insert Input** menu command) and connect its output to the `address_type` parameter created in the previous step.

4. Double-click the input component and configure it as shown below. A design-time value is required (in this case, "home") to preview the mapping output in MapForce. If you want the preview to retrieve work addresses, replace this value with "work".

The mapping explained

The join condition automatically created in step 2 ensures that only records which satisfy the join condition `users.id = addresses.user_id` are copied to the target. The join condition was added automatically because the two tables are bound by a foreign key relationship and the mapping connections were drawn accordingly. For more information about table relationships, see Handling Database Relationships. Because this example has made use of the already existing table relationships, you did not have to define any join conditions manually. For an example that shows you how to define join conditions manually, see Example: Create CSV Report from Multiple Tables.

The two source tables are from the same database and from the same component, so this join benefits from the SQL mode. Since SQL mode is enabled, the join operation is undertaken by the database, not by MapForce. In other words, an INNER JOIN statement is generated internally by MapForce and sent to the database for execution. The type of the join (INNER JOIN) is indicated by the Inner Join icon in front of the `addresses` table on the Join component. You can also change the join type to LEFT OUTER JOIN, as described in Changing the Join Mode. Note, however, that changing the join mode does not affect the output of this example.

The SQL WHERE/ORDER component added in step 4 enables filtering (to retrieve either home or work addresses) and sorting the recordset. Notice that the WHERE clause created a parameter `:address_type` of type string. This parameter makes it possible to supply the address kind (home or work) from the mapping. For more information about SQL WHERE/ORDER, see Filtering and Sorting Database Data (SQL WHERE/ORDER).

Finally, the input component makes it possible to supply the actual parameter value when the mapping runs. Note that, when the mapping runs outside MapForce (for example, when it is executed by MapForce Server on a different machine), the input must be supplied at mapping runtime as a command-line parameter, so the design-time value mentioned above is ignored. For more information, see Supplying Parameters to the Mapping.
6.2.4.3 Example: Create CSV Report from Multiple Tables

This example illustrates how to join multiple database tables for the purpose of extracting data into a single report in CSV format. The database used in this example is called `Nanonull.sqlite` and is available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\`. This database stores information about a fictitious business (which includes orders, products, users and their addresses). As is typically the case with relational databases, the information is normalized and spread across multiple tables.

For example, the `users` table stores user personal data (which includes first name, last name, and email). The database also stores information about products ordered by users, in two different tables: `orders` (which includes the unique ID of the order, and the time when it took place) and `orderedproducts` (which includes a list of products ordered, and their quantity). Furthermore, the names of the products themselves is stored in a separate table called `products`.

The goal of the example is to produce a report based on data extracted from various tables, so as to make it clear who ordered certain products, when, and in which quantity. To achieve the mapping goal, follow the steps below:

1. On the Insert menu, click Database.
2. When prompted to select a database kind, click SQLite, and then click Next.
3. Browse for the `Nanonull.sqlite` database mentioned above, and click Connect.
4. When prompted, select the tables `orderedproducts`, `orders`, `products`, and `users`, and click OK.

5. Add a Join component to the mapping and create four nodes/rows items by clicking the Add input button.
6. Connect the four tables from the database component to the corresponding input items of the Join component.

**Note:** In an alternative scenario, you could connect the table `orderedproducts` to the Join component, then the table `orders` (the one which is nested under it, not the one at the same level), and so on, so that all joined tables are nested under the same “root” table, see also Handling Database Relationships. The mapping result would be the same if you joined tables this way. The difference is that in this...
example the join conditions are created manually, whereas in the alternative scenario the join conditions would be created automatically by MapForce. For an example of joining tables without having to define join conditions manually, see Example: Join Tables in SQL Mode. Another mapping where all joined tables are under the same "root" table is available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\DB_Denormalize.mfd.

In this example, the tables connected to the Join component have the following order:

1. orderedproducts
2. orders
3. products
4. users

This order affects how the respective structures are displayed on the "Define Join Condition" dialog box, when you click the Define Join Condition button. Namely, the first table (orderedproducts) appears by default under Structure 1, and the table immediately after it (orders) appears under Structure 2.

To define the first join condition, click the order_id item in the left pane and the id item in the right pane. Now the fields orderedproducts.order_id and orders.id are paired:

So far, only two tables have been joined. To define join conditions which involve a third table, select the desired table from the drop-down list available above the right pane. The left pane displays in this case all tables that occur before it on the Join component. For example, if you select products on the right side, then the left side displays orderedproducts and orders (since these tables occur before products on the Join component). You can now pair fields of table products with fields of tables preceding it (in this case, orderedproducts.product_id and products.id).
To join a fourth table (users), select the users table from the drop-down list. You can now pair the fields orders.user_id and users.id.
Now that all required join conditions have been defined, items of the Join component can be further mapped to a target component. To finish the mapping, add a CSV component (see CSV and Text Files), and connect items from the Join component to the target CSV component as illustrated below:
The mapping illustrated above produces a report (in CSV format) compiled from all four tables involved in the join, as follows:

- ID of the order (taken from the `orderedproducts` table)
- Quantity of ordered items (taken from the `orderedproducts` table)
- Time when the order took place (taken from the `orders` table)
- Name of the product ordered (taken from the `products` table)
- First name and last name of the user who ordered the product (taken from the `users` table).

All the tables in this example are joined using INNER JOIN mode. For information about changing the join mode to LEFT OUTER JOIN, see [Changing the join mode](#).

### 6.2.5 Filtering and Sorting Database Data (SQL WHERE/ORDER)

When you need to filter and sort database data, use an SQL WHERE/ORDER component. This enables you to manually enter, from the MapForce graphical user interface, a SQL WHERE clause that filters data. Optionally, you can also specify an ORDER BY clause if you want to sort the recordset by a particular database field, in ascending or descending order.
The SQL WHERE/ORDER component must be connected to a table or field of a database mapping component. It is also possible to connect the SQL WHERE/ORDER to a Join component, if you need to filter the joined set or records (see Joining Database Data).

Adding a SQL WHERE/ORDER component to the mapping

1. On the **Insert** menu, click **SQL WHERE/ORDER**. By default, the SQL WHERE/ORDER component has the following structure:

2. Connect a source database table or field to the **table/field** item of the SQL WHERE/ORDER. For an example, open the mapping **DB_PhoneList.mfd** from the folder <Documents>\Altova\MapForce2021\MapForceExamples. In this mapping, the SQL WHERE/ORDER is used to filter from the source table "Person" all records where the last name begins with letter "B".

3. Double-click the header of the SQL WHERE/ORDER component (or right-click it and select **Properties** from the context menu). This opens the "SQL WHERE/ORDER Properties" dialog box.
4. Type the SQL WHERE clause in the text box at the top. Optionally, type the ORDER BY clause. The image above illustrates the WHERE and ORDER BY clauses defined in the `DB_PhoneList.mfd` mapping (these settings are further explained below). For more examples, see Creating WHERE and ORDER BY Clauses.

Supplying parameters to a SQL WHERE/ORDER

The SQL WHERE/ORDER component used in the mapping `DB_PhoneList.mfd` defines a WHERE clause as follows:

```
Last LIKE :Name
```

"Last" refers to the name of a database field in the connected table. "LIKE" is an SQL operator. ":Name" creates a parameter called "Name" on the mapping.

Parameters in SQL WHERE/ORDER components are optional; they are useful if you want to pass a value to the WHERE clause from the mapping. Without parameters, the WHERE clause above could have been written as follows:

```
Last LIKE "B%"
```
This would retrieve all persons whose last name begins with letter "B". In order to make this query even more flexible, we added a parameter instead of "B%". This makes it possible to supply any other letter from the mapping (for example, "C", and thus retrieve people whose last name begins with "C" simply by changing a constant, or a mapping input parameter).

Appearance of SQL WHERE/ORDER components

An important thing about SQL WHERE/ORDER components is that they change appearance depending on the settings defined in them. This way you can quickly view directly from the mapping what the SQL WHERE/ORDER component does, for example:

<table>
<thead>
<tr>
<th>Table/FIELD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>A WHERE clause has been defined.</td>
</tr>
<tr>
<td>Person</td>
<td>A WHERE clause with a parameter has been defined. The parameter &quot;Name&quot; is visible under the &quot;table/field&quot; item.</td>
</tr>
<tr>
<td>Person</td>
<td>A WHERE clause with a parameter has been defined. Additionally, an ORDER BY clause has been defined. The sorting is indicated by the A-Z sort icon.</td>
</tr>
</tbody>
</table>

Placing the mouse cursor over the SQL WHERE/ORDER header opens a tooltip displaying the various clauses that have been defined.

### 6.2.5.1 Creating WHERE and ORDER BY Clauses

After an SQL WHERE/ORDER component is added to the mapping, it needs a WHERE condition (clause) through which you specify how exactly you want to filter the data connected to the component. The WHERE condition must be entered in the “SQL WHERE/ORDER Properties” dialog box of MapForce, as shown in the previous section.

Writing a WHERE condition from MapForce is similar to writing the same SQL clause outside MapForce. Use the syntax applicable to the SQL dialect of the corresponding database. For example, you can use operators, wildcards, as well as sub-selects or aggregate functions. To create parameters that you can pass from the mapping, enter a semi-colon character (:) followed by the parameter name.

**Note:** When you finish writing the WHERE clause and click OK, MapForce validates the integrity of the final SQL statement. A dialog box prompts you if there are syntax errors.

The table below lists some typical operators that can be used in the WHERE clause:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Equal</td>
</tr>
<tr>
<td>Operator</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>&lt;&gt;</td>
<td>Not equal</td>
</tr>
<tr>
<td>&lt;</td>
<td>Less than</td>
</tr>
<tr>
<td>&gt;</td>
<td>Greater than</td>
</tr>
<tr>
<td>&gt;=</td>
<td>Greater than/equal</td>
</tr>
<tr>
<td>&lt;=</td>
<td>Less than/equal</td>
</tr>
<tr>
<td>IN</td>
<td>Retrieves a known value of a column</td>
</tr>
<tr>
<td>LIKE</td>
<td>Searches for a specific pattern</td>
</tr>
<tr>
<td>BETWEEN</td>
<td>Searches between a range</td>
</tr>
</tbody>
</table>

Use the % (percentage) wildcard to represent any number of characters in a pattern. For example, to retrieve all records ending in "r" from a field called `lastname`, use the following expression:

```
lastname = "%r"
```

When querying databases that support storing and querying of XML database data (for example, IBM DB2, Oracle, SQL Server), you can use XML functions and keywords applicable to that particular database, for example:

```
xmlexists('$c/Client/Address[zip>"55116"]' passing USER.CLIENTS.CONTACTINFO AS "c")
```

See also [Example: Extracting Data from IBM DB2 XML Type Columns](#).

Optionally, if you want to sort the retrieved recordset by a particular field, add an ORDER BY clause in the corresponding text box of the "SQL WHERE/ORDER Properties" dialog box. To sort by multiple fields, separate the field names by commas. To change the sort order, use the ASC and DESC keywords. For example, the following ORDER BY clause retrieves records ordered by `lastname`, and then by `firstname`, in descending order:

```
lastname, firstname DESC
```

**Example 1**

The following WHERE condition is attached to the `Person` table of the `altova.mdb` database component. It retrieves those records where `First` and `Last` are greater than the letter "C". In other words, it retrieves all names from "Callaby" onwards.

```
First > "C" AND Last > "C"
```

Note how the connections are placed:

- The connection to `table/field` originates in the table that you want to query, "Person" in this case.
Example 2
The following WHERE condition creates a parameter **Name** which then appears in the SQL WHERE/ORDER component on the mapping.

```
Last LIKE :Name
```

The constant component `:%S` supplies the value of the **Name** parameter. The wildcard `%` denotes any number of characters. This causes the mapping to search for a pattern in the column "Last" (all last names ending in "S").
Example 3

The following WHERE condition creates two parameters, `PhoneUpper` and `PhoneLower`, to which the current values of `PhoneExt` are compared. The upper and lower values are supplied by two constant components shown in the diagram below.

\[
\text{PhoneExt} < :\text{PhoneUpper} \text{ and } \text{PhoneExt} > :\text{PhoneLower}
\]

The WHERE condition in this example could also be written using the BETWEEN operator:

\[
\text{PhoneExt BETWEEN :PhoneUpper and :PhoneLower}
\]

6.2.6 SQL SELECT Statements as Virtual Tables

MapForce supports the creation of SQL SELECT statements with parameters in database components. These are table-like structures that contain the fields of the result set generated by the SELECT statement. These structures can then be used as a mapping data source, like any table or view defined in the database.

- When using Inner/Outer joins in the SELECT statement, fields of all tables are included in the component.
- Expressions with correlation names (using the SQL "AS" keyword) also appear as a mappable items in the component.
- Database views can also be used in the FROM clause.
- SELECT statements can contain parameters which use the same syntax as the SQL WHERE/ORDER component.

SQL SELECT statements are supported in C++, C#, Java, and BUILT-IN languages, as long as they don't contain input parameters. SQL SELECT statements with input parameters are supported only in the

© 2020 Altova GmbH

Altova MapForce 2021 Professional Edition
Once the SELECT statement has been added to a database component, the fields returned by it are available for mapping, for example:

The number of visible lines of the SELECT statement is configurable. To define the number of lines you want to see on the component, select the menu command Tools | Options, click the General tab and enter the number of lines in the Mapping View group.

6.2.6.1 Creating SELECT Statements

You can create SELECT statements on any mapping which contains a database component. If your mapping does not contain a database yet, add a database first (see Connecting to a Database). For the scope of this example, select the menu command Insert | Insert Database and follow the wizard steps to connect to the altova-products.mdb file available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder.

To create a SELECT statement:

1. Right-click the title of the database component, and select Add/Remove/Edit Database Objects. (As an alternative, select the database component, and then select the menu command Component | Add/Remove/Edit Database Objects).
2. Do one of the following:
   o To generate the SELECT statement from an existing table, right-click any table and select **Generate and add an SQL statement** from the context menu. You will be able to edit the generated statement afterwards.
   o To write a custom SELECT statement, click the **Add/Edit SELECT Statement** button.

3. Edit or create the statement as required. For example, the SELECT statement below is valid for the `altova-products.mdb` file available in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder. The **Price** field is the product of the two fields, **Quantity** and **UnitPrice**, and is declared as a correlation name (**AS Price**).

   ```sql
 SELECT *, (Quantity*UnitPrice) AS Price
 FROM Orders
 INNER JOIN Products
 ON Orders.ProductID = Products.ProductID
 WHERE Orders.Quantity > 2
   ```

4. Click **Add SELECT Statement**. Notice that the SELECT statement is now visible as a database object, similar to how tables, views, and procedures are visible.
5. Click OK. The SELECT statement is also displayed on the database component, and you can map data from any of the fields returned by the SELECT query.

Important notes:

- All calculated expressions in the SELECT statement must have a unique correlation name (like "AS Price" in this example) to be available as a mappable item.
- If you connect to an Oracle or IBM DB2 database using JDBC, the `SELECT` statement must have no final semicolon.
To remove a previously added SELECT statement:

1. Right-click the title of the database component, and select Add/Remove/Edit Database Objects.
2. Right-click the SELECT statement you want to delete, and select Remove Select Statement.

6.2.6.2 Example: SELECT with Parameters

This example shows you how to create a MapForce mapping which reads data from a Microsoft Access database and writes it to a CSV file. In particular, the mapping described in this example uses a custom database SELECT query with a parameter. The SELECT statement combines data from multiple tables. Then, the results are supplied to the mapping for further processing.

The example is accompanied by a mapping design (.mfd) file available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\select-component.mfd. You might want to open this sample file and analyze it first, or follow the steps below to create it from scratch.

Although this example uses a Microsoft Access database, the process works in the same way for other database types. For information about connecting to other databases, see Connecting to a Database.

The goals are as follows:

1. We must select from the database only those orders where the number of ordered items exceeds a custom value. This custom value should be supplied as a parameter to the mapping. To achieve this goal, we will create a custom database SELECT statement that takes an input parameter.
2. In the Access database, the date format is YYYY-MM-DD HH:MI:SS. In the CSV file, the time part must be stripped, so the format should be YYYY-MM-DD. To achieve this goal, we use the date-from-datetime function available in MapForce.
3. The resulting CSV file must have the name OrdersReport.csv.

Step 1: Add the SELECT structure

1. On the Insert menu, click Database.
2. Select Microsoft Access (ADO), and follow the wizard steps to connect to the altova-products.mdb file available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder.

3. On the Insert Database Objects dialog box, click Add/Edit SELECT Statement, and enter the following query:
This query uses a join between the Orders and Products tables, and retrieves all fields (*), and a computed value (AS Price). The query also specifies the :Quantity parameter in the WHERE clause.

4. Click **Add SELECT statement**.
5. Click OK. The **altova-products** component has now been added to the mapping area.
6. On the **altova-products** component, click **Insert Call with Parameters**.
A new structure (SELECT Statement) is now available on the mapping. It is split into two parts: the left part supplies input connectors and the right part supplies output connectors. Notice that the left part also includes the **Quantity** parameter defined previously.

**Step 2: Add the input parameter**

1. On the **Insert** menu, click **Insert Input**.
2. Type “Quantity” as name.
3. Under **Design-time Execution**, enter a parameter value to be used for executing the mapping during the design phase (in this example, "2"). For more information, see [Supplying Parameters to the Mapping](#).
You can now connect the input parameter to the database call structure, as shown below.

Step 3: Add the target CSV component
1. On the Insert menu, click Text File.
2. Select Use simple processing for standard CSV..., and then click Continue.
3. On the Component Settings dialog box, click Append Field and add nine new fields. It is recommended that you give to the CSV fields the same name as the name of the database fields, as shown below. This will help you save time later when drawing mapping connections. For more information about these settings, see Setting the CSV Options.
4. Create a connection between the **result** node of the SELECT structure and the **Rows** node of the CSV component.

Because most of the fields in the CSV component have the same name as their database equivalent, mapping connections will likely be drawn automatically when you connect **result** to **Rows**. If this does happen, select the **Connection** menu and make sure that the **Auto Connect Matching Children** option is enabled. The only mapping item that you have to connect manually is **ProductID**, since there is no field with this name in the SELECT structure.

**Step 4: Convert the date**

In the Libraries window, search for the **date-from-datetime** function and drag it to the mapping area. Then connect its input and output as shown below.
Step 5: Set the name of the output file
To set the name of the output file to `OrdersReport.csv`, double-click the title bar of the CSV component. The Component Settings dialog box opens, where you can enter the value in the **Output File** text box.

### 6.2.7 Mapping XML Data to / from Database Fields

MapForce enables you to map data to or from database fields (columns) that store XML content. This means that XML data stored by the database field (column) can be extracted and written to any other structure supported by MapForce, and the other way round. You can map data as follows:

1. To or from fields of a dedicated XML type (for example, `Xml` in SQL Server, `XMLType` in Oracle).
   - Reading or writing XML to/from dedicated XML fields is applicable to databases that have native support for XML (such as IBM DB2, Oracle, and SQL Server).
2. To or from text fields storing XML content (for example, `Text`, `Varchar`). This applies to any database where the text field has sufficient length to store an XML document.

In either of the cases, a valid XML schema must exist for each database column to/from which you want to map data. When a database column stores XML, MapForce provides you with the choice to assign an XML schema directly from the database (if supported by the database), or select a schema from an external file. You can assign one XML schema per database column. If the schema has multiple root elements, you can select a single root element of that schema.

When XML is stored as a string field in a database, the character encoding of the XML document is that of the underlying string field. If the database field does not store text as Unicode, some characters cannot be represented.

Some databases support XML encoding for XML fields (which may not necessarily be the same as that of the database character set). If supported by the database, the XML document encoding declaration is assumed to be the one declared in the XML field. For information about the XML encoding support provided by various databases, refer to their documentation.
6.2.7.1 Assigning an XML Schema to a Database Field

This topic illustrates how to assign a schema to a field that is natively defined as XML type in the database. The instructions below use SQL Server 2014 and the AdventureWorks 2014 database. The latter can be downloaded from the AdventureWorks samples page on GitHub (https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks). Note that mapping of data to or from XML fields works in the same way with other database types that support XML fields.

To add the Adventure Works 2014 database as a mapping component:

1. On the Insert menu, click Database, and follow the wizard to connect to the database using your preferred method (ADO or ODBC). For more information, see Connecting to Microsoft SQL Server (ADO) and Connecting to Microsoft SQL Server (ODBC). NOTE: If you use the SQL Server Native Client driver, you might need to set the Integrated Security property to a space character (see Setting up the SQL Server Data Link Properties).

2. On the Insert Database Object dialog box, expand the Production schema, and then select the ProductModel table.

3. Click OK.

The database table has now been added to the mapping area. Notice that this table has two fields of XML type: CatalogDescription and Instructions.
For the structure of the XML fields to appear on the mapping, the XML schema of the field content is required. Right-click the **Instructions** field and select **Assign XML Schema to Field** from the context menu.

In this particular example, you will assign a schema to the **Instructions** field directly from the database. To do this, select the **Production.ManuInstructionsSchemaCollection** item next to the **Database** option, and then click OK.
The structure of the XML field now appears on the component. You can now draw connections (and map data) to or from this field.
6.2.7.2 Example: Writing XML Data to a SQLite Field

This example walks you through the steps required to create a MapForce mapping which reads data from multiple XML files and writes it to a SQLite database. The goal of the mapping is to create, for each source XML file, a new database record in the SQLite database. Each record will store the XML document as a TEXT field.

All the files used in this example are available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\`. The file names are as follows:

<table>
<thead>
<tr>
<th>The mapping design file</th>
<th>• XmlToSqliteField.mfd</th>
</tr>
</thead>
<tbody>
<tr>
<td>The source XML files</td>
<td>• bookentry1.xml</td>
</tr>
<tr>
<td></td>
<td>• bookentry2.xml</td>
</tr>
<tr>
<td></td>
<td>• bookentry3.xml</td>
</tr>
<tr>
<td>The XML schema used for validation</td>
<td>• books.xsd</td>
</tr>
<tr>
<td>The target SQLite database</td>
<td>• Library.sqlite</td>
</tr>
</tbody>
</table>

To achieve the goal of the mapping, the following steps will be taken:
1. Add the XML component and configure it to read from multiple files.
2. Add the SQLite database component and assign an XML schema to the target TEXT field.
3. Create the mapping connections and configure the database INSERT action.

Step 1: Add the XML component

1. On the Insert menu, click XML Schema/File and browse for the books.xsd schema located in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ directory. When prompted to supply a sample XML file, click Skip. When prompted to select a root element, select Books.
2. Double-click the component header and type bookentry*.xml in the Input XML File box. This instructs MapForce to read all XML files whose name begins with “bookentry-” in the source directory. For more information about this technique, see Processing Multiple Input or Output Files Dynamically.

Step 2: Add the SQLite component

On the Insert menu, click Database, and follow the wizard to connect to the Library.sqlite database file from the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ directory (see also Connecting to an Existing SQLite Database). When prompted to select the database objects, select the BOOKS table.

The database field where XML content will be written is called metadata. To assign an XML schema to this field, right-click it and select Assign XML Schema to Field from the context menu.
In this tutorial, the schema assigned to the metadata field is the same one used to validate the source XML files. Click Browse and select the books.xsd schema from the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ directory:

The books.xsd schema has two elements with global declaration: book and books. In this example, we will set book as the root element of the XML written to the database field. Click Choose, and select book as root element:

Step 3: Create the mapping connections and configure the database INSERT action
Create the mapping connections as follows:
As shown above, the connection from book to book is a "Copy-All" connection, since both the source and target use the same schema and the names of child elements are the same. For more information about such connections, see Copy-all connections.

The topmost connection (books to BOOKS) iterates through each book element in the source and writes a new record in the BOOKS table. Click the A:In button on the database component and set the database update settings as shown below:

The DELETE all records option instructs MapForce to delete the contents of the BOOKS table before inserting any records.

The Insert All actions specify that a database INSERT query will take place. The field id is generated from the database itself, while the field metadata will be populated with the value provided by the mapping.

Make sure to save the mapping before running it.
To run the mapping and view the generated output, click the Output tab. Note that this action does not update the database immediately. When you are ready to run the generated database script, select the menu command Output | Run SQL Script (or click the toolbar button).

### 6.2.7.3 Example: Extracting Data from IBM DB2 XML Type Columns

This example illustrates how to extract data from IBM DB2 database columns of XML type and write it to a target CSV file. It also illustrates how to use XQuery statements embedded into SQL in order to retrieve XML content conditionally. The example requires access to an IBM DB2 database where you have permission to create and populate tables.

First, let's prepare the database so that it actually contains XML data. This can be done either in a database administration tool specific to your database, or directly in MapForce. To do this directly in MapForce, follow the steps below:

1. Create a new mapping and click the DBQuery tab.
2. Click Quick Connect ( ) and follow the wizard steps to create a new database connection (see also Database Connection Examples )
3. Paste the following text into the SQL Editor. This SQL query creates a database table called ARTICLES and populates it with data.

```sql
-- Create the table
CREATE TABLE ARTICLES (id INTEGER NOT NULL, article XML) ;
-- Populate the table
INSERT INTO ARTICLES VALUES
(1, '<Article>
 <Number>1</Number>
 <Name>T-Shirt</Name>
 <SinglePrice>25</SinglePrice>
 </Article>'),
(2, '<Article>
 <Number>2</Number>
 <Name>Socks</Name>
 <SinglePrice>230</SinglePrice>
 </Article>'),
(3, '<Article>
 <Number>3</Number>
 <Name>Pants</Name>
 <SinglePrice>34</SinglePrice>
 </Article>'),
(4, '<Article>
 <Number>4</Number>
 <Name>Jacket</Name>
 <SinglePrice>5750</SinglePrice>
 </Article>');
```

4. Click the Execute ( ) button. The query execution result is displayed in the Query Results window. If the query is executed successfully, four rows are added to the newly created table.
Next, we will create a mapping which retrieves XML data from the ARTICLES table created above conditionally. The goal is to retrieve from the ARTICLES column only articles with a price greater than 100.

**Step 1: Add the database**

1. Click the **Mapping** tab to switch back to the mapping pane.
2. On the **Insert** menu, click **Database**, and follow the wizard steps to connect to the database.
3. When prompted to select the database objects, select the ARTICLES table created previously.

![Database connection](image)

**Step 2: Assign the schema to the XML type field**

1. Right-click the ARTICLE item of the component, and select **Assign XML Schema to field** from the context menu.

![Assign schema](image)

2. Select **File**, and browse for the following schema:
   `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\DB2xsd.xsd`.

**Step 3: Add the SQL WHERE/ORDER component**

1. On the **Insert** menu, click **SQL WHERE/ORDER**.
2. Connect the ARTICLE XML type column to the input of the SQL WHERE/ORDER.
3. In the SQL-WHERE/O..D ORDER Properties dialog box, enter the following text:

```
XMLEXISTS('"a/Article[SinglePrice>100]' PASSING ARTICLE as "a")
```

The text above represents the "WHERE" part of the SQL query. At mapping runtime, it will be combined with the "SELECT" part displayed on the dialog box. This statement uses the `XMLEXISTS` function and syntax specific to IBM DB2 databases.

**Step 4: Add the target CSV file**

1. On the Insert menu, click Text File.
2. When prompted, select Use simple processing for standard CSV..., and click Continue.
3. Click Append Field three times to add three fields which will store the article number, name, and price, respectively. Leave all other settings as is.
4. Draw the mapping connections as shown below.
You can now preview the mapping result, by clicking the Output tab. As expected, only articles with price greater than 100 are shown in the output.

<table>
<thead>
<tr>
<th></th>
<th>2, Socks, 230</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4, Jacket, 5750</td>
</tr>
</tbody>
</table>

### 6.2.8 Browsing and Querying Databases

MapForce has a dedicated Database Query pane (also called DB Query) that allows you to query a database independently of the mapping process. Such direct queries are not saved together with the mapping *.mfd file but provide a convenient way to browse or modify the contents of a database directly from MapForce.

A separate DB Query pane exists for each currently active mapping. You can create multiple active connections, to different databases, within each DB Query pane. Note that the connections created from the DB Query pane are not part of the mapping and thus are not preserved after you close MapForce, unless you define them as Global Resources.
The Database Query pane consists of the following parts:

- **Database Browser**, which displays connection info and database tables
- **SQL Editor**, in which you write your SQL queries
- **Results tab**, which displays the query results in tabular form
- **Messages tab**, which displays warnings or error messages.

The upper area of the Database Query pane contains the connection controls allowing you to define the working databases, as well as the connection and database schemas.

### 6.2.8.1 Selecting or Connecting to a Database

For each database that you want to query, a database connection must be created. If your mapping already includes a database component, you can select the existing database connection from the upper area of the
DB Query pane (by default, the connection is "Offline") and start exploring the database objects and run queries.

If your mapping does not include any database component, or if you want to connect to a new database, click Quick Connect and follow the wizard steps to create a new database connection (see Examples). You can also select an existing database connection from Global Resources, if one has been defined as such (see Global Resources).

Once you are connected to the database, you can create database queries using one of the following methods:

- Import the SQL query into the SQL Editor pane from an existing SQL file.
- Write the query in the SQL Editor pane.
- Right-click an object in the Database Browser pane and generate a query (typically, SELECT).

When you are ready to run the query displayed in the SQL Editor pane, click the Execute button. The database data is retrieved and displayed in the Results tab in tabular form. Note that the status bar displays the "Finished Retrieval" message ( ), and other pertinent information about the query results.

Once the "Finished Retrieval" message is displayed, you can search, sort, or copy to clipboard the search results (see Copying, Sorting, and Searching the Query Results).

6.2.8.2 Creating and Editing SQL Statements

The SQL Editor is used to write and execute SQL statements. It displays any SQL statements that you may have generated automatically, loaded from existing SQL scripts, or written manually. The SQL Editor supports autocompletion (see Auto-Completion), regions, and line or block comments.

The SQL Editor toolbar provides the following buttons:

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Toggle Browser" /></td>
<td>Toggle Browser: Toggles the Browser pane on and off.</td>
</tr>
<tr>
<td><img src="image" alt="Toggle Result" /></td>
<td>Toggle Result: Toggles the Result pane on and off.</td>
</tr>
</tbody>
</table>
### Generating SQL Statements

SQL statements can be generated automatically from the Database Browser, loaded from scripts, or entered manually.

To generate SQL SELECT statements from the Database Browser, do one of the following:

- Click a database object (such as a table or view), or a folder, in the Database Browser and drag it into the SQL Editor.

- Right-click a database object in the Database Browser and select **Show in SQL Editor** | **Select**.
To create SQL statements manually:

1. Start entering the SQL statement in the SQL Editor. If autocompletion is set to occur automatically, a drop-down list with suggestions appears while you enter statement.

2. Use the cursor **Up** and **Down** keys to select a suggestion, and then press **Enter** to insert the highlighted option (see also SQL Auto-Completion Suggestions).

6.2.8.2.2 Executing SQL Statements

The SQL statements that appear in the SQL Editor can be executed against the database, with immediate effect. The result of the SQL query and the number of affected rows is displayed in the **Messages** pane of the **DB Query** pane.

When multiple SQL statements appear in the SQL Editor, only the selected statements will be executed. You can select individual SQL statements as follows:

- Holding the left mouse button clicked, drag the cursor over a specific statement.
- Click a line number in the SQL Editor.
- Triple-click a specific statement.

To execute a SQL statement:

1. Enter or select the SQL statement in the SQL Editor (see Generating SQL Statements).
2. Click the **Execute** button.

6.2.8.2.3 Importing and Exporting SQL Scripts

You can save any SQL that appears in an SQL Editor window to a file and re-use the script file later on.

To export the contents of the SQL Editor pane to a file:

- Click **Export SQL file**, and enter a name for the SQL script.

To import a previously saved SQL file:

- Click **Import SQL file**, and select the SQL file you want to open.
6.2.8.2.4 Adding and Removing SQL Comments

The SQL Editor allows you to comment out statements, parts of statements, or groups of statements. These statements, or the respective parts of them, are skipped when the SQL script is being executed.

To comment out a section of text:

1. Select a statement or part of a statement.
2. Right-click the selected statement and select **Insert / Remove Block Comment**.

```
/*
SELECT [PrimaryKey], [ForeignKey], [city], [state],
[street], [zip] FROM [Address];
SELECT [PrimaryKey], [Name] FROM [Altova];
SELECT [PrimaryKey], [ForeignKey], [Name] FROM
[Department];*/
```

To comment out line by line:

- Right-click at the position you want to comment out the text and select **Insert / Remove Line Comment**. The statement is commented out from the current position of the cursor to the end of the statement.

To remove a block comment or a line comment:

1. Select the part of the statement that is commented out. If you want to remove a line comment, it is sufficient to select only the comment marks `--` before the comment.
2. Right-click and select **Insert / Remove Block (or Line) Comment**.

6.2.8.2.5 Using Bookmarks

Bookmarks are used to mark items of interest in long scripts.

To add a bookmark:

- Right-click the line you want to have bookmarked and select **Insert/Remove Bookmark** from the context menu.
A bookmark icon is displayed in the margin at the beginning of the bookmarked line.

To remove a bookmark:

- Right-click the line from where you want to remove the bookmark and select Insert/Remove Bookmark from the context menu.

To navigate between bookmarks:

- To move the cursor to the next bookmark, right-click and select Go to Next Bookmark.
- To move the cursor to the previous bookmark, right-click and select Go to Previous Bookmark.

To remove all Bookmarks:

- Right-click and select Remove all Bookmarks.

6.2.8.2.6 Inserting Regions

Regions are sections of text that you mark and declare as a unit to structure your SQL scripts. Regions can be collapsed and expanded to display or hide parts of SQL scripts. It is also possible to nest regions within other regions.

When you insert a region, an expand/collapse icon and a --region comment are inserted above the selected text.

Note: You can change the name of a region by appending descriptive text to the --region comment. The word "region" must not be deleted, e.g. --region DB2query.

To create a region:

1. In the SQL Editor, select the statements you want to make into a region.
2. Right-click and select Add Region from the context menu. The selected statements become a region which can be expanded or collapsed.
3. Click the + or - box to expand or collapse the region.

To remove a region:

- Delete the -- region and --endregion comments.

### 6.2.8.3 Browsing Database Objects

When you are connected to one or several databases, the **Database Browser** pane gives a full overview of the objects in each database, including tables, views, procedures, and so on, up to the most detailed level. For databases with XML support, the **Database Browser** additionally shows registered XML schemas in a separate folder.

For custom navigation through database objects, the **Database Browser** pane includes several predefined database display layouts. The predefined layouts are available in the top area of the Database Browser.

To select a layout, click the **Folders Layout** drop-down button and select an entry from the list. Note that the button changes with the selected layout.

- The **Folders** layout organizes database objects into folders based on object type in a hierarchical tree, this is the default setting.
- The **No Schemas** layout is similar to the Folders layout, except that there are no database schema folders; tables are therefore not categorized by database schema.
- The **No Folders** layout displays database objects in a hierarchy without using folders.
- The **Flat** layout divides database objects by type in the first hierarchical level. For example, instead of columns being contained in the corresponding table, all columns are displayed in a separate Columns folder.
- The **Table Dependencies** layout categorizes tables according to their relationships with other tables. There are categories for tables with foreign keys, tables referenced by foreign keys and tables that have no relationships to other tables.

In addition to layout navigation, you can use the **Database Browser** for the following tasks:

- Generate SQL statements (see [Generating SQL Statements](#)).
- Filter and search the displayed database objects (see [Filtering and Searching Database Objects](#)).
- Sort the tables into "System" and "User" tables.
- Refresh the root object of the active data source.

### To sort tables into User and System tables:

- In the **Database Browser**, right-click the "Tables" folder, and then select **Sort into User and System Tables**.

  **Note:** This function is available when one of the following layouts is selected: **Folders**, **No Schemas** or **Flat**.

### To refresh the root object of the active data source:

- At the top of the **Database Browser**, click **Refresh** ( ).

6.2.8.3.1 **Filtering and Searching Database Objects**

You can filter any database objects (schemas, tables, views, etc) displayed in the **Database Browser** by name or part of a name. Objects are filtered as you type in the characters. Filtering is case-insensitive by default. Filtering is not supported if you have selected the "No Folders" layout.

### Filtering database objects

1. At the top of the **Database Browser**, click **Filter Folder contents** ( ). Filter icons appear next to all folders in the currently selected layout.
2. Click the filter icon next to the folder you want to filter, and select the filtering option from the context menu (for example, **Contains**).

3. In the empty field which appears next to the filter icon, enter the search text (for example, “G”). The results are adjusted as you type.

Searching database objects

To find a specific database item by its name, you can either use filtering functions or the **Object Locator**. To find database elements using the Object Locator:

1. At the top of the Database Browser, click **Object Locator** ( )
2. In the drop-down list that appears, enter the search text (for example, "Off").
3. Click an object in the list to select it in the Database Browser.

### 6.2.8.3.2 Context Options in Database Browser

The context menu options available in the Database Browser depend on the object you have selected, for example:

- Right-clicking the "root" object allows you to Refresh the database.
- Right-clicking a folder always presents the same choices: Expand | Siblings | Children and Collapse | Siblings | Children.
- Right-clicking a database object reveals the Show in SQL Editor command and the submenu items discussed below.

To select multiple database objects, press either Shift + Click or Ctrl + Click.

**Note**: The syntax of the SQL statements may vary depending on the database you are using. The syntax below applies to Microsoft SQL Server 2014.

The following options are available under the Show in SQL Editor context menu for the root object:

- **CREATE**: Creates a CREATE statement for the selected database root object, for example:
  ```sql
 CREATE DATABASE [MYDB]
  ```
- **DROP**: Creates a DROP statement for the selected database root object, for example:
  ```sql
 DROP DATABASE [MYDB]
  ```

The following options are available under the Show in SQL Editor context menu for tables and views:

- **SELECT**: Creates a SELECT statement that retrieves data from all columns of the source table, for example:
  ```sql
 SELECT [DepartmentID], [Name], [GroupName], [ModifiedDate] FROM [MYDB].[HumanResources].[Department]
  ```
- **Name**: Returns the name of the table.
• **Path:** Returns the full path of the tables, in the format
  
  `DataSourceName.DatabaseName.SchemaName.TableName`

  If you selected multiple tables, the names or paths are printed on separate lines, separated by commas.

The following options are available under the **Show in SQL Editor** context menu for columns:

• **SELECT:** Creates a SELECT statement that retrieves data from the selected column(s) of the parent table, for example:
  
  `SELECT [DepartmentID] FROM [MYDB].[HumanResources].[Department]`

• **Name:** Returns the name of the selected column.

• **Path:** Returns the full path of the column, in the format
  
  `DataSourceName.DatabaseName.SchemaName.TableName.ColumnName`

  If you selected multiple columns, the names or paths are printed on separate lines, separated by commas.

The following options are available under the **Show in SQL Editor** context menu for constraints:

• **Name:** Returns the name of the selected constraint.

• **Path:** Returns the full path of the constraint, in the format
  
  `DataSourceName.DatabaseName.SchemaName.TableName.ConstraintName`

  If you selected multiple constraints, the names or paths are printed on separate lines, separated by commas.

The following options are available under the **Show in SQL Editor** context menu for indexes:

• **Name:** Returns the name of the selected index.

• **Path:** Returns the full path of the index, in the format
  
  `DataSourceName.DatabaseName.SchemaName.TableName.IndexName`

  If you selected multiple indexes, the names or paths are printed on separate lines, separated by commas.

If the database has support for XML Schemas, the following options are available for every schema displayed under the "XML Schemas" folder:

• **View in XMLSpy:** Opens the database schema in XMLSpy, provided that the latter is installed.

• **Manage XML Schemas:** Opens a dialog box where you can add new or drop existing database XML schemas.
6.2.8.4 Copying, Sorting, and Searching the Query Results

The **Results** tab of the **DB Query** pane shows the recordset retrieved as a result of a database query.

The toolbar buttons enable navigation between results and SQL statements and facilitate searching within the query results.

<table>
<thead>
<tr>
<th>Find:</th>
<th>Searches a specific text within the displayed results. Press F3 to go to the next occurrence of the search term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go to statement:</td>
<td>Jumps to the SQL Editor and highlights the SQL statement that produced the current result. This might be particularly useful when the SQL Editor contains multiple statements.</td>
</tr>
</tbody>
</table>

To select cells from the query results:

- Click a column header to select the entire column
- Click a row number to select the entire row
- Click individual cells. Holding down the Ctrl key while clicking allows you to make multiple selections. If a column or cell contains XML data then this data can also be copied.

Note: The context menu can also be used to select data, **Selection | Row | Column | All.**

To copy the selected cells to clipboard:

- Right-click and select **Copy selected cells** from the context menu.

To sort data:

- Right-click anywhere in the column to be sorted and select **Sorting | Ascending** or **Descending**
- Click the sort icon in the column header
The data is sorted according to the contents of the sorted column.

To restore the default sort order:

- Right-click anywhere in the table and choose Sorting | Restore default from the context menu.

6.2.8.5 Viewing the Status of Executed Queries

The Messages tab of the DB Query pane provides specific information about the last executed SQL statement and reports errors or warning messages.

You can use different filters to customize the view of the Messages tab or use the Next and Previous buttons to browse data row by row. The buttons at the top are used to navigate the messages, copy text to clipboard, and hide certain parts of the message. These options are also available in the context menu, when you right-click anywhere inside the Messages tab.

- **Filter**: Opens a pop-up menu from where you can filter out the individual message types (Summary, Success, Warning, Error, Autoinsertion, Progress). "Autoinsertion" refers to those messages that may be triggered when SQL statements or SQL constructs are inserted automatically in SQL Editor. "Progress" messages report the database connection result, as well as the outcome of SQL parsing and data structure loading.

  You can check all or none of these options with a single mouse click by selecting either Check All or Uncheck All from the pop-up menu.

- **Next**: Jumps to and highlights the next message.

- **Previous**: Jumps to and highlights the previous message.

- **Copy selected message to the clipboard**

- **Copy selected message including its children to the clipboard**
Copy all messages to the clipboard

Find: Opens the Find dialog box.

Find previous: Jumps to the previous occurrence of the string specified in the Find dialog box.

Find next: Jumps to the next occurrence of the string specified in the Find dialog box.

Clear: Removes all messages from the Message tab of the SQL Editor window.

6.2.8.6 Database Query Settings

This section includes information about configuring miscellaneous settings applicable to SQL statements entered or loaded in SQL Editor, as well as the query results displayed after a query is executed.

6.2.8.6.1 SQL File Encoding Settings

You can specify the encoding options for SQL files created or opened with SQL Editor as follows:

1. Click the DB Query tab.
2. At the top of the pane, click Options and then click General | Encoding.

Default encoding for new SQL files

Define the default encoding for new files so that each new document includes the encoding specification that you specify here. If a two- or four-byte encoding is selected as the default encoding (for example, UTF-16, UCS-2, or UCS-4), you can also choose between little-endian and big-endian byte ordering for the SQL files.

The encoding of existing files is not affected by this setting.
Open SQL files with unknown encoding as
You can select the encoding with which to open an SQL file with no encoding specification or where the encoding cannot be detected.

**Note:** SQL files which have no encoding specification are saved with a UTF-8 encoding.

### 6.2.8.6.2 SQL Editor General Settings

You can change the general settings applicable to the SQL Editor as follows:

1. Click the **DB Query** tab.
2. At the top of the pane, click **Options** and then click **SQL Editor**.

#### General

**Syntax coloring** emphasizes different elements of SQL syntax using different colors.

Activate the **Connect datasource on execute** check box to connect to the corresponding data source automatically whenever a SQL statement is executed and its data source is not connected.

#### Retrieval

Specify the maximum amount of time permissible for SQL execution (Execution timeout) in seconds.
Activating the **Show timeout dialog** check box allows you to change the time-out settings when the permissible execution period is exceeded.

**Entry Helper Buffer**

To enable auto-completion suggestions as you start typing SQL statements, select the **Automatically open** check box (see also Auto-Completion).

The entry helper buffer for auto-completion can be filled either when you connect to a data source or when it is used for the first time. Note that filling the buffer may take some time. Use the **Clear Buffer** button to reset the buffer.

**Text View Settings**

Allows you to define the specific Text view settings: Margins, Tabs, Visual aids, as well as showing you the Text view navigation hotkeys.

### 6.2.8.6.3 SQL Statement Generation Settings

You can specify the SQL statement generation syntax for various database kinds as follows:

1. Click the **DB Query** tab.
2. At the top of the pane, click **Options** and then click **SQL Editor**.

To define the syntax preferences for a specific database, select it from the list, and then enable or disable the three check boxes to the right.

To define a unique syntax for all databases, select **Apply to all databases**, and then enable or disable the three check boxes to the right. Note that using common settings for all databases may cause inability to edit data in Oracle and IBM DB2 and iSeries databases via a JDBC connection.
6.2.8.6.4 Query Result View Settings

You can configure the appearance of the Results tab of the DB Query pane as follows:

1. Click the DB Query tab.
2. At the top of the pane, click Options and then click SQL Editor | Result View.

Select the Show grid with alternating colors check box to display rows in Result tabs as simple grid or with alternating white and colored rows. The alternating color is configurable.

The Display Options group lets you define how horizontal and vertical grid lines, as well as line numbers and the Result toolbar, are displayed. You can switch any of these options off by deactivating the respective check box.

The Data Editing group lets you define the transaction settings, if the cells are to be filled with default values and if a hint is to be displayed when data editing is limited.

6.2.8.6.5 SQL Editor Font Settings

You can configure color and font settings of SQL statements that appear in SQL Editor as follows:

1. Click the DB Query tab.
2. At the top of the pane, click Options and then click SQL Editor | Fonts.
The font settings listed in the Font Settings list box are elements of SQL statements. You can choose the common font face, style, and size of all text that appears in SQL Editor. Note that the same font and size is used for all text types.

Only the style can be changed for individual text types. This enables the syntax coloring feature. Click the Reset to default button to restore the original settings.

### 6.2.9 Stored Procedures

Stored procedures are programs that are hosted and run on a database server. Stored procedures can be called by client applications and they are often written in some extended dialect of SQL. Some databases support also implementations in Java, .NET CLR, or other programming languages.

Typical uses of stored procedures include querying a database and returning data to the calling client, or performing modifications to the database after additional validation of input parameters. Stored procedures can also perform other actions outside the database, such as sending e-mails.

A stored procedure may have zero or more input and output parameters, and may optionally return zero or more recordsets, in addition to the default return value. Consequently, in MapForce, you can call a stored procedure in various ways:

- Call a stored procedure in order to retrieve data, as if it were a source component on the mapping. This is applicable for procedures that do not take input parameters. When the mapping runs, the procedure is called, and it returns some recordset or output parameters. You can map the recordset, or the output parameters, or both, to any other data type supported by MapForce. For an example, see Stored Procedures as Data Source.

- Call a stored procedure as a function-like call, with parameters. In this case, you supply all required input parameters from the mapping, and you can also map the returned recordset, or the output...
parameters, or both, to some other target supported by MapForce. For an example, see Stored Procedures with Input and Output.

- Call a stored procedure as if it were a target component on the mapping. The typical use case is calling a stored procedure with parameters in order to modify the database (for example, insert a record). This approach is suitable if you do not need any output from the stored procedure. Also, in this approach you can execute the stored procedure within a database transaction that can be rolled back in case of an error. For an example, see Stored Procedures in Target Components.

There are also cases where you may need to call stored procedures or perform actions on database tables in a specific order (first insert, then update, and so on). For example, you may need to pass the output parameter of a stored procedure to another stored procedure. Or you may need to combine data returned by a stored procedure with data from a table. Such actions are possible with the help of local relations defined in MapForce, even when the underlying database does not enforce primary/foreign key relationships between tables. For more information, see Stored Procedures and Local Relations.

**Note:** To illustrate how MapForce implements stored procedures, this chapter uses Microsoft SQL Server 2016 and the "AdventureWorks 2016" database. The latter can be downloaded from https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks.

**Support notes**

- Stored procedures can be used only in the BUILT-IN execution engine. Code generation in C++, C#, or Java is not supported.
- User-defined types, cursor types, variant types and many "exotic" database-specific data types (such as arrays, geometry, CLR types) are generally not supported as input or output parameter types.
- Procedure and function overloading (multiple definitions of routines with the same name and different parameters) is not supported.
- Some databases support default values on input parameters, this is currently not supported. You cannot omit input parameters in the mapping to use the default value.
- Stored procedures returning multiple recordsets are supported depending on the combination of driver and database API (ODBC/ADO/ADO.NET/JDBC). Only procedures that return the same number of recordsets with a fixed column structure are supported.
- Whenever possible, use the latest version of the database native driver maintained by the database vendor. Avoid using bridge drivers, such as ODBC to ADO Bridge, or ODBC to JDBC Bridge.
- You can optionally enable database transactions for stored procedures that are called as data target, see Stored Procedures in Target Components. Transactions are not supported for stored procedures that are called as a data source (without input parameters), or those that are called like a function (with both input and output).

The following table lists the database-specific support notes.

<table>
<thead>
<tr>
<th>Database</th>
<th>Support notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>- Stored procedures in Microsoft Access databases have very limited functionality and are not supported in MapForce.</td>
</tr>
</tbody>
</table>
| DB2      | - Supported in MapForce: stored procedures, scalar functions, table-valued functions.  
- Return values from DB2 stored procedures are not supported because they cannot be read via the database APIs used in MapForce.  
- Row-valued functions (RETURNS ROW) are not supported. |
<table>
<thead>
<tr>
<th>Database</th>
<th>Support notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td></td>
</tr>
<tr>
<td>Firebird</td>
<td>• Supported in MapForce: stored procedures, table-valued functions</td>
</tr>
<tr>
<td>Informix</td>
<td>• Supported in MapForce: stored procedures, table-valued functions.</td>
</tr>
<tr>
<td>MariaDB</td>
<td>• Supported in MapForce: stored procedures, scalar functions</td>
</tr>
<tr>
<td>MySQL</td>
<td>• Supported in MapForce: stored procedures, scalar functions&lt;br&gt;• MySQL includes complete support for stored procedures and functions starting with version 5.5. If you are using an earlier version, functionality in MapForce is limited.</td>
</tr>
<tr>
<td>Oracle</td>
<td>• Supported in MapForce: stored procedures, scalar functions, table-valued functions. This includes standalone stored procedures and functions as well as those defined inside an Oracle package. &lt;br&gt;• It is recommended to use a native Oracle driver instead of the Microsoft OLE DB Provider for Oracle. &lt;br&gt;• Oracle has a special way to return result sets to the client by using output parameters of type REF CURSOR. This is supported by MapForce for stored procedures, but not for functions. The names and number of recordsets is therefore always fixed for Oracle stored procedures.</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>• Supported in MapForce: scalar functions, row-valued functions, table-valued functions. &lt;br&gt;• In PostgreSQL, any output parameters defined in a function describe the columns of the result set. This information is automatically used by MapForce - no detection by execution or manual input of recordsets is needed. Parameters of type refcursor are not supported.</td>
</tr>
<tr>
<td>Progress OpenEdge</td>
<td>• Supported in MapForce: stored procedures.</td>
</tr>
<tr>
<td>SQL Server</td>
<td>• Supported in MapForce: stored procedures, scalar functions, table-valued functions. &lt;br&gt;• It is recommended to use the latest SQL Server Native Client driver instead of the Microsoft OLE DB Provider for SQL Server. &lt;br&gt;• The ADO API has limited support for some data types introduced with SQL Server 2008 (datetime2, datetimeoffset). If you encounter data truncation issues with these temporal types when using ADO with the SQL Server Native Client, you can set the connection string argument <code>DataTypeCompatibility=80</code> or use ODBC. &lt;br&gt;• SQL Server Procedures have an implicit return parameter of type int null, which is available for mapping. If the procedure omits a RETURN statement, the resulting value is 0.</td>
</tr>
<tr>
<td>SQLite</td>
<td>• SQLite does not use stored procedures.</td>
</tr>
<tr>
<td>Teradata</td>
<td>• Supported in MapForce: stored procedures, macros.</td>
</tr>
</tbody>
</table>
6.2.9.1 Adding Stored Procedures to the Mapping

On the mapping area, stored procedures are shown as part of the database component where they belong. In order for stored procedures to be visible on the database component, you must explicitly select them when adding the database component to the mapping, as shown below. In this example, we connect to the "AdventureWorks" database running on SQL Server. Instructions are similar for other database types.

In case of Oracle databases, stored procedures or functions may be standalone or part of Oracle packages. You can add both categories to the mapping. The stored procedures or functions belonging to a package appear under the respective package name on the "Insert Database Objects" dialog box illustrated below.

To add stored procedures to the mapping:

1. Do one of the following:
   - On the Insert menu, click Database.
   - Click the Insert Database ( ) toolbar button.

2. Follow the database wizard steps until you get to the "Insert Database Objects" dialog box. For detailed instructions applicable to each database type, see Database Connection Examples.

3. Select the check boxes next to the database objects that you need to be displayed on the mapping, and click OK. In this example, we have selected all the tables, views, and stored procedures available in the "HumanResources" schema.
You can change the selected objects at any time later, by right-clicking the title bar of a database component, and selecting Add/Remove/Edit Database Objects from the context menu.

Your database user account must have rights to view and execute stored procedures in the database.

The database component is now added to the mapping. Notice that stored procedures are identified by the icon. In addition, tables, views and procedures are sorted alphabetically in the database component.

The Show Context Menu button next to each stored procedure lets you configure how the stored procedure is to be called, and other procedure-related settings, as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Nodes as Source</td>
<td>Select this option if you want to call a stored procedure without parameters in order to retrieve data from a database and map it to another component supported by MapForce (XML, text, EDI, and so on). For an example, see Stored Procedures as Data Source.</td>
</tr>
<tr>
<td>Show Nodes as Target</td>
<td>Select this option if you want to call a stored procedure in order to modify the database or perform another specific action where you don't need the output of the stored procedure. For an example, see Stored Procedures in Target Components.</td>
</tr>
<tr>
<td>Insert Call with Parameters</td>
<td>Select this option if you want to call a stored procedure with parameters and want to map the returned data to another component supported by MapForce. For an example, see Stored Procedures with Input and Output Parameters.</td>
</tr>
<tr>
<td>Edit Recordset Structures</td>
<td>Applicable for stored procedures that return recordsets. Select this option to execute the stored procedure once, so that MapForce can determine</td>
</tr>
</tbody>
</table>
6.2.9.2 Stored Procedures as Data Source

This example shows you how to call a procedure that takes no input parameters and just retrieves some data from the database. In this scenario, the stored procedure acts as a source component to the mapping, and you can map data retrieved by it to any other target component supported by MapForce. If you need to call a stored procedure with input parameters, see Stored Procedures with Input and Output.

Let us first create the demo stored procedure in the "AdventureWorks" database. To do this, run the script below against the database. You can do this from a query window of Microsoft SQL Server Management Studio, or directly from the DB Query tab of MapForce, see Browsing and Querying Databases. In either case, make sure that your database user account has permission to create stored procedures.

```sql
CREATE PROCEDURE HumanResources.uspGetAllEmployees
AS
 SELECT LastName, FirstName, JobTitle, Department
 FROM HumanResources.vEmployeeDepartment
```

The stored procedure above returns employee information from the vEmployeeDepartment view. The following steps show you how to create a mapping that consumes data returned by this procedure.

1. Connect to the "AdventureWorks" database from MapForce and add the stored procedure to the mapping, as described in Adding Stored Procedures to the Mapping. Make sure that your database user account has permission to view and execute stored procedures.
2. Click the Show Context Menu button next to the stored procedure and select Show Nodes as Source.
3. Click the Show Context Menu button again and select Edit Recordset Structures. The "Recordset Structures" dialog box appears.
Calling a stored procedure at design time may have side effects (depending on the procedure implementation). If you do not want to execute the stored procedure at design time, do not click **Execute**, as further described in subsequent steps. Instead, define the expected recordset in the “Recordset Structures” dialog box, by adding recordsets and their associated columns manually. Use the **Add recordset** or **Add column** buttons in the “Recordset Structures” dialog box.

4. Click **Define input parameters and call procedure**, and then click **OK**. The “Evaluate Stored Procedure” dialog box appears.
5. Click **Execute**, and then click **OK**. The recordset structure ("RS1") is now visible both on the "Recordset Structures" dialog box and on the mapping.

6. At this stage, you can add a target component where the retrieved data will be written. In this example, data will be written to a CSV file. On the **Insert** menu, click **Text File**, and add a CSV component to the mapping. For more information, see [CSV and Text Files](#).
You can now preview the mapping. Click the **Output** button and observe the mapping result in the **Output** pane, for example:

6.2.9.3 Stored Procedures with Input and Output

This example shows you how to call a procedure that takes input parameters and also retrieves some output from the database. In this scenario, the stored procedure is called similar to a Web service, or a function, and you can map data retrieved by it to any other target component supported by MapForce.

Let us first create the demo stored procedure in the "AdventureWorks" database. To do this, run the script below against the database. You can do this from a query window of **Microsoft SQL Server Management Studio**, or directly from the **DB Query** tab of MapForce, see **Browsing and Querying Databases**. In either case, make sure that your database user account has permission to create stored procedures.

```sql
CREATE PROCEDURE Production.uspSearchProducts
 @SearchString nvarchar(50),
 @MaxPrice money
 OUTPUT
AS
BEGIN
 SET NOCOUNT ON
 SELECT pr.[Name], pr.ListPrice FROM [Production].[Product] pr
 WHERE pr.[Name] like @SearchString AND pr.ListPrice < @MaxPrice
 SET @ComparePrice = @MaxPrice
 RETURN @ComparePrice
END
```
The stored procedure above retrieves a recordset containing product information. It takes as input two parameters: a string with the product name (@SearchString) and the maximum product price (@MaxPrice). In addition to the recordset and the default return parameter, it also retrieves an output parameter (@ComparePrice).

The following steps show you how to create a mapping that consumes data returned by this procedure.

1. Connect to the “AdventureWorks” database from MapForce and add the stored procedure to the mapping, as described in Adding Stored Procedures to the Mapping. Make sure that your database user account has permission to view and execute stored procedures.

2. Click the Show Context Menu button next to the stored procedure and select Insert Call with Parameters. The stored procedure now appears in a separate component on the mapping, where the left side lists the input parameters, and the right side contains the return and the output parameters.

3. Click the Show Context Menu button again, and select Edit Recordset Structures. This is necessary so as to provide to MapForce information about the structure of the recordset returned by the procedure. The “Recordset Structures” dialog box appears.
Calling a stored procedure at design time may have side effects (depending on the procedure implementation). If you do not want to execute the stored procedure at design time, do not click **Execute**, as further described in subsequent steps. Instead, define the expected recordset in the “Recordset Structures” dialog box, by adding recordsets and their associated columns manually. Use the **Add recordset** or **Add column** buttons in the “Recordset Structures” dialog box.

4. Click **Define input parameters and call procedure**. The “Evaluate Stored Procedure” dialog box appears.
5. Fill in the parameter values as shown above, and click **Execute**.
6. Click **OK**. The recordset structure ("RS1") is now visible both on the "Recordset Structures" dialog box and on the mapping.
7. At this stage, you can add a target component where the retrieved data will be written. In this example, data will be written to a CSV file. On the **Insert** menu, click **Text File**, and add a CSV component to the mapping, see also CSV and Text Files. Next, draw the mapping connections as illustrated below. Notice that the procedure's input parameters are supplied by means of constants. For more information about constants, see Add a Constant to the Mapping.
You can now preview the mapping. Click the **Output** button and observe the mapping result in the **Output** pane, for example:

![Output](image)

### 6.2.9.4 Stored Procedures in Target Components

This example shows you how to call a procedure that takes input parameters and updates a database. Calling a procedure this way makes it possible to enable transactions and roll the action back in case of an error, or add a custom SQL statement to be executed before the procedure is called. This scenario implies that the stored procedure acts like a target component in MapForce and you are not interested in the output returned by it. For an example that illustrates how to pass parameters and also map data returned by a stored procedure, see [Stored Procedures with Input and Output](#).

Let us first create the demo stored procedure in the "AdventureWorks" database. To do this, run the script below against the database. You can do this from a query window of [Microsoft SQL Server Management Studio](#), or directly from the **DB Query** tab of MapForce, see [Browsing and Querying Databases](#). In either case, make sure that your database user account has permission to create stored procedures.

```sql
CREATE PROCEDURE Production.uspAddProductModel
 @ModelName nvarchar(50),
 @Inst xml
AS
BEGIN
 INSERT INTO [Production].[ProductModel]
 ([Name],
 [Instructions],
 [rowguid],
 [ModifiedDate])
 VALUES
 (@ModelName,
 @Inst,
 NEWID(),
 GETDATE())
END
```

The stored procedure above takes two parameters (@ModelName, @Inst) as input and inserts the corresponding values into the **ProductModel** table of the **AdventureWorks** database, along with some database-generated data.

The following steps show you how to create a mapping that consumes data returned by this procedure.
1. Connect to the "AdventureWorks" database from MapForce and add the stored procedure to the mapping, as described in Adding Stored Procedures to the Mapping. Make sure that your database user account has permission to view and execute stored procedures.

2. Click the Show Context Menu button next to the stored procedure and select Show Nodes As Target. The stored procedure now appears as target component on the mapping, where the left side lists the input parameters.

3. Click the Show Context Menu button again, and select Procedure Settings. This optional step enables you to execute the stored procedure inside a transaction that can be rolled back. You can also add a custom SQL statement to be executed before the procedure is called.

4. Select the Use Transactions check box.

Note: In this example, database tracing is disabled at database component level and no tracing is set to take place. However, you can enable database tracing for stored procedures if necessary. For more information, see Database Tracing and Error Logging.

5. Add the source component that provides data to be inserted into the database. In this example, the source data is supplied by constants; however, any other source component supported by MapForce could act as input. For more information about constants, see Add a Constant to the Mapping.
Since this mapping updates a database, you do not preview its output directly like with other mappings. Instead, click the **Output** button to display the pseudo-SQL containing hints about how the database will be modified. If you enabled transactions, these will occur as indicated by the comments.

The pseudo-SQL displayed in the **Output** pane does not show the actual transaction commands, only hints (as comments). The actual SQL commands are sent to the underlying database API, however.

To run the mapping against the database, do one of the following:

- On the **Output** menu, click **Run SQL-Script**.
- Click the **Run SQL-Script** toolbar button.

**Stored procedures and duplicate inputs**

If you need to map data from multiple sources on the mapping to the same stored procedure, you can duplicate the stored procedure so that it accepts multiple inputs. To do this, right-click the stored procedure item on the component and select **Add duplicate input** from the context menu, see also Duplicating Input. When the mapping runs, such duplicate stored procedures will be called once for each duplicated input.

Note that the **Add duplicate input** command is disabled for the stored procedure parameters, because each parameter is an atomic value (and could also be "nullable").
6.2.9.5 Stored Procedures and Local Relations

Local relations are logical relationships between database fields that you can create in MapForce, saving you the need to change the underlying database, see also Defining Local Relationships. You can define local relations not only for database fields, but also for stored procedures as well, both in source and target components.

In source components, local relations make it easy to read data from related objects, for example, read IDs from a database table and call a stored procedure with each of these IDs to retrieve related information. It is also possible to call a stored procedure with data retrieved from another procedure.

In target components, local relations enable you to define a hierarchical order in which multiple related procedures are to be called. For example, you can first call a stored procedure that creates an ID value, and another one that inserts related information into a table. It is also possible to mix stored procedures and tables in local relations. For example, you can perform the insert directly on a related table instead of calling another procedure, see Using Stored Procedures to Generate Keys.

To create a local relation:

1. Right-click the title bar of a database component and select Add/Remove/Edit Database Objects from the context menu. The "Add/Remove/Edit Database Objects" dialog box opens.
2. Click Add/Edit Relations.
3. Click Add Relation and select the objects between which you want to create the relationship.

As illustrated above, a local relation consists of a primary/unique key object and a foreign key object. Think of it as a parent-child relationship. On the mapping component, the object (table, view, procedure, and so on) where the primary/unique key is will appear as a parent while the object where the foreign key is will appear nested under it. For example, in the database component illustrated below, a local relation was defined.
between a recordset column (\texttt{RS1.Department}) and a table column (\texttt{Department.Name}). Consequently, the \texttt{Department} table appears as a child of the stored procedure on the mapping. This example is discussed in more detail in \textit{Local Relations in Source Components}.

The following table lists all the possible fields between which you can define local relations. Mixed relationships are possible (for example, mapping the output of a stored procedure to a database column). The fields taking part in the relationship must have the same, or a compatible, data type.

<table>
<thead>
<tr>
<th>Primary/unique key</th>
<th>Foreign key</th>
</tr>
</thead>
</table>
| \begin{itemize} \item Column of a database table or view \item Output parameter or return value of a stored procedure, see also \texttt{Stored Procedures} \item Column of a recordset returned by a stored procedure* \item Column of a user-defined SELECT statement, see also \texttt{SQL SELECT Statements as Virtual Tables}
\end{itemize} | \begin{itemize} \item Column of a database table or view \item Input parameter of a stored procedure \item Input parameter of a user-defined SELECT statement
\end{itemize} |

* Applicable if the stored procedure is called either as data source (without parameters) or as a function (with input and output parameters). In order for the recordset to become available for selection, you must execute the stored procedure once, to retrieve the recordset.

6.2.9.6 Local Relations in Source Components

This example shows you how to combine data returned by a stored procedure with data from a table in the same database, with the help of local relations.

If you haven't done so already in a previous example, run the following script to create the demo stored procedure in the "AdventureWorks" database. You can do this from a query window of Microsoft SQL Server Management Studio, or directly from the DB Query pane of MapForce, see \texttt{Browsing and Querying}.
In either case, make sure that your database user account has permission to create stored procedures.

```
CREATE PROCEDURE HumanResources.uspGetAllEmployees
AS
 SELECT LastName, FirstName, JobTitle, Department
 FROM HumanResources.vEmployeeDepartment
```

The stored procedure above returns employee information from the `vEmployeeDepartment` view. The following steps show you how to create a mapping that consumes data returned by this procedure.

1. Connect to the "AdventureWorks" database from MapForce, as described in Adding Stored Procedures to the Mapping. Make sure that your database user account has permission to view and execute stored procedures.
2. When prompted to choose database objects, select the `Department` table and the `uspGetAllEmployees` stored procedure.
3. Click the Show Context Menu button next to the stored procedure and select Show Nodes as Source.
4. Click the Show Context Menu button again and select Edit Recordset Structures. The "Recordset Structures" dialog box appears.
5. Click Define input parameters and call procedure, and then click OK. The "Evaluate Stored Procedure" dialog box appears.
6. Click **Execute**, and then click **OK**. The recordset structure ("RS1") is now visible both on the "Recordset Structures" dialog box and on the mapping.

Define the local relationships

Let's now define a local relationship between the **Department** column of the returned recordset and the **Name** column of the **Department** table.

1. Right-click the title bar of the database component and select **Add/Remove/Edit Database Objects** from the context menu.
2. Click **Add/Edit Relations**, and then click **Add Relation**. Define the relationships as shown below.
3. Click **OK** to close the dialog box. Notice that the **Department** table has now become a child of the **RS1** recordset.

Completing the mapping

Thanks to the relationship that was just created, it is now possible to map data from the recordset combined with data from the table. For the scope of this example, let's write data to a target XML file, as follows:

1. On the **Insert** menu, click **XML Schema/File** and select the following file:
   `<Documents>\Altova\MapForce2021\MapForceExamples\EmployeesWithDetails.xsd`
2. When prompted to provide a sample XML instance file, click **Skip**.
3. Draw the mapping connections as shown below.

The mapping illustrated above writes data from the database to a target XML file. The source data is a combination of data extracted by the stored procedure with data extracted directly from a table. The mapping uses the `concat` function to produce a string that includes the department name, followed by a dash character, followed by the group name.

To preview the mapping, click the **Output** button and observe the mapping result in the **Output** pane, for example:

6.2.9.7 Using Stored Procedures to Generate Keys

This example shows you how to insert some key (ID) generated by a stored procedure into another table, with the help of local relations.

Let us first create the demo stored procedure in the “AdventureWorks” database. To do this, run the script
below against the database. You can do this from a query window of Microsoft SQL Server Management Studio, or directly from the DB Query tab of MapForce, see Browsing and Querying Databases. In either case, make sure that your database user account has permission to create stored procedures.

```sql
CREATE PROCEDURE Production.uspAddProductModelEx
 @ModelName nvarchar(50)
 ,@Inst xml
 ,@ProductModelID int OUTPUT
AS
BEGIN
 INSERT INTO [Production].[ProductModel]
 ([Name]
 ,[Instructions]
 ,[rowguid]
 ,[ModifiedDate])
 VALUES
 (@ModelName
 ,@Inst
 ,NEWID()
 ,GETDATE())
 SELECT @ProductModelID = SCOPE_IDENTITY()
END
```

The stored procedure above takes two parameters (@ModelName, @Inst) as input and performs an INSERT operation into the ProductModel table. It then returns the generated @ProductModelID as output parameter. The requirement is to insert the @ProductModelID returned by the stored procedure into the ProductModelIllustration table.

The following steps show you how to create a mapping that satisfies the requirement above.

1. Connect to the "AdventureWorks" database from MapForce, as described in Adding Stored Procedures to the Mapping. Make sure that your database user account has permission to view and execute stored procedures.
2. When prompted to choose database objects, select the ProductModelIllustration table and the uspAddProductModelEx stored procedure.
3. Click the Show Context Menu button next to the stored procedure and select Show Nodes As Target. The stored procedure now appears as target component on the mapping, where the left side lists the input parameters.
4. Optionally, if you want to execute the stored procedure inside a transaction, click the **Show Context Menu** button again, select **Procedure Settings**, and then select the **Use Transactions** check box. Defining the transaction for the stored procedure ensures that retrieving the key and inserting the record occur during the same transaction.

5. Right-click the title bar of the database component and select **Add/Remove/Edit Database Objects** from the context menu.

6. Click **Add/Edit Relations**, and then click **Add Relation**. Define the relationships as shown below.

7. Click **OK** to close the dialog box. Notice that the **ProductModelIllustration** table now appears as a child of the stored procedure. The stored procedure output parameter (@ProductModelID) is displayed as an indicator that it will be used in the local relation, but it does not have any input or output connectors.
8. In this example, the @Inst parameter is of XML type. Right-click the @Inst parameter on the component and select Assign XML Schema to Field from the context menu. Next, select the Production.ManuInstructionsSchemaCollection schema from the database. When prompted to select a root element, leave the default value as is, and click OK. For more information about mapping data to database XML fields, see Mapping XML Data to / from Database Fields.

9. Add the source components that provides data to be inserted into the database. In this example, the source data is supplied by constants; however, any other source component supported by MapForce could act as input. For more information about constants, see Add a Constant to the Mapping.
Since this mapping updates a database, you do not preview its output directly like with other mappings. Instead, click the **Output** button to display the pseudo-SQL containing hints about how the database will be modified. If you enabled transactions, these will occur as indicated by the comments.

```
10 -- begin transaction
11
12 NULL = {{[[Production].[uspAddProductModelEx]]}}('Tractor part 4711',<root xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductionModelManuInstructions"><Location LocationID="17"><step>coupling</step></Location></root>'),NULL)
13 -->> %uspAddProductModelEx1%
14 -->> %ProductModelID1%
15
16 INSERT INTO [Production].[ProductModelIllustration] ([ProductModelID], [IllustrationID]) VALUES ('%@ProductModelID1%', 11)
17
18 -- commit transaction
```

The pseudo-SQL displayed in the **Output** pane does not show the actual transaction commands, only hints (as comments). The actual SQL commands are sent to the underlying database API, however.

To run the mapping against the database, do one of the following:
6.2.10 Handling Database Exceptions

When running mappings that modify a database, MapForce (or MapForce Server, or a MapForce-generated program) may potentially encounter various database-related errors. For example, the database account may not have enough privileges to perform a specific database action, or some database constraints might be in place that prevent the mapping from inserting or updating invalid data. The latter may happen, for example, when a table column is mandatory but the mapping does not supply a value for it.

To make it possible to roll back data if database exceptions are encountered, you can configure the mapping to use database transactions. As further described below, you can enable transactions at database component level and at table action level.

The transaction rollback settings you configure in MapForce are preserved when you run the mapping either with MapForce Server or with a MapForce-generated program.

Transactions at database component level

To enable transactions at database component level, do the following:

1. Right-click the database component, and select Properties from the context menu (Alternatively, double-click the title bar of the database component). This opens the Database Component Settings dialog box.

   ![Database transaction handling](image)

   Database transaction handling
   
Check	Use transactions
When an error occurs:	rollback top transaction and stop

2. Select the Use transactions check box.

Doing this encloses all changes done by the database component inside a transaction that will be rolled back in case of error. When an error occurs during mapping execution, the outcome depends on the option you select from the drop-down list:

- **Rollback top transaction and stop** — The transaction which encloses all the changes done by the database component is rolled back and execution of the mapping stops.
- **Rollback top transaction and continue** — Same as above, but the mapping continues to run after rollback (for example, in order to process a second target component, if one exists).

Some mappings may contain multiple database components. These, in their turn, may all use the same database connection, or connections to completely different databases. The outcome of such mappings in case of database error depends on the execution engine:

- If the mapping is run with MapForce, only one target component can be executed when the mapping runs. This is the component where the Preview button is enabled. If a database error occurs in
that component, and if the **Use transactions** check box is enabled, all the changes done by the component will be rolled back.

- If the mapping is run with MapForce Server or a MapForce-generated program, all the target components are executed, sequentially. In this case, when a database error occurs, the rollback will take place for the database component where the error occurred. The mapping will stop or continue executing the next target component depending on the value you selected from the **When an error occurs** drop-down list, as mentioned above.

For reference to all the settings available on the Database Component Settings dialog box, see [Database Component Settings](#).

**Transactions at table action level**

Transactions at table action level enclose each individual table action (insert, update, and so on) inside a transaction. With this setup, if some insert or update action fails on a record, it is possible to roll back only the current failed action and continue processing other records. To enable transactions at table action level, select the **Use transactions** check box from the Database Table Actions dialog box (see also [Database Table Actions Settings](#)).
The available options are as follows:

- **Rollback top transaction and stop** — If the mapping is going to update multiple tables having a parent-child relationship, it is possible to enable transactions not only for the parent table, but also for the child table. Since transactions can be enabled at multiple levels, "top" refers to the transaction at the highest level in the hierarchy. This is the transaction from the database component level, if you enabled transactions at that level. Otherwise, it is the transaction defined in the topmost table action, assuming that the component contains multiple nested table actions. To understand this option, recall that it is possible for a component to update multiple tables hierarchically, as described in [Inserting Data into Multiple Linked Tables](#). For example, a component may have a parent "Insert" action that inserts person records and a nested "Insert" action that inserts one or more addresses for each person.
record into a separate table. Since you can enable transactions for both insert actions, "top" refers to the highest level in the hierarchy (in this example, the people insert action). Therefore, when an exception is encountered while inserting an address, this rolls back the top transaction (which is at person table level, in this example) and execution stops. In other words, no person record will be inserted if it wasn't possible to insert the person's address in first place.

- **Rollback top transaction and continue** — Same as above, but the mapping continues to run after rollback (for example, to process another target component, if one exists).
- **Rollback current transaction and stop** — When an exception is encountered, this rolls back only the changes enclosed in the current transaction; changes done previously outside of the current transaction will be committed.
- **Rollback current transaction and continue** — Same as above, but the mapping continues to run after rollback.

**Stored procedure-level transactions**

You can also enable database transactions for stored procedures that are called as data target. For an example, see Stored Procedures in Target Components. Transactions are not supported for stored procedures that are called as a data source (without input parameters), or those that are called like a function (with both input and output).

**Rollback**

To see if transactions are going to occur at mapping runtime, click the Output tab and observe the pseudo-SQL code generated by MapForce. The image below illustrates the preview of a mapping where transactions are enabled at component level and table action level. As shown below, a main transaction encloses the entire operation (identified by the comments --begin transaction and --commit transaction). Also, multiple smaller transactions occur for each insert operation (these are identified by the SAVEPOINT command).

```sql
-- begin transaction
PRAGMA foreign_keys = ON;

SAVEPOINT PRODUCTS

INSERT INTO "products" ("name") VALUES ('Product A')

SAVEPOINT PRODUCTS

INSERT INTO "products" ("name") VALUES ('Product B')

SAVEPOINT PRODUCTS

INSERT INTO "products" ("name") VALUES ('Product C')

-- commit transaction
```

When the mapping runs in MapForce Server, or from a MapForce-generated program, the rollback will take place based on the options you have configured while designing the mapping, as described above. For example, if you selected the option **Rollback top transaction and stop**, a failed insert operation will cause all
the changes to be rolled back, even if some other inserts may have been successful. However, if you selected **Rollback current transaction and continue**, only the failed insert will be rolled back to the nearest savepoint, and the mapping will continue to attempt inserting other records.

If you run a transaction-enabled mapping directly in MapForce with the menu command **Output | Run SQL-Script**, a dialog box informs you when the database exception is encountered, for example:

![MapForce: Database Transaction Exception]

You can then change the subsequent behavior as follows:

**Rollback this transaction and stop**

- The current transaction is already rolled back at the time the dialog comes up
- An error is shown at the top of the preview window and in the Messages window

```
Transformation-Error in Database SQL-execution:
Error in: INSERT INTO "products" ("name") VALUES (?)
```

- Any parent transaction is committed
- Mapping execution stops with an error code
Rollback this transaction and continue

- The current transaction is already rolled back at the time the dialog comes up
- The error is treated as a warning, and will be shown in the Messages window when mapping execution finishes.

![Messages window with error message](image)

- Any parent transaction is not affected
- Mapping execution continues with the next record (if this transaction is not on component level) or with the next component (MapForce Server only)

Rollback top and stop

- The current transaction is already rolled back at the time the dialog comes up
- An error is shown at the top of the preview window and in the Messages window
- Any parent transaction is rolled back
- Mapping execution stops with an error code

Note: The Rollback top and stop option is available on the dialog box only when there are nested transactions (savepoints).

Rollback top and continue

- The current transaction is already rolled back at the time the dialog comes up
- The error is treated as a warning, and will be shown in the Messages window when mapping execution finishes.
- Any parent transaction is rolled back
- Mapping execution continues with the next record (if this transaction is not on component level) or with the next component (MapForce Server only)

Note: The Rollback top and continue option is available on the dialog box only when there are nested transactions (savepoints).

6.2.10.1 Example: Transaction Rollback

This example illustrates possible ways to handle database exceptions when running a mapping that modifies a database. The database used in this example stores user records (users table) and addresses (addresses table). Each user can have zero, one, or two addresses (for example, a home address and a work address). Namely, each address in the addresses table contains a user_id field which points to the id field in the users table. The users table is therefore a “parent” table for addresses. The listing below illustrates the SQL creation scripts for both tables (note the syntax is applicable to a SQLite database):
CREATE TABLE
    users (id INTEGER NOT NULL PRIMARY KEY,
    first_name TEXT NOT NULL,
    last_name TEXT NOT NULL,
    email TEXT UNIQUE NOT NULL);

CREATE TABLE
    addresses (id INTEGER NOT NULL PRIMARY KEY,
    user_id INTEGER NOT NULL,
    is_shipping INTEGER,
    is_billing INTEGER,
    type TEXT NOT NULL,
    city TEXT NOT NULL,
    street TEXT NOT NULL,
    number INTEGER NOT NULL,
    FOREIGN KEY (user_id) REFERENCES users (id) ) ;

Source tables

The business requirement is to copy all data from the users and addresses table to some new tables, namely, the new_users and new_addresses tables. These are almost identical to the users and addresses tables. The only difference is that the table new_addresses does not allow null values for the columns is_shipping and is_billing, as highlighted in the code listing below. This is important because it means that exceptions will occur if null values are encountered.

CREATE TABLE
    new_users (id INTEGER NOT NULL PRIMARY KEY,
    first_name TEXT NOT NULL,
    last_name TEXT NOT NULL,
    email TEXT UNIQUE NOT NULL);

CREATE TABLE
    new_addresses (id INTEGER NOT NULL PRIMARY KEY,
    user_id INTEGER NOT NULL,
    is_shipping INTEGER NOT NULL,
    is_billing INTEGER NOT NULL,
    type TEXT NOT NULL,
    city TEXT NOT NULL,
    street TEXT NOT NULL,
    number INTEGER NOT NULL,
    FOREIGN KEY (user_id) REFERENCES new_users (id) ) ;

Target tables

The mapping that copies all data from the old to new tables is illustrated below. You can find this mapping at the following path:
<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\DatabaseExceptions.mfd.
As illustrated above, this mapping is configured to copy data verbatim from a source database component to a target database component. No other transformations take place, for the sake of simplicity. In this example, both the source and target component belong to the same database, only the source and target tables are different. Click the **DEL A[in]** button and notice that all the records are set to be deleted before each insert action. This ensures that the target tables are always empty before each insert.

As stated before, exceptions will occur if the source addresses table contains null values. You can check that the source table contains null values as follows:

1. Click the **DB Query** tab.
2. Right-click the addresses table, and select Show in **SQL Editor | SELECT**.
3. Click **Execute Query**.

---

Data Sources and Targets

---

© 2020 Altova GmbH

Altova MapForce 2021 Professional Edition
As illustrated above, there are various NULL fields in the source addresses table. Considering this, when running this mapping, you have various options to deal with exceptions, for example:

- A) If any exception is encountered, roll back all changes. In other words, do not insert any records if the source data contains invalid records.
- B) If any exception is encountered, skip the records where the exception occurs but keep inserting records that are valid.

**Scenario A: Rollback all changes on exception**

Business requirement: I want to roll back all changes to the database if an exception occurs. To configure the mapping to accomplish this:

1. Right-click the title bar of the target database component and select **Properties** from the context menu. Alternatively, double-click the title bar. This opens the Database Component Settings dialog box.
2. Select the **Use Transactions** check box, and choose **rollback top transaction and stop**.

When the mapping is configured as shown above, any encountered exception will cause the top-level transaction at database component level to be rolled back. To run the mapping with these settings:
1. Click the **Output** tab.
2. On the Output menu, click **Run SQL-Script**. At this stage, the mapping encounters an exception because of a null value in the source addresses table. The Database Transaction Exception dialog box appears.

![MapForce: Database Transaction Exception](image)

3. Leave the default preselected option unchanged and click **OK**.

The result is as follows:

- All the changes are rolled back.
- No records are inserted in the **new_users** table
- No records are inserted in the **new_addresses** table

**Scenario B) Rollback current transaction and continue execution**

Business requirement: I want to skip records which generate an exception but keep inserting valid records. To configure the mapping to accomplish this:

1. Click the **DEL_Aln** button next to the **new_users** table, select the **Use transactions** check box and choose **rollback current transaction and continue**
2. Click the **AIn** button next to the **new_addresses** table, select the **Use transactions** check box and choose **rollback current transaction and continue**

When you run the mapping with these settings, the Database Transaction Exception dialog box. Select the options as shown below to roll back only the current transaction and keep running the mapping:
The result is as follows:

- All erroneous transactions are rolled back.
- 5 users out of 5 are inserted (because no user record generated any database exception)
- 2 addresses out of 5 are inserted (because 3 addresses contain null values and generated exceptions)

Scenario C) Rollback top transaction and continue execution

Business requirement: If an address fails to be inserted, then the parent user record should also not be inserted. To configure the mapping to accomplish this:

1. Double-click the title bar of the database component, and clear the Use transactions check box.
2. Click the red [DELETION] button next to the new_users table, select the Use transactions check box and choose rollback current transaction and continue.
3. Click the blue [INSERT] button next to the new_addresses table, select the Use transactions check box and choose rollback top transaction and continue.

When you run the mapping with these settings, the Database Transaction Exception dialog box. Select the options as shown below, and repeat the choice as many times as prompted:
The result is as follows:

- 2 users are inserted (Sharda Junker, Tobie Hughey)
- 1 address is inserted

Explanation: The user "Sharda Junker" is the only user who does not have an address. No exceptions occurred for this record, so it was inserted. The second user, "Tobie Hughey", was inserted because it is the only user where no exceptions occurred at address level. All other user records were not inserted because they had at least one address where an exception occurred and the transactions were rolled back.

There are two addresses which don't have nulls and thus don't throw exceptions. These are addresses with id=1 and id=4. The insert transaction for the first address, however, was rolled back because the parent user transaction had to be rolled back. Therefore, only the address with id=4 was inserted.

Note that the same result can also be achieved as follows:

1. Click the DEL button next to the new_users table, select the Use transactions check box and choose rollback current transaction and continue
2. Click the Alt button next to the new_addresses table, and clear the Use transactions check box.

Running themapping with MapForce Server

If you have licensed MapForce Server, you can also run the mapping at the command line, on a Linux, macOS, or Windows machine, as follows:
1. Compile the mapping to a MapForce Server execution file (.mfx) with the menu command File | Compile to MapForce Server Execution File, see also Compiling Mappings to MapForce Server Execution Files.

2. Copy the .mfx file and the ExceptionsDemo.sqlite database to a directory on the server machine. Let's call it the "working directory".

3. Change the command prompt to the working directory and run MapForce Server with the command below:

```
mapforceserver run DatabaseExceptions.mfx
```

Notes:

- `mapforceserver` is the path to the MapForce Server executable as applicable for your operating system. Change the path to the .mfx file as applicable. For example, on a Linux machine, the path is `/opt/Altova/MapForceServer2021/mapforceserver`.

In server execution, you can also run mappings as an API call, or as FlowForce Server jobs, either on demand or on recurring basis. For more information, see Automation with MapForce Server.

### 6.2.11 Database Tracing and Error Logging

When a mapping writes data to a database, you can optionally enable database tracing and error logging. Tracing is useful if you want to track all the changes done by the mapping to the database when the mapping runs. When tracing is on, events such as database insert or update actions or errors are logged in an XML file that you can later analyze or perhaps process further in an automated way. If you prefer the log file to be in a format other than XML, you can optionally map data from it to some other component kind supported by MapForce (for example, a text file, or even another database).

**Note:** In order for a mapping to support tracing and error logging, the mapping language must be set to Built-in. Database logging and tracing is not supported in C#, C++, or Java.

Database tracing is configurable, in that you can choose to trace all messages, only errors, or you can disable tracing completely. In addition, you can use tracing at the following levels:

- **Database component level.** At this level, you effectively switch tracing on or off for that database component. This is useful for mappings that have multiple target database components, and you need tracing only for some of them.
- **Table or stored procedure level.** On a database component, you can decide whether tracing should take place for each table or stored procedure. When enabled, tracing at this level includes events pertaining to table actions such as "Insert All", "Update If", "Ignore If", "Delete If". In case of stored procedures, events related to the stored procedure call are traced.
- **Database field level.** By default, all fields are traced, but you can exclude certain fields from being traced, or you can specify that they should be included in the trace file only on error.

Importantly, the three levels above are hierarchical and tracing settings are propagated from top to bottom. Therefore, if you disable tracing at database component level, it is not possible to enable it at table or stored procedure level. Likewise, if you disable tracing at table level, it is not possible to set it at database field (column) level. The same applies when you narrow down the tracing level. For example, if you limit tracing only
to errors at database component level, then it is not possible to use full tracing at table or stored procedure level.

**Tracing at database component level**

To enable tracing at database component level:

1. Right-click the database component, and select **Properties** from the context menu (Alternatively, double-click the title bar of the database component). This opens the Database Component Settings dialog box.

2. Select the desired trace level (**Always**, **Errors**, **Disabled**). Selecting **Errors** will create a trace file only if database errors occur when the mapping runs.
3. Next to **Trace file**, type the name or path of the XML file where all the tracing details will be written (for example, **Log.xml**). If you enter a file name instead of a full path, the trace file will be created in the same directory where the mapping runs.

After you enable tracing, the database component changes its structure on the mapping. Namely, it displays, in addition to the database structure, a new node hierarchy of items where the top item in the hierarchy is the trace file. For more information, see **Trace File Structure**.

Enabling tracing at database component level automatically enables it for all tables or stored procedures on that component to which a mapping connection exists. If necessary, you can further tweak tracing at the table or stored procedure level, as described below. Note that tables or stored procedures that are displayed on the component but do not take part in the mapping (that is, no mapping connections exist to them) will not be traced.

**Tracing at table or stored procedure level**

To enable tracing at table or stored procedure level:

1. Make sure that the tracing level at database component level is set to either **Always** or **Error** (see above).
2. Do one of the following:
   - Click the table action button (for example, ![Add remove button](https://example.com)) next to the table where you want to enable tracing,
   - or
   - If this is a stored procedure, click the **Show Context Menu** button, and then select **Procedure Settings** from the context menu.
3. Select the trace level. The **Use component settings** option inherits the same settings that were defined at the component level. The **Limit to errors** option restricts tracing only to error events. **Always disabled** means that no tracing will occur for this table or stored procedure.

### Tracing at database field level
When you enable tracing at database component level and table or stored procedure level, all the fields (database columns) are included in the tracing report by default. Optionally, you can restrict tracing only to specific database fields or stored procedure parameters. To do this, click the **Fields** button on the Database Table Actions or Database Procedure Settings dialog box, see above.

![Database Trace Fields](image)

Selections made on this dialog box affect the trace file structure. For example, any fields that you opted to hide will no longer appear in the trace file. You might want to do this, for example, in order to reduce the log file size.

To hide or include multiple fields simultaneously, click the respective option in the header.

### 6.2.11.1 Trace File Structure
When tracing is enabled for a database component, a tracing structure becomes available in the lower half of the component, for example:
As illustrated above, the top node in the tracing structure indicates the name of the trace file that will be written when the mapping runs. The rest of the tracing structure is modeled after the structure of the database tables or stored procedures that take part in the mapping. In this example, the database name is “TargetDatabase”, so a similar item exists in the trace structure.

The child item of “TargetDatabase” is **users**, which corresponds to the “users” database table. In this example, the database component has only one table, “users”. However, in a component with many tables, the tracing structure includes each table present on the component. If you add or remove tables or stored procedures from the database component, then the tracing structure is updated accordingly. For instructions, see Adding, Editing, and Removing Database Objects.

In this example, an **initusers** structure also appears. This happens when you have configured the mapping to perform some initial action before the main insert, update, or some other action. For example, if you opted to delete all existing records from the table before inserting new ones, the **init** structure is present. It collects tracing information about the initial action (such as delete, or a custom SQL query) and any errors that may occur at this stage.

The **trace:values** structure displays all the columns of the database table (in this case, the columns of the “users” table). For stored procedures, this structure displays the parameters of the stored procedure. By
default, all columns are set to be traced, but you can configure which columns should be traced, as described previously.

The trace:actions items indicates which actions are currently set to take place on the database table. In this example, a database update action `UPDATE` is set to take place, so the trace:update item is available. If you change the component to perform a database insert action `INSERT`, then the trace structure would change to trace:insert, and so on for other action kinds. In case of stored procedures, a trace:execute action is visible instead.

Each trace action has a rows-affected attribute that specifies how many rows were affected by the respective database action.

The trace:error item is populated only if a database error occurs during mapping execution. It has two attributes, code and state. The text of the error and the attribute values are supplied by the database driver and will therefore be different for each database kind.

The trace:summary item includes an errors attribute which reports the number of encountered errors. The attribute value is 0 if no errors were encountered.

Previewing trace files

When tracing is enabled for a target database component, the trace file is also included in the preview when you click the Output tab to preview the mapping result. This is useful if you want to see how the file will approximately look like. Note that the actual generated trace file will look different based on the mapping execution result.

6.2.11.2 Example: Logging Database Errors

This example shows you how to configure database tracing and error logging for a mapping which inserts data into a SQLite database. The instructions are similar for all other database types supported by MapForce, as well as for other database action types (such as "update", "ignore", "delete", and so on).

You can find the demo mapping referenced by this example at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\DatabaseExceptions.mfd`. This mapping inserts data from two tables of a database into a new pair of tables of the same database, and is described in more detail in the Example: Transaction Rollback. Note that some of the records in the database are deliberately null so as to generate database exceptions.
In this example, the business requirement is to enable tracing for the target database component in order to determine how many errors were generated, and where exactly did the errors occur. The steps below illustrate how to achieve this goal.

**Step 1: Enable transaction rollback**

This demo mapping is configured to use transaction rollback at database component level. This means that, when the first exception is encountered, the mapping will stop execution and roll back all data to the initial state. Let's first change the transaction rollback options so that the mapping execution continues even if exceptions are encountered for some of the records:

1. Click the **DEL A[In]** button next to the `new_users` table, select the **Use transactions** check box and choose **rollback current transaction and continue**.

2. Click the **A[In]** button next to the `new_addresses` table, select the **Use transactions** check box and choose **rollback current transaction and continue**.

You could also disable transaction rollback completely; however, doing this would stop mapping execution at the first encountered error and would not roll back changes, so this is not recommended. Tracing and logging in this case would only reflect execution only up to the first encountered exception. For further information about transaction rollback, see **Handling Database Exceptions**.
Step 2: Configure error logging

To enable tracing, do the following:

1. Right-click the title bar of the database component, and select *Properties* from the context menu (Alternatively, double-click the title bar of the database component). This opens the Database Component Settings dialog box.
2. Select *Errors* as trace level.
3. Next to *Trace file*, type the name of the tracing file (in this example, *Errors.xml*). Do not enter an absolute path if you intend to run the mapping with MapForce Server on other machines or operating systems.

![Database Component Settings dialog box](image)

The target database component has now changed its structure and displays an additional compartment with the trace file structure:

![Trace file structure](image)

So far, you have enabled tracing at the database component level. Consequently, the tracing settings will be inherited by all table actions on this database component. In this example, they are inherited by the "Insert" actions of both *new_users* and *new_addresses* tables. If you click the action button *Add* for each of these tables, the settings illustrate this fact:

![Trace level selection](image)

Optionally, click the *Fields* button to configure which fields should be included or hidden in the trace file. In this example, all fields are included.
Step 3: Configure the mapping output

This step shows you how to map the values from the trace file to some other component kind (in this case, a simple output component). Note that this step is optional; an error log file is produced even if you do not map the trace file to some other component. In this example, however, we would like to explicitly configure the mapping to return the total number of encountered errors in the output. To do this, let's take the following steps:

1. Add a simple output component, by selecting the **Insert | Insert Output** menu command. For more information about simple input components, see Returning String Values from a Mapping.
2. Add a constant, by selecting the **Insert | Constant** menu command. The constant will provide the static text "Total errors: " to make the mapping output text more clear.
3. Drag the `concat` function from the Libraries window onto the mapping. For more information about built-in functions, see Add a Function to the Mapping.

As illustrated below, the `concat` function concatenates the text of the constant with the `errors` value supplied by the trace file.

With the configuration above, when the mapping is run with MapForce Server, the output will display the text: “Total errors: {value}”, where `value` represents the number of errors encountered at runtime.

At this stage, running the mapping in MapForce with the **Preview** button pressed on the “result” component is not possible and will result in an error. A trace file must exist first, because the simple output reads data from the trace file. The next step shows you how to produce the trace file.

Step 4: Running the mapping

To run this mapping with MapForce:

1. Click the **Preview** button on the database component.
2. Click the **Output** tab.
3. On the **Output** menu, click **Run SQL-Script**. At this stage, the mapping encounters the first exception; this is intentional. The Database Transaction Exception dialog box appears.
4. Select the rollback options as illustrated above, and click **OK**.

**Note:** If a mapping is executed by MapForce Server, no dialog box appears and the erroneous transactions are rolled back automatically, according to the rollback settings configured in MapForce.

In this example, once the mapping completes execution, all failed transactions are rolled back, and only the successful ones are committed to the database. The encountered errors are written to the **Errors.xml** file, a small fragment of which is illustrated below:
Now that the log file was produced, you can preview the output that returns the total number of errors in MapForce execution, as follows:

1. Back on the mapping, click the **Preview** button on the "result" component.
2. Click the **Output** tab and observe the result.

This part of the mapping reads data from the log file produced previously. If the log file does not exist, an error will be generated.
6.3 CSV and Text Files

MapForce includes support for mapping data to or from text-based file formats such as CSV (comma-separated values) and FLF (Fixed-Length Field) text files. For example, you can create data transformations such as:

- XML schema to/from flat file formats
- Database to/from flat file formats

Note that, in case of CSV, your files can have as delimiter not only commas, but also tabs, semicolons, spaces, or any other custom values.

In addition to CSV and FLF files, mapping to or from text files with more complex or custom structures is possible using MapForce FlexText (this module is available in MapForce Enterprise Edition). FlexText essentially enables you to define the structure of your custom text data (using a so-called “FlexText template”), for the purpose of mapping it to other formats.

Mapping data to or from text files is supported in any one of the following languages: Java, C#, C++, or BUILT-IN.

There are two ways that mapped flat file data can be generated:

- By clicking the Output tab which generates a preview using the Built-in execution engine. You can also save the mapping result by selecting the menu option **Output | Save output file**, or clicking the icon.
- By selecting **File | Generate code in | Java, C#, or C++**, and then compiling and executing the generated code.

6.3.1 Example: Mapping CSV Files to XML

The goal of this example is to create a mapping which reads data from a simple CSV file and writes it to an XML file. The files used in the example are available in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder.

1. Select one of the following as transformation language: Java, C#, C++, or BUILT-IN.
2. Add a Text file component to the mapping area (on the **Insert** menu, click **Text File**, or click the **Insert Text file** toolbar button ( )).
3. On the Component Settings dialog box, click **Input file** and browse for the **Altova_csv.csv** file. The file contents are now visible in the lower part of the dialog box. Note that only the first 20 rows of the text file are displayed when in preview mode.
4. Click inside the Field1 header and change the text to First-name. Do the same for all the other fields, as follows: Field 2 => Last-name, Field 3 => Tel-extension, Field 4 => Email, Field 5 => Position. TIP: Press the Tab key to cycle through all the fields: header1, header2 etc.

5. Click OK.

6. When prompted to change the component name, click "Change component name". The CSV component is now visible in the mapping.


8. Click Skip when prompted to supply a sample XML file, and select Company as the root element.

9. Map the corresponding items of both components, making sure to map the Rows item to the Person item in the schema target.
The connector from the **Rows** item in the CSV component to the **Person** item in the schema is essential, as it defines which elements will be iterated through. That is, for each row in the CSV file, a new **Person** element will be created in the XML output file.

10. Click the Output tab to see the result.

```
<?xml version="1.0" encoding="UTF-8"?>
<Company xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Company">
 <Person Manager="true">
 <First>Verone</First>
 <Last>Callaby</Last>
 <PhoneExt>582</PhoneExt>
 <Email>verone@nanonull.com</Email>
 </Person>
 <Person Manager="true">
 <First>Frank</First>
 <Last>Further</Last>
 <PhoneExt>471</PhoneExt>
 <Email>frank@nanonull.com</Email>
 </Person>
</Company>
```

The data from the CSV file is now successfully mapped to an XML file.

### 6.3.2 Example: Iterating Through Items

This example illustrates how to create iterations (multiple rows) in a target CSV file. The mapping design file accompanying this example is available at the following path:

```
<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Tut-xml2csv.mfd
```
This mapping has been intentionally created as incomplete. If you attempt to validate the example file using the menu command **File | Validate Mapping**, you will notice that validation warnings occur. Also, if you preview the mapping output, a single row is produced, which may or may not be your intended goal.

Let’s assume that your goal is to create multiple rows in the CSV file from a sequence of items in the XML file. You can achieve this by drawing a connection to the **Rows** item of the target CSV file.

For example, to iterate through all offices and have the output appear in the CSV file, it is necessary to connect **Office** to **Rows**. By doing this, you are instructing MapForce: for each **Office** item of the source XML, create a row in the target CSV file.
The `Rows` item in the CSV component acts as an iterator for the sequence of items connected to it. Therefore, if you connect the `Office` item, the output creates a row for each office found in the source XML.

```
1 "Microtech, Inc.",Level 1 support,Major Ave 1,Vancouver,558833
2 "Microtech Partners, Inc.",Level 2 support,Perro Bvd 1324,Otto
3
```

In a similar fashion, if you connect `Department` to the `Rows` item, a row will be produced for each department found in the source XML.
The output would then look as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>&quot;Microtech, Inc.&quot;, Admin, Major Ave 1, Vancouver, 5588339, Clive, Clo</td>
</tr>
<tr>
<td>2</td>
<td>&quot;Microtech, Inc.&quot;, Sales and Marketing, Major Ave 1, Vancouver, 558</td>
</tr>
<tr>
<td>3</td>
<td>&quot;Microtech, Inc.&quot;, Manufacturing, Major Ave 1, Vancouver, 5588339, K</td>
</tr>
<tr>
<td>4</td>
<td>&quot;Microtech, Inc.&quot;, Level 1 Support, Major Ave 1, Vancouver, 5588339</td>
</tr>
<tr>
<td>5</td>
<td>&quot;Microtech Partners, Inc.&quot;, Admin, Perro Blvd 1324, Ottawa, 3549202,</td>
</tr>
<tr>
<td>6</td>
<td>&quot;Microtech Partners, Inc.&quot;, Sales and Marketing, Perro Blvd 1324, 0</td>
</tr>
<tr>
<td>7</td>
<td>&quot;Microtech Partners, Inc.&quot;, Level 2 Support, Perro Blvd 1324, Ottawa</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Finally, mapping Person to the Rows item results in all the Persons being output. In this case, MapForce will iterate through the records as follows: each Person within each Department, within each Office.

### 6.3.3 Example: Creating Hierarchies from CSV and Fixed-Length Text Files

This example is available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Tut-headerDetail.mfd`. The example uses a CSV file (Orders.csv) which has the following format:

- Field 1: H defines a header record and D a detail record.
- Field 2: A common key for both header and detail records.
- Each Header or Detail record is on a separate line.

The contents of the Orders.csv file are shown below.
The aim of the mapping is as follows:

- Map the flat file CSV to an hierarchical XML file
- Filter the Header records, designated with an H
- Associate the respective detail records, designated with a D, with each of the header records.

For this to be achieved, the header and detail records must have one common field. In this case the common field, or key, is the second field of the CSV file, i.e. OrderNo. In the CSV file, both the first header record and the following two detail records contain the common value 111.

The Orders.csv file has been inserted twice to make the mapping more intuitive.

The Tut-headerDetail.xsd schema file has a hierarchical structure: Order is the root element, with Header as its child element, and Detail being a child element of Header.
The first Orders.csv file supplies the **Header** records (and all mapped fields) to the Header item in the schema target file. The filter component is used to filter out all records other than those starting with H. The **Rows** item supplies these filtered records to the Header item in the schema file.

The second Orders.csv file supplies the **Detail** records (and all mapped fields) by filtering out the Detail records that match the OrderNo key of the Header record. This is achieved by:

- Comparing the **OrderNo** field of the Header record with the same field of the Detail records, using the **equal** function (the priority context is set on the **a** parameter for enhanced performance).
- Using the **Logical-and** function to only supply those Detail records containing the same OrderNo field, as the Header record.

The **Rows** item supplies these filtered records to the Header and Detail items in the schema file, through the on-true parameter of the filter component.

Clicking the Output tab produces the XML file displayed below. Each Header record contains its data, and all associated Detail records that have the same Order No.

```
<?xml version="1.0" encoding="UTF-8"?>
<Header>
 <RecordType>H</RecordType>
 <OrderNo>111</OrderNo>
 <TotalWeight>332.1</TotalWeight>
 <TotalUnitCost>22537.7</TotalUnitCost>
 <Currency/>
 <Shipping-details>Container ship</Shipping-details>
</Header>

<Detail>
 <RecordType>D</RecordType>
 <OrderNo>111</OrderNo>
 <ProductNo>A-1579-227</ProductNo>
 <UnitWeight>10</UnitWeight>
 <UnitNo>1</UnitNo>
 <UnitCost>400</UnitCost>
 <Unit-description>Microwave</Unit-description>
</Detail>

<Detail>
 <RecordType>D</RecordType>
 <OrderNo>111</OrderNo>
 <ProductNo>B-152-427</ProductNo>
 <UnitWeight>7</UnitWeight>
 <UnitNo>6</UnitNo>
 <UnitCost>1200</UnitCost>
 <Unit-description>Miscellaneous</Unit-description>
</Detail>

<Header>
```

Let's now have a look at another example, which uses a slightly different CSV file and is available in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder as **Head-detail-inline.mfd**. The difference is that:

- No record designator (H, or D) is available
A common key field, the first field of the CSV file, still exists for both header and detail records (Head-key, Detail-key...). The field is mapped to OrderNo in the schema target.

Header and all respective Detail fields are all on the same line.

The mapping has been designed as follows:

- The key fields are mapped to the respective OrderNo items in the schema target.
- The Detail item in the schema target file has been duplicated, and is displayed as **Detail (2)**. This allows you to map the second set of detail records to the correct item.
- The result of this mapping is basically the same XML file that was produced in the first example.

6.3.4 Setting the CSV Options

After you add a text component to the mapping area, you can configure the settings applicable to it from the Component Settings dialog box. You can open the Component settings dialog box in one of the following ways:
- Select the component and, on the **Component** menu, click **Properties**.
- Double-click the component header.
- Right-click the component header, and then click **Properties**.

**Text Component Settings dialog box (in CSV mode)**

The available settings are as follows.

<table>
<thead>
<tr>
<th><strong>Component name</strong></th>
<th>The component name is automatically generated when you create the component. However, you can change the name at any time. The component name can contain spaces and full stop characters. It may not contain slashes, backslashes, colons, double quotes, leading or trailing spaces. If you want to change the name of the component, be aware of the following:</th>
</tr>
</thead>
</table>
If you intend to deploy the mapping to FlowForce Server, the component name must be unique.
It is recommended to use only characters that can be entered at the command line. National characters may have a different encoding in Windows and at the command line.

### Input file
Specifies the file from which MapForce will read data. This field is meaningful for a source component and is filled when you first create the component and assign to it a text file. The field can remain empty if you are using the text file component as a target for your mapping.

In a source component, MapForce uses the value of this field to read column names and preview the contents of the instance text file.

To select a new file, click **Input File**.

### Output file
Specifies the file to which MapForce will write data. This field is meaningful for a target component.

To select a new file, click **Output File**.

### Save all file paths relative to MFD file
When this option is enabled, MapForce saves the file paths displayed on the Component Settings dialog box relative to the location of the MapForce Design (.mfd) file. This setting affects the input and output files used by the text component. See also **Using Relative Paths on a Component**.

### Input / Output Encoding
Allows you specify the following settings of the output instance file:
- Encoding name
- Byte order
- Whether the byte order mark (BOM) character should be included.

By default, any new components have the encoding defined in the **Default encoding for new components** option. You can access this option from **Tools | Options**, General tab.

### Field delimiter
CSV files are comma delimited "," by default. This option enables you to select the **Tab**, **Semicolon**, or **Space** characters as delimiters. You can also enter a custom delimiter in the **Custom** field.

### First row contains field names
Select this option to instruct MapForce to treat the values in the first record of the text file as column headers. The column headers then appear as item names on the mapping.

### Treat empty fields as absent
When this option is enabled, empty fields in the source file will not produce a corresponding empty item (element or attribute) in the target file.
For example, the CSV record "General outgassing pollutants,,,,” consists of four fields, the last three of which are empty.

Assuming that the output is an XML file, when this option is disabled, the empty fields will be created in the output with an empty value (in this example, the elements Last, Title, and Email):

33	<Person>
	<First>General outgassing pollutants<First>
34	<Last/>
35	<Title/>
36	<Email/>
37	<Person>

When this option is enabled, the empty fields will not be created in the output:

38	<Person>
39	<First>General outgassing pollutants<First>
40	<Person>

**Quote character**

If your input file contains quotes around field values, select the quote character that exists in the source file. The same setting will also be used for output files.

<table>
<thead>
<tr>
<th>Quote character</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
<tr>
<td>Add when needed</td>
</tr>
</tbody>
</table>

For output files, you can specify additional settings:

- **Add when needed**  Adds the selected quote character to only those fields where the text contains the field delimiter or line breaks.
- **Add always**  Adds the selected quote character to all fields of the generated CSV file.

**CSV / Fixed**

Changes the component type to either CSV or FLF (fixed-length field).

**Preview area**

The lower part of the dialog box displays a preview of up to 20 rows of the file selected as input or output.

If necessary, you can create the structure of the file (or change the structure of the existing one), as follows.
Append field
- Creates a new field after the last CSV record.

Insert field
- Creates a new field immediately before the currently selected CSV record.

Remove field
- Deletes the currently selected field.

<<
- Moves the currently selected field one position to the left.

>>
- Moves the currently selected field one position to the right.

To change the name of a field, click the header (for example, Field1), and type the new value. Note that the field names are not editable when the First row contains field names option is enabled.

To change the data type of a field, select the required value from the drop-down list. MapForce checks the data type, so if the input data and the field format to do not agree, then the data is highlighted in red.

The field types are based on the default XML schema data types. For example, the Date type is in the form YYYY-MM-DD.

### 6.3.5 Example: Mapping Fixed-Length Text Files to Databases

This example illustrates a data mapping operation between a fixed-length text file (FLF) text file and a Microsoft Access database. The files used in the example are available in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder. Both the source text file and the target database store a list of employees. In the source file, the records are implicitly delimited by their size, as follows:

<table>
<thead>
<tr>
<th>Field position and name</th>
<th>Size (in characters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field 1 (First name)</td>
<td>8</td>
</tr>
</tbody>
</table>
The goals of the mapping is to update the phone extension of each employee in the database to the one existing in the source file, while adding the prefix “100” to each extension. To achieve the goal, take the steps below.

**Step 1: Insert and configure the text component**

1. Select the menu option **Insert** | **Text file**, or click the insert Text file icon.
2. Click the **Input file** button and select the file `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Altova-FLF.txt` file. You will notice that the file is made up of a single string, and contains fill characters of type #.
3. Select **Fixed**.

4. Clear the **Assume record delimiters present** check box.
5. The three rows highlighted in yellow are editable, and enable you to specify i) the field name ii) the data type and iii) the field size. Type 8 as the new field size, and press Enter. More data is now visible in the first column, which is now defined as 8 characters wide.

6. Click **Append Field** to add a new field, and set the length of the second field to 10 characters.

7. Use the same method to create three more fields of the following lengths: 3, 25, and 25 characters, and change the field headers to make them easier to map: First, Last, Tel.-Ext, Email, Title. The preview will then look like this:

8. In the Fixed Length Field Settings group, select **Custom**, and type the hash (#) character. This instructs MapForce to treat the # character as fill character.
9. Click **OK**.

10. Click **Change component name**. The Text file component appears in the Mapping window. Data can now be mapped to and from this component.

---

Step 2: Insert the database component

1. Select the menu command **Insert | Database**, select **Microsoft Access**, and then click **Next**.
2. Select the `altova.mdb` database available in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder, and click **Connect**.
3. Select the **Person** table and click **OK**.
Step 3: Design the mapping

1. Drag the `concat` function from the Libraries window into the mapping.
2. Select the menu command `Insert | Constant`, select Number as type, and enter 100 as value. This constant stores the new telephone extension prefix.
3. Create the mapping as shown below.
4. On the database component, click the **Table Action** button next to **Person**.

5. Next to **Action on input data**, select **Update If**, and ensure that the action for **First** and **Last** fields is set to **equal**. This instructs MapForce to update the Person table only if the first and last name in the source file is equal to the corresponding database field. When this condition is true, the action taken is defined by the mapping. In this case, the telephone extension is prefixed by 100, and copied to the **PhoneExt** field of the Person table.

---

**Step 4: Run the mapping**

To generate the SQL statement (for preview in MapForce), click the **Output** tab. To run the SQL statements against the database, click the **Run SQL-script** button.
6.3.6 Setting the FLF Options

After you add a text component to the mapping area, you can configure the settings applicable to it from the Component Settings dialog box. You can open the Component settings dialog box in one of the following ways:

- Select the component and, on the Component menu, click Properties.
- Double-click the component header.
- Right-click the component header, and then click Properties.

![Text Component Settings dialog box (in fixed-length field mode)](image)

The available settings are as follows.
## Component name
The component name is automatically generated when you create the component. However, you can change the name at any time.

The component name can contain spaces and full stop characters. It may not contain slashes, backslashes, colons, double quotes, leading or trailing spaces. If you want to change the name of the component, be aware of the following:

- If you intend to deploy the mapping to FlowForce Server, the component name must be unique.
- It is recommended to use only characters that can be entered at the command line. National characters may have a different encoding in Windows and at the command line.

## Input file
Specifies the file from which MapForce will read data. This field is meaningful for a source component and is filled when you first create the component and assign to it a text file. The field can remain empty if you are using the text file component as a target for your mapping.

In a source component, MapForce uses the value of this field to read column names and preview the contents of the instance text file.

To select a new file, click **Input File**.

## Output file
Specifies the file to which MapForce will write data. This field is meaningful for a target component.

To select a new file, click **Output File**.

## Save all file paths relative to MFD file
When this option is enabled, MapForce saves the file paths displayed on the Component Settings dialog box relative to the location of the MapForce Design (.mfd) file. This setting affects the input and output files used by the text component. See also Using Relative Paths on a Component.

## Input / Output Encoding
Allows you to specify the following settings of the output instance file:

- Encoding name
- Byte order
- Whether the byte order mark (BOM) character should be included.

By default, any new components have the encoding defined in the Default encoding for new components option. You can access this option from **Tools | Options**, General tab.

## Fill Character
This option allows you to define the characters that are to be used to complete, or fill in, the rest of the (fixed) field when the incoming data is shorter than the respective field definitions. The custom field allows you to define your own fill character in the Custom field.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the incoming data already contains specific fill characters, and you enter the same fill character in the Custom field, then the incoming data will be stripped of those fill characters!</td>
<td></td>
</tr>
<tr>
<td>Assume record delimiters present</td>
<td>This option is useful when you want to read data from a source flat file that does not contain record delimiters such as CR/LF, or when you want to produce a target flat FLF file without record delimiters. See the Understanding the “Assume record delimiters present” option section below.</td>
</tr>
</tbody>
</table>
| Treat empty fields as absent  | When this option is enabled, empty fields in the source file will not produce a corresponding empty item (element or attribute) in the target file. Assuming that the output is an XML file, when this option is disabled, the empty fields will be created in the output with an empty value (in this example, the elements `Last`, `Title`, and `Email`):  
```
33 <Person>
34 <First>General outgassing pollutants</First>
35 <Last/>
36 <Title/>
37 <Email>
38 </Person>
```
When this option is enabled, the empty fields will not be created in the output:  
```
38 <Person>
39 <First>General outgassing pollutants</First>
40 </Person>
```
| CSV / Fixed                   | Changes the component type to either CSV or FLF (fixed-length field).                                                                                                                                 |
| Preview area                  | The lower part of the dialog box displays a preview of up to 20 rows of the file selected as input or output. If necessary, you can create the structure of the file (or change the structure of the existing one), as follows.  
```
 Append field
 Insert field
 Remove field
 <<
```
|                             | Creates a new field after the last record.                                                                                               |
|                             | Creates a new field immediately before the currently selected record.                                                                     |
|                             | Deletes the currently selected field.                                                                                                     |
|                             | Moves the currently selected field one position to the left.  
```
Moves the currently selected field one position to the right.

To change the name of a field, click the header (in this example, Field1), and type the new value.

<table>
<thead>
<tr>
<th>Field1</th>
<th>string</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernon##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loby###</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joe#####</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sus#####</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred#####</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To change the data type of a field, select the required value from the drop-down list. MapForce checks the data type, so if the input data and the field format do not agree, then the data is highlighted in red.

<table>
<thead>
<tr>
<th>Field1</th>
<th>decimal</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernon##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loby###</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joe#####</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sus#####</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred#####</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To set the size of the field in characters, enter the field size in the third row from the top.

Understanding the "Assume record delimiters present" option
To better understand this option, open the Altova-FLF.txt file available in the `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\` folder. Notice that the file consists of 71-character long records, without any delimiters such as CR/LF. If you would need to read data from this particular file, first you would need to split this file into records. That is, create several fields whose total size sums up to 71 characters (as shown below), and then disable Assume record delimiters present. For a step-by-step example, see Example: Mapping Fixed-Length Text Files to Databases.
If you would need to write data from this file to a destination file which uses the same structure, then enabling **Assume record delimiters present** creates a new record after every 71 characters.

The mapping result when "Assume record delimiters present " is enabled

If **Assume record delimiters present** is disabled, the mapping result appears as one long string.
```
1 | Vernon | Callaby | 582v.callaby@nanonull.com | Office
| Frank | Further | #471f.further@nanonull.com | Accounts
| Loby  | Matise  | #963l.matise@nanonull.com | Accounting
| Joe   | Firstbread | 62ij.firstbread@nanonull.com | Marketing Manager
| Europe | Sanna | #753s.sanna@nanonull.com | Art
| Fred  | Landis   | #96lf.landis@nanonull.com | Program
| Michelle | Butler | #664m.landis@nanonull.com | Software
| Ted   | Little   | #852t.little@nanonull.com | Software
| Anna  | Ways    | #951a.ways@nanonull.com | Technical
| Liz   | Gardner | #753l.gardner@nanonull.com | Software
| Paul  | Smith   | #334p.smith@nanonull.com | Software
| Alex  | Martin  | #778a.martin@nanonull.com | IT
| George | Hammer  | #223g.hammer@nanonull.com | Web
| Jessica | Bande   | #241j.bande@nanonull.com | Support
| Lui   | King    | #345l.king@nanonull.com | Support
| Steve  | Meier   | #114s.meier@nanonull.com | Office
| Theo  | Bone    | #331t.bone@nanonull.com | Accounts
| Max   | Nafta   | #122m.nafta@nanonull.com | PR & Marketing Manager
| US Valentin | Bass | #716v.bass@nanonull.com | IT
| Carl  | Franken  | #147c.franken@nanonull.com | Support
| Mark  | Redgreen | #152m.redgreen@nanonull.com | Support
|        |          |                        | 
```

The mapping result when "Assume record delimiters present " is disabled
6.4 Binary Files

MapForce provides the ability to read BLOB (binary large object) data from binary files into a mapping, and then consume it without changing the internal structure of the binary data (raw). For example, you can save binary data to a database BLOB field, to a field of type `xs:base64Binary` in an XML file, or send it to a Web service*.

* Web service calls are supported in MapForce Enterprise Edition only.

You can also create mappings that read binary data from some source (such as a BLOB field in a database, a field of type `xs:base64Binary` in an XML file, or a Web service) and then write binary files to the disk.

The following are just some example scenarios that benefit from the ability to read or write binary files:

- Extract binary content encoded as base-64 data from an XML file and save it to the disk (for example, as a PDF file)
- Process image files stored on the disk and send them as base-64 encoded binary content to a Web service
- Extract BLOB content from a database table and save it as image files to the disk (one image file for each row in the database table)
- Read image files from the disk and save them to a database table as BLOB data fields.

Note: Mapping data to or from binary files requires BUILT-IN as transformation language. You can preview the mapping in MapForce (and save the output files, if any) or choose to execute it with MapForce Server (licensed separately) on a different computer or platform. It is not supported to generate an executable C#, C++, or Java program from mappings that read or write binary files.

Adding binary files to the mapping

As such, there is no component kind associated with binary files in MapForce, like it is the case, for example, with XML, text, or JSON files. Instead, to help you accomplish goals such as the ones above, the following MapForce built-in functions are available:

- `read-binary-file`
- `write-binary-file`

You can find these functions in the Libraries window (more specifically, in the "lang" library). To use either of the functions in a mapping, drag them from the Libraries window into the mapping, or double-click inside an empty area of the mapping and start typing the function name to select it. For further information, see Adding Functions to the Mapping.

read-binary-file

This function returns the content of the specified file as a BLOB (binary large object) of type `xs:base64Binary`. Note that even though the data type is called "base64Binary", the internal representation is just a BLOB. Only when you map the function's result to an XML node of type `xs:base64Binary` will it actually be base64-encoded. You could also map the function's result to `xs:hexBinary`, to a database blob, or to a binary field in a Protocol Buffers structure.
To read a binary file into a mapping, supply its path as input to the `filepath` argument. If the `filepath` is relative, then MapForce will look for the file in the same directory as the mapping. The `must-exist` argument is optional; if the file cannot be opened and this parameter is `true`, the mapping throws an error. If the file cannot be opened and this parameter is `false`, an empty binary is returned.

write-binary-file

This function writes binary content to the specified file path and returns the path of the written file. If a binary file is the only desired output, connect the function's result to a simple output component. Because this function writes a file whenever its output is used in the mapping, it is recommended to connect the function's result directly to a target component, without using other processing in between.

To write binary files, supply their path as input to the `filepath` argument. If `filepath` is relative, then MapForce will generate the file in the same directory as the mapping. The `content` argument must be connected to the actual binary content (for example, a BLOB field in a database).

When you preview the mapping in MapForce, the function generates temporary files by default, instead of writing files directly to the disk. To save the temporary files to disk, first click the Output tab, and then click the Save generated output or Save all generated outputs toolbar button, as applicable.

To configure MapForce to write output directly to final files instead of temporary, select the Tools | Options menu command, click General, and then select the Write directly to final output files option. Be aware that this option overwrites any existing files with the same name.

The function always returns the final (not temporary) file name, even when the final file is not saved to the disk yet (that is the case when you preview the mapping and the Write directly to final output files option is disabled).

Note that it is not supported for a mapping to read back its own output file.

Examples

See Example: Read Binary Files and Example: Write Binary Files.

6.4.1 Example: Read Binary Files

The mapping illustrated below reads data from an image file and writes it to a database table. The target database is SQLite. Notice that the data type of the `picture` database field is BLOB.
To extract binary content from the file, the `read-binary-file` function was used. In this example, the first argument, `filepath`, is supplied by a constant. Note that, because the path is relative, MapForce will look for the image file in the same directory as the mapping.

The mapping populates the following fields in the target database:

- **id** - In this example, the database component is configured so that `id` is database-generated rather than being supplied by the mapping. For more information, see [Inserting Data into a Table](#).

- **title** - This value is provided by a simple input component with the same name. Note that a design-time execution value is set ("product1") in order to make it possible to preview the mapping. For more information, see [Supplying Parameters to the Mapping](#).
6.4.2 Example: Write Binary Files

The mapping illustrated below reads BLOB values from a SQLite database and writes image files to the disk. The database has a table called `products`, which has the following columns (fields):

- **id** (*integer*, the unique permanent serial number of the record)
- **title** (*text*, the title of the product)
- **description** (*text*, the product's description)
- **picture** (*blob*, the product's image)

For the scope of this example, only the **id** and **picture** fields are relevant.
The goal of the mapping is to extract all pictures from the **products** table and write them as files to the disk. As illustrated above, the **write-binary-file** function is used for that purpose. The first argument, **filepath**, receives the file path for each image. The path must be unique to avoid overriding any files, so it is generated by concatenating the unique database **id** of each record with the word “image” and then adding the “.png” file extension (it is assumed that all pictures are in PNG format). Note that the path is relative, so the files will be written to the same directory as the mapping.

The second argument, **content**, receives the binary content stored in the database.

The **count** function returns a count of all generated files, and combines this number with the string "file(s) written". This provides a report as to how many files were actually generated by the mapping. In this example, the database contains only two product records, so the mapping output reflects this:

As stated previously, this function generates temporary files when the mapping runs in preview execution. To preview each individual file, use the arrow buttons to navigate to the record of interest, click the **Open with** button, and select an image editor.

To save all files, click the **Save generated output** or **Save all generated outputs** toolbar button, as applicable.
7 Functions

In MapForce, you can use the following categories of functions to transform data according to your needs:

- **MapForce built-in functions** — these functions are predefined in MapForce and you can use them in your mappings to perform a wide range of processing tasks that involve strings, numbers, dates, and other types of data. You can also use them to perform grouping, aggregation, auto-numbering, and various other tasks. For reference to all available built-in functions, see Function Library Reference.

- **Node functions and defaults** — these are more specialized functions that let you create and apply custom processing logic to one or multiple descendant nodes on a mapping component. They enable you to process data either before it reaches a node of a mapping structure, or immediately after it leaves a node. For more details, see Defaults and Node Functions.

- **User-defined functions (UDFs)** — these are MapForce functions that you can create yourself, using as basis the native component kinds and built-in functions already available in MapForce, see User-Defined Functions.

- **Custom functions** — these are functions that you can import from external sources such as XSLT libraries, XQuery library modules, Java .class files, .NET .dll files, and adapt to MapForce. Note that, in order to be reusable in MapForce, your custom functions must return data of simple type (such as string or integer) and they must also take parameters of simple type. For more information, see Importing Custom XSLT 1.0 or 2.0 Functions, Importing Custom XQuery 1.0 Functions, and Importing Custom Java and .NET Libraries.

Note: You can import custom external libraries of functions either directly (no configuration required) or by configuring a MFF (MapForce Function File) recognized by MapForce. If you use the latter approach, you can also import C++ libraries, in addition to Java classes and .NET assemblies. Note that libraries imported via .mff files must meet the prerequisites mentioned in Referencing Java, C# and C++ Libraries Manually.

Use the following roadmap for quick access to specific tasks related to functions:

<table>
<thead>
<tr>
<th>I want to...</th>
<th>Read this topic...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add MapForce functions or constants to the mapping</td>
<td>• Add a Function to the Mapping
• Add a Constant to the Mapping
• Search for a Function
• View a Function's Type and Description
• Add or Delete Function Arguments</td>
</tr>
<tr>
<td>Create my own functions in MapForce for later use in the same mapping, or in other mappings</td>
<td>• User-Defined Functions</td>
</tr>
<tr>
<td>Import custom XSLT functions into MapForce</td>
<td>• Importing Custom XSLT 1.0 or 2.0 Functions</td>
</tr>
<tr>
<td>Import custom .NET and Java libraries to MapForce</td>
<td>• Importing Custom Java and .NET Libraries</td>
</tr>
<tr>
<td>Import custom .NET, Java, and C++ libraries into MapForce, by adapting them with the help of a MapForce Function File (.mff). This approach involves some manual configuration compared to the previous</td>
<td>• Referencing Java, C# and C++ Libraries Manually</td>
</tr>
</tbody>
</table>
one, but additionally supports importing C++ libraries.
7.1 How To...

7.1.1 Add a Function to the Mapping

MapForce includes a large number of readily available built-in functions that you can add to the mapping as described below. For reference to all available built-in functions, see Function Library Reference.

You can also add user-defined functions (UDFs) to the mapping using the same approaches as described below, provided that:

- the UDF has already been created in the same mapping, or
- you have imported a mapping that contains UDFs, as a local or global library.

To use a function in a mapping:

1. Select a transformation language. Note that the list of available functions depends on the selected transformation language.
2. Click the required function in the Libraries window and drag it to the mapping area. To filter functions by name, start typing the function name in the text box located in the lower part of the window:

Alternatively, you can also quickly add a function to the mapping as follows:
1. Double-click anywhere on the empty area of the mapping and start typing the function name. A combo box appears with the same functions as in the Libraries window, filtered by the text you entered. To see a tooltip with more details about each function, select any function in the list.

2. Select the required function, and press Enter to add it to the mapping. To close the combo box without selecting a function, press Escape, or click anywhere outside the box.

7.1.2 Add a Constant to the Mapping

Constants enable you to supply custom text or numbers to the mapping. A constant’s value, as the name implies, will remain the same for the duration of the mapping lifetime.

To add a constant to the mapping:

1. Do one of the following:
 a. On the Insert menu, click Constant.
 b. Right-click the mapping, and select Insert Constant from the context menu.

2. Enter the value of the constant, select the data type (“String”, “Number”, “All other”), and click OK.

Alternatively, you can also quickly add a constant as follows:

1. Double-click anywhere on an empty mapping area.
2. Do one of the following:
 a. To add a string constant, start typing a double quote followed by the constant value. The closing double quote is optional.
b. To add a numeric constant, just type the number.

3. Press **Enter**.

7.1.3 Search for a Function

To search for a function in the Libraries window, start typing the function name in the text box at the base of the Libraries window.

By default, MapForce searches by function name and description text. If you want to exclude the function description from the search, click the down-arrow and disable the **Include function descriptions** option.
To cancel the search, press the `Esc` key or click `X`.

The functions available in the Libraries window depend on the transformation language currently selected, see [Selecting a Transformation Language](#).

To find all occurrences of a function within the currently active mapping, right-click the function name in the Libraries window, and select **Find All Calls** from the context menu. The search results are displayed in the Messages window.

7.1.4 View a Function's Type and Description

To view the data type of a function input or output argument:

1. Make sure that the **Show tips** toolbar button is enabled.
2. Move your mouse over the argument part of a function.

To view the description of a function:

1. Make sure that the **Show tips** toolbar button is enabled.
2. Move your mouse of the function (this works both in the Libraries pane and on the mapping area)
7.1.5 Add or Delete Function Arguments

Some MapForce built-in functions are extendable, in the sense that you can add as many parameters to them as required by the context. A good example of such a function is `concat`, where you can add as parameters all the strings that you need concatenated.

To add or delete function arguments (for functions that support such behaviour):

- Click **Add parameter** (●) or **Delete parameter** (○) next to the parameter you want to add or delete, respectively.

Dropping a connection on the symbol automatically adds the parameter and connects it.
7.2 Defaults and Node Functions

When MapForce reads or writes data, it is often the case that either the source or destination file or database has empty or null fields. To handle such cases, MapForce provides various built-in functions, if-else conditions, and other mechanisms that let you replace missing or null data with something else, or perhaps throw an exception when missing fields are encountered.

Furthermore, you may want to set a default value for multiple items simultaneously (for example, all children of an XML element). Alternatively, you may want to create a simple function that substitutes an empty value with some text (for example, "n/a"), and then apply this function to multiple items. Under normal circumstances, in order to do this, you would need to copy-paste the same function multiple times on the mapping. However, this would also add clutter to the mapping and make it more difficult to understand. As a simpler alternative, you could use defaults and node functions, which are the subject of this chapter.

Note: Defaults and node functions are supported when the target language of the mapping is BUILT-IN. Running such mappings from generated C#, C++, Java program code, or with generated XSLT/XQuery transformations is not supported. On the server side, you can execute such mappings with MapForce Server Advanced Edition.

The term "node function" means that the function applies at node level, be it an XML node or CSV, JSON, EDI, or database field. The node function may apply either to a single item or to multiple items at once. Likewise, the term "default" refers to a default value that you want to apply at node level, for either a single item or multiple items. Note that, at mapping runtime, a node function or default is called once for each item in a sequence.

Defaults and node functions are particularly useful when you want to apply the same processing logic to multiple descendant items in a structure, for example:

- Every time when an empty or null value is encountered, replace it with some other value, and do this recursively for all descendant items
- Every time when a specific value is encountered (for example, "N/A"), replace it with some other value (or with an empty string), and do this recursively for all descendant items
- Replace all database null values with empty string or custom text (or with 0, in case of numeric fields) when reading from a database table
- Trim all trailing spaces for all values that are coming from some source database
- Append a custom prefix or suffix to all values that are written to a target file or database
- Produce a null value each time when a specific value is encountered

Note: It is important to distinguish between "null" and "empty" values, since they are not the same. A null value means "nothing" (the absence of a value), whereas an empty value is typically an empty string (""). MapForce provides various ways to handle both, including (but not limited to) node functions and defaults.

7.2.1 Creating Defaults and Node Functions

You can create node functions or defaults for nearly any item (node) on the mapping. Let's call this process defining a rule.

In order to create a rule, first determine the item (node, or field) where you want to define the rule. This can be either a "leaf" item (with no descendants) or an item that has descendants. In the latter case, you can apply
the rule to all descendant items as well. Moreover, you can filter descendant items on which you want the rule to apply, by data type. You can also look up qualifying items by type and name, with the help of regular expressions.

Prerequisites:

- You can create defaults or node functions either on an input side of a target component, or on the output side of a source component. To establish which side is right for your needs, see Choosing the Input or Output Side.
- Defaults and node functions require that the connection type between source and target is either "Source Driven" or Target Driven". "Copy-All" connections are not supported. Specifically, node functions and defaults are not applied to descendants of "Copy-All" connections. The node that has the "Copy-all" connection itself will apply node functions and defaults, but only if it has a simple value, for example, an XML element with simple-type content and attributes. Therefore, if you want to define a function or set a default on a node with descendants, the connection type between source and target must not be "Copy-All". To view or change the connection type, right-click the connection and select Target Driven (Standard) from the context menu. For more information, see Connection Types.
- Note that creating defaults or node functions is not supported for the "File" node. This node lets you create or read file names dynamically, see Processing Multiple Input or Output Files Dynamically.

To create a rule:

1. Right-click the item (node) of interest, and select Node Functions and Defaults | Input Node Functions and Defaults (or Output Node Functions and Defaults, depending on the case). Alternatively, right-click a connector—in this case, MapForce will show the node function command for that side only. The Mapping pane displays a grid at the top, for example:

![Mapping pane with default and function options]

If the item where you define the rule has a parent, the parent may also have rules (node functions or defaults) defined against it. To inherit such rules, select the Inherit rules from ancestors check box. For more information about inheritance, see How Defaults and Node Functions Work.

2. Do one of the following:
 a. To add a default, click Add Default.
 b. To add a function, click Add Function.

This creates a new rule (a row in the grid at the top of the Mapping pane where you can choose the criteria for this rule). Configure the rule as follows:

<table>
<thead>
<tr>
<th>Apply To</th>
<th>Select whether the rule should apply to the current item, or to all descendant items regardless of their depth, or to direct child items only.</th>
</tr>
</thead>
</table>
If the item you selected in step 1 has no descendants, then "Current item" is the only choice.

Data Type

Click the **Ellipsis** button and select a data type from the dialog box. The rule (default or node function) will apply only to items that have this data type (or a derived data type). For more information, see **Applying Node Functions and Defaults Conditionally**.

If the item you selected in step 1 is has no descendants, then the item's data type is the only choice.

Default Value / Function Description

If you are defining a default (), type here the default value that you wish to set for the selected item (and all descendants, if applicable). To set an empty string as default, leave this field empty.

If you are defining a function (), this field is for information purpose only. It displays a summary of the function. You can define the function's body in the next step.

3. If you are defining a function, the mapping area changes to display the function's input (illustrated below as "raw_value") and output ("result"). This mapping area is a mini-mapping, and the same general rules apply here as when you define a standard mapping. For example, the body of a function could look as follows:

```
if (raw_value == null) {
    result = "n/a";
}
```

The node function illustrated above replaces any empty value with the value "n/a". For more information about this example, see **Example: Replace Empty CSV Fields**.

Note the following:

- Inside a node function, only certain MapForce components meaningful in this context are supported, such as built-in functions, variables, if-else conditions, and others. Complex structures such as XML, JSON, EDI, or databases are not supported. Adding inline user-defined functions or join components to a node function is also not supported.
- A node function can have one input parameter at most, or no parameter at all. The input parameter is always called "raw_value". Never delete the input parameter ("raw_value"), even if you don't need an input for your function; otherwise, validation errors will appear when you run the mapping. The same applies for the function's output. Should you need to restore an accidentally deleted input component, run the menu command **Function | Insert Input**.
- If an input parameter ("raw_value") is already present, any subsequent input parameters that you add become metadata parameters. You can use such metadata to retrieve additional information about the current node and use it inside the function, see **Supplying Node Metadata to Node Functions**.
In some cases, you might find it more convenient to create a node function as follows: drag a function from the Libraries window to an input or output connector. This makes sense only for simple functions like \texttt{right–trim} or \texttt{uppercase}.

To exit to the main mapping:

- Click the Go back button in the upper-left corner of the Mapping pane, or press Escape.

See also Editing and Deleting Existing Rules.

7.2.1.1 Choosing the Input or Output Side

Because any MapForce component always has an input and an output side, you can define a node function or a default value on either side, depending on your needs. To understand this better, let's recall how a mapping works: it first reads data from a source component (for example, a database or a file), then optionally processes it in some way (for example, using functions or filters), and finally writes data to some target component (for example, a database or a file). Considering this, you can apply node functions and set defaults at various stages:

- Immediately after data is read from the source file or database (but before it is further processed by your mapping). For example, in the mapping below the function or default is defined on the output side of the source component (notice the \(\text{\textdagger}\) icon, which denotes that node functions or defaults are present):

- Immediately before data is written to the target file or database (and after it finished all intermediary processing). For example, in the mapping below, the function or default is defined on the input side of the target component:
At an intermediary stage in the mapping process. For example, if the mapping contains an
intermediary variable of complex type (say, an XML structure), you could trim all values before they are
supplied to the XML structure, or immediately after they are returned by the XML structure).

To summarize the above, you can define node functions either on the "input" or the "output" side of a
component. Functions (or defaults) defined on the input side will process data before it enters the
corresponding item on the component. Conversely, when defined on the output side, they will process data
immediately after it is returned by the corresponding item. If the item where you defined the function has child
items, then you can optionally propagate the default function to apply to all children as well.

7.2.2 Editing and Deleting Existing Rules

When a mapping contains rules for defaults or node functions, these are indicated by the the ![icon](black or red color) next to nodes of interest. You can easily view, modify, or delete such rules as shown below.

To open a default or node function for viewing or editing:

1. In the main mapping, click the ![icon](black or red color) next to the node of interest. This icon is
 present on any node where you previously defined a rule for defaults or node functions. For example, in
 the mapping below, rules are defined on the **Articles** item of the source component, and on the **Rows**
 item of the target component. You can find this demo mapping at the following path:
 `<Documents>\Altova\MapForce2021\MapForceExamples\OrderInUSD.mfd`.
2. After you clicked the \(f_n \) icon, observe the grid at the top, which contains a row for each default or node function that is defined on this node. Select the corresponding row, and make changes as required.

3. In case of functions, click the \(\text{Edit} \) button if you want to change the implementation (mapping) of the function. If the \(\text{Edit} \) button is not present, then the function is most likely defined on some ancestor. In this case, make sure that you click the \(f_n \) icon on the item where the rule is defined (see the note below).

The \(f_n \) icon merely indicates where the rule applies, not where it is defined. For more information about the meaning of icons, see How Defaults and Node Functions Work.

To delete a rule:

- Select the rule from the grid at the top, and then click the Remove function / default \(\times \) button.
To exit to the main mapping:

- Click the Go back button in the upper-left corner of the Mapping pane, or press Escape.

7.2.3 How Defaults and Node Functions Work

As explained in How to Create Defaults and Node Functions, you can create node functions or defaults for nearly any item (node) on the mapping. Let's call this process defining a rule. Rules have the following important characteristics that make them extremely flexible:

- **Inheritance.** When you define a rule on an item that has descendants, the rule will be inherited by descendants by default, unless you choose to disable this option. If the item where you define the function has multiple levels of child items nested under it, you can choose to apply the rule only to direct child items, or to all descendant items.

- **Type Filtering.** MapForce applies rules conditionally, based on the data type of each item. This makes it possible, for example, to apply a certain default value (or a function) for all items of string type, and a different default (or a function) for all items of numeric type. You can also apply rules only to nodes of a specific type that match a specific name or regular expression.

The behavior described above has implications. Namely, it is important to make a difference between defining a rule and actually applying one. When you define a rule on some item, it does not necessarily mean that the rule will affect that item. The rule will apply to the item or its descendants only if the rule criteria (data type and inheritance) allow it.

To help you understand which rules are defined and which ones apply, MapForce provides the following visual clues on the mapping:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This icon (black color) indicates that a rule is defined for this item, and may affect all its descendants. Click the icon to modify or delete the rule.</td>
</tr>
<tr>
<td></td>
<td>This icon (red brick color) indicates that the item qualifies (is eligible) for a rule defined at some ancestor level. In other words, there exists a rule that applies to (and may affect) this item.</td>
</tr>
<tr>
<td></td>
<td>This icon (bold, red brick color) indicates that a rule is defined for this item, and at the same time a rule applies to this item. This icon usually appears when a default is defined for a single node.</td>
</tr>
<tr>
<td></td>
<td>This icon indicates that, even though a rule applies to this item, it is deliberately blocked. You can do this for certain items where you do not want the rule to apply. Note: This icon is displayed only if inheritance is blocked and no other rules are defined at this node. If a rule from an ancestor does apply, the icon has priority.</td>
</tr>
<tr>
<td></td>
<td>This icon (grayed out) indicates that, even though a rule applies to this item, it is inactive. For example, this icon may appear for items that are not connected yet on the mapping.</td>
</tr>
</tbody>
</table>

In general, when multiple node functions or defaults exist for one and the same item, keep in mind the following rule of thumb:
For any single item on the mapping, MapForce always applies only one node function and only one default, regardless of how many node functions or defaults qualify to apply for that item.

In practice, this translates as follows:

- When multiple rules exist for one and the same item, MapForce will apply to an item the rule that is closer to that item. For example, let’s assume that you have defined a node function three times: on a root XML node called `Company`, on its child node called `Department`, and on the grandchild `Employee`. In this case, MapForce will apply to the `Employee` item the function defined on the `Employee` item, since it is closer. Had there been no function there, it would look up to find the function of the immediate ancestor, `Department`. If there is no function for `Department`, then it looks further up to the root node, which in this case is `Company`. Inheritance is optional; to disable it, clear the “inherit rules from ancestors” check box. When this check box is cleared, the item gets the “blocked rule” icon.

- When one and the same item has multiple rules, then MapForce applies the first matching rule from the grid at the top of the Mapping pane. To change the order of rules in this grid, click a rule and then drag and drop to a new position within the grid. Note that you can drag a rule in the grid only if it is defined for the current item. You cannot change the position of inherited rules; you can only enable or disable inheritance.

To better illustrate how this works, we will use a mapping available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\MissingFields.mfd`.

As shown above, this mapping reads data from a source XML file into a target text file (fixed-length fields). In the source XML file, the element `Article` has child elements of different type: "integer", "string", and "decimal". Note that each child element is optional (`minOccurs="0"`). Therefore, if any of these elements does not exist in the source XML, you will want to provide a default value; otherwise, you will see empty fields in the target CSV file, for example:

<table>
<thead>
<tr>
<th>T-Shirt</th>
<th>25</th>
<th>Available in all sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>3 Pants</td>
<td></td>
<td>Limited stock</td>
</tr>
<tr>
<td>4 Jacket</td>
<td>57.5</td>
<td></td>
</tr>
</tbody>
</table>
Below we illustrate various ways to handle missing data by means of rules, along with explanations of how rules affect the mapping result. They will also help you understand or control which rule should prevail when multiple rules exist for a given item.

Example 1: Provide defaults for all string items

Given the mapping `MissingFields.mfd`, let's assume that you have the following requirement: *If any child of Article is of type “string” and is missing, use “n/a” as default value.*

To satisfy this requirement, take the steps below:

1. Right-click the Article item, and select **Node Functions and Defaults | Output Node Functions and Defaults** from the context menu.
2. Click **Add default**.
3. Under **Default value**, type “n/a” and press **Enter**.

In the mapping above, the rule criteria are set as follows: *For all descendant items of Article, if the data type is “string”, and if the source XML element is missing, use the default value “n/a”*. In this example, there are two items of type “string”, Name and Description, so the rule will apply to both.

As stated before, the item where a rule is defined has the \(\text{fr} \) icon next to it. Items where the rule will apply have the \(\text{fr} \) icon. If you preview the mapping at this stage, you can see that all missing strings have now been replaced with “n/a” in the output:

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Shirt</td>
<td>25</td>
<td>Available in all sizes</td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3 Pants</td>
<td>2.3</td>
<td>Limited stock</td>
</tr>
<tr>
<td>4 Jacket</td>
<td>57.5</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Example 2: Provide defaults conditionally based on data type

Let's now assume that, in addition to defaults for string items, you must also supply a default value 0 for any item of numeric type. To satisfy this requirement, take the steps below:

1. Click the Article item.
2. Click Add default () and add a second rule with the following criteria:

 · For all descendant items of Article, if the data type is "string", and if the source XML element is missing, use the default value "n/a"
 · For all descendant items of Article, if the data type is numeric, and if the source XML element is missing, use the default value "0".

Consequently, the output looks as follows:

<table>
<thead>
<tr>
<th></th>
<th>T-Shirt</th>
<th>25</th>
<th>Available in all sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>n/a</td>
<td>2.3</td>
<td>n/a</td>
</tr>
<tr>
<td>3</td>
<td>Pants</td>
<td>0</td>
<td>Limited stock</td>
</tr>
<tr>
<td>4</td>
<td>Jacket</td>
<td>57.5</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Note: The data type "numeric" is actually a type category, because it includes both the "integer" and "decimal" data types. It also includes the types "float" and "double", although such types are not present here. In this example, the rule will apply to both Number and SinglePrice elements. If you select "decimal" as data type, the rule will still apply to both Number and SinglePrice, because type "integer" derives from type "decimal", in the XML schema type hierarchy (see §3 in "XML Schema Part
Example 3: Block rule for a specific item

Let's now assume that you still want to apply defaults for all string and numeric items, like in the previous example. However, you do not want to set any default to the **SinglePrice** item.

To satisfy this requirement, click the item **SinglePrice**, and then clear the check box **Inherit rules from ancestors**.

In the mapping above, the item **SinglePrice** no longer inherits rules from its parent, **Article**. Therefore, a "blocked rule" icon appears next to it.

Consequently, the corresponding field still appears empty in the output:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T-Shirt</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>Pants</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Jacket</td>
<td>57.5</td>
</tr>
</tbody>
</table>

Example 4: Override inherited rule for a specific item

Let's assume that you still want to supply defaults for all string and numeric values; however, for item **SinglePrice** exclusively, you want to set a default value of **9999**.

To satisfy this requirement, take the steps below:

1. Click the item **SinglePrice**.
2. Click **Add default**\(\text{Add default}\) and type a default value of 9999.

3. Optionally, select the **Inherit rules from ancestors** check box. This step is merely to illustrate that, in this case, the inherited rules will be overridden anyway.

Note: Inherited rules have yellow background.

In the mapping above, there are three rules that may apply for item **SinglePrice**: two inherited ones, and a direct one. In this case, the rule defined directly on the item wins. The inherited rules will be disregarded. Therefore, the output looks as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Shirt</td>
<td>25</td>
<td>Available in all sizes</td>
</tr>
<tr>
<td>n/a</td>
<td>2.3</td>
<td>n/a</td>
</tr>
<tr>
<td>Pants</td>
<td>9999</td>
<td>Limited stock</td>
</tr>
<tr>
<td>Jacket</td>
<td>57.5</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Example 5: Set the priority of rules

Let’s expand the previous example further and assume that you define one more rule for item **SinglePrice**, a default of 8888. As stated before, the rule defined directly on the current item wins. However, since two rules now exist on the current item (in addition to the inherited ones), the legitimate question is, which of the two defaults will apply, 8888 or 9999?
When multiple rules exist for the same item like in the mapping above, you can choose the winning rule manually, by dragging it up to the top of the grid. The topmost rule always wins. Therefore, the default value for **SinglePrice** will be **8888** if this rule is at the top of the grid:

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-Shirt</td>
<td>25</td>
<td>Available in all sizes</td>
</tr>
<tr>
<td>n/a</td>
<td>2.3</td>
<td>n/a</td>
</tr>
<tr>
<td>Pants</td>
<td>8888</td>
<td>Limited stock</td>
</tr>
<tr>
<td>Jacket</td>
<td>57.5</td>
<td>n/a</td>
</tr>
</tbody>
</table>

7.2.4 Applying Node Functions and Defaults Conditionally

Whenever you create a node function or a default (a so-called "rule"), you can define it either on a item that has descendants, or on a "leaf" item. Importantly, if the item has descendants, you must specify a data type for the rule—this means that only descendants of this data type will be affected by the rule. To better understand this concept, open the following demo mapping: `<Documents>\Altova\MapForce2021\MapForceExamples\OrderInUSD.mfd`. Next, click the \(\text{Rules} \) icon next to **Rows** item in the target component.
The mapping above reads data from an XML file and writes it to a target CSV file. In the target CSV component, a rule is defined on the input side of the **Rows** item. Notice that the **Rows** item has children of type **string** and **integer**. Since the data type of the rule is **string**, the rule will affect only items of this type. In other words, the icon is present only for items of type **string**, but not for those of type **integer**. The icon indicates that the rule is blocked for some items—this fact is not relevant for the moment, see **How Defaults and Node Functions Work** for more information.

Tip: To display the data type next to each item like in the mapping above, toggle on the **Show Data Types** toolbar button, and toggle off the **Show Annotations** toolbar button. These toggle commands are also available in the **View** menu.

To change the data type of a rule, click the **Ellipsis** button in the grid above the mapping. This opens a dialog box where you can choose the required type.
For example, if you select integer as data type, the rule will apply only to item Amount (since this is the only item of type integer). The component is now redrawn accordingly to illustrate this fact. Notice that no other items except Amount are now affected by rule since they are all of type string.
Change a rule's data type only when this is meaningful in your node function. In the demo OrderInUSD.mfd mapping, the node function is designed to process string data, not numeric data (that is, it performs concatenation of two strings). Consequently, this mapping will fail to execute if you change the node function's data type to integer.

Type inheritance
Since MapForce works not only with XML data, the data types available for selection on the "Filter Node Functions and Defaults" dialog box do not correspond exactly to XML Schema types. Some of them are in fact categories of types, meaning that they will match a larger selection of types. For example, the type string matches various other data types derived from string, such as normalizedString, token, NCName, NMTOKEN, IDREF, ENTITY, and others. Likewise, the type decimal will match the derived types integer, long, short, and others.

The hierarchy of types is according to the XML Schema W3C recommendation. For a diagram that fully illustrates this hierarchy, see §3 in "XML Schema Part 2: Datatypes Second Edition", https://www.w3.org/TR/xmlschema-2.

Advanced filtering
Optionally, you can apply rules based on even more advanced criteria:

- Apply rule if the node is of specific type AND the node name matches some custom text
- Apply rule if the node is of specific type AND the type name matches some custom text

For example, the settings below apply a rule only if the node type is string AND the node name is "Title". The image on the right illustrates an example structure where such a rule might be useful (only the node "Title" is matched therefore it gets the icon):
Alternatively, you can use a regular expression to match multiple node names or type names that qualify. For example, the settings below apply a rule to all items of type `string` whose name ends with "total". Notice that a regular expression is used. The regular expression `.+total` literally means: match one or more occurrences of any character, followed by the text "total". Also, the search is case-insensitive, which means that "SOMETOTAL" and "SomeTotal" will both be matched. The image on the right illustrates an example structure where such a rule might be useful (namely, the three "Total" items qualify for the rule and, therefore, get the icon):
The regular expressions dialect is the same as that of XML schema, see also Regular Expressions. Note the following:

- The anchors ^ and $ are implicit and must not be entered in the Match to box.
- Case sensitivity is provided by the Match Case check box, so the /i flag is not supported.
- Matching on multiple lines is not meaningful for node filtering, so the /m flag is not supported.

7.2.5 Supplying Node Metadata to Node Functions

There might be cases when you want a node function to do something based on some information about the current node (let's call this information "node metadata"). For example, you might need a node function with the following logic: if the node name contains the word "Total", then append the dollar sign to the node value; otherwise, return the node value as is.

In the example just mentioned, "node name" is an example of node metadata. Generally speaking, "metadata" means something which describes data itself, that is, "data about data". By "node metadata", therefore, we understand miscellaneous information about the node on which the function applies, such as node name, value length or precision in case of numeric database types, and others.
The following table lists all possible metadata that you can use in a node function. Note that some metadata listed below is meaningful only for nodes of specific kind (for example, XML or database fields). Consequently, MapForce will display a warning when you attempt to use metadata that is incompatible with the current node.

<table>
<thead>
<tr>
<th>Metadata</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node_name</td>
<td>Provides the name of the current node. This metadata is applicable to all nodes. In case of XML, this is the name of the current element or attribute. In case of CSV, this is the name of the CSV field. In case of databases, it is the name of the table column.</td>
</tr>
<tr>
<td>node_annotation</td>
<td>Provides the annotation text displayed next to an item when you click the Show Annotations toolbar button. This metadata is applicable to all nodes.</td>
</tr>
<tr>
<td>node_minLength</td>
<td>Provides the value of minLength facet of the node's data type. Applicable to XML and text nodes with appropriate types.</td>
</tr>
<tr>
<td>node_maxLength</td>
<td>Provides the value of maxLength facet of the node's data type. Applicable to XML and text nodes with appropriate types.</td>
</tr>
<tr>
<td>node_totalDigits</td>
<td>Provides the value of the totalDigits facet of the node's data type. Applicable to XML nodes with appropriate types.</td>
</tr>
<tr>
<td>node_fractionDigits</td>
<td>Provides the value of the fractionDigits facet of the node's data type. Applicable to XML nodes with appropriate types.</td>
</tr>
<tr>
<td>node_length</td>
<td>Provides the length of the node's data type. Applicable to database fields with appropriate types.</td>
</tr>
<tr>
<td>node_precision</td>
<td>Provides the precision of the node's data type. Applicable to database fields with appropriate types.</td>
</tr>
<tr>
<td>node_scale</td>
<td>Provides the scale of the node's data type. Applicable to database fields with appropriate types.</td>
</tr>
</tbody>
</table>

To supply metadata to a node function:

1. Start creating a new node function (see Creating Defaults and Node Functions) or open an existing one for editing (see Editing and Deleting Existing Rules). For example, the function illustrated below concatenates the string "$" with the node value and returns the result back to the outer mapping. You can find the mapping of this function at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\OrderInUSD.mfd. To open the function's mapping, click the icon next to the Rows item of the target component, and then click the Edit button on the grid.
2. Do one of the following:
 - Click **Add Node Specifics**.
 - Right-click an empty area in the mapping, and select **Insert Input** from the context menu.
 - Click the **Insert Input** toolbar button.
 - On the **Function** menu, click **Insert Input**.
3. Select the required metadata from the dialog box (for example, "node_name").

Note: When you select a metadata parameter to insert, MapForce analyzes all currently expanded nodes on the mapping where the node function already qualifies to apply and determines whether the metadata parameter is supported by these nodes. If not supported, the dialog box displays a warning similar to "The selected metadata parameter is not supported by any currently existing node in the scope of this function". Note that, by default, deeply nested structures are not fully scanned, in order to preserve memory and improve the user experience. If the component where you apply the node function has such deeply nested structures, you can expand the relevant nodes on the mapping so as to make MapForce aware of them. In this case, MapForce will take the expanded nodes into account when you add a new metadata parameter, and the warning may disappear. Remember that a connection must exist for the node function to apply; expanding unconnected items is not relevant.

4. If the metadata is not supported for the node where the function qualifies to apply, you can decide the behavior of the function as follows:
 a. Select the check box **Return empty sequence from input** if you want to apply the node function and have the metadata parameter return an empty sequence. An empty sequence should not be confused with an empty string. You typically need to use sequence functions such as `substitute-missing` or `exists`, or other component types to process it further. **Warning:** The empty sequence must be handled; otherwise, the node function might not return a value at all.
b. Select the check box **Do not apply the node function** if you do not want to apply the node function at all when this metadata is not supported by the node.

5. Click **OK**. A new input parameter is now added to the function's mapping, in addition to the default **raw_value** one. You can now connect the new parameter's output connector to some target item where you need this metadata (typically, a function's input connector).

7.2.6 Example: Replace Empty CSV Fields

This example shows you how to create a MapForce mapping that reads data from a CSV file and writes data to another CSV file. The goal is to replace all empty fields from the source CSV file with a custom value ("n/a"). In other words, assuming that the source CSV file looks as follows:

```
H,111,332.1,22537.7,,Container ship,,,
D,111,A-1579-227,10,3,400, Microtome,,
D,111,B-152-427,7,6,1200, Miscellaneous,,
H,222,978.4,7563.1,,Air freight,,,
D,222,ZZ-AW56-1,10,5,10000, Gas Chromatograph,,
```

then the desired mapping output should look as follows:

```
H,111,332.1,22537.7,n/a,Container ship,n/a,n/a,n/a
D,111,A-1579-227,10,3,400, Microtome,n/a,n/a
D,111,B-152-427,7,6,1200, Miscellaneous,n/a,n/a
H,222,978.4,7563.1,n/a,Air freight,n/a,n/a
D,222,ZZ-AW56-1,10,5,10000, Gas Chromatograph,n/a,n/a
```

You can find the mapping created in this example at the following path: `\<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ReplaceEmptyFields.mfd`. The source CSV file for this mapping is called `Orders.csv` and is in the same folder. The target CSV file will be generated by MapForce.

To achieve the mapping goal, we will create a single node function that replaces each encountered empty value with "n/a". As shown below, this function is defined only once but it applies to multiple descendant CSV fields.

Step 1: Add the source CSV file to the mapping

You can add the source CSV file to the mapping as follows:

1. On the **Insert** menu, click **Text File**.
2. (MapForce Enterprise Edition only) Select the option **Use simple processing for standard CSV (delimited) and/or FLF (fixed-length) fields**, and click **Continue**.
3. Click **Input File** and browse for the following file: `\<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Orders.csv`.

 If the check box **Treat empty fields as absent** is selected, clear it. When selected, this check box suppresses the empty values and thus will prevent the node function from working. For more information, see [Setting the CSV Options](#).

4. Click **OK**.
5. If prompted to change the component name to "Orders", click the option you prefer (for example, **Leave component name unchanged**).

For more information about CSV components in MapForce, see [CSV and Text Files](#).

Step 2: Add the target CSV file to the mapping

You can add the target CSV file to the mapping as follows:

1. On the **Insert** menu, click **Text File**.
2. (MapForce Enterprise Edition only) Select the option **Use simple processing for standard CSV (delimited) and/or FLF (fixed-length) fields**, and click **Continue**.
3. The target file must have the same number of fields as the source one. Therefore, click the **Append Field** button multiple times to add nine fields.
4. Click **OK**.

Step 3: Draw the mapping connections

At this stage, the mapping contains two components: the source CSV file and the target one. Click the output connector ▶ next to the **Rows** item on the source component and drag the cursor to the input connector ▶ of the **Rows** item in the target component. When you do this, MapForce may automatically connect all descendant items and create a so-called "Copy-All" connection, depending on your settings. This happens only if the **Auto-connect matching children** toolbar option is active. As mentioned previously, node functions are not applied to descendants of "Copy-All" connections. Therefore, the "Copy-All" connection must first be changed to a standard one. To do this, connect Field1 from source to Field1 from target. When prompted, click **Replace Connection**, and then click **Resolve copy-all connection**.

If the **Auto-connect matching children** option is not active, you can create connections between the source and target as follows:

1. Connect the **Rows** item in the source to the **Rows** item in the target.
2. Right-click the connection, and select **Connect Matching Children** from the context menu.
3. Clear the **Create copy-all connections** check box.
4. Click **OK**.

Your mapping should now look as follows:
Step 4: Create the node function

You can create a node function either immediately after data leaves the source, or immediately before it is written to the target. For the purpose of this example, let's create the node function on the input side of the target component; this essentially means "immediately before data is written to the target". For more information, see Choosing When the Function or Default Should Apply.

Right-click the Rows item on the target component, and select Node Functions and Defaults | Input Node Functions and Defaults from the context menu. An empty grid appears at the top of the Mapping pane.

Next, click the Add function button to the left of the grid. The mapping now displays the function's input ("raw_value") and output ("result").
As mentioned before, the function's goal is to convert any empty value into the string "n/a". To achieve this, let's add the following additional components to the mapping:

- The MapForce built-in function `empty`. This function returns true if the value supplied as argument is empty; false otherwise. You can drag the function into the mapping from the Libraries window, or just double-click the mapping and type "empty", see also Add a Function to the Mapping.
- A text value "n/a". To add this value, double-click an empty area on the mapping and enter "n/a" surrounded by double quotes, see also Add a Constant to the Mapping.
- An If-Else Condition. To add it to the mapping, click the If-Else Condition toolbar button. For more information about such components, see Example: Returning a Value Conditionally.

With the help of these components, design the function as follows:

The design illustrated above works as follows: first, any input value from the outer mapping enters the function through the `raw_value` input. The raw value is then supplied as input to the `empty` function. Then, the If-Else Component evaluates the Boolean result (true or false) returned by the `empty` function. When the result is true, the constant "n/a" becomes the function's result. When the result is false, the function's raw input value becomes the function's result. The function's result (which is either "n/a" or `raw_value`) is then returned to the outer mapping.

Click Exit (or press Escape) to exit the function's editing area.
In the mapping illustrated above, note the following:

- The text at the top of the window clearly indicates where the function is defined. This is particularly useful in situations where multiple node functions are defined for the same component.
- The **Apply to** option in the grid is set to **All descendant items**. In this example, this is the intended behavior. That is, all descendant items of **Rows** must be affected if they qualify. As you can see on the mapping, the left (input) side of the target component displays multiple icons, even though the function was defined only once, for the parent item.
- The **Data Type** option is set to "string". In this example, since we are dealing with text data, this is the intended behavior. It is also the default behavior.
- The **Edit** button lets you go back to the function's definition and change it if necessary. If you don't see this button, click the icon first.

Step 5: Run the mapping

To preview the mapping result directly in MapForce, click the **Output** tab. If any validation errors are encountered, these are displayed in the **Messages** window, see [Validating Mappings](#). Upon success, the resulting CSV is displayed in the **Output** pane.

You can also execute such mappings on a server machine, with MapForce Server Advanced Edition, in one of the following ways:
If you have MapForce Server Advanced Edition standalone license, compile the mapping to an execution file and then copy it to the target machine, see [Compiling Mappings to MapForce Server Execution Files](#).

If you have licensed both FlowForce Server and MapForce Server Advanced Edition, you can deploy the mapping directly to FlowForce Server and configure it to run as a scheduled or on-demand job, see [Deploying Mappings to FlowForce Server](#).
7.3 User-Defined Functions

User-Defined Functions (UDFs) are custom functions defined once, and reusable multiple times within the same mapping or across multiple mappings. User-defined functions are like mini-mappings themselves: they typically consist of one or more input parameters, some intermediary components to process data, and an output to return data to the caller. The caller is either the main mapping or another user-defined function.

Tip: It is also possible to create user-defined functions that return multiple outputs. This is supported when the function is defined as “inline”, see Inline and Regular User-Defined Functions.

Apart from being reusable, user-defined functions are also helpful when you want to package parts of the mapping into smaller components and abstract away the implementation details, thus making the main mapping easier to read.

You typically create user-defined functions to process strings, numbers, dates, and other data in a custom way that extends the built-in MapForce functions. For example, you might want to concatenate or split text in a particular way, or perform some advanced calculations, or manipulate dates and times, or simply hide parts of a mapping by packaging them into a reusable function. Another common use of user-defined functions is to look up a field in a file, database or some other data store supported by MapForce.

The following is an example of a user-defined function that splits a string into two separate strings. This user-defined function is part of the following demo mapping: <Documents>\Altova\MapForce2021\MapForceExamples\ContactsFromPO.mfd. It takes a name as parameter (for example, “Helen Smith”), applies the built-in functions substring-before and substring-after, and then returns two resulting values (“Helen” and “Smith”).

As stated before, you can call a user-defined function either from the main mapping, or from another user-defined function. In other words, user-defined functions can be nested if so required, as illustrated below.
For example, the mapping below calls a user-defined function ("LookupPerson") to look up a person's name in an XML file. If you double-click the header of the "LookupPerson" component, its definition opens in the mapping window, and you will notice that this function calls other user-defined functions in its turn: "EqualAnd" and "Person2Details". This mapping is available as a demo at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\PersonListByBranchOffice.mfd.

User-defined functions can also be called recursively (that is, a user-defined function calls itself). This requires, however, that the user-defined function be defined as a regular (not inline) function, see Inline and Regular User-Defined Functions.
Recursive user-defined functions let you solve various advanced mapping requirements, such as iterating over data structures having a depth of N children, where N is not known in advance, see Example: Recursive Search.

After you create a user-defined function, it is saved in the same mapping where you created it. However, you can import it into other mappings as well and call it from there. For more information, see Calling and Importing User-Defined Functions.

7.3.1 Creating User-Defined Functions

You can create user-defined functions either from scratch, or from a selection of components that already exist on the mapping.

To create a user-defined function from scratch:

1. On the Function menu, click Create User-Defined Function. Alternatively, click the Create User-Defined Function toolbar button.
2. Enter information into the required fields (see the reference table below).

| **Function Name** | Mandatory field. Enter a name for the user-defined function you wish to create. Valid characters:
| | • Alphanumeric characters (a-z, A-Z, 0-9)
| | • Underscore (_)
| | • Hyphen/dash (-)
| | • Colon (:)
| **Library Name** | Mandatory field. Enter a library name where the function should belong. The function will be displayed under this library name in the Libraries window. If you don't specify a library, the function will be placed into a default library called “user”.
| **Syntax** | Optional field. Enter some text that concisely describes the syntax of the function (for example, the expected parameters). This text will be displayed |
next to the function in the Libraries window, and it does not affect the implementation of the function.

<table>
<thead>
<tr>
<th>Detail</th>
<th>Optional field. Enter the free text description of the function. This text will be displayed when you move the cursor over the function in the Libraries window or in other contexts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlined use</td>
<td>Select this check box if the function should be created as inline. Clear the check box to create a regular function. For more information, see Inline and Regular User-Defined Functions.</td>
</tr>
</tbody>
</table>

3. Click **OK**. The function becomes immediately visible in the Libraries window under the library name specified above, for example:

![Libraries window](image)

Also, the mapping window is now redrawn so as to allow you to create the new function (this is a standalone mapping referred to as the "function's mapping"). Since any function requires an output, the function's mapping includes an output component by default.

![Function mapping](image)

The **Return to main mapping** button in the top-left corner lets you navigate from the function's mapping back to the main mapping. To open the function's mapping at any time, double-click the function in the Libraries window. For more information, see Calling and Importing User-Defined Functions and Navigating User-Defined Functions.
4. Add to the function's mapping all the components required by the function's definition. You can do this in the same way as for a standard mapping. For example, to add input or output parameters, do one of the following:

- Run the menu command **Function | Insert Input**, or **Function | Insert Output**, respectively.
- Right-click the mapping area, and select **Insert Input** or **Insert Output** from the context menu.
- Click the **Insert Input** () or **Insert Output** () toolbar buttons.

At the minimum, a function requires one output component to which some data is connected. As for input parameters, a function can have zero, one or more inputs. The input or output parameters can be of simple type (such as string or integer) or complex type (a structure). For more information about simple and complex parameters, see **Parameters in User-Defined Functions**.

So far, you created the user-defined function, but you haven't used it anywhere yet. To use the function in a mapping, drag the function from the Libraries window onto the main mapping area, see also **Calling and Importing User-Defined Functions**.

To create a user-defined function from existing components:

1. Select multiple components on the mapping by making a rectangular selection with the mouse. You can also select multiple components by clicking each one while holding the **Ctrl** key pressed.
2. On the **Function** menu, click **Create User-Defined Function from Selection**. Alternatively, click the **Create User-Defined Function from selection** () toolbar button.
3. Follow the steps 2-4 above.

7.3.2 Parameters in User-Defined Functions

When you create a user-defined function, you must specify what input parameters it should take (if any) and what output it should return. While input parameters are sometimes not necessary, an output parameter is mandatory in all cases (that is, a function must always return something). For example, the function below has no inputs and one output which returns the text "hello" to the caller:

![User-defined function diagram](image)

Function parameters can be of simple type (such as string or integer) or a complex structure. For example, the user-defined function "FindArticle" illustrated below has two input and one output parameters.

- **POArtNr** is an input parameter of simple type "string"
- **Amount** is an input parameter of simple type "integer"
- **CompletePO** is an output parameter of complex XML type.
Adding Parameters

To add an input or output parameter:

1. Create a user-defined function mapping (see Creating User-Defined Functions) or open an existing one (see Editing User-Defined Functions).
2. Do one of the following:
 - Run the menu command Function | Insert Input or Function | Insert Output.
 - Click the Insert Input or Insert Output toolbar buttons.
3. In the dialog box above, choose whether input or output parameters should be of simple type (such as string or integer) or a complex structure (such as an XML or database structure). To create a parameter that is a complex XML type, click Choose next to “Structure” and browse for the XML schema that describes the required structure.

If the function's mapping already includes XML schemas, they are available for selection as structures. Otherwise, you can select a completely new schema that should provide the structure of the parameter. The same is true for databases or other complex structures if they are supported by your edition of MapForce.

With XML structures, it is possible to select a root element for your structure, if the XML schema allows it. To specify a root element, click Choose next to “Root”, and select the root element from the dialog box that opens.

If selected, the check box **Save structure file path relative to MFD file** will change the structure file’s absolute path into a path relative to the current mapping, when you save the mapping. For more information, see Using Relative Paths on a Component.

The **Input is required** and **Input is Sequence** check boxes are explained in the following sections.

Mandatory parameters

To make a parameter mandatory in a user-defined function, select the **Input is required** check box. When a parameter is mandatory, validation errors will occur if you do not connect an input to it.

To make a parameter optional, clear the **Input is required** check box. On the main mapping, optional parameters have a slightly different appearance—their input connector (small triangle) has a dashed border.

You can also specify a default parameter value by connecting it to the "default" input of a parameter, for example:
The default value will apply only if there is no other value. If the optional parameter receives a value when the function is called, then that value takes precedence over the default.

Sequence parameters
You can optionally specify that a function's parameter should be treated as a single value (this is the default behaviour), or as a sequence. To treat the parameter's input as a sequence as opposed to a single value, select the **Input is sequence** check box. Note that this check box is meaningful and enabled only if the user-defined function is of type "regular", see Inline and Regular User-Defined Functions. Otherwise, the check box is disabled.

A sequence is a range of zero or more values. You might want to treat a parameter's input as a sequence when your user-defined function expects input data as a sequence, in order to perform some aggregation of values in that sequence (for example, by calling functions such as `avg`, `min`, `max`). For an example, open the following demo mapping: `<Documents>\Altova\MapForce2021\MapForceExamples\InputIsSequence.mfd`. In this mapping, the "data" filter is connected to the user-defined function "Calculate". The filter's output is a sequence of items, so the input parameter of the function is set to sequence.

Internally, the "Calculate" function aggregates all the sequence values (as illustrated below, it runs the `min`, `max`, and `avg` aggregate functions on the input sequence).
As a rule of thumb, the input data, either sequence or non-sequence, determines how often the function is called.

- When input data is connected to a **sequence** parameter, the user-defined function is called only **once** and the complete sequence is passed into the user-defined function.
- When input data is connected to a **non-sequence** parameter, the user-defined function is called **once for each single item** in the sequence.

Connecting an empty sequence to a non-sequence parameter has the result that the function is not called at all.

This can happen if the source structure has optional items, or when a filter condition returns no matching items. To avoid this, either use the **substitute-missing** function before the function input to ensure that the sequence is never empty, or set the parameter to sequence, and add handling for the empty sequence inside the function.

The **Output is sequence** check box may be required for output parameters also. When a function passes a sequence of multiple values to its output component, and the output component is not set to sequence, the function will return only the first item in the sequence.

Parameter order

When a user-defined function has multiple input or output parameters, you can change the order in which parameters should appear to callers of this function. For example, the function below has three input parameters, **input1**, **input2**, and **input3**.
The order of parameters in the function's mapping (starting from the top) dictates the order in which they appear to callers of this function:

Note the following:

- Input and output parameters are sorted by their position from top to bottom. Therefore, if you move parameter `input3` to the top in the function's mapping, it will become the first parameter of this function.
- If two parameters have the same vertical position, the leftmost takes precedence.
- In the unusual case that two parameters have exactly the same position, the internal component ID is automatically used.

7.3.3 Inline and Regular User-Defined Functions

There are two kinds of user-defined functions: inline and regular. You can specify whether a function should be inline or regular when creating the function, see [Creating User-Defined Functions](#). Inline and regular functions behave differently in terms of code generation, recursiveness, and the ability to have multiple output parameters.

<table>
<thead>
<tr>
<th>Inline functions</th>
<th>Regular functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inline functions are extracted in all instances where they occur in generated code, which makes the code longer but also slightly faster.</td>
<td>Each user-defined function component generates code for a function call, where inputs are passed as parameters, and the output is the function (component) return value.</td>
</tr>
<tr>
<td>Note that inline functions can significantly increase the amount of generated program code. The user-defined function code is actually inserted at all</td>
<td></td>
</tr>
</tbody>
</table>
Inline functions vs. Regular functions

<table>
<thead>
<tr>
<th>Inline functions</th>
<th>Regular functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations where the function is called, and thus increases the code size substantially - as opposed to using a regular function.</td>
<td>At runtime, all the input parameter values are evaluated first, and then the function is called for each occurrence of the input data.</td>
</tr>
<tr>
<td>Inline functions can have multiple outputs and thus return multiple values.</td>
<td>Regular functions can have only one output. To return multiple values, you can declare the output to be of complex type (for example, XML structure), which would allow you to pass multiple values to the caller.</td>
</tr>
<tr>
<td>Inline functions cannot be called recursively.</td>
<td>Regular functions can be called recursively.</td>
</tr>
<tr>
<td>Inline functions do not support setting a priority context on a parameter.</td>
<td>Regular functions support setting a priority context on a parameter.</td>
</tr>
</tbody>
</table>

Switching a user-defined function from "inline" to "regular", or vice versa, may affect the mapping context, and this may cause the mapping to produce a different result.

On the mapping, inline user-defined functions are displayed with a dashed border. For example, the middle component in the mapping below is an inline user-defined function.

![Mapping with inline user-defined function](image)

Regular functions are displayed with a solid border. For example, the middle component in the mapping below is a regular user-defined function.

![Mapping with regular user-defined function](image)
7.3.4 Navigating User-Defined Functions

When a mapping contains user-defined functions, you can easily navigate between the definition (mapping) of each user-defined function and the main mapping as shown below.

To open a user-defined function for viewing or editing:

- Double-click the title bar of a user-defined function on the mapping.

- Double-click the specific user-defined function in the Libraries window.

You can also edit a function by double-clicking its name in the Libraries window. However, only functions in the currently active document can be opened this way. Double-clicking a user-defined function that was created in another mapping opens that mapping in a new window.

Note: If you edit or delete a user-defined function that was imported into multiple mappings, all importing mappings will be affected by the change.

To go back to the main mapping:

- Click the **Return to main mapping** button in the top-left corner of the mapping window.

In addition, a history is preserved as you navigate through various MapForce tabs, including user-defined functions. To go back and forward between tabs visited previously, click the **Back** and **Forward** toolbar buttons. The corresponding keyboard shortcuts for these buttons are **Alt+Left** and **Alt+Right**, respectively.
7.3.5 Editing User-Defined Functions

To edit a user-defined function:

1. Open the mapping that contains the user-defined function.
2. Double-click the title bar of the user-defined function on the mapping. The Mapping window changes to display the function's contents where you can add, edit, or remove components as required.
3. To change the function's properties (such as name or description), do one of the following:
 - Right-click an empty area on the mapping and select Function Settings from the context menu.
 - Click the User-defined function settings toolbar button.

You can also edit a function by double-clicking its name in the Libraries window. However, only functions in the currently active document can be opened this way. Double-clicking a user-defined function that was created in another mapping opens that mapping in a new window.

Note: If you edit or delete a user-defined function that was imported into multiple mappings, all importing mappings will be affected by the change.

7.3.6 Deleting User-Defined Functions

To delete a user-defined function:

1. Double-click the title bar of the user-defined function on the mapping.
2. Click the Erase button in the top-right corner of the Mapping window.

3. If the function is used in the currently open mapping, a dialog box is displayed.
Click **Yes** if you want to delete function and replace all instances where it is called with the function's components. This lets you keep the main mapping valid even if the function is deleted. However, if the deleted function is used in any other external mappings, those will become not valid.

Click **No** if you want to delete the function and all its internal components permanently (in this case, all the mappings where the function is used will become not valid).

7.3.7 Calling and Importing User-Defined Functions

After you create a user-defined function, you can call it either from the same mapping where you created it, or from any other MapForce mapping.

To call a user-defined function from the same mapping:

1. Find the function in the Libraries window. You can find the function under the library that you specified when you created the function. If you created the function in the default "user" library, look for the function in the "user" library. To quickly find the function by its name, start typing the name in the Libraries window.
2. Drag the function from the Libraries window into the main mapping. You can now connect to it all the required parameters. The result of the function is provided by its output parameter (or several parameters, if applicable).

![Custom Function Diagram]

To import user-defined functions from another mapping:

1. Click the **Add/Remove Libraries** button at the base of the Libraries window. The Manage Libraries window opens.

 ![Manage Libraries Window]

2. Do one of the following:

 - To import functions as a *local* library (in the scope of the current document only), click the **Add** button under the current mapping name.
 - To import functions as a *global* library (at program level), click the **Add** button adjacent to **Global Library Imports**.

Note: When you import a library *locally*, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for the mapping file (.mfd) that contains the user-defined function(s), and click **Open**. A message box appears informing you that a new library has been added, and the new library appears in the Libraries window.
You can now use any of the imported functions in the current mapping by dragging them from the Libraries window onto the mapping, see also Add a Function to the Mapping.

The Libraries window displays built-in functions and any user-defined functions in the current .mfd mapping file. If you import other .mfd files as libraries into the current mapping as shown above, it will display user-defined functions from any imported files as well. Note that, if you used the same library name across multiple *.mfd files or custom libraries (see Importing Custom Java and .NET Libraries), functions from all available sources appear under the same library name in the Libraries window.

For further information about viewing and organizing function libraries, see Managing Function Libraries.

7.3.8 Copy-Pasting UDFs Between Mappings

You can easily copy and paste user-defined functions between mappings, as follows:

2. Right-click inside an empty area in the Libraries window, and select the option **Show All Open Documents**.
3. Open both the source and the destination mappings. For example, in the image below, the source is **BuildHierarchyRecursive.mfd** and the destination is **New.mfd**.

Note: Make sure that both the source and the target mappings are already saved to disk. This ensures correct resolution of paths, see also Copy-Paste and Relative Paths.

4. Right-click the UDF from the source mapping file and select **Copy** from the context menu (or press Ctrl+C).
5. Right-click the "User-Defined Functions" entry of the target mapping file and select Paste from the context menu.

See also Managing Function Libraries.

7.3.9 Example: Look-up and Concatenation

There are several demo mappings available with MapForce that illustrate typical usage of user-defined functions. One of these mappings is the PersonListByBranchOffice.mfd file available in the <Documents>\Altova\MapForce2021\MapForceExamples folder.

![PersonListByBranchOffice.mfd Diagram](image)
This mapping has the following business requirements:

- Extract data from a source XML file and write it to a target XML file. Data consists of employee details, such as first name and last name.
- Look up certain data about each employee in a separate XML file (phone, email address, position).
- Process data in a desired way before writing it to the target. Namely, the phone, email and position of each person must be represented as a single string (comma-separated) and written to the Details element of the target XML.
- Extract only XML elements that match certain criteria—in this case, information about employees from a specific branch office. Callers of the mapping must be able to specify the office name as a parameter at the command line, for example, when the mapping is executed by MapForce Server.

Let's now examine the components that implement the requirements above:

- The input parameter of the mapping ("OfficeName") is a simple input component. A default value ("Nanonull, Inc.") is provided by a constant—this value will be used if the caller of the mapping does not provide a parameter value. To find more about simple input components, see Supplying Parameters to the Mapping.
- To filter only employees that belong to a specific office, the mapping uses a filter component ("Office"). Essentially, the filter checks whether the office name supplied by the parameter is equal to the office name in the source XML file. If yes, the filter passes data from the source Office item to the target component. For more information about filters, see Filters and Conditions.
- To look up information from the second source XML file, the mapping calls a user-defined function, "LookupPerson". The logic of this function is discussed in more detail below.
- To process employee data, the "LookupPerson" function calls internally other functions that retrieve and concatenate information about each employee in a suitable way. All these operations are in the function's own mapping and not visible in the main mapping—a typical example of encapsulation. The "LookupPerson" function then populates the Details element in the target XML.

Look-up implementation

The look-up functionality is provided by the "LookupPerson" function, whose definition is illustrated below.
"LookupPerson" function

As shown above, the function includes the source XML file from where data should be retrieved. Next, it has three input parameters that provide the look-up values: **Office_Name**, **First_Name**, and **Last_Name**. All input parameters are set as mandatory (that is, the check box **Input is required** is selected in the Properties dialog box).

The "EqualAnd function" is a separate user-defined function enclosed into the current one. This function returns a Boolean value. Calling this function in the sequence illustrated above provides the following Boolean logic:
The function's value (TRUE or FALSE) is passed to the filter each time a new item is processed. When the filter gets value TRUE, the look-up operation is successful and the employee's details are retrieved and returned to the outer mapping. Otherwise, the next item in context is examined, and so on until the loop finishes.

In the first occurrence of "EqualAnd" function, connector b has a circle around it—this indicates that this parameter is set as priority context. Priority context is an optional feature that optimizes the execution of the mapping. Namely, it ensures that the person data of the specific office supplied by the input parameter a is processed first. To set a parameter as priority context, right-click it and choose Priority from the context menu. For more information, see Priority context.
Concatenation implementation

The "Person2Details" function is another function nested into "LookupPerson" function. This function returns a string value. It concatenates the three values received as parameters and two text constants, as illustrated below:

```
"Person2Details" function
```

The `concat` function is a MapForce built-in function that can take as many parameters as required, see Add or Delete Function Arguments.

Running the mapping

To preview the mapping execution in MapForce, click the Output tab. The mapping runs with the default input parameter ("Nanonull, Inc.") and consequently retrieves employee data only for this office. To retrieve data for another office, change the constant connected to the input parameter from "Nanonull, Inc." to "Nanonull Partners, Inc." and run the mapping again.

If you have licensed MapForce Server, you can also run the mapping at the command line on a Linux, macOS, or Windows machine. First, compile the mapping to a MapForce Server execution file (.mfx) with the menu command File | Compile to MapForce Server Execution File, see also Compiling Mappings to MapForce Server Execution Files. Next, copy the .mfx file to the server machine and run MapForce Server with the command below. The named parameter `-p=OfficeName` supplies the input value:

```
mapforceserver run PersonListByBranchOffice.mfx -p=OfficeName:"Nanonull, Inc."
```

Notes:

- `mapforceserver` is the path to the MapForce Server executable as applicable for your operating system.
- Change the path to the .mfx file as applicable, or copy the .mfx to the same folder as the executable.

7.3.10 Example: Recursive Search

This example illustrates a mapping that searches for data in a source XML file with the help of a recursive user-defined function. The mapping file is available at the following path:

```
<Documents>\Altova\MapForce2021\MapForceExamples\RecursiveDirectoryFilter.mfd
```
RecursiveDirectoryFilter.mfd

The source XML file contains information about files and directories, as illustrated by the code listing below (note that the listing omits some data for simplicity):

```xml
<?xml version="1.0" encoding="UTF-8"?>
<directory name="Examples">
  <directory name="ExampleSite">
    <file name="blocks.sps" size="7473"/>
    <file name="block_file.xml" size="992"/>
    <directory name="output">
      <file name="examplesite1.css" size="3174"/>
      <directory name="images">
        <file name="blank.gif" size="88"/>
        <file name="block_file.gif" size="13179"/>
      </directory>
    </directory>
  </directory>
</directory>
```

Source XML file

Both the source and the target XML files use the same schema, `Directory.xsd`. Since, on a file system, a directory can contain either a file or another directory, this is also reflected in the schema. Importantly, the schema specifies that the `directory` element is recursive (see the line `<xs:element ref="directory"/>`).

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
  <xs:element name="directory">
    <xs:complexType>
      <xs:choice minOccurs="0" maxOccurs="unbounded">
        <xs:element name="file">
          <xs:complexType>
            <xs:attribute name="name" type="xs:string"/>
            <xs:attribute name="size" type="xs:unsignedLong"/>
          </xs:complexType>
        </xs:element>
      </xs:choice>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
The business requirement of the mapping is to filter out only files with a specific extension. The nested structure of all directories must be preserved. For example, if extension is ".xml", the expected output (for the source XML file listed previously) should look as follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<directory name="Examples">
  <directory name="ExampleSite">
    <file name="block_file.xml" size="992"/>
    <directory name="output">
      <directory name="images"/>
    </directory>
  </directory>
</directory>
```

Expected XML output

Secondly, callers of the mapping must be able to supply the file extension as a parameter. By default, if a caller does not supply a parameter value, the mapping will filter out files with .xml extension.

To address the requirements above, the mapping contains a simple input parameter, "SearchFor", which supplies the default file extension by means of a text constant. This parameter is optional (the Input is required check box is not selected in the Properties dialog box):

For more information about input parameters, see [Supplying Parameters to the Mapping](#).
Next, the mapping includes a user-defined function, "FilterDirectory". This function is recursive, that is, it includes a call to itself. Because it is connected to the recursive element directory, this function will be called as many times as there are nested directory elements in the source XML instance. To support recursive calls, this function was created as regular, not inline (the Inlined use option is not selected in the function's properties). To view the function's properties, right-click an empty area in the mapping and select Function Settings from the context menu, see also Editing User-Defined Functions.

As illustrated above, the function takes two parameters as input:

1. A complex parameter, Directory, which defines the XML structure to be searched (this parameter is the "haystack").
2. A string parameter, SearchFor, which specifies the file extension to search for (this parameter is the "needle").

Double-click the title bar of any of the input or output parameters on the mapping to view their settings.

The function also includes a filter component to which the MapForce built-in function contains is connected. The contains function returns true only when the search value matches the "name" attribute (the file name) in the source structure. A true value instructs the filter to copy the current item to the output; otherwise, it is skipped. For more information about filters, see Filters and Conditions.

The source and target files of the mapping, as well as the function's directory parameter (both input and output), have all the same schema, Directory.xsd. Since MapForce detected all these types to be assignment compatible, the connection type between the input parameters and the function is "Copy-All", see Copy-All Connections.

Running the mapping

To preview the mapping execution in MapForce, click the Output tab. The mapping runs with the default input parameter (".xml") and consequently retrieves only results that match this search criterion. To supply a different search criterion, change the constant connected to the input parameter from ".xml" to ".sps", for example, and run the mapping again.
If you have licensed MapForce Server, you can also run the mapping at the command line on a Linux, macOS, or Windows machine. First, compile the mapping to a MapForce Server execution file (.mfx) with the menu command **File | Compile to MapForce Server Execution File**, see also **Compiling Mappings to MapForce Server Execution Files**. Next, copy the .mfx file to the server machine and run MapForce Server with the command below. The named parameter `-p=SearchFor` supplies the input value:

```
mapforceserver run RecursiveDirectoryFilter.mfx -p=SearchFor:".sps"
```

Notes:

- **mapforceserver** is the path to the MapForce Server executable as applicable for your operating system.
- Change the path to the .mfx file as applicable, or copy the .mfx to the same folder as the executable.
7.4 Importing Custom XSLT 1.0 or 2.0 Functions

You can extend the XSLT 1.0 and 2.0 function libraries available in MapForce with your own custom functions, provided that your custom functions return simple types.

Only custom functions that return simple data types (for example, strings) are supported.

To import functions from an XSLT file:

1. Click the Add/Remove Libraries button at the base of the Libraries window. The Manage Libraries window opens.

2. Do one of the following:
 - To import functions as a local library (in the scope of the current document only), click the Add button under the current mapping name.
 - To import functions as a global library (at program level), click the Add button adjacent to Global Library Imports.

Note: When you import a library locally, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for the .xsl file that contains the functions, and click Open. A message box appears informing you that a new library has been added.

Imported XSLT files appear as libraries in the Libraries window, and display all named templates as functions below the library name. If you do not see the imported library, ensure you selected XSLT as transformation language. See also Managing Function Libraries.

Note the following:

- To be eligible for import into MapForce, functions must be declared as named templates conforming to the XSLT specification in the XSLT file. You can also import functions that occur in an XSLT 2.0 document in the form `<xsl:function name="MyFunction">`. If the imported XSLT file imports or includes other XSLT files, then these XSLT files and functions will be imported as well.
- The mappable input connectors of imported custom functions depends on the number of parameters used in the template call; optional parameters are also supported.
Importing Custom XSLT 1.0 or 2.0 Functions

- Namespaces are supported.
- If you make updates to XSLT files that you have already imported into MapForce, changes are detected automatically and MapForce prompts you to reload the files.
- When writing named templates, make sure that the XPath statements used in the template are bound to the correct namespace(s). To see the namespace bindings of the mapping, preview the generated XSLT code.

Data types in XPath 2.0

If your XML document references an XML Schema and is valid according to it, you must explicitly construct or cast datatypes that are not implicitly converted to the required datatype by an operation.

In the XPath 2.0 Data Model used by the Altova XSLT 2.0 Engine, all atomized node values from the XML document are assigned the `xs:untypedAtomic` datatype. The `xs:untypedAtomic` type works well with implicit type conversions.

For example,

- the expression `xs:untypedAtomic("1") + 1` results in a value of 2 because the `xdt:untypedAtomic` value is implicitly promoted to `xs:double` by the addition operator.
- Arithmetic operators implicitly promote operands to `xs:double`.
- Value comparison operators promote operands to `xs:string` before comparing.

See also:
- Example: Adding Custom XSLT Functions
- Example: Summing Node Values
- XSLT 1.0 engine implementation
- XSLT 2.0 engine implementation

7.4.1 Example: Adding Custom XSLT Functions

This example illustrates how to import custom XSLT 1.0 functions into MapForce. The files needed for this example are available in the `<Documents>\Altova\MapForce2021\MapForceExamples` directory.

- **Name-splitter.xslt**: This XSLT file defines a named template called "tokenize" with a single parameter "string". The template works through an input string and separates capitalized characters with a space for each occurrence.
- **Name-splitter.xml**: (the source XML instance file to be processed)
- **Customers.xsd**: (the source XML schema)
- **CompletePO.xsd**: (the target XML schema)

To add a custom XSLT function:

1. Click the **Add/Remove Libraries** button at the base of the Libraries window. The Manage Libraries window opens.
2. Do one of the following:

- To import functions as a local library (in the scope of the current document only), click the Add button under the current mapping name.
- To import functions as a global library (at program level), click the Add button adjacent to Global Library Imports.

Note: When you import a library locally, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for the .xsl or .xslt file that contains the named template you want to act as a function, in this case Name-splitter.xslt, and click Open. A message box appears informing you that a new library has been added, and the XSLT file name appears in the Libraries window, along with the functions defined as named templates (in this example, Name-splitter with the tokenize function).

To use the XSLT function in your mapping:

1. Drag the tokenize function into the Mapping window and map the items as show below.
2. Click the **XSLT** tab to see the generated XSLT code.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<CompletePO>
    <customer>
        <number>
            <xsl:with-param name="string" select="firstName" os="item()"/>
        </number>
        <firstName>
            <xsl:call-template name="tokenize"/>
        </firstName>
        <lastName>
            <xsl:sequence select="fn:string(lastName)"/>
        </lastName>
    </customer>
</CompletePO>
</xsl:stylesheet>
```

Note: As soon as a named template is used in a mapping, the XSLT file containing the named template is **included** in the generated XSLT code (**xsl:include** href...), and is **called** using the command **xsl:call-template**.

3. Click the **Output** tab to see the result of the mapping.

To remove custom XSLT libraries from MapForce:

2. Click **Delete Library** next to the library that is to be deleted.
7.4.2 Example: Summing Node Values

This example shows you how to process multiple nodes of an XML document and have the result mapped as a single value to a target XML document. Specifically, the goal of the mapping is to calculate the price of all products in a source XML file and write it as a single value to an output XML file. The files used in this example are available in the <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\ folder:

- Summing-nodes.mfd — the mapping file
- input.xml — the source XML file
- input.xsd — the source XML schema
- output.xsd — the target XML schema
- Summing-nodes.xslt — A custom XSLT stylesheet containing a named template to sum the individual nodes.

There are two different ways to achieve the goal of the mapping:

- By using the sum function. This MapForce built-in function is available in the Libraries window.
- By importing a custom XSLT stylesheet into MapForce.

Solution 1: Using the "sum" aggregate function

To use the sum function in the mapping, drag it from the Libraries window into the mapping. Note that the functions available in the Libraries window depend on the XSLT language version you selected (XSLT 1 or XSLT 2). Next, create the mapping connections as shown below.

For more information about aggregate functions of the core library, see also core | aggregate functions.

Solution 2: Using a custom XSLT Stylesheet

As mentioned above, the aim of the example is to sum the Price fields of products in the source XML file, in this case products A and B.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<Input xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xsi:noNamespaceSchemaLocation="input.xsd">
  <Products>
    <Product>
      <Name>ProductA</Name>
      <Amount>10</Amount>
    </Product>
  </Products>
</Input>
```
The code listing below shows a custom XSLT stylesheet which uses the named template "Total" and a single parameter string. The template works through the XML input file and sums all the values obtained by the XPath expression /Product/Price.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
  <xsl:template match="*">
    <xsl:for-each select=".">
      <xsl:call-template name="Total">
        <xsl:with-param name="string" select="."/>
      </xsl:call-template>
    </xsl:for-each>
  </xsl:template>
  <xsl:template name="Total">
    <xsl:param name="string"/>
    <xsl:value-of select="sum($string/Product/Price)"/>
  </xsl:template>
</xsl:stylesheet>
```

Note: To sum the nodes in XSLT 2.0, change the stylesheet declaration to `version="2.0"`.

Before importing the XSLT stylesheet into MapForce, select XSLT 1.0 as transformation language. You are now ready to import the custom function, as follows:

1. Click the Add/Remove Libraries button at the base of the Libraries window. The Manage Libraries window opens.
2. Do one of the following:
 - To import functions as a local library (in the scope of the current document only), click the Add button under the current mapping name.
 - To import functions as a global library (at program level), click the Add button adjacent to Global Library Imports.

Note: When you import a library locally, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Summing-nodes.xslt`, and click Open. A message box appears informing you that a new library has been added, and the new library appears in the Libraries window.

4. Drag the `Total` function from the Libraries into the mapping, and create the mapping connections as shown below.

To preview the mapping result, click the Output tab. The sum of the two Price fields is now displayed in the Total field.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<Output xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation="output.xsd">
    <Total>25</Total>
    <Product>
```
<Product>
 <Name>ProductA</Name>
 <Amount>10</Amount>
 <Price>5</Price>
</Product>

<Product>
 <Name>ProductB</Name>
 <Amount>5</Amount>
 <Price>20</Price>
</Product>

</Output>
7.5 Importing Custom XQuery 1.0 Functions

When XQuery is selected as mapping transformation language, MapForce displays the built-in function libraries available for XQuery in the Libraries window. If necessary, you can extend this list with custom XQuery functions, by importing custom XQuery 1.0 library modules into MapForce.

To be eligible for import into MapForce, an XQuery file must satisfy the following requirements:

- It must be a valid library module according to XQuery specification. In other words, it must start with a module declaration such as `<module namespace <prefix>="<namespace name"`
- All functions declared in the imported library module must return atomic data types (for example, `xs:string`, `xs:boolean`, `xs:integer`, etc). Function parameters must also have atomic types.

To import an XQuery library module:

1. Click the Add/Remove Libraries button at the base of the Libraries window. The Manage Libraries window opens.

2. Do one of the following:

 - To import functions as a local library (in the scope of the current document only), click the Add button under the current mapping name.
 - To import functions as a global library (at program level), click the Add button adjacent to Global Library Imports.

 Note: When you import a library locally, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for the .xq or .xquery library file, and click Open.

The imported library modules appear in the Libraries window, and then you can drag specific functions into the mapping area and use them like any other MapForce function component, see also Add a Function to the Mapping.

If you do not see the imported XQuery library module, make sure that XQuery is selected as transformation language.
7.5.1 Example: Import Custom XQuery Function

This example shows you how to import a demo XQuery library module into MapForce and call its functions from a mapping. The demo module in this example consists of only one function which calculates tax on decimal amounts as 20% of the amount. In a production scenario, an XQuery module may contain multiple functions.

All functions declared in the XQuery module must return atomic types and their parameters must also be of atomic data types. Otherwise, the module is not eligible for import into MapForce.

You can find the demo XQuery module file at the following path relative to your personal “Documents” folder on the computer where MapForce is installed:
<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\module.xq.

```xquery version "1.0";
module namespace demo="http://www.altova.com/mapforce/demo";
declare function demo:calculatetax($val as xs:decimal) as xs:decimal {
    $val*0.2
};
```
module.xq

After you import the XQuery module file into MapForce, you will be able to call the `demo:calculatetax` function from a mapping. Note that calculating the tax amount with the help of an XQuery function is just for demo purposes—you can achieve the same result by using MapForce built-in functions.

A demo mapping which calls the `demo:calculatetax` function above is available at the following path: <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\CalculateTax_XQuery.mfd. When you open this mapping initially, MapForce displays a warning that it contains one or more components that are not available in XQuery. This warning is normal and it occurs because the mapping references a function from a custom XQuery library module that was not imported yet. To remove the warning and run the mapping, we will import the missing XQuery module into MapForce as shown below.

To import the XQuery module into MapForce:

1. Click the Add/Remove Libraries button at the base of the Libraries window. The Manage Libraries window opens.
2. Do one of the following:

- To import functions as a *local* library (in the scope of the current document only), click the **Add** button under the current mapping name.
- To import functions as a *global* library (at program level), click the **Add** button adjacent to **Global Library Imports**.

Note: When you import a library *locally*, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\module.xq` and click **Open**. A message box appears informing you that a new library has been added.

![Manage Libraries](image)

MapForce

A new library has been added. See Messages window for details.

If you don't see newly added functions in the Libraries window, please make sure that the correct language is selected in the Output menu.

- Don't show this message again.

[OK]

The imported library and the `demo:calculatetax` function are now visible in the Libraries window.
Also, the mapping can now be validated and run without warnings. The `demo:calculatetax` function illustrated in the image below originates from the imported XQuery module, and it can be added to the mapping just like any other built-in function, see Add a Function to the Mapping.

The mapping explained

The `CalculateTax_XQuery.mfd` mapping illustrated above takes as input an XML file that stores articles. Each article has a single price expressed as a decimal value, for example:

```xml
<Articles>
  <Article>
    <Number>1</Number>
    <Name>T-Shirt</Name>
    <SinglePrice>25</SinglePrice>
  </Article>
  <Article>
    <Number>2</Number>
    <Name>Socks</Name>
    <SinglePrice>2.30</SinglePrice>
  </Article>
</Articles>
```
The mapping produces an XML file which abides by the same schema as the source XML file. Therefore, both the source and target components have the same structure on the mapping. As the mapping connections suggest, nearly all elements are mapped in a straightforward way from target to source—for example, for each Article in the source there will be an Article in the target. The values of all items are copied verbatim from the source XML, except for SinglePrice. The value of SinglePrice is calculated with the help of two functions:

- The demo:calculatetax XQuery function calculates the tax amount by taking the original SinglePrice as input.
- The MapForce built-in add function add the tax amount to the original SinglePrice amount and returns the final amount.

Importantly, the data type of the SinglePrice item is xs:decimal—which corresponds to the input parameter type and the return type of the XQuery function.

The output produced by the mapping when you click the Output tab is illustrated below. Notice the increase of 20% applied to each price compared to the source XML.
<xml version="1.0" encoding="UTF-8">
<Articles xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Article>
 <Number>1</Number>
 <Name>T-Shirt</Name>
 <SinglePrice>30</SinglePrice>
 </Article>
 <Article>
 <Number>2</Number>
 <Name>Socks</Name>
 <SinglePrice>2.76</SinglePrice>
 </Article>
 <Article>
 <Number>3</Number>
 <Name>Pants</Name>
 <SinglePrice>40.8</SinglePrice>
 </Article>
 <Article>
 <Number>4</Number>
 <Name>Jacket</Name>
 <SinglePrice>69</SinglePrice>
 </Article>
</Articles>
7.6 Importing Custom Java and .NET Libraries

Compiled Java class files as well as .NET DLL assemblies (including .NET 4.0 assemblies) can be imported into MapForce. If the imported libraries contain functions that use basic data types as parameters and return simple types, such functions appear in the Libraries window, and can be used in mappings as any other function available in MapForce. The mapping output of imported Java and .NET functions can be previewed in the Output pane and the functions are available in generated code.

Notes:

- To import custom Java or .NET functions, you need compiled Java classes (.class) or the .NET.dll assembly files. Importing Java .jar files or .dll files that are not a .NET assembly is not supported.
- Compiled Java class (.class) files are supported when the mapping language is set to Java. Java Runtime Environment 7 or later must be installed on your computer. Only specific types and members are supported (see Java function support).
- .NET assembly files are supported when the mapping language is set to C#. The .NET assemblies may be written in .NET languages other than C# (for example, C++ .NET or VB.NET), provided they use only the basic data types from the System Assembly as parameters and return types (see also .NET Function Support).
- Setting the mapping language to C++ is not supported if the mapping uses imported Java .class or .NET DLL assemblies.
- Importing functions from native C++ DLLs is limited and requires a special approach. For more information, see Referencing Java, C# and C++ Libraries Manually.
- Setting the mapping language to XSLT is not supported if the mapping uses imported Java .class or .NET DLL assemblies (a custom XSLT function that acts as an adapter would have to be written).
- All functions called from a MapForce mapping should be “idempotent” (this means that they should return the same value each time the function is called with the same input parameters). The exact order and the number of times a function is called by MapForce is undefined.
- In case of Java, the imported class files and their packages do not need to be added to the CLASSPATH variable, since the Built-in execution engine, as well as generated Java code, will automatically add imported packages to the Java engine’s classpath or to Ant, respectively. However, any dependencies of the imported class files and packages will not be handled automatically. Therefore, if imported Java class files or packages depend on other class files, be sure to add the parent directories of all dependent packages to the CLASSPATH environment variable.

Java function support

Top-level classes, static member classes and non-static member classes are supported:

- new <classname>({arg1>, <arg2>, ...})
- <object>.new <member-class>({arg1>, <arg2>, ...})

Member functions and static functions are supported:

- function>({arg1>, <arg2>, ...})
- <object>.<method>({arg1>, ...})

Supported connections between XML Schema and Java types:
Connections in both directions are possible. Other Java types (including array types) are not supported. Methods using such parameters or return values, will be ignored.

Object types are supported by calling their constructor, or as a return value of a method. They can be mapped to other Java methods. Manipulating the object using MapForce means is not possible.

.NET function support

Top-level classes and member classes are supported:

- new <classname>(<arg1>, <arg2>, ...)

Member functions and static functions are supported:

- <function>(<arg1>, <arg2>, ...)
- <object>.<method>(<arg1>, ...)

Supported connections between XML Schema and .NET/C# types:

<table>
<thead>
<tr>
<th>Schema type</th>
<th>.NET type</th>
<th>C# type</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:string</td>
<td>System.String</td>
<td>string</td>
</tr>
<tr>
<td>xs:byte</td>
<td>System.SByte</td>
<td>sbyte</td>
</tr>
<tr>
<td>xs:short</td>
<td>System.Int16</td>
<td>short</td>
</tr>
<tr>
<td>xs:int</td>
<td>System.Int32</td>
<td>int</td>
</tr>
<tr>
<td>xs:long</td>
<td>System.Int64</td>
<td>long</td>
</tr>
<tr>
<td>xs:unsignedByte</td>
<td>System.Byte</td>
<td>byte</td>
</tr>
</tbody>
</table>
Connections in both directions are possible. Other .NET/C# types (including array types) are not supported. Methods using such parameters or return values will be ignored.

Object types are supported by calling their constructor, or as a return value of a method. They can be mapped to other .NET methods. Manipulating the object using MapForce means is not possible.

Data type issues and workarounds

When a function in your custom library expects integer types, connecting constants of type "Number" to the function's arguments may cause a type mismatch error similar to this one:

This issue is specific to constants of type "Number" only. An example mapping that could generate this error is shown below. In this mapping, two constants of type "Number" are connected to the function's arguments (of type "Integer").

There are several workarounds, as follows:

1. Change the constant type from "Number" to "All other". (You can do this after double-clicking the title bar of the constant component.)
2. Instead of a constant, use a source component (for example, an XML file) that provides values of the data type expected by the function.

3. In your external code, create a wrapper function that accepts a decimal value and returns an integer value. The wrapper solution may be imported as a separate library; therefore, you don’t need to change the original source code of the target function to use this approach.

7.6.1 Example: Import Custom Java Class

This example illustrates how to import a custom Java .class file into MapForce.

Note: Java SE 7 Runtime Environment or later is required to complete this example.

To add the Java .class file as MapForce library:

1. Click the Add/Remove Libraries button at the base of the Libraries window. The Manage Libraries window opens.
2. Do one of the following:

- To import functions as a *local* library (in the scope of the current document only), click the **Add** button under the current mapping name.
- To import functions as a *global* library (at program level), click the **Add** button adjacent to **Global Library Imports**.

Note: When you import a library *locally*, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for the following file:
 `<Documents>\Altova\MapForce2021\MapForceExamples\Java\Format\Format.class`. A message appears informing you that a new library has been added. The imported library is now visible in the Libraries window.

If you do not see the newly imported library in the Libraries window, make sure that the transformation language is set to Java. To add the function to the mapping, drag it from the Libraries window onto the mapping area, see also **Add a Function to the Mapping**.
To preview the mapping output in MapForce:

1. Open the following mapping:
 \<Documents>\Altova\MapForce2021\MapForceExamples\Java\FormatNumber.mfd. This is a complete mapping that already imports the Java .class library mentioned above.
2. Click the **Output** button to see the result of the mapping.

<table>
<thead>
<tr>
<th></th>
<th>Start date, End date, Region, Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2008-01-01,2008-01-31,CA,"110.400,00"</td>
</tr>
<tr>
<td>2</td>
<td>2008-01-01,2008-01-31,MA,"75.300,00"</td>
</tr>
<tr>
<td>3</td>
<td>2008-02-01,2008-02-29,CA,"114.300,00"</td>
</tr>
<tr>
<td>4</td>
<td>2008-02-01,2008-02-29,MA,"65.200,00"</td>
</tr>
<tr>
<td>5</td>
<td>2008-03-01,2008-03-31,CA,"134.200,00"</td>
</tr>
<tr>
<td>6</td>
<td>2008-03-01,2008-03-31,MA,"96.100,00"</td>
</tr>
<tr>
<td>7</td>
<td>2008-04-01,2008-04-30,CA,"107.300,00"</td>
</tr>
<tr>
<td>8</td>
<td>2008-04-01,2008-04-30,MA,"112.100,00"</td>
</tr>
<tr>
<td>9</td>
<td>2008-05-01,2008-05-31,CA,"114.400,00"</td>
</tr>
<tr>
<td>10</td>
<td>2008-05-01,2008-05-31,MA,"93.800,00"</td>
</tr>
</tbody>
</table>

To run the mapping in Java:

1. On the **File** menu, click **Generate Code In | Java**.
2. Select a target directory where the code should be generated, and click OK.
3. Import the generated libraries into your Java project and build the Java application (see also **Example: Generate and Run Java Code**).

7.6.2 Example: Import Custom .NET DLL Assembly

This example illustrates how to import into MapForce a custom .NET DLL assembly created in C#. The source code of this sample is available at the following path:
\<Documents>\Altova\MapForce2021\MapForceExamples\C#\Format. The .dll assembly file that will be imported into MapForce is in the ..\bin\Debug directory. You can also open the solution .sln file in Visual Studio and compile a new .dll file using the latest .NET Framework version.

Note: To run this example, .NET Framework 2.0 or later must be installed on your computer. If it's not already enabled, you can enable it from Control Panel > Programs and Features > Turn Windows features on and off > .NET Framework <version>.

To import the .NET assembly file:

1. Click the **Add/Remove Libraries** button at the base of the Libraries window. The Manage Libraries window opens.
2. Do one of the following:

- To import functions as a local library (in the scope of the current document only), click the Add button under the current mapping name.
- To import functions as a global library (at program level), click the Add button adjacent to Global Library Imports.

Note: When you import a library locally, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for the Format.dll file from the ...\MapForceExamples\C#\Format\bin\Debug\ directory. A message appears informing you that a new library has been added. The imported library is now visible in the Libraries window.

If you do not see the newly imported library in the Libraries window, make sure that the transformation language is set to C#. To add the function to the mapping, drag it from the Libraries window onto the mapping area, see also Add a Function to the Mapping.
To preview the mapping output:

1. Open the **FormatNumber.mfd** file available in the ...\MapForceExamples\C# folder. This is an example mapping that already imports the .dll library mentioned above.
2. Click the Output button to see the result of the mapping.

<table>
<thead>
<tr>
<th></th>
<th>Start date, End date, Region, Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2008-01-01, 2008-01-31, CA, "110.400.00"</td>
</tr>
<tr>
<td>2</td>
<td>2008-01-01, 2008-01-31, MA, "75.300.00"</td>
</tr>
<tr>
<td>3</td>
<td>2008-02-01, 2008-02-29, CA, "114.300.00"</td>
</tr>
<tr>
<td>4</td>
<td>2008-02-01, 2008-02-29, MA, "65.200.00"</td>
</tr>
<tr>
<td>5</td>
<td>2008-03-01, 2008-03-31, CA, "134.200.00"</td>
</tr>
<tr>
<td>6</td>
<td>2008-03-01, 2008-03-31, MA, "86.100.00"</td>
</tr>
<tr>
<td>7</td>
<td>2008-04-01, 2008-04-30, CA, "107.300.00"</td>
</tr>
<tr>
<td>8</td>
<td>2008-04-01, 2008-04-30, MA, "112.100.00"</td>
</tr>
<tr>
<td>9</td>
<td>2008-05-01, 2008-05-31, CA, "114.400.00"</td>
</tr>
<tr>
<td>10</td>
<td>2008-05-01, 2008-05-31, MA, "93.800.00"</td>
</tr>
</tbody>
</table>

To run the mapping from a custom C# application:

1. On the **File** menu, click **Generate Code In | C#**.
2. Select a target directory where the code should be generated, and click OK.
3. Build the application with Visual Studio, and run the generated console application (see also [Generating C# code](#)).
7.7 Referencing Java, C# and C++ Libraries Manually

As an alternative approach to importing custom libraries into MapForce directly, you can create references to them using a custom .mff file (MapForce Function File) recognized by MapForce. The .mff library file is essentially an XML file where you manually define the linking between class definitions in your custom code and MapForce. Once you create the custom .mff file, you can import it into MapForce, similar to how you would import a .NET DLL or Java class file.

Notes:

- In order for a function to qualify for import into MapForce, its return type and parameters must be of a simple type. For a list of data types available for each language, see Data Type Mapping.
- When you import function libraries from custom .mff files, the preview of the mapping directly in MapForce (by clicking the Output button) is limited. For libraries written in C++, preview of the mapping in MapForce is not supported. In case of Java and C#, preview is available when your library uses native language types, but it is not available if your library imports the Altova generated classes. Note, however, that you can generate code in the specific language targeted by your library. The custom functions will be available in the generated code, enabling you to run the mapping from the generated code.
- The exact order in which functions are called by the generated mapping code is undefined. MapForce may need to cache calculated results for reuse, or evaluate expressions in any order. It is therefore strongly recommended to use only custom functions that have no side effects.
- It is important to distinguish between user-defined functions and custom function libraries. User-defined functions are created graphically in a mapping, and they cannot and need not be saved to an *.mff file, because they are saved together with the mapping .mfd file where they have been created. For more information, see Calling and Importing User-Defined Functions.
- If you are upgrading from a MapForce version earlier than 2010, you may need to update the data types used in your custom functions, see Data Type Mapping.

For instructions on how to create and configure a custom .mff file, see Configuring the .mff File. For examples, see:

- Example: Adapting C# to .mff
- Example: Adapting C++ to .mff
- Example: Adapting Java to .mff

7.7.1 Configuring the .mff File

The MapForce Function File (.mff) is a configuration file in XML format that makes it possible to adapt functions from custom Java, C#, or C++ libraries into MapForce, so that they appear in the Libraries window. An .mff file essentially mediates between your custom libraries and MapForce, and it must be configured to specify a) the interfaces to the custom functions and b) where the implementation can be found in generated code. This topic provides instructions on how to do this.

Note the following:

- The *.mff library files must be valid against the following schema: ..\Program Files\MapForceLibraries\mff.xsd. The mff.xsd schema defines the custom library configuration and is for internal use only. Altova GmbH retains the right to change this file format with new releases.
- It is possible to define only one C#, C++, or Java class per .mff file.
The following code listing illustrates a sample .mff file for C++:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation="mff.xsd">
    <implementations>
        <implementation language="cpp">
            <setting name="namespace" value="mylib"/>
            <setting name="class" value="Greetings"/>
            <setting name="path" value="C:\Libraries\cpp"/>
            <setting name="include" value="Greetings.h"/>
            <setting name="source" value="Greetings.cpp"/>
        </implementation>
    </implementations>
    <group name="greetings">
        <component name="sayhello">
            <sources>
                <datapoint name="ismorning" type="xs:boolean"/>
            </sources>
            <targets>
                <datapoint name="result" type="xs:string"/>
            </targets>
            <implementations>
                <implementation language="cpp">
                    <function name="SayHello"/>
                </implementation>
            </implementations>
            <description>
                <short>result = sayhello(ismorning)</short>
                <long>Returns "Good morning" or "Good day", depending on the input parameter.</long>
            </description>
        </component>
    </group>
</mapping>
```

The image below shows a custom .mff file may look after import into MapForce. Notice that the custom library "mylib" appears as a library entry (sorted alphabetically), containing the "sayhello" string function.
The steps needed to adapt the mff file to suit your needs are described below.

Configuring the library name
The library name is found in the .mff file line shown below. By convention, library names are written in lowercase in MapForce; however, you can also use uppercase letters.

```xml
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">
```

In the sample above, the entry that will appear in the Libraries window will be called `mylib`.

Configuring the language implementations
The `<implementations>` element is a mandatory element which specifies which languages your library should support, and it must be added as child of `<mapping>`, for example:

```xml
<implementations>
  <implementation language="cpp">
    <setting name="namespace" value="mylib"/>
    <setting name="class" value="Greetings"/>
    <setting name="path" value="C:\Libraries\cpp"/>
    <setting name="include" value="Greetings.h"/>
    <setting name="source" value="Greetings.cpp"/>
  </implementation>
</implementations>
```

```xml
<!-- ... -->
```
The settings within each `<implementation>` allow the generated code to call the specific functions defined in Java, C++ or C#.

An .mff file can be written so that it targets more than one programming language. In this case, every additional language must contain an additional `<implementation>` element. The specific settings for each programming language are discussed below.

Java library reference

```xml
<implementation language="java">
    <setting name="package" value="com.hello.functions"/>
    <setting name="class" value="Greetings"/>
</implementation>
```

It is important for the generated code to be able to find your `Greetings.class` file. Therefore, make sure that a reference to your class has been added to the Java class path.

C# library reference

```xml
<implementation language="cs">
    <setting name="namespace" value="MyLibrary"/>
    <setting name="class" value="Greetings"/>
    <setting name="reference" value="C:\Libraries\cs\MyLibrary\bin\debug\MyLibrary.dll"/>
</implementation>
```

For C#, it is important that the namespace in the code corresponds to the namespace defined in the .mff file (in the code listing above, the namespace is `MyLibrary`). The same is true for the class name (in the code listing above, the class name is `Greetings`). The third setting, `reference`, provides the path of the dll that is to be linked to the generated code.

C++ library reference

```xml
<implementation language="cpp">
    <setting name="namespace" value="MyLibrary"/>
    <setting name="class" value="Greetings"/>
    <setting name="path" value="C:\Libraries\cpp"/>
    <setting name="include" value="Greetings.h"/>
    <setting name="source" value="Greetings.cpp"/>
</implementation>
```

For C++, note the following:

- **namespace** is the namespace in which your `Greetings` class will be defined. It must be equal to the `library` attribute in `mapping` element.
- **path** is the path in which the include and the source files are to be found.
• When code for a mapping is generated, the include and source files will be copied to the directory `targetdir/libraryname` (defined when selecting the menu command **File | Generate code in | C++**) and included in the project file.

All the include files you supply will be included in the generated algorithm.

Adding a component

In the Libraries window of the MapForce graphics user interface, each function appears nested under a function group, for example "string functions". In the .mff file, a function corresponds to a `<component>` element. Conversely, each `<component>` must be nested under a `<group>` element, for example:

```xml
<group name="string functions">
    <component name="sayhello">
        <!-- ... -->
        <description>
            <short>result = sayhello(ismorning)</short>
            <long>Returns "Good morning" or "Good day", depending on the input parameter.</long>
        </description>
    </component>
</group>
```

The code shown below defines a sample function (component) called `sayhello`.

```xml
<component name="sayhello">
    <sources>
        <datapoint name="ismorning" type="xs:boolean"/>
    </sources>
    <targets>
        <datapoint name="result" type="xs:string"/>
    </targets>
    <implementations>
        <!-- ... -->
    </implementations>
    <description>
        <short>result = sayhello(ismorning)</short>
        <long>Returns "Good morning" or "Good day", depending on the input parameter.</long>
    </description>
</component>
```

Here is how the component above would look in MapForce:

![MapForce component](image)

In the code listing above, a `<datapoint>` can be loosely defined as the input or output parameter of a function (also known as input or output connector). The **type** argument of the `<datapoint>` specifies the data type of the parameter (or the data type of the return value).
Only one target datapoint is allowed for each function. There is no limitation as to how many source datapoints you can define.

The data type of each datapoint must be one of the XML Schema types (for example, \texttt{xs:string}, \texttt{xs:integer}, etc.) These data types have to correspond to the data types of the function's parameters you defined in your Java, C++ or C# library. For the mapping of XML Schema datatypes to language types, see Data Type Mapping.

Functions are accompanied by short and long descriptions in the Libraries window. The short description is always shown to the right of the function name, while the long description is displayed as a tooltip when you place the mouse cursor over the short description.

Defining language implementations

We can now make a connection between the function in the Libraries window and the function in the custom Java, C# or C++ classes. This is achieved through the \texttt{<implementation>} element.

As previously stated, one function may have multiple implementation elements—one for each supported programming language. A function may be called "Hello" in Java, or "SayHello" in C++. This is why you need to specify a separate function name for each programming language. A function for each of the three programming languages might look as follows:

```xml
<!-- ... -->
<component name="sayhello"/>
<!-- ... -->
<implementations>
  <implementation language="cs">
    <function name="HelloFunction"/>
  </implementation>
  <implementation language="java">
    <function name="Hello"/>
  </implementation>
  <implementation language="cpp">
    <function name="SayHello"/>
  </implementation>
</implementations>
```
The value you supply as function name must exactly match the name of the method in the Java, C# or C++ class.

7.7.2 Importing .mff Libraries

After you have created a custom .mff file, you can import it into MapForce as follows:

1. Click the Add/Remove Libraries button at the base of the Libraries window. The Manage Libraries window opens.

![Manage Libraries](image)

2. Do one of the following:
 - To import functions as a local library (in the scope of the current document only), click the Add button under the current mapping name.
 - To import functions as a global library (at program level), click the Add button adjacent to Global Library Imports.

Note: When you import a library locally, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.

3. Browse for the custom .mff file, and click Open.

The imported library becomes visible in the Libraries window after you set the mapping language to a language targeted by the custom library.

If you save the *.mff file in the ...\Altova\MapForce2021\MapForceLibraries folder relative to the Program Files (or Program Files (x86) folder), then the library is automatically loaded into Libraries window when you start MapForce. Libraries and their functions can be toggled on or off, by deleting or adding the respective library file (*.mff).
7.7.3 Data Type Mapping

The following table lists the data types supported as function return types and parameter types when you create custom .mff files that adapt your Java, C#, and C++ libraries to MapForce. The table lists both native and non-native data types. Note that, if you need support for non-native data types such as Altova date, time and duration types, your custom Java and C# libraries must include a reference to Altova libraries. In case of C++, Altova libraries must always be imported. For information about how to generate the Altova libraries, see [Code Generator](#).

<table>
<thead>
<tr>
<th>XML Schema Type</th>
<th>Java Type</th>
<th>C# Type</th>
<th>C++ Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>anyAtomicType</td>
<td>String</td>
<td>string</td>
<td>string_type</td>
</tr>
<tr>
<td>anySimpleType</td>
<td>String</td>
<td>string</td>
<td>string_type</td>
</tr>
<tr>
<td>anyURI</td>
<td>String</td>
<td>string</td>
<td>string_type</td>
</tr>
<tr>
<td>base64Binary</td>
<td>byte[]</td>
<td>byte[]</td>
<td>altova::mapforce::blob</td>
</tr>
<tr>
<td>boolean</td>
<td>boolean</td>
<td>bool</td>
<td>bool</td>
</tr>
<tr>
<td>byte</td>
<td>int</td>
<td>int</td>
<td>int</td>
</tr>
<tr>
<td>date</td>
<td>com.altova.types.Date</td>
<td>Altova.Types.DateTime</td>
<td>altova::DateTime</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dateTime</td>
<td>com.altova.types.Date</td>
<td>Altova.Types.DateTime</td>
<td>altova::DateTime</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dayTimeDuration</td>
<td>com.altova.types.Dura</td>
<td>Altova.Types.Duration</td>
<td>altova::Duration</td>
</tr>
<tr>
<td></td>
<td>tion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decimal</td>
<td>java.math.BigDecimal</td>
<td>decimal</td>
<td>double</td>
</tr>
<tr>
<td>double</td>
<td>double</td>
<td>double</td>
<td>double</td>
</tr>
<tr>
<td>duration</td>
<td>com.altova.types.Dura</td>
<td>Altova.Types.Duration</td>
<td>altova::Duration</td>
</tr>
<tr>
<td></td>
<td>tion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTITIES</td>
<td>String</td>
<td>string</td>
<td>string_type</td>
</tr>
<tr>
<td>ENTITY</td>
<td>String</td>
<td>string</td>
<td>string_type</td>
</tr>
<tr>
<td>float</td>
<td>double</td>
<td>double</td>
<td>double</td>
</tr>
<tr>
<td>gDay</td>
<td>com.altova.types.Date</td>
<td>Altova.Types.DateTime</td>
<td>altova::DateTime</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gMonth</td>
<td>com.altova.types.Date</td>
<td>Altova.Types.DateTime</td>
<td>altova::DateTime</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gMonthDay</td>
<td>com.altova.types.Date</td>
<td>Altova.Types.DateTime</td>
<td>altova::DateTime</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XML Schema Type</td>
<td>Java Type</td>
<td>C# Type</td>
<td>C++ Type</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>gYear</td>
<td><code>com.altova.types.DateTime</code></td>
<td><code>Altova.Types.DateTime</code></td>
<td><code>altova::DateTime</code></td>
</tr>
<tr>
<td>gYearMonth</td>
<td><code>com.altova.types.DateTime</code></td>
<td><code>Altova.Types.DateTime</code></td>
<td><code>altova::DateTime</code></td>
</tr>
<tr>
<td>hexBinary</td>
<td>byte[]</td>
<td>byte[]</td>
<td><code>altova::mapforce::blob</code></td>
</tr>
<tr>
<td>ID</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>IDREF</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>IDREFS</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>int</td>
<td>int</td>
<td>int</td>
<td>int</td>
</tr>
<tr>
<td>integer</td>
<td><code>java.math.BigInteger</code></td>
<td>decimal</td>
<td><code>__int64</code></td>
</tr>
<tr>
<td>language</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>long</td>
<td>long</td>
<td>long</td>
<td><code>__int64</code></td>
</tr>
<tr>
<td>Name</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>NCName</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>negativeInteger</td>
<td><code>java.math.BigInteger</code></td>
<td>decimal</td>
<td><code>__int64</code></td>
</tr>
<tr>
<td>NMTOKEN</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>NMTOKENS</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>nonNegativeInteger</td>
<td><code>java.math.BigInteger</code></td>
<td>decimal</td>
<td><code>unsigned __int64</code></td>
</tr>
<tr>
<td>nonPositiveInteger</td>
<td><code>java.math.BigInteger</code></td>
<td>decimal</td>
<td><code>__int64</code></td>
</tr>
<tr>
<td>normalizedString</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>NOTATION</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>positiveInteger</td>
<td><code>java.math.BigInteger</code></td>
<td>decimal</td>
<td><code>unsigned __int64</code></td>
</tr>
<tr>
<td>QName</td>
<td><code>javax.xml.namespace.QName</code></td>
<td><code>Altova.Types.QName</code></td>
<td><code>altova::QName</code></td>
</tr>
<tr>
<td>short</td>
<td>int</td>
<td>int</td>
<td>int</td>
</tr>
<tr>
<td>string</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>time</td>
<td><code>com.altova.types.DateTime</code></td>
<td><code>Altova.Types.DateTime</code></td>
<td><code>altova::DateTime</code></td>
</tr>
<tr>
<td>token</td>
<td>String</td>
<td>string</td>
<td><code>string_type</code></td>
</tr>
<tr>
<td>unsignedByte</td>
<td>long</td>
<td>ulong</td>
<td><code>unsigned __int64</code></td>
</tr>
</tbody>
</table>
Referencing Java, C# and C++ Libraries Manually

Functions

<table>
<thead>
<tr>
<th>XML Schema Type</th>
<th>Java Type</th>
<th>C# Type</th>
<th>C++ Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsignedInt</td>
<td>long</td>
<td>ulong</td>
<td>unsigned __int64</td>
</tr>
<tr>
<td>unsignedLong</td>
<td>java.math.BigInteger</td>
<td>ulong</td>
<td>unsigned __int64</td>
</tr>
<tr>
<td>unsignedShort</td>
<td>long</td>
<td>ulong</td>
<td>unsigned __int64</td>
</tr>
<tr>
<td>untypedAtomic</td>
<td>String</td>
<td>string</td>
<td>string_type</td>
</tr>
<tr>
<td>yearMonthDuration</td>
<td>com.altova.types.Duration</td>
<td>Altova.Types.Duration</td>
<td>altova::Duration</td>
</tr>
</tbody>
</table>

7.7.4 Example: Adapting C# to .mff

This example shows you how to create a sample C# library and adapt it to a MapForce Function File (.mff) that can be imported as a MapForce library.

Note: Adapting a C# library to .mff format is just one of the ways to import C# libraries in MapForce. A simpler alternative is to import .NET assemblies directly, see Example: Import Custom .NET DLL Assembly.

The configuration process consists of the following steps:

1. Create a new class library project in Visual Studio. Notice that the function has been defined as public static.

   ```csharp
   namespace MyLibrary
   {
   public class Greetings
   {
   public static string SayHello(bool isMorning)
   {
   if (isMorning)
   return "Good morning!";
   return "Good Day!";
   }
   }
   }
   ```

2. If you need special XML Schema types (such as date and duration), add a reference from your Visual Studio project to the Altova.dll library. To obtain this library, generate C# code from a mapping without custom functions. The Altova.dll file will be located in the ..\Altova\bin\debug directory relative to the directory where the code was generated. To add the reference to Altova.dll in Visual Studio, on the Project menu, click Add Reference and browse for the Altova.dll file. Also, add to your code the following line: `using Altova.Types;`. For information about how XML Schema types map to C# types, see Data Type Mapping.

3. Build your Visual Studio project. The MyLibrary.dll is generated in your project output directory.

4. Using an XML editor, create a new .mff file and validate it against the ..\Program Files\MapForceLibraries\mff.xsd schema. Make sure that all references under implementation language="cs" point to the correct C# members and paths created previously. Also, the line
You have now finished creating a custom library and the .mff file which adapts it to MapForce. The custom .mff file can now be imported in MapForce as a library, see Importing the .mff File Into MapForce.

7.7.5 Example: Adapting C++ to .mff

This example shows you how to create a sample C++ library and adapt it to a MapForce Function File (.mff) that can be imported as a MapForce library.

1. Create a header (.h) file for your class library. The following code listing illustrates a sample header file called Greetings.h.

```c++
#ifndef MYLIBRARY_GREETINGS_H_INCLUDED
#define MYLIBRARY_GREETINGS_H_INCLUDED

function name="SayHello" must refer to the function name exactly as it was defined in C#, see also Configuring the .mff File.

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">
  <implementations>
    <implementation language="cs">
      <setting name="namespace" value="MyLibrary"/>
      <setting name="class" value="Greetings"/>
      <setting name="reference" value="C:\Libraries\cs\MyLibrary\bin\debug\MyLibrary.dll"/>
    </implementation>
  </implementations>
  <group name="string functions">
    <component name="sayhello">
      <sources>
        <datapoint name="ismorning" type="xs:boolean"/>
      </sources>
      <targets>
        <datapoint name="result" type="xs:string"/>
      </targets>
      <implementations>
        <implementation language="cs">
          <function name="SayHello"/>
        </implementation>
      </implementations>
      <description>
        <short>result = sayhello(ismorning)</short>
        <long>Returns "Good morning" or "Good day", depending on the input parameter.</long>
      </description>
    </component>
  </group>
</mapping>
```
#if _MSC_VER > 1000
#pragma once
#if _MSC_VER > 1000
#endif

using namespace altova;

namespace mylib {

class ALTOVA_DECLSPECIFIER Greetings
{
 public:
 static string_type SayHello(bool isMorning);
 }
} // namespace mylib

Notice that the function has been declared as static, and that the namespace altova is imported. Remember to write ALTOVA_DECLSPECIFIER in front of the class name, this ensures that your classes will compile correctly—whether you use dynamic or static linkage in subsequently generated code.

2. Create a .cpp file with the same name as the header file. The .cpp file must be in the same directory as the .h file. The following code listing illustrates a sample .cpp file called Greetings.cpp that includes the Greetings.h file created previously:

#include "StdAfx.h"
#include "./Altova/Altova.h"
#include "./Altova/AltovaException.h"
#include "./Altova/SchemaTypes.h"

#include "Greetings.h"

namespace mylib {

 string_type Greetings::SayHello(bool isMorning)
 {
 if (isMorning)
 return _T("Good morning!");
 return _T("Good day!");
 }
}
3. Using an XML editor, create a new .mff file and validate it against the ..\Program Files\MapForceLibraries\mff.xsd schema. Make sure that the namespace and function names and data types defined here correspond to those in the C++ code, as described in Configuring the .mff File. For information about data type support, see Data Type Mapping.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="mylib" xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="mff.xsd">
  <implementations>
    <implementation language="cpp">
      <setting name="namespace" value="mylib"/>
      <setting name="class" value="Greetings"/>
      <setting name="path" value="C:\Libraries\cpp"/>
      <setting name="include" value="Greetings.h"/>
      <setting name="source" value="Greetings.cpp"/>
    </implementation>
  </implementations>
  <group name="greetings">
    <component name="sayhello">
      <sources>
        <datapoint name="ismorning" type="xs:boolean"/>
      </sources>
      <targets>
        <datapoint name="result" type="xs:string"/>
      </targets>
      <implementations>
        <implementation language="cpp">
          <function name="SayHello"/>
        </implementation>
      </implementations>
      <description>
        <short>result = sayhello(ismorning)</short>
        <long>Returns "Good morning" or "Good day", depending on the input parameter.</long>
      </description>
    </component>
  </group>
</mapping>
```

You have now finished creating a custom library and the .mff file which adapts it to MapForce. The custom .mff file can now be imported as a library into MapForce, see Importing .mff Libraries. Remember that, in order to execute mappings that use native C++ libraries, you will need to generate C++ code and run the mapping from your C++ code or application, as described in Generating C++ code.

Resolving C++ compile errors

If you get a compiler error at the following line:

```
#import "msado15.dll" rename("EOF", "EndOfFile")
```
modify the project properties to include a reference to the msado15.dll file (usually, C:\Program Files\Common Files\System\ADO).

7.7.6 Example: Adapting Java to .mff

This example shows you how to create a sample Java library and adapt it to a MapForce Function File (.mff) that can be imported as a MapForce library.

Note: Adapting a Java library to .mff format is just one of the ways to import Java libraries in MapForce. A simpler alternative is to import Java .class files directly, see Example: Import Custom Java Class.

The configuration process consists of the following steps:

1. Create a new Java project in your preferred development environment (for example, Eclipse).
2. Add to the project a new package called com.mylib which consists of a class called Greetings. In the code listing below, notice that the SayHello function has been defined as public static.

```java
package com.mylib;

public class Greetings {

    public static String SayHello ( boolean isMorning ) {
        if( isMorning )
            return "Good Morning!";
        return "Good Day!";
    }
}
```

3. Optionally, if your project needs support for special schema types such as date, time, and duration, import the com.altova.types package. To obtain this package, generate Java code from a mapping without custom functions.

```java
import com.altova.types.*;
```

4. Compile your custom library to a class file, and add it to the Java classpath.
5. Using an XML editor, create a new .mff file and validate it against the ..\Program Files\MapForceLibraries\mff.xsd schema. Make sure that all references under implementation language="java" point to the correct Java members created previously. Also, the line function name="SayHello" must refer to the function name exactly as it was defined in Java, see also Configuring the .mff File.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="custom" xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation="mff.xsd">
    <implementations>
        <implementation language="java">
            <setting name="package" value="com.mylib"/>
        </implementation>
    </implementations>
</mapping>
```
You have now finished creating a custom Java library and the .mff file which adapts it to MapForce. The custom .mff file can now be imported as a library into MapForce, see Importing .mff Libraries.

```xml
<setting name="class" value="Greetings"/>
</implementation>
</implementations>
<group name="greetings">
  <component name="sayhello">
    <sources>
      <datapoint name="ismorning" type="xs:boolean"/>
    </sources>
    <targets>
      <datapoint name="result" type="xs:string"/>
    </targets>
    <implementations>
      <implementation language="java">
        <function name="SayHello"/>
      </implementation>
    </implementations>
    <description>
      <short>result = sayhello(ismorning)</short>
      <long>Returns "Good morning" or "Good day", depending on the input parameter.</long>
    </description>
  </component>
</group>
</mapping>
```
Managing Function Libraries

In MapForce, you can import and use the following kinds of libraries in a mapping:

- Any mapping design files (*.mfd) that contain user-defined functions (UDFs). This specifically refers to mapping files that contain UDFs created with MapForce, using the MapForce built-in functions and components as building blocks. For further information, see Creating User-Defined Functions.
- Custom XSLT files that contain functions. This refers to XSLT functions written outside of MapForce that qualify for import into MapForce as described in Importing Custom XSLT 1.0 or 2.0 Functions.
- Custom XQuery 1.0 files that contain functions. This refers to XQuery functions written outside of MapForce that qualify for import into MapForce as described in Importing Custom XQuery 1.0 Functions.
- Java .class files and .NET .dll libraries which qualify for import into MapForce as described in Importing Custom Java and .NET Libraries.

Note: You can import custom external libraries of functions either directly (no configuration required) or by configuring a MFF (MapForce Function File) recognized by MapForce. If you use the latter approach, you can also import C++ libraries, in addition to Java classes and .NET assemblies. Note that libraries imported via .mff files must meet the prerequisites mentioned in Referencing Java, C# and C++ Libraries Manually.

Manage Libraries window

You can view and manage all libraries used by a mapping file from the Manage Libraries window. This includes UDFs and custom libraries.

By default, the Manage Libraries window is not visible. To display it, do one of the following:

- On the View menu, click Manage Libraries.
- Click Add/Remove Libraries at the base of the Libraries window.

You can choose to view UDFs and libraries only for the mapping document (.mfd file) that is currently in focus (active), or for all open mapping documents. To view imported functions and libraries for all of the currently open mapping documents, right-click inside the window and select Show Open Documents from the context menu.
To display the path of the open mapping document instead of the name, right-click inside the window and select **Show File Paths** from the context menu.

Data displayed in the Manage Libraries window is organized as a tree hierarchy as follows:

- Any currently open mapping documents are displayed as top-level entries. Each entry has two branches: **User-Defined Functions** and **Own Library Imports**.
 - The **User-Defined Functions** branch displays any UDFs contained in that document.
 - The **Own Library Imports** branch displays libraries imported *locally* into the current mapping document. The term "libraries" means other mapping documents (.mfd files that contain user-defined functions) or custom external libraries written in XSLT 1.0, XSLT 2.0, XQuery 1.0*, Java*, C#*, or .mff files mentioned previously. Note that the **Own Library Imports** structure could be several levels deep, since any mapping document may import any other mapping document as a library.

- The **Global Library Imports** entry encloses any custom libraries that you have imported *globally* at application level. Again, in case of .mfd files, the structure could be several levels deep, for the reasons mentioned above.

* These languages are supported only in MapForce Professional or Enterprise edition.

Note: The XSLT, XQuery, C#, and Java libraries may have dependencies of their own. Such dependencies are not displayed in the Libraries window.

Context menu commands

You can quickly perform various operations against objects in the Manage Libraries window by right-clicking an object and selecting one of the following context menu options:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Applicable for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Opens the mapping.</td>
<td>Mappings</td>
</tr>
<tr>
<td>Add</td>
<td>Opens a dialog box where you can browse for a custom library of functions.</td>
<td>Own Library Imports</td>
</tr>
<tr>
<td>Locate Function in Libraries Window</td>
<td>Changes focus to the Libraries window, and selects the function.</td>
<td>Functions</td>
</tr>
<tr>
<td>Cut, Copy, Delete</td>
<td>These standard Windows commands are applicable only to MapForce user-defined functions. You cannot copy-paste functions from external XSLT files or other library kinds.</td>
<td>User-defined functions</td>
</tr>
<tr>
<td>Paste</td>
<td>Lets you paste a user-defined function that was previously copied to clipboard into the current library.</td>
<td>Libraries (UDF)</td>
</tr>
<tr>
<td>Options</td>
<td>Opens a dialog box where you can set or change options for the current library.</td>
<td>Libraries</td>
</tr>
<tr>
<td>Show All Open Documents</td>
<td>When this option is switched on, the Manage Libraries window will display all currently open documents.</td>
<td>Always</td>
</tr>
</tbody>
</table>
7.8.1 Local and Global Libraries

You can import libraries *locally* or *globally*. Global imports are at application level. If a library was imported globally, you can use its functions from any mapping.

Local imports are at mapping file level. For example, let's suppose that, while working on mapping `A.mfd`, you decide to import all user-defined functions from mapping `B.mfd`. In this case, mapping `B.mfd` is considered to be imported as a local library into `A.mfd` and you can use functions from `B.mfd` in `A.mfd` as well. Likewise, if you import functions from an XSLT file into `A.mfd`, this is also a local import.

You can view and manage all local and global imports from the Manage Libraries window. To import a library, do one of the following:

1. Click the **Add/Remove Libraries** button at the base of the Libraries window. The Manage Libraries window opens.

 ![Manage Libraries](image)

2. Do one of the following:
 - To import functions as a *local* library (in the scope of the current document only), click the **Add** button under the current mapping name.
 - To import functions as a *global* library (at program level), click the **Add** button adjacent to **Global Library Imports**.

Note: When you import a library *locally*, you can set the path of the library file to be relative to the mapping file. With globally imported libraries, the path of the imported library is always absolute.
Conflicting function names
You may come across situations where the same function name is defined at any of the following levels:

- in the main mapping
- in a library that was imported locally
- in a library that was imported globally

When it encounters such cases, MapForce will attempt to call the function exactly in the order above, to prevent ambiguity. That is, the function defined directly in the mapping takes precedence if the same function name exists in a locally imported library. Also, the function imported locally takes precedence over the function imported globally (assuming that both functions have the same name).

If multiple functions with the same name exist, only the “winning” function will be called, according to the rule above; any other ambiguous function names will be blocked. Such blocked functions appear as grayed out in the Libraries window, and it is not be possible to use them in the mapping.

7.8.2 Relative Library Paths
You can set the path of any imported library file to be relative to the mapping design file (.mfd), provided that the library was imported locally (not globally), as described in Local and Global Libraries.

Setting a relative library path is applicable only for those libraries that were imported locally at document level. If a mapping was imported globally at program level, its path is always absolute.

To set a library path as relative to the mapping design file:

2. Click **Options** next to the library of interest. (Alternatively, right-click the library, and select **Options** from the context menu.)

![Library Import Options](image)

3. Select the **Save file path as relative to MFD file** check box.

Note: If the check box is grayed out, make sure that the library was indeed imported locally, and not globally.

When the check box is selected, MapForce will keep track and update the path to any referenced library files when you save the mapping file to a new directory using the **Save as** menu command. Also, if the library files are in the same directory as the mapping file, the path reference will not be broken when you move the entire directory to a new location on the disk, see also Using Relative Paths on a Component (137).

Note that the **Save file path as relative to MFD file** check box specifies that paths are relative to the mapping file, and it does not affect paths in generated code. For information about how library references are handled in generated code, see Paths in Various Execution Environments (135).
7.9 Regular Expressions

When designing a MapForce mapping, you can use regular expressions ("regex") in the following contexts:

- In the **pattern** parameter of the **match-pattern** and **tokenize-regexp** functions
- To filter the nodes on which a node function should apply. For more information, see **Applying Node Functions and Defaults Conditionally**.

The regular expression syntax and semantics for XSLT and XQuery are as defined in Appendix F of "XML Schema Part 2: Datatypes Second Edition".

Note: When generating C++, C#, or Java code, the advanced features of the regular expression syntax might differ slightly. See the regex documentation of each language for more information.

Terminology

Let's examine the basic regular expression terminology by analyzing the **tokenize-regexp** function as an example. This function splits text into a sequence of strings, with the help of regular expressions. To achieve this, the function takes the following input parameters:

<table>
<thead>
<tr>
<th>input</th>
<th>The input string to be processed by the function. The regular expression will operate on this string.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pattern</td>
<td>The actual regular expression pattern to be applied.</td>
</tr>
<tr>
<td>flags</td>
<td>This is an optional parameter that defines additional options (flags) that determine how the regular expression is interpreted, see "Flags" below.</td>
</tr>
</tbody>
</table>

In the mapping below, the input string is “Altova MapForce”. The **pattern** parameter is a space character, and no regular expression flags are used.

This causes the text to be split whenever the space character occurs, so the mapping output is:

```
<items>
  <item>Altova</item>
  <item>MapForce</item>
</items>
```

Note that the **tokenize-regexp** function excludes the matched characters from the result. In other words, the space character in this example is omitted from the output.
The example above is very basic and the same result can be achieved without regular expressions, with the `tokenize` function. In a more practical scenario, the `pattern` parameter would contain a more complex regular expression. The regular expression can consist of any of the following:

- Literals
- Character classes
- Character ranges
- Negated classes
- Meta characters
- Quantifiers

Literals

Use literals to match characters exactly as they are written (literally). For example, if input string is `abracadabra`, and `pattern` is the literal `br`, the output is:

```
<items>
  <item>a</item>
  <item>acada</item>
  <item>a</item>
</items>
```

The explanation is that the literal `br` had two matches in the input string `abracadabra`. After removing the matched characters from the output, the sequence of three strings illustrated above is produced.

Character classes

If you enclose a set of characters in square brackets (`[]`), this creates a character class. One and only one of the characters inside the character class is matched, for example:

- The pattern `[aeiou]` matches any lowercase vowel.
- The pattern `[^a-z]` matches any character not in the character class, including newline characters.

Note: The pattern is case sensitive, so a lowercase "a" does not match the uppercase "A". To make the matching case insensitive, use the `i` flag, see below.

Character ranges

Use `[-z]` to create a range between the two characters. Only one of the characters will be matched at one time. For example, the pattern `[-z]` matches any lowercase character between "a" and "z".

Negated classes

Using the caret (`^`) as the first character after the opening bracket negates the character class. For example, the pattern `[^a-z]` matches any character not in the character class, including newline characters.

Matching any character

Use the dot (`.`) meta character to match any single character, except for newline character. For example, the pattern `.` matches any single character.
Quantifiers
Within a regular expression, quantifiers define how many times the preceding character or sub-expression is allowed to occur in order for the match to take place.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Matches zero or one occurrences of the immediately preceding item. For example, the pattern <code>mo?</code> will match "m" and "mo".</td>
</tr>
<tr>
<td>+</td>
<td>Matches one or more occurrences of the immediately preceding item. For example, the pattern <code>mo+</code> will match "mo", "moo", "mooo", and so on.</td>
</tr>
<tr>
<td>*</td>
<td>Matches zero or more occurrences of the immediately preceding item.</td>
</tr>
<tr>
<td><code>{min,max}</code></td>
<td>Matches any number of occurrences between min and max. For example, the pattern <code>mo{1,3}</code> matches "mo", "moo", and "mooo".</td>
</tr>
</tbody>
</table>

Parentheses
Parentheses (and) are used to group parts of a regex together. They can be used to apply quantifiers to a sub-expression (as opposed to just one character), or with alternation (see below).

Alternation
The vertical bar (pipe) character | means "or". It can be used to match any of the several sub-expressions separated by |. For example, the pattern `(horse|make) sense` will match both "horse sense" and "make sense".

Flags
These are optional parameters that define how the regular expression is to be interpreted. Each flag corresponds to a letter. Letters may be in any order and can be repeated.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>If this flag is present, the matching process operates in the "dot-all" mode.</td>
</tr>
<tr>
<td></td>
<td>If the input string contains "hello" and "world" on two different lines, the regular expression <code>hello*world</code> will only match if the s flag is set.</td>
</tr>
<tr>
<td>m</td>
<td>If this flag is present, the matching process operates in multi-line mode.</td>
</tr>
<tr>
<td></td>
<td>In multi-line mode, the caret ^ matches the start of any line, i.e. the start of the entire string and the first character after a newline character.</td>
</tr>
<tr>
<td></td>
<td>The dollar character $ matches the end of any line, i.e. the end of the entire string and the character immediately before a newline character.</td>
</tr>
<tr>
<td></td>
<td>Newline is the character #x0A.</td>
</tr>
<tr>
<td>i</td>
<td>If this flag is present, the matching process operates in case-insensitive mode. For example, the regular expression <code>[a-z]</code> plus the i flag matches all letters a-z and A-Z.</td>
</tr>
</tbody>
</table>
If this flag is present, whitespace characters are removed from the regular expression prior to the matching process. Whitespace characters are \#x09, \#x0A, \#x0D and \#x20.

Note: Whitespace characters within a character class are not removed, for example, [\#x20].
7.10 Function Library Reference

This reference chapter describes the MapForce built-in functions available in the Libraries window, organized by library.

The core library is a collection of functions available in C++, C#, Java languages and in at least one of the following: XQuery, XPath, or XSLT. The lang library is dedicated to functions available in C++, C#, and Java languages. Other libraries contain functions associated with each separate type of output.

Notes
- The availability of function libraries in the Libraries window depends on the transformation language of the mapping. Consult the tables below for more information.
- XQuery, C#, C++, Java, and Built-In require MapForce Professional or Enterprise Edition.
- Several XPath 2.0 functions dealing with sequences are currently not available.

The tables below list the functions supported in each language, grouped by library.

core | aggregate functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max-string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min-string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string-join</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

core | conversion functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>format-date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>format-dateTime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>format-number</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>format-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parse-date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parse-dateTime</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parse-number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parse-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

core | file path functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-fileext</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>get-folder</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main-mfd-filepath</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mfd-filepath</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove-fileext</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove-folder</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>replace-fileext</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resolve-filepath</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

core | generator functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto-number</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
core | logical functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>equal-or-greater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>equal-or-less</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>less</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logical-and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logical-not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logical-or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not-equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

core | math functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ceiling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>divide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>modulus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multiply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>round</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>round-precision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

core | node functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>is-xsi-nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>XSLT 1.0</td>
<td>XSLT 2.0</td>
<td>XQuery 1.0</td>
<td>C#</td>
<td>C++</td>
<td>Java</td>
<td>Built-In</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>local-name</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>node-name</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>set-xsi-nil</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>static-node-annotation</td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>static-node-name</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>substitute-missing-with-xsi-nil</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

core | QName functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>QName</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>local-name-from-QName</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>namespace-uri-from-QName</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

core | sequence functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>distinct-values</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>exists</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>first-items</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>generate-sequence</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>group-adjacent</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>group-by</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>group-ending-with</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>group-into-blocks</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>group-starting-with</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>item-at</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>items-from-till</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Function</td>
<td>XSLT 1.0</td>
<td>XSLT 2.0</td>
<td>XQuery 1.0</td>
<td>C#</td>
<td>C++</td>
<td>Java</td>
<td>Built-In</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>last-items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not-exists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>replicate-item</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>replicate-sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set-empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skip-first-items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substitute-missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

core | string functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>char-from-code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>code-from-char</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>concat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normalize-space</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>starts-with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string-length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substring-after</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substring-before</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tokenize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tokenize-by-length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tokenize-regexp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>translate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
db | null processing functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>is-not-null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>is-null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>set-null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substitute-null</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lang | datetime functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>convert-to-utc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>date-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>datetime-add</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>datetime-diff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>datetime-from-date-and-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>datetime-from-parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>day-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>day-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>duration-add</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>duration-from-parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>duration-subtract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hour-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hour-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>leapyear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>millisecond-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>millisecond-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>XSLT 1.0</td>
<td>XSLT 2.0</td>
<td>XQuery 1.0</td>
<td>C#</td>
<td>C++</td>
<td>Java</td>
<td>Built-In</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>minute-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minute-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>month-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>month-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>now</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>remove-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>second-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>second-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weekday</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weeknumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lang | file functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>read-binary-file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>write-binary-file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lang | generator functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>create-guid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
lang | logical functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>logical-xor</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>negative</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>numeric</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>positive</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
</tbody>
</table>

lang | math functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>acos</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>asin</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>atan</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>cos</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>degrees</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>divide-integer</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>exp</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>log</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>log10</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>min</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>pi</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>pow</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>radians</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>random</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>sin</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
<tr>
<td>sqrt</td>
<td></td>
<td></td>
<td></td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
</tr>
</tbody>
</table>
lang | QName functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>QName-as-string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string-as-QName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lang | string functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>capitalize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>charset-decode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>charset-encode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>count-substring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>empty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>find-substring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>format-guid-string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left-trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lowercase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>match-pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pad-string-left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pad-string-right</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>repeat-string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>replace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reversefind-substring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>right</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>right-trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string-compare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string-compare-ignore-case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uppercase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | accessors

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>base-uri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>node-name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | anyURI functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolve-uri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | boolean functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | constructors

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:ENTITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:IDREF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>XSLT 1.0</td>
<td>XSLT 2.0</td>
<td>XQuery 1.0</td>
<td>C#</td>
<td>C++</td>
<td>Java</td>
<td>Built-In</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>xs:NCName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:NMTOKEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:QName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:anyURI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:base64Binary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:boolean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:byte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:dateTime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:dayTimeDuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:decimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:double</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:float</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:gDay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:gMonth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:gMonthDay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:gYear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:gYearMonth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:hexBinary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:int</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:integer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:language</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:negativeInteger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:nonNegativeInteger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:nonPositiveInteger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:normalizedString</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:positiveInteger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:short</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:token</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:unsignedByte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:unsignedInt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:unsignedLong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:unsignedShort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:untypedAtomic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:yearMonthDuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | context functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>current-date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current-dateTime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>default-collation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>implicit-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>last</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
xpath2 | durations, date and time functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjust-date-to-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjust-date-to-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjust-datetime-to-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjust-datetime-to-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjust-time-to-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjust-time-to-timezone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>day-from-date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>day-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>days-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hours-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hours-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hours-from-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minutes-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minutes-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minutes-from-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>month-from-date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>month-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>months-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seconds-from-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seconds-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>seconds-from-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtract-datetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtract-dates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtract-times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timezone-from-date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>XSLT 1.0</td>
<td>XSLT 2.0</td>
<td>XQuery 1.0</td>
<td>C#</td>
<td>C++</td>
<td>Java</td>
<td>Built-In</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>timezone-from-dateTime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timezone-from-time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year-from-date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year-from-dateTime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>years-from-duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | node functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>lang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>local-name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>namespace-uri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | numeric functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>round-half-to-even</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xpath2 | string functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>codepoints-to-string</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ends-with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lower-case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>matches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>XSLT 1.0</td>
<td>XSLT 2.0</td>
<td>XQuery 1.0</td>
<td>C#</td>
<td>C++</td>
<td>Java</td>
<td>Built-In</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>normalize-unicode</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>replace</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>starts-with</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>string-to-codepoints</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substring-after</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substring-before</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper-case</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xslt10 | xpath functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>lang</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>last</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>local-name</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>namespace-uri</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>position</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xslt10 | xslt functions

<table>
<thead>
<tr>
<th>Function</th>
<th>XSLT 1.0</th>
<th>XSLT 2.0</th>
<th>XQuery 1.0</th>
<th>C#</th>
<th>C++</th>
<th>Java</th>
<th>Built-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>document</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>element-available</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>function-available</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>generate-id</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>system-property</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unparsed-entity-uri</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.10.1 core | aggregate functions

"Aggregating" means processing multiple values of the same type so as to obtain a single result, such as a sum, a count, or an average. You can perform data aggregation in MapForce with the help of aggregation functions, such as `avg`, `count`, `max`, and others.

The following two arguments are common to all aggregation functions:

1. **parent-context**. This argument is optional; it lets you override the default mapping context (and thus change the scope of the function, or the values that the function must iterate over). For a worked example, see Example: Changing the Parent Context.

2. **values**. This argument must be connected to a source item that supplies the values to be processed. For example, in the mapping illustrated below, the `sum` function takes as input a sequence of numeric values that originates from a source XML file. For each item in the source XML file, the `multiply` function gets the item's price times quantity, and passes the result to the `sum` function. The `sum` function will aggregate all input values and produce a total result that is also the output of the mapping. You can find this mapping in the ..\MapForceExamples\Tutorial\ directory.

Some aggregate functions, such as `min`, `max`, `sum`, and `avg`, work exclusively with numeric values. The input data of these functions is converted to the `decimal` data type for processing.
7.10.1.1 avg

Returns the average value of all values within the input sequence. The average of an empty set is an empty set.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>values</td>
<td>This argument must be connected to a source item which supplies the actual data. Note that the supplied argument value must be numeric.</td>
</tr>
</tbody>
</table>

Example
See Example: Grouping Records by Key.

7.10.1.2 count

Returns the number of individual items making up the input sequence. The count of an empty set is zero.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Note that this function has limited functionality in XSLT 1.0.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>nodes/rows</td>
<td>This argument must be connected to the source item to be counted.</td>
</tr>
</tbody>
</table>

Example

See Example: Changing the Parent Context, Example: Counting Database Table Rows.

7.10.1.3 max

Returns the maximum value of all numeric values in the input sequence. The maximum of an empty set is an empty set.

\[
\text{max}\ (\text{values})\text{; parent-context}
\]

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>values</td>
<td>This argument must be connected to a source item which supplies the actual data. Note that the supplied argument value must be numeric. To get the maximum from a sequence of strings, use the max-string function.</td>
</tr>
</tbody>
</table>

Example

See Example: Grouping Records by Key.

7.10.1.4 max-string

Returns the maximum value of all string values in the input sequence. For example, max-string("a", "b", "c") returns "c". The function returns an empty set if the strings argument is an empty set.
Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>strings</td>
<td>This argument must be connected to a source item which supplies the actual data. The supplied argument value must be a sequence (zero or many) of xs:string.</td>
</tr>
</tbody>
</table>

7.10.1.5 min

Returns the minimum value of all numeric values in the input sequence. The minimum of an empty set is an empty set.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>values</td>
<td>This argument must be connected to a source item which supplies the actual data. Note that the supplied argument value must be numeric. To get the minimum from a sequence of strings, use the min-string function.</td>
</tr>
</tbody>
</table>
Example
See Example: Grouping Records by Key.

7.10.1.6 min-string

Returns the minimum value of all string values in the input sequence. For example, \(\text{min-string}("a", "b", "c") \) returns "a". The function returns an empty set if the \text{strings} argument is an empty set.

![min-string diagram]

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>strings</td>
<td>This argument must be connected to a source item which supplies the actual data. The supplied argument value must be a sequence (zero or many) of \text{xs:string}.</td>
</tr>
</tbody>
</table>

7.10.1.7 string-join

Concatenates all the values of the input sequence into one string delimited by whatever string you choose to use as the delimiter. The function returns an empty string if the \text{strings} argument is an empty set.

![string-join diagram]

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>strings</td>
<td>This argument must be connected to a source item which supplies the actual data. The supplied argument value must be a sequence (zero or many) of <code>xs:string</code>.</td>
</tr>
<tr>
<td>delimiter</td>
<td>Optional argument. Specifies the delimiter to be inserted between any two consecutive strings.</td>
</tr>
</tbody>
</table>

Example

In the example below, the source XML file contains four Article items, with the following numbers: 1, 2, 3, and 4.

The constant supplies the character "#" as the delimiter. The mapping result is, therefore, `1#2#3#4`. If you do not supply a delimiter, then the result becomes `1234`.

7.10.1.8 sum

Returns the arithmetic sum of all values in the input sequence. The sum of an empty set is zero.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent-context</td>
<td>Optional argument. Supplies the parent context. See also Example: Changing the Parent Context.</td>
</tr>
<tr>
<td>values</td>
<td>This argument must be connected to a source item which supplies the actual data. Note that the supplied argument value must be numeric.</td>
</tr>
</tbody>
</table>

Example
See Example: Summing Node Values.

7.10.2 core | conversion functions

To support explicit data type conversion, several type conversion functions are available in the conversion library. Note that the conversion functions are not always necessary because, in most cases, MapForce creates the necessary conversions automatically. Conversion functions are typically useful to format date and time values, or to compare values. For example, if some mapping items are of differing types (such as integer and string), you can use the number conversion function to force a numeric comparison.

7.10.2.1 boolean

Converts the value of arg to a Boolean value. This may be useful for working with logical functions (such as equal, greater, and so on), as well as filters and if-else conditions. To get a Boolean false, supply an empty string or numeric 0 as argument. To get a Boolean true, supply a non-empty string or numeric 1 as argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameter

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arg</td>
<td>Mandatory argument. Supplies the value to be converted.</td>
</tr>
</tbody>
</table>
7.10.2.2 format-date

Converting a date value of type `xs:date` to a string and formats it according to specified options.

![format-date]

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The <code>xs:date</code> value to be formatted.</td>
</tr>
<tr>
<td>format</td>
<td>A format string identifying the way in which the date is to be formatted. This argument is used in the same way as the <code>format</code> argument in the <code>format-dateTime</code> function.</td>
</tr>
<tr>
<td>language</td>
<td>Optional argument. When supplied, the name of the month and the day of the week are returned in a specific language. Valid values: de German, en (default) English, es Spanish, fr French, ja Japanese</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XSLT 2.0.

Example

The following mapping outputs the current date in a format like: "25 March 2020, Wednesday". To translate this value to Spanish, set the value of the `language` argument to `es`.
Note that the mapping above is designed for the Built-in, C++, C#, or Java transformation languages. In XSLT 2.0, the same result can be achieved by the following mapping:

7.10.2.3 format-dateTime

Converts a value of type `xs:dateTime` to a string. The string representation of date and time is formatted according to the value of the `format` argument.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The <code>xs:dateTime</code> value to be formatted.</td>
</tr>
<tr>
<td>format</td>
<td>A format string identifying the way in which <code>value</code> is to be formatted. See "Remarks" below.</td>
</tr>
<tr>
<td>language</td>
<td>Optional argument. When supplied, the name of the month and the day of the week are returned in a specific language. Valid values:</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>de</td>
<td>German</td>
</tr>
<tr>
<td>en (default)</td>
<td>English</td>
</tr>
<tr>
<td>es</td>
<td>Spanish</td>
</tr>
<tr>
<td>fr</td>
<td>French</td>
</tr>
<tr>
<td>ja</td>
<td>Japanese</td>
</tr>
</tbody>
</table>

Note: If the function’s output (result) is connected to an item of type other than string, the formatting may be lost as the value is cast to the target type. To disable this automatic cast, clear the **Cast target values to target types** check box in the **Component Settings** of the target component.

Remarks
The **format** argument consists of a string containing so-called variable markers enclosed in square brackets, for example `[Y]/[M]/[D]`. Characters outside the square brackets are literal characters. If square brackets are needed as literal characters in the result, then they should be doubled.

Each variable marker consists of a component specifier identifying which component of the date or time is to be displayed, an optional formatting modifier, another optional presentation modifier and an optional width modifier, preceded by a comma if it is present.

```
format := (literal | argument)*
argument := [component(format)?(presentation)?(width)?]
width := , min-width ("-" max-width)?
```

The components are as follows:

<table>
<thead>
<tr>
<th>Specifier</th>
<th>Description</th>
<th>Default Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>year (absolute value)</td>
<td>four digits (2010)</td>
</tr>
<tr>
<td>M</td>
<td>month of the year</td>
<td>1-12</td>
</tr>
<tr>
<td>D</td>
<td>day of month</td>
<td>1-31</td>
</tr>
<tr>
<td>d</td>
<td>day of year</td>
<td>1-366</td>
</tr>
<tr>
<td>F</td>
<td>day of week</td>
<td>name of the day (language dependent)</td>
</tr>
<tr>
<td>W</td>
<td>week of the year</td>
<td>1-53</td>
</tr>
<tr>
<td>w</td>
<td>week of month</td>
<td>1-5</td>
</tr>
<tr>
<td>H</td>
<td>hour (24 hours)</td>
<td>0-23</td>
</tr>
<tr>
<td>h</td>
<td>hour (12 hour)</td>
<td>1-12</td>
</tr>
<tr>
<td>Specifier</td>
<td>Description</td>
<td>Default Presentation</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>P</td>
<td>A.M. or P.M.</td>
<td>alphabetic (language dependent)</td>
</tr>
<tr>
<td>m</td>
<td>minutes in hour</td>
<td>00-59</td>
</tr>
<tr>
<td>s</td>
<td>seconds in minute</td>
<td>00-59</td>
</tr>
<tr>
<td>f</td>
<td>fractional seconds</td>
<td>numeric, one decimal place</td>
</tr>
<tr>
<td>Z</td>
<td>timezone as a time offset from UTC</td>
<td>+08:00</td>
</tr>
<tr>
<td>z</td>
<td>timezone as a time offset using GMT</td>
<td>GMT+n</td>
</tr>
</tbody>
</table>

The formatting modifier can be one of the following:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Decimal numeric format with no leading zeros</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>01</td>
<td>Decimal format, two digits</td>
<td>01, 02, 03</td>
</tr>
<tr>
<td>N</td>
<td>Name of component, upper case¹</td>
<td>MONDAY, TUESDAY</td>
</tr>
<tr>
<td>n</td>
<td>Name of component, lower case¹</td>
<td>monday, tuesday</td>
</tr>
<tr>
<td>Nn</td>
<td>Name of component, title case¹</td>
<td>Monday, Tuesday</td>
</tr>
</tbody>
</table>

Footnotes:

1. The **N**, **n**, and **Nn** modifiers are supported by the following components only: **M**, **d**, **D**.

The width modifier, if necessary, is introduced by a comma, followed by a digit that expresses the minimum width. Optionally, you can add a dash followed by another digit that expresses the maximum width. For example:

- `[D,2]` is the day of the month, with leading zeros (two digits).
- `[Nnn,3-3]` is the name of the month, written as three characters, e.g. `Jan`, `Feb`, `Mar`, and so on.

Examples

The table below illustrates some examples of formatting `xs:dateTime` values with the help of the `format-dateTime` function. The "Value" column specifies the value supplied to the `value` argument. The "Format" column specifies the value of the `format` argument. The "Result" column illustrates what is returned by the function.

<table>
<thead>
<tr>
<th>Value</th>
<th>Format</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-11-03T00:00:00</td>
<td><code>[D]/[M]/[Y]</code></td>
<td>3/11/2003</td>
</tr>
<tr>
<td>Value</td>
<td>Format</td>
<td>Result</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2003-11-03T00:00:00</td>
<td>[Y]-[M,2]-[D,2]</td>
<td>2003-11-03</td>
</tr>
<tr>
<td>2003-11-03T00:00:00</td>
<td>[Y]-[M,2]-[D,2] [H,2]:[m]:[s]</td>
<td>2003-11-03 00:00:00</td>
</tr>
<tr>
<td>2010-06-02T08:02</td>
<td>[Y] [MNNn] [D01] [F,3-3] [d] [H]:[m]:[s].[f]</td>
<td>2010 June 02 Wed 153 8:02:12.054</td>
</tr>
<tr>
<td>2010-06-02T08:02</td>
<td>[Y] [MNNn] [D01] [F,3-3] [d] [H]:[m]:[s].[f] [z]</td>
<td>2010 June 02 Wed 153 8:02:12.054 GMT+02:00</td>
</tr>
<tr>
<td>2010-06-02T08:02</td>
<td>[Y] [MNNn] [D1] [F] [H]:[m]:[s].[f] [Z]</td>
<td>2010 June 2 Wednesday 8:02:12.054 +02:00</td>
</tr>
<tr>
<td>2010-06-02T08:02</td>
<td>[Y] [MNNn] [D] [F,3-3] [H01]:[m]:[s]</td>
<td>2010 June 2 Wed 08:02:12</td>
</tr>
</tbody>
</table>

7.10.2.4 format-number

Converts a number into a string and formats it according to the specified options.

```xml
<format-number
  value="2003-11-03T00:00:00"
  format="[Y]-[M,2]-[D,2]"
  result="2003-11-03"
/>
```

Languages

Built-in, C++, C#, Java, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory argument. Supplies the number to be formatted.</td>
</tr>
<tr>
<td>format</td>
<td>Mandatory argument. Supplies a format string that identifies the way in which the number is to be formatted. See "Remarks" below.</td>
</tr>
<tr>
<td>decimal-point-format</td>
<td>Optional argument. Supplies the character to be used as the decimal point character. The default value is the full stop (.) character.</td>
</tr>
<tr>
<td>grouping-separator</td>
<td>Optional argument. Supplies the character used to separate groups of numbers. The default value is the comma (,) character.</td>
</tr>
</tbody>
</table>
Note: If the function’s output (result) is connected to an item of type other than string, the formatting may be lost as the value is cast to the target type. To disable this automatic cast, clear the Cast target values to target types check box in the Component Settings of the target component.

Remarks

The format argument takes the following form:

```
format := subformat (¦subformat)?
   subformat := (prefix)? integer (.fraction)? (suffix)?
   prefix := any characters except special characters
   suffix := any characters except special characters
   integer := (#)* (0)* (allowing ',' to appear)
   fraction := (0)* (#)* (allowing ',' to appear)
```

The first subformat is used for formatting positive numbers, and the second subformat for negative numbers. If only one subformat is specified, then the same subformat will be used for negative numbers, but with a minus sign added before the prefix.

<table>
<thead>
<tr>
<th>Special Character</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero-digit</td>
<td>0</td>
<td>A digit will always appear at this point in the result</td>
</tr>
<tr>
<td>digit</td>
<td>#</td>
<td>A digit will appear at this point in the result string unless it is a redundant leading or trailing zero</td>
</tr>
<tr>
<td>decimal-point</td>
<td>.</td>
<td>Separates the integer and the fraction part of the number.</td>
</tr>
<tr>
<td>grouping-separator</td>
<td>,</td>
<td>Separates groups of digits.</td>
</tr>
<tr>
<td>percent-sign</td>
<td>%</td>
<td>Multiplies the number by 100 and shows it as a percentage.</td>
</tr>
<tr>
<td>per-mille</td>
<td>‰</td>
<td>Multiplies the number by 1000 and shows it as per-mille.</td>
</tr>
</tbody>
</table>

The table below illustrates examples of format strings and their result.

Note: The rounding method used by the format-number function is "half up", which means that the value gets rounded up if the fraction is greater than or equal to 0.5. The value gets rounded down if the fraction is less than 0.5. This method of rounding applies only to generated program code and the built-in execution engine. In XSLT 1.0, the rounding mode is undefined. In XSLT 2.0, the rounding mode is "round-half-to-even".

<table>
<thead>
<tr>
<th>Number</th>
<th>Format String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234.5</td>
<td>#,##0.00</td>
<td>1,234.50</td>
</tr>
<tr>
<td>123.456</td>
<td>#,##0.00</td>
<td>123.46</td>
</tr>
<tr>
<td>100000</td>
<td>#,##0.00</td>
<td>1,000,000.00</td>
</tr>
</tbody>
</table>
Example

The mapping illustrated below reads data from source XML and writes it to a target XML. There are multiple `SinglePrice` elements in the source that contain the following decimal values: 25, 2.30, 34, 57.50. The mapping has two goals:

1. Pad all values with zeros to the left so that the significant part takes 5 digits exactly
2. Pad all values with zeros to the right so that the decimal part takes 2 digits exactly

To achieve this, the format string `00000.00` was supplied as argument to the `format-number` function.

```
<table>
<thead>
<tr>
<th>Number</th>
<th>Format String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>-59</td>
<td>#,##0.00</td>
<td>-59.00</td>
</tr>
<tr>
<td>1234</td>
<td>###0.0####</td>
<td>1234.0</td>
</tr>
<tr>
<td>1234.5</td>
<td>###0.0####</td>
<td>1234.5</td>
</tr>
<tr>
<td>.00025</td>
<td>###0.0####</td>
<td>0.0003</td>
</tr>
<tr>
<td>.00035</td>
<td>###0.0####</td>
<td>0.0004</td>
</tr>
<tr>
<td>0.25</td>
<td>#00%</td>
<td>25%</td>
</tr>
<tr>
<td>0.736</td>
<td>#00%</td>
<td>74%</td>
</tr>
<tr>
<td>1</td>
<td>#00%</td>
<td>100%</td>
</tr>
<tr>
<td>-42</td>
<td>#00%</td>
<td>-4200%</td>
</tr>
<tr>
<td>-3.12</td>
<td>.00;(#.00)</td>
<td>(3.12)</td>
</tr>
<tr>
<td>-3.12</td>
<td>.00;#.00CR</td>
<td>3.12CR</td>
</tr>
</tbody>
</table>
```

```
PreserveFormatting.mfd
```

Consequently, the values in the target have become:
You can find the mapping design file at the following path:
<Documents>\Altova\MapForce2021\MapForceExamples\PreserveFormatting.mfd.

7.10.2.5 format-time

Converts an \textit{xs:time} input value into a string.

\[\text{result} = \text{format-time} (\text{value}, \text{format}) \]

\textbf{Languages}

Built-in, C++, C#, Java, XSLT 2.0.

\textbf{Parameters}

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{value}</td>
<td>Mandatory argument. Supplies the \textit{xs:time} value to be formatted.</td>
</tr>
<tr>
<td>\textit{format}</td>
<td>Mandatory argument. Supplies a format string. This argument is used in the same way as the \textit{format} argument in the \textit{format-dateTime} function.</td>
</tr>
</tbody>
</table>

\textbf{Example}

The following mapping outputs the current time in a format like \textit{2:15 p.m.}. To achieve this, it uses the format string \texttt{[h]:[m] [P]}, where:

- \texttt{[h]} is the current hour in 12-hour format
- \texttt{[m]} is the current minute
- \texttt{[P]} is the "a.m." or "p.m." part

\[\text{result} = \text{format-time} (\text{time-from-datetime} (\text{now}), \text{format}) \]

\texttt{C = "[h]:[m] [P]"}

Note that the mapping above is designed for the Built-in, C++, C#, or Java transformation languages. In XSLT 2.0, the same result can be achieved by the following mapping:
7.10.2.6 number

Converts the value of \(\text{arg} \) into a number, where \(\text{arg} \) is a string or Boolean value. If \(\text{arg} \) is a string, MapForce will attempt to parse it as a number. For example, a string like "12.56" is converted to the decimal value \(12.56 \). If \(\text{arg} \) is Boolean true, it is converted to numeric 1. If \(\text{arg} \) is Boolean false, it is converted to numeric 0.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{arg})</td>
<td>Mandatory argument. Supplies the value to be converted.</td>
</tr>
</tbody>
</table>

Example
In the example below, the first constant is of type string and it contains the string "4". The second constant contains the numeric constant 12. In order for the two values to be compared as numbers, the types must agree.

Adding a number function to the first constant converts the string "4" to the numeric value of 4. The result of the comparison is then "true". If the number function were not used (that is, if "4" was connected directly to \(\text{a} \)), a string comparison would occur, with the result being "false".
7.10.2.7 parse-date

Converts a string into a date. This function uses the parse-dateTime function as a basis, while ignoring the time component. The result is of type xs:date.

\[
\text{parse-date}(\text{value}, \text{format})
\]

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory argument. Supplies the string value to be converted.</td>
</tr>
<tr>
<td>format</td>
<td>Mandatory argument. Supplies a format string. This argument is used in the same way as the format argument in the parse-dateTime function.</td>
</tr>
</tbody>
</table>

Example

The mapping below parses the string "01 Apr 2015", converts it to a date and writes the result to a target item (pubdate) of type xs:date. This was achieved by using the format \[D01\] \[MNn,3-3\] \[Y\], where:

- \[D01\] is the date of the month, expressed as two digits
- \[MNn,3-3\] is the month name, with a minim and maximum width of 3 characters
- \[Y\] is the year

The result is as follows (excluding the XML and namespace declarations):

```
<book>
  <title>Linux Bible</title>
  <pubdate>2015-04-01</pubdate>
</book>
```
7.10.2.8 parse-dateTime

Converts a date and time value expressed as a string into a value of type `xs:dateTime`.

```
parse-dateTime
  value
  format
  result
```

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The string value to be converted.</td>
</tr>
<tr>
<td>format</td>
<td>Specifies the format mask to apply to <code>value</code>.</td>
</tr>
</tbody>
</table>

Remarks

A format mask can consist of the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Default Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>year (absolute value)</td>
<td>four digits (2010)</td>
</tr>
<tr>
<td>M</td>
<td>month of the year</td>
<td>1-12</td>
</tr>
<tr>
<td>D</td>
<td>day of month</td>
<td>1-31</td>
</tr>
<tr>
<td>d</td>
<td>day of year</td>
<td>1-366</td>
</tr>
<tr>
<td>H</td>
<td>hour (24 hours)</td>
<td>0-23</td>
</tr>
<tr>
<td>h</td>
<td>hour (12 hour)</td>
<td>1-12</td>
</tr>
<tr>
<td>P</td>
<td>A.M. or P.M.</td>
<td>alphabetic (language dependent)</td>
</tr>
<tr>
<td>m</td>
<td>minutes in hour</td>
<td>00-59</td>
</tr>
<tr>
<td>s</td>
<td>seconds in minute</td>
<td>00-59</td>
</tr>
<tr>
<td>f</td>
<td>fractional seconds</td>
<td>numeric, one decimal place</td>
</tr>
<tr>
<td>Z</td>
<td>timezone as a time offset from UTC</td>
<td>+08:00</td>
</tr>
<tr>
<td>z</td>
<td>timezone as a time offset using GMT</td>
<td>GMT+n</td>
</tr>
</tbody>
</table>
Some of the components above take modifiers (for example, they can be used to interpret a date either as a single digit or as two digits):

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>decimal numeric format with no leading zeros: 1, 2, 3, ...</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>01</td>
<td>decimal format, two digits: 01, 02, 03, ...</td>
<td>01, 02, 03</td>
</tr>
<tr>
<td>N</td>
<td>name of component, upper case</td>
<td>FEBRUARY, MARCH</td>
</tr>
<tr>
<td>n</td>
<td>name of component, lower case</td>
<td>february, march</td>
</tr>
<tr>
<td>Nn</td>
<td>name of component, title case</td>
<td>February, March</td>
</tr>
</tbody>
</table>

Note:
N, n, and Nn modifiers support only the component M (month).

The width modifier, if necessary, is introduced by a comma, followed by a digit that expresses the minimum width. Optionally, you can add a dash followed by another digit that expresses the maximum width. For example:

- \([D,2]\) is the day of the month, with leading zeros (two digits).
- \([Nn,3-3]\) is the name of the month, written as three characters, e.g. Jan, Feb, Mar, and so on.

The table below lists some format examples:

<table>
<thead>
<tr>
<th>Value</th>
<th>Format</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-03-2002 16:21:12.492 GMT+02:00</td>
<td>([D]-[M]-[Y] [H]:[m]:[s].[f] [z])</td>
<td>2002-03-21T16:21:12.492+02:00</td>
</tr>
<tr>
<td>315 2004 +01:00</td>
<td>([d] [Y] [Z])</td>
<td>2004-11-10T00:00:00+01:00</td>
</tr>
<tr>
<td>1.December.10 03:2:39 p.m. +01:00</td>
<td>([D],[NNn],[Y,2-2] [h]:[m]:[s] [P]) [Z])</td>
<td>2010-12-01T15:02:39+01:00</td>
</tr>
<tr>
<td>20110620</td>
<td>([Y,4-4],[M,2-2],[D,2-2])</td>
<td>2011-06-20T00:00:00</td>
</tr>
</tbody>
</table>

Example

In the mapping below, the string value 2019-12-24 19:43:04 +02:00 is converted into its dateTime equivalent, by applying the format mask \([Y]-[M]-[D] \[H]:[m]:[s] \[Z]\).
The result is as follows (excluding the XML and namespace declarations):

```xml
<FlightInformation>
  <FlightInfo departuredatetime="2019-12-24T19:43:04+02:00">
    <Station airportcode="KIV"/>
  </FlightInfo>
</FlightInformation>
```

7.10.2.9 parse-number

Converts a string into a decimal number, according to specified format.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>The string to be converted to a number.</td>
</tr>
<tr>
<td><code>format</code></td>
<td>Optional argument. A format string that identifies the way in which the number is currently formatted. The format string is the same as that used in <code>format-number</code>.</td>
</tr>
</tbody>
</table>
Default is ",,##0.##"

<table>
<thead>
<tr>
<th>decimal-point-character</th>
<th>Optional argument. Specifies the character to be used as the decimal point character. Default is the "." character.</th>
</tr>
</thead>
<tbody>
<tr>
<td>grouping-separator</td>
<td>Optional argument. Specifies the separator/delimiter used to separate groups of numbers. Default is the ",," character.</td>
</tr>
</tbody>
</table>

Example

The following mapping parses the string value "1,234.50" to a decimal equivalent, by using the format mask ",,##0.00". In this mapping, there is no need to connect the decimal-point-character and grouping-separator arguments, since their default values match the format of the input string.

![Mapping Diagram]

The mapping result is as follows (excluding the XML and namespace declarations):

```xml
<Article>
  <Number>1</Number>
  <Name>Office chair</Name>
  <SinglePrice>1234.5</SinglePrice>
</Article>
```

7.10.2.10 parse-time

Converts a string into an \texttt{xs:time} value. This function uses the \texttt{parse-dateTime} function as a basis, while ignoring the date component.

![Function Diagram]

Languages

Built-in, C++, C#, Java.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory argument. Supplies the string value to be converted.</td>
</tr>
<tr>
<td>format</td>
<td>Mandatory argument. Supplies a format string. This argument is used in the same way as the <code>format</code> argument in the <code>parse-dateTime</code> function.</td>
</tr>
</tbody>
</table>

7.10.2.11 string

Converts an input value into a string. The function can also be used to retrieve the text content of a node. If the input node is an XML complex type, then all descendants are also output as a single string.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arg</td>
<td>Mandatory argument. Supplies the value to be converted.</td>
</tr>
</tbody>
</table>

7.10.3 core | file path functions

The file path functions allow you to directly access and manipulate file path data, such as folders, file names, and extensions for further processing in your mappings. They can be used in all languages supported by MapForce.

7.10.3.1 get-fileext

Returns the extension of the file path including the dot "." character.
Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filepath</td>
<td>Mandatory argument. Supplies the file path to be processed.</td>
</tr>
</tbody>
</table>

Example
If you supply "c:\data\Sample.mfd" as argument, the result is .mfd.

7.10.3.2 get-folder
Returns the folder name of the file path including the trailing slash, or backslash character.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filepath</td>
<td>Mandatory argument. Supplies the file path to be processed.</td>
</tr>
</tbody>
</table>

Example
If you supply "c:\data\Sample.mfd" as argument, the result is c:\data\.

7.10.3.3 main-mfd/filepath
Returns the full path of the mapping design file (.mfd) containing the main mapping. An empty string is returned if the .mfd is currently not saved.
7.10.3.4 mfd-filepath

If the function is called in the main mapping, it returns the same as the main-mfd-filepath function, i.e. the full path of the .mfd file containing the main mapping. An empty string is returned if the .mfd file is currently not saved. If called within a user-defined function which is imported by an .mfd file, it returns the full path of the imported .mfd file that contains the definition of the user-defined function.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filepath</td>
<td>Mandatory argument. Supplies the file path to be processed.</td>
</tr>
</tbody>
</table>

Example

If you supply "c:\data\Sample.mfd" as argument, the result is c:\data\Sample.
7.10.3.6 remove-folder

Removes the directory of the file path, including the trailing slash, or backslash character.

```
fr remove-folder
  $filepath | $filename
```

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filepath</td>
<td>Mandatory argument. Supplies the file path to be processed.</td>
</tr>
</tbody>
</table>

Example
If you supply "c:\data\Sample.mfd" as argument, the result is Sample.mfd.

7.10.3.7 replace-fileext

Replaces the extension of the file path supplied by the $filepath parameter with the one supplied by the connection to the $extension parameter.

```
fr replace-fileext
  $filepath | $result-filepath
```

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filepath</td>
<td>Mandatory argument. Supplies the file path to be processed.</td>
</tr>
<tr>
<td>extension</td>
<td>Mandatory argument. Supplies the new extension to use.</td>
</tr>
</tbody>
</table>

Example
If you supply "c:\data\Sample.log" as $filepath, and ".txt" as $extension, the result is c:\data\Sample.txt.
7.10.3.8 resolve-filepath

Resolves a relative file path against a base folder. The function supports '.' (current directory) and '..' (parent directory).

\[f_{\text{resolve-filepath}} \]

- **basefolder**: Mandatory argument. Supplies the base directory relative to which the path should be resolved. This can be an absolute or relative path.
- **filepath**: Mandatory argument. Supplies the relative file path to be resolved.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>basefolder</td>
<td>Mandatory argument. Supplies the base directory relative to which the path should be resolved. This can be an absolute or relative path.</td>
</tr>
<tr>
<td>filepath</td>
<td>Mandatory argument. Supplies the relative file path to be resolved.</td>
</tr>
</tbody>
</table>

Examples

In the mapping below, the relative file path ..\route.gpx is resolved against the C:\data directory.

The mapping result is C:\\route.gpx.

7.10.4 core | generator functions

The core / generator functions library includes functions which generate values.

7.10.4.1 auto-number

Generates integer numbers in a sequence (for example, 1,2,3,4, ...). It is possible to set the starting integer, the increment value, and other options by means of parameters.
The exact order in which functions are called by the generated mapping code is undefined. MapForce may need to cache calculated results for reuse, or evaluate expressions in any order. Also, unlike other functions, the `auto-number` function returns a different result when called multiple times with the same input parameters. Therefore, it is strongly recommended to use the `auto-number` function cautiously. In some cases, it is possible to achieve the same result by using the `position` function instead.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>global-id</td>
<td>Optional parameter. If a mapping design contains multiple <code>auto-number</code> functions, they will generate sequences with duplicate (overlapping) numbers. To make all <code>auto-number</code> functions aware of each other, and thus generate sequences that do not overlap, connect a common string (for example, a constant) to the <code>global-id</code> input of each <code>auto-number</code> function.</td>
</tr>
<tr>
<td>start-with</td>
<td>Optional parameter. Specifies the integer with which the generated sequence begins. The default value is 1.</td>
</tr>
<tr>
<td>increment</td>
<td>Optional parameter. Specifies the increment value. The default value is 1.</td>
</tr>
<tr>
<td>restart-on-change</td>
<td>Optional parameter. Resets the counter to <code>start-with</code>, when the content of the connected item changes.</td>
</tr>
</tbody>
</table>

Example

The following mapping is a variation of the `ParentContext.mfd` mapping discussed in the [Example: Changing the Parent Context](#).

The goal of the mapping illustrated below is to generate multiple XML files, one for each department in the source XML file. There are some departments with the same name (that's because they belong to different parent offices). For this reason, each generated file name must begin a sequential number, for example `1-Administration.xml`, `2-Marketing.xml`, and so on.
To achieve the mapping goal, the `auto-number` function was used. The result of this function is concatenated with a dash character, followed by the department name, followed by the ".xml" string in order to create the unique name of the generated file. Importantly, the third parameter of the `concat` function (the department name) has a `priority context` applied. This has the effect that the `auto-number` function is called in the context of each department, and produces the required sequential values. If priority context were not used, the `auto-number` function would keep generating number 1 (in the absence of any context), and duplicate file names would be generated as a consequence.

7.10.5 core | logical functions

Logical functions are (generally) used to compare input data and return a Boolean "true" or "false". They are generally used to test data before passing on a subset to the target component using a `filter`. Nearly all logical functions have the following structure:

input parameters = a | b, or value1 | value2
output parameter = result

The evaluation result depends on the input values as well as the data types used for the comparison. For example, the "less than" comparison of the integer values 4 and 12 yields the boolean value "true", since 4 is less than 12. If the two input parameters contain string values "4" and "12", the lexical analysis results in the output value "false", since "4" is alphabetically greater than the first character "1" of the second operand (12).

If all input values are of the same data type, then the comparison is done for the common type. If input values are of different types (for example, integer and string, or string and date), then the data type used for the comparison is the most general (least restrictive) of the two.
Namely, before comparing two values of different types, all input values are converted to a common data type. Using the previous example, the data type string is less restrictive than integer. Comparing integer value 4 with the string "12" converts the integer value 4 to the string "4", which is then compared with the string "12".

Note: Logical functions cannot be used to test the existence of null values. If you supply a null value as argument to a logical function, it returns a null value. For more information about handling null values, see Nil Values / Nillable.

7.10.5.1 equal

Returns Boolean **true** if \(a \) is equal to \(b \); **false** otherwise.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
<tr>
<td>(b)</td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

7.10.5.2 equal-or-greater

Returns Boolean **true** if \(a \) is equal to or greater than \(b \); **false** otherwise.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters
7.10.5.3 equal-or-less

Returns Boolean `true` if `a` is equal to or less than `b`; `false` otherwise.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>b</code></td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>

7.10.5.4 greater

Returns Boolean `true` if `a` is greater than `b`; `false` otherwise.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>
7.10.5.5 less

Returns Boolean true if a is less than b; false otherwise.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
<tr>
<td>b</td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>

7.10.5.6 logical-and

Returns Boolean true only if each input value is true; false otherwise. You can connect the result to another logical-and function and thus join an arbitrary number of conditions with logical AND, in order to test that they all return true. Also, this function can be extended to take additional arguments, see Add or Delete Function Arguments.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
<tr>
<td>value2</td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>
Example
The mapping illustrated below returns \texttt{true} because all input values to the \texttt{logical-and} function are \texttt{true} as well. If any of the input values were \texttt{false}, then the mapping's result would be \texttt{false} as well.

See also \textit{Example: Look-up and Concatenation}.

7.10.5.7 \texttt{logical-not}
Inverts or flips the logical result of the input value. For example, if \texttt{value} is \texttt{true}, the function's result is \texttt{false}. If \texttt{value} is \texttt{false}, then result is \texttt{true}.

\begin{center}
\includegraphics[width=0.5\textwidth]{logical-not}
\end{center}

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory parameter. Provides the input value.</td>
</tr>
</tbody>
</table>

7.10.5.8 \texttt{logical-or}
This function requires both input values to be Boolean. If at least one of the input values is \texttt{true}, then the result is \texttt{true}. Otherwise, the result is \texttt{false}.

This function can be extended to take additional arguments, see \textit{Add or Delete Function Arguments}.
Function Library Reference

813

Functions

Altova MapForce 2021 Professional Edition

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>Mandatory parameter. Provides the first value to compare.</td>
</tr>
<tr>
<td>value2</td>
<td>Mandatory parameter. Provides the second value to compare.</td>
</tr>
</tbody>
</table>

Example

The result of the mapping below is **true**, because at least one of the function's arguments is **true**.

7.10.5.9 not-equal

Returns Boolean **true** if a is not equal to b; **false** otherwise.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.
7.10.6 core | math functions

Math functions are used to perform basic mathematical operations on data. Note that they cannot be used to perform computations on durations or datetime values.

Most math functions take two input parameters (value1, value2) that are operands of the mathematical operation. The input values are automatically converted to decimal type for further processing. The result of math functions is also of decimal type.

The example shown above adds 20% sales tax to each of the articles mapped to the target component.

7.10.6.1 add

Adds value1 to value2 and returns the result as a decimal value. This function can be extended to take additional arguments, see Add or Delete Function Arguments.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>Mandatory parameter. Provides the first operand.</td>
</tr>
<tr>
<td>value2</td>
<td>Mandatory parameter. Provides the second operand.</td>
</tr>
</tbody>
</table>

7.10.6.2 ceiling

Returns the smallest integer that is greater than or equal to value.

![ceiling function]

Example

If the input value is 11.2, then applying the `ceiling` function to it makes the result 12, i.e. the smallest integer that is greater than 11.2.

7.10.6.3 divide

Divides `value1` by `value2` and returns the result as decimal value. The result precision depends on the target language. Use the `round-precision` function to define the precision of result.

![divide function]

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory parameter. Provides the function's input value.</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>Mandatory parameter. Provides the first operand.</td>
</tr>
<tr>
<td>value2</td>
<td>Mandatory parameter. Provides the second operand.</td>
</tr>
</tbody>
</table>

7.10.6.4 floor

Returns the greatest integer that is less than or equal to value.

\[\text{floor}(\text{value}) \]

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory parameter. Provides the function's input value.</td>
</tr>
</tbody>
</table>

Example

If the input value is 11.7, then applying the \texttt{floor} function to it makes the result 11, i.e. the greatest integer than is less than 11.7.

7.10.6.5 modulus

Returns the remainder of dividing value1 by value2.

\[\text{modulus}(\text{value1}, \text{value2}) \]

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>Mandatory parameter. Provides the first operand.</td>
</tr>
<tr>
<td>value2</td>
<td>Mandatory parameter. Provides the second operand.</td>
</tr>
</tbody>
</table>

Example

If the input values are 1.5 and 1, then the result of the \textit{modulus} function is 0.5. The explanation is that \(1.5 \div 1\) leaves a remainder of 0.5.

If the input values are 9 and 3, then the result is 0, since \(9 \div 3\) leaves no remainder.

7.10.6.6 multiply

Multiplies \textit{value1} by \textit{value2} and returns the result as a decimal value.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>Mandatory parameter. Provides the first operand.</td>
</tr>
<tr>
<td>value2</td>
<td>Mandatory parameter. Provides the second operand.</td>
</tr>
</tbody>
</table>

7.10.6.7 round

Returns the value rounded to the nearest integer. When the value is exactly in between two integers, the "Round Half Towards Positive Infinity" algorithm is used. For example, the value "10.5" gets rounded to "11", and the value "-10.5" gets rounded to "-10".
Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory parameter. Provides the function's input value.</td>
</tr>
</tbody>
</table>

7.10.6.8 round-precision

Rounds the input value to \(N \) decimal places, where \(N \) is the \textbf{decimals} argument.

\[
\text{round-precision} \left(\text{value} \right) \quad \text{decimals} \rightarrow \text{result}
\]

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Mandatory parameter. Provides the function's input value.</td>
</tr>
<tr>
<td>decimals</td>
<td>Mandatory parameter. Specifies the number of decimals to round to.</td>
</tr>
</tbody>
</table>

Example
Rounding the value \(2.777777 \) to 2 decimals yields \(2.78 \). Rounding the value \(0.1234 \) to 3 decimals yields \(0.123 \).

7.10.6.9 subtract

Subtracts \textbf{value2} from \textbf{value1} and returns the result as decimal value.

\[
\text{subtract} \left(\text{value1}, \text{value2} \right) \rightarrow \text{result}
\]
Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>Mandatory parameter. Provides the first operand.</td>
</tr>
<tr>
<td>value2</td>
<td>Mandatory parameter. Provides the second operand.</td>
</tr>
</tbody>
</table>

7.10.7 core | node functions

The functions from the core | node functions library allow you to access information about nodes on a mapping component (such as the node name or annotation), or to process nillable elements, see also Nil Values / Nillable.

Be aware that there is an alternative way to access node names, which does not require node functions at all, see Mapping Node Names.

The mapping illustrated below shows a few node functions that get information from the msg:InterchangeHeader node of the source XML file. More specifically, the following information is extracted:

1. The node-name function returns the qualified name of the node, which includes the node prefix.
2. The local-name function returns just the local part.
3. The static-node-name function is similar to the node-name function, but is available in XSLT 1.0 as well.
4. The static-node-annotation function gets the element's annotation as it was defined in the XML schema.

The output of the mapping is as follows (excluding the XML and namespace declarations):
7.10.7.1 is-xsi-nil

Returns true if the element node has the xsi:nil attribute set to true.

\[
\text{is-xsi-nil}
\]

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>element</td>
<td>Mandatory parameter. Must be connected to the source node that is to be checked.</td>
</tr>
</tbody>
</table>

Example
The mapping design illustrated below copies data from a source to a target XML file conditionally, and also illustrates the usage of several functions, including is-xsi-nil. This mapping is called HandlingXsiNil.mfd and can be found in the `<Documents>\Altova\MapForce2021\MapForceExamples` directory.
As illustrated above, the \texttt{is-xsi-nil} function checks whether the \texttt{xsi:nil} attribute is "true" for the \texttt{state} item in the source file. If this attribute is "false", the filter will copy the parent \texttt{Address} element to the target. The source XML file looks as follows (excluding the XML and namespace declarations):

\begin{verbatim}
<BranchOffices>
 <Name>Nanonull</Name>
 <Office>
 <Name>Nanonull Research Outpost</Name>
 <EMail>sp@nanonull.com</EMail>
 <Fax xsi:nil="true"/>
 <Phone>+8817 3141 5926</Phone>
 <Address>
 <city>South Pole</city>
 <street xsi:nil="true"/>
 <zip xsi:nil="true"/>
 </Address>
 <Contact>
 <first>Scott</first>
 <last>Amundsen</last>
 </Contact>
 </Office>
</BranchOffices>
\end{verbatim}

The result of the mapping is that no \texttt{Address} is copied to the target at all, because there is only one \texttt{Address} in the source, and the \texttt{xsi:nil} attribute is set to "true" for the \texttt{state} element. Consequently, the mapping output is as follows:
7.10.7.2 local-name

Returns the local name of the node. Unlike the `node-name` function, `local-name` does not return the node's prefix. If the node does not have a prefix, then `local-name` and `node-name` return the same value.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>node</code></td>
<td>Mandatory parameter. Connect this input to the node whose name you want to get.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

7.10.7.3 node-name

Returns the qualified name (QName) of the connected node. If the node is an XML `text()` node, an empty QName is returned. This function works only on those nodes that have a name. If XSLT 2.0 is the target language (which calls `fn::node-name`), the function returns an empty sequence for nodes which have no names.

Note: Getting the node name is not supported for "File input" nodes, database tables or fields, XBRL, Excel, JSON, or Protocol Buffers fields.
Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>Mandatory parameter. Connect this input to the node whose name you want to get.</td>
</tr>
</tbody>
</table>

7.10.7.4 set-xsi-nil
Sets the target node to xsi:nil.

7.10.7.5 static-node-annotation
Returns the string with annotation of the connected node. The input must be: (i) a source component node, or (ii) a user-defined function of type "inline" that is directly connected to a parameter, which in turn is directly connected to a node in the calling mapping.

The connection must be direct. It cannot pass through a filter or a regular (not "inline") user-defined function. This is a pseudo-function, which is replaced at generation time with the text acquired from the connected node, and is therefore available for all languages.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>Mandatory parameter. Connect this input to the node whose annotation you want to get.</td>
</tr>
</tbody>
</table>

7.10.7.6 static-node-name

Returns the string with the name of the connected node. The input must be: (i) a source component node, or (ii) a user-defined function of type "inline" that is directly connected to a parameter, which in turn is directly connected to a node in the calling mapping.

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined function. This is a pseudo-function, which is replaced at generation time with the text acquired from the connected node, and is therefore available for all languages.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>Mandatory parameter. Connect this input to the node whose name you want to get.</td>
</tr>
</tbody>
</table>

7.10.7.7 substitute-missing-with-xsi-nil

For nodes with simple content, this function substitutes any missing (or null values) of the source component, with the xsi:nil attribute in the target node.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Mandatory parameter. Connect this input to the node whose name you want to get.</td>
</tr>
</tbody>
</table>

7.10.8 core | QName functions

QName functions provide ways to manipulate the Qualified Names (QName) in XML documents.

7.10.8.1 QName

Constructs a QName from a namespace URI and a local part. Use this function to create a QName in a target component. The uri and node-name parameters can be supplied by a constant function.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>uri</td>
<td>Mandatory. Provides the URI.</td>
</tr>
<tr>
<td>node-name</td>
<td>Mandatory. Provides the name of the node.</td>
</tr>
</tbody>
</table>

7.10.8.2 local-name-from-QName

Extracts the local name part from a value of type xs:QName. Note that, unlike the local-name function which returns the local name of the node, this function processes the content of the item connected to the qname input.
Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qname</td>
<td>Mandatory. Provides the function's input value, of type <code>xs:QName</code>.</td>
</tr>
</tbody>
</table>

7.10.8.3 namespace-uri-from-QName

Returns the namespace URI part of the QName value supplied as argument.

\[
\text{name} : \text{namespace-uri-from-QName} \\
\quad \text{qname} \rightarrow \text{result} \\
\]

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qname</td>
<td>Mandatory. Provides the function's input value.</td>
</tr>
</tbody>
</table>

Example

The following XML file contains a QName value, `o:name`. Note that the prefix “o” is mapped to the namespace `http://NamespaceTest.com/Order`.

```
<?xml version="1.0" encoding="utf-8"?>
<p:Purchase xsi:schemaLocation="http://NamespaceTest.com/Purchase Main.xsd"
    xmlns:p="http://NamespaceTest.com/Purchase"
    xmlns:o="http://NamespaceTest.com/Order"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <p:Order><o:name/></p:Order>
</p:Purchase>
```

A mapping that processes the QName value and gets the namespace URI is illustrated below:
The output of this mapping is \textit{http://NamespaceTest.com/Order}.

7.10.9 core | sequence functions

Sequence functions allow processing of input sequences and grouping of their content.

7.10.9.1 distinct-values

Processes the sequence of values connected to the \texttt{values} input and returns only the distinct values, as a sequence. This is useful when you need to remove duplicate values from a sequence and copy only the unique items to the target component.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{values}</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
</tbody>
</table>

Example

The following XML file contains information about employees of a demo company. Some employees have the same role; therefore, the "role" attribute role contains duplicate values. For example, both "Loby Matise" and "Susi Sanna" have the role "Support".

```xml
<?xml version="1.0" encoding="UTF-8"?>
<KeyValueList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation="KeyValueList.xsd">
```
Let's suppose that you need to extract a list of all unique role names that occur in this XML file. This can be achieved with a mapping like the one below:

```
<Item>
  <Property Key="role">Manager</Property>
  <Property Key="First">Vernon</Property>
  <Property Key="Last">Callaby</Property>
</Item>
<Item>
  <Property Key="role">Programmer</Property>
  <Property Key="First">Frank</Property>
  <Property Key="Last">Further</Property>
</Item>
<Item>
  <Property Key="role">Support</Property>
  <Property Key="First">Loby</Property>
  <Property Key="Last">Matise</Property>
</Item>
<Item>
  <Property Key="role">Support</Property>
  <Property Key="First">Susi</Property>
  <Property Key="Last">Sanna</Property>
</Item>
</KeyValueList>
```

As a result, the mapping output is as follows (excluding the XML and schema declarations):

```
<items>
  <item>Manager</item>
</items>
```
7.10.9.2 exists

Returns true if the connected node exists; false otherwise. Since it returns a Boolean value, this function is typically used with filters, to filter out only records which have (or perhaps do not have) a child element or attribute.

<table>
<thead>
<tr>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0</td>
<td></td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>The node to be tested for existence.</td>
</tr>
</tbody>
</table>

Examples

The following mapping illustrates how to filter data with the help of exists function. This mapping is called PersonListsForAllBranchOffices.mfd and it can be found in the <Documents>\Altova\MapForce2021\MapForceExamples directory.
In the source file `BranchOffices.xml`, there are three `Office` elements. Notably, one of the offices does not have any `Contact` child elements. The goal of the mapping is many-fold:

a) for each office, extract a list of contacts that exist in that office
b) for each office, create a separate XML file with the same name as the office
c) do not generate the XML file if the office has no contacts.

To achieve these goals, a filter was added to the mapping. The filter passes on to the target only those `Office` items where at least one `Contact` item exists. This Boolean condition is provided by the `exists` function. If the function's result is true, then the name of the office is concatenated with the string `.xml` in order to produce the target file name. For more information about generating file names from the mapping, see [Processing Multiple Input or Output Files Dynamically](#).

Another example is the following mapping:
```xml
<Documents>\Altova\MapForce2021\MapForceExamples\HasMarketingExpenses.mfd
```
Here, if an `expense-item` exists in the source XML, then the `hasExpenses` attribute is set to `true` in the target XML file.
Function Library Reference

831

7.10.9.3 first-items

Returns the first \(N \) items of the input sequence, where \(N \) is supplied by the \textit{count} parameter.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{nodes/rows}</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>\textit{count}</td>
<td>Optional parameter. Specifies how many items should be retrieved from the input sequence. The default value is 1.</td>
</tr>
</tbody>
</table>
Example

The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the `first-items` function and the result is written to a target XML file.

Because the `count` argument has no value, the default value of 1 applies. As a result, only the first value from the sequence is generated in the mapping output:

```
<items>
  <item>1</item>
</items>
```

For a more realistic example, see the `FindHighestTemperatures.mfd` mapping discussed in [Supplying Parameters to the Mapping](#).

7.10.9.4 generate-sequence

Creates a sequence of integers using the "from" and "to" parameters as the boundaries.

```
generate-sequence
```

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>Optional parameter. Specifies the integer that the sequence should start with (lower boundary). The default value is 1.</td>
</tr>
<tr>
<td>to</td>
<td>Mandatory parameter. Specifies the integer that the sequence should end with (upper boundary).</td>
</tr>
</tbody>
</table>
7.10.9.5 group-adjacent

The `group-adjacent` function groups the items connected to the `nodes/rows` input by the key connected to the `key` input. Note that this function places items that share the same key into separate groups if they are not adjacent. If multiple consecutive (adjacent) items share the same key, they are placed into the same group.

```
<group-adjacent
  <nodes/rows groups>
  <key>

For example, in the abstract transformation illustrated below, the grouping key is "Department". The left side of the diagram shows the input data while the right side shows the output data after grouping. The following takes place when the transformation runs:

- Initially, the first key, "Administration", creates a new group.
- The next key is different, so a second group is created, "Marketing".
- The third key is also different, so another group is created, "Engineering".
- The fourth key is the same as the third; therefore, this record is placed in the already existing group.
- Finally, the fifth key is different from the fourth, and this creates the last group.

As illustrated below, "Michelle Butler" and "Fred Landis" were grouped together because they have the same key and are adjacent. However, "Vernon Callaby" and "Frank Further" are in separate groups because they are not adjacent, even though they have the same key.

<table>
<thead>
<tr>
<th>Department</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>Vernon Callaby</td>
</tr>
<tr>
<td>Marketing</td>
<td>Susi Sanna</td>
</tr>
<tr>
<td>Engineering</td>
<td>Michelle Butler</td>
</tr>
<tr>
<td>Engineering</td>
<td>Fred Landis</td>
</tr>
<tr>
<td>Administration</td>
<td>Frank Further</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing</td>
<td>Susi Sanna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>Michelle Butler</td>
</tr>
<tr>
<td>Engineering</td>
<td>Fred Landis</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes/rows</td>
<td>This input must receive a connection from a mapping item that provides a</td>
</tr>
<tr>
<td></td>
<td>sequence of zero or more values. For example, the connection may</td>
</tr>
<tr>
<td></td>
<td>originate from a source XML item, a CSV field, a database record, and so</td>
</tr>
<tr>
<td></td>
<td>on.</td>
</tr>
<tr>
<td>key</td>
<td>The key by which to group items.</td>
</tr>
</tbody>
</table>

Example

Let's assume that your source data is an XML file with the following content (note that, in the code listing below, the namespace and XML declarations were removed for simplicity).

```xml
<company>
 <person department="Administration" name="Vernon Callaby"/>
 <person department="Marketing" name="Susi Sanna"/>
 <person department="Engineering" name="Michelle Butler"/>
 <person department="Engineering" name="Fred Landis"/>
 <person department="Administration" name="Frank Further"/>
</company>
```

The business requirement is to group person records by department, provided they are adjacent. To achieve this, the following mapping invokes the `group-adjacent` function, and supplies `department` as `key`.

The mapping result is as follows:

```xml
<groups>
 <group>
 <record key="Administration" value="Vernon Callaby"/>
 </group>
 <group>
 <record key="Marketing" value="Susi Sanna"/>
 </group>
 <group>
 <record key="Engineering" value="Michelle Butler"/>
 <record key="Engineering" value="Fred Landis"/>
 </group>
</groups>
```
This example, together with other grouping examples, is part of the following mapping file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\GroupingFunctions.mfd`. Remember to click the Preview button applicable to the function you want to preview, before clicking the Output tab.

### 7.10.9.6 group-by

The **group-by** function creates groups of records according to some grouping key that you specify.

For example, in the abstract transformation illustrated below, the grouping key is "Department". Since there are three unique departments in total, applying the group-by function would create three groups:

**Languages**

Built-in, C++, C#, Java, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes/rows</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>key</td>
<td>The key by which to group items.</td>
</tr>
</tbody>
</table>

Example

Let’s assume that your source data is an XML file with the following content (note that, in the code listing below, the namespace and XML declarations were removed for simplicity).

```xml
<company>
 <person department="Administration" name="Vernon Callaby"/>
 <person department="Marketing" name="Susi Sanna"/>
 <person department="Engineering" name="Michelle Butler"/>
 <person department="Engineering" name="Fred Landis"/>
 <person department="Administration" name="Frank Further"/>
</company>
```

The business requirement is to group person records by department. To achieve this, the following mapping invokes the `group-by` function, and supplies `department` as key.

The mapping result is as follows:

```xml
<groups>
 <group>
 <record key="Administration" value="Vernon Callaby"/>
 <record key="Administration" value="Frank Further"/>
 </group>
 <group>
 <record key="Marketing" value="Susi Sanna"/>
 </group>
 <group>
 <record key="Engineering" value="Michelle Butler"/>
 <record key="Engineering" value="Fred Landis"/>
 </group>
</groups>
```

This example, together with other grouping examples, is part of the following mapping file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\GroupingFunctions.mfd` Remember to click the Preview button applicable to the function you want to preview, before clicking the Output tab.
7.10.9.7 group-ending-with

The `group-ending-with` function takes a Boolean condition as argument. If the Boolean condition is true, a new group is created, ending with the record that satisfies the condition.

```
<group-ending-with
 <nodes/rows> groups
 <-bool>
```

In the example below, the condition is that "Key" must be equal to "trailing". This condition is true for the third and fifth records, so two groups are created as a result:

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>A</td>
</tr>
<tr>
<td>line</td>
<td>B</td>
</tr>
<tr>
<td>trailing</td>
<td>Total 1</td>
</tr>
<tr>
<td>line</td>
<td>C</td>
</tr>
<tr>
<td>trailing</td>
<td>Total 2</td>
</tr>
</tbody>
</table>

Note: One additional group is created if records exist after the last one that satisfies the condition. For example, if there were more "line" records after the last "trailing" record, these would all be placed into a new group.

Languages
Built-in, C++, C#, Java, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes/rows</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>bool</td>
<td>Provides the Boolean condition that starts a new group when true.</td>
</tr>
</tbody>
</table>

Example
Let's assume that your source data is an XML file with the following content (note that, in the code listing below, the namespace and XML declarations were removed for simplicity).
The business requirement is to create groups for each "trailing" record. Each group must also include any "line" records that precede the "trailing" record. To achieve this, the following mapping invokes the `group-ending-with` function. In the mapping below, whenever the `key` name is equal to "trailing", the argument supplied to `bool` becomes `true`, and a new group is created.

```xml
<records>
 <record key="line" value="A"/>
 <record key="line" value="B"/>
 <record key="trailing" value="Total 1"/>
 <record key="line" value="C"/>
 <record key="trailing" value="Total 2"/>
</records>
```

This example, together with other grouping examples, is part of the following mapping file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\GroupingFunctions.mfd`. Remember to click the `Preview` button applicable to the function you want to preview, before clicking the `Output` tab.

### 7.10.9.8 group-into-blocks

The `group-into-blocks` function creates equal groups that contain exactly N items, where N is the value you supply to the `block-size` argument. Note that the last group may contain N items or less, depending on the number of items in the source.
In the example below, block-size is 2. Since there are five items in total, each group contains exactly two items, except for the last one.

<table>
<thead>
<tr>
<th>Name</th>
<th>block-size = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernon Callaby</td>
<td></td>
</tr>
<tr>
<td>Susi Sanna</td>
<td></td>
</tr>
<tr>
<td>Michelle Butler</td>
<td></td>
</tr>
<tr>
<td>Fred Landis</td>
<td></td>
</tr>
<tr>
<td>Frank Further</td>
<td></td>
</tr>
</tbody>
</table>

Example
Let's assume that your source data is an XML file with the following content (note that, in the code listing below, the namespace and XML declarations were removed for simplicity).

```xml
<company>
 <person department="Administration" name="Vernon Callaby"/>
 <person department="Marketing" name="Susi Sanna"/>
 <person department="Engineering" name="Michelle Butler"/>
 <person department="Engineering" name="Fred Landis"/>
 <person department="Administration" name="Frank Further"/>
</company>
```
The business requirement is to group person records into blocks of two items each. To achieve this, the following mapping invokes the `group-into-blocks` function, and supplies the integer value "2" as `block-size`.

![Diagram](image)

The mapping result is as follows:

```xml
<groups>
 <group>
 <record key="Administration" value="Vernon Callaby"/>
 <record key="Marketing" value="Susi Sanna"/>
 </group>
 <group>
 <record key="Engineering" value="Michelle Butler"/>
 <record key="Engineering" value="Fred Landis"/>
 </group>
 <group>
 <record key="Administration" value="Frank Further"/>
 </group>
</groups>
```

Note that the last group contains only one item, since the total number of items (5) cannot be divided evenly by 2.

This example, together with other grouping examples, is part of the following mapping file: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\GroupingFunctions.mfd`. Remember to click the Preview button applicable to the function you want to preview, before clicking the Output tab.

### 7.10.9.9 group-starting-with

The `group-starting-with` function takes a Boolean condition as argument. If the Boolean condition is true, a new group is created, starting with the record that satisfies the condition.

![Diagram](image)

In the example below, the condition is that "Key" must be equal to "heading". This condition is true for the first and fourth records, so two groups are created as a result:
Note: One additional group is created if records exist before the first one that satisfies the condition. For example, if there were more “line” records before the first “heading” record, these would all be placed into a new group.

Languages
Built-in, C++, C#, Java, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes/rows</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>bool</td>
<td>Provides the Boolean condition that starts a new group when true.</td>
</tr>
</tbody>
</table>

Example
Let’s assume that your source data is an XML file with the following content (note that, in the code listing below, the namespace and XML declarations were removed for simplicity).

```xml
<records>
 <record key="heading" value="Intro"/>
 <record key="line" value="A"/>
 <record key="line" value="B"/>
 <record key="heading" value="Body"/>
 <record key="line" value="C"/>
</records>
```

The business requirement is to create groups for each “heading” record. Each group must also include any “line” records that follow the “heading” record. To achieve this, the following mapping invokes the group-starting-with function. In the mapping below, whenever the key name is equal to “heading”, the argument supplied to bool becomes true, and a new group is created.
The mapping result is as follows:

```
<groups>
 <group>
 <record key="heading" value="Intro"/>
 <record key="line" value="A"/>
 <record key="line" value="B"/>
 </group>
 <group>
 <record key="heading" value="Body"/>
 <record key="line" value="C"/>
 </group>
</groups>
```

This example, together with other grouping examples, is part of the following mapping file: `<Documents>`Altova\MapForce2021\MapForceExamples\Tutorial\GroupingFunctions.mfd. Remember to click the Preview button applicable to the function you want to preview, before clicking the Output tab.

### 7.10.9.10 item-at

Returns an item from the sequence of nodes/rows supplied as argument, at the position supplied by the position argument. The first item is at position 1.

#### Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes/rows</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>position</td>
<td>This integer specifies which item from the sequence of items is to be returned.</td>
</tr>
</tbody>
</table>

Example

The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the `item-at` function and the result is written to a target XML file.

![Diagram of a mock-up mapping]

Because the `position` argument is set to 3, only the third value from the sequence is passed on to the target. Consequently, the mapping output is as follows (excluding the XML and schema declarations):

```xml
<items>
 <item>3</item>
</items>
```

7.10.9.11 items-from-till

Returns a sequence of `nodes/rows` using the "from" and "till" parameters as the boundaries. The first item is at position 1.

![Diagram of the `items-from-till` function]

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes/rows</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>from</td>
<td>This integer specifies the starting position from which items must be retrieved.</td>
</tr>
<tr>
<td>till</td>
<td>This integer specifies the position up to which items must be retrieved.</td>
</tr>
</tbody>
</table>

Example

The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the `items-from-till` function and the result is written to a target XML file.

Because the `from` and `till` arguments are set to 3 and 5, respectively, only the subset of values from 3 through 5 are passed on to the target. Consequently, the mapping output is as follows (excluding the XML and schema declarations):

```
<items>
 <item>3</item>
 <item>4</item>
 <item>5</item>
</items>
```

7.10.9.12 last-items

Returns the last \( N \) items of the input sequence, where \( N \) is supplied by the `count` parameter. The first item is at position "1".
Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodes/rows</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>count</td>
<td>Optional parameter. Specifies how many items should be retrieved from the input sequence. The default value is 1.</td>
</tr>
</tbody>
</table>

Example
The following mock-up mapping generates a sequence of 10 values. The sequence is processed by the last-items function and the result is written to a target XML file.

Because the count argument is set to 3, only the last three values from the sequence are passed on to the target. Consequently, the mapping output is as follows (excluding the XML and schema declarations):

```
<items>
 <item>8</item>
 <item>9</item>
 <item>10</item>
</items>
```

7.10.9.13 not-exists
Returns false if the connected node exists; true otherwise. This function is the opposite of exists function, but, otherwise, it has the same use.
Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>The node to be tested for non-existence.</td>
</tr>
</tbody>
</table>

7.10.9.14 position

Returns the position of an item within the sequence of items currently being processed. This can be used, for example, to auto-number items sequentially.

Example

The following mapping illustrates using the position function in order to generate unique identification values in data generated by the mapping. This mapping is accompanied by a mapping design file that is available at the following path:

<Documents>\Altova\MapForce2021\MapForceExamples\ContactsFromBranchOffices.mfd.
In the mapping above, the source XML file contains three branch offices. A branch office may contain an arbitrary number of Contact child items. The goals of the mapping are as follows:

- Extract all Contact items from the source XML file and write them to the target XML file.
- Each contact must be assigned a unique identification number (the ID item in the target XML).
- The ID of each contact must take the form CXX-YYYY, where X identifies the office number, and Y identifies the contact number. If the office number is less than two characters, it must be left-padded with zeros. Likewise, if the contact number takes less than five characters, it must be left-padded with zeros. Consequently, a valid identification number of the first contact from the first office should look like C01-00001.

To achieve the mapping goals, several MapForce functions have been used, including the position function. The upper position function gets the position of each office. The lower one gets the position of each contact, in the context of each office.

When using the position function, it is important to consider the current mapping context. More specifically, when the mapping runs, the initial mapping context is established from the root item of the target component to the source item connected to it (even indirectly via functions). In this example, the upper position function processes the sequence of all offices and it initially generates the value 1, corresponding to the first office in the sequence. The lower position function generates sequential numbers corresponding to the contact's position in the context of that office (1, 2, 3, and so on). Note that this "inner" sequence will be reset (and thus start from 1 again) when the next office gets processed. Both pad-string-left functions apply padding to the generated numbers, according to the requirements stated previously. The concat function operates in the context of each contact (because of the parent connection from the source to the target Contact). It joins all the computed values and returns the unique identification number of each contact.

The output generated from the mapping above is shown below (note that some of the records were removed for readability):

```xml
<Contacts>
 <Contact>
 <ID>C01-00001</ID>
 <First>Vernon</First>
 <Last>Callaby</Last>
 </Contact>
 <Contact>
 <ID>C02-00001</ID>
 <First>Juliet</First>
 <Last>Crawley</Last>
 </Contact>
</Contacts>
```
There may also be cases where you need to get the position of items resulting after applying a `filter`. Note that the filter component is not a sequence function, and it cannot be used directly in conjunction with the `position` function to find the position of filtered items. Indirectly, this is possible by adding a `variable` component to the mapping. For example, the mapping below is a simplified version of the previous one. Its mapping design file is available at the following path:

\<Documents\>\Altova\MapForce2021\MapForceExamples\PositionInFilteredSequence.mfd.

The result of variables in MapForce are always sequences. Therefore, in the mapping above, the `position` function iterates through the sequence created by the variable and returns the position of each item in that sequence. This mapping is discussed in more detail in Example: Filtering and Numbering Nodes.

7.10.9.15 replicate-item

Repeats every item in the input sequence the number of times specified in the `count` argument. If you connect a single item to the `node/row` input, the function returns \( N \) items, where \( N \) is the value of the `count` argument. If you connect a sequence of items to the `node/row` input, the function repeats each individual item in the sequence `count` times, processing one item at a time. For example, if `count` is 2, then the sequence 1, 2, 3...
produces $1, 1, 2, 2, 3, 3$. It is also possible to supply a different count value for each item in the input sequence, as illustrated in the example below.

```
replicate-item

\begin{array}{|l|l|}
\hline
\text{node/row} & \text{count} \\
\hline
\end{array}
```

**Languages**

Built-in, C++, C#, Java, XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node/row</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>count</td>
<td>Specifies the number of times to replicate each item or sequence connected to node/row.</td>
</tr>
</tbody>
</table>

**Example**

Let's assume that you have a source XML file with the following structure:

```xml
<SourceList>
 <person>
 <name>Michelle</name>
 <count>2</count>
 </person>
 <person>
 <name>Ted</name>
 <count>4</count>
 </person>
 <person>
 <name>Ann</name>
 <count>3</count>
 </person>
</SourceList>
```

With the help of the replicate-item function, you can repeat each person name a different number of times in a target component. To achieve this, connect the count node of each person to the count input of the replicate-item function:
The output is as follows:

```xml
<TargetLists>
 <TargetList>
 <TargetString>Michelle</TargetString>
 <TargetString>Michelle</TargetString>
 </TargetList>
 <TargetList>
 <TargetString>Ted</TargetString>
 <TargetString>Ted</TargetString>
 <TargetString>Ted</TargetString>
 <TargetString>Ted</TargetString>
 <TargetString>Ted</TargetString>
 </TargetList>
 <TargetList>
 <TargetString>Ann</TargetString>
 <TargetString>Ann</TargetString>
 <TargetString>Ann</TargetString>
 </TargetList>
</TargetLists>
```

### 7.10.9.16 replicate-sequence

Repeats all items in the input sequence the number of times specified in the `count` argument. For example, if `count` is 2, then the sequence `1,2,3` produces `1,2,3,1,2,3`.

---

### Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node/rows</td>
<td>This input must receive a connection from a mapping item that provides a</td>
</tr>
<tr>
<td></td>
<td>sequence① of zero or more values. For example, the connection may originate</td>
</tr>
<tr>
<td></td>
<td>from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>count</td>
<td>Specifies the number of times to replicate connected sequence.</td>
</tr>
</tbody>
</table>

Example

The following mock-up mapping generates the sequence 1, 2, 3. The sequence is processed by the replicate-sequence function and the result is written to a target XML file.

Because the count argument is set to 2, the sequence is replicated twice and then passed on to the target. Consequently, the mapping output is as follows (excluding the XML and schema declarations):

```
<items>
 <item>1</item>
 <item>2</item>
 <item>3</item>
 <item>1</item>
 <item>2</item>
 <item>3</item>
</items>
```

7.10.9.17 set-empty

Returns an empty sequence.

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.
### 7.10.9.18 skip-first-items

Skips the first N items of the input sequence, where N is supplied by the **count** argument, and returns the rest of the sequence.

$$f_{\text{skip-first-items}}\text{; nodes/rows; count \rightarrow results}$$

**Languages**

Built-in, C++, C#, Java, XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>node/rows</strong></td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td><strong>count</strong></td>
<td>Optional argument. Specifies the number of items to skip. The default value is 1.</td>
</tr>
</tbody>
</table>

**Example**

The following mock-up mapping generates the sequence 1, 2, 3. The sequence is processed by the `skip-first-items` function and the result is written to a target XML file.

Because the **count** argument is set to 2, the first two items are skipped and the remaining items are passed on to the target. Consequently, the mapping output is as follows (excluding the XML and schema declarations):

```xml
<items>
 <item>3</item>
</items>
```
7.10.9.19 substitute-missing

This function is a convenient combination of exists function and if-else condition. If the item connected to the node input exists, its content will be copied to the target. Otherwise, the content of the item connected to the replace-with input will be copied to the target.

```
<function name="substitute-missing"/>
``` node
```
<function name="substitute-missing"/>
``` replace-with
```
<function name="substitute-missing"/>
``` result

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>This input must receive a connection from a mapping item that provides a sequence of zero or more values. For example, the connection may originate from a source XML item, a CSV field, a database record, and so on.</td>
</tr>
<tr>
<td>replace-with</td>
<td>This input must receive a connection from a mapping item that provides the replacement value.</td>
</tr>
</tbody>
</table>

7.10.10 core | string functions

The string functions allow you to manipulate string data so as to extract parts of strings, test for sub-strings, retrieve information from strings, split strings, and others.

7.10.10.1 char-from-code

Returns the character representation of the decimal Unicode value (code) supplied as argument. **Tip:** To find the Unicode decimal code of a character, you can use the code-from-char function.

```
<function name="char-from-code"/>
``` code
```
<function name="char-from-code"/>
``` char

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>The Unicode value, as a decimal number.</td>
</tr>
</tbody>
</table>

Example

According to the charts available on the Unicode website (https://www.unicode.org/charts/), the exclamation mark character has the hexadecimal value of \texttt{0021}. The corresponding value in decimal format is \texttt{33}. Therefore, supplying \texttt{33} as argument to the \texttt{char-from-code} function will return the \texttt{!} character. See also Replacing Special Characters.

7.10.10.2 code-from-char

Returns the decimal Unicode value (code) of the character supplied as argument. If the string supplied as argument has multiple characters, then the code of the first character is returned.

Example

If the input \texttt{char} is the \$ (dollar sign) character, the function returns \texttt{36} (which is the decimal Unicode value for this character).

7.10.10.3 concat

Concatenates (appends) two or more values into a single result string. All input values are automatically converted to type "string". By default, this function has only two parameters, but you can add more. Click Add parameter (⇌) or Delete parameter (⇌) to add or remove parameters, see also Add or Delete Function Arguments.
Function Library Reference

Note: All the inputs to the `concat` function must have a value. If any of the inputs does not have a value, the function is not called and an error occurs. Be aware that an empty string is a valid input value; however, an empty sequence (such as the result of the `set-empty` function) is not a valid value and the function will fail as a result. To prevent this from happening, you can first process values with the `substitute-missing` function and then supply the result as input to the `concat` function.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>The first input value.</td>
</tr>
<tr>
<td>value2</td>
<td>The second input value.</td>
</tr>
<tr>
<td>valueN</td>
<td>The N input value.</td>
</tr>
</tbody>
</table>

Example
In the mapping illustrated below, the `concat` function joins the first name, the constant " ", and the last name. The returning value is then written to the `FullName` target item. The mapping of this function is available at the following path: `<Documents>\Altova\MapForce2021\MapForceExamples\HasMarketingExpenses.mfd`. 
7.10.10.4 contains

Returns Boolean true if the string value supplied as argument contains the sub-string supplied as argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The input value (that is, the &quot;haystack&quot;).</td>
</tr>
<tr>
<td>substring</td>
<td>The sub-string to look for (that is, the &quot;needle&quot;).</td>
</tr>
</tbody>
</table>

Example
If the input value is "category" and substring is "cat", the function returns true.
### 7.10.10.5 normalize-space

Returns the normalized input string. "Normalization" means that the leading and trailing spaces are removed, and then each sequence of multiple consecutive whitespace characters are replaced by a single whitespace character. The Unicode character for "space" is (U+0020).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The input string to normalize.</td>
</tr>
</tbody>
</table>

#### Example

If the input string is `The quick brown fox`, the function returns `The quick brown fox`.

### 7.10.10.6 starts-with

Returns Boolean `true` if the string supplied as argument starts with the sub-string supplied as argument; `false` otherwise.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The input string.</td>
</tr>
<tr>
<td>substr</td>
<td>The sub-string to check for.</td>
</tr>
</tbody>
</table>

#### Languages

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

#### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The input string.</td>
</tr>
<tr>
<td>substr</td>
<td>The sub-string to check for.</td>
</tr>
</tbody>
</table>
Example
If the input string is category and substr is cat, the function returns true.

7.10.10.7 string-length
Returns the number of characters in the string supplied as argument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The input string.</td>
</tr>
</tbody>
</table>

Example
If the input string is car, the function returns 3. If the input string is an empty string, the function returns 0.

7.10.10.8 substring
Returns the portion of the string specified by the start and length parameters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The input string.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>start</td>
<td>Specifies the starting position (index) from which the sub-string should be retrieved. The first index is 1.</td>
</tr>
<tr>
<td>length</td>
<td>Optional. Specifies the number of characters to retrieve. If the length parameter is not specified, the result is a fragment starting from start until the end of the string.</td>
</tr>
</tbody>
</table>

**Example**

If the input string is `MapForce`, start is 1, and length is 3, the function returns `Map`. If the input string is `MapForce`, start is 4, and length is not provided, the function returns `Force`.

### 7.10.10.9 substring-after

Returns the portion of the string that occurs after the first occurrence of `substr`. If `substr` does not occur in `string`, the function returns an empty string.

![substring-after](image)

**Languages**

Built-in, C++, C#, Java, XQuery, XSLT 1.0, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The input string.</td>
</tr>
<tr>
<td>substr</td>
<td>The sub-string. Any characters after the first occurrence of <code>substr</code> are the result of the function.</td>
</tr>
</tbody>
</table>

**Example**

If the input string is `MapForce`, and `substr` is `Map`, the function returns `Force`. If the input string is `2020/01/04` and `substr` is `/`, the function returns `01/04`.

### 7.10.10.10 substring-before

Returns the portion of the string that occurs before the first occurrence of `substr`. If `substr` does not occur in `string`, the function returns an empty string.
7.10.10.10.11  tokenize

Splits the input string into a sequence of strings using the delimiter supplied as argument.

Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>The input string.</td>
</tr>
<tr>
<td>delimiter</td>
<td>The delimiter to use.</td>
</tr>
</tbody>
</table>
Example

If the input string is A, B, C and the delimiter is , then the function returns a sequence of three strings: A, B, and C.

In the mock-up mapping illustrated above, the function's result is a sequence of strings. According to the general mapping rules, for each item in the source sequence, a new item is created in the target component. Consequently, the mapping output looks as follows:

```xml
<items>
 <item>A</item>
 <item>B</item>
 <item>C</item>
</items>
```

For a more elaborate example, see the tokenizeString1.mfd mapping available in the <Documents>\Altova\MapForce2021\MapForceExamples folder.

tokenizeString1.mfd

A fragment from the source XML file is shown below. The Tool element has two attributes: Name and Code. The Tool element data consists of comma-delimited text.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<AltovaTools xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="AltovaTools.xsd">
 <Version>2010</Version>
 <Tool Name="XMLSpy" Code="XS">XML editor, XSLT editor, XSLT debugger, XQuery editor, XQuery debugger, XML Schema / DTD editor, WSDL editor, SOAP debugger</Tool>
</AltovaTools>
```
The mapping does the following:

- The `tokenize` function receives data from the Tool source item and uses the comma delimiter to split that data into separate chunks. The first chunk is "XML editor", the second one is "XSLT editor", and so on.
- For each chuck resulting from the `tokenize` function, a new row is generated in the target. This happens thanks to the connection between the function's result and the Rows item in the target component.
- The result of the `tokenize` function is also mapped to the `left-trim` function, which removes the leading white space of each chunk.
- The result of the `left-trim` function (each chunk) is written to the Feature item of the target component.
- The target component output file has been defined as a CSV file (AltovaToolFeatures.csv) with the field delimiter being a semicolon (double click component to see settings).

The result of the mapping is that, for each chunk created by the `tokenize` function, a new row is created in the target CSV file. A fragment of the mapping output looks as follows:

```
Tool;Feature
XMLSpy;XML editor
XMLSpy;XSLT editor
XMLSpy;XSLT debugger
XMLSpy;XQuery editor
XMLSpy;XQuery debugger
XMLSpy;XML Schema / DTD editor
XMLSpy;WSDL editor
XMLSpy;SOAP debugger
MapForce;Data integration
MapForce;XML mapping
MapForce;database mapping
MapForce;text conversion
MapForce;EDI translator
MapForce;Excel mapping
```

### 7.10.10.12 `tokenize-by-length`

Splits the input string into a sequence of strings. The size of each resulting string is determined by the `length` parameter.
Function Library Reference

863

Function: tokenize-by-length

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>The input string.</td>
</tr>
<tr>
<td>length</td>
<td>Determines the length of each string in the generated sequence of strings.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Example

If the input string is ABCDEF and the length is 2, then the function returns a sequence of three strings: AB, CD, and EF.

In the mock-up mapping illustrated above, the function's result is a sequence of strings. According to the general mapping rules, for each item in the source sequence, a new item is created in the target component. Consequently, the mapping output looks as follows:

```
<items>
 <item>AB</item>
 <item>CD</item>
 <item>EF</item>
</items>
```

For a more elaborate example, see the tokenizeString2.mfd mapping available in the Documents\Altova\MapForce2021\MapForceExamples folder.
Functions Function Library Reference

The XML source file is shown below, and is the same as the one used in the previous example. The MissionKit element has two attributes: Edition and ToolCodes, but no MissionKit element content. Note that some of the XML content not relevant to this example has been removed.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<AltovaTools xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="AltovaTools.xsd">
 <Version>2010</Version>
 <Tool Name="XMLSpy" Code="XS"><!--...--></Tool>
 <Tool Name="MapForce" Code="MF"><!--...--></Tool>
 <Tool Name="StyleVision" Code="SV"><!--...--></Tool>
 <Tool Name="UModel" Code="UM"><!--...--></Tool>
 <Tool Name="DatabaseSpy" Code="DS"><!--...--></Tool>
 <Tool Name="DiffDog" Code="DD"><!--...--></Tool>
 <Tool Name="SchemaAgent" Code="SA"><!--...--></Tool>
 <Tool Name="SemanticWorks" Code="SW"><!--...--></Tool>
 <Tool Name="Authentic" Code="AU"><!--...--></Tool>
 <MissionKit Edition="Enterprise Software Architects" ToolCodes="XSMFSVUMDSDDSAW"/>
 <MissionKit Edition="Professional Software Architects" ToolCodes="XSMFSVUMDS"/>
 <MissionKit Edition="Enterprise XML Developers" ToolCodes="XSMFSVDDSAW"/>
 <MissionKit Edition="Professional XML Developers" ToolCodes="XSMFSV"/>
</AltovaTools>
```

The aim of the mapping is to generate a list showing which Altova tools are part of the respective MissionKit editions.

How the mapping works:

- The SelectMissionKit input component acts as a parameter to the mapping; it receives its default value from a constant, in this case "Enterprise XML Developers".
- The `equal` function compares the edition supplied as parameter with the `Edition` item from the source XML file and passes on the result to the `bool` parameter of the `ToolCodes` filter.
- The `node/row` input of the `ToolCodes` filter is supplied by the `ToolCodes` item of the source file. The value for the "Enterprise XML Developers" edition is: \texttt{XSMFSVDDSASW}.
- The `XSMFSVDDSASW` value is passed to the `on-true` parameter, and further to the `input` parameter of the `tokenize-by-length` function.
- The `tokenize-by-length` function splits the value \texttt{XSMFSVDDSASW} into multiple chunks of two characters each. The `length` parameter is \texttt{2}; therefore 6 chunks are created as a result.
- Each chunk is compared to the 2-character `Code` value from the source file (of which there are 9 items in total). The result of the comparison (true/false) is passed on to the `bool` parameter of the filter. Note that all chunks produced by the `tokenize-by-length` function are passed on to the `node/row` parameter of the filter.
- The `exists` functions now checks for existing/non-existing nodes passed on to it by the `on-true` parameter of the filter component. Existing nodes are those where there is a match between the `ToolCodes` chunk and the `Code` value. Non-existing nodes are those where there was no `ToolCodes` chunk to match a `Code` value.
- Each `bool` result of the `exists` function is passed on to the `if-else` component, which generates a "Y" in the target if the node exists, or an "N" if the node does not exist.

The result of the mapping is as follows:

```
Tool;MissionKit for Enterprise XML Developers
XMLSpy;Y
MapForce;Y
StyleVision;Y
UModel;N
DatabaseSpy;N
DiffDog;Y
SchemaAgent;Y
SemanticWorks;Y
Authentic;N
```

### 7.10.10.13 `tokenize-regexp`

Splits the input string into a sequence of strings. Any substring that matches the regular expression `pattern` supplied as argument defines the separator. The matched (separator) strings are not included in the result returned by the function.

**Note:** When generating C++, C#, or Java code, the advanced features of the regular expression syntax might differ slightly. See the regex documentation of each language for more information.
Languages
Built-in, C++, C#, Java, XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>The input string.</td>
</tr>
<tr>
<td>pattern</td>
<td>Provides a regular expression pattern. Any substring that matches the pattern will be treated as delimiter. For more information, see Regular expressions.</td>
</tr>
<tr>
<td>flags</td>
<td>Optional parameter. Provides the regular expression flags to be used. For example, the flag &quot;i&quot; instructs the mapping process to operate in case-insensitive mode.</td>
</tr>
</tbody>
</table>

Example
The goal of the mapping illustrated below is to split the string a, b c,d into a sequence of strings, where each alphabetic character is an item in the sequence. Any redundant whitespace or commas must be removed.

To achieve this goal, the regular expression pattern [ , ]+ was supplied as parameter to the tokenize-regexp function. This pattern has the following meaning:

- It matches any of the characters inside the character class [ , ]. Therefore, a split will occur whenever a comma or a space is encountered in the input string.
- The quantifier + specifies that one or more occurrences of the preceding character class are to be matched. Without this quantifier, each occurrence of space or comma would create a separate item in the resulting sequence of strings, which is not intended result.

The mapping output is as follows:

```xml
<items>
 <item>a</item>
 <item>b</item>
 <item>c</item>
 <item>d</item>
</items>
```
7.10.10.14 translate

Performs a character by character replacement. It looks in the value for characters contained in string1, and replaces each character for the one in the same position in the string2. When there are no corresponding characters in string2, the character is removed.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>The input string.</td>
</tr>
<tr>
<td>string1</td>
<td>Provides a list of search characters. The position of each character inside the string is important.</td>
</tr>
<tr>
<td>string2</td>
<td>Provides a list of replacement characters. The position of each replacement character must correspond to the one in string1.</td>
</tr>
</tbody>
</table>

Example

Let's suppose you want to convert the string [12,3] to (12.3). Namely, the square brackets must be replaced by round brackets, and any comma must be replaced by the dot character. To achieve this, you can call the translate function as follows:

In the mapping above, the first constant supplies the input string to be processed. The second and the third constant provide a list of characters as string1 and string2, respectively.

string1 [.,]
string2 (.,)
Notice that both string1 and string2 have the same number of characters. For each character in string1, the equivalent character at the same position from string2 will be used as a replacement. Consequently, the following replacements will take place:

- Each [ will be replaced by a (.
- Each ], will be replaced by a ].
- Each ^ will be replaced by a \\

The mapping output is as follows:

(1.2.3)

This function can also be used to strip certain characters selectively from a string. To achieve this, set the string1 parameter to the characters you want to remove, and string2 to an empty string. For example, the mapping below removes all digits from the string 38ab8a7a65xkh3.

The mapping output is as follows:

abaaxkh

### 7.10.11 db

The db library contains functions that allow you to define the mapping results when encountering null fields in databases.

#### 7.10.11.1 is-not-null

Returns false if the field is null; true otherwise.

Languages

Built-in, C++, C#, Java.
### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>The database field.</td>
</tr>
</tbody>
</table>

#### 7.10.11.2 is-null

Returns `true` if the field is null; `false` otherwise.

```xml
<fn is-null
 <field>result</field>
</fn>
```

### Languages

Built-in, C++, C#, Java.

### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>The database field.</td>
</tr>
</tbody>
</table>

#### 7.10.11.3 set-null

Sets a database field to null. This function will also overwrite a default value with null. If connected to something that is not a database field, it will behave like an empty sequence. Note the following:

- Connecting `set-null` to a different function will usually result in the other function not being called at all. Connecting `set-null` to a sequence function such as `count` will call the function with an empty sequence.
- Connecting `set-null` to filters and if-else conditions works as expected; fields are set to null. For filters, this means the “node/row” input.
- Using `set-null` as an input for a `simpleType` element will not create that element in the target component.

```xml
<fn set-null
 <result>result</result>
</fn>
```

### Languages

Built-in, C++, C#, Java.
7.10.11.4 substitute-null

Returns the field itself if it is not null; otherwise, replace-with is returned.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>The database field.</td>
</tr>
<tr>
<td>replace-with</td>
<td>The replacement value.</td>
</tr>
</tbody>
</table>

Languages
Built-in, C++, C#, Java.

Example
The mapping below shows an example of the substitute-null function in use. This mapping is called DB-ApplicationList.mfd and is available in the <Documents>\Altova\MapForce2021\MapForceExamples\ folder.

The mapping reads data from an Access database which contains an “Applications” table.
The first function checks if the Category field is null in the "Applications" table. Since this field is null for the Notepad application, the substitute value "Misc" is mapped to the Category item of the target text file.

The second function checks if the Description field is null. Again, this field is null for the Notepad application, so the substitute value "No description" is mapped to the Description item of the target file.

### 7.10.12 lang | datetime functions

The date and time functions from the lang library can be used to manipulate dates, times, and durations. Unlike the date and time functions from the core library, these functions are available only when selecting Built-in, Java, C#, or C++ languages.

#### 7.10.12.1 age

Returns the number of full years elapsed between the birth date supplied as argument and now.

![age](image)

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>birthdate</td>
<td>xs:date</td>
<td>Mandatory. Provides the birth date as an xs:date value.</td>
</tr>
<tr>
<td>now</td>
<td>xs:date</td>
<td>Optional parameter. The default is the current system date. If a value is mapped to the now argument, the function returns the difference between the birth date and now, in full years.</td>
</tr>
</tbody>
</table>

#### 7.10.12.2 convert-to-utc

Converts the time value supplied as argument to UTC (Coordinated Universal Time). The function takes the timezone component (for example, "+5:00") into account.
**Functions**

**Library Reference**

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>xs:dateTime</td>
<td>Provides the xs:dateTime value to be converted.</td>
</tr>
</tbody>
</table>

**Example**

If the input value is `2001-12-17T09:30:02+05:00`, the function's result is `2001-12-17T04:30:02`.

If the input value is `2001-12-17T09:30:02Z`, the function's result is `2001-12-17T09:30:02`. In this case, no conversion has taken place, because the trailing "Z" already defines this time to be "Zero" (or "Zulu") time, which is the same as UTC.

**7.10.12.3 date-from-datetime**

Returns the date part from the xs:dateTime value supplied as argument. The time part is set to zero. The timezone is not changed.

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the xs:dateTime value to be processed.</td>
</tr>
</tbody>
</table>

**Example**

If the input value is `2001-12-17T09:30:02+05:00`, the function's result is `2001-12-17T00:00:00+05:00`. 
7.10.12.4 datetime-add

Returns an \texttt{xs:dateTime} value obtained by adding a duration (the second argument) to a datetime (the first argument).

\[
\texttt{datetime-add} \quad \text{datetime} \rightarrow \text{result} \rightarrow \text{duration}
\]

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>\texttt{xs:dateTime}</td>
<td>Provides the \texttt{xs:dateTime} value to be used as input.</td>
</tr>
</tbody>
</table>
| duration | \texttt{xs:duration} | Provides the \texttt{xs:duration} value.  

An example duration is \texttt{P1Y2M3DT04H05M59S}, where:

- "P" is the period designator, and is mandatory;
- The rest of the characters denote, in this order: 1 Year, 2 Months, 3 Days, T (Time designator), 04 Hours, 05 Minutes, 59 Seconds.

If the minus character appears before the "P" designator, this indicates a negative duration, for example: \texttt{-P1D}.

Example

Let's assume that the input \texttt{datetime} value is \texttt{2001-12-17T09:30:02+05:00}. If the \texttt{duration} is \texttt{P10D} (10 days), the function's result is \texttt{2001-12-27T00:00:00+05:00}.

To obtain yesterday's date, connect the \texttt{now} function to the \texttt{datetime} input. In the mapping below, the period \texttt{P1D} means "minus 1 day", so the mapping returns yesterday's date.
7.10.12.5 datetime-diff

Returns the duration obtained by subtracting \texttt{datetime2} (second argument) from \texttt{datetime1} (first argument). The result can be mapped to a string or duration data type.

\[
\text{datetime-diff}
\]

\texttt{datetime1} and \texttt{datetime2}

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{datetime1}</td>
<td>\texttt{xs:dateTime}</td>
<td>Provides the first \texttt{xs:dateTime} value.</td>
</tr>
<tr>
<td>\texttt{datetime2}</td>
<td>\texttt{xs:duration}</td>
<td>Provides the second \texttt{xs:dateTime} value.</td>
</tr>
</tbody>
</table>

Example

In the mapping illustrated below, the \texttt{datetime-diff} function subtracts the flight departure datetime \texttt{2001-12-17T09:30:02+05:00} from the arrival datetime \texttt{2001-12-17T19:30:02+05:00}. Note that the arrival datetime is the greater value, so it is connected to the first input of the function.

The mapping output is the difference between the two (a period of 10 hours):

\texttt{PT10H}
7.10.12.6 datetime-from-date-and-time

Returns an `xs:dateTime` value built from an `xs:date` value (first argument) and an `xs:time` value (second argument). The result can be mapped to a string of `xs:dateTime` data type.

```
<fn:datetime-from-date-and-time
 datevalue xs:date
 timeval xe:time>
 datetime
</fn:datetime-from-date-and-time>
```

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datevalue</td>
<td><code>xs:date</code></td>
<td>Provides a value of type <code>xs:date</code></td>
</tr>
<tr>
<td>timeval</td>
<td><code>xs:time</code></td>
<td>Provides a value of type <code>xs:time</code></td>
</tr>
</tbody>
</table>

**Example**

If the first argument is `2012-06-29` and the second argument is `11:59:55`, the function returns `2012-06-29T11:59:55`.

7.10.12.7 datetime-from-parts

Returns a value of type `xs:dateTime` built from any combination of the following parts as arguments: year, month, day, hour, minute, second, millisecond, and timezone. This function automatically normalizes the supplied parameters. For example, 32nd of January will automatically be changed to 1st of February.

```
<fn:datetime-from-parts
 year
 month
 day
 hour
 minute
 second
 millisecond
 timezone>
 datetime
</fn:datetime-from-parts>
```

**Languages**

Built-in, C++, C#, Java.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>xs:int</td>
<td>Provides the year.</td>
</tr>
<tr>
<td>month</td>
<td>xs:int</td>
<td>Provides the month.</td>
</tr>
<tr>
<td>day</td>
<td>xs:int</td>
<td>Provides the day of the month.</td>
</tr>
<tr>
<td>hour</td>
<td>xs:int</td>
<td>Optional. Provides the hour.</td>
</tr>
<tr>
<td>minute</td>
<td>xs:int</td>
<td>Optional. Provides the minute.</td>
</tr>
<tr>
<td>second</td>
<td>xs:int</td>
<td>Optional. Provides the second.</td>
</tr>
<tr>
<td>millisecond</td>
<td>xs:decimal</td>
<td>Optional. Provides the millisecond.</td>
</tr>
<tr>
<td>timezone</td>
<td>xs:int</td>
<td>Optional. Provides the timezone, in minutes. This value can be negative.</td>
</tr>
</tbody>
</table>

Example

The following mapping constructs an `xs:dateTime` value from parts that are supplied by constants.

The mapping output is `2020-04-17T08:58:54.333-01:00`.

7.10.12.8 day-from-datetime

Returns the day, as an integer value, from the `xs:dateTime` value supplied as argument.
Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

Example
If `datetime` is `2001-12-17T10:30:03+01:00`, then the function returns `17`.

7.10.12.9 day-from-duration

Returns the day, as an integer value, from the `xs:duration` value supplied as argument.

<table>
<thead>
<tr>
<th>fn</th>
<th>day-from-duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>day</td>
</tr>
</tbody>
</table>

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>xs:duration</td>
<td>Provides the input value of type xs:duration.</td>
</tr>
</tbody>
</table>

Example
If `duration` is `P1Y2M3DT10H30M`, then the `day-from-duration` function returns `3`.

7.10.12.10 duration-add

Returns the duration obtained by adding two durations.

<table>
<thead>
<tr>
<th>fn</th>
<th>duration-add</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration1</td>
<td>result</td>
</tr>
<tr>
<td>duration2</td>
<td></td>
</tr>
</tbody>
</table>
Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration1</td>
<td>xs:duration</td>
<td>Provides the first input value of type xs:duration.</td>
</tr>
<tr>
<td>duration2</td>
<td>xs:duration</td>
<td>Provides the second input value of type xs:duration.</td>
</tr>
</tbody>
</table>

Example
If the first duration is `P0Y0M3DT03H0M` (3 days and 3 hours) and the second duration is `P0Y0M3DT01H0M` (3 days and 1 hour), then the function returns `P6DT4H` (6 days and 4 hours).

7.10.12.11 duration-from-parts
Returns a value of type xs:duration calculated by combining the following parts supplied as arguments: year, month, day, hour, minute, second, millisecond, negative.

An example duration is `P1Y2M3DT04H05M59S`, where:

- "P" is the period designator, and is mandatory;
- The rest of the characters denote, in this order: 1 Year, 2 Months, 3 Days, T (Time designator), 04 Hours, 05 Minutes, 59 Seconds.

If the minus character appears before the "P" designator, this indicates a negative duration, for example: `-P1D`.

Languages
Built-in, C++, C#, Java.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>xs:int</td>
<td>Provides the year.</td>
</tr>
<tr>
<td>month</td>
<td>xs:int</td>
<td>Provides the month.</td>
</tr>
<tr>
<td>day</td>
<td>xs:int</td>
<td>Provides the day of the month.</td>
</tr>
<tr>
<td>hour</td>
<td>xs:int</td>
<td>Optional. Provides the hour.</td>
</tr>
<tr>
<td>minute</td>
<td>xs:int</td>
<td>Optional. Provides the minute.</td>
</tr>
<tr>
<td>second</td>
<td>xs:int</td>
<td>Optional. Provides the second.</td>
</tr>
<tr>
<td>millisecond</td>
<td>xs:decimal</td>
<td>Optional. Provides the millisecond.</td>
</tr>
<tr>
<td>negative</td>
<td>xs:boolean</td>
<td>Optional. Must be true for a negative duration; false otherwise.</td>
</tr>
</tbody>
</table>

Example

The following mapping generates a negative duration of 1 year, 4 months, 17 days, 8 hours, 58 minutes, and 54.333 seconds.

```
<duration-from-parts
 year "C=1"
 month "C=04"
 day "C=17"
 hour "C=8"
 minute "C=58"
 second "C=54"
 millisecond "C=333"
 negative true
 result "-P1Y4M17DT8H58M54.333S"
>
```

The mapping output is `"-P1Y4M17DT8H58M54.333S"`.

7.10.12.12 duration-subtract

Returns the xs:duration value obtained by subtracting `duration2` from `duration1`.

An example duration is `"P1Y2M3DT04H05M59S"`, where:

- "P" is the period designator, and is mandatory;
- The rest of the characters denote, in this order: 1 Year, 2 Months, 3 Days, T (Time designator), 04
Hours, 05 Minutes, 59 Seconds.

If the minus character appears before the "P" designator, this indicates a negative duration, for example: -P1D.

### duration-subtract

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration1</td>
<td>duration2</td>
<td>result</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java.

Example

If \( \text{duration1} \) is \( \text{P0Y0M0DT05H07M} \) (5 hours and 7 minutes) and \( \text{duration2} \) is \( \text{PT1H} \) (1 hour), the function returns \( \text{PT4H7M} \) (4 hours and 7 minutes).

#### 7.10.12.13 hour-from-datetime

Returns the hour, as an integer value, from the \( \text{xs:dateTime} \) value supplied as argument.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td></td>
<td>hour</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>( \text{xs:dateTime} )</td>
<td>Provides the input value of type ( \text{xs:dateTime} ).</td>
</tr>
</tbody>
</table>

Example

If \( \text{datetime} \) is \( 2001-12-17T09:30:02+05:00 \), then the function returns 9.
7.10.12.14 hour-from-duration

Returns the hour, as an integer value, from the xs:duration value supplied as argument.

```
<fr:hour-from-duration>
 <duration>duration</duration>
 <hour>hour</hour>
```

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>xs:duration</td>
<td>Provides the input value of type xs:duration.</td>
</tr>
</tbody>
</table>

Example
If `duration` is `P0Y0M0DT05H07M`, the function returns 5.

7.10.12.15 leapyear

Returns Boolean true if the year of the xs:dateTime value supplied as argument is a leap year; false otherwise.

```
<fr:leapyear>
 <datetime>datetime</datetime>
 <result>result</result>
```

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

Example
If `datetime` is `2020-04-17T09:30:02+02:00`, the function returns true, since the year 2020 is a leap year.
7.10.12.16  millisecond-from-datetime

Returns the milliseconds, as an xs:decimal value, from the xs:dateTime value supplied as argument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

Example

If `datetime` is `2001-12-17T09:30:02.544+05:00`, the function returns `544`.

7.10.12.17  millisecond-from-duration

Returns the milliseconds, as an xs:decimal value, from the xs:duration value supplied as argument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>xs:duration</td>
<td>Provides the input value of type xs:duration.</td>
</tr>
</tbody>
</table>

Example

If `duration` is `P0Y0M0DT05H07M02.227S`, the function returns `227`.
7.10.12.18 minute-from-datetime

Returns the minutes, as an integer value, from the $\text{xs:dateTime}$ value supplied as argument.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>$\text{xs:dateTime}$</td>
<td>Provides the input value of type $\text{xs:dateTime}$.</td>
</tr>
</tbody>
</table>

Example

If `datetime` is `2001-12-17T09:30:02.544+05:00`, the function returns `30`.

7.10.12.19 minute-from-duration

Returns the minutes, as an integer value, from the $\text{xs:duration}$ value supplied as argument.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>$\text{xs:duration}$</td>
<td>Provides the input value of type $\text{xs:duration}$.</td>
</tr>
</tbody>
</table>

Example

If `duration` is `P0Y0M0DT05H07M02.227S`, the function returns `7`. 
7.10.12.20 month-from-datetime

Returns the month, as an integer value, from the `xs:dateTime` value supplied as argument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td><code>xs:dateTime</code></td>
<td>Provides the input value of type <code>xs:dateTime</code>.</td>
</tr>
</tbody>
</table>

Example

If `datetime` is `2001-12-17T09:30:02.544+05:00`, the function returns `12`.

7.10.12.21 month-from-duration

Returns the month, as an integer value, from the `xs:duration` value supplied as argument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td><code>xs:duration</code></td>
<td>Provides the input value of type <code>xs:duration</code>.</td>
</tr>
</tbody>
</table>

Example

If `duration` is `P0Y0M0DT05H07M02.227S`, the function returns `4`. 
### 7.10.12.22 now

Returns the current date and time (including timezone), as an `xs:dateTime` value.

```
<now>
 ...
</now>
```

**Languages**

Built-in, C++, C#, Java.

**Example**

The following mapping outputs the current date and time. The output changes each time when the mapping runs.

```
<now>
 ...
</now>
```

An example output would be `2020-04-17T11:42:34.684+02:00`.

For an example on how to extract yesterday's date, see the [core | lang | datetime-add](#) function.

### 7.10.12.23 remove-timezone

Removes the timezone component from the `time` (of type `xs:dateTime`) input parameter.

```
<remove-timezone>
 ...
</remove-timezone>
```

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td><code>xs:dateTime</code></td>
<td>Provides the input value of type <code>xs:dateTime</code>.</td>
</tr>
</tbody>
</table>

**Example**

If `time` is `2001-12-17T09:30:02+05:00`, the function returns `2001-12-17T09:30:02`. 
7.10.12.24  second-from-datetime

Returns the seconds, as an integer value, from the xs:dateTime value supplied as argument.

\[
\text{second-from-datetime} \quad \text{datetime} \rightarrow \text{second}
\]

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

**Example**

If \(\text{datetime}\) is 2001-12-17T09:30:02.544+05:00, the function returns 2.

7.10.12.25  second-from-duration

Returns the seconds, as an integer value, from the xs:duration value supplied as argument.

\[
\text{second-from-duration} \quad \text{duration} \rightarrow \text{second}
\]

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>xs:duration</td>
<td>Provides the input value of type xs:duration.</td>
</tr>
</tbody>
</table>

**Example**

If \(\text{duration}\) is P0Y0M0DT05H07M02.227S, the function returns 2.
7.10.12.26  time-from-datetime

Returns the time component, as an xs:time value, from the xs:dateTime value supplied as argument.

\[ f_k \text{ time-from-datetime} \]
\[ \text{datetime} \quad \text{time} \]

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

Example
If \( \text{datetime} \) is 2001-12-17T09:30:02.544+05:00, the function returns 09:31:02+05:00.

7.10.12.27  timezone

Returns the timezone offset, in minutes, from the xs:dateTime value supplied as argument. Returns 0 for UTC.

\[ f_k \text{ timezone} \]
\[ \text{datetime} \quad \text{timezone} \]

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

Example
If \( \text{datetime} \) is 2001-12-17T09:30:02.544+05:00, the function returns 300.
7.10.12.28 weekday

Returns the day of the week from the `xs:dateTime` value supplied as argument. The function will return value 1 for Monday, value 2 for Tuesday, and so on.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java.

Parameters

7.10.12.29 weeknumber

Returns the week number within the year from the `xs:dateTime` value supplied as argument. The function will return value 1 for the first week of the year, value 2 for the second week, and so on.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td>xs:dateTime</td>
<td>Provides the input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

Languages

Built-in, C++, C#, Java.

Parameters
### 7.10.12.30 year-from-datetime

Returns the year, as an integer value, from the `xs:dateTime` value supplied as argument.

**Syntax**
```
year-from-datetime
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datetime</td>
<td><code>xs:dateTime</code></td>
<td>Provides the input value of type <code>xs:dateTime</code>.</td>
</tr>
</tbody>
</table>

**Example**

If `datetime` is `2001-12-17T09:30:02.544+05:00`, the function returns `2001`.

### 7.10.12.31 year-from-duration

Returns the year, as an integer value, from the `xs:duration` value supplied as argument.

**Syntax**
```
year-from-duration
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td><code>xs:duration</code></td>
<td>Provides the input value of type <code>xs:duration</code>.</td>
</tr>
</tbody>
</table>

**Example**

If `duration` is `P01Y04M0DT05H07M02.227S`, the function returns `1`. 
7.10.13  lang | file functions

Use the file functions from the lang library to read binary content from files, or write binary content to files.

7.10.13.1  read-binary-file

This function returns the content of the specified file as a BLOB (binary large object) of type xs:base64Binary. Note that even though the data type is called "base64Binary", the internal representation is just a BLOB. Only when you map the function's result to an XML node of type xs:base64Binary will it actually be base64-encoded. You could also map the function's result to xs:hexBinary, to a database blob, or to a binary field in a Protocol Buffers structure.

To read a binary file into a mapping, supply its path as input to the filepath argument. If the filepath is relative, then MapForce will look for the file in the same directory as the mapping. The must-exist argument is optional; if the file cannot be opened and this parameter is true, the mapping throws an error. If the file cannot be opened and this parameter is false, an empty binary is returned.

Languages
Built-in.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filepath</td>
<td>xs:string</td>
<td>The file path.</td>
</tr>
<tr>
<td>must-exist</td>
<td>xs:boolean</td>
<td>Optional parameter. If the file cannot be opened and this parameter is true, the mapping throws an error. If the file cannot be opened and this parameter is false, an empty binary is returned. The default value is true.</td>
</tr>
</tbody>
</table>

Example
See Example: Read Binary Files.

7.10.13.2 write-binary-file

This function writes binary content to the specified file path and returns the path of the written file. If a binary file is the only desired output, connect the function's result to a simple output component. Because this function writes a file whenever its output is used in the mapping, it is recommended to connect the function's result directly to a target component, without using other processing in between.

To write binary files, supply their path as input to the filepath argument. If filepath is relative, then MapForce will generate the file in the same directory as the mapping. The content argument must be connected to the actual binary content (for example, a BLOB field in a database).

When you preview the mapping in MapForce, the function generates temporary files by default, instead of writing files directly to the disk. To save the temporary files to disk, first click the Output tab, and then click the Save generated output or Save all generated outputs toolbar button, as applicable.

To configure MapForce to write output directly to final files instead of temporary, select the Tools | Options menu command, click General, and then select the Write directly to final output files option. Be aware that this option overwrites any existing files with the same name.

The function always returns the final (not temporary) file name, even when the final file is not saved to the disk yet (that is the case when you preview the mapping and the Write directly to final output files option is disabled).

Note that it is not supported for a mapping to read back its own output file.

Languages
Built-in.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filepath</td>
<td>xs:string</td>
<td>The input file path.</td>
</tr>
<tr>
<td>content</td>
<td>xs:base64Binary</td>
<td>The binary content of type xs:base64Binary.</td>
</tr>
</tbody>
</table>

Example
See Example: Write Binary Files.

© 2020 Altova GmbH

Altova MapForce 2021 Professional Edition
7.10.14  **lang | generator functions**

The generator functions from the **lang** library are functions that generate values (currently, `create-guid` is the only such function).

### 7.10.14.1  create-guid

Creates a globally unique identifier (GUID), as a hex-encoded string. This function can be used to generate unique values, directly from the mapping, for database fields or other component types. See also the function `format-guid-string`.

Languages
Built-in, C++, C#, Java.

### 7.10.15  **lang | logical functions**

Logical functions from the **lang** library include functions that evaluate miscellaneous value types using Boolean logic.

#### 7.10.15.1  logical-xor

Returns **true** if `value1` is different from `value2`; **false** otherwise.

Languages
Built-in, C++, C#, Java.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td><code>xs:boolean</code></td>
<td>The first input value.</td>
</tr>
<tr>
<td>value2</td>
<td><code>xs:boolean</code></td>
<td>The second input value.</td>
</tr>
</tbody>
</table>
7.10.15.2 negative

Returns true if the input value is negative (less than zero); false otherwise.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:decimal</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

Languages
Built-in, C++, C#, Java.

7.10.15.3 numeric

Returns true if the input value is a number or a string that can be parsed as a number; false otherwise.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:decimal</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

Languages
Built-in, C++, C#, Java.

Example
If the input value is the string "4.33", the function returns true. If the input value is the string "4.33 USD", the function returns false.
7.10.15.4 positive

Returns **true** if the input value is positive (equal to or greater than zero); **false** otherwise.

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:decimal</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

7.10.16 lang | math functions

The math functions from the **lang** library can be used to perform various mathematical operations in the mapping.

7.10.16.1 abs

Returns the absolute value of the numeric value supplied as argument. If the argument is not negative, the argument is returned. If the argument is negative, the negation of the argument is returned.

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:decimal</td>
<td>The input value.</td>
</tr>
</tbody>
</table>
### 7.10.16.2 acos

Returns the arc cosine of `value`, in the range of $-\pi/2$ through $\pi/2$.

```
<acos
 value | result
```

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td><code>xs:double</code></td>
<td>The input value.</td>
</tr>
</tbody>
</table>

### 7.10.16.3 asin

Returns the arc sine of `value`, in the range of $-\pi/2$ through $\pi/2$.

```
<asin
 value | result
```

**Languages**

Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td><code>xs:double</code></td>
<td>The input value.</td>
</tr>
</tbody>
</table>

### 7.10.16.4 atan

Returns the arc tangent of `value`, in the range of $-\pi/2$ through $\pi/2$.

```
<atan
 value | result
```
Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

7.10.16.5 cos

Returns the trigonometric cosine of the angle given by value. The unit of value is radian.

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

7.10.16.6 degrees

Converts an angle measured in radians to an approximately equivalent angle measured in degrees.

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>
7.10.16.7  divide-integer
Returns the integer result of dividing \texttt{value1} by \texttt{value2}.

\textbf{Parameters}

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{value1}</td>
<td>\texttt{xs:decimal}</td>
<td>The first input value.</td>
</tr>
<tr>
<td>\texttt{value2}</td>
<td>\texttt{xs:decimal}</td>
<td>The second input value.</td>
</tr>
</tbody>
</table>

\textbf{Example}
If the first value is \texttt{15} and the second value is \texttt{2}, the function returns \texttt{7}.

7.10.16.8  \texttt{exp}
Returns Euler's number \(e\) raised to the power of \texttt{value}.

\textbf{Parameters}

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{value}</td>
<td>\texttt{xs:double}</td>
<td>The input value.</td>
</tr>
</tbody>
</table>
### 7.10.16.9 log

Returns the natural logarithm (base e) of value.

![log](image)

Languages
Built-in, C++, C#, Java.

#### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

### 7.10.16.10 log10

Returns the decimal logarithm (base 10) of value.

![log10](image)

Languages
Built-in, C++, C#, Java.

#### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

### 7.10.16.11 max

Returns the numeric value of the largest value supplied as argument. By default, this function has only two parameters, but you can add more. Click Add parameter ( ) or Delete parameter ( ) to add or remove parameters, see also Add or Delete Function Arguments.

![max](image)
### 7.10.16.12  min

Returns the numeric value of the smallest value supplied as argument. By default, this function has only two parameters, but you can add more. Click Add parameter (섰) or Delete parameter ( Cros) to add or remove parameters, see also Add or Delete Function Arguments (劲) .

#### Languages

Built-in, C++, C#, Java.

#### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value1</td>
<td>xs:decimal</td>
<td>The first input value.</td>
</tr>
<tr>
<td>value2</td>
<td>xs:decimal</td>
<td>The second input value.</td>
</tr>
<tr>
<td>valueN</td>
<td>xs:decimal</td>
<td>The n-th input value.</td>
</tr>
</tbody>
</table>
7.10.16.13  pi

Returns the value of mathematical constant \( \pi \).

\[
\begin{align*}
\text{pi} & \quad \text{result} \\
\hline
\end{align*}
\]

Languages
Built-in, C++, C#, Java.

7.10.16.14  pow

Returns the value of \( a \) raised to the power of \( b \).

\[
\begin{align*}
\text{pow} & \quad a \quad b \quad \text{result} \\
\hline
\end{align*}
\]

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>xs:double</td>
<td>Supplies value ( a ) (the base).</td>
</tr>
<tr>
<td>b</td>
<td>xs:double</td>
<td>Supplies value ( b ) (the power).</td>
</tr>
</tbody>
</table>

7.10.16.15  radians

Converts an angle measured in degrees to an approximately equivalent angle measured in radians.

\[
\begin{align*}
\text{radians} & \quad \text{value} \quad \text{result} \\
\hline
\end{align*}
\]

Languages
Built-in, C++, C#, Java.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

### 7.10.16.16 random

Returns a value with a positive sign, greater than or equal to 0.0 and less than 1.0. Returned values are chosen pseudorandomly with (approximately) uniform distribution from that range.

Languages

Built-in, C++, C#, Java.

### 7.10.16.17 sin

Returns the sine of `value`.

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>
7.10.16.18  sqrt
Returns the correctly rounded positive square root of value.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

Languages
Built-in, C++, C#, Java.

7.10.16.19  tan
Returns the tangent of value.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:double</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

Languages
Built-in, C++, C#, Java.

7.10.16.20  unary-minus
Returns the negation of the signed input value.
Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:decimal</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

Example
If the input value is 3, the function returns -3. If the input value is -3, the function returns 3.

7.10.17 lang | QName functions

The QName functions from the lang library convert Qualified Name (QName) values to strings, and vice versa. Unlike the functions from the core library, these functions are available only in the Built-in, Java, C#, or C++ languages.

7.10.17.1 QName-as-string

Returns the string representation of the QName value supplied as argument.

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QName</td>
<td>The input xs:QName value.</td>
</tr>
</tbody>
</table>
### 7.10.17.2 string-as-QName

Converts the string representation of a QName back to a QName.

![string-as-QName](image)

**Languages**
Built-in, C++, C#, Java.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>The input string value.</td>
</tr>
</tbody>
</table>

### 7.10.18 lang | string functions

The string functions from the `lang` library enable you to process strings (for example, trim, pad, replace, convert strings to upper- or lower-case, and so on).

#### 7.10.18.1 capitalize

Returns the input string `value`, where the first letter of each word is capitalized.

![capitalize](image)

**Languages**
Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:string</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

**Example**
If the input value is `the quick brown fox`, the function returns `The Quick Brown Fox`. 
### 7.10.18.2 charset-decode

The `charset-decode` function takes as input binary data encoded as Base64 text. It decodes data according to the specified character set (for example, "utf-8") and returns the resulting string value. If you need to encode binary data as Base64 text, use the `charset-encode` function.

```xml
<binary>base64-encoding</binary>
```

**Languages**

Built-in.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary-data</td>
<td><code>xs:base64Binary</code></td>
<td>The binary data as Base64 text.</td>
</tr>
<tr>
<td>encoding</td>
<td><code>xs:string</code></td>
<td>The character set used for encoding (for example, &quot;utf-8&quot;).</td>
</tr>
<tr>
<td>error-abort</td>
<td><code>xs:boolean</code></td>
<td>Optional argument that specifies how processing should continue when errors are encountered. Valid values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <strong>true</strong> - End processing with an exception on the invalid character.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <strong>false</strong> - Continue processing, and replace invalid characters with the replacement character.</td>
</tr>
</tbody>
</table>

The default value is **true**.

**Example**

Let's suppose that you would like to decode binary data originating from the following source XML file. Notice that the `message` element contains binary data encoded as Base64 text.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<message xsi:noNamespaceSchemaLocation="message.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TG9yZW0gaXBzdW0=
</message>
```
The data type of the `message` element is `xs:base64Binary`, as illustrated by the schema:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="message" type="xs:base64Binary"/>
</xs:schema>
```

A mapping that decodes the message above looks as follows:

The mapping in this example outputs the text "Lorem ipsum".

A mapping can also process text or XML files encoded as Base64 data, with the help of a MapForce serialization component. For example, the mapping illustrated below has an `input` parameter which expects Base64 text data. Assuming that the Base64 data was created from an XML file as shown in the `charset-encode` example, you can recreate the original XML file as shown in the mapping below:

In this mapping, the `error-abort` argument gets a `false` value, which was produced with the help of the `boolean` built-in function. This ensures that processing will continue even if invalid characters are encountered. The string result of the function is then passed to an XML parsing component which converts it to an XML file. Note that, in order for XML parsing to be possible, you must have the XSD schema file. For more information, see `Parsing and Serializing Strings`.

### 7.10.18.3 charset-encode

The `charset-encode` function takes as input string data and encodes it as Base64 text. Data is encoded in the specified character set (for example, "utf-8") and returned as `xs:base64Binary` type. If you need to decode binary data previously encoded as Base64 text, use the `charset-decode` function.
Function Library Reference

Functions

907

Languages

Built-in.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string-data</td>
<td>xs:string</td>
<td>The string data to be encoded.</td>
</tr>
<tr>
<td>encoding</td>
<td>xs:string</td>
<td>The character set used for encoding (for example, &quot;utf-8&quot;).</td>
</tr>
<tr>
<td>substitute</td>
<td>xs:string</td>
<td>Optional argument that specifies a replacement character when invalid characters are encountered. This argument is applicable if you use a non-Unicode encoding. For Unicode encodings, the replacement character is ✗.</td>
</tr>
</tbody>
</table>

Example

Let's suppose that you would like to encode the text "Lorem ipsum" as Base64 data, using the UTF-8 character set, and write it to a target XML file. The target XML file has a message element of xs:base64Binary type, as illustrated by the schema:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="message" type="xs:base64Binary"/>
</xs:schema>
```

A mapping that performs the Base64 encoding looks as follows:

This mapping produces XML output like the one below (the schema references and XML declaration were skipped):
You can also encode text or XML files as Base64, with the help of a MapForce serialization component. For example, the mapping illustrated below serializes a source XML file to a string. The resulting string is then supplied as argument to the `charset-encode` function. Finally, the function result is returned as mapping output, with the help of a simple output component, see Returning String Values from a Mapping. For more information about serialization, see Parsing and Serializing Strings.

### 7.10.18.4 count-substring

Returns an integer value expressing the number of times that `substr` occurs in `string`.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td><code>xs:string</code></td>
<td>The input string.</td>
</tr>
<tr>
<td>substr</td>
<td><code>xs:string</code></td>
<td>The sub-string to test for.</td>
</tr>
</tbody>
</table>

**Languages**

Built-in, C++, C#, Java.

**Example**

The following mapping returns **2**. This is the number of times that the pipe separator occurs within the input string `id|name|email`. 
7.10.18.5  empty

Returns true if the input string value is empty; false otherwise.

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:string</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

7.10.18.6  find-substring

Returns the position of the first occurrence of substr within string. By default, the function starts the search from the first character, which has position (index) 1, but you can optionally specify a specific starting index. If substr cannot be found, then the function returns 0.

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>substr</td>
<td>xs:string</td>
<td>The sub-string to search for.</td>
</tr>
<tr>
<td>startindex</td>
<td>xs:int</td>
<td>Optional. Specifies the starting position (index) of the search. If this parameter is not specified, the search starts at position 1.</td>
</tr>
</tbody>
</table>

**Example**

The following mapping outputs 3, which is the position of the first occurrence of the pipe character in the input string `id|name|email`.

If you specify 4 as starting index, then the function starts searching from the fourth character. Consequently, the mapping below outputs 8, which is the first occurrence of the pipe character after searching from the fourth character onwards.

**7.10.18.7 format-guid-string**

Returns a correctly formatted globally unique identifier (GUID) string, typically for use in database fields. See also the `create-guid` function.

**Languages**

Built-in, C++, C#, Java.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unformatted_guid</td>
<td>xs:string</td>
<td>The input HEX-encoded string to be formatted.</td>
</tr>
</tbody>
</table>

7.10.18.8 left

Returns a string containing the first `number` characters of the input string.

\[
\text{left}(\text{string}, \text{number}) \rightarrow \text{result}
\]

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
<tr>
<td>number</td>
<td>xs:int</td>
<td>Specifies how many characters to return, starting from the beginning of the string.</td>
</tr>
</tbody>
</table>

Example

If the input string is *This is a sentence* and number is 4, the function returns *This*.

7.10.18.9 left-trim

Returns the input string with all leading whitespace characters removed.

\[
\text{left-trim}(\text{string}) \rightarrow \text{result}
\]

Languages
Built-in, C++, C#, Java.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
</tbody>
</table>

7.10.18.10 lowercase

Converts the input string to lowercase. For Unicode characters, the corresponding lower-case characters (defined by the Unicode consortium) are used.

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
</tbody>
</table>

7.10.18.11 match-pattern

Returns Boolean true if the input string matches the regular expression defined by pattern; false otherwise. See also Regular expressions.

Note: When generating C++, C#, or Java code, the advanced features of the regular expression syntax might differ slightly. See the regex documentation of each language for more information.

Languages

Built-in, C++, C#, Java.
### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td><code>xs:string</code></td>
<td>The input string.</td>
</tr>
<tr>
<td>pattern</td>
<td><code>xs:string</code></td>
<td>The regular expression to match.</td>
</tr>
</tbody>
</table>

### Example

The following mapping validates various person titles. Specifically, the mapping will output `true` for any of the following titles: Mr, Mrs, Mx, Ms, Miss.

If the input string is other than any of the titles listed above, the mapping outputs `false`.

### 7.10.18.12 pad-string-left

Returns a string which is padded to the left by a single specific character, up to a required length. The desired string length and the padding character are supplied as arguments.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td><code>xs:string</code></td>
<td>Specifies the input string.</td>
</tr>
<tr>
<td>desired-length</td>
<td><code>xs:int</code></td>
<td>Defines the desired length of the string after padding.</td>
</tr>
<tr>
<td>padding-char</td>
<td><code>xs:string</code></td>
<td>Defines the character to use as padding character.</td>
</tr>
</tbody>
</table>
7.10.18.13 pad-string-right

Returns a string which is padded to the right by a single specific character, up to a required length. The desired string length and the padding character are supplied as arguments.

```
<xs:func name="pad-string-right">
 <string/>
 <desired-length result/>
 <padding-char result/>
</xs:func>
```

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>Specifies the input string.</td>
</tr>
<tr>
<td>desired-length</td>
<td>xs:int</td>
<td>Defines the desired length of the string after padding.</td>
</tr>
<tr>
<td>padding-char</td>
<td>xs:string</td>
<td>Defines the character to use as padding character.</td>
</tr>
</tbody>
</table>

7.10.18.14 repeat-string

Repeats the string supplied as argument \(n\) times. The `count` argument specifies the number of times to repeat the string.

```
<xs:func name="repeat-string">
 <string/>
 <count result/>
</xs:func>
```

Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
</tbody>
</table>
### 7.10.18.15 replace

Result is a new string where each instance of **oldstring**, in the input string **value**, is replaced by **newstring**.

**Languages**
Built-in, C++, C#, Java.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:string</td>
<td>The input value.</td>
</tr>
<tr>
<td>oldstring</td>
<td>xs:string</td>
<td>The old string to be replaced.</td>
</tr>
<tr>
<td>newstring</td>
<td>xs:string</td>
<td>The new string to act as replacement.</td>
</tr>
</tbody>
</table>

**Example**
See [Replacing Special Characters](#).

### 7.10.18.16 reversefind-substring

Returns the position of the last occurrence of **substr** within **string**. By default, the function starts the search from the first character, which has position (index) 1, and ends the search at the last character, but you can optionally specify an ending index. If **substr** cannot be found, then the function returns **0**.

![reversefind-substring diagram]
Languages
Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
<tr>
<td>substr</td>
<td>xs:string</td>
<td>The sub-string to search for.</td>
</tr>
<tr>
<td>endindex</td>
<td>xs:int</td>
<td>Optional. Specifies the ending position (index) of the search. If this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parameter is not specified, the search ends after the last character in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>string.</td>
</tr>
</tbody>
</table>

Example
The following mapping outputs 8, which is the position of the last occurrence of the pipe character in the input string id|name|email.

If you specify 4 as ending index, then the function searches up to the fourth character. Consequently, the mapping below outputs 3.

7.10.18.17 right
Returns a string containing the last number characters of the input string.
Languages
Built-in, C++, C#, Java.

Example
If the input string is The brown red fox and number is 3, the function returns fox.

7.10.18.18  right-trim
Returns the input string with all trailing whitespace characters removed.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
</tbody>
</table>

Languages
Built-in, C++, C#, Java.

Parameters

7.10.18.19  string-compare
Returns the result of a string comparison of string1 with string2, taking case into account. If both strings are equal then the result is 0. If string1 is smaller than string2 then the result is -1. If string1 is larger than string2 then the result is 1.

Languages
Built-in, C++, C#, Java.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string1</td>
<td>xs:string</td>
<td>The first input string.</td>
</tr>
<tr>
<td>string2</td>
<td>xs:string</td>
<td>The second input string.</td>
</tr>
</tbody>
</table>

7.10.18.20  string-compare-ignore-case

Returns the result of a string comparison of string1 with string2, ignoring case. If both strings are equal then the result is 0. If string1 is smaller than string2 then the result is -1. If string1 is larger than string2 then the result is 1.

Languages

Built-in, C++, C#, Java.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string1</td>
<td>xs:string</td>
<td>The first input string.</td>
</tr>
<tr>
<td>string2</td>
<td>xs:string</td>
<td>The second input string.</td>
</tr>
</tbody>
</table>

7.10.18.21  uppercase

Converts the input string to uppercase. For Unicode characters, the corresponding upper-case characters (defined by the Unicode consortium) are used.

Languages

Built-in, C++, C#, Java.
Functions from the `xpath2 | accessors` sub-library retrieve information about XML nodes or items. These functions are available when either the XSLT2 or XQuery languages are selected.

### 7.10.19.1 base-uri

The `base-uri` function takes a node as input, and returns the URI of the XML resource containing the node. The output is of type `xs:string`.

```
base-uri(node)
```

### Languages

XQuery, XSLT 2.0.

### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td><code>mf:node</code></td>
<td>The input node.</td>
</tr>
</tbody>
</table>

### 7.10.19.2 node-name

The `node-name` function takes a node as its input argument and returns its QName. When the QName is represented as a string, it takes the form of `prefix:localname` if the node has a prefix, or `localname` if the node has no prefix. To obtain the namespace URI of a node, use the `namespace-uri-from-QName` function.

```
node-name(node)
```

### Languages

XQuery, XSLT 2.0.

### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td><code>xs:string</code></td>
<td>The input string.</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>mf:node</td>
<td>The input node.</td>
</tr>
</tbody>
</table>

### 7.10.19.3 string

The `string` function works like the `xs:string` constructor: it converts its argument to `xs:string`.

When the input argument is a value of an atomic type (for example `xs:decimal`), this atomic value is converted to a value of `xs:string` type. If the input argument is a node, the string value of the node is extracted. (The string value of a node is a concatenation of the values of the node's descendant nodes.)

**Languages**

XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>item</td>
<td>mf:item</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

### 7.10.20 xpath2 | anyURI functions

The `xpath2` | `anyURI` sub-library contains the `resolve-uri` function. This function is available when either the XSLT2 or XQuery languages are selected.

### 7.10.20.1 resolve-uri

The `resolve-uri` function takes a relative URI as its first argument and resolves it against the base URI in the second argument. The result is of data type `xs:string`. The function's implementation treats both inputs as strings; no checks are performed as to whether the resources identified by these URIs actually exist.

**Languages**

XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative</td>
<td>xs:string</td>
<td>The relative URI to be resolved against the base.</td>
</tr>
<tr>
<td>base</td>
<td>xs:string</td>
<td>The base URI.</td>
</tr>
</tbody>
</table>

Example

In the mapping illustrated below, the first argument provides the relative URI `MyFile.html`, and the second argument provides the base URI `file:///C:/Dir/`. The resolved URI will be a concatenation of both, so `file:///C:/Dir/MyFile.html`.

7.10.21 xpath2 | boolean functions

The Boolean functions `true` and `false` take no argument and return the boolean constant values `true` and `false`, respectively. They can be used where a constant boolean value is required.

7.10.21.1 false

Returns the Boolean value `false`.

Languages

XQuery, XSLT 2.0.
7.10.21.2  true

Returns the Boolean value `true`.

```
true
true
```

Languages
XQuery, XSLT 2.0.

7.10.22  xpath2 | constructors

The functions in the "constructors" sub-library of the XPath 2.0 library construct specific data types from the input text. The following table lists the available constructor functions.

<table>
<thead>
<tr>
<th>xs:ENTITY</th>
<th>xs:double</th>
<th>xs:nonPositiveInteger</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:ID</td>
<td>xs:duration</td>
<td>xs:normalizedString</td>
</tr>
<tr>
<td>xs:IDREF</td>
<td>xs:float</td>
<td>xs:positiveInteger</td>
</tr>
<tr>
<td>xs:NCName</td>
<td>xs:gDay</td>
<td>xs:short</td>
</tr>
<tr>
<td>xs:NMTOKEN</td>
<td>xs:gMonth</td>
<td>xs:string</td>
</tr>
<tr>
<td>xs:Name</td>
<td>xs:gMonthDay</td>
<td>xs:time</td>
</tr>
<tr>
<td>xs:QName</td>
<td>xs:gYear</td>
<td>xs:token</td>
</tr>
<tr>
<td>xs:anyURI</td>
<td>xs:gYearMonth</td>
<td>xs:unsignedByte</td>
</tr>
<tr>
<td>xs:base64Binary</td>
<td>xs:hexBinary</td>
<td>xs:unsignedInt</td>
</tr>
<tr>
<td>xs:boolean</td>
<td>xs:int</td>
<td>xs:unsignedLong</td>
</tr>
<tr>
<td>xs:byte</td>
<td>xs:integer</td>
<td>xs:unsignedShort</td>
</tr>
<tr>
<td>xs:date</td>
<td>xs:language</td>
<td>xs:untypedAtomic</td>
</tr>
<tr>
<td>xs:dateTime</td>
<td>xs:long</td>
<td>xs:yearMonthDuration</td>
</tr>
<tr>
<td>xs:dayTimeDuration</td>
<td>xs:negativeInteger</td>
<td></td>
</tr>
<tr>
<td>xs:decimal</td>
<td>xs:nonNegativeInteger</td>
<td></td>
</tr>
</tbody>
</table>
Example

Typically, the lexical format of the input text must be the one expected of the data type to be constructed. Otherwise, the transformation will not be successful. For example, to construct an \(\text{xs:dateTime}\) value using the \(\text{xs:dateTime}\) constructor function, the input text must have the lexical format of the \(\text{xs:dateTime}\) data type, which is \(\text{YYYY-MM-DDTHH:mm:ss}\).

In the mapping illustrated above, a string constant ("2020-04-28T00:00:00") has been used to provide the input argument of the function. The input could also have been obtained from an item in the source document. The \(\text{xs:dateTime}\) function returns the value 2020-04-28T00:00:00 of type \(\text{xs:dateTime}\).

To view the expected data type of a mapping item (including the data type of function arguments), move the mouse cursor over the respective input or output connector.

7.10.23 \(\text{xpath2} | \text{context functions}\)

The context functions from the \(\text{xpath2}\) library provide miscellaneous information about the current date and time, the default collation used by the processor, the size of the current sequence, and the position of the current node.

7.10.23.1 \(\text{current-date}\)

Returns the current date (\(\text{xs:date}\)) from the system clock.

Languages

XQuery, XSLT 2.0.
7.10.23.2 current-dateTime

Returns the current date and time (xs:dateTime) from the system clock.

Languages
XQuery, XSLT 2.0.

7.10.23.3 current-time

Returns the current time (xs:time) from the system clock.

Languages
XQuery, XSLT 2.0.

7.10.23.4 default-collation

The default-collation function takes no argument and returns the default collation, that is, the collation that is used when no collation is specified for a function where one can be specified.

Comparisons, including for the max-string and min-string functions, are based on the default collation.

Languages
XQuery, XSLT 2.0.
7.10.23.5 implicit-timezone

Returns the value of the "implicit timezone" property from the evaluation context.

```
fn:implicit-timezone
```

Languages
XQuery, XSLT 2.0.

7.10.23.6 last

Returns the number of items in the sequence of items currently being processed. Importantly, the sequence of items is determined by the current mapping context, as described in the example below.

```
fn:last
```

Languages
XQuery, XSLT 2.0.

Example
Let's suppose that you have the following source XML file:

```
<Articles>
 <Article>
 <Name>T-Shirt</Name>
 <SinglePrice>25</SinglePrice>
 </Article>
 <Article>
 <Name>Socks</Name>
 <SinglePrice>2.30</SinglePrice>
 </Article>
 <Article>
 <Name>Jacket</Name>
 <SinglePrice>57.50</SinglePrice>
 </Article>
</Articles>
```

Your goal is to copy data to an XML file with a different schema. Also, the count of all items must be saved to the target XML file. This can be achieved by a mapping like the one below:
In the example above, the `last` function returns the position of the last node in the current parent context and populates the `count` attribute with value 3.

```xml
<items count="3">
 <item>T-Shirt</item>
 <item>Pants</item>
 <item>Jacket</item>
</items>
```

Note that value 3 is the position of the last item (and thus the count of all items) in the mapping context created by the connection between `Article` and `items`. If this connection did not exist, items would still be copied to the target, but the `last` function would return value 1 incorrectly, because it would have no `parent context` to iterate over. (More precisely, it would use the default implicit context created between the root items of both components, which produces a sequence of 1 item, not 3 as expected).

It is generally advisable to use the `count` function from the `core` library instead of the `last` function, because the former has a `parent-context` argument, which enables you to alter the mapping context explicitly.

### 7.10.24 xpath2 | durations, date and time functions

The duration, date and time functions from the `xpath2` library enable you to adjust the time zone in date and time values, extract particular components from date, time, and duration values, and subtract date and time values.

#### Adjusting the time zone

To adjust the time zone in date and time values, the following functions are available:

- `adjust-date-to-timezone`
- `adjust-date-to-timezone` (with timezone argument)
- `adjust-dateTime-to-timezone`
- `adjust-dateTime-to-timezone` (with timezone argument)
- `adjust-time-to-timezone`
- `adjust-time-to-timezone` (with timezone argument)
- `adjust-time-to-timezone` (with timezone argument)

Each of these related functions takes an `xs:date`, `xs:time`, or `xs:dateTime` value as the first argument and adjusts the input by adding, removing, or modifying the time zone component depending on the value of the second argument (if one is present).
The following situations are possible when the first argument contains no time zone (for example, the date 2020-01 or the time 14:00:00).

- If the timezone argument is present, the result will contain the time zone specified in the second argument. The time zone in the second argument is added.
- If the timezone argument is absent, the result will contain the implicit timezone, which is the system's time zone. The system's time zone is added.
- If the timezone argument is empty, the result will contain no time zone.

The following situations are possible when the first argument contains a time zone (for example, the date 2020-01-01+01:00 or the time 14:00:00+01:00).

- If the timezone argument is present, the result will contain the time zone specified in the second argument. The original time zone is replaced by the timezone in the second argument.
- If the timezone argument is absent, the result will contain the implicit time zone, which is the system's time zone. The original time zone is replaced by the system's time zone.
- If the timezone argument is empty, the result will contain no time zone.

### Extracting components of dates and times

To extract numeric values such as hours, minutes, days, months, and so on from date and time values, the following functions are available:

- `day-from-date`
- `day-from-dateTime`
- `hours-from-dateTime`
- `hours-from-time`
- `minutes-from-dateTime`
- `minutes-from-time`
- `month-from-date`
- `month-from-dateTime`
- `seconds-from-dateTime`
- `seconds-from-time`
- `timezone-from-date`
- `timezone-from-dateTime`
- `timezone-from-time`
- `year-from-date`
- `year-from-dateTime`

Each of these functions extracts a particular component from `xs:date`, `xs:time`, `xs:dateTime`, and `xs:duration` values. The result will be either `xs:integer` or `xs:decimal`.

### Extracting components of durations

To extract time components from durations, the following functions are available:

- `days-from-duration`
- `hours-from-duration`
- `minutes-from-duration`
- `months-from-duration`
- `seconds-from-duration`
- `years-from-duration`
The duration must be specified either as `xs:yearMonthDuration` (for extracting years and months) or `xs:dayTimeDuration` (for extracting days, hours, minutes, and seconds). All functions returns a result of type `xs:integer`, with the exception of the `seconds-from-duration` function, which returns `xs:decimal`.

### Subtracting date and time values

To subtract date and time values, the following functions are available:

- `subtract-dateTimes`
- `subtract-dates`
- `subtract-times`

Each of the subtraction functions enables you to subtract one time value from another and return a duration value.

#### 7.10.24.1 adjust-date-to-timezone

Adjusts an `xs:date` value to the implicit time zone in the evaluation context (the system's time zone).

**Languages**

XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td><code>xs:date</code></td>
<td>The input value of type <code>xs:date</code>.</td>
</tr>
</tbody>
</table>

**Example**

The following mapping constructs an `xs:date` from a string and supplies it as argument to the `adjust-date-to-timezone` function.

**XSLT 2.0 mapping**

If the mapping runs on a computer where the system time zone is +02:00, the function adjusts the date value to include the system’s time zone. Consequently, the mapping output is `2020-04-30+02:00`. 
7.10.24.2 adjust-date-to-timezone

Adjusts an \texttt{xs:date} value to a specific time zone, or to no time zone at all. If the \texttt{timezone} argument is an empty sequence, the function returns an \texttt{xs:date} without a time zone. Otherwise, it returns an \texttt{xs:date} with a time zone.

\begin{verbatim}
function adjust-date-to-timezone($date as xs:date, $timezone as xs:dayTimeDuration? ) returning xs:date

\end{verbatim}

Languages

XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>\texttt{xs:date}</td>
<td>The input value of type \texttt{xs:date}.</td>
</tr>
<tr>
<td>timezone</td>
<td>\texttt{xs:dayTimeDuration}</td>
<td>The time zone expressed as an \texttt{xs:dayTimeDuration} value. The value can be negative. For example, a time zone value of -5 hours can be expressed as \texttt{-PT5H}.</td>
</tr>
</tbody>
</table>

Example

The following mapping constructs both parameters to the \texttt{adjust-date-to-timezone} function from strings, using the corresponding XPath 2 \texttt{constructor} functions. The goal of the mapping is to adjust the time zone to -5 hours. This time zone can be expressed as \texttt{-PT5H}.

\begin{verbatim}
XSLT 2.0 mapping

The function adjusts the date value to the time zone supplied as argument. Consequently, the mapping output is \texttt{2020-04-30-05:00}. 

© 2020 Altova GmbH
7.10.24.3 adjust-dateTime-to-timezone

Adjusts an xs:dateTime value to the implicit time zone in the evaluation context (the system's time zone).

```
<fn:adjust-dateTime-to-timezone
 date-time="result"
>
```

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>xs:dateTime</td>
<td>The input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

7.10.24.4 adjust-dateTime-to-timezone

Adjusts an xs:dateTime value to a specific time zone, or to no time zone at all. If the timezone argument is an empty sequence, the function returns an xs:dateTime without a time zone. Otherwise, it returns an xs:dateTime with a time zone.

```
<fn:adjust-dateTime-to-timezone
 date-time="result"
 timezone="result"
>
```

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>xs:dateTime</td>
<td>The input value of type xs:dateTime.</td>
</tr>
<tr>
<td>timezone</td>
<td>xs:dayTimeDuration</td>
<td>The time zone expressed as an xs:dayTimeDuration value. The value can be negative. For example, a time zone value of -5 hours can be expressed as -PT5H.</td>
</tr>
</tbody>
</table>
7.10.24.5 adjust-time-to-timezone

Adjusts an xs:time value to the implicit time zone in the evaluation context (the system's time zone).

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>xs:time</td>
<td>The input value of type xs:time.</td>
</tr>
</tbody>
</table>

7.10.24.6 adjust-time-to-timezone

Adjusts an xs:time value to a specific time zone, or to no time zone at all. If the timezone argument is an empty sequence, the function returns an xs:time without a time zone. Otherwise, it returns an xs:time with a time zone.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>xs:time</td>
<td>The input value of type xs:time.</td>
</tr>
<tr>
<td>timezone</td>
<td>xs:dayTimeDuration</td>
<td>The time zone expressed as an xs:dayTimeDuration value. The value can be negative. For example, a time zone value of -5 hours can be expressed as -PT5H.</td>
</tr>
</tbody>
</table>
7.10.24.7 day-from-date

Returns an xs:integer representing the day part of the xs:date value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>xs:date</td>
<td>The input value of type xs:date.</td>
</tr>
</tbody>
</table>

Example
The following mapping converts a string to xs:date using the xs:date constructor function. The day-from-date, month-from-date, and year-from-date functions each extract the respective part of the date and write it to a separate item in the target XML file.

XQuery 1.0 mapping

The mapping output is as follows:

```
<rows>
 <row>
 <col1>30</col1>
 <col2>4</col2>
 <col3>2020</col3>
 </row>
</rows>
```
7.10.24.8  day-from-dateTime

Returns an \texttt{xs:integer} representing the day part of the \texttt{xs:dateTime} value supplied as argument.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>\texttt{xs:dateTime}</td>
<td>The input value of type \texttt{xs:dateTime}.</td>
</tr>
</tbody>
</table>

Languages

XQuery, XSLT 2.0.

Parameters

7.10.24.9  days-from-duration

Returns an \texttt{xs:integer} representing the "days" component of the canonical representation of the duration value supplied as argument.

Languages

XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>\texttt{xs:duration}</td>
<td>The input value of type \texttt{xs:duration}.</td>
</tr>
</tbody>
</table>

Example

The mapping illustrated below constructs the \texttt{xs:dayTimeDuration} of \texttt{P2DT1H} (2 days and 1 hours) and supplies it as input to the \texttt{days-from-duration} function. The result is \texttt{2}.

\texttt{XSLT 2.0 mapping}
Note: If the duration is \texttt{P1DT24H} (1 day and 24 hours), the function returns 2, not 1. This is because the canonical representation of \texttt{P1DT24H} is actually \texttt{P2D} (2 days).

7.10.24.10 hours-from-dateTime

Returns an \texttt{xs:integer} representing the hours part of the \texttt{xs:dateTime} value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>\texttt{xs:dateTime}</td>
<td>The input value of type \texttt{xs:dateTime}.</td>
</tr>
</tbody>
</table>

7.10.24.11 hours-from-duration

Returns an \texttt{xs:integer} representing the hours component of the canonical representation of the duration value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>\texttt{xs:duration}</td>
<td>The input value of type \texttt{xs:duration}.</td>
</tr>
</tbody>
</table>

Example
If the duration is \texttt{PT1H60M} (1 hour and 60 minutes), the function returns 2, not 1. This is because the canonical representation of \texttt{PT1H60M} is actually \texttt{PT2H} (2 hours).

7.10.24.12 hours-from-time

Returns an \texttt{xs:integer} representing the hours part of the \texttt{xs:time} value supplied as argument.

Languages
XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>xs:time</td>
<td>The input value of type xs:time.</td>
</tr>
</tbody>
</table>

7.10.24.13 minutes-from-dateTime

Returns an xs:integer representing the minutes part of the xs:dateTime supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>xs:dateTime</td>
<td>The input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

7.10.24.14 minutes-from-duration

Returns an xs:integer representing the minutes component of the canonical representation of the duration supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>xs:duration</td>
<td>The input value of type xs:duration.</td>
</tr>
</tbody>
</table>

Example

If the duration is PT1M60S (1 minute and 60 seconds), the function returns 2, not 1. This is because the canonical representation of PT1M60S is actually PT2M (2 minutes).
7.10.24.15 minutes-from-time

Returns an xs:integer representing the minutes part of the xs:time value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>xs:time</td>
<td>The input value of type xs:time.</td>
</tr>
</tbody>
</table>

7.10.24.16 month-from-date

Returns an xs:integer representing the month part of the xs:date value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>xs:date</td>
<td>The input value of type xs:date.</td>
</tr>
</tbody>
</table>

7.10.24.17 month-from-dateTime

Returns an xs:integer representing the month part of the xs:dateTime value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>xs:dateTime</td>
<td>The input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>
7.10.24.18 months-from-duration

Returns an xs:integer representing the months component in the canonical representation of the duration value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>xs:duration</td>
<td>The input value of type xs:duration.</td>
</tr>
</tbody>
</table>

7.10.24.19 seconds-from-dateTime

Returns an xs:integer representing the seconds component in the localized value of dateTime.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>xs:dateTime</td>
<td></td>
</tr>
</tbody>
</table>

7.10.24.20 seconds-from-duration

Returns an xs:integer representing the seconds component in the canonical representation of the duration value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>xs:duration</td>
<td>The input value of type xs:duration.</td>
</tr>
</tbody>
</table>
7.10.24.21  seconds-from-time

Returns an xs:integer representing the seconds part of the xs:time value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>xs:time</td>
<td>The input value of type xs:time.</td>
</tr>
</tbody>
</table>

7.10.24.22  subtract-dateTimes

Returns the xs:dayTimeDuration that corresponds to the difference between the normalized value of dateTime1 and the normalized value of dateTime2.

Languages
XQuery, XSLT 2.0.

Parameters
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime1</td>
<td>xs:dateTime</td>
<td>The first input value.</td>
</tr>
<tr>
<td>dateTime2</td>
<td>xs:dateTime</td>
<td>The second input value.</td>
</tr>
</tbody>
</table>

7.10.24.23  subtract-dates

Returns the xs:dayTimeDuration that corresponds to the difference between the normalized value of date1 and the normalized value of date2.

Languages
XQuery, XSLT 2.0.

Parameters
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date1</td>
<td>xs:date</td>
<td>The first input value.</td>
</tr>
<tr>
<td>date2</td>
<td>xs:date</td>
<td>The second input value.</td>
</tr>
</tbody>
</table>
Example
The mapping illustrated below subtracts two dates (2020-10-22 minus 2020-09-22). The result is the value `P30D` of type `xs:dayTimeDuration`, which represents a duration of 30 days.

\[
\begin{align*}
&\text{C} = \text{"2020-10-22"} \\
&\text{C} = \text{"2020-09-22"} \\
&f_1 \text{ xs:date} \\
&f_2 \text{ subtract-dates} \\
&\text{result}
\end{align*}
\]

7.10.24.24  subtract-times

Returns the `xs:dayTimeDuration` that corresponds to the difference between the normalized value of `time1` and the normalized value of `time2`.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time1</td>
<td><code>xs:time</code></td>
<td>The first input value.</td>
</tr>
<tr>
<td>time2</td>
<td><code>xs:time</code></td>
<td>The second input value.</td>
</tr>
</tbody>
</table>

7.10.24.25  timezone-from-date

Returns the timezone component of the date supplied as argument. The result is an `xs:dayTimeDuration` that indicates deviation from UTC; its value may range from +14:00 to -14:00 hours, both inclusive.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td><code>xs:date</code></td>
<td>The input value of type <code>xs:date</code>.</td>
</tr>
</tbody>
</table>
7.10.24.26  timezone-from-dateTime

Returns the timezone component of the xs:dateTime value supplied as argument. The result is an xs:dayTimeDuration that indicates deviation from UTC; its value may range from +14:00 to -14:00 hours, both inclusive.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>xs:dateTime</td>
<td>The input value of type xs:dateTime.</td>
</tr>
</tbody>
</table>

7.10.24.27  timezone-from-time

Returns the timezone component of the xs:time value supplied as argument. The result is an xs:dayTimeDuration that indicates deviation from UTC; its value may range from +14:00 to -14:00 hours, both inclusive.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>xs:time</td>
<td>The input value of type xs:time.</td>
</tr>
</tbody>
</table>

7.10.24.28  year-from-date

Returns an xs:integer representing the year part of the xs:date value supplied as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>xs:date</td>
<td>The input value of type xs:date.</td>
</tr>
</tbody>
</table>
7.10.24.29 year-from-dateTime

Returns an \texttt{xs:integer} representing the year part of the \texttt{xs:dateTime} value supplied as argument.

**Languages**

XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dateTime</td>
<td>\texttt{xs:dateTime}</td>
<td>The input value of type \texttt{xs:dateTime}.</td>
</tr>
</tbody>
</table>

7.10.24.30 years-from-duration

Returns an \texttt{xs:integer} representing the years component in the canonical lexical representation of the duration value supplied as argument.

**Languages**

XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration</td>
<td>\texttt{xs:duration}</td>
<td>The input value of type \texttt{xs:duration}.</td>
</tr>
</tbody>
</table>

7.10.25 xpath2 | node functions

The node functions from the \texttt{xpath2} library provide information about nodes (items) on a mapping component.

The \texttt{lang} function takes a string argument that identifies a language code (such as "en"). The function returns \texttt{true} or \texttt{false} depending on whether the context node has an \texttt{xml:lang} attribute with a value that matches the argument of the function.

The \texttt{local-name}, \texttt{name}, and \texttt{namespace-uri} functions, return, respectively, the local name, name, and namespace URI of the input node. For example, for the node \texttt{altova:Products}, the local name is \texttt{Products}, the name is \texttt{altova:Products}, and the namespace URI is the URI of the namespace to which the altova: prefix is bound (see the example given for the \texttt{local-name} function). Each of these three functions has two variants:

- With no argument: the function is then applied to the context node (for an example of a context node, see the example given for the \texttt{lang} function).
With an argument that must be a node: the function is applied to the connected node.

The `number` function takes a node as input, atomizes the node (that is, extracts its contents), and converts the value to a decimal and returns the converted value. There are two variants of the `number` function:

- With no argument: the function is then applied to the context node (for an example of a context node, see the example given for the `lang` function).
- With an argument that must be a node: the function is applied to the connected node.

### 7.10.25.1 lang

Returns `true` if the context node has an `xml:lang` attribute with a value that either matches exactly the `testlang` argument, or is a subset of it. Otherwise, the function returns `false`.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>testlang</td>
<td>xs:string</td>
<td>The language code to check, for example, &quot;en&quot;.</td>
</tr>
</tbody>
</table>

**Example**

The following XML contains `para` elements with different values for the `xml:lang` attribute.

```xml
<page>
 <para xml:lang="en">Good day!</para>
 <para xml:lang="fr">Bonjour!</para>
 <para xml:lang="de-AT">Grüss Gott!</para>
 <para xml:lang="de-DE">Guten Tag!</para>
 <para xml:lang="de-CH">Grüezi!</para>
</page>
```

The mapping illustrated below filters only the German paragraphs, regardless of the country variant, with the help of the `lang` function.
In the mapping above, for each `para` in the source, an `item` is created in the target, conditionally. The condition is provided by a filter which passes on to the target only those nodes where the `lang` function returns `true`. That is, only those nodes that have the `xml:lang` attribute set to “de” (or a subset of “de”) will satisfy the filter's condition. Consequently, the mapping output is as follows:

```xml
<items>
 <item>Grüss Gott!</item>
 <item>Guten Tag!</item>
 <item>Grüezi!</item>
</items>
```

Note that the `lang` function operates in the context of each `para`, because of the parent connection between `para` and `item`, see also The Mapping Context.

### 7.10.25.2 local-name

Returns the local part of the name of the context node as an `xs:string`. This is a parameterless variant of the `local-name` function where the context node is determined by the connections in your mapping. To specify a node explicitly, use the `local-name` function that takes an input node as parameter.

```
local-name

result
```

**Languages**

XQuery, XSLT 2.0.
### 7.10.25.3 local-name

Returns the local part of the name of `node` as an `xs:string`.

```
local-name(node)
```

#### Languages

XQuery, XSLT 2.0.

#### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>node()</td>
<td>The input node.</td>
</tr>
</tbody>
</table>

#### Example

In the following XML file, the name of the `p:product` element is a prefixed qualified name (QName). The prefix "p" is mapped to the namespace "http://mycompany.com".

```xml
<?xml version="1.0" encoding="UTF-8"?>
 xsi:noNamespaceSchemaLocation="source.xsd">
 <p:product/>
</doc>
```

The following mapping extracts the local name, the name, and the namespace URI of the node and writes these values to a target file:
XSLT 2.0 mapping

The mapping output is displayed below. Each col item lists the result of the `local-name`, `name`, and `namespace-uri` functions, respectively.

```xml
<rows>
 <row>
 <col1>product</col1>
 <col2>p:product</col2>
 <col3>http://mycompany.com</col3>
 </row>
</rows>
```

7.10.25.4 name

Returns the name of the context node. This is a parameterless variant of the `name` function where the context node is determined by the connections in your mapping. To specify a node explicitly, use the `name` function that takes an input node as parameter.

```
<result>
 <name/>
</result>
```

Languages

XQuery, XSLT 2.0.
7.10.25.5 name

Returns the name of a node.

\[ \text{name} \]
\[ \text{node \ result} \]

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>node()</td>
<td>The input node.</td>
</tr>
</tbody>
</table>

Example
See the example given for the local-name function.

7.10.25.6 namespace-uri

Returns the namespace URI of the QName of the context node, as an xs:string. This is a parameterless variant of the namespace-uri function where the context node is determined by the connections in your mapping. To specify a node explicitly, use the namespace-uri function that takes an input node as parameter.

\[ \text{namespace-uri} \]
\[ \text{result} \]

Languages
XQuery, XSLT 2.0.

7.10.25.7 namespace-uri

Returns the namespace URI of the QName of node, as an xs:string.

\[ \text{namespace-uri} \]
\[ \text{node \ result} \]
Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>node()</td>
<td>The input node.</td>
</tr>
</tbody>
</table>

Example
See the example given for the `local-name` function.

7.10.25.8 number

Returns the value of the context node, converted to an `xs:double`. This is a parameterless variant of the `number` function where the context node is determined by the connections in your mapping. To specify a node explicitly, use the `number` function that takes an input node as parameter.

The only types that can be converted to numbers are Booleans, numeric strings, and other numeric types. Non-numeric input values (such as a non-numeric string) result in NaN (Not a Number).

<table>
<thead>
<tr>
<th>number</th>
<th>result</th>
</tr>
</thead>
</table>

Languages
XQuery, XSLT 2.0.

7.10.25.9 number

Returns the value of `node`, converted to an `xs:double`. The only types that can be converted to numbers are Booleans, numeric strings, and other numeric types. Non-numeric input values (such as a non-numeric string) result in NaN (Not a Number).

<table>
<thead>
<tr>
<th>number</th>
<th>node</th>
<th>result</th>
</tr>
</thead>
</table>

Languages
XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>mf:atomic</td>
<td>The input node.</td>
</tr>
</tbody>
</table>

Example

The following XML contains items of type string:

```
<items>
 <item>1</item>
 <item>2</item>
 <item>Jingle Bells</item>
</items>
```

The mapping illustrated below attempts to convert all these strings to numeric values and write them to a target XML file. Notice that the data type of `item` in the target XML component is `xs:integer` while the source `item` is of `xs:string` data type. If the conversion is not successful, the item must be skipped and not copied to the target file.

```
<items>
 <item>1</item>
 <item>2</item>
</items>
```

**XSLT 2.0 mapping**

To achieve the mapping goal, a filter was used. The `equal` function checks if the result of the conversion is "NaN". If this is false, this indicates a successful conversion, so the item is copied to the target. The output of the mapping is as follows:

```
<items>
 <item>1</item>
 <item>2</item>
</items>
```

7.10.26  **xpath2 | numeric functions**

The numeric functions of the **xpath2** library include the `abs` and `round-half-to-even` functions.
7.10.26.1  abs

Returns the absolute value of the argument. For example, if the input argument is -2 or 2, the function returns 2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:decimal</td>
<td>The input value.</td>
</tr>
</tbody>
</table>

Languages
XQuery, XSLT 2.0.

7.10.26.2  round-half-to-even

The round-half-to-even function rounds the supplied number (first argument) to the degree of precision (number of decimal places) supplied in the optional second argument. For example, if the first argument is 2.141567 and the second argument is 3, then the first argument (the number) is rounded to three decimal places, so the result will be 2.141. If no precision (second argument) is supplied, the number is rounded to zero decimal places, that is, to an integer.

The "even" in the name of the function refers to the rounding to an even number when a digit in the supplied number is midway between two values. For example, round-half-to-even(3.475, 2) would return 3.48.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>xs:decimal</td>
<td>Mandatory argument which provides the input value to be rounded.</td>
</tr>
</tbody>
</table>

Languages
XQuery, XSLT 2.0.
### 7.10.27 `xpath2` | string functions

The string functions of the `xpath2` library enable you to process strings (this includes comparing strings, converting strings to upper or lower case, extracting substrings from strings, and others).

#### 7.10.27.1 codepoints-to-string

Creates a string from a sequence of Unicode code points. This function is the opposite of the `string-to-codepoints` function.

```
<codepoints-to-string
 codepoints result
```

**Languages**

XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>codepoints</td>
<td>ZeroOrMore <code>xs:integer</code></td>
<td>This input must be connected to a sequence of items of integer type, where each integer specifies a Unicode code point.</td>
</tr>
</tbody>
</table>

**Example**

The following XML contains multiple `item` elements that store Unicode code point values each.

```
<items>
 <item>77</item>
 <item>97</item>
 <item>112</item>
 <item>70</item>
 <item>111</item>
 <item>114</item>
 <item>99</item>
</items>
```
The mapping illustrated below supplies the sequence of items as argument to the codepoint-to-string function.

XSLT 2.0 mapping

The mapping output is MapForce.

7.10.27.2 compare

The compare function takes two strings as arguments and compares them for equality and alphabetically. If string1 is alphabetically less than string2 (for example the two string are "A" and "B"), then the function returns -1. If the two strings are equal (for example, "A" and "A"), the function returns 0. If string1 is greater than string2 (for example, "B" and "A"), then the function returns 1.

This variant of the function uses the default collation, which is Unicode. Another variant of this function exists where you can supply the collation as argument.

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string1</td>
<td>xs:string</td>
<td>The first input string.</td>
</tr>
<tr>
<td>string2</td>
<td>xs:string</td>
<td>The second input string.</td>
</tr>
</tbody>
</table>
7.10.27.3 compare

The `compare` function takes two strings as arguments and compares them for equality and alphabetically, using the collation supplied as argument. If `string1` is alphabetically less than `string2` (for example the two string are "A" and "B"), then the function returns -1. If the two strings are equal (for example, "A" and "A"), the function returns 0. If `string1` is greater than `string2` (for example, "B" and "A"), then the function returns 1.

```
<compare>
 <string1>string1</string1>
 <string2>string2</string2>
 <collation>collation</collation>
</compare>
```

Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string1</td>
<td>xs:string</td>
<td>The first input string.</td>
</tr>
<tr>
<td>string2</td>
<td>xs:string</td>
<td>The second input string.</td>
</tr>
<tr>
<td>collation</td>
<td>xs:string</td>
<td>Specifies the collation to use for string comparison. This input may originate from the output of the <code>default-collation</code> function or it may be a collation such as <code>http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive</code>.</td>
</tr>
</tbody>
</table>

Example
The following mapping compares the strings "A" and "a" using the case insensitive collation `http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive`, which is supplied by a constant.

```
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" encoding="utf-8"/>
 <xsl:template match="/">
 <compare>
 <string1>A</string1>
 <string2>a</string2>
 <collation>http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive</collation>
 </compare>
 </xsl:template>
</xsl:stylesheet>
```

XSLT 2.0 Mapping
The result of the mapping above is 0, meaning that both strings are treated as equal. However, if you replace the collation with the one provided by the `default-collation` function, the collation changes to the default Unicode code point collation, and the mapping result becomes -1 ("A" is alphabetically less than "a").

7.10.27.4 `ends-with`

Returns `true` if `string` ends with `substr`; `false` otherwise. The returned value is of type `xs:boolean`.

This variant of the function uses the default collation, which is Unicode. Another variant of this function exists where you can supply the collation as argument.

**Languages**

XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string</code></td>
<td><code>xs:string</code></td>
<td>The input string (that is, the &quot;haystack&quot;).</td>
</tr>
<tr>
<td><code>substr</code></td>
<td><code>xs:string</code></td>
<td>The substring (that is, the &quot;needle&quot;).</td>
</tr>
</tbody>
</table>
7.10.27.5 ends-with

Returns true if string ends with substr; false otherwise. The returned value is of type xs:boolean.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ends-with</td>
<td>Returns true if string ends with substr; false otherwise. The returned value is of type xs:boolean.</td>
</tr>
</tbody>
</table>

**Languages**
XQuery, XSLT 2.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string (that is, the &quot;haystack&quot;).</td>
</tr>
<tr>
<td>substr</td>
<td>xs:string</td>
<td>The substring (that is, the &quot;needle&quot;).</td>
</tr>
<tr>
<td>collation</td>
<td>xs:string</td>
<td>Specifies the collation to use for string comparison. This input may originate from the output of the default-collation function or it may be a collation such as <a href="http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive">http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive</a>.</td>
</tr>
</tbody>
</table>

7.10.27.6 lower-case

Returns the value of string after translating every character to its lower-case correspondent.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower-case</td>
<td>Returns the value of string after translating every character to its lower-case correspondent.</td>
</tr>
</tbody>
</table>

**Languages**
XQuery, XSLT 2.0.
### 7.10.27.7 matches

The `matches` function tests whether a supplied string (the first argument) matches a regular expression (the second argument). The syntax of regular expressions must be that defined for the `pattern` facet of XML Schema. The function returns `true` if the string matches the regular expression, `false` otherwise.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td><code>xs:string</code></td>
<td>The input string.</td>
</tr>
<tr>
<td>pattern</td>
<td><code>xs:string</code></td>
<td>The regular expression to match, see Regular Expressions.</td>
</tr>
<tr>
<td>flags</td>
<td><code>xs:string</code></td>
<td>Optional argument that influences the matching. This argument may supply any combination of the following flags: <code>i</code>, <code>m</code>, <code>s</code>, <code>x</code>. Multiple flags can be used, for example, <code>imx</code>. If no flag is used, the default values of all four flags are used. The four flags are as follows:</td>
</tr>
</tbody>
</table>

- **i** Use case-insensitive mode. The default is case-sensitive.
- **m** Use multi-line mode, in which the input string is considered to have multiple lines, each separated by a newline character (`\n`). The meta characters `^` and `$` indicate the beginning and end of each line. The default is string mode, in which the string starts and ends with the meta characters `^` and `$`.
- **s** Use dot-all mode. The default is not-dot-all mode, in which the meta character `.` matches all characters except the newline character (`\n`). In dot-all mode, the dot also matches the newline character.

**Languages**

XQuery, XSLT 2.0.
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore whitespace</td>
<td>×</td>
<td>Ignore whitespace. By default, whitespace characters are not ignored.</td>
</tr>
</tbody>
</table>

### 7.10.27.8 normalize-unicode

Returns the value of `string` normalized according to the rules of the normalization form specified (the second argument). For more information about Unicode normalization, see §2.2 of [https://www.w3.org/TR/charmod-norm/](https://www.w3.org/TR/charmod-norm/).

#### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string</code></td>
<td><code>xs:string</code></td>
<td>The string value to be normalized.</td>
</tr>
<tr>
<td><code>normalizationForm</code></td>
<td><code>xs:string</code></td>
<td>Optional argument which supplies the normalization form. The default is Unicode Normalization Form C (NFC). The normalization forms NFC, NFD, NFKC, and NFKD are supported.</td>
</tr>
</tbody>
</table>

### Languages

XQuery, XSLT 2.0.

### 7.10.27.9 replace

This function takes an input string, a regular expression, and a replacement string as arguments. It replaces all matches of the regular expression in the input string with the replacement string. If the regular expression matches two overlapping strings in the input string, only the first match is replaced.
Languages
XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
<tr>
<td>pattern</td>
<td>xs:string</td>
<td>The regular expression to match, see Regular Expressions.</td>
</tr>
<tr>
<td>replacement</td>
<td>xs:string</td>
<td>The replacement string.</td>
</tr>
<tr>
<td>flags</td>
<td>xs:string</td>
<td>Optional argument that influences the matching. This argument is used in the same way as the flags argument of the matches function.</td>
</tr>
</tbody>
</table>

7.10.27.10  starts-with

Returns true if string starts with substr; false otherwise. The returned value is of type xs:boolean. String comparison takes place according to the specified collation.

Languages
XQuery, XSLT 2.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string (that is, the &quot;haystack&quot;).</td>
</tr>
<tr>
<td>substr</td>
<td>xs:string</td>
<td>The substring (that is, the &quot;needle&quot;).</td>
</tr>
<tr>
<td>collation</td>
<td>xs:string</td>
<td>Specifies the collation to use for string comparison. This input may originate from the output of the <code>default-collation</code> function or it may be a collation such as <code>http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive</code>.</td>
</tr>
</tbody>
</table>

Example

The following mapping returns the value `true`, because the input string "MapForce" begins with the substring "Map", assuming that the default Unicode collation is used.

```
<xs:string>
 <f:string>
 <f:starts-with>
 <f:string>
 Map
 </f:string>
 <f:substr>
 MapForce
 </f:substr>
 </f:starts-with>
 </f:string>
</xs:string>
```

7.10.27.11 string-to-codepoints

Returns the sequence of Unicode code points (integer values) that constitute the string supplied as argument. This function is the opposite of the `codepoints-to-string` function.

```
<f:string>
 <f:string-to-codepoints>
 <f:input>
 Map
 </f:input>
 <f:result>
 <f:codepoints>
 73 110 112 108 105
 </f:codepoints>
 </f:result>
 </f:string-to-codepoints>
</f:string>
```
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td><code>xs:string</code></td>
<td>The input string</td>
</tr>
</tbody>
</table>

7.10.27.12 `substring-after`

Returns the part of string `arg1` that occurs after the string `arg2`.

```
<substring-after arg1="MapForce" arg2="Map" collation="default-collation">
result="Force"
```

Languages

XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arg1</code></td>
<td><code>xs:string</code></td>
<td>The input string (that is, the &quot;haystack&quot;).</td>
</tr>
<tr>
<td><code>arg2</code></td>
<td><code>xs:string</code></td>
<td>The substring (that is, the &quot;needle&quot;).</td>
</tr>
<tr>
<td><code>collation</code></td>
<td><code>xs:string</code></td>
<td>Specifies the collation to use for string comparison. This input may originate from the output of the <code>default-collation</code> function or it may be a collation such as <code>http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive</code>.</td>
</tr>
</tbody>
</table>

Example

If `arg1` is "MapForce", `arg2` is "Map", and `collation` is `default-collation`, the function returns "Force".
### 7.10.27.13 substring-before

Returns the part of string **arg1** that occurs before the string **arg2**.

- **Name**: substring-before
- **Parameters**:
  - **arg1**: xs:string, The input string (that is, the "haystack").
  - **arg2**: xs:string, The substring (that is, the "needle").
  - **collation**: xs:string, Specifies the collation to use for string comparison. This input may originate from the output of the `default-collation` function or it may be a collation such as `http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive`.

#### Example
If **arg1** is "MapForce", **arg2** is "Force", and **collation** is `default-collation`, the function returns "Map".

### 7.10.27.14 upper-case

Returns the value of **string** after translating every character to its upper-case correspondent.

- **Name**: upper-case
- **Parameters**:
  - **string**: The input string (that is, the "haystack").
  - **result**: The upper-case version of the input string.
Languages

XQuery, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The input string.</td>
</tr>
</tbody>
</table>

7.10.28  xslt | xpath functions

The functions in this sub-group are XPath 1.0 functions that retrieve information about mapping items (or nodes). Most of these functions take a node as argument and return information about that node. The last and position functions operate in the current mapping context, which is determined by the connections on your mapping.

Note: Additional XPath 1.0 functions can be found in the core library.

7.10.28.1  lang

Returns true if the context node has an xml:lang attribute with a value that either matches exactly the string argument, or is a subset of it. Otherwise, the function returns false.

Languages

XSLT 1.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The language code to check, for example, &quot;en&quot;.</td>
</tr>
</tbody>
</table>

Example

See the example given for the lang function of the xpath2 library.
7.10.28.2 last

Returns the position number of the last node in the processed node list.

```
<fx: last>
 <fx: result>
 <fx: node>
 <fx: result>
 </fx: node>
 </fx: result>
</fx: last>
```

Languages

XSLT 1.0.

Example

See the example given for the `last` function of the `xpath2` library.

7.10.28.3 local-name

Returns the local part of the name of the node supplied as argument.

```
<fx: local-name>
 <fx: node>
 <fx: result>
 </fx: node>
</fx: local-name>
```

Languages

XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td><code>node()</code></td>
<td>The input node.</td>
</tr>
</tbody>
</table>

Example

See the example given for the `local-name` function of the `xpath2` library.
7.10.28.4  name

Returns the name of the node supplied as argument.

\[
\text{name}(\text{node})
\]

Languages
XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>node ()</td>
<td>The input node.</td>
</tr>
</tbody>
</table>

Example

See the example given for the `local-name` function of the `xpath2` library.

7.10.28.5  namespace-uri

Returns the namespace URI of the node supplied as argument.

\[
\text{namespace-uri}(\text{node})
\]

Languages
XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>node ()</td>
<td>The input node.</td>
</tr>
</tbody>
</table>

Example

See the example given for the `local-name` function of the `xpath2` library.
7.10.28.6 position

Returns the position of the current node in the node set that is currently being processed.

Languages
XSLT 1.0.

7.10.29 xslt | xslt functions

The functions in this group are miscellaneous XSLT 1.0 functions.

7.10.29.1 current

The current function takes no argument and returns the current node.

Languages
XSLT 1.0.

7.10.29.2 document

Accesses nodes from an external XML document. The result is output to a node in the output document.

Languages
XSLT 1.0.
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>uri</td>
<td>xs:string</td>
<td>Mandatory. Specifies the path to the XML document. The XML document must be valid and parseable.</td>
</tr>
<tr>
<td>nodeset</td>
<td>node ()</td>
<td>Optional. Specifies a node, the base URI of which is used to resolve the URI supplied as the first argument if it is relative.</td>
</tr>
</tbody>
</table>

7.10.29.3  element-available

The `element-available` function tests whether an element, entered as the only string argument of the function, is supported by the XSLT processor. The argument string is evaluated as a QName. Therefore, XSLT elements must have an `xsl:` prefix and XML Schema elements must have an `xs:` prefix—since these are the prefixes declared for these namespaces in the underlying XSLT that will be generated for the mapping. The function returns a Boolean.

```
<xsl:element-available
 element="result"
 result="true"/>
```

Languages

XSLT 1.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>element</td>
<td>xs:string</td>
<td>The element name.</td>
</tr>
</tbody>
</table>

7.10.29.4  function-available

The `function-available` function is similar to the `element-available` function and tests whether the function name supplied as the function's argument is supported by the XSLT processor. The input string is evaluated as a QName. The function returns a Boolean.

```
<xsl:function-available
 function="result"
 result="true"/>
```
Languages
XSLT 1.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>function</td>
<td>xs:string</td>
<td>The function name.</td>
</tr>
</tbody>
</table>

7.10.29.5 generate-id

The `generate-id` function generates a unique string that identifies the first node in the node set identified by the optional input argument. If no argument is supplied, the ID is generated on the context node. The result can be directed to any node in the output document.

```
<generate-id
 nodeset
 result
```

Languages
XSLT 1.0, XSLT 2.0.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodeset</td>
<td>node ()</td>
<td>Optional argument that supplies the input node.</td>
</tr>
</tbody>
</table>

7.10.29.6 system-property

The `system-property` function returns properties of the XSLT processor (the system). Three system properties, all in the XSLT namespace, are mandatory for XSLT processors. These are `xsl:version`, `xsl:vendor`, and `xsl:vendor-url`. The input string is evaluated as a QName and so must have the `xsl:` prefix, since this is the prefix associated with the XSLT namespace in the underlying XSLT stylesheet.

```
<system-property
 string
 result
```

Languages
XSLT 1.0, XSLT 2.0.
**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>Specifies the property name, which can be any of the following: xsl:version, xsl:vendor, xsl:vendor-url.</td>
</tr>
</tbody>
</table>

### 7.10.29.7 unparsed-entity-uri

If you are using a DTD, you can declare an unparsed entity in it. This unparsed entity (for example, an image) will have a URI that locates the unparsed entity. The input string of the function must match the name of the unparsed entity that has been declared in the DTD. The function then returns the URI of the unparsed entity, which can then be directed to a node in the output document, for example, to an `href` node.

```
unparsed-entity-uri
 string | result
```

**Languages**

XSLT 1.0.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>xs:string</td>
<td>The name of the unparsed entity whose URI should be retrieved.</td>
</tr>
</tbody>
</table>
8  Automating Mappings and MapForce

Mappings designed with MapForce can be executed in a server environment (including Linux and macOS servers), and with server-level performance, by the following Altova transformation engines (licensed separately):

- **RaptorXML Server.** Running a mapping with this engine is suitable if the transformation language of the mapping is XSLT 1.0, XSLT 2.0, or XQuery. See Automation with RaptorXML Server.
- **MapForce Server (or MapForce Server Advanced Edition).** This engine is suitable for any mapping where the transformation language is BUILT-IN*. The BUILT-IN language supports the most mapping features in MapForce, while MapForce Server (and, in particular, MapForce Server Advanced Edition) provides best performance for running a mapping. See Automation with MapForce Server.

* The BUILT-IN transformation language requires MapForce Professional or Enterprise Edition.

In addition to this, MapForce provides the ability to automate generation of XSLT, XQuery, C#, C++, and Java code from the command line interface. This includes the ability to compile server execution files (.mfx) intended for MapForce Server execution. For more information, see MapForce Command Line Interface.
8.1 Automation with RaptorXML Server

RaptorXML Server (hereafter also called RaptorXML for short) is Altova’s third-generation, super-fast XML and XBRL processor. It has been built to be optimized for the latest standards and parallel computing environments. Designed to be highly cross-platform capable, the engine takes advantage of today’s ubiquitous multi-core computers to deliver lightning fast processing of XML and XBRL data.

RaptorXML is available in two editions which can be downloaded from the Altova download page (https://www.altova.com/download-trial-server.html):

- RaptorXML Server is a very fast XML processing engine with support for XML, XML Schema, XSLT, XPath, XQuery, and more.
- RaptorXML+XBRL Server supports all the features of RaptorXML Server with the additional capability of processing and validating the XBRL family of standards.

If you generate code in XSLT 1.0 or 2.0, or in XQuery, MapForce creates a batch file called DoTransform.bat which is placed in the output folder that you choose upon generation. Executing the batch file calls RaptorXML Server and executes the XSLT (or XQuery) transformation on the server.

If you intend to execute or automate MapForce mappings for other outputs on a server, see Automation with MapForce Server.

Note: You can also preview the XSLT and XQuery code using the built-in engine.
8.2 Automation with MapForce Server

MapForce Server is an enterprise server software solution for Windows, Linux and macOS operating systems. The role of MapForce Server is to execute mappings in a server environment (including on non-Windows platforms) and with server-level performance. Any MapForce mapping where the target execution language is BUILT-IN qualifies for server execution (see also Selecting a Transformation Language). MapForce Server can operate either standalone (invoked from command line or API), or under the management of FlowForce Server.

If MapForce Server is used as a standalone product then the MapForce mapping has to be compiled and copied to the machine where MapForce Server runs. The mapping is then run using the MapForce Server command line command `run`. You can also run the mapping by invoking the `run` method of the MapForce Server API. For further information, see Compiling Mappings to MapForce Server Execution Files.

If MapForce Server runs under FlowForce Server management, the mapping can be deployed to a target machine through an HTTP (or SSL/HTTPS) connection directly from MapForce. On the server, the mapping can then be executed as a triggered or scheduled job, or through a Web service call defined from the FlowForce Server administration interface. For further information, see Deploying Mappings to FlowForce Server.

There are two editions of MapForce Server:

- MapForce Server
- MapForce Server Advanced Edition

MapForce Server Advanced Edition provides the same features as MapForce Server, and additionally includes optimization features for mappings which qualify for optimization. This is the case of mappings which join or filter large amounts of data, and where it is possible to apply join optimization so as to increase the execution speed. Unlike MapForce Server, MapForce Server Advanced Edition can execute mappings where node functions are present, see Defaults and Node Functions.

Limitations:

- XML digital signatures are not supported
- ADO, ADO.NET, and ODBC database connections are supported only on Windows (for other operating systems, see Preparing Mappings for Server Execution).

For more information about MapForce Server, refer to its accompanying documentation (https://www.altova.com/documentation).
8.3 Preparing Mappings for Server Execution

A mapping designed and previewed with MapForce may refer to resources which are outside of the current machine and operating system (such as databases). In addition to this, in MapForce, all mapping paths follow Windows-style conventions by default. Thirdly, the machine where MapForce Server runs might not support the same database connections as the machine where the mapping was designed. For this reason, running mappings in a server environment typically requires some preparation, especially if the target machine is not the same as the source machine.

Note: The term "source machine" refers to the computer where the MapForce is installed and the term "target machine" refers to the computer where MapForce Server or FlowForce Server is installed. In the most simple scenario, this is the same computer. In a more advanced scenario, MapForce runs on a Windows machine whereas MapForce Server or FlowForce Server runs on a Linux or macOS machine.

As best practice, always make sure that the mapping validates successfully in MapForce before deploying it to FlowForce Server or compiling it to a MapForce Server execution file (see Validating Mappings).

If MapForce Server runs standalone (without FlowForce Server), the required licenses are as follows:

- On the source machine, MapForce Enterprise or Professional edition is required to design the mapping and compile it to a server execution file (.mfx), see Compiling Mappings to MapForce Server Execution Files.
- On the target machine, MapForce Server or MapForce Server Advanced Edition is required to run the mapping.

If MapForce Server runs under FlowForce Server management, the following requirements apply:

- On the source machine, MapForce Enterprise or Professional edition is required to design the mapping and deploy it to a target machine, see Deploying Mappings to FlowForce Server.
- Both MapForce Server and FlowForce Server must be licensed on the target machine. The role of MapForce Server is to run the mapping; the role of FlowForce is to make the mapping available as a job which benefits from features such as scheduled or on demand execution, execution as a Web service, error handling, conditional processing, email notifications, and others.
- FlowForce Server must be up and running at the configured network address and port. Namely, the "FlowForce Web Server" service must be started and configured to accept connections from HTTP clients (or HTTPS if configured) and must not be blocked by the firewall. The "FlowForce Server" service must also be started and running at the designated address and port.
- You have a FlowForce Server user account with permissions to one of the containers (by default, the /public container is accessible to any authenticated user).

General considerations

- If you intend to run the mapping on a target machine with standalone MapForce Server, all input files referenced by the mapping must be copied to the target machine as well. If MapForce Server runs under FlowForce Server management, there is no need to copy files manually. In this case, the instance and schema files are included in the package deployed to the target machine, see Deploying Mappings to FlowForce Server.
- If the mapping includes database components which require specific database drivers, such drivers must be installed on the target machine as well. For example, if your mapping reads data from a Microsoft Access database, then Microsoft Access or Microsoft Access Runtime...

- When you deploy a mapping to non-Windows platforms, ADO, ADO.NET and ODBC database connections are automatically changed to JDBC. Native SQLite and native PostgreSQL connections are preserved as such and require no additional configuration. See also "Database connections" below.
- If the mapping contains custom function calls (for example, to .dll or .class files), such dependencies are not deployed together with the mapping, since they are not known before runtime. In this case, copy them manually to the target machine. The path of the .dll or .class file on the server must be the same as in the "Manage Libraries" window in MapForce, for example:

![Manage Libraries dialog box](image)

- Some mappings read multiple input files using a wildcard path (see Processing Multiple Input or Output Files Dynamically). In this case, the input file names are not known before runtime and so they are not deployed. For the mapping to execute successfully, the input files must exist on the target machine.
- If the mapping output path includes directories, those directories must exist on the target machine. Otherwise, an error will be generated when you execute the mapping. This behavior is unlike MapForce, where non-existing directories are generated automatically if the option Generate output to temporary files is enabled (see Changing the MapForce Options).
- If the mapping calls a Web service that requires HTTPS authentication with a client certificate, the certificate must be transferred to the target machine as well.
- If the mapping connects to file-based databases such as Microsoft Access and SQLite, the database file must be manually transferred to the target machine or saved to a shared directory which is accessible to both the source and the target machine and referenced from there, see "File-based databases" below.

Making paths portable

If you intend to run the mapping on a server, ensure that the mapping follows the applicable path conventions and uses a supported database connection.

To make paths portable to non-Windows operating systems, use relative instead of absolute paths when designing the mapping in MapForce:

1. Open the desired mapping design file (.mfd) with MapForce on Windows.
2. On the File menu, select Mapping Settings, and clear the Make paths absolute in generated code check box if it is selected.
3. For each mapping component, open the Properties dialog box (by double-clicking the component's
title bar, for example), and change all file paths from absolute to relative. Also, select the **Save all file paths relative to MFD file** check box. For convenience, you can copy all input files and schemas in the same folder as the mapping itself, and reference them just by the file name.

For more information about dealing with relative and absolute paths while designing mappings, see [Using Relative and Absolute Paths](#).

Importantly, both MapForce Server and FlowForce Server support a so-called "working directory" against which all relative paths will be resolved, see also [Paths in Various Execution Environments](#). The working directory is specified at mapping runtime, as follows:

- In FlowForce Server, by editing the "Working-directory" parameter of any job.
- In MapForce Server API, through the `WorkingDirectory` property of the COM and .NET API, or through the `setWorkingDirectory` method of the Java API.
- In MapForce Server command line, the working directory is the current directory of the command shell.

### Database connections

Be aware that ADO, ADO.NET, and ODBC connections are not supported on Linux and macOS machines. Therefore, if the target machine is Linux or macOS, such connections are converted to JDBC when you deploy the mapping to FlowForce or when you compile the mapping to a MapForce Server execution file. In this case, you have the following options before deploying the mapping or compiling it to a server execution file:

- In MapForce, create a JDBC connection to the database (see [Setting up a JDBC Connection](#)).
- In MapForce, fill the JDBC database connection details in the "JDBC-specific Settings" section of the database component (see [Database Component Settings](#)).

If the mapping uses a native connection to a PostgreSQL or SQLite database, the native connection is preserved and no JDBC conversion takes place, see [Database mappings in various execution environments](#). If the mapping connects to a file-based database, such as Microsoft Access and SQLite, additional configuration is required, see "File-based databases" below.

Running mappings with JDBC connections requires that the Java Runtime Environment or Java Development Kit be installed on the server machine. This may be either Oracle JDK or an open source build such as Oracle OpenJDK.

- The `JAVA_HOME` environment variable must point to the JDK installation directory.
- On Windows, a Java Virtual Machine path found in the Windows registry will take priority over the `JAVA_HOME` variable.
- The JDK platform (64-bit, 32-bit) must be the same as that of MapForce Server. Otherwise, you may get an error with the reason: "JVM is inaccessible".

### To set up a JDBC connection on Linux or macOS:

1. Download the JDBC driver supplied by the database vendor and install it on the operating system. Make sure to select the 32-bit version if your operating system runs on 32-bit, and the 64-bit version if your operating system runs on 64-bit.
2. Set the environment variables to the location where the JDBC driver is installed. Typically, you will need to set the CLASSPATH variable, and possibly a few others. To find out which specific environment variables must be configured, check the documentation supplied with the JDBC driver.
Note: On macOS, the system expects any installed JDBC libraries to be in the /Library/Java/Extensions directory. Therefore, it is recommended that you unpack the JDBC driver to this location; otherwise, you will need to configure the system to look for the JDBC library at the path where you installed the JDBC driver.

Oracle Instant Client connections on macOS
These instructions are applicable if you connect to an Oracle database through the Oracle Database Instant Client, on macOS. Prerequisites:

- Java 8.0 or later must be installed. If the Mac machine runs a Java version prior to Java 8, you can also connect through the JDBC Thin for All Platforms library, and disregard the instructions below.
- Oracle Instant Client must be installed. You can download the Oracle Instant Client from the Oracle official download page. Note that there are several Instant Client packages available on the Oracle download page. Make sure to select a package with Oracle Call Interface (OCI) support, (for example, Instant Client Basic). Also, make sure to select the 32-bit version if your operating system runs on 32-bit, and the 64-bit version if your operating system runs on 64-bit.

Once you have downloaded and unpacked the Oracle Instant Client, edit the property list (.plist) file shipped with the installer so that the following environment variables point to the location of the corresponding driver paths, for example:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sample Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSPATH</td>
<td>/opt/oracle/instantclient_11_2/ojdbc6.jar:/opt/oracle/instantclient_11_2/ojdbc5.jar</td>
</tr>
<tr>
<td>TNS_ADMIN</td>
<td>/opt/oracle/Network_ADMIN</td>
</tr>
<tr>
<td>ORACLE_HOME</td>
<td>/opt/oracle/instantclient_11_2</td>
</tr>
<tr>
<td>DYLD_LIBRARY_PATH</td>
<td>/opt/oracle/instantclient_11_2</td>
</tr>
<tr>
<td>PATH</td>
<td>$PATH:/opt/oracle/instantclient_11_2</td>
</tr>
</tbody>
</table>

Note: Edit the sample values above to fit the paths where Oracle Instant Client files are installed on your operating system.

File-based databases
File-based databases such as Microsoft Access and SQLite are not included in the package deployed to FlowForce Server or in the compiled MapForce Server execution file. Therefore, if the source and target machine are not the same, take the following steps:

1. In MapForce, right-click the mapping and clear the check box Make paths absolute in generated code (see Changing the Mapping Settings).
2. Right-click the database component on the mapping and add a connection to the database file using a relative path, see Setting the Path to File-Based Databases. A simple way to avoid path-related issues is to save the mapping design (.mfd file) in the same directory as the database file and to refer to the latter from the mapping just by file name (thus using a relative path).
3. Copy the database file to a directory on the target machine (let's call it "working directory"). Keep this directory in mind since it will be required to run the mapping on the server, as shown below.
To run such mappings on the server, do one of the following:

- If the mapping will be run by MapForce Server under FlowForce Server control, configure the FlowForce Server job to point to the working directory created previously. The database file must reside in the working directory.
- If the mapping will be run by standalone MapForce Server at the command line, change the current directory to the working directory (for example, `cd path\to\working\directory`) before calling the `run` command of MapForce Server.
- If the mapping will be run by the MapForce Server API, set the working directory programmatically before running the mapping. To facilitate this, the property `WorkingDirectory` is available for the MapForce Server object in the COM and .NET API. In the Java API, the method `setWorkingDirectory` is available.

If both the source and the target machines are Windows machines running on the local network, an alternative approach is to configure the mapping to read the database file from a common shared directory, as follows:

1. Store the database file in a common shared directory which is accessible by both the source and the target machine.
2. Right-click the database component on the mapping and add a connection to the database file using an absolute path (see Setting the Path to File-Based Databases).

Global Resources

If a mapping includes references to Global Resources instead of direct paths or database connections, you will be able to use Global Resources on the server side as well. When you compile a mapping to a MapForce Server execution file (.mfx), the references to Global Resources will be kept intact, so that you can provide these on the server side, at mapping runtime. When deploying a mapping to FlowForce Server, you can optionally choose whether it should use resources on the server.

For mappings (or mapping functions, in case of FlowForce Server) to run successfully, the actual file, folder, or database connection details that you supply as Global Resources must be compatible with the server environment. For example, files and folders paths must use the Linux convention for paths if the mapping will run on a Linux server. Likewise, Global Resources defined as database connections must be possible on the server machine.

For further information, see Global Resources in MapForce Server and Global Resources in FlowForce Server.
8.4 Compiling Mappings to MapForce Server Execution Files

When the target language of a mapping created in MapForce is set to BUILT-IN, it can be executed not only by MapForce, but also by MapForce Server (see About MapForce Server). There are two ways to execute a mapping with MapForce Server:

- If MapForce Server runs in standalone mode (that is, no FlowForce Server is installed), the mapping must be compiled to a server execution file (.mfx), as shown below. You can then run the .mfx file at the command line, using the command `run`. You can also run the mapping by invoking the `run` method of the MapForce Server API. For further information, see the MapForce Server documentation (https://www.altova.com/documentation).
- If MapForce Server runs under FlowForce Server management, you can deploy the mapping to a machine where both MapForce Server and FlowForce Server run. For more information about this scenario, see Deploying Mappings to FlowForce Server.

Prerequisites
See Preparing Mappings for Server Execution.

To compile a mapping to a MapForce Server Execution (.mfx) file:

1. Open a mapping in MapForce (for example, `myMapping.mfd`).
3. Select the folder you want to place the .mfx file in and change the file name if necessary.
4. Click Save. The MapForce Server Execution file `myMapping.mfx` is generated in the selected folder.

To compile a mapping to a MapForce Server Execution (.mfx) file, using the command line:

- Run MapForce at the command line, and specify the mapping file and the /COMPILE command line option.

For example, the following command compiles the mapping `C:\Users\altova\Documents\Altova\MapForce2021\MapForceExamples\SimpleTotal.mfd` to a MapForce Server execution file that will be created in the target output directory `C:\Users\altova\Desktop`.

```
"C:\Program Files (x86)\Altova\MapForce2021\MapForce.exe" "C:\Users\altova\Documents\Altova\MapForce2021\MapForceExamples\SimpleTotal.mfd" /COMPILE "C:\Users\altova\Desktop"
```

See also the MapForce Command Line Interface.

What's included in the .mfx file

The .mfx file includes the following data:

- The mapping algorithm, which includes all user-defined functions (UDFs) imported from other mappings.
• Input and output file names referenced from components. Paths are absolute or relative depending on the mapping settings, see Paths in Various Execution Environments.
• If the mapping contains XML components, information about the XML schema needed to execute the mapping is encoded into the mapping algorithm.
• The database connection details, if the mapping includes database connections. Passwords are encrypted.

The input instance files (XML, CSV, Text) that are used by the mapping are not included in the compiled .mfx file. The same is true for file-based databases such as Access or SQLite. For details, see Preparing Mappings for Server Execution.

Compiling mappings for a specific MapForce Server version

If your MapForce Server has an older version than MapForce, the former might not be able to execute .mfx files created with a newer version of MapForce, since new features will likely have been added in the meanwhile. In such cases, you can compile the .mfx file for a specific version of MapForce Server, as follows:

1. On the Tools menu, click Options, and then click Generation.
2. Under Server Execution File, next to Generate for MapForce Server version, select the required MapForce Server version from the drop-down list.

Once you have a newer MapForce Server version, remember to change this option accordingly. If you have no particular reason to compile for a specific version of MapForce Server, select the "most current" option (this is the default option). When this option is selected, the .mfx file is compiled for the most recent version of MapForce Server and could benefit from latest features and improvements which might otherwise not be available in previous versions.

To specify a target MapForce Server version at the command line, run the /COMPILE command with the /MFXVERSION switch, for example:

"C:\Program Files (x86)\Altova\MapForce2021\MapForce.exe" /COMPILE /MFXVERSION:2021

See also the MapForce Command Line Interface.

Other options

Compilation of MapForce Server Execution Files is also affected by the following options:

| Convert all ADO and ODBC Database Connections to JDBC | If the option is enabled, ADO, ADO.NET, and ODBC database connections are transformed to JDBC using the JDBC driver and the database URL defined |
in the Database Component Settings dialog box (see [Database Component Settings](#)).

The JDBC connection will be used implicitly if the target machine is a Linux or macOS server.

| Ignore Digital Signatures (unsupported by MapForce Server) | This option is applicable only to MapForce Enterprise. It is enabled by default. If the mapping uses XML digital signatures, it skips the digital signature information, since MapForce Server does not support XML digital signatures. |

To view or change these options:

- On the **Tools** menu, click **Options**, and then click **Generation**.

These options are also available from the command line interface. See also the [MapForce Command Line Interface](#).
8.5 Deploying Mappings to FlowForce Server

Deploying a mapping to FlowForce Server means that MapForce organizes the resources used by the specific mapping into an object and passes it through HTTP (or HTTPS if configured) to the machine where FlowForce Server runs. MapForce mappings are typically deployed to FlowForce Server in order to automate their execution by means of FlowForce Server jobs. Once a mapping is deployed, you can create a full-featured FlowForce Server job from it, and benefit from all job-specific functionality (for example, define custom triggering conditions for the job, expose it as a Web service, and so on).

**Note:** The term "source machine" refers to the computer where the MapForce is installed and the term "target machine" refers to the computer where FlowForce Server is installed. In the most simple scenario, this is the same computer. In a more advanced scenario, MapForce runs on a Windows machine whereas FlowForce Server runs on a Linux or macOS machine.

The package deployed to FlowForce includes the following:

- The mapping itself. After deployment, the mapping becomes available in the FlowForce Server administration interface as a mapping function (.mapping), at the path you specify. Any source components become input arguments, and any target components become output arguments of this function.

- All kinds of input instance files (XML, CSV, Text) that are used by the mapping.

**Prerequisites**

See [Preparing Mappings for Server Execution](#).

**Deploying the mapping to FlowForce Server**

1. Ensure that the transformation language is set to BUILT-IN (see [Selecting a Transformation Language](#)).
2. On the **File** menu, click **Deploy to FlowForce Server**. The Deploy Mapping dialog box opens.
3. Enter your deployment settings (as described below), and click OK. If you selected the **Open web browser to create new job** check box, the FlowForce Server administration interface opens in the browser, and you can start creating a FlowForce Server job immediately.

The following table lists the mapping deployment settings available on the Deploy Mapping dialog box.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server, Port, Use SSL</td>
<td>Enter the server host name (or IP address) and port of FlowForce Server. These could be <strong>localhost</strong> and <strong>8082</strong> if FlowForce Server is running on the same machine at the default port. When in doubt, log on to FlowForce Server Web administration interface and check the I.P. address and port displayed in the Web browser's address bar. If you encounter connectivity errors, ensure that the machine on which FlowForce Server runs is configured to allow incoming connections on the designated address and port. To deploy the mapping through a SSL-encrypted connection, select the <strong>Use SSL</strong> check box. This assumes that FlowForce Server is already</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>configured to accept SSL connections. For more information, refer to FlowForce Server documentation (<a href="https://www.altova.com/documentation">https://www.altova.com/documentation</a>).</td>
<td>The user name and password to be entered depends on the value of the Login drop-down list (see next option). If the Login drop-down list is set to &lt;Default&gt; or Directly, enter your FlowForce Server user name and password. Otherwise, enter your domain user name and password, and select the domain name from the Login drop-down list.</td>
</tr>
<tr>
<td>User and Password</td>
<td>If Directory Service integration is enabled in FlowForce Server, select the domain name from this drop-down list, and enter your domain credentials in the User and Password fields (see previous option).</td>
</tr>
<tr>
<td>Login</td>
<td>Select the Use Resources check box if the mapping function should use Resources after it is deployed to the server. If you select the check box, you must also enter the path of the respective resource on the server in the Resource Path text box. To select the resource, click the Ellipsis button.</td>
</tr>
<tr>
<td>Use Resources, Resource Path</td>
<td>If there are no resources on the server yet to choose from, click Deploy Global Resources, and deploy the required Global Resource to server. For more information, see Deploying Global Resources to FlowForce Server.</td>
</tr>
<tr>
<td>Path</td>
<td>If you do not select the Use Resources check box, any Global Resources will be resolved, based on the currently selected configuration. On the server, the mapping function will no longer require Global Resources, but will use the resolved value instead.</td>
</tr>
<tr>
<td>Path</td>
<td>Click Browse, and select the path where the mapping function should be saved in FlowForce Server container hierarchy. By default, the path is set to the /public container of FlowForce Server.</td>
</tr>
<tr>
<td>Save mapping before deploying</td>
<td>From the dialog box, you can also create new containers or delete existing containers and mappings, provided that you have the required FlowForce Server permissions and privileges.</td>
</tr>
<tr>
<td>Open browser to create new job</td>
<td>This option is available if you are deploying an unsaved mapping. Select this check box to save the mapping before deployment.</td>
</tr>
<tr>
<td>Open browser to create new job</td>
<td>If you select this check box, the FlowForce Server Web administration interface opens in the browser after deployment, and you can start creating a FlowForce Server job immediately.</td>
</tr>
</tbody>
</table>

If the server where you deploy the mapping has multiple versions of MapForce Server running under FlowForce Server management (applicable to Windows servers only), then you are additionally prompted to specify the version of MapForce Server with which you want this mapping to be executed.
Note: The dialog box appears when the FlowForce Server installation directory contains .tool files for each MapForce Server version which runs under FlowForce Server management. By default, a MapForce Server .tool file is added automatically to this directory when you install MapForce Server as part of FlowForce Server installation. The path where the .tool files are stored in FlowForce is: C:\Program Files\Altova\FlowForceServer2021\tools. If you have additional versions of MapForce Server which you want to run under FlowForce Server management, their .tool files may need to be copied manually to the directory above. The .tool file of MapForce Server can be found at: C:\Program Files\Altova\MapForceServer2021\etc.
8.6 MapForce Command Line Interface

The general syntax of a MapForce command at the command line is:

```
MapForce.exe <filename> [/{target} [[<outputdir>] [/options]]]
```

Legend

The following notation is used to indicate command line syntax:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text without brackets or braces</td>
<td>Items you must type as shown</td>
</tr>
<tr>
<td>&lt;Text inside angle brackets&gt;</td>
<td>Placeholder for which you must supply a value</td>
</tr>
<tr>
<td>[Text inside square brackets]</td>
<td>Optional items</td>
</tr>
<tr>
<td>(Text inside braces)</td>
<td>Set of required items; choose one</td>
</tr>
<tr>
<td>Vertical bar (</td>
<td>)</td>
</tr>
<tr>
<td>Ellipsis (…)</td>
<td>Items that can be repeated</td>
</tr>
</tbody>
</table>

<filename>

The mapping design (.mfd) or mapping project (.mfp) file from which code is to be generated. To generate code for the whole project, set the target /GENERATE (see description below) and enter the project path as <filename>, for example, MapForceExamples.mfp.

/{target}

Specifies the target language or environment for which code is to be generated. The following code generation targets are supported:

<table>
<thead>
<tr>
<th>Target</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/COMPILE[:compileoptions]</td>
<td>Compiles a mapping to a MapForce Server execution file (.mfx). Optionally, the following options can be supplied, delimited by a comma: JDBC Transforms all database connections to JDBC using the JDBC driver and the database URL defined in the Database Component Settings dialog box, see also Database Component Settings. NOXMLSIGNATURES Suppresses the generation of digital signatures in the MapForce Server Execution file (note that digital signatures are not supported by MapForce Server).</td>
</tr>
<tr>
<td>Target</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>/GENERATE</td>
<td>Generates project code for all mappings in the project file using the current folder settings, see Managing Project Folders. If you select this target, make sure to supply a MapForce project (.mfp file) as <code>&lt;filename&gt;</code>.</td>
</tr>
<tr>
<td>/XSLT</td>
<td>Generates XSLT 1.0 code.</td>
</tr>
<tr>
<td>/XSLT2</td>
<td>Generates XSLT 2.0 code.</td>
</tr>
<tr>
<td>/XQuery</td>
<td>Generates XQuery code.</td>
</tr>
<tr>
<td>/JAVA</td>
<td>Generates Java code.</td>
</tr>
</tbody>
</table>
| /CS | Generates C# code. This command also optionally allows setting specific options for code generation, namely: 

```plaintext
/CS[:{VS2010|VS2013|VS2015|VS2017|VS2019}]
```

- **VS2010** Visual Studio 2010
- **VS2013** Visual Studio 2013
- **VS2015** Visual Studio 2015
- **VS2017** Visual Studio 2017
- **VS2019** Visual Studio 2019

If no Visual Studio version is specified, code will be generated using the Visual Studio version defined in the code generation options, see Code Generator Options.

| /CPP | Generates C++ code. This command also optionally allows setting specific code generation options, namely: 

```plaintext
/CPP[:{VS2010|VS2013|VS2015|VS2017},{MSXML|XERCES3},{LIB|DLL},{MFC|NoMFC}]
```

The first option group set the target Visual Studio version. Valid values: 

- **VS2010** Visual Studio 2010
- **VS2013** Visual Studio 2013
- **VS2015** Visual Studio 2015
- **VS2017** Visual Studio 2017
- **VS2019** Visual Studio 2019
The second option group specifies the XML library targeted by the generated code. Valid values:

- `MSXML`  Generate code for MSXML 6.0
- `XERCES3`  Generate code for Xerces 3

The third option group specifies whether static as opposed to dynamic libraries should be generated. Valid values:

- `LIB`  Generate static LIB libraries
- `DLL`  Generate DLL libraries

The fourth option group specifies whether code should be generated with or without MFC support. Valid values:

- `MFC`  Enable MFC support
- `NoMFC`  Disable MFC support

If the options above are not specified, code will be generated using the Visual Studio version defined in the code generation options, see Code Generator Options.

`<outputdir>`
Optional parameter which specifies the output directory. If an output path is not supplied, the current working directory will be used. Note that any relative file paths are relative to the current working directory.

When target is `/GENERATE` and the `<outputdir>` parameter is not set, the code generation language, as well as the output path of each mapping, are supplied by the settings defined for each folder inside the project, see Managing Project Folders.

When target is `/GENERATE` and the `<outputdir>` parameter is set, the `<outputdir>` value supplied at the command line takes precedence over the output directory defined at the root project level. It does not take precedence, however, over the code generation settings defined at each folder inside the project.

`/options`
The `/options` are not mutually exclusive. One or more of the following options can be set.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[/MFXVERSION[:&lt;version&gt;]</code></td>
<td>This option is applicable if the target is <code>/COMPILE</code>. It compiles the MapForce Server Execution (.mfx) file for a particular version of</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>MapForce Server. You can supply as value</td>
<td>MapForce Server. You can supply as value any version of MapForce Server, starting with 2013r2 onwards, up to the current MapForce version. See also Compiling mappings for a specific MapForce Server version.</td>
</tr>
<tr>
<td>/GLOBALRESOURCEFILE &lt;filename&gt;</td>
<td>This option is applicable if the mapping uses Global Resources to resolve input or output file or folder paths, or databases. For more information, see Altova Global Resources.</td>
</tr>
<tr>
<td>/GLOBALRESOURCEFILE &lt;filename&gt;</td>
<td>The option /GLOBALRESOURCEFILE specifies the path to a Global Resource .xml file. Note that, if /GLOBALRESOURCEFILE is set, then /GLOBALRESOURCECONFIG must also be set.</td>
</tr>
<tr>
<td>/GLOBALRESOURCECONFIG &lt;config&gt;</td>
<td>This option specifies the name of the Global Resource configuration (see also the previous option). Note that, if /GLOBALRESOURCEFILE is set, then /GLOBALRESOURCECONFIG must also be set.</td>
</tr>
</tbody>
</table>
| /LIBRARY <libname> (...)<libname> (...)<li...
3) To generate XSLT 2.0 code taking into account the global resource configuration \(<grconfigname>\) from the global resource file \(<grfilename>\), use:

```
Mapforce.exe <filename>.mfd /XSLT2 <outputdir> /GLOBALRESOURCEFILE
<grfilename> /GLOBALRESOURCECONFIG <grconfigname>
```

4) To generate a C# application for Visual Studio 2015 and output a log file, use:

```
MapForce.exe <filename>.mfd /CS:VS2015 <outputdir> /LOG <logfilename>
```

5) To generate a C++ application using the code generation settings defined in Tools | Options, and output a log file, use:

```
MapForce.exe <filename>.mfd /CPP <outputdir> /LOG <logfilename>
```

6) To generate a C++ application for Visual Studio 2015, MSXML, with static libraries, MFC support, and no log file, use:

```
MapForce.exe <filename>.mfd /CPP:VS2015,MSXML,LIB,MFC
```

7) To generate a C++ application for Visual Studio 2015, Xerces, with dynamic libraries, no MFC support, and a log file, use:

```
MapForce.exe <filename>.mfd /CPP:VS2015,XERCES,DLL,NoMFC <outputdir> /LOG <logfilename>
```

8) To generate a Java application and also output a log file, use:

```
MapForce.exe <filename>.mfd /JAVA <outputdir> /LOG <logfilename>
```

9) To generate code for all mappings in the project, using the language and output directory defined in the folder settings (of each folder inside the project), use:

```
MapForce.exe <filename>.mfp /GENERATE /LOG <logfilename>
```

10) To generate Java code for all mappings in the project file, use:

```
MapForce.exe <filename>.mfp /JAVA /LOG <logfilename>
```

Note that the code generation language defined in the folder settings are ignored, and Java is used for all mappings.

11) To supply input and output files at the command line for a previously compiled Java mapping, use:

```
java -jar <mappingfile>.jar /InputFileName <inputfilename> /OutputFileName <outputfilename>
```
The `/InputFileName` and `/OutputFileName` parameters are the names of special input components in the MapForce mapping that allow you to use parameters in command line execution (see [Supplying Parameters to the Mapping](#)).

12) To compile a mapping to a MapForce Server execution file, for MapForce Server version 2021, and suppress XML signatures:

```
MapForce.exe <filename>.mfd /COMPILE:NOXMLSIGNATURES <outputdir> /MFXVERSION:2021 /LOG <logfile>
```
9 Altova Global Resources

Altova Global Resources are portable references to files, folders, or databases. When stored as Global Resources, paths and database connection details become reusable and available across multiple Altova applications. For example, if you frequently need to open the same file in multiple Altova desktop applications, you may find it convenient to define it as a Global Resource. This way, you don't even need to remember the file path because you can select the respective Global Resource from the "Open File" dialog box instead. This also has the advantage that, if the file path ever changes, you will change it in one place only.

A typical usage of Global Resources is to define a database connection once and reuse it across all Altova applications that support Global Resources. For example, you can create a database connection on the machine where a MapForce mapping was designed and then reuse the same connection on the machine where MapForce Server runs the mapping (this may require, in some cases, that both machines have the same database client software installed).

Optionally, you can create multiple variations of the same Global Resource (known as "configurations"). This lets you easily switch file or folder paths (or even databases) depending on your needs. For example, you could create a "database" resource with two configurations: "development" and "production". Taking MapForce as example, you could then easily retrieve data from either the development or production database, by choosing the desired configuration from a list before previewing the mapping.

You can create Global Resources from the following Altova desktop applications: Altova Authentic, DatabaseSpy, MobileTogether Designer, MapForce, StyleVision, and XMLSpy. On the server side, Global Resources can be consumed by the following Altova server applications: FlowForce Server, MapForce Server, RaptorXML Server, RaptorXML+XBRL Server.

In MapForce, you can use Global Resources (be they file, folder, or database references) for various scenarios, for example:

- To supply a configurable file path as mapping input, see Example: Run Mappings with Variable Input Files.
- To redirect the mapping output to a configurable path. For more information, see Example: Generate Mapping Output to Variable Folders.
- To supply a configurable path to a StyleVision Power Stylesheet (.sps) file, if one is used by the mapping. For example, instead of referencing a plain StyleVision .sps file from the MapForce component settings, you could refer to an .sps file previously defined as a Global Resource, which has two possible configurations (let's say, "Website.sps" and "Print.sps"). See also Styling Mapping Output with StyleVision.
- To reuse a database connection. If a database has already been defined as a Global Resource (in any Altova application), you can connect to it without going through all the set-up steps again, see Using a Connection from Global Resources.
- To easily switch the database from which the mapping reads data, or the one to which the mapping writes data (provided that two or more databases have the same structure but different data, see Example: Switch Databases).

MapForce Basic Edition does not support consuming database connections defined as Global Resources.
9.1 Creating Global Resources

A Global Resource is a reusable reference that represents a file or folder path, or a database connection. Global Resources are defined only once and can be reused as many times as necessary in contexts which support them, including across multiple Altova applications. Taking databases as example, if you frequently work with a specific database in more than one Altova application, then it is a good idea to add the database connection as a Global Resource. This way, you wouldn't need to go through all the Database Connection Wizard steps each time when you need to connect to the same database from another Altova application.

Each Global Resource can have so-called "configurations". Configurations make it possible to easily switch between files, folders and databases that are consumed or produced by Altova applications, which is particularly useful for testing scenarios. For example, you could create a database resource that consists of three separate connections to the same database, each with a different driver kind: (a) ODBC, the default connection kind, (b) JDBC, and (c) ADO.NET. This way, to connect to the database with a specific driver, you would just select the corresponding configuration from the Global Resources drop-down list.

Configurations can also help you generate mapping output to variable folders, with a click of a button. For example, you could create a folder resource with two configurations: (a) "Testing", which points to directory `C:\Testing` and (b) "Production", which points to directory `C:\Production`. It is then possible to configure a mapping to generate output to either `C:\Testing` or `C:\Production` folders, just by selecting the required configuration from the Global Resources drop-down list before running the mapping. This example is discussed in more detail in Example: Generate Output to Variable Folders.

To create a Global Resource:

1. On the **Tools** menu, click **Global Resources**. (Alternatively, click the Manage Global Resources toolbar button.)
2. Click **Add** and select the resource type you wish to create (file, folder, database).
3. Enter a descriptive name in the **Resource alias** text box (for example, "InputFile", "OutputFolder", "DatabaseConnection").
4. Set up the "Default" configuration:
   a) If it's a file or folder, browse for the file or folder to which this resource should point by default.
   b) If it's a database connection, click **Choose Database** and follow the Database Connection Wizard to connect to the database (see Connecting to a Database). This database connection will be used by default when the mapping runs (unless a different configuration is explicitly selected from the Global Resources drop-down list or supplied as a command line parameter in server execution).
5. Optionally, if the resource should have an additional configuration (for example, a driver kind in case of databases, or an alternative path in case of files or folders), click the **Add configuration** button, enter a descriptive name (for example "ProductionFolder" or "JDBC_Alternative"), and set it up as follows:
   a) If it's a file or folder, browse for the file or folder to which this resource should point as an alternative to the default configuration defined in previous step.
b) If it's a database connection, follow the Database Connection Wizard to connect to the database. This database connection will be used as an alternative to the default one.

In some cases, it might be more convenient to create a configuration as a copy of the default configuration, and then edit it. In this case, click the Add configuration as a copy of the currently selected configuration button.

6. Repeat the previous step for each additional configuration required.
9.2 Databases as Global Resources

When you add a database connection as a Global Resource, a connection wizard guides you through the steps required to set up the connection, see Starting the Database Connection Wizard. Once you complete the wizard, the database connection parameters are displayed on the Global Resource dialog box.

On the Global Resource dialog box, it is possible to edit some of the database connection parameters. As illustrated above, the parameters are grouped into two categories:

<table>
<thead>
<tr>
<th>Database</th>
<th>These parameters are shared between Altova applications. In MapForce, they are used at design time, that is, when the mapping is loaded, or when you click the Output tab in MapForce to preview the mapping.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapForce-specific execution parameters</td>
<td>These parameters are applicable when you generate program code or compile a mapping to MapForce Server execution file</td>
</tr>
</tbody>
</table>
They are used at mapping runtime, as follows:

- In generated C++, C#, or Java program code.
- If you compiled the mapping to a MapForce Server execution file, and automatic JDBC conversion took place. For more information about automatic JDBC conversion, see Database mappings in various execution environments.

If a mapping uses a Global Resource to connect to a database, then the database connection details visible in the Global Resource dialog box take precedence over those defined on the mapping. In the Component Settings dialog box, illustrated below, notice that the database connection settings become grayed out. The dialog box also informs you that the connectivity parameters are defined as a Global Resource.

![Component Settings dialog box](image)

To change the database component to connect to the database directly (without using Global Resources), click Change, and follow the wizard steps to reconnect to the database.
9.3 MapForce and StyleVision Transformation Result as Global Resource

You can create Global Resources which, instead of pointing to a static file, read a specific file produced by either a MapForce mapping or StyleVision transformation. In this case, the Altova application which consumes the Global Resource will first call either MapForce or StyleVision, run the corresponding mapping or transformation, and finally fetch the resulting file. This makes it possible to define data workflows between Altova applications (for example, pass the result of a MapForce mapping or StyleVision transformation as input to another mapping or transformation). For an example which illustrates how XMLSpy consumes the result (output) of a MapForce mapping using Global Resources, see Example: Create Application Workflow.

In order to make a mapping result (output) available as a Global Resource, either the transformation language of the mapping must be set to BUILT-IN, or the mapping must contain only components which are supported by the BUILT-IN language.

The workflows mentioned above are meaningful between Altova desktop applications installed on the same computer. It is not possible to consume the result of MapForce and StyleVision transformations as Global Resources in Altova server products and in MapForce Basic Edition.

For details about how Altova server applications consume Global Resources, see Global Resources in MapForce Server and Global Resources in FlowForce Server.
9.4 The Global Resources XML File

By default, all Global Resources, regardless of the Altova application where they were created, are stored at the following path: `C:\Users\<username>\Documents\Altova\GlobalResources.xml`. This makes them transparent, easy to backup, as well as portable to other workstations where Altova products are installed. It is also possible to rename or duplicate the `GlobalResources.xml` file and thus create multiple Global Resource files. However, only one Global Resource file can be active at a time in an Altova application.

Unlike other Altova applications, FlowForce Server does not work with global resource files. Instead, resources are managed like other FlowForce configuration data (they are reusable objects with access permissions). For more information, see Global Resources in FlowForce Server.

To set up the active Global Resource file:

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource toolbar button.)
2. Click Browse and select the required Global Resource XML file.

If you are using multiple Global Resource files, make sure that the currently active file contains all Global Resources required by the current context. For example, if a mapping was configured to read data from a path using a Global Resource, then the currently active Global Resource file must contain that specific Global Resource. Otherwise, error messages like "Errors resolving global resource" will occur in the Messages window.
9.5 Global Resources in Various Execution Environments

9.5.1 Global Resources in XSLT, XSLT 2, XQuery

When you generate XSLT or XSLT2 code and the mapping uses Global Resources, this does not affect the generated XSLT stylesheet in any way. With or without Global Resources, the input and output files are not a permanent assignment and can be specified flexibly anyway when you run the XSLT stylesheet in your XSLT processor. The same applies for generated XQuery code.

An exception to this is the DoTransform.bat file generated for RaptorXML execution. Any Global Resources used by the mapping will be resolved to actual paths in DoTransform.bat, taking into account the value (configuration) which is currently selected from the Global Resource drop-down list.

For information about supplying Global Resources to RaptorXML, refer to the RaptorXML documentation (see https://www.altova.com/documentation.html).

9.5.2 Global Resources in C++, C#, Java

When you generate C#, C++, or Java program code, any Global Resources used by the mapping will be resolved. For example, a file or folder alias defined as Global Resource will be converted to the actual file or folder path. If a particular Global Resource configuration is selected from the Global Resources drop-down list, then the code will be generated for the selected configuration. The Messages window provides information as to how exactly a Global Resource was resolved, for example:

To generate code for a particular Global Resource configuration, select it from the Global Resource drop-down list before generating code. Alternatively, if you generate code from the command line, supply the GLOBALRESOURCEFILE and GLOBALRESOURCECONFIG parameters at the command line (see also MapForce Command Line Interface).

It is not possible to switch or refer to Global Resources from generated code (instead, you can modify the code to change the input or output file path).

Note: In C# or Java, you can change not only the path but also the data type of input or output, see Changing the data type of the mapping input/output (C#, Java).
### 9.5.3 Global Resources in MapForce Server

When you compile a mapping to a MapForce Server execution file (.mfx), any Global Resource references used by the mapping are preserved, not resolved. This means that you will need to provide these references on the server side in order to run the mapping successfully. More specifically, in MapForce Server, the following is required to run an .mfx file which uses Global Resources:

1. The Global Resource XML file. On the machine where MapForce is installed, the file is called `GlobalResources.xml`, and you can find it in the `Documents\Altova` folder. You can copy this file to the machine where MapForce Server runs, and you can also create multiple such files if necessary. See also [The Global Resources XML File](#).

2. The Global Resource configuration name. Each Global Resource has a default configuration called "Default", but you can create additional configurations if so required. If you created additional configurations as explained in [Creating Global Resources](#), then you must specify the desired configuration name instead of "Default".

In MapForce, the Global Resource file path and the Global Resource configuration name are set or changed from the graphical user interface. In MapForce Server, these are specified at mapping runtime.

- If you run the mapping through the command line interface, set the options `--globalresourceconfig` and `--globalresourcefile` after the `run` command, for example:

  ```
 C:\Program Files (x86)\Altova\MapForceServer2021\bin\MapForceServer.exe run SomeMapping.mfx --globalresourcefile="C:\Users\me\Documents\Altova\GlobalResources.xml" --globalresourceconfig="Default"
  ```

- If you run the mapping through the MapForce Server API, call the method `SetOptions` two times before calling the `Run` method. The first call is required to supply the Global Resource XML file path as option, and the second one is required to supply the Global Resource configuration name.

For more information, refer to the MapForce Server documentation ([https://www.altova.com/documentation.html](https://www.altova.com/documentation.html)).

### 9.5.4 Global Resources in FlowForce Server

From the FlowForce Server perspective, Global Resources cease to be "global" to some extent, because they are not stored in one XML file as in desktop applications. In FlowForce, each resource is a reusable object that may contain file or folder paths or database connection details. Resources may be copied, exported, and imported, and are subject to the same user access mechanism like other FlowForce Server objects. In other words, any FlowForce user could use any resource in their mapping functions, if they have the required permissions.

Once you have created a mapping with Global Resources in MapForce, you can deploy it to FlowForce Server. At deployment time, you can choose whether the mapping should use Global Resources, by selecting the `Use Resources` check box on the deployment dialog box. If you do not select the check box, any Global Resources used by the mapping will be resolved, based on the currently selected configuration. If you selected the check box, the mapping function will require resources in FlowForce Server as well. The following is an example of a mapping function deployed to FlowForce that requires resources to run (notice that the first parameter gets the default file path from a resource):
As illustrated above, in FlowForce Server, it is the mapping function that consumes Global Resources, not the job. The exact meaning of the verb "consumes" depends on how exactly the mapping was designed with respect to Global Resources. For example, the mapping may have been configured to read from or write to a path, in case of files or folders. In the example above, the mapping function reads the path of the first input file from the resource. This means that all jobs using this function will use the same path, unless you override the path from the job configuration page.

You can also deploy Global Resources to FlowForce Server as standalone objects. In other words, there is no need to deploy a mapping first in order to be able to deploy a Global Resource. For more information, see Deploying Resources to FlowForce Server.


### 9.5.5 Deploying Resources to FlowForce Server

You can deploy Global Resources created with MapForce to FlowForce Server. Upon deployment, you must choose the configuration with which the resource should be deployed to the server. If you need all configurations of the same Global Resource on the server, then you can deploy it multiple times and select the desired configuration each time upon deployment. You can also change the name of each global resource on the server, and choose the destination container on the server.

Global Resources that run other Altova applications are not supported in a server environment. For more information, see MapForce and StyleVision Transformation Result as Global Resource.

You can deploy Global Resources to FlowForce Server either at the same time when you deploy the mapping, or separately.
To deploy Global Resources to FlowForce Server:

1. On the **Tools** menu, click **Global Resources**. (Alternatively, click the **Manage Global Resources** toolbar button.)
2. Click **Deploy to Server**. A dialog box opens.

![Deploy Global Resource Configuration dialog box](image)

3. Enter the connection details to FlowForce Server (server, port, user, password, login method). These parameters are the same as the ones required when deploying a mapping, see [Deploying Mappings to FlowForce Server](#).
4. Select a configuration from the **Configuration** list. This list includes all configurations from the current **Global Resource file**.

Only one global resource configuration can be deployed at a time. As stated before, you can deploy the same resource multiple times, with a different name, if you need all the configurations on the server.

5. Select a target path where the resource should be saved on the server. Click **Browse** to display a dialog box where you can select a target FlowForce container, or create a new one if required.
6. Click **OK**.

The outcome of deploying a Global Resource to FlowForce Server is reported in the Messages window.
9.6 Example: Run Mapping with Variable Input Files

Let's assume that you frequently run a mapping that takes as input an XML file. Every time when you need to change the input XML, you can edit the properties of the source XML component and browse for the new input file, see Changing the Component Settings. This is easy to accomplish if it's a one time task. However, what if you need to change the input XML file of the mapping multiple times per day, or even per hour? For example, every morning you need to run the mapping and generate a report by using one XML file as mapping input, and every evening the same report must be generated from another XML file. This is where Global Resources can help you: instead of editing the mapping multiple times per day (or keeping multiple copies of it), you could configure the mapping to read from a file defined as a global resource (a so-called "file alias"). To address the requirement laid out in this example, the file alias could be configured to have two configurations:

1. "Default" - This configuration would supply a "morning" XML file as mapping input
2. "EveningReports" - This configuration would supply an "evening" XML file as mapping input.

Having these configurations in place would make it possible to run the mapping with either input file. Once the file alias is set up as shown below, you will be able to select the desired configuration from a drop-down list, before running the mapping.

Step 1: Create the Global Resource

The file alias can be created as follows:

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource toolbar button.)
2. Click Add | File.
3. Enter a name in the Resource alias text box (in this example, "DailyReports" would be an appropriate name).
4. Click Browse and select the following file:
   `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\mf-ExpReport.xml`.
5. Click Add Configuration and name it "EveningReports".
6. Click Browse and this time select the following file:
   `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\mf-ExpReport2.xml`.

Step 2: Use the Global Resource in the mapping

The required Global Resource has now been created; however, the mapping is not using it yet. To change the mapping so that it reads from the previously defined file alias (Global Resource), do the following:

1. Open the following mapping
   `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Tut-ExpReport.mfd`.
2. Right-click the header of the source component on the mapping, and select Properties from the context menu.
3. Next to Input XML file, click Browse.
4. Click Switch to Global Resources and select the file alias "DailyReports" defined previously.
5. Click Open. The input XML file path has now become `altova://file_resource/DailyReports`, which indicates that the path uses a Global Resource.
Step 3: Run the mapping with the desired configuration

You can now easily switch the input XML file before running the mapping, as follows:

- On the Tools menu, click Active Configuration | Default, to use the file mf-ExpReport.xml as input.
- On the Tools menu, click Active Configuration | EveningReports, to use the file mf-ExpReport2.xml as input.

Alternatively, select the required configuration from the Global Resources drop-down list.

To preview the mapping result with either configuration, click the Output tab and observe differences in the generated output.
9.7 Example: Generate Output to Variable Folders

This example illustrates how mapping output can be redirected to different folders by means of Global Resources.

Let's suppose that sometimes you need to generate the mapping output to one directory (for example, C:\Testing), while in certain cases output must be generated to another directory (for example, C:\Production). With Global Resources, this is possible by creating a folder alias with two configurations:

1. "Default" configuration - Generates output to C:\Testing
2. "Production" configuration - Generates output to C:\Production.

The steps below illustrate how to achieve this goal.

Step 1: Create the Global Resource
The folder alias can be created as follows:

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource toolbar button.)
2. Click Add | Folder.
3. Enter a name in the Resource alias text box (in this example, "OutputDirectory" could be an appropriate name).
4. Click Browse and select the following folder: C:\Testing. (Make sure that this folder already exists on your operating system.)
5. Click Add Configuration and enter a name for the new configuration (in this example, "ProductionDirectory").
6. Click Browse and this time select the following folder: C:\Production. (Make sure that this folder already exists on your operating system.)

Step 2: Use the Global Resource in the mapping
The required Global Resource has now been created; however, the mapping is not using it yet. To change the mapping so that it uses from the previously defined folder alias (Global Resource), do the following:

1. Open the following mapping <Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Tut-ExpReport.mfd.
2. Right-click the target component on the mapping, and select Properties from the context menu.
3. Next to Output XML file, click Browse.
4. Click Switch to Global Resources, and then click Save.
5. When prompted to save the output XML file, enter output.xml (or another descriptive file name that you wish to give to the output file). The output XML file path has now become altova://folder_resource/OutputDirectory/output.xml, which indicates that the path is defined as a Global Resource.

Step 3: Run the mapping with the desired configuration
You can now easily switch to the desired mapping output folder file before running the mapping, as follows:
- On the **Tools** menu, click **Active Configuration | Default**, and then click the **Output** tab to preview the mapping result. The mapping output (either a temporary or a permanent file, as explained below) will be generated in the *C:\Testing* directory.

- On the **Tools** menu, click **Active Configuration | ProductionDirectory**, and then click the **Output** tab. The mapping output (either a temporary or a permanent file, as explained below) will be generated in the *C:\Production* directory.

**Note:** The mapping output is written by default as a temporary file, unless you explicitly configured MapForce to write output to permanent files.

To configure MapForce to generate permanent files instead of temporary, do the following:

1. On the **Tools** menu, click **Options**.
2. In the **General** section, select the option **Write directly to final output files**.
9.8 Example: Switch Databases

When a mapping reads or writes data from a database, it is possible to switch the database connection immediately before mapping runtime (for example, from a release to a production database, and vice versa). This example illustrates how to accomplish this by means of Global Resources. Switching databases this way implies that both databases have the same structure but different data. For the purpose of this example, we will be working with the following Microsoft Access databases:

- altova.mdb, from the directory: `<Documents>\Altova\MapForce2021\MapForceExamples\`. This database plays the role of the default development database.
- altova.mdb, from the directory: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\`. This database plays the role of the production database.

The requirement is to easily supply to the mapping either of the two databases immediately before runtime, without editing the mapping. To achieve this requirement, we will create a database Global Resource (database alias) with two configurations:

1. Default. This configuration will point to the default development database.
2. Release. This configuration will point to the release database.

Step 1: Create the Global Resource (database alias)

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource toolbar button.)
2. Click Add | Database.
3. Enter a descriptive name in the Resource alias text box (for example, "SourceDatabase").
4. Click Choose Database, select Microsoft Access (ADO), and browse for the development database (`<Documents>\Altova\MapForce2021\MapForceExamples\altova.mdb`).
5. Click Add Configuration and name it "ReleaseDatabase".
6. Click Choose Database, select Microsoft Access (ADO), and this time browse for the production database (`<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\altova.mdb`).

Step 2: Use the Global Resource in the mapping

Now that the database alias has been created, the mapping must be modified to use it.

1. Open the following mapping: `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\PersonDB.mfd`
2. Right-click the database component, and select Properties from the context menu.
3. Click Change, and select the "SourceDatabase" alias created previously.
4. Click **Connect**.
5. When prompted to select the database objects, leave the default selection as is, and click OK.

**Note:** When a database connection is defined as a Global Resource, the settings on the Component Settings dialog are grayed out, as illustrated below. The connectivity parameters can be changed by clicking the Global Resource toolbar button. See also **Databases as Global Resources**.
Step 3: Run the mapping with the desired configuration

You can now easily switch to the desired database before running the mapping, as follows:

- On the Tools menu, click Active Configuration | Default, to read data from the development database.
- On the Tools menu, click Active Configuration | ReleaseDatabase, to read data from the production database.

Alternatively, select the required configuration from the Global Resources drop-down list.

When you switch configurations, a dialog box prompts you that the source database is about to be reloaded:
Note: Both databases used in this example contain similar data, so there are no differences in the generated output after you run the mapping.
9.9 Example: Create an Application Workflow

This example illustrates how to create a simple workflow between Altova MapForce and Altova XMLSpy, using Global Resources. Specifically, it shows you how to trigger the execution of a MapForce mapping directly from XMLSpy, and open in XMLSpy the mapping output generated by MapForce. To make this possible, we will create a Global Resource of type "Result of MapForce Transformation", as illustrated below.

Step 1: Create the Global Resource

This step can be performed from both MapForce and XMLSpy.

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource toolbar button.)
2. Click Add | File.
3. Enter a descriptive name in the Resource alias text box (in this example, "MappingResult").
4. Select the option Result of MapForce Transformation.
5. Click Browse and select the mapping 
   `<Documents>\Altova\MapForce2021\MapForceExamples\Tutorial\Tut-ExpReport-multi.mfd`. Be patient while the "Inputs" and "Outputs" sections on the dialog box are populated. As shown below, this mapping has one input and two outputs.
For the scope of this example, we would like to generate each of the two output files to the folder C:\temp, and change the default file name. To achieve this, we will create a configuration for each desired output, as follows:

1. Under "Outputs", click **Browse** next to the first output and enter C:\temp\file1.xml as destination file name. This is the default configuration which will produce the first output file when triggered.
2. Click **Add Configuration as a copy...** and enter a name for the new configuration (in this example, "Output2").

3. Under "Outputs", click **Browse** next to the second output and enter `C:\temp\file2.xml` as destination file name. This is the alternative configuration which produces the second output file.
Step 2: Trigger the workflow

The Global Resource created in the previous step can now be consumed from XMLSpy, as follows.

1. Run XMLSpy.
2. On the Tools menu, click Global Resources.
3. In the “Files” group, click the “MappingResult” Global Resource created previously, and then click View.
This executes the mapping, produces the default output (file1.xml) and loads it into the main pane of XMLSpy. The file is also saved as C:\temp\file1.xml.

To trigger the mapping execution with the alternative configuration, do the following:

1. On the Tools menu, click Active Configuration | Output2.

2. Click Reload when prompted.

As a result, the alternative output file is loaded into the main pane of XMLSpy. The file is also saved as: C:\temp\file2.xml.
10 Customizing MapForce

10.1 MapForce Options

You can change the general and other preferences in MapForce as follows:

- On the Tools menu, click Options.

The available options are grouped as shown below.

### General

The settings available in this page are as follows:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show logo</td>
<td>Show on start</td>
</tr>
<tr>
<td>Show gradient background</td>
<td>Enables or disables the gradient background in the Mapping pane.</td>
</tr>
<tr>
<td>Limit annotation display to N lines</td>
<td>This option applies to components which support annotations (for example, XML schema, EDI). If the annotation text contains multiple lines, then enabling this option shows only the first N lines on the component, where N is the value you specify. This setting also applies to SELECT statements visible in a component.</td>
</tr>
<tr>
<td>Encoding name</td>
<td>Sets the default character encoding for new components. This setting can also be changed individually for each component, see Changing the Component Settings.</td>
</tr>
<tr>
<td>Use execution timeout</td>
<td>Sets an execution timeout when previewing the mapping result in the Output pane.</td>
</tr>
<tr>
<td>Generate output to temporary files</td>
<td>When this option is set, the output generated when you preview the mapping result will be written to temporary files (this is the default option). If the output file path contains folders that do not exist yet, MapForce will create these folders.</td>
</tr>
<tr>
<td>Write directly to final output files</td>
<td>When this option is set, the output generated when you preview the mapping result will be written to actual files. If the output file path contains folders that do not exist yet, then a mapping error occurs.</td>
</tr>
</tbody>
</table>

**Warning:** If you intend to deploy the mapping to a server for execution, any directories in the path must exist on the server; otherwise, an execution error will occur. See also Preparing Mappings for Server Execution.

**Warning:** This option overwrites any existing output files without requesting further confirmation.
Customizing MapForce Options

<table>
<thead>
<tr>
<th>Show logo</th>
<th>Show on start</th>
<th>Shows or hides an image (splash screen) while MapForce starts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display text in steps of N million characters</td>
<td>Specifies the maximum size of the text displayed in the Output pane when you preview mappings that generate large XML and text files. If the output text exceeds this value, you will need to click a <strong>Load more</strong> button to load the next chunk. For more information, see Previewing the Output.</td>
<td></td>
</tr>
</tbody>
</table>

**Editing**
The settings available in this page are as follows:

<table>
<thead>
<tr>
<th>Align components on mouse dragging</th>
<th>Specify whether components or functions should be aligned with other components, while you drag them with the mouse, see Aligning Components.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart component deletion</td>
<td>When enabled, this option &quot;remembers&quot; connections of deleted components, see Keeping Connections After Deleting Components.</td>
</tr>
</tbody>
</table>

**Messages**
From this page, you can re-enable message notifications that were previously disabled using the "Do not show this message again" option.

**Generation**
From this page, you can define settings applicable when you generate program code and MapForce Server Execution files. For more information, see Code Generator Options and Compiling Mappings to MapForce Server Execution Files, respectively.

**Database**
From this page, you can define settings applicable when querying databases in the DB Query tab (see Database Query Settings).

**Network proxy**
See Network Proxy Settings.

**10.1.1 Java Settings**

On the Java tab, you can optionally enter the path to a Java VM (Virtual Machine) on your file system. Note that adding a custom Java VM path is not always necessary. By default, MapForce attempts to detect the Java VM path automatically by reading (in this order) the Windows registry and the JAVA_HOME environment variable. The custom path added on this dialog box will take priority over any other Java VM path detected automatically.

You may need to add a custom Java VM path, for example, if you are using a Java virtual machine which does not have an installer and does not create registry entries (for example, Oracle’s OpenJDK). You might also
want to set this path if you need to override, for whatever reason, any Java VM path detected automatically by MapForce.

Note the following:

- The Java VM path is shared between Altova desktop (not server) applications. Consequently, if you change it in one application, it will automatically apply to all other Altova applications.
- The path must point to the `jvm.dll` file from the `\bin\server` or `\bin\client` directory, relative to the directory where the JDK was installed.
- The MapForce platform (32-bit, 64-bit) must be the same as that of the JDK.
- After changing the Java VM path, you may need to restart MapForce for the new settings to take effect.

Changing the Java VM path affects the following areas:

- JDBC connectivity
- Java extension functions for XSLT/XPath

This setting does not affect Java code generation.

### 10.1.2 Network Proxy Settings

The **Network Proxy** section enables you to configure custom proxy settings. These settings affect how the application connects to the Internet (for XML validation purposes, for example). By default, the application uses the system's proxy settings, so you should not need to change the proxy settings in most cases. If necessary, however, you can set an alternative network proxy using the options below.

**Note:** The network proxy settings are shared between all Altova MissionKit applications. Consequently, if you change the settings in one application, they will automatically affect all other applications.
Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries the settings configured with `netsh.exe winhttp`.

Automatic proxy configuration
The following options are provided:

- **Auto-detect settings**: Looks up a WPAD script (`http://wpad.LOCALDOMAIN/wpad.dat`) via DHCP or DNS, and uses this script for proxy setup.
- **Script URL**: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be used for proxy setup.
- **Reload**: Resets and reloads the current auto-proxy-configuration. This action requires Windows 8 or newer, and may need up to 30s to take effect.

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols. A supported scheme may be included in the host name (for example: `http://hostname`). It is not required that the scheme is the same as the respective protocol if the proxy supports the scheme.

The following options are provided:

- **Use this proxy for all protocols**: Uses the host name and port of the HTTP Proxy for all protocols.
• **No Proxy for:** A semi-colon (;) separated list of fully qualified host names, domain names, or IP addresses for hosts that should be used without a proxy. IP addresses may not be truncated and IPv6 addresses have to be enclosed by square brackets (for example: 
  

• **Do not use the proxy server for local addresses:** If checked, adds `<local>` to the No Proxy for list. If this option is selected, then the following will not use the proxy: (i) 127.0.0.1, (ii) [::1], (iii) all host names not containing a dot character (\).

**Note:** If a proxy server has been set and you want to deploy a mapping to Altova FlowForce Server, you must select the option *Do not use the proxy server for local addresses.*

**Current proxy settings**

Provides a verbose log of the proxy detection. It can be refreshed with the **Refresh** button to the right of the **Test URL** field (for example, when changing the test URL, or when the proxy settings have been changed).

• **Test URL:** A test URL can be used to see which proxy is used for that specific URL. No I/O is done with this URL. This field must not be empty if proxy-auto-configuration is used (either through *Use system proxy settings* or *Automatic proxy configuration*).
10.2 Keyboard Shortcuts

By default, MapForce provides the following keyboard shortcuts:

- **F1** Help Menu
- **F2** Next bookmark (in output window)
- **F3** Find Next
- **F10** Activate menu bar
- **Num +** Expand current item node
- **Num -** Collapse item node
- **Num *** Expand all from current item node
- **CTRL + TAB** Switches between open mappings
- **CTRL + F6** Cycle through open windows
- **CTRL + F4** Closes the active mapping document
- **Alt + F4** Closes MapForce
- **Alt + F, F, 1** Opens the last file
- **Alt + F, T, 1** Opens the last project
- **CTRL + N** File New
- **CTRL + O** File Open
- **CTRL + S** File Save
- **CTRL + P** File Print
- **CTRL + A** Select All
- **CTRL + X** Cut
- **CTRL + C** Copy
- **CTRL + V** Paste
- **CTRL + Z** Undo
- **CTRL + Y** Redo
- **Del** Delete component (with prompt)
- **Shift + Del** Delete component (no prompt)
- **CTRL + F** Find
- **F3** Find Next
- **Shift + F3** Find Previous

**Arrow keys**

(up / down) Select next item of component

**Esc** Abandon edits/close dialog box

**Return** Confirms a selection

**Output window hotkeys**

**CTRL + F2** Insert Remove/Bookmark

**F2** Next Bookmark

**SHIFT + F2** Previous Bookmark

**CTRL + SHIFT + F2** Remove All Bookmarks

**Zooming hotkeys**

**CTRL + mouse wheel forward** Zoom In
10.2.1 Customizing Shortcuts

You can define or change the keyboard shortcuts in MapForce as follows:

1. On the **Tools** menu, click **Customize**.
2. Click the **Keyboard** tab.

**To assign a new Shortcut to a command:**

1. Select the **Tools | Customize** command and click the **Keyboard** tab.
2. Click the **Category** combo box to select the menu name.
3. Select the **command** you want to assign a new shortcut to, in the Commands list box.
4. Click in the **Press New Shortcut Key** text box, and press the shortcut keys that are to activate the command.

The shortcuts appear immediately in the text box. If the shortcut was assigned previously, then that function is displayed below the text box.

5. Click the **Assign** button to assign the shortcut. The shortcut now appears in the Current Keys list box.

**To clear** the entry in the Press New Shortcut Key text box, press any of the control keys, **Ctrl**, **Alt** or **Shift**.
To de-assign or delete a shortcut:

1. Click the shortcut you want to delete in the Current Keys list box.
2. Click the **Remove** button.
3. Click the **Close** button to confirm.

**Note:** The **Set accelerator for** does not currently have any function.
10.3 Customizing Menus

You can customize the standard MapForce menus, as well as the context menus (for example, in order to add, change, or remove commands). You can also reset any menu customizations back to the default state.

To customize menus:

- On the Tools menu, click Options, and then click the Menu tab.

Customizing menus

The Default Menu bar is the menu bar that is displayed when no document is open in the main window. The MapForce Design menu bar is the menu bar that is displayed when one or more mappings are open. Each menu bar can be customized separately, and customization changes made to one do not affect the other.

To customize a menu bar, select it from the Show Menus for drop-down list. Then click the Commands tab and drag commands from the Commands list box to the menu bar or into any of the menus.

Deleting commands from menus and resetting the menu bars

To delete an entire menu or a command inside a menu, do the following:

1. Select one of the following from the Show Menus for drop-down list:
   - Default Menu (this shows available menus when no document is open)
   - MapForce Design (this shows available menus when a mapping is open)
2. With the Customize dialog open, select (i) the menu you want to delete from the application's menu bar, or (ii) the command you want to delete from one of these menus.
3. Either (i) drag the menu from the menu bar or the menu command from the menu, or (ii) right-click the menu or menu command and select Delete.

You can reset any menu bar to its original installation state by selecting it from the Show Menus For drop-down list and then clicking the Reset button.

Customizing the application's context menus
Context menus are the menus that appear when you right-click certain objects in the application's interface. Each of these context menus can be customized by doing the following:

1. Select the context menu from the Select context menu drop-down list. This pops up the context menu.
2. Click the Commands tab.
3. Drag a command from the Commands list box into the context menu.
4. To delete a command from the context menu, right-click that command in the context menu, and select Delete. Alternatively, drag the command out of the context menu.

You can reset any context menu to its original installation state by selecting it in the Select context menu drop-down list and then clicking the Reset button.

Menu shadows
Select the Menu shadows check box to give all menus shadows.
10.4 Catalog Files

MapForce supports a subset of the OASIS XML catalogs mechanism (https://www.oasis-open.org/committees/entity/spec-2001-08-06.html). The catalog mechanism enables MapForce to retrieve commonly used DTDs and XML schemas (as well as stylesheets and other files) from local folders instead of resolving them from a public URI. This increases the overall processing speed, enables you to work offline (that is, not connected to a network), and improves the portability of documents.

How catalogs work

Catalogs are commonly used to redirect a public DTD or schema reference to a local URI (typically, a local file path). To achieve this, a catalog file in XML format defines a mapping between the public schema URI and a local URI. Whenever MapForce parses an XML document, it looks for the schema URI (or public or system identifier of a DTD, if applicable) inside the catalog file first. If a mapping is found in the catalog file, then that reference will be used and the schema will be read from a local file. If no mapping is found in the catalog file, then the URI of the XML document will be resolved as is.

For example, let’s suppose that the following XML file must be processed by MapForce.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<Articles xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Articles.xsd">
 <Article>
 <Number>1</Number>
 <Name>T-Shirt</Name>
 <SinglePrice>25</SinglePrice>
 </Article>
</Articles>
```

Let’s also suppose that a catalog.xml file exists somewhere in a local directory (of which MapForce is aware, as further discussed below), and it contains the following line:

```xml
<catalog>
 <!--...-->
 <uri name="http://www.w3.org/2001/XMLSchema-instance.xsd" uri="files/XMLSchema-instance.xsd"/>
 <!--...-->
</catalog>
```

On parsing the XML file, MapForce will detect a match for the schema reference http://www.w3.org/2001/XMLSchema-instance.xsd in the catalog file. Consequently, the schema will be loaded from files/XMLSchema-instance.xsd (which is a local path relative to the catalog file). If no mapping were found in the catalog file, then the schema would be loaded from http://www.w3.org/2001/XMLSchema-instance.

Root catalog

When MapForce starts, it loads a file called RootCatalog.xml from the “Program Files” directory. RootCatalog.xml contains a list of catalog files, each in a nextCatalog element. These catalog files are looked up and the URIs in them are resolved by MapForce according to the mappings specified in them.
Customizing MapForce Catalog Files

In the listing above, notice that the following catalogs are listed for lookup:

- **CustomCatalog.xml** is the file in which you can create your own mappings. This file is in the following directory: `C:/users/<name>/Documents/Altova/MapForce2021`. You can add mappings to **CustomCatalog.xml** for any custom schema if that is not already addressed by the Altova-configured catalog files (see the next bullets).

- Multiple **catalog.xml** files from the `%AltovaCommonFolder%/Schemas` directory. Each **catalog.xml** file is inside the directory of a specific schema (such as SVG, DITA, DocBook, WSDL, and so on), and each maps public and/or system identifiers to URIs that point to locally saved copies of the respective schemas.

- **CoreCatalog.xml** contains certain Altova-specific mappings for locating schemas. This file is in the MapForce “Program Files” directory.

Note the following:

- If you intend to modify the **CustomCatalog.xml**, use only the Supported elements. Also, make sure not to duplicate the already existing mappings, as this could lead to errors.

- The **catalog.xml** file in the `%AltovaCommonFolder%/Schemas` folder contains references to DTDs that implement older XML Schema specifications. You should not validate your XML Schema documents against either of these schemas. The older XML schema specifications are included solely to provide MapForce with the ability to efficiently resolve the respective schema URIs should you need to work with such documents.

Certain directory paths listed above are expressed with the help of environment variables. For a reference table, see [Environment variables](#).

**Supported elements**

When creating entries in **CustomCatalog.xml**, use only the elements listed below. Other elements of the OASIS XML catalog specification are not supported.

<table>
<thead>
<tr>
<th>Element</th>
<th>Attributes</th>
<th>Example</th>
</tr>
</thead>
</table>
| public  | - publicId specifies the public identifier of a resource  
          - uri specifies a URI reference for | `<public publicId="-//W3C//DTD XMLSCHEMA 200102//EN" uri="files/XMLSchema.dtd"/>` |
### Element Attributes Example

<table>
<thead>
<tr>
<th>Element</th>
<th>Attributes</th>
<th>Example</th>
</tr>
</thead>
</table>
| `system`      | · systemId specifies the system identifier of a resource  
· uri specifies a URI reference (for example, a relative path to a local file) | `<system systemId="http://www.w3.org/2009/XMLSchema/dtds.dtd" uri="files/datatypes.dtd"/>` |
| `uri`         | · name specifies a URI reference  
· uri specifies an alternate URI reference (for example, a relative path to a local file) | `<uri name="http://www.w3.org/2009/XMLSchema/XMLSchema.xsd" uri="files/XMLSchema.xsd"/>` |
| `rewriteURI`  | · uriStartString specifies the starting part of a URI to rewrite  
· uri specifies the replacement string (for example, a relative path to a local directory) | `<rewriteURI uriStartString='http://www.altova.com/schemas/svg/' rewritePrefix='files/'/>` |
| `rewriteSystem` | · systemIdStartString specifies the starting part of a system identifier to rewrite  
· rewritePrefix specifies the replacement string (for example, a relative path to a local directory) | `<rewriteSystem systemIdStartString='http://www.altova.com/schemas/svg/' rewritePrefix='files/'/>` |

The public, system, and uri elements can also take the `xml:base` attribute, which is used to specify a base URI with respect to which a relative URI would be resolved. For more information, see the XML Catalogs specification ([http://www.oasis-open.org/committees/entity/spec-2001-08-06.html](http://www.oasis-open.org/committees/entity/spec-2001-08-06.html)).

#### Environment variables

The table below lists all environment variables supported in the `nextCatalog` element to specify paths to various system locations on Windows.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>%AltovaCommonFolder%</code></td>
<td>Full path to the directory used to store files common to all Altova programs. Depending on the platform of your operating system and that of MapForce (32-bit or 64-bit), the path is either C:\Program Files\Altova\Common2021 or C:\Program Files (x86)\Altova\Common2021.</td>
</tr>
<tr>
<td><code>%DesktopFolder%</code></td>
<td>Full path to the directory used to store file objects on the desktop. A typical path is C:Users\Username\Desktop.</td>
</tr>
<tr>
<td><code>%ProgramMenuFolder%</code></td>
<td>Full path to the directory that contains the user's program groups, which are themselves file-system directories. A typical path is C:Users\Username\AppData\Roaming\Microsoft\Windows\Start Menu\Programs.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>%StartMenuFolder%</td>
<td>Full path to the directory that contains the user's Start menu items. A</td>
</tr>
<tr>
<td></td>
<td>typical path is C:\Users\Username\AppData\Roaming\Microsoft\Windows\Start</td>
</tr>
<tr>
<td></td>
<td>Menu.</td>
</tr>
<tr>
<td>%StartUpFolder%</td>
<td>Full path to the directory that corresponds to the user's Startup program</td>
</tr>
<tr>
<td></td>
<td>group. A typical path is C:\Users\Username\AppData\Roaming\Microsoft\Windows\Start</td>
</tr>
<tr>
<td></td>
<td>Menu\Programs\Startup.</td>
</tr>
<tr>
<td>%TemplateFolder%</td>
<td>Full path to the directory that serves as a common repository for document</td>
</tr>
<tr>
<td></td>
<td>templates. A typical path is C:\Users\username\AppData\Roaming\Microsoft\Windows\Templates.</td>
</tr>
<tr>
<td>%AdminToolsFolder%</td>
<td>Full path to the file system directory that stores administrative tools for</td>
</tr>
<tr>
<td></td>
<td>the current user. A typical path is C:\Users\Username\AppData\Roaming\Microsoft\Windows\Start</td>
</tr>
<tr>
<td></td>
<td>Menu\Programs\Administrative Tools.</td>
</tr>
<tr>
<td>%AppDataFolder%</td>
<td>The file-system directory that serves as a common repository for application-</td>
</tr>
<tr>
<td></td>
<td>specific data. A typical path is C:\Users\username\AppData\Roaming.</td>
</tr>
<tr>
<td>%FavoritesFolder%</td>
<td>Full path of the &quot;Favorites&quot; directory of the current user. A typical path</td>
</tr>
<tr>
<td></td>
<td>is C:\Users\Username\Favorites.</td>
</tr>
<tr>
<td>%PersonalFolder%</td>
<td>Full path to the &quot;Personal&quot; directory of the current user. A typical path</td>
</tr>
<tr>
<td></td>
<td>is C:\Users\Username\Documents.</td>
</tr>
<tr>
<td>%SendToFolder%</td>
<td>Full path to the directory that contains Send To menu items. A typical path</td>
</tr>
<tr>
<td></td>
<td>is C:\Users\username\AppData\Roaming\Microsoft\Windows\SendTo.</td>
</tr>
<tr>
<td>%FontsFolder%</td>
<td>Full path to the System Fonts directory. A typical path is C:\Windows\Fonts.</td>
</tr>
<tr>
<td>%ProgramFilesFolder%</td>
<td>Full path to the Program Files directory. Typical paths are C:\Program Files</td>
</tr>
<tr>
<td></td>
<td>and C:\Program Files (x86).</td>
</tr>
<tr>
<td>%CommonFilesFolder%</td>
<td>Full path to the Common Files directory. A typical path is C:\Users\Public\Public Documents.</td>
</tr>
<tr>
<td>%WindowsFolder%</td>
<td>Full path to the Windows directory (same as the %WINDIR% environment</td>
</tr>
<tr>
<td></td>
<td>variable). A typical path is C:\Windows.</td>
</tr>
<tr>
<td>%SystemFolder%</td>
<td>Full path to the System folder. A typical path is %WINDIR\system32.</td>
</tr>
<tr>
<td>%CommonAppDataFolder%</td>
<td>Full path to the file directory containing application data. A typical path</td>
</tr>
<tr>
<td></td>
<td>is C:\ProgramData.</td>
</tr>
<tr>
<td>%LocalAppDataFolder%</td>
<td>Full path to the file system directory that serves as the data repository</td>
</tr>
<tr>
<td></td>
<td>for local (non-roaming) applications. A typical path is C:\Users\username\AppData\Local.</td>
</tr>
<tr>
<td>%MyPicturesFolder%</td>
<td>Full path to the Pictures directory of the current user. A typical path is</td>
</tr>
<tr>
<td></td>
<td>C:\Users\Username\Pictures.</td>
</tr>
</tbody>
</table>
11 MapForce Plug-in for Visual Studio

You can integrate MapForce 2021 into the Microsoft Visual Studio versions 2010/2012/2013/2015/2017/2019. This unifies the best of both worlds, combining the mapping capabilities of MapForce with the development environment of Visual Studio. When the MapForce plug-in is enabled, you can create mapping projects and files directly from Visual Studio. You can also customize the MapForce options, including menus and toolbars, as you would do in the standalone version of MapForce.
11.1 Enabling the Plug-in

Prerequisites:

- MapForce (Enterprise or Professional Edition)

Note: To use MapForce as a Visual Studio plug-in, install the 32-bit version of both MapForce and MapForce integration package, since there is currently no support for 64-bit plug-ins in Visual Studio.

To enable the MapForce plug-in for Visual Studio, download and run the MapForce Integration Package (of the same version as MapForce) and follow the on-screen installation instructions.

During installation, ensure that the Install the Microsoft Visual studio plug-in option is selected:

![Installation Screen]

When prompted, select the Visual Studio version(s) where the plug-in should be enabled, for example:
Note: Only the Visual Studio versions installed on your operating system are available for selection.

Once the integration package has been installed, MapForce functionality becomes available in the Visual Studio environment.
11.2 Working with Mappings and Projects

When MapForce plug-in for Visual Studio is enabled, you can create, open, and work with mappings and mapping projects directly from Visual Studio. For example, you can create a new mapping design file in Visual Studio by using the File | New menu command, or you can create a new project by using the File | New Project menu command.

To open existing mapping files or projects, use the applicable Visual Studio menus (for example, File | Open | File, or File | Open | Project/Solution), and look for the MapForce-related file types.
11.3 Accessing Common Menus and Functions

When MapForce plug-in for Visual Studio is enabled, you can access common menus and functions as shown below. This is the default setup; however, you can customize menus and toolbars from the Tools | Customize menu of Visual Studio.

Global Resources

MapForce Global Resources are available in the MapForce | Manage Global Resources menu of Visual Studio.

Note: In Visual Studio 2019, the corresponding menu is Extensions | MapForce | Manage Global Resources.

MapForce options

MapForce options are available in the Tools | MapForce Options menu of Visual Studio.

Mapping pane customization

When there is a MapForce mapping opened in the main pane of Visual Studio, the View | MapForce menu becomes available. It includes the same options as the View menu of the standalone version of MapForce.

Libraries window

If the MapForce Libraries window is not visible in Visual Studio, you can enable it from the View | MapForce | Libraries Window menu (this menu becomes available in Visual Studio when a mapping file is open). Once the Libraries window is enabled, you can dock it to a particular position in the interface, like any other dockable component of Visual Studio.

The Libraries Window (Visual Studio 2017 with MapForce Enterprise edition plug-in)
Toolbar and commands customization
You can customize MapForce menus and toolbars from the Tools | Customize menu of Visual Studio.

Help and Support
MapForce Help, Support Center, Check for Updates and About menus are available in the Help | MapForce Help menu of Visual Studio.
12 MapForce Plug-in for Eclipse


MapForce Enterprise Edition plug-in for Eclipse

The following topics provide help on installing and using the MapForce plug-in for Eclipse.

- Installing the MapForce Plug-in for Eclipse
- The MapForce Perspective
- Accessing Common Menus and Functions
- Working with Mapping and Projects
- Extending MapForce Plug-in for Eclipse
12.1 Installing the MapForce Plug-in for Eclipse

Prerequisites:

- A Java Runtime Environment (JRE) or Java Development Kit (JDK) for the 64-bit platform
- MapForce Enterprise or Professional Edition 64-bit
- MapForce Integration Package 64-bit, available for download at https://www.altova.com/components/download. You can perform the Eclipse integration as part of this installation, as further described below.

All the prerequisites listed above must have the 64-bit platform. Integration with older Eclipse 32-bit platforms is no longer supported.

Installing the MapForce plug-in for Eclipse

You can perform the integration of the MapForce plug-in into Eclipse in one of the following ways:

1. Automatically, during the installation of the MapForce Integration Package (this is the recommended option)
2. Install the MapForce Integration Package first, and then integrate the plug-in manually from Eclipse

To integrate MapForce Plug-in for Eclipse:

1. Run the MapForce Integration Package to start the installation wizard.

   Eclipse must be closed while you install or uninstall the MapForce Integration Package.

2. When prompted, select the **Install the Eclipse plug-in** option, and then click **Next**.
3. When prompted to choose how the MapForce plug-in should be integrated into Eclipse, do one of the following:

- To complete the plug-in installation automatically, select **Let this wizard integrate Altova MapForce plug-in into Eclipse**, and browse for the directory where the Eclipse executable (eclipse.exe) is located.
- To complete the plug-in installation later in Eclipse, clear the **Let this wizard...** check box.
4. Click **Next**, and complete the installation. If you chose the automatic integration, the MapForce perspective and menus become available in Eclipse next time when you start Eclipse.

**Integrating the MapForce plug-in for Eclipse manually**

1. In Eclipse, select the menu command **Help | Install New Software**.
2. In the Install dialog box, click **Add**.

3. In the "Add Repository" dialog box, click **Local**. Browse for the folder `C:\Program Files\Altova\Common2021\eclipse\UpdateSite`, and select it. Provide a name for the site (such as "Altova").
4. Repeat the steps 2-3 above, this time selecting the folder `C:\Program Files\Altova\MapForce2021\eclipse\UpdateSite`, and providing a name such as "Altova MapForce".
5. On the Install dialog box, select --Only Local Sites--. Next, select the “Altova category” folder, and click Next.

6. Review the items to be installed, and click Next to proceed.
7. To accept the license agreement, select the respective check box.
8. Click Finish to complete the installation.

**Note:** If there are problems with the plug-in (missing icons, for example), start Eclipse from the command line with the --clean flag.
12.2 The MapForce Perspective

After you install the MapForce plug-in for Eclipse, a new perspective ("MapForce") becomes available in Eclipse. The layout of this perspective closely resembles the interface of the standalone edition of MapForce. To switch to the MapForce perspective, click Window | Open Perspective | Other, and choose MapForce from the list.

Selecting the MapForce perspective in Eclipse

The MapForce perspective is just like any other Eclipse perspective—you can switch to it whenever required in Eclipse (Window | Navigation | Next Perspective). You can also customize the views it contains, and various other options, from Eclipse preferences. (To customize the MapForce perspective, switch to the MapForce perspective from Window | Open Perspective | Other, and then select the menu command Window | Customize Perspective). For more information about Eclipse perspectives, refer to Eclipse documentation. The following screen shot illustrates the Eclipse environment with the MapForce perspective switched on.
MapForce perspective (MapForce Enterprise Edition plug-in for Eclipse)

By default, the MapForce perspective in Eclipse is organized as follows:

- The mapping design window is available as an Eclipse editor. It has the same tabs and functionality as in the standalone edition of MapForce.
- The Libraries window is available as an Eclipse view, to the left of the main mapping editor. If this view is not visible, switch to the MapForce perspective, and then select the menu command Window | Show View | Libraries. The Libraries view enables you to work with predefined or custom-defined functions and function libraries.
- The Messages pane is available as an Eclipse view, under the main mapping editor. If the Message view is not visible, switch to the MapForce perspective, and then select the menu command Window | Show View | Messages. The messages view displays validation messages, errors, and warnings.
- The Overview pane is available as an Eclipse view. If the Overview view is not visible, switch to the MapForce perspective, and then select the menu command Window | Show View | Overview. This view enables you to quickly navigate to a particular region on the mapping design area when it is very big.
You can also configure Eclipse to switch to the MapForce perspective automatically when you open a MapForce mapping. To do this, select the menu command **Window | Preferences**. Select MapForce, and then select the **Automatically switch to MapForce perspective at file open** check box.

![Preferences dialog box](image)
12.3 Accessing Common Menus and Functions

In Eclipse, you can access most MapForce functionality from the same menus as in the standalone version, except for some Eclipse-specific variations which are listed below. This is the default setup; however, you can further customize the interface preferences from Eclipse, if desired (see The MapForce Perspective).

**Note:** In Eclipse, some MapForce menu groups or commands are disabled (or not available) if the context is not relevant. For example, the **Insert** menu becomes available only when a mapping design file (.mfd) is active in Eclipse.

For information about the MapForce standard menus, see Menu Reference.

**General MapForce commands**

In the standalone edition of MapForce, the commands applicable to mapping design files (such as **Validate**, **Deploy to FlowForce Server**, **Generate Code**, and others) are available in the **File** menu. In Eclipse, these commands are available in the **MapForce** menu, or in the MapForce toolbar. Note that the commands for opening or saving files (including MapForce project files) are available in the **File** menu of Eclipse.

The **MapForce toolbar in Eclipse**

The button opens the MapForce help file.

The button displays commands specific to MapForce files. When you expand this button, the available commands depend on the kind of file currently active in the Eclipse editor. For example, the commands specific to mapping design (.mfd) files are available when such a file is active (in focus) in the Eclipse editor.

**Global Resources**

To access or manage Global Resources, do one of the following:

- Click to expand the MapForce toolbar button, and then click Global Resources.
- On the MapForce menu, click Global Resources.

**MapForce Projects**

In the standard edition of MapForce, the **Project** menu contains various commands applicable to mapping project (.mfp) files. In Eclipse, these commands exist as follows:

- The commands to open or save a project are available from the Eclipse **File** menu.
- Other project-specific commands are available as context commands. To display the context commands, create or open a MapForce project (.mfp) file in Eclipse, and then right-click the project.
Note that, in addition to standard MapForce projects (.mfp), in Eclipse you can also create projects of type "MapForce/Eclipse". Such projects have a dual nature, and can be configured for automatic build and generation of MapForce code. See Working with Mappings and Projects.

MapForce Options
MapForce options are available from the Window | Preferences menu. On the Preferences dialog box, select MapForce, and then click Open MapForce Options Dialog.
In Eclipse, the MapForce Libraries window is available as a view. This view is by default located to the left of the main editor window. (All MapForce-related views become visible in Eclipse interface when the MapForce perspective is switched on, see also The MapForce Perspective).

MapForce plug-in version
To see the currently installed version of the MapForce Plug-in for Eclipse, select the Eclipse menu option Help | About Eclipse. Then select the MapForce icon.
Help and Support
MapForce Help, Support Center, Check for Updates and About menus are available in the Help | MapForce Help menu of Eclipse.
12.4 Working with Mappings and Projects

When MapForce plug-in for Eclipse is installed, you can create from Eclipse the same mappings and mapping project types as in the standalone edition of MapForce, from within an Eclipse project. To design, test, compile, and deploy mappings, and to generate mapping code, you can either create a new Eclipse project or use an existing Eclipse project (for example, a Java project to which you want to add MapForce mappings).

In addition to this, you can work with all your mappings within a special project type that becomes available in Eclipse after you install the MapForce plug-in—the **MapForce/Eclipse Project**. Unless you choose to customize it, a MapForce/Eclipse project is by default assigned both a Java Builder and a MapForce Code Generation builder. Additionally, it has two Eclipse natures: MapForce nature and the JDT (Java Development tools) nature. As a result, a MapForce/Eclipse project behaves as follows when you save or change any of its resources (such as a mapping design file):

- If the **Project > Build automatically** menu option is enabled, the mapping code is generated automatically. When one or more MapForce project files exist in the MapForce/Eclipse project, the code generation language and output target folders are determined by the settings in each project file. Otherwise, Eclipse prompts you to choose a location.
- Any errors and output messages are shown in the Messages and Problems views.

This section contains the following topics:

- Creating a MapForce/Eclipse Project
- Creating New Mappings
- Importing Existing Mappings into an Eclipse Project
- Configuring Automatic Build and Generation of MapForce Code

12.4.1 Creating a MapForce/Eclipse Project

To create a MapForce/Eclipse project:

1. On the **File** menu, click **New** | **Other**.
2. Select the **MapForce/Eclipse Project** category.
3. Click **Next**.
4. Enter a project name and choose a location where to save the project. Leave the add MapForce builder to project and use JDT builder options as is.
5. Click Finish.

12.4.2 Creating New Mappings

You can create the following MapForce file types within an Eclipse project:

- MapForce mappings
- MapForce project files
- MapForce Web Service projects (available in MapForce Enterprise Edition)

To create any of these file types within an Eclipse project:

1. Create a new Eclipse project or open an existing one.
2. On the File menu, click New, and then click Other.
3. Select the required file type from the wizard dialog box, and then click **Next**.
4. Select a parent folder in your existing project, and then click **Finish**.

### 12.4.3 Importing Existing Mappings into an Eclipse Project

To import MapForce mappings and their dependent files into an existing Eclipse project:

1. Open the project into which you want to import the files.
2. On the **File** menu, click **Import**.
3. Select **File System**, and then click **Next**.
4. Next to **From directory**, browse for the location of the files you want to import, and then select the required files.

5. Next to **Into folder**, click **Browse**, and select the project into which you are adding the files (in this example, *MapForceEclipseProject1*).
12.4.4 Configuring Automatic Build and Generation of MapForce Code

Automatic MapForce code building and generation is enabled by default in any MapForce/Eclipse project (see Creating a MapForce/Eclipse Project). If you want to enable automatic build and generation of MapForce code in an existing project which is not of type MapForce/Eclipse, you can do this by manually adding to it the MapForce Code Generation builder and the MapForce nature.

To add the MapForce Code Generation builder to a project:

- Add to the Eclipse .project file the lines highlighted below:

```xml
<buildSpec>
 <buildCommand>

</buildCommand>
</buildSpec>
```
To add the MapForce nature to a project:

- Add to the Eclipse `.project` file the lines highlighted below:

```xml
<buildCommand>
 <name>com.altova.mapforceeclipseplugin.MapForceBuilder</name>
 <arguments/>
</buildCommand>
</buildSpec>
```

Tip: You can quickly open the `.project` file from the Navigator view of Eclipse (To enable this view, select the menu command `Window | Show View | Navigator`).

To switch automatic MapForce code generation on/off:

- On the `Project` menu, click `Build automatically`.

To disable the MapForce Code Generation builder:

1. On the `Project` menu, click `Properties`.
2. Click `Builders`. 
3. Click to clear the **MapForce Code Generation** check box.
12.5 Extending MapForce Plug-in for Eclipse

The MapForce plug-in for Eclipse provides an Eclipse extension point with the ID `com.altova.mapforceecclipseplugin.MapForceAPI`. You can use this extension point to adapt, or extend the functionality of the MapForce plug-in. The extension point gives you access to the COM-Interface of the MapForce control and the MapForce API.

The MapForce Eclipse installation package contains a simple example of a plug-in that uses this extension point. It checks for any file open events of any new MapForce mappings, and sets the zoom level of the mapping view to 70%.

The JavaDoc documentation of the extension point is available in the MapForce plug-in installation directory (`C:\Program Files\Altova\MapForce2021\eclipse\docs\`).

Before you install and run the sample MapForce plug-in, ensure that the following prerequisites are met:

- You are using 64-bit Java, 64-bit Eclipse, 64-bit MapForce and 64-bit MapForce Integration Package.
- The JDT (Java Development Tools) plug-in is installed.
- The Eclipse PDE (plug-in development environment) is installed.

To import the sample MapForce plug-in project into your workspace:

1. Start Eclipse.
2. On the File menu, click Import.
3. Select General | Existing projects into Workspace, and click Next.
4. Click the Browse... button next to the "Select root directory" field and choose the sample project directory e.g. `C:\Program Files\Altova\MapForce2021\eclipse\workspace\MapForceExtension`.
5. Select the Copy projects into workspace option, and then click Finish. A new project named "MapForceExtension" has been created in your workspace.

To run the sample extension plug-in:

1. Switch to the Java perspective.
2. In the Run menu, click Run Configurations.
3. Right click Eclipse Application and select New. (If you cannot see "Eclipse application" in the list, the Eclipse Plug-In Development Tools are not installed in your Eclipse environment. To install Eclipse Plug-in Development Tools, click Install New Software in the Help menu. and install "Eclipse Plugin Development Tools" from "The Eclipse Project Updates" download site.)
4. Enter a name for your new configuration (in this example, SampleMapForcePlugin), and then click Apply.
5. Check that the MapForceClient workspace plug-in is selected in the 'Plug-ins' tab.
7. Open any MapForce mapping in the new Workbench. It will now open with a zoom level of 70%.
13 Menu Reference

This reference section contains a description of the MapForce menu commands.
13.1 File

New
Creates a new mapping document, or mapping project (.mfp).

Open
Opens previously saved mapping design (.mfd), or mapping project (.mfp) files. Note that it is not possible to open mapping files which contain features not available in your MapForce edition.

Save
Saves the currently active mapping using the currently active file name.

Save As
Saves the currently active mapping with a different name, or allows you to supply a new name if this is the first time you save it.

Save All
Saves all currently open mapping files.

Reload
Reloads the currently active mapping file. You are asked if you want to lose your last changes.

Close
Closes the currently active mapping file. You are asked if you want to save the file before it closes.

Close All
Closes all currently open mapping files. You are asked if you want to save any of the unsaved mapping files.

Print
Opens the Print dialog box, from where you can print out your mapping as hard copy.
**Print dialog box**

**Use current** retains the currently defined zoom factor of the mapping. **Use optimal** scales the mapping to fit the page size. You can also specify the zoom factor numerically. Component scrollbars are not printed. You can also specify if you want to allow the graphics to be split over several pages or not.

**Print Preview**
Opens the same Print dialog box with the same settings as described above.

**Print Setup**
Opens the Print Setup dialog box in which you can define the printer you want to use and the paper settings.

**Validate Mapping**
Validates that all mappings (connectors) are valid and displays any warnings or errors, see [Validating mappings](#).

**Mapping settings**
Opens the Mapping Settings dialog box where you can define the document-specific settings, see [Changing the mapping settings](#).

**Generate code in selected language**
Generates code in the currently selected language of your mapping. The currently selected language is visible as a highlighted programming language icon in the toolbar: XSLT, XSLT 2, XQuery, Java, C#, or C++.

**Generate code in | XSLT (XSLT2)**
This command generates the XSLT file(s) needed for the transformation from the source file(s). Selecting this option opens the Browse for Folder dialog box where you select the location of the XSLT file. The name of the generated XSLT file(s) is defined in the Mapping Settings dialog box, see [Changing the mapping settings](#).
Generate code in | XQuery
This command generates the XQuery file(s) needed for the transformation from the source file(s). Selecting this option opens the Browse for Folder dialog box where you select the location of the XQuery file. The name of the generated XQuery file(s) is defined in the Mapping Settings dialog box, see Changing the mapping settings.

Generate code in | Java | C# | C++
These commands generate source code for a complete application program needed for the transformation from the source file(s). Selecting this option opens the Browse for Folder dialog box, where you select the location of the generated files. The names of the generated application files (as well as the project files: *.csproj C# project file, *.sln solution file, *.vcproj visual C++ project file) are defined in the Mapping Settings dialog box, see Changing the mapping settings.

The file name created by the executed code appears in the Output XML File box of the Component settings dialog box if the target is an XML/Schema document.

Compile to MapForce Server Execution File
Generates a file that can be executed by MapForce Server to run the mapping transformation, see Compiling a MapForce mapping.

Deploy to FlowForce Server
Deploys the currently active mapping to the FlowForce Server, see Deploying a MapForce mapping.

Generate documentation
Generates documentation of your mapping projects in great detail in various output formats, see Generating and Customizing Mapping Documentation.

Recent files
Displays a list of the most recently opened files.

Exit
Exits the application. You are asked if you want to save any unsaved files.
13.2 **Edit**

Most of the commands in this menu become active when you view the result of a mapping in the **Output** tab, or preview XSLT code in the XSLT tab.

**Undo**

MapForce has an unlimited number of "Undo" steps that you can use to retrace your mapping steps.

**Redo**

The redo command allows you to redo previously undone commands. You can step backward and forward through the undo history using both these commands.

**Find**

Allows you to search for specific text in either the XSLT, XSLT2, XQuery or Output tab.

**Find Next**  **F3**

Searches for the next occurrence of the same search string.

**Find Previous**  **Shift F3**

Searches for the previous occurrence of the same search string.

**Cut/Copy/Paste/Delete**

The standard windows Edit commands, allow you to cut, copy etc., any components or functions visible in the mapping window.

**Select all**

Selects all components in the Mapping tab, or the text/code in the XSLT, XSLT2, XQuery or Output tab.
13.3 Insert

XML Schema / File

Adds to the mapping an XML schema or instance file. If you select an XML file which references a schema, no additional information is required for the mapping. If you select an XML file without a schema reference, you are prompted to generate a matching XML schema automatically (see Generating an XML Schema). If you select an XML schema file, you are prompted to include optionally an XML instance file which supplies the data for preview.

Database

Adds to the mapping a database as source or target component (see Databases and MapForce).

Text file

Adds to the mapping a flat file document, such as CSV or a fixed-length text file. Both types of file can be used as source and target components. Insert Input. When the mapping window displays a mapping, this command adds an input component to the mapping (see Supplying Parameters to the Mapping). When the mapping window displays a user-defined function, this command adds an input component to the user-defined function (see Parameters in User-Defined Functions).

Insert Output

When the mapping window displays a mapping, this command adds an output component to the mapping (see Returning String Values from a Mapping). When the mapping window displays a user-defined function, this command adds an output component to the user-defined function (see Parameters in User-Defined Functions).

Constant

Inserts a constant which supplies fixed data to an input connector. The data is entered into a dialog box when creating the component. You can select the following types of data: String, Number and All other.

Variable

Inserts an Intermediate Variable which is equivalent to a regular (non-inline) user-defined function. Variables are structural components, without instance files, and are used to simplify the mapping process (see Intermediate variables).

Sort: Nodes/Rows

Inserts a component which allows you to sort nodes (see Sort Nodes/Rows).
Filter: Nodes/Rows
Inserts a component that uses two input and output parameters: node/row and bool, and on-true, on-false. If the Boolean is true, then the value of the node/row parameter is forwarded to the on-true parameter. If the Boolean is false, then the complement value is passed on to the on-false parameter. For more information, see Filters and Conditions.

SQL-WHERE/ORDER
Inserts a component which allows you to filter database data conditionally (see SQL WHERE / ORDER Component).

Value-Map
Inserts a component that transforms an input value to an output value using a lookup table. This is useful when you need to map a set of values to another set of values (for example, month numbers to month names). For more information, see Using Value-Maps.

IF-Else Condition
Inserts a component of type "If-Else Condition" (see Filters and Conditions).

Exception
The exception component allows you to interrupt a mapping process when a specific condition is met. Please see Adding Exceptions for more information.
13.4  Project

MapForce supports the Multiple Document Interface and allows you to group your mappings into mapping projects (see Working with Mapping Projects).

Reload Project
Reloads the currently active project and switches to the Project tab.

Close Project
Closes the currently active project.

Save Project
Saves the currently active project.

Add Files to Project
Allows you to add mappings to the current project through the Open dialog box.

Add Active File to Project
Adds the currently active file to the currently open project.

Create Folder
This option adds a new folder to the current project structure, and only becomes active when this is possible. See Managing Project Folders.

Generate code for entire project
Generates project code for the entire project currently visible in the Project window. Code is generated in the currently selected default language for all of the mapping files *.mfd in each of the folders.

Generate code in...
Generates project code in the language you select from the context menu.

Properties
Opens a dialog box where you can define project-wide settings. See Setting the Code Generation Settings.

Recent projects - 1. 2. etc.
Displays a list of the most recently opened projects.
13.5 Component

Change Root Element
Allows you to change the root element of the XML instance document.

Edit Schema Definition in XMLSpy
Selecting this option, having previously clicked an XML-Schema/document, opens the XML Schema file in the Schema view of XMLSpy where you can edit it.

Add/Remove/Edit Database Objects
Allows you to add, remove, or change the database objects within the database component.

Refresh
Reloads the structure of the currently active database component from the database.

Add Duplicate Input Before
Inserts a copy/clone of the selected item before the currently selected item. Duplicate items do not have output icons, you cannot use them as data sources. For an example, see Map Multiple Sources to One Target section in the tutorial. Right clicking a duplicate item also allows you to reposition it using the menu items Move Up/Move Down, depending on where the item is.

Add Duplicate Input After
Inserts a copy/clone of the selected item after the currently selected item. Duplicate items do not have output icons, you cannot use them as data sources. For an example, see the Map Multiple Sources to One Target section in the tutorial. Right clicking a duplicate item also allows you to reposition it using the menu items Move Up/Move Down, depending on where the item is.

Remove Duplicate
Removes a previously defined duplicate item. For an example, see the Map Multiple Sources to One Target section in the tutorial.

Database Table Actions
Allows you to define the actions to be performed with the mapped data on the specific target database table. See Database Table Actions Settings for more information.

Query Database
Creates a Select statement based on the table/field you clicked in the database component. Clicking a table/field once makes this command active, and the select statement is automatically placed into the Select window.

Align Tree Left
Aligns all the items along the left hand window border.
Align Tree Right
Aligns all the items along the right hand window border. This display is useful when creating mappings to the target schema.

Properties
Opens a dialog box which displays the settings of the currently selected component. See Changing the Component Settings.
13.6 Connection

Auto Connect Matching Children
Activates or deactivates the "Auto Connect Matching Children" option, as well as the icon in the icon bar.

Settings for Connect Matching Children
Opens the Connect Matching Children dialog box in which you define the connection settings (see Connecting matching children).

Connect Matching Children
This command allows you to create multiple connectors for items of the same name, in both the source and target schemas. The settings you define in this dialog box are retained, and are applied when connecting two items, if the "Auto connect child items" icon in the title bar is active. Clicking the icon switches between an active and inactive state. For further information, see Connecting matching children.

Target Driven (Standard)
Changes the connector type to Standard mapping. For further information, see Target Driven (Standard) mapping.

Copy-all (Copy Child Items)
Creates connectors for all matching child items, where each of the child connectors are displayed as a subtree of the parent connector (see Copy-all connections).

Source Driven (Mixed Content)
Changes the connector type to Source Driven (Mixed Content). For further information, see Source Driven (Mixed Content) mapping.

Properties
Opens a dialog box in which you can define the specific (mixed content) settings of the current connector. Unavailable options are greyed out. These settings also apply to complexType items which do not have any text nodes. For further information, see Connection settings.
13.7 Function

Create User-Defined Function
Creates a new user-defined function (see User-Defined Functions).

Create User-Defined Function from Selection
Creates a new user-defined function based on the currently selected elements in the mapping window.

Function Settings
Opens the settings dialog box of the currently active user-defined function allowing you to change its settings.

Remove Function
Deletes the currently active user-defined function if you are working in a context which allows this.

Insert Input
When the mapping window displays a mapping, this command adds an input component to the mapping (see Simple Input). When the mapping window displays a user-defined function, this command adds an input component to the user-defined function (see Parameters in User-Defined Functions).

Insert Output
When the mapping window displays a mapping, this command adds an output component to the mapping (see Simple Output). When the mapping window displays a user-defined function, this command adds an output component to the user-defined function (see Parameters in User-Defined Functions).
13.8 **Output**

**XSLT 1.0, XSLT 2.0, XQuery, Java, C#, C++, Built-in Execution Engine**
Sets the transformation language in which the mapping should be executed (see [Selecting a Transformation Language](#)).

**Validate Output File**
Validates the output XML file against the referenced schema (see [Validating the Mapping Output](#)).

**Save Output File**
Saves the data visible in the Output pane to a file.

**Save All Output Files**
Saves all the generated output files of dynamic mappings. See [Processing Multiple Input or Output Files Dynamically](#) for more information.

**Regenerate Output**
Regenerates the data visible in the Output pane.

**Run SQL-Script**
If an SQL script is currently visible in the Output pane, the script executes the mapping to the target database, taking the defined table actions into account.

**Insert/Remove Bookmark**
Inserts a bookmark at the cursor position in the Output pane.

**Next Bookmark**
Navigates to the next bookmark in the Output pane.

**Previous Bookmark**
Navigates to the previous bookmark in the Output pane.

**Remove All Bookmarks**
Removes all currently defined bookmarks in the Output pane.

**Pretty-Print XML Text**
Reformats your XML document in the Output pane to give a structured display of the document. Each child node is offset from its parent by a single tab character. This is where the Tab size settings (i.e. inserting as tabs or spaces) defined in the Tabs group, take effect.
Text View Settings
Displays the Text View settings dialog box. This dialog box allows you to customize the text view settings the Output pane, XSLT pane, and XQuery pane, and also shows the currently defined hotkeys that apply in the window. For more information, see Text View Features.
13.9 Debug

Start Debugging (F11)
Starts or continues debugging until a breakpoint is hit or the mapping finishes.

Stop Debugging (Shift + F5)
Stops debugging. This command exits the debug mode and switches MapForce back to standard mode.

Step into (F11)
Executes the mapping until a single step is finished anywhere in the mapping. In the mapping debugger, a step is a logical group of dependent computations which normally produce a single item of a sequence.

Depending on the mapping context, this command roughly translates into “go to the left/go to target child/go to source parent”.

Step over (F10)
Continues execution until the current step finishes (or finishes again for another item of the sequence), or an unrelated step finishes. This command steps over computations that are inputs of the current step.

Step out (Shift + F11)
Continues execution until the result of the current step is consumed or a step is executed that is not an input or child of the consumption. This command steps out of the current computation.

Depending on the mapping context, this command roughly translates into “go to the right/go to target parent/go to source child”.

Minimal step (Ctrl + F11)
Continues execution until a value is produced or consumed. This command subdivides a step and will typically stop twice for each connection: once when its source produces a value and once when its target consumes it. MapForce does not necessarily compute values in the order the mapping would suggest, so production and consumption events do not always follow each other.
13.10 View

Show Annotations
Displays XML schema annotations in the component window. If the Show Types icon is also active, then both sets of info are show in grid form.

<table>
<thead>
<tr>
<th>F1060</th>
<th>type</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ann.</td>
<td>Revision identifier</td>
</tr>
</tbody>
</table>

Show Types
Displays the schema datatypes for each element or attribute. If the Show Annotations icon is also active, then both sets of info are show in grid form.

Show library in Function Header
Displays the library name in parenthesis in the function title.

Show Tips
Displays a tooltip containing explanatory text when the mouse pointer is placed over a function.

Show Selected Component Connectors
Switches between showing all mapping connectors, or those connectors relating to the currently selected components.

Show Connectors from Source to Target
Switches between showing:
- connectors that are directly connected to the currently selected component, or
- connectors linked to the currently selected component, originating from source and terminating at the target components.

Zoom
Opens the Zoom dialog box. You can enter the zoom factor numerically, or drag the slider to change the zoom factor interactively.

Back
Steps back through the currently open mappings of the mapping tab.

Forward
Steps forward through the currently open mappings of the mapping tab.
Status Bar
Switches on/off the Status Bar visible below the Messages window.

Libraries Window
Switches on/off the Libraries window.

Manage Libraries
Switches on/off the Manage Libraries window.

Messages
Switches on/off the Validation output window. When generating code the Messages output window is automatically activated to show the validation result.

Overview
Switches on/off the Overview window. Drag the rectangle to navigate your Mapping view.

Project window
Switches on/off the Project window.
13.11 Tools

Global Resources
Opens the Manage Global Resources dialog box, where you can add, edit or delete settings applicable across multiple Altova applications (see Altova Global Resources).

Active Configuration
Allows you to select the currently active global resource configuration from a list of configurations previously defined in the Global Resources.

Create Reversed Mapping
Creates a "reversed" mapping from the currently active mapping in MapForce, which is to be the basis of a new mapping. Note that the result is not intended to be a complete mapping, only the direct connections between components are retained in the reversed mapping. It is very likely that the resulting mapping will not be valid or suitable for preview in the Output pane, without manual editing.

When you reverse a mapping, the source component becomes the target component, and target component becomes the source. If an input or output XML instance file have been assigned to a component, then they will be swapped.

The following data is retained:

- Direct connections between components
- Direct connections between components in a chained mapping
- The type of connection: Standard, Mixed content, Copy-All
- Pass-through component settings
- Database components

The following data is not retained:

- Connections via functions, filters, etc, along with the functions, filters, etc.
- User-defined functions
- Web service components

Restore Toolbars and Windows
Resets the toolbars, entry helper windows, docked windows etc. to their defaults. MapForce needs to be restarted for the changes to take effect.

Customize...
Opens a dialog box that lets you to customize the MapForce graphical user interface. This includes showing or hiding toolbars, as well as customizing the menus and keyboard shortcuts.

Options
Opens a dialog box where you can change the default MapForce settings (see Changing the MapForce Options).
13.12 Window

Cascade
This command rearranges all open document windows so that they are all cascaded (i.e. staggered) on top of each other.

Tile Horizontal
This command rearranges all open document windows as horizontal tiles, making them all visible at the same time.

Tile Vertical
This command rearranges all open document windows as vertical tiles, making them all visible at the same time.

1 2
This list shows all currently open windows, and lets you quickly switch between them. You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open windows.
13.13 Help Menu

- Table of Contents
  - Description
  
  Opens the onscreen help manual of MapForce with the Table of Contents displayed in the left-hand-side pane of the Help window. The Table of Contents provides an overview of the entire Help document. Clicking an entry in the Table of Contents takes you to that topic.

- Index
  - Description
  
  Opens the onscreen help manual of MapForce with the Keyword Index displayed in the left-hand-side pane of the Help window. The index lists keywords and lets you navigate to a topic by double-clicking the keyword. If a keyword is linked to more than one topic, a list of these topics is displayed.

- Search
  - Description
  
  Opens the onscreen help manual of MapForce with the Search dialog displayed in the left-hand-side pane of the Help window. To search for a term, enter the term in the input field, and (i) press Enter or (ii) click List Topics. The Help system performs a full-text search on the entire Help documentation and returns a list of hits. Double-click any item to display that item.

- Software Activation
  - Description
  
  After you download your Altova product software, you can license—or activate—it using either a free evaluation key or a purchased permanent license key.

  - **Free evaluation license.** When you first start the software after downloading and installing it, the Software Activation dialog will pop up. In it is a button to request a free evaluation license. Enter your name, company, and e-mail address in the dialog that appears, and click Request. A license file is sent to the e-mail address you entered and should reach you in a few minutes. Save the license file to a suitable location. When you clicked Request, an entry field appeared at the bottom of the Request dialog. This field takes the path to the license file. Browse for or enter the path to the license file, and click OK. (In the Software Activation dialog, you can also click Upload a New License to access a dialog in which the path to the license file is entered.) The software will be unlocked for a period of 30 days.

  - **Permanent license key.** The Software Activation dialog contains a button to purchase a permanent license key. Clicking this button takes you to Altova's online shop, where you can purchase a permanent license key for your product. Your license will be sent to you by e-mail in the form of a license file, which contains your license-data. There are three types of permanent license: installed, concurrent user, and named user. An installed license unlocks the software on a single computer. If you buy an installed license for \( n \) computers, then the license allows use of the software on up to \( n \) computers. A concurrent-user license for \( n \)
concurrent users allows \( n \) users to run the software concurrently. (The software may be installed on \( 10 \times n \) computers.) A named-user license authorizes a specific user to use the software on up to 5 different computers. To activate your software, click **Upload a New License**, and, in the dialog that appears, browse for or enter the path to the license file, and click **OK**.

**Note:** For multi-user licenses, each user will be prompted to enter his or her own name.

```
Your license email and the different ways to license (activate) your Altova product.

The license email that you receive from Altova will contain your license file as an attachment. The license file has a `.altova_licenses` file extension.

To activate your Altova product, you can do one of the following:

- Save the license file (.`altova_licenses`) to a suitable location, double-click the license file, enter any requested details in the dialog that appears, and finish by clicking **Apply Keys**.
- Save the license file (.`altova_licenses`) to a suitable location. In your Altova product, select the menu command **Help | Software Activation**, and then **Upload a New License**. Browse for or enter the path to the license file, and click **OK**.
- Save the license file (.`altova_licenses`) to any suitable location, and upload it from this location to the license pool of your Altova LicenseServer. You can then either: (i) acquire the license from your Altova product via the product’s Software Activation dialog (see below), or (ii) assign the license to the product from Altova LicenseServer. **For more information about licensing via LicenseServer, read the rest of this topic.**
```

The Software Activation dialog (**screenshot below**) can be accessed at any time by clicking the **Help | Software Activation** command.

You can activate the software by either:

- **Registering the license in the Software Activation dialog.** In the dialog, click **Upload a New License**, and browse for and select the license file. Click **OK** to confirm the path to the license file and to confirm any data you entered (your name in the case of multi-user licenses). Finish by clicking **Save**.
- **Licensing via an Altova LicenseServer on your network:** To acquire a license via an Altova LicenseServer on your network, click **Use Altova LicenseServer**, located at the bottom of the Software Activation dialog. Select the machine on which the LicenseServer you want to use has been installed. Note that the auto-discovery of License Servers works by means of a broadcast sent out on the LAN. As these broadcasts are limited to a subnet, License Server must be on the same subnet as the client machine for auto-discovery to work. If auto-discovery does not work, then type in the name of the server. The Altova LicenseServer must have a license for your Altova product in its license pool. If a license is available in the LicenseServer pool, this is indicated in the Software Activation dialog (**see screenshot below showing the dialog in Altova XMLSpy**). Click **Save** to acquire the license.
After a machine-specific (aka installed) license has been acquired from a LicenseServer, it cannot be returned to the LicenseServer for a period of seven days. After that time, you can return the machine license to LicenseServer (click **Return License**) so that this license can be acquired from LicenseServer by another client. (A LicenseServer administrator, however, can unassign an acquired license at any time via the administrator's Web UI of LicenseServer.) Note that the returning of licenses applies only to machine-specific licenses, not to concurrent licenses.

**Check out license**

You can check out a license from the license pool for a period of up to 30 days so that the license is stored on the product machine. This enables you to work offline, which is useful, for example, if you wish to work in an environment where there is no access to your Altova LicenseServer (such as when your Altova product is installed on a laptop and you are traveling). While the license is checked out, LicenseServer displays the license as being in use, and the license cannot be used by any other machine. The license automatically reverts to the checked-in state when the check-out period ends. Alternatively, a checked-out license can be checked in at any time via the **Check in** button of the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog, click **Check out License** (see screenshot above); (ii) In the License Check-out dialog that appears, select the check-out period you want and click **Check out**. The license will be checked out. After checking out a license, two things happen: (i) The Software Activation dialog will display the check-out information, including the time when the check-out period ends; (ii) The **Check out License** button in the dialog changes to a **Check In** button. You can check the license in again at any time by clicking **Check In**. Because the license automatically reverts to the checked-in status after the check-out period elapses, make sure that the check-out period you select adequately covers the period during which you will be working offline.
Note: For license check-outs to be possible, the check-out functionality must be enabled on LicenseServer. If this functionality has not been enabled, you will get an error message to this effect when you try to check out. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the data that you will need to provide when requesting support via the online support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova licenses on a network, together with the details of each license, as well as client assignments and client usage of licenses. The advantage of using LicenseServer therefore lies in administrative features it offers for large-volume Altova license management. Altova LicenseServer is available free of cost from the Altova website. For more information about Altova LicenseServer and licensing via Altova LicenseServer, see the Altova LicenseServer documentation.

Order Form
Description
When you are ready to order a licensed version of the software product, you can use either the Purchase a Permanent License Key button in the Software Activation dialog (see previous section) or the Order Form command to proceed to the secure Altova Online Shop.

Registration
Description
Opens the Altova Product Registration page in a tab of your browser. Registering your Altova software will help ensure that you are always kept up to date with the latest product information.

Check for Updates
Description
Checks with the Altova server whether a newer version than yours is currently available and displays a message accordingly.

Support Center
Description
A link to the Altova Support Center on the Internet. The Support Center provides FAQs, discussion forums where problems are discussed, and access to Altova's technical support staff.

FAQ on the Web
Description
A link to Altova's FAQ database on the Internet. The FAQ database is constantly updated as Altova support staff encounter new issues raised by customers.
Download Components and Free Tools

Description
A link to Altova's Component Download Center on the Internet. From here you can download a variety of companion software to use with Altova products. Such software ranges from XSLT and XSL-FO processors to Application Server Platforms. The software available at the Component Download Center is typically free of charge.

MapForce on the Internet

Description
A link to the Altova website on the Internet. You can learn more about MapForce and related technologies and products at the Altova website.

MapForce Training

Description
A link to the Online Training page at the Altova website. Here you can select from online courses conducted by Altova's expert trainers.

About MapForce

Description
Displays the splash window and version number of your product. If you are using the 64-bit version of MapForce, this is indicated with the suffix (x64) after the application name. There is no suffix for the 32-bit version.
14 Code Generator

Code Generator is a MapForce built-in feature which enables you to generate Java, C++ or C# code from mapping files designed with MapForce. You can generate code not only from simple mappings with a single data source and target, but also from mappings with multiple sources and multiple targets. The result is a fully-featured and complete application which performs the mapping operation for you. Once you generate the code, you can execute the mapping by running the application directly as generated. You can also import the generated code into your own application, or extend it with your own functionality.

If your mapping uses XML schemas or DTDs, you can also optionally generate schema wrapper libraries (see Generating Code from XML Schemas or DTDs). The schema wrapper libraries enable you to work with XML data in an abstract way, without too much concern for the underlying XML Application Program Interface (API), such as MSXML, Apache Xerces, Microsoft System.Xml, or Java Application for XML Processing (JAXP).
14.1 Introduction to code generator

The primary goal of the generated code is to execute a MapForce mapping. In addition to this, you can optionally generate schema wrapper libraries for XML schemas used by the mapping, which enables you to read or write data to/from XML instances.

The generated code is expressed in C++, Java or C# programming languages.

<table>
<thead>
<tr>
<th>Target Language</th>
<th>C++</th>
<th>C#</th>
<th>Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML DOM implementations</td>
<td>MSXML 6.0 Apache Xerces 3</td>
<td>System.Xml</td>
<td>JAXP</td>
</tr>
<tr>
<td>Database API</td>
<td>ADO</td>
<td>ADO.NET</td>
<td>JDBC</td>
</tr>
</tbody>
</table>

**Note:** The MapForce-generated code can be considered thread-safe only if the underlying third-party XML DOM and database API libraries are. Although the thread safety of the generated code cannot be realistically proven or guaranteed, it is likely that multiple concurrent instances of the mapping code will run successfully in most cases.

**C++**

You can configure whether the C++ generated output should use MSXML 6.0 or Apache Xerces 3. MapForce generates complete project (.vcproj) and solution (.sln) files for all supported versions of Visual Studio (see table above). The generated code optionally supports MFC.

**Prerequisites:**

1. To compile the generated C++ code, Windows SDK must be installed on your computer.
2. To use Xerces 3 for C++, you will need to install and build it by following instructions from [http://xerces.apache.org/xerces-c/](http://xerces.apache.org/xerces-c/). Make sure to add the XERCES3 environment variable that points to the directory where Xerces was installed, for example: `C:\xerces-c-3.2.2`. Also, the PATH environment variable must include the path where the Xerces binaries are, for example: `%XERCES3%\bin`.
3. When building C++ code for Visual Studio and using a Xerces library precompiled for Visual C++, a compiler setting has to be changed in all projects of the solution:
   a) Select all projects in the Solution Explorer.
   b) On the Project menu, click Properties.
   c) Click Configuration Properties | C/C++ | Language.
   d) In the list of configurations, select All Configurations.
   e) Change Treat wchar_t as Built-in Type to No (/Zc:wchar_t-).
C#  
The generated C# code uses the .NET XML classes (System.Xml) and can be used from any .NET capable programming language, such as VB.NET, Managed C++, or J#. Project files can be generated for all supported versions of Visual Studio (see table above).

Java  
The generated Java output is written against the Java API for XML Processing (JAXP) and includes an Ant build file and project files for supported versions of Java and Eclipse (see table above).

Generated output  
The designated destination folder will include all the libraries and files required to execute the mapping, namely:

- A variable number of Altova libraries required by the mapping (for example, Altova function libraries, database libraries)
- A complete mapping application. When compiled and run, the application performs the mapping transformation.

Code generator templates  
Output code is completely customizable via a simple yet powerful template language (SPL, from Spy Programming Language) which gives full control in mapping XML Schema built-in data-types to the primitive datatypes of a particular programming language. SPL allows you to easily replace the underlying parsing and validating engine, customize code according to your company's writing conventions, or use different base libraries such as the Microsoft Foundation Classes (MFC) and the Standard Template Library (STL).
14.2  What's new ...  

Version 2020 R2  
- Code generated for XML schema wrapper libraries now provides more control over element namespaces and prefixes. New methods are available to declare or override namespaces for an element, or to append an element with a prefixed namespace. See Example: Purchase Order.

Version 2020  
- Added support for Visual Studio 2019  
- End of support for Visual Studio 2008  

Version 2018  
- Added support for Microsoft Visual Studio 2013, 2015, 2017  
- End of support for Visual Studio 2005 and Xerces 2.x  

Version 2014  
- Removal of compatibility mode option for code generation  

Version 2011  
- Contains bug fixes and enhancements  

Version 2010 R3  
- Support for Microsoft Visual Studio 2010  
- Support for MSXML 6.0 in generated C++ code  
- Support for 64-bit targets for C++ and C# projects  

Version 2010  
- Enumeration facets from XML schemas are now available as symbolic constants in the generated classes (using 2007r3 templates)  

Version 2009 sp1  
- Apache Xerces version 3.x support added (older versions starting from Xerces 2.6.x are still supported)  

Version 2009  
- The generated mapping implementation was redesigned to support sequences and grouping. The API has not changed  

Version 2008 R2  
- Support for generation of Visual Studio 2008 project files for C# and C++ has been added  
- Generated MapForce mapping code in C# and Java can use readers/writers, streams, strings or DOM documents as sources and targets
Version 2008

- The new 2007 R3-style SPL templates have been further enhanced:
  - It is now possible to remove single elements
  - Access to schema metadata (e.g. element names, facets, enumerations, occurrence, etc.) is provided
  - Complex types derived by extension are now generated as derived classes

Version 2007 R3

Code Generator has been redesigned for version 2007 release 3 to simplify usage of the generated code, reduce code volume and increase performance.

- Handling of XML documents and nodes with explicit ownership, to avoid memory leaks and to enable multi-threading
- New syntax to avoid name collisions
- New data types for simpler usage and higher performance (native types where possible, new null handling, ...)
- Attributes are no longer generated as collections
- Simple element content is now also treated like a special attribute, for consistency
- New internal object model (important for customized SPL templates)
- Compatibility mode to generate code in the style of older releases
- Type wrapper classes are now only generated on demand for smaller code
14.3 Generating C++ code

You can generate C++ code for Visual Studio 2010, 2013, 2015, 2017, 2019. The generated code includes .sln and .vcproj files for Visual Studio. Note the following when generating code:

- Certain MapForce features are not supported in generated program code. For details, see Supported features in generated code.
- You can generate code either from a single mapping design (.mfd), or from a mapping project (.mfp). If you generate code from a single mapping, the resulting application executes the respective mapping transformation. If you generate code from a MapForce project (.mfp) which includes multiple mappings, the resulting application executes in bulk all mappings included in the project.
- You can change the general code generation options from the Tools | Options menu, Generation tab. See Code Generator Options.
- You can change the name of the generated mapping application and other settings from the File | Mapping settings menu. The default application name is Mapping. See also Changing the Mapping Settings.
- For information about handling paths in generated code, see Paths in Various Execution Environments.
- If your mapping contains database components, you can view database specific settings by clicking a database component, and then selecting the menu option Component | Properties. See Database Component Settings.
- Support for database connections varies by platform and there are connection kinds that are not supported on all platforms. If your mapping connects to a database, choose a database connection that is compatible with the target environment for which you generate code. For details, see Database mappings in various execution environments.

A typical C++ solution generated by MapForce includes the following:

- Several Altova-signed libraries required by the mapping (all prefixed with Altova).
- The main mapping project (in this example, Mapping), which includes the mapping application and dependent files.
This section includes the following topics:

- Generating code from a mapping
- Generating code from a mapping project
- Building the project
- Running the application

### 14.3.1 Generating code from a mapping

To generate C++ code from a mapping design file (.mfd):

1. Review and select the desired code generator options.
2. On the File menu, click Generate code in | C++.
3. Select a destination directory for the generated files, and then click OK to confirm. The result of code generation (error or success message) is displayed in the Messages window.

The default name of the generated application is **Mapping**. If required, you can change this, and other settings, from the Mapping Settings dialog box (see Changing the mapping settings).
14.3.2 Generating code from a mapping project

To generate code from a mapping project (.mfp):

1. If you haven't done so already, open the mapping project in MapForce.
2. Right-click the project in the Project window, and then click Properties.

3. Review and change the project settings if required (in particular, ensure that the target language and the output directory are set correctly), and then click OK.
4. On the Project menu, click Generate code for the Entire Project.

The progress and result of the code generation process (error or success message) is displayed in the Messages window.

By default, the name of the generated application is the same as the project name. If the project name contains spaces, these are converted to underscores in the generated code. By default, code is generated in the same directory as the MapForce project, in the output sub-directory.

To change the output directory and the name of the project, click the Project in the Project window, and then select Project | Properties from the menu. If your MapForce project contains folders, you can change the code generation settings for each individual folder (right click on the folder, and then select Properties). Otherwise, all project folders inherit the settings from the MapForce project.

14.3.3 Building the project

Once you generated the C++ code, building it in Visual Studio is the next step. To build the generated code:
1. Open the generated solution (.sln) file in Visual Studio.

By default, the name of the solution file is **Mapping.sln**, and it is located in the Mapping subdirectory relative to the directory where you saved the generated code. If you changed the application name from the mapping settings, then the name of the .sln file is changed accordingly. For example, if you changed the application name to **MyApplication**, then the solution file is called **MyApplication.sln**, and it is located in the MyApplication subdirectory.

2. On the **Build** menu, click **Configuration Manager**.

3. Select the required build configuration (Debug, Release, Unicode Debug, Unicode Release). Note that only Unicode builds support the full Unicode character set in XML and other files. The non-Unicode builds work with the local codepage of your Windows installation.

4. On the **Build** menu, click **Build Solution**.

### 14.3.4 Running the application

Once you compile the Visual Studio project, a command-line application is produced, called **Mapping.exe**. (Note that if you changed the application name from the mapping settings, then the executable name is changed accordingly.)

You can locate the mapping application in one of the following subdirectories relative to the .sln file, depending on the build option you chose:

- Debug
- Release
- Unicode Debug
- Unicode Release
To run the application, open a command prompt, change the current directory to the path of the executable, and run it, for example:

```
C:\codegen\DB_CompletePOcpp\Mapping\Debug>Mapping.exe
Mapping Application
Finished
C:\codegen\DB_CompletePOcpp\Mapping\Debug>
```
14.4 Generating C# code

You can generate C# code for Visual Studio 2010, 2013, 2015, 2017, 2019. The generated code includes .sln and .csproj files for Visual Studio. Mono users can use Visual Studio solution files with Mono's xbuild. Note the following when generating code:

- Certain MapForce features are not supported in generated program code. For details, see Supported features in generated code.
- You can generate code either from a single mapping design (.mfd), or from a mapping project (.mfp). If you generate code from a single mapping, the resulting application executes the respective mapping transformation. If you generate code from a MapForce project (.mfp) which includes multiple mappings, the resulting application executes in bulk all mappings included in the project.
- You can change the general code generation options from the Tools | Options menu, Generation tab. See Code Generator Options.
- You can change the name of the generated mapping application and other settings from the File | Mapping settings menu. The default application name is Mapping. See also Changing the Mapping Settings.
- For information about handling paths in generated code, see Paths in Various Execution Environments.
- If your mapping contains database components, you can view database specific settings by clicking a database component, and then selecting the menu option Component | Properties. See Database Component Settings.
- Support for database connections varies by platform and there are connection kinds that are not supported on all platforms. If your mapping connects to a database, choose a database connection that is compatible with the target environment for which you generate code. For details, see Database mappings in various execution environments.

A typical C# solution generated by MapForce includes the following:

- Several Altova-signed libraries required by the mapping (all prefixed with Altova).
- The main mapping project (in this example, Mapping), which includes the mapping application and dependent files.
This section includes the following topics:

- Generating code from a mapping
- Generating code from a mapping project
- Building the project
- Running the application

14.4.1 Generating code from a mapping

To generate C# code from a mapping design file (.mfd):

1. Review and select the desired code generation options (see Code generator options).
2. On the File menu, click Generate code in | C#.
3. Select a destination directory for the generated files, and then click OK to confirm. The result of code generation (error or success message) is displayed in the Messages window.

The default name of the generated application is Mapping. If required, you can change this, and other settings, from the Mapping Settings dialog box (see Changing the mapping settings).
14.4.2 Generating code from a mapping project

To generate code from a mapping project (.mfp):

1. If you haven't done so already, open the mapping project in MapForce.
2. Right-click the project in the Project window, and then click Properties.
3. Review and change the project settings if required (in particular, ensure that the target language and the output directory are set correctly), and then click OK.
4. On the Project menu, click Generate code for the Entire Project.

The progress and result of the code generation process (error or success message) is displayed in the Messages window.

By default, the name of the generated application is the same as the project name. If the project name contains spaces, these are converted to underscores in the generated code. By default, code is generated in the same directory as the MapForce project, in the output sub-directory.

To change the output directory and the name of the project, click the Project in the Project window, and then select Project Properties from the menu. If your MapForce project contains folders, you can change the code generation settings for each individual folder (right-click on the folder, and then select Properties). Otherwise, all project folders inherit the settings from the MapForce project.

14.4.3 Building the project

Once you generated the C# code, building it in Visual Studio is the next step. To build the generated code:
1. Open the generated solution (.sln) file in Visual Studio.

By default, the name of the solution file is **Mapping.sln**, and it is located in the **Mapping** subdirectory relative to the directory where you saved the generated code. If you changed the application name from the mapping settings, then the name of the .sln file is changed accordingly. For example, if you changed the application name to **MyApplication**, then the solution file is called **MyApplication.sln**, and it is located in the **MyApplication** subdirectory.

2. On the **Build** menu, click **Configuration Manager**.
3. Select the required build configuration (Debug, Release).
4. On the **Build** menu, click **Build Solution**.

### 14.4.4 Running the application

Once you compile the Visual Studio project, a command-line application is produced, called **Mapping.exe**. (Note that if you changed the application name from the mapping settings, then the executable name is changed accordingly.)

You can locate the mapping application in one of the following subdirectories relative to the .sln file, depending on the build option you chose:

- `bin\Debug`
- `bin\Release`

To run the application, open a command prompt, change the current directory to the path of the executable, and run it, for example:

```
C:\codegen\DB_CompletePOcs\Mapping\bin\Release>Mapping.exe
Connecting to CustomersAndArticles database...
Finished
C:\codegen\DB_CompletePOcs\Mapping\bin\Release>
```
14.5 Generating Java code

You can generate program code for Java SE JDK 7, 8, or 11 (including OpenJDK). Note the following when generating code:

- Certain MapForce features are not supported in generated program code. For details, see Supported features in generated code.
- You can generate code either from a single mapping design (.mfd), or from a mapping project (.mfp). If you generate code from a single mapping, the resulting application executes the respective mapping transformation. If you generate code from a MapForce project (.mfp) which includes multiple mappings, the resulting application executes in bulk all mappings included in the project.
- You can change the general code generation options from the Tools | Options menu, Generation tab. See Code Generator Options.
- You can change the name of the generated mapping application and other settings from the File | Mapping settings menu. The default application name is Mapping. See also Changing the Mapping Settings.
- For information about handling paths in generated code, see Paths in Various Execution Environments.
- If your mapping contains database components, you can view database specific settings by clicking a database component, and then selecting the menu option Component | Properties. See Database Component Settings.
- Support for database connections varies by platform and there are connection kinds that are not supported on all platforms. If your mapping connects to a database, choose a database connection that is compatible with the target environment for which you generate code. For details, see Database mappings in various execution environments.

A typical Java project generated by MapForce includes the following:

- Several Altova-signed Java packages required by the mapping (all prefixed with com.altova).
- The com.mapforce package, which includes the mapping application and dependent files (as shown below, it is possible to change the name of this package). The two most important files in this package are as follows:
  - The Java mapping application as a dialog application (MappingApplication.java).
  - The Java mapping application as a console application (MappingConsole.java).
- A build.xml file which you can execute with Apache Ant to compile the project and generate JAR files.
This section includes the following topics:

- Generating code from a mapping
- Generating code from a mapping project
- Handling JDBC references
- Building the project with Ant
- Example: Generate and Run Java Code

14.5.1 Generating code from a mapping

To generate Java code from a mapping design file (.mfd):

1. Review and select the desired code generation options (see Code generator options).
2. On the File menu, click Generate code in | Java.
3. Select a destination directory for the generated files, and then click OK to confirm. The result of code generation (error or success message) is displayed in the Messages window.

The default name of the generated application is Mapping, and the default name of the base package is com.mapforce. If required, you can change these from the Mapping Settings dialog box (see Changing the mapping settings).
14.5.2 Generating code from a mapping project

To generate code from a mapping project (.mfp):

1. If you haven’t done so already, open the mapping project in MapForce.
2. Right-click the project in the Project window, and then click Properties.
3. Review and change the project settings if required (in particular, ensure that the target language and the output directory are set correctly), and then click OK.
4. On the Project menu, click Generate code for the Entire Project.

The progress and result of the code generation process (error or success message) is displayed in the Messages window.

By default, the name of the generated application is the same as the project name. If the project name contains spaces, these are converted to underscores in the generated code. By default, code is generated in the same directory as the MapForce project, in the output sub-directory.

To change the output directory and the name of the project, click the Project in the Project window, and then select Project | Properties from the menu. If your MapForce project contains folders, you can change the code generation settings for each individual folder (right click on the folder, and then select Properties). Otherwise, all project folders inherit the settings from the MapForce project.

14.5.3 Building the project with Ant

Apache Ant is an open source tool which automates building and compilation of Java projects (see http://ant.apache.org/manual/). Ant works with build files (such files define the sources and targets from which
code must be compiled, as well as any specific build options). Since any MapForce-generated project includes a build.xml file recognized by Ant, you can easily build MapForce-generated projects with Ant.

Ant may be available on your system either as a standalone installation, or bundled within Eclipse (or other Java IDEs). For instructions on how to install Ant on your system, see http://ant.apache.org/manual/. For instructions on how to use Ant in Eclipse, refer to the Eclipse documentation.

You can quickly check whether the standalone version of Ant (not the one bundled with Eclipse) is available on your system by opening a command prompt and typing ant at the command line. When Ant is already available, the resulting message will be similar to: Buildfile: buildxml does not exist! This message indicates that Ant is installed and it is attempting to build a build.xml file, but the latter does not exist in the current directory. If you run Ant from a directory which includes a build.xml file, Ant executes the build.xml file instead, with whatever build options are defined in it.

To build a MapForce-generated Java project with Ant:

1. Open a command prompt and navigate to the directory where the Java project was generated (note that the directory must contain the build.xml file).
2. At the command prompt, enter ant. This will compile and execute the Java code according to the default options defined in the build.xml file, for example:

![Command Prompt](image)

To generate a JAR file with Ant:

- At the command prompt, enter ant jar.

For help with Ant command syntax and options, enter ant -help at the command line. For a demo, see Example: Generate and Run Java Code.
14.5.4 Handling JDBC references

If the mapping connects to a database through JDBC, ensure that the JDBC drivers used by the mapping are installed on your system. To view the current JDBC settings of any database component in MapForce, click it, and then select Component | Properties from the menu. For more information, see Creating a JDBC connection.

If the mapping uses a non-JDBC database connection, the connection may be converted to JDBC during Java code generation, to provide compatibility in a Java environment. For example, ADO, ADO.NET, and ODBC connections are converted to JDBC connections when you generate Java code from the mapping. For details, see Database mappings in various execution environments.

If you test run the generated Java application in Eclipse, the JDBC driver may need to be added as a "classpath" entry to the current run configuration. Otherwise, test running the application in Eclipse could fail with an error message such as: java.lang.ClassNotFoundException: com.mysql.jdbc.Driver. Taking MySQL database as an example, you can add the JDBC driver as a dependency in Eclipse as follows:

1. Generate the Java code from MapForce and import the project into Eclipse using the menu command File | Import | Existing Projects into Workspace.
2. On the Run menu, click Run Configurations. On the left side of the dialog box, under "Java Application", there are two configurations called MappingApplication and MappingConsole.
3. Click the desired configuration (for example, MappingApplication).
4. On the Dependencies tab, click Classpath entries, and then click Add External JARs.
5. Browse for the .jar file of the JDBC driver, for example:

   ![MySQL JDBC Driver JAR file]

6. Click Run to run the program with the database JDBC driver added as a dependency.
If you get the JDBC driver error above when test running the Ant build.xml file, add the JDBC driver to the classpath of the "test" task. The following is an example of an Ant "test" task that includes a reference to the .jar file of the JDBC driver.

```xml
<target name="test" depends="compile">
 <java classpath="C:\codegen\java\mysql_mapping" classname="com.mapforce.MappingConsole" fork="true" failonerror="true">
 <classpath>
 <pathelement path="${classpath}"/>
 <pathelement location="C:\jdbc\mysql\mysql-connector-java-5.1.16-bin.jar"/>
 </classpath>
 <arg line="${cmdline}"/>
 </java>
</target>
```

**Note:** The example above assumes that the .jar file exists at the following path: C:\jdbc\mysql\mysql-connector-java-5.1.16-bin.jar. Make sure to change the .jar file path as applicable to your environment.

**Including JDBC drivers in the application's manifest**

If you build JAR files from the generated Java application, add a reference to the database driver in the "manifest" section of the build.xml file. This ensures that the reference to the database driver is available in the manifest (MANIFEST.MF) file after you build the project.

**To add the database reference to the manifest file:**

1. Locate the manifest element in the build.xml file,
2. Add a new element called attribute where the "name" attribute is "Class-Path" and the "value" attribute is the name of the .jar file. For example, for MySQL 5.1.16, the new element could look as follows:

```xml
<attribute name="Class-Path" value="mysql-connector-java-5.1.16-bin.jar"/>
```

The manifest element of the build.xml file now looks as follows:

```xml
<manifest file="C:\codegen\java\mysql_mapping/META-INF/MANIFEST.MF" mode="replace">
 <attribute name="Created-By" value="MapForce 2021"/>
 <attribute name="Main-Class" value="com.mapforce.MappingConsole"/>
 <attribute name="Class-Path" value="mysql-connector-java-5.1.16-bin.jar"/>
</manifest>
```

3. Copy the JAR file of the JDBC driver to the folder that contains the JAR file of the generated application.
14.5.5 Example: Generate and run Java code

This example walks you through the steps required to generate a Java application with MapForce, and compile it outside of MapForce using the Eclipse Integrated Development Environment (IDE) and Apache Ant. After completing this example, you will have created and compiled a complete Java application which executes one of the mapping samples available by default in MapForce.

If you can already compile successfully other Java applications with Eclipse and Ant, there are no special requirements to run this example. Otherwise, note the following prerequisites:

- Java Development Kit (JDK), Eclipse, and Ant must be installed on your system. Eclipse typically includes a bundled version of Ant but you can also install Ant separately, see also Building the project with Ant.
- To run Eclipse with OpenJDK, the PATH environment variable typically needs to include the path to the JDK bin directory (for example, C:\Java\jdk-11.0.1\bin).
- If you run Apache Ant standalone like in this example, the PATH environment variable should also include the path to Ant bin directory (for example, C:\apache-ant-1.10.5\bin), so that you can conveniently run Ant without having to type the full path to the executable at the command line.

This example uses the following configuration:

- MapForce 64-bit
- OpenJDK 11.0.1 64-bit
- Eclipse IDE for Java Developers, version 2019-03 (4.11.0), 64-bit
- Apache Ant 1.10.6 (installed as standalone) and Apache Ant 1.10.5 (bundled with Eclipse)

Step 1: Generate Java code

To generate the Java code from MapForce:

1. On the File menu, click Open, and browse for the CompletePO.mfd mapping available in the <Documents>\Altova\MapForce2021\MapForceExamples\ directory.
2. On the Output menu, click Java. This changes the transformation language to Java.
3. On the File menu, click Generate code in | Java. When prompted, browse for the directory where the Java project should be saved. For the purpose of this example, you might want to generate Java code to C:\codegen\java\CompletePO. You will need to refer to this path in subsequent steps.

Step 2: Import the project into Eclipse

To import the project into Eclipse:

1. If you haven't done so already, run Eclipse and switch to the default Java perspective using the menu command Window | Open Perspective.
2. On the File menu, click Import, and then select General | Existing Projects into Workspace.
3. Click **Next**.
4. Browse for the folder where you have previously saved the generated code, and then click Finish. The Java project created by MapForce is now available in the Package Explorer view. If you cannot see the Package Explorer view, display it using the menu command Window | Show View | Package Explorer.
Step 3: Run the project as dialog application

To run the Java project as a GUI application:

1. In the Package Explorer view of Eclipse, click the `MappingApplication.java` file available in the `com.mapforce` package.
2. On the Run menu, click Run As | Java application.
3. On the MapForce application window, click Start to execute the mapping.
If Eclipse encounters system configuration or run-time errors, you will be prompted. See also Handling JDBC references. Otherwise, the Java application executes the mapping transformation and generates the CompletePO.xml at the output path (in this example, the output path is C:\codegen\Java\CompletePO).

Step 4: Run the project as console application

To run the Java project as a console application:

1. In the Package Explorer view of Eclipse, click the MappingConsole.java file available in the com.mapforce package.
2. On the Run menu, click Run As | Java application.
If Eclipse detects system configuration or run-time errors, you will be prompted, see also Handling JDBC references. Otherwise, the Java application executes the mapping transformation and generates the CompletePO.xml at the output path (in this example, the output path is C:\codegen\Java\CompletePO).

**Step 5: Build the JAR file**

If Apache Ant is bundled with Eclipse, you can build the JAR file directly from the Eclipse IDE. Otherwise, to build the JAR file at the command line outside of Eclipse, Apache Ant must be installed separately.

**To build the .jar file with Ant in Eclipse:**

1. In the Package Explorer view of Eclipse, right-click the build.xml file, and point to the Run As menu. In the Run As menu, two possible options to run the Ant build file are displayed. If you choose the first option, Eclipse launches the Ant build with the default settings. If you choose the second option, you can change the settings of the Ant build before launching it. Select the second option.

2. Click to enable the targets that you wish to include in the Ant build. In this example, the targets test and jar are selected.
3. Click Run. Eclipse executes the Ant build file and displays the result in the Console view.

To build the JAR file at the command line:

1. Make sure that the directory where Apache Ant is installed (for example, `C:\apache-ant-1.10.5\bin`) is added to the PATH environment variable.
2. Open a Command Prompt window and change the current directory to the one where you generated Java code (in this example, `C:\codegen\java\CompletePO`). This is also the directory where the `build.xml` file was generated.
3. At the command line, enter:

   ```
 ant clean jar
   ```

Ant runs the “clean” and “jar” targets from the `build.xml` file (including any dependent targets), and displays the outcome at the command line:
Generating Java code

Command Prompt

c:\codegen\java\CompletePO>ant clean jar
Buildfile: c:\codegen\java\CompletePO\build.xml
clean:
compile:
   [javac] Compiling 94 source files
manifest:
jar:
   [jar] Building jar: c:\codegen\java\CompletePO\Mapping.jar
BUILD SUCCESSFUL
Total time: 3 seconds
c:\codegen\java\CompletePO>
14.6 Integrating MapForce-Generated Code

MapForce-generated code can be integrated, or adapted to your specific application, even though the result of code generation is a complete and fully-functioning application. Some typical scenarios where you might want to change the generated code are as follows:

- Define custom source or target files for the mapping application
- Add custom error handling code
- In C# or Java generated code, you can also change the data type of the mapping input programmatically (for example, from string to stream).

This section provides instructions on how to achieve these goals, based on the `DB_CompletePO.mfd` sample mapping available in the `<Documents>`\Altova\MapForce2021\MapForceExamples\ directory.

As illustrated above, the sample mapping consists of two sources and one target:

- `ShortPO.xml` is a source XML file
- `CustomersAndArticles.mdb` is a source database
- `CompletePO.xml` is the target XML file.

In the generated code, these sources and targets will translate to two input and one output parameters supplied to the run method which executes the mapping (as described in the subsequent topics). For now, note the following basic points about code generation:
The number of source and targets in the mapping design corresponds to the number of mapping parameters to the `run` method in the generated code.

If you change the number of sources or targets of the mapping, then you will need to re-generate the code accordingly.

If you make changes to the generated code, and then re-generate the code at the same location, all changes will be overwritten.

If a mapping includes database components, the generated `run` method includes the database connection object at the appropriate location. For example, if the mapping uses three sources (text content, XML content and a database) to map to a single output file, MapForce generates the following `run` method:

```java
void run(Input in1, Input in2, java.sql.Connection dbConn, Output out1);
```

The argument order is important. As you will see in the subsequent examples, you can modify `dbConn` parameters, or use the default parameters generated by MapForce when integrating your code.

### 14.6.1 Java example

This example uses Eclipse as Java IDE. To begin, generate Java code from the `DB_CompletePO` sample mapping available in the `<Documents>\Altova\MapForce2021\MapForceExamples\` directory, and then import the project into Eclipse.
To edit the generated Java console application, locate the `main(String[] args)` method of your generated application (see the screen shot above). If you did not change the default base package name before generating code, this method is in the `MappingConsole` class of the `com.mapforce` package. Otherwise, it is in the `MappingConsole` class of your custom defined package.

To edit the generated Java dialog application, locate the place in the code where the `run` method is invoked from your generated application. If you did not change the default base package name before generating code, the `run` method is invoked from the class called `MappingFrame.java` of the `com.mapforce` package.

The following code sample illustrates an extract from the `main` method in the generated Java console application. The mapping sources and targets are highlighted in yellow and are defined as parameters to the `run` method. Since this mapping uses a database connection, the corresponding parameter has a special structure. Namely, the connection consists of the connection string (in this case, `jdbc:odbc:;DRIVER=Microsoft Access Driver (*.mdb);DBQ=CustomersAndArticles.mdb`), as well as two empty arguments intended for the `Username` and `Password` (in clear text) for those databases where this data is necessary.

Note that the file paths in the code below have been changed from absolute to relative.

```java
com.altova.io.Input ShortPO2Source = com.altova.io.StreamInput.createInput("ShortPO.xml");
com.altova.io.Output CompletePO2Target = new com.altova.io.FileOutput("CompletePO.xml");
```
To define custom mapping source or target files:

- Locate the parameters passed to the `run` method and edit them as required. In the sample above, `com.altova.db.Dbs.newConnection` and `ShortPO2Source` is the mapping input and `CompletePO2Target` is the mapping output.

To add extra error handling code:

- Edit the code below the `catch (Exception e)` code (in case of a Java console application)
- Edit the code below the `catch (Exception ex)` code (in case of a Java dialog application)

For instructions on how to change the data type of parameters supplied as mapping input/output, see Changing Input and Output Programmatically.

### 14.6.2 C# example

This example uses the Visual Studio 2010 IDE. To begin, generate C# code from the `DB_CompletePO` sample mapping available in the `<Documents>\Altova\MapForce2021\MapForceExamples\` directory, and then open the solution in Visual Studio.

By default, the name of the solution file is `Mapping.sln`, and it is located in the `Mapping` subdirectory relative to the directory where you saved the generated code. If you changed the application name from the mapping settings, then the name of the `.sln` file is changed accordingly. For example, if you changed the application name to `MyApplication`, then the solution file is called `MyApplication.sln`, and it is located in the `MyApplication` subdirectory.
Open the MappingConsole.cs file, and locate the `main(String[] args)` method. The following code sample illustrates an extract from the `main` method. The mapping sources and targets are highlighted in yellow and are defined as parameters to the `Run` method. Since this mapping reads data from a database, there is also an input parameter which is a database connection string. If necessary, you can modify the connection string of the database.

Note that the file paths in the code below have been changed from absolute to relative.

```csharp
Altova.IO.Input ShortPO2Source = Altova.IO.StreamInput.createInput("ShortPO.xml");
Altova.IO.Output CompletePO2Target = new Altova.IO.FileOutput("CompletePO.xml");

MappingMapToCompletePOObject.Run(
 "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=CustomersAndArticles.mdb;",
 ShortPO2Source,
 CompletePO2Target);
```

To define custom mapping source or target files:

- Locate the parameters passed to the `Run` method and edit them as required. In the sample above, the mapping input is a connection string to the `CustomersAndArticles.mdb` and `ShortPO2Source`. The mapping output is `CompletePO2Target`.

To add extra error handling code:

- Edit the code below the `catch (Exception e)` code
For instructions on how to change the data type of parameters supplied as mapping input/output, see Changing Input and Output Programmatically.

14.6.3 C++ example

This example uses the Visual Studio 2010 IDE. To begin, generate C++ code from the DB_CompletePO sample mapping available in the <Documents>\Altova\MapForce2021\MapForceExamples\ directory, and then open the solution in Visual Studio.

By default, the name of the solution file is Mapping.sln, and it is located in the Mapping subdirectory relative to the directory where you saved the generated code. If you changed the application name from the mapping settings, then the name of the .sln file is changed accordingly. For example, if you changed the application name to MyApplication, then the solution file is called MyApplication.sln, and it is located in the MyApplication subdirectory.

Open the Mapping.cpp file, and locate the _tmain method. The following code sample illustrates an extract from this method. The mapping sources and targets are defined as parameters to the Run method. Since this mapping reads data from a database, there is also an input parameter which is a database connection string. If necessary, you can modify the connection string of the database.

Note that the file paths in the code below have been changed from absolute to relative.
To define custom mapping source or target files:

- Locate the parameters passed to the Run method and edit them as required. In the code sample above, the mapping input is a connection string to the `CustomersAndArticles.mdb` database and `_T("ShortPO.xml")`. The mapping output is `_T("CompletePO.xml")`.

To add extra error handling code:

- Edit the code below the `catch (CAltovaException& e)` code.

### 14.6.4 Changing Input and Output Programmatically

After generating Java or C# code with MapForce, you can optionally change the data type of the mapping input or output by editing the generated code. More specifically, you can use as mapping parameters objects of types other than those generated by default. For example, instead of having the mapping read the input from a file on the disk, you can provide a string or a stream object as input. Note that this feature is specific to code generated in C# or Java only.

The object types supported as input or output are listed in the first column of the table below. Each subsequent column specifies data formats where that specific type is supported. For a more precise definition of each type, see the "Type definitions" section below.

<table>
<thead>
<tr>
<th></th>
<th>XML</th>
<th>Microsoft Excel*</th>
<th>EDI (includes X12, HL7)*</th>
<th>FlexText*</th>
<th>CSV/Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Streams</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Strings</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reader/Writer</td>
<td>Yes</td>
<td>–</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DOM documents</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* Formats supported only in MapForce Enterprise Edition

To change the data type of the mapping input or output:

1. Generate C# or Java code from a mapping.
2. In the generated code, find the call to the \texttt{run} method (in Java) or \texttt{Run} method (in C#), as follows:

   a. If using C#, open the \texttt{MappingConsole.cs} file.
   b. If using Java, open the \texttt{MappingConsole.java} (the console program) or the \texttt{MappingFrame.java} file (the GUI program).

   \textbf{Note:} The name of the file may be different if you have changed the application name in the mapping settings. For example, if you changed it to "MyApp", then name of the generated file becomes \texttt{MyAppConsole.js} and \texttt{MyAppConsole.java}, and \texttt{MyAppFrame.java}, respectively.

3. Create an instance of the required type (see the "Type definitions" section).
4. Supply the declared objects as parameters to the \texttt{run} method (in Java) or \texttt{Run} method (in C#), as shown in the examples below.

The \texttt{run} method is the most important method of generated mapping classes. It has one parameter for each static source or input component in the mapping, and a final parameter for the output component. If your mapping contains components that process multiple files \textit{dynamically}, the respective parameters do not appear in generated code, because in this case the file names are processed dynamically inside the mapping.

\textbf{Type definitions}

In C#, the types that you can provide as parameters to the \texttt{run} method are classes defined in the \texttt{Altova.IO} namespace. The base classes are \texttt{Altova.IO.Input} and \texttt{Altova.IO.Output}, respectively.

\texttt{C# types}

\begin{tabular}{|l|}
\hline
\textbf{Files} & \texttt{Altova.IO.FileInput(string filename)} \\
 & \texttt{Altova.IO.FileOutput(string filename)} \\
\hline
\textbf{Streams} & \texttt{Altova.IO.StreamInput(System.IO.Stream stream)} \\
 & \texttt{Altova.IO.StreamOutput(System.IO.Stream stream)} \\
\hline
\textbf{Strings} & \texttt{Altova.IO.StringInput(string content)} \\
 & \texttt{Altova.IO.StringOutput(System.Text.StringBuilder sbuilder)} \\
\hline
\textbf{Reader/Writer} & \texttt{Altova.IO.ReaderInput(System.IO.TextReader reader)} \\
 & \texttt{Altova.IO.WriterOutput(System.IO.TextWriter writer)} \\
\hline
\textbf{DOM documents} & \texttt{Altova.IO.DocumentInput(System.Xml.XmlDocument document)} \\
 & \texttt{Altova.IO.DocumentOutput(System.Xml.XmlDocument document)} \\
\hline
\end{tabular}

In Java, the types that you can provide as parameters to the \texttt{run} method are classes defined in the \texttt{com.altova.io} package. The base classes are \texttt{com.altova.io.Input} and \texttt{com.altova.io.Output}, respectively.

\texttt{Java types}

\begin{tabular}{|l|}
\hline
\textbf{Files} & \texttt{com.altova.io.FileInput(String filename)} \\
 & \texttt{com.altova.io.FileOutput(String filename)} \\
\hline
\textbf{Streams} & \texttt{com.altova.io.StreamInput(java.io.InputStream stream)} \\
 & \texttt{com.altova.io.StreamOutput(String filename)} \\
\hline
\textbf{Strings} & \texttt{com.altova.io.StringInput(String content)} \\
\hline
\end{tabular}
Example

To illustrate changing the input and output programmatically, we will use the ConvertProducts.mfd mapping as a model. After installing MapForce and running it at least once, you can find this mapping in the following directory: C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\Tutorials.

ConvertProducts.mfd

As illustrated above, the mapping converts data from a source XML document to another XML document. Our goals are as follows:

1. Generate Java and C# program code from this mapping.
2. Change the data type of the source component to a string type.
3. Change the data type of the target component to a string writer type.

To generate the program code, open the ConvertProducts.mfd mapping and run the File | Generate code in | C# (or Java) command. For the scope of this example, we will assume that the mapping settings of ConvertProducts.mfd are the default ones.
This example uses the following target directories for the generated code (feel free to change the path if necessary):

- C:\codegen\cs\ConvertProducts, for C#
- C:\codegen\java\ConvertProducts, for Java

Having generated the program code, open the MappingConsole.cs (in C#) or MappingConsole.java (in Java) and find the following lines:

**C#**

```
Altova.IO.Input Products2Source = Altova.IO.StreamInput.createInput("Products.xml");
Altova.IO.Output ProductValuePairs2Target = new
Altova.IO.FileOutput("ProductValuePairs.xml");
```

**Java**

```
com.altova.io.Input Products2Source =
com.altova.io.StreamInput.createInput("Products.xml");
com.altova.io.Output ProductValuePairs2Target = new
com.altova.io.FileOutput("ProductValuePairs.xml");
```

Comment out the lines above and change the code as follows:

**C#**

```
//Altova.IO.Input Products2Source = Altova.IO.StreamInput.createInput("Products.xml");
//Altova.IO.Output ProductValuePairs2Target = new
Altova.IO.FileOutput("ProductValuePairs.xml");

Altova.IO.Input Products2Source = new Altova.IO.StringInput("<?xml version="1.0"?
encoding="UTF-8"?>\r\n" +
 "<products
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="products.xsd">\r\n" +
 " <product>\r\n" +
 " <id>100</id>\r\n" +
 " <color>blue</color>\r\n" +
```
In the C# and Java code listings above, the following happens:
- The two original lines that provide the input and output to the `run` method were commented out. Consequently, the mapping application no longer reads data from `Products.xml`. In fact, we did not even need to copy this file to the program's working directory.
- The type `Products2Source` has been declared as a `StringInput` that provides the content of the input XML file to be processed.
- The type `ProductValuePairs2Target` has been declared as a `WriterOutput` type that takes a string writer as argument.
- After the mapping completes running, the contents of the string writer is printed out to the console.

Usage guidelines for streams and Reader/Writer objects

When using binary streams or Reader/Writer objects as input or output to the mapping, note the following:

- Binary stream objects and Reader/Writer objects are expected to be opened and ready to use before calling the `run` method.
- By default, the `run` method closes the stream when finished. To prevent this behavior, insert (or uncomment) the following line before calling the `run` method:

    **C#**
    ```csharp
 MappingMapToSomething.CloseObjectsAfterRun = false;
    ```

    **Java**
    ```java
 MappingMapToSomething.setCloseObjectsAfterRun(false);
    ```

   **Note:** Make sure to change `MappingMapToSomething` to the name of the mapping object as applicable to your generated code.

Usage guidelines for strings

In Java, the constructor of `StringOutput` does not take an argument. The string content produced by the mapping can be accessed by calling the `getString()` method, for example:

  **Java**
  ```java
 com.altova.io.Input Products2Source =
 com.altova.io.StreamInput.createInput("Products.xml");
 try {
 // Run the mapping
 MappingMapToProductValuePairsObject.run(Products2Source, ProductValuePairs2Target);
 // Get the string object
 String str = ProductValuePairs2Target.getString().toString();
 }
  ```

In C#, the constructor of `StringOutput` takes a parameter of type `StringBuilder` which you need to declare beforehand. If the `StringBuilder` object already contains data, the mapping output will be appended to it.

  **C#**
To run these code listings, you can use the same generated project as in the previous example. Make sure, however, to copy the file `Products.xml` from `C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\Tutorials` to your program’s working directory, since the mapping code reads data from this file.

**Usage guidelines for DOM documents**

When using DOM documents as mapping input or output, note the following:

- The document instance supplied as parameter to the `DocumentOutput` constructor must be empty.
- After calling `run`, the DOM Document generated by the constructor of `DocumentOutput` already contains the mapping output, and you can manipulate the document as necessary.
14.7 Generating Code from XML Schemas or DTDs

When you generate code from a mapping, MapForce generates a complete application that executes all steps of the mapping automatically. Optionally, you can generate libraries for all the XML schemas used in the mapping. These allow your code to easily create or read XML instances that are used or created by the mapping code.

To generate libraries for all the XML schemas used in the mapping, select the Generate Wrapper Classes check box in the Options dialog (see Code Generator Options ). Next time when you generate code, MapForce will create not only the mapping application, but also wrapper classes for all schemas used in the mapping, as follows:

<table>
<thead>
<tr>
<th>C++ or C#</th>
<th>Java</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altova</td>
<td>com.altova</td>
<td>Base library containing common runtime support, identical for every schema.</td>
</tr>
<tr>
<td>AltovaXML</td>
<td>com.altova.xml</td>
<td>Base library containing runtime support for XML, identical for every schema.</td>
</tr>
<tr>
<td>YourSchema</td>
<td>com.YourSchema</td>
<td>A library containing declarations generated from the input schema, named as the schema file or DTD. This library is a DOM (W3C Document Object Model) wrapper that allows you to read, modify and create XML documents easily and safely. All data is held inside the DOM, and there are methods for extracting data from the DOM, and to update and create data into the DOM. The generated C++ code supports either Microsoft MSXML or Apache Xerces 3. The syntax for using the generated code is generally similar for both DOM implementations, except for a few slight differences (for example, Xerces supports more overloaded functions). The generated C# code uses the .NET standard System.XML library as the underlying DOM implementation. The generated Java code uses JAXP (Java API for XML Processing) as the underlying DOM interface.</td>
</tr>
</tbody>
</table>

While prototyping an application from a frequently changing XML schema, you may need to frequently generate code to the same directory, so that the schema changes are immediately reflected in the code. Note that the generated test application and the Altova libraries are overwritten every time when you generate code into the same target directory. Therefore, do not add code to the generated test application. Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries ).
In addition to the base libraries listed above, some supporting libraries are also generated. The supporting libraries are used by the Altova base libraries and are not meant for custom integrations, since they are subject to change.

**Name generation and namespaces**

MapForce generates classes corresponding to all declared elements or complex types which redefine any complex type in your XML Schema, preserving the class derivation as defined by extensions of complex types in your XML Schema. In the case of complex schemas which import schema components from multiple namespaces, MapForce preserves this information by generating the appropriate C# or C++ namespaces or Java packages.

Generally, the code generator tries to preserve the names for generated namespaces, classes and members from the original XML Schema. Characters that are not valid in identifiers in the target language are replaced by a "_". Names that would collide with other names or reserved words are made unique by appending a number. Name generation can be influenced by changing the default settings in the SPL template.

The namespaces from the XML Schema are converted to packages in Java or namespaces in C# or C++ code, using the namespace prefix from the schema as code namespace. The complete library is enclosed in a package or namespace derived from the schema file name, so you can use multiple generated libraries in one program without name conflicts.

**Data Types**

XML Schema has a more elaborate data type model than Java, C# or C++. Code Generator converts the built-in XML Schema types to language-specific primitive types, or to classes delivered with the Altova library. Complex types and derived types defined in the schema are converted to classes in the generated library. Enumeration facets from simple types are converted to symbolic constants.

The mapping of simple types can be configured in the SPL template, see [SPL Reference](#).

If your XML instance files use schema types related to time and duration, these are converted to Altova native classes in the generated code. For information about the Altova library classes, see:

- [Reference to Generated Classes (C++)](#)
- [Reference to Generated Classes (C#)](#)
- [Reference to Generated Classes (Java)](#)

For information about type conversion and other details applicable to each language, see:

- [About Schema Wrapper Libraries (C++)](#)
- [About Schema Wrapper Libraries (C#)](#)
- [About Schema Wrapper Libraries (Java)](#)

**Memory management**

A DOM tree is comprised of nodes, which are always owned by a specific DOM document - even if the node is not currently part of the document's content. All generated classes are references to the DOM nodes they represent, not values. This means that assigning an instance of a generated class does not copy the value, it only creates an additional reference to the same data.
XML Schema support

The following XML Schema constructs are translated into code:

a) XML namespaces

b) Simple types:
   - Built-in XML schema types
   - Simple types derived by extension
   - Simple types derived by restriction
   - Facets
   - Enumerations
   - Patterns

c) Complex types:
   - Built-in anyType node
   - User-defined complex types
   - Derived by extension: Mapped to derived classes
   - Derived by restriction
   - Complex content
   - Simple content
   - Mixed content

The following advanced XML Schema features are not supported (or not fully supported) in generated wrapper classes:

- **Wildcards**: `xs:any` and `xs:anyAttribute`
- Content models (sequence, choice, all). Top-level compositor is available in SPL, but is not enforced by generated classes.
- Default and fixed values for attributes. These are available in SPL, but are not set or enforced by generated classes.
- The attributes `xsi:type`, abstract types. When you need to write the `xsi:type` attribute, use the `SetXsiType()` method of the generated classes.
- Union types: not all combinations are supported.
- Substitution groups are partially supported (resolved like "choice").
- **Attribute** `nillable="true"` and `xsi:nil`
- Uniqueness constraints
- Identity constraints (`key` and `keyref`)

### 14.7.1 About Schema Wrapper Libraries (C++)

**Character Types**

The generated C++ code can be compiled with or without Unicode support. Depending on this setting, the types `string_type` and `wstring` will both be defined as `std::string` or `std::wstring`, consisting of narrow or wide characters. To use Unicode characters in your XML file that are not representable with the current 8-bit character set, Unicode support must be enabled. Pay special attention to the `_T()` macros. This macro ensures that string constants are stored correctly, whether you're compiling for Unicode or non-Unicode programs.
Data Types
The default mapping of XML Schema types to C++ data types is:

<table>
<thead>
<tr>
<th>XML Schema</th>
<th>C++</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:string</td>
<td>string_type</td>
<td>string_type is defined as std::string or std::wstring</td>
</tr>
<tr>
<td>xs:boolean</td>
<td>bool</td>
<td></td>
</tr>
<tr>
<td>xs:decimal</td>
<td>double</td>
<td>C++ does not have a decimal type, so double is used.</td>
</tr>
<tr>
<td>xs:float, xs:double</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>xs:integer</td>
<td>__int64</td>
<td>xs:integer has unlimited range, mapped to __int64 for efficiency reasons.</td>
</tr>
<tr>
<td>xs:nonNegativeInteger</td>
<td>unsigned __int64</td>
<td>see above</td>
</tr>
<tr>
<td>xs:int</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>xs:unsignedInt</td>
<td>unsigned int</td>
<td></td>
</tr>
<tr>
<td>xs:dateTime, date, time, gYearMonth, gYear, gMonthDay, gDay, gMonth</td>
<td>altova::DateTime</td>
<td></td>
</tr>
<tr>
<td>xs:duration</td>
<td>altova::Duration</td>
<td>Encoding and decoding of binary data is done automatically.</td>
</tr>
<tr>
<td>xs:hexBinary and xs:base64Binary</td>
<td>std::vector&lt;unsigned char&gt;</td>
<td></td>
</tr>
<tr>
<td>xs:anySimpleType</td>
<td>string_type</td>
<td></td>
</tr>
</tbody>
</table>

All XML Schema types not contained in this list are derived types, and mapped to the same C++ type as their respective base type.

Generated Classes
For each type in the schema, a class is generated that contains a member for each attribute and element of the type. The members are named the same as the attributes or elements in the original schema (in case of possible collisions, a number is appended). For simple types, assignment and conversion operators are generated. For simple types with enumeration facets, the methods GetEnumerationValue() and SetEnumerationValue(int) can be used together with generated constants for each enumeration value. In addition, the method StaticInfo() allows accessing schema information as one of the following types:

altova::meta::SimpleType
altova::meta::ComplexType
Classes generated from complex types include the method `SetXsiType()`, which enables you to set the `xsi:type` attribute of the type. This method is useful when you want to create XML instance elements of a derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with “CDoc” below) is generated. It contains all possible root elements as members, and various other methods. For more information about the class, see `[YourSchema]::[CDoc]`.

**Note:** The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about such classes, see:

- `[YourSchema]::MemberAttribute`
- `[YourSchema]::MemberElement`

**Note:** The actual class names depend on the name of the schema attribute or element.

See also [Example: Using the Schema Wrapper Libraries].

**Error Handling**

Errors are reported by exceptions. The following exception classes are defined in the namespace `altova`:

<table>
<thead>
<tr>
<th>Class</th>
<th>Base Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td><code>std::logic_error</code></td>
<td>Internal program logic error (independent of input data).</td>
</tr>
<tr>
<td>Exception</td>
<td><code>std::runtime_error</code></td>
<td>Base class for runtime errors.</td>
</tr>
<tr>
<td>InvalidArgumentsException</td>
<td><code>Exception</code></td>
<td>A method was called with invalid argument values.</td>
</tr>
<tr>
<td>ConversionException</td>
<td><code>Exception</code></td>
<td>Exception thrown when a type conversion fails.</td>
</tr>
<tr>
<td>StringParseException</td>
<td><code>ConversionException</code></td>
<td>A value in the lexical space cannot be converted to value space.</td>
</tr>
<tr>
<td>ValueNotRepresentableException</td>
<td><code>ConversionException</code></td>
<td>A value in the value space cannot be converted to lexical space.</td>
</tr>
<tr>
<td>OutOfRangeException</td>
<td><code>ConversionException</code></td>
<td>A source value cannot be represented in target domain.</td>
</tr>
<tr>
<td>InvalidOperationException</td>
<td><code>Exception</code></td>
<td>An operation was attempted that is not valid in the given context.</td>
</tr>
<tr>
<td>DataSourceUnavailableException</td>
<td><code>Exception</code></td>
<td>A problem occurred while loading an XML instance.</td>
</tr>
<tr>
<td>DataTargetUnavailableException</td>
<td><code>Exception</code></td>
<td>A problem occurred while saving an XML instance.</td>
</tr>
</tbody>
</table>
All exception classes contain a message text and a pointer to a possible inner exception.

<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>string_type message()</td>
<td>Returns a textual description of the exception.</td>
</tr>
<tr>
<td>std::exception inner()</td>
<td>Returns the exception that caused this exception, if available, or NULL.</td>
</tr>
</tbody>
</table>

**Accessing schema information**

The generated library allows accessing static schema information via the following classes. All methods are declared as `const`. The methods that return one of the metadata classes return a NULL object if the respective property does not exist.

- `altova::meta::Attribute`
- `altova::meta::ComplexType`
- `altova::meta::Element`
- `altova::meta::SimpleType`

### 14.7.2 About Schema Wrapper Libraries (C#)

The default mapping of XML Schema types to C# data types is as follows.

<table>
<thead>
<tr>
<th>XML Schema</th>
<th>C#</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:string</td>
<td>string</td>
<td></td>
</tr>
<tr>
<td>xs:boolean</td>
<td>bool</td>
<td></td>
</tr>
<tr>
<td>xs:decimal</td>
<td>decimal</td>
<td></td>
</tr>
<tr>
<td>xs:decimal</td>
<td>decimal</td>
<td>xs:decimal has unlimited range and precision, mapped to decimal for efficiency reasons.</td>
</tr>
<tr>
<td>xs:float, xs:double</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>xs:long</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>xs:unsignedLong</td>
<td>ulong</td>
<td></td>
</tr>
<tr>
<td>xs:int</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>xs:unsignedInt</td>
<td>uint</td>
<td></td>
</tr>
<tr>
<td>xs:dateTime, date,</td>
<td><code>Altova.Types.DateTime</code></td>
<td></td>
</tr>
<tr>
<td>time, gYearMonth,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gYear, gMonthDay,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gDay, gMonth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xs:duration</td>
<td><code>Altova.Types.Duration</code></td>
<td></td>
</tr>
</tbody>
</table>
All XML Schema types not contained in this list are derived types, and mapped to the same C# type as their respective base type.

**Generated Classes**

For each type in the schema, a class is generated that contains a member for each attribute and element of the type. The members are named the same as the attributes or elements in the original schema (in case of possible collisions, a number is appended). For simple types, assignment and conversion operators are generated. For simple types with enumeration facets, the methods `GetEnumerationValue()` and `SetEnumerationValue(int)` can be used together with generated constants for each enumeration value. In addition, the method `StaticInfo()` allows accessing schema information as one of the following types:

- `Altova.Xml.Meta.SimpleType`
- `Altova.Xml.Meta.ComplexType`

Classes generated from complex types include the method `SetXsiType()`, which enables you to set the `xsi:type` attribute of the type. This method is useful when you want to create XML instance elements of a derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "Doc" below) is generated. It contains all possible root elements as members, and various other methods. For more information about the class, see `[YourSchema].[Doc]`.

**Note:** The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about such classes, see:

- `[YourSchemaType].MemberAttribute`
- `[YourSchemaType].MemberElement`

**Note:** The actual class names depend on the name of the schema attribute or element.

**Error Handling**

Errors are reported by exceptions. The following exception classes are defined in the namespace Altova:

<table>
<thead>
<tr>
<th>Class</th>
<th>Base Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConversionException</td>
<td>Exception</td>
<td>Exception thrown when a type conversion fails</td>
</tr>
<tr>
<td>StringParseException</td>
<td>ConversionException</td>
<td>A value in the lexical space cannot be converted to value space.</td>
</tr>
</tbody>
</table>
### In addition, the following .NET exceptions are commonly used:

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System.Exception</td>
<td>Base class for runtime errors</td>
</tr>
<tr>
<td>System.ArgumentException</td>
<td>A method was called with invalid argument values, or a type conversion failed.</td>
</tr>
<tr>
<td>System.FormatException</td>
<td>A value in the lexical space cannot be converted to value space.</td>
</tr>
<tr>
<td>System.InvalidCastException</td>
<td>A value cannot be converted to another type.</td>
</tr>
<tr>
<td>System.OverflowException</td>
<td>A source value cannot be represented in target domain.</td>
</tr>
</tbody>
</table>

### Accessing schema information

The generated library allows accessing static schema information via the following classes:

- `Altova.Xml.Meta.Attribute`
- `Altova.Xml.Meta.ComplexType`
- `Altova.Xml.Meta.Element`
- `Altova.Xml.Meta.SimpleType`

The properties that return one of the metadata classes return null if the respective property does not exist.

### 14.7.3 About Schema Wrapper Libraries (Java)

The default mapping of XML Schema types to Java data types is as follows:

<table>
<thead>
<tr>
<th>XML Schema</th>
<th>Java</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:string</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>xs:boolean</td>
<td>boolean</td>
<td></td>
</tr>
<tr>
<td>xs:decimal</td>
<td>java.math.BigDecimal</td>
<td></td>
</tr>
<tr>
<td>xs:float, xs:double</td>
<td>double</td>
<td></td>
</tr>
<tr>
<td>xs:integer</td>
<td>java.math.BigInteger</td>
<td></td>
</tr>
</tbody>
</table>
### XML Schema Types

<table>
<thead>
<tr>
<th>XML Schema</th>
<th>Java</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:long</td>
<td>long</td>
<td></td>
</tr>
<tr>
<td>xs:unsignedLong</td>
<td>java.math.BigInteger</td>
<td>Java does not have unsigned types.</td>
</tr>
<tr>
<td>xs:int</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>xs:unsignedInt</td>
<td>long</td>
<td>Java does not have unsigned types.</td>
</tr>
<tr>
<td>xs:dateTime, date, time, gYearMonth, gYear, gMonthDay, gDay, gMonth</td>
<td>com.altova.types.DateTime</td>
<td></td>
</tr>
<tr>
<td>xs:duration</td>
<td>com.altova.types.Duration</td>
<td></td>
</tr>
<tr>
<td>xs:hexBinary and xs:base64Binary</td>
<td>byte[]</td>
<td>Encoding and decoding of binary data is done automatically.</td>
</tr>
<tr>
<td>xs:anySimpleType</td>
<td>string</td>
<td></td>
</tr>
</tbody>
</table>

All XML Schema types not contained in this list are derived types, and mapped to the same Java type as their respective base type.

### Generated Classes

For each type in the schema, a class is generated that contains a member for each attribute and element of the type. The members are named the same as the attributes or elements in the original schema (in case of possible collisions, a number is appended). For simple types, assignment and conversion operators are generated. For simple types with enumeration facets, the methods `GetEnumerationValue()` and `SetEnumerationValue(int)` can be used together with generated constants for each enumeration value. In addition, the method `StaticInfo()` allows accessing schema information as one of the following types:

- `com.altova.xml.meta.SimpleType`
- `com.altova.xml.meta.ComplexType`

Classes generated from complex types include the method `SetXsiType()`, which enables you to set the `xsi:type` attribute of the type. This method is useful when you want to create XML instance elements of a derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified with "Doc" below) is generated. It contains all possible root elements as members, and various other methods. For more information about the class, see `com.[YourSchema].[Doc]`.

**Note:** The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more information about such classes, see:

- `com.[YourSchema].[YourSchemaType].MemberAttribute`
- `com.[YourSchema].[YourSchemaType].MemberElement`

**Note:** The actual class names depend on the name of the schema attribute or element.
Error Handling
Errors are reported by exceptions. The following exception classes are defined in the namespace com.altova:

<table>
<thead>
<tr>
<th>Class</th>
<th>Base Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SourceInstanceUnavailableException</td>
<td>Exception</td>
<td>A problem occurred while loading an XML instance.</td>
</tr>
<tr>
<td>TargetInstanceUnavailableException</td>
<td>Exception</td>
<td>A problem occurred while saving an XML instance.</td>
</tr>
</tbody>
</table>

In addition, the following Java exceptions are commonly used:

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.lang.Error</td>
<td>Internal program logic error (independent of input data)</td>
</tr>
<tr>
<td>java.lang.Exception</td>
<td>Base class for runtime errors</td>
</tr>
<tr>
<td>java.lang.IllegalArgumentException</td>
<td>A method was called with invalid argument values, or a type conversion failed.</td>
</tr>
<tr>
<td>java.lang.ArithmeticException</td>
<td>Exception thrown when a numeric type conversion fails.</td>
</tr>
</tbody>
</table>

Accessing schema information
The generated library allows accessing static schema information via the following classes:

- `com.altova.xml.meta.Attribute`
- `com.altova.xml.meta.ComplexType`
- `com.altova.xml.meta.Element`
- `com.altova.xml.meta.SimpleType`

The properties that return one of the metadata classes return null if the respective property does not exist.

14.7.4 Integrating Schema Wrapper Libraries
To use the Altova libraries in your custom project, refer to the libraries from your project (or include them into your project), as shown below for each language.

**C#**
To integrate the Altova libraries into an existing C# project:

1. After MapForce generates code from a schema (for example, `YourSchema.xsd`), build the generated `YourSchema.sln` solution in Visual Studio. This solution is in a project folder with the same name as the schema.
2. Right-click your existing project in Visual Studio, and select **Add Reference**.
3. On the Browse tab, browse for the following libraries: Altova.dll, AltovaXML.dll, and YourSchema.dll located in the output directory of the generated projects (for example, bin\Debug).

![Add Reference dialog](image)

**C++**

The easiest way to integrate the libraries into an existing C++ project is to add the generated project files to your solution. For example, let's assume that you generated code from a schema called Library.xsd and selected c:\codegen\cpp\library as target directory. The generated libraries in this case are available at:

- c:\codegen\cpp\library\Altova.vcxproj
- c:\codegen\cpp\library\AltovaXML\AltovaXML.vcxproj
- c:\codegen\cpp\library\Library.vcxproj

First, open the generated c:\codegen\cpp\library\Library.sln solution and build it in Visual Studio.

Next, open your existing Visual Studio solution (in Visual Studio 2010, in this example), right-click it, select Add | Existing Project, and add the project files listed above, one by one. Be patient while Visual Studio parses the files. Next, right-click your project and select Properties. In the Property Pages dialog box, select Common Properties | Framework and References, and then click Add New Reference. Next, select and add each of the following projects: Altova, AltovaXML, and Library.
See also the MSDN documentation for using functionality from a custom library, as applicable to your version of Visual Studio, for example:

- If you chose to generate static libraries, see https://msdn.microsoft.com/en-us/library/ms235627(v=vs.100).aspx
- If you chose to generate dynamic libraries, see https://msdn.microsoft.com/en-us/library/ms235636(v=vs.100).aspx

The option to generate static or dynamic libraries is available in code generation options (see Code generator options).

Java

One of the ways to integrate the Altova packages into your Java project is to copy the `com` directory of the generated code to the directory which stores the source packages of your Java project (for example, `C:\Workspace\MyJavaProject\src`). For example, let’s assume that you generated code in `C:\codegen\java\library`. The generated Altova classes in this case are available at `C:\codegen\java\library\com`.

After copying the libraries, refresh the project. To refresh the project in Eclipse, select it in the Package Explorer, and press F5. To refresh the project in NetBeans IDE 8.0, select the menu command Source | Scan for External Changes.

Once you perform the copy operation, the Altova packages are available in the Package Explorer (in case of Eclipse), or under “Source Packages” in the Projects pane (in case of NetBeans IDE).
Example: Book Library

This example illustrates how to use the generated schema wrapper libraries in order to write or read programmatically XML documents conformant to the schema. Before using the sample code, take some time to understand the structure of the schema below.

The schema used in this example describes a library of books. The complete definition of the schema is shown below. Save this code listing as Doc.xsd if you want to get the same results as this example. You will need this schema to generate the code libraries used in this example.
Library is a root element of a complexType which can be graphically represented as follows in the schema view of XMLSpy:
As shown above, the library has a **LastUpdated** attribute (defined as `xs:dateTime`), and stores a sequence of books. Each book is an `xs:complexType` and has two attributes: an **ID** (defined as `xs:integer`), and a **Format**. The format of any book can be hardcover, paperback, audiobook, or e-book. In the schema, **Format** is defined as `xs:simpleType` which uses an enumeration of the above-mentioned values.

Each book also has a **Title** element (defined as `xs:string`), as well as one or several **Author** elements (defined as `xs:string`).

The library may also contain books that are dictionaries. Dictionaries have the type **DictionaryType**, which is derived by extension from the **BookType**. In other words, a dictionary inherits all attributes and elements of a Book, plus two additional elements: **FromLang** and **ToLang**, as illustrated below.

The **FromLang** and **ToLang** elements store the source and destination language of the dictionary.
An XML instance file valid according to the schema above could therefore look as shown in the listing below (provided that it is in the same directory as the schema file):

```xml
<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.nanonull.com/LibrarySample"
xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-02-03T17:10:08.4977404">
 <Book ID="1" Format="E-book">
 <Title>The XMLSpy Handbook</Title>
 <Author>Altova</Author>
 </Book>
 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"
xsi:type="n1:DictionaryType">
 <Title>English-German Dictionary</Title>
 <Author>John Doe</Author>
 <FromLang>English</FromLang>
 <ToLang>German</ToLang>
 </Book>
</Library>
```

The next topics illustrate how to read from such a file programmatically, or write to such a file programmatically. To begin, generate the schema wrapper code from the schema above, using the steps described in Generating Code from XML Schemas or DTD.

### 14.7.5.1 Reading and Writing XML Documents (C++)

After you generate code from the example schema, a test C++ application is created, along with several supporting Altova libraries.

**About the generated C++ libraries**

The central class of the generated code is the `CDoc` class, which represents the XML document. Such a class is generated for every schema and its name depends on the schema file name (`.xsd` in this example). As shown in the diagram, this class provides methods for loading documents from files, binary streams, or strings (or saving documents to files, streams, strings). For a description of all members exposed by this class, see the class reference ([YourSchema]::[CDoc]).
The `Library` field of the `CDoc` class represents the actual root of the document. **Library** is an element in the XML file, so in the C++ code it has a template class as type (`MemberElement`). The template class exposes methods and properties for interacting with the `Library` element. In general, each attribute and each element of a type in the schema is typed in the generated code with the `MemberAttribute` and `MemberElement` template classes, respectively. For more information, see [YourSchema]::MemberAttribute and [YourSchema]::MemberElement class reference.

The class `CLibraryType` is generated from the `LibraryType` complex type in the schema. Notice that the `CLibraryType` class contains two fields: `Book` and `LastUpdated`. According to the logic already mentioned above, these correspond to the `Book` element and `LastUpdated` attribute in the schema, and enable you to manipulate programmatically (append, remove, etc) elements and attributes in the instance XML document.

The `DictionaryType` is a complex type derived from `BookType` in the schema, so this relationship is also reflected in the generated classes. As illustrated in the diagram, the class `CDictionaryType` inherits the `CBookType` class.
If your XML schema defines simple types as enumerations, the enumerated values become available as \texttt{enum} values in the generated code. In the schema used in this example, a book format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these values would be available through an \texttt{enum} that is a member of the \texttt{CBookFormatType} class.

Writing an XML document

1. Open the \texttt{LibraryTest.sln} solution in Visual Studio generated from the Library schema mentioned earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to frequently generate code to the same directory, so that the schema changes are immediately reflected in the code. Note that the generated test application and the Altova libraries are overwritten every time when you generate code into the same target directory. Therefore, do not add code to the generated test application. Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).}

2. In Solution Explorer, open the \texttt{LibraryTest.cpp} file, and edit the \texttt{Example()} method as shown below.

```cpp
#include <ctime> // required to get current time
using namespace Doc; // required to work with Altova libraries

void Example()
{
```

```cpp```
// Create a new, empty XML document
CDoc libDoc = CDoc::CreateDocument();

// Create the root element <Library> and add it to the document
CLibraryType lib = libDoc.Library.append();

// Get current time and set the "LastUpdated" attribute using Altova classes
time_t t = time(NULL);
struct tm * now = localtime(&t);
altova::DateTime dt = altova::DateTime(now->tm_year + 1900, now->tm_mon + 1, now-
>tm_mday, now->tm_hour, now->tm_min, now->tm_sec);
lib.LastUpdated = dt;

// Create a new <Book> and add it to the library
CBookType book = lib.Book.append();

// Set the "ID" attribute of the book
book.ID = 1;

// Set the "Format" attribute of the <Book> using an enumeration constant
book.Format.SetEnumerationValue(CBookFormatType::k_Paperback);

// Add the <Title> and <Author> elements, and set values
book.Title.append() = _T("The XML Spy Handbook");
book.Author.append() = _T("Altova");

// Append a dictionary (book of derived type) and populate its attributes and elements
CDictionaryType dictionary = CDictionaryType(lib.Book.append().GetNode());
dictionary.ID = 2;
dictionary.Format.SetEnumerationValue(CBookFormatType::k_E_book);
dictionary.Title.append() = _T("English-German Dictionary");
dictionary.Author.append() = _T("John Doe");
dictionary.FromLang.append() = _T("English");
dictionary.ToLang.append() = _T("German");

// Since dictionary a derived type, set the xsi:type attribute of the book element
dictionary.SetXsiType();

// Optionally, set the schema location
libDoc.SetSchemaLocation(_T("Library.xsd"));

// Save the XML document to a file with default encoding (UTF-8),
// "true" causes the file to be pretty-printed.
libDoc.SaveToFile(_T("GeneratedLibrary.xml"), true);

// Destroy the document
libDoc.DestroyDocument();
}

3. Press F5 to start debugging. If the code was executed successfully, a GeneratedLibrary.xml file is
created in the solution output directory.
Reading an XML document

1. Open the **LibraryTest.sln** solution in Visual Studio.
2. Save the code below as **Library1.xml** to a directory that can be read by the program code (for example, the same directory as **LibraryTest.sln**).

```
<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xmlns="http://www.nanonull.com/LibrarySample"
          xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-02-03T17:10:08.4977404">
  <Book ID="1" Format="E-book">
    <Title>The XMLSpy Handbook</Title>
    <Author>Altova</Author>
  </Book>
  <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/LibrarySample"
        xsi:type="n1:DictionaryType">
    <Title>English-German Dictionary</Title>
    <Author>John Doe</Author>
    <FromLang>English</FromLang>
    <ToLang>German</ToLang>
  </Book>
</Library>
```

3. In Solution Explorer, open the **LibraryTest.cpp** file, and edit the **Example()** method as shown below.

```cpp
using namespace Doc;
void Example()
{
  // Load XML document
  CDoc libDoc = CDoc::LoadFromFile(_T("Library1.xml"));

  // Get the first (and only) root element <Library>
  CLibraryType lib = libDoc.Library.first();

  // Check whether an element exists:
  if (!lib.Book.exists())
  {
    tcout << "This library is empty." << std::endl;
    return;
  }

  // iteration: for each <Book>...
  for (Iterator<CBookType> itBook = lib.Book.all(); itBook; ++itBook)
  {
    // output values of ISBN attribute and (first and only) title element
    tcout << "ID: " << itBook->ID << std::endl;
    tcout << "Title: " << tstring(itBook->Title.first()) << std::endl;

    // read and compare an enumeration value
    if (itBook->Format.GetEnumerationValue() == CBookFormatType::k_Paperback)
```


```cpp
tcout << "This is a paperback book." << std::endl;

// for each <Author>...
for (CBookType::Author::iterator itAuthor = itBook->Author.all(); itAuthor; + +itAuthor)
    tcout << "Author: " << tstring(itAuthor) << std::endl;

// alternative: use count and index
for (unsigned int j = 0; j < itBook->Author.count(); ++j)
    tcout << "Author: " << tstring(itBook->Author[j]) << std::endl;
}

// Destroy the document
libDoc.DestroyDocument();
```

4. Press F5 to start debugging.

14.7.5.2 Reading and Writing XML Documents (C#)

After you generate code from the example schema, a test C# application is created, along with several supporting Altova libraries.

About the generated C# libraries

The central class of the generated code is the `Doc2` class, which represents the XML document. Such a class is generated for every schema and its name depends on the schema file name (`Doc.xsd`, in this example). Note that this class is called `Doc2` to avoid a possible conflict with the namespace name. As shown in the diagram, this class provides methods for loading documents from files, binary streams, or strings (or saving documents to files, streams, strings). For a description of this class, see the class reference (`[YourSchema].Doc2`).
The Library member of the Doc2 class represents the actual root of the document.

According to the code generation rules mentioned in About Schema Wrapper Libraries (C#), member classes are generated for each attribute and for each element of a type. In the generated code, the name of such member classes is prefixed with MemberAttribute_ and MemberElement_, respectively. Examples of such classes are MemberAttribute_ID and MemberElement_Author, generated from the Author element and ID attribute of a book, respectively. Such classes enable you to manipulate programmatically the corresponding elements and attributes in the instance XML document (for example, append, remove, set value, etc). For more information, see the [YourSchemaType].MemberAttribute and [YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this relationship is also reflected in the generated classes. As illustrated in the diagram below, the class DictionaryType inherits the BookType class.
If your XML schema defines simple types as enumerations, the enumerated values become available as `Enum` values in the generated code. In the schema used in this example, a book format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these values would be available through an `Enum` that is a member of the `BookFormatType` class.

Writing an XML document

1. Open the `LibraryTest.sln` solution in Visual Studio generated from the Library schema mentioned earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to frequently generate code to the same directory, so that the schema changes are immediately reflected in the code. Note that the generated test application and the Altova libraries are overwritten every time when you generate code into the same target directory. Therefore, do not add code to the generated test application. Instead, integrate the Altova libraries into your project (see Integrating Schema Wrapper Libraries).

2. In Solution Explorer, open the `LibraryTest.cs` file, and edit the `Example()` method as shown below.
```csharp
protected static void Example()
{
    // Create a new XML document
    Doc2 doc = Doc2.CreateDocument();
    // Append the root element
    LibraryType root = doc.Library.Append();

    // Create the generation date using Altova DateTime class
    Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);
    // Append the date to the root
    root.LastUpdated.Value = dt;

    // Add a new book
    // Set the value of the ID attribute
    book.ID.Value = 1;
    // Set the format of the book (enumeration)
    book.Format.EnumerationValue = BookFormatType.EnumValues.eHardcover;
    // Set the Title and Author elements
    book.Author.Append().Value = "Altova";

    // Append a dictionary (book of derived type) and populate its attributes and elements
    DictionaryType dictionary = new DictionaryType(root.Book.Append().Node);
    dictionary.ID.Value = 2;
    dictionary.Title.Append().Value = "English-German Dictionary";
    dictionary.Author.Append().Value = "John Doe";
    dictionary.FromLang.Append().Value = "English";
    dictionary.ToLang.Append().Value = "German";
    // Since it's a derived type, make sure to set the xsi:type attribute of the book element
    dictionary.SetXsiType();

    // Optionally, set the schema location (adjust the path if
    // your schema is not in the same folder as the generated instance file)
    doc.SetSchemaLocation("Library.xsd");

    // Save the XML document with the "pretty print" option enabled
    doc.SaveToFile("GeneratedLibrary.xml", true);
}
```

3. Press F5 to start debugging. If the code was executed successfully, a GeneratedLibrary.xml file is created in the solution output directory (typically, bin/Debug).

Reading an XML document

2. Save the code below as Library.xml to the output directory of the project (by default, bin/Debug). This is the file that will be read by the program code.

```xml
<?xml version="1.0" encoding="utf-8"?>
```
3. In Solution Explorer, open the LibraryTest.cs file, and edit the Example() method as shown below.

```csharp
protected static void Example()
{
    // Load the XML file
    Doc2 doc = Doc2.LoadFromFile("Library.xml");
    // Get the root element
    LibraryType root = doc.Library.First;

    // Read the library generation date
    Altova.Types.DateTime dt = root.LastUpdated.Value;
    string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);
    Console.WriteLine("The library generation date is: " + dt_as_string);

    // Iteration: for each <Book>...
    foreach (BookType book in root.Book)
    {
        // Output values of ID attribute and (first and only) title element
        Console.WriteLine("ID:    " + book.ID.Value);
        Console.WriteLine("Title: " + book.Title.First.Value);

        // Read and compare an enumeration value
        {
            Console.WriteLine("This is a paperback book.");
        }

        // Iteration: for each <Author>
        foreach (xs.stringType author in book.Author)
        {
            Console.WriteLine("Author: " + author.Value);
        }

        // Determine if this book is of derived type
        {
            // Find the value of the xsi:type attribute
            ... // Continue with the rest of the code
        }
    }
```
// Get the namespace URI and the lookup prefix of this namespace
string prefix = book.Node.GetPrefixOfNamespace(namespaceUri);

// if this book has DictionaryType
if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&
xsiTypeValue.Equals(prefix + ":DictionaryType"))
{
 // output additional fields
 DictionaryType dictionary = new DictionaryType(book.Node);
 Console.WriteLine("Language from: " +
dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: " + dictionary.ToLang.First.Value);
}
else
{
 throw new Exception("Unexpected book type");
}

Console.ReadLine();

4. Press F5 to start debugging. If the code was executed successfully, Library.xml will be read by the program code, and its contents displayed as console output.

Reading and writing elements and attributes

Values of attributes and elements can be accessed using the Value property of the generated member element or attribute class, for example:

// Output values of ID attribute and (first and only) title element
Console.WriteLine("ID: " + book.ID.Value);
Console.WriteLine("Title: " + book.Title.First.Value);

To get the value of the Title element in this particular example, we also used the First() method, since this is the first (and only) Title element of a book. For cases when you need to pick a specific element from a list by index, use the At() method.

The class generated for each member element of a type implements the standard System.Collections.IEnumerable interface. This makes it possible to loop through multiple elements of the same type. In this particular example, you can loop through all books of a Library object as follows:

// Iteration: for each <Book>...
foreach (BookType book in root.Book)
{
 // your code here...
}
To add a new element, use the `Append()` method. For example, the following code appends the root element to the document:

```csharp
// Append the root element to the library
LibraryType root = doc.Library.Append();
```

You can set the value of an attribute (like ID in this example) as follows:

```csharp
// Set the value of the ID attribute
book.ID.Value = 1;
```

Reading and writing enumeration values

If your XML schema defines simple types as enumerations, the enumerated values become available as `Enum` values in the generated code. In the schema used in this example, a book format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these values would be available through an `Enum`:

To assign enumeration values to an object, use code such as the one below:

```csharp
// Set the format of the book (enumeration)
book.Format.EnumerationValue = BookFormatType.EnumValues.eHardcover;
```

You can read such enumeration values from XML instance documents as follows:

```csharp
// Read and compare an enumeration value
    Console.WriteLine("This is a paperback book.");
```

When an "if" condition is not enough, create a switch to determine each enumeration value and process it as required.

Working with `xs:dateTime` and `xs:duration` types

If the schema from which you generated code uses time and duration types such as `xs:dateTime`, or `xs:duration`, these are converted to Altova native classes in generated code. Therefore, to write a date or duration value to the XML document, do the following:
1. Construct an `Altova.Types.DateTime` or `Altova.Types.Duration` object (either from `System.DateTime`, or by using parts such as hours and minutes, see `Altova.Types.DateTime` and `Altova.Types.Duration` for more information).

2. Set the object as value of the required element or attribute, for example:

```csharp
// Create the library generation date using Altova DateTime class
Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);
// Append the date to the root
root.LastUpdated.Value = dt;
```

To read a date or duration from an XML document, do the following:

1. Declare the element value (or attribute) as `Altova.Types.DateTime` or `Altova.Types.Duration` object.
2. Format the required element or attribute, for example:

```csharp
// Read the library generation date
Altova.Types.DateTime dt = root.LastUpdated.Value;
string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);
Console.WriteLine("The library generation date is: " + dt_as_string);
```

For more information, see `Altova.Types.DateTime` and `Altova.Types.Duration` class reference.

Working with derived types

If your XML schema defines derived types, you can preserve type derivation in XML documents that you create or load programmatically. Taking the schema used in this example, the following code listing illustrates how to create a new book of derived type `DictionaryType`:

```csharp
// Append a dictionary (book of derived type) and populate its attributes and elements
DictionaryType dictionary = new DictionaryType(root.Book.Append().Node);
dictionary.ID.Value = 2;
dictionary.Title.Append().Value = "English-German Dictionary";
dictionary.Author.Append().Value = "John Doe";
dictionary.FromLanguage.Append().Value = "English";
dictionary.ToLanguage.Append().Value = "German";

// Since it's a derived type, make sure to set the xsi:type attribute of the book element
dictionary.SetXsiType();
```

Note that it is important to set the `xsi:type` attribute of the newly created book. This ensures that the book type will be interpreted correctly by the schema when the XML document is validated.

When you load data from an XML document, the following code listing shows how to identify a book of derived type `DictionaryType` in the loaded XML instance. First, the code finds the value of the `xsi:type` attribute of the book node. If the namespace URI of this node is `http://www.nanonull.com/LibrarySample`, and if the URI lookup prefix and type matches the value of the `xsi:type` attribute, then this is a dictionary:

```csharp
// Determine if this book is of derived type
```
{ // Find the value of the xsi:type attribute
 // Get the namespace URI and the lookup prefix of this namespace
 string prefix = book.Node.GetPrefixOfNamespace(namespaceUri);

 // if this book has DictionaryType
 if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&
 xsiTypeValue.Equals(prefix + ":DictionaryType"))
 {
 // output additional fields
 DictionaryType dictionary = new DictionaryType(book.Node);
 Console.WriteLine("Language from: "+ dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: "+ dictionary.ToLang.First.Value);
 }
 else
 {
 throw new Exception("Unexpected book type");
 }
}

14.7.5.3 Reading and Writing XML Documents (Java)

After you generate code from the example schema, a test Java project is created, along with several supporting Altova libraries.

About the generated Java libraries

The central class of the generated code is the Doc2 class, which represents the XML document. Such a class is generated for every schema and its name depends on the schema file name (Doc.xsd, in this example). Note that this class is called Doc2 to avoid a possible conflict with the namespace name. As shown in the diagram, this class provides methods for loading documents from files, binary streams, or strings (or saving documents to files, streams, strings). For a description of this class, see the com.[YourSchema].[Doc] class reference.
The Library member of the Doc2 class represents the actual root of the document.

According to the code generation rules mentioned in About Generated Java Code, member classes are generated for each attribute and for each element of a type. In the generated code, the name of such member classes is prefixed with MemberAttribute_ and MemberElement_, respectively. In the diagram below, examples of such classes are MemberAttribute_ID and MemberElement_Author, generated from the Author element and ID attribute of a book, respectively. Such classes enable you to manipulate programmatically the corresponding elements and attributes in the instance XML document (for example, append, remove, set value, etc). For more information, see the com.[YourSchema].[YourSchemaType].MemberAttribute and com.[YourSchema].[YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this relationship is also reflected in the generated classes. As illustrated in the diagram below, the class DictionaryType inherits the BookType class.
If your XML schema defines simple types as enumerations, the enumerated values become available as `Enum` values in the generated code. In the schema used in this example, a book format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these values would be available through an `Enum` that is a member of the `BookFormatType` class.

Writing an XML document

1. On the **File** menu of Eclipse, click **Import**, select **Existing Projects into Workspace**, and click **Next**.
2. Next to **Select root directory**, click **Browse**, select the directory to which you generated the Java code, and then click **Finish**.

While prototyping an application from a frequently changing XML schema, you may need to frequently generate code to the same directory, so that the schema changes are immediately reflected in the code. Note that the generated test application and the Altova libraries are overwritten every time when you generate code into the same target directory. Therefore, do not add code to the generated test application. Instead, integrate the Altova libraries into your project (see [Integrating Schema Wrapper Libraries](#)).

4. Edit the `Example()` method as shown below.

```java
protected static void example() throws Exception {
    // create a new, empty XML document
```
```java
do2 libDoc = do2.createDocument();

// create the root element <Library> and add it to the document
LibraryType lib = libDoc.Library.append();

// set the "LastUpdated" attribute
com.altova.types.DateTime dt = new com.altova.types.DateTime(DateTime.now());
lib.LastUpdated.setValue(dt);

// create a new <Book> and populate its elements and attributes
BookType book = lib.Book.append();
book.ID.setValue(java.math.BigInteger.valueOf(1));
book.Format.setEnumerationValue(BookFormatType.EPAPERBACK);
book.Title.append().setValue("The XML Spy Handbook");
book.Author.append().setValue("Altova");

// create a dictionary (book of derived type) and populate its elements and attributes
DictionaryType dict = new DictionaryType(lib.Book.append().getNode());
dict.ID.setValue(java.math.BigInteger.valueOf(2));
dict.Title.append().setValue("English-German Dictionary");
dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
dict.Author.append().setValue("John Doe");
dict.FromLang.append().setValue("English");
dict.ToLang.append().setValue("German");
dict.setXsiType();

// set the schema location (this is optional)
libDoc.setSchemaLocation("Library.xsd");

// save the XML document to a file with default encoding (UTF-8). "true" causes the file to be pretty-printed.
libDoc.saveToFile("Library1.xml", true);
```

5. Build the Java project and run it. If the code is executed successfully, a `Library1.xml` file is created in the project directory.

Reading an XML document

1. On the File menu of Eclipse, click Import, select Existing Projects into Workspace, and click Next.
2. Next to Select root directory, click Browse, select the directory to which you generated the Java code, and then click Finish.
3. Save the code below as `Library1.xml` to a local directory (you will need to refer to the path of the `Library1.xml` file from the sample code below).

```xml
<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xmlns="http://www.nanonull.com/LibrarySample"
        xsi:schemaLocation="http://www.nanonull.com/LibrarySample Library.xsd" LastUpdated="2016-02-03T17:10:08.4977404"/>
```

5. Edit the `Example()` method as shown below.

```java
protected static void example() throws Exception {
    // load XML document from a path, make sure to adjust the path as necessary
    Doc2 libDoc = Doc2.loadFromFile("Library1.xml");

    // get the first (and only) root element <Library>
    LibraryType lib = libDoc.Library.first();

    // check whether an element exists:
    if (!lib.Book.exists()) {
        System.out.println("This library is empty.");
        return;
    }

    // read a DateTime schema type
    com.altova.types.DateTime dt = lib.LastUpdated.getValue();
    System.out.println("The library was last updated on: "+ dt.toDateString());

    // iteration: for each <Book>...
    for (java.util.Iterator itBook = lib.Book.iterator(); itBook.hasNext();)
    {
        BookType book = (BookType) itBook.next();
        // output values of ID attribute and (first and only) title element
        System.out.println("ID: " + book.ID.getValue());
        System.out.println("Title: " + book.Title.first().getValue());

        // read and compare an enumeration value
        if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK)
            System.out.println("This is a paperback book.");

        // for each <Author>...
        for (java.util.Iterator itAuthor = book.Author.iterator(); itAuthor.hasNext();)
        {
            System.out.println("Author: " + ((com.Doc.xs.stringType) itAuthor.next()).getValue());

            // find the derived type of this book
        }
    }
}
```
// by looking at the value of the xsi:type attribute, using DOM
if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {
 // Get the value of the xsi:type attribute
 String xsiTypeValue = bookNode.getAttributes().getNamedItem("xsi:type"). getNodeValue();

 // Get the namespace URI and lookup prefix of this namespace
 String namespaceUri = bookNode.getNamespaceURI();
 String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

 // If xsi:type matches the namespace URI and type of the book node
 if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&
 xsiTypeValue.equals(lookupPrefix + ":DictionaryType")) {
 // ...then this is a book of derived type (dictionary)
 DictionaryType dictionary = new DictionaryType(book.getNode());
 // output the value of the "FromLang" and "ToLang" elements
 System.out.println("From language: " +
 dictionary.FromLang.first().getValue());
 System.out.println("To language: " + dictionary.ToLang.first().getValue());
 } else {
 // throw an error
 throw new java.lang.Error("This book has an unknown type.");
 }
} else {
 // throw an error
 throw new java.lang.Error("This book has an unknown type.");
}

6. Build the Java project and run it. If the code is executed successfully, Library1.xml will be read by the program code, and its contents displayed in the Console view.

Reading and writing elements and attributes
Values of attributes and elements can be accessed using the getValue() method of the generated member element or attribute class, for example:

// output values of ID attribute and (first and only) title element
System.out.println("ID: " + book.ID.getValue());
System.out.println("Title: " + book.Title.first().getValue());

To get the value of the Title element in this particular example, we also used the first() method, since this is the first (and only) Title element of a book. For cases when you need to pick a specific element from a list by index, use the at() method.

To iterate through multiple elements, use either index-based iteration or java.util.Iterator. For example, you can iterate through the books of a library as follows:

// index-based iteration
for (int j = 0; j < lib.Book.count(); ++j) {

To add a new element, use the `append()` method. For example, the following code appends an empty root `Library` element to the document:

```java
// create the root element <Library> and add it to the document
LibraryType lib = libDoc.Library.append();
```

Once an element is appended, you can set the value of any of its elements or attributes by using the `setValue()` method.

```java
// set the value of the Title element
book.Title.append().setValue("The XML Spy Handbook");
// set the value of the ID attribute
book.ID.setValue(java.math.BigInteger.valueOf(1));
```

Reading and writing enumeration values

If your XML schema defines simple types as enumerations, the enumerated values become available as `Enum` values in the generated code. In the schema used in this example, a book format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these values would be available through an `Enum` (see the `BookFormatType` class diagram above). To assign enumeration values to an object, use code such as the one below:

```java
// set an enumeration value
book.Format.setEnumerationValue( BookFormatType.EPAPERBACK );
```

You can read such enumeration values from XML instance documents as follows:

```java
// read an enumeration value
if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK) System.out.println("This is a paperback book.");
```

When an "if" condition is not enough, create a switch to determine each enumeration value and process it as required.

Working with `xs:dateTime` and `xs:duration` types

If the schema from which you generated code uses time and duration types such as `xs:dateTime`, or `xs:duration`, these are converted to Altova native classes in generated code. Therefore, to write a date or duration value to the XML document, do the following:

1. Construct a `com.altova.types.DateTime` or `com.altova.types.Duration` object.
2. Set the object as value of the required element or attribute, for example:

```java
// set the value of an attribute of DateTime type
com.altova.types.DateTime dt = new com.altova.types.DateTime(DateTime.now());
lib.LastUpdated.setValue(dt);
```

To read a date or duration from an XML document:

1. Declare the element value (or attribute) as `com.altova.types.DateTime` or `com.altova.types.Duration` object.
2. Format the required element or attribute, for example:

```java
// read a DateTime type
com.altova.types.DateTime dt = lib.LastUpdated.getValue();
System.out.println("The library was last updated on: "+ dt.toDateString());
```

For more information, see `com.altova.types.DateTime` and `com.altova.types.Duration` class reference.

Working with derived types

If your XML schema defines derived types, you can preserve type derivation in XML documents that you create or load programmatically. Taking the schema used in this example, the following code listing illustrates how to create a new book of derived type `DictionaryType`:

```java
// create a dictionary (book of derived type) and populate its elements and attributes
DictionaryType dict = new DictionaryType(lib.Book.append().getNode());
dict.ID.setValue(java.math.BigInteger.valueOf(2));
dict.Title.append().setValue("English-German Dictionary");
dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
dict.Author.append().setValue("John Doe");
dict.FromLang.append().setValue("English");
dict.ToLang.append().setValue("German");
dict.setXsiType();
```

Note that it is important to set the `xsi:type` attribute of the newly created book. This ensures that the book type will be interpreted correctly by the schema when the XML document is validated.

When you load data from an XML document, the following code listing shows how to identify a book of derived type `DictionaryType` in the loaded XML instance. First, the code finds the value of the `xsi:type` attribute of the book node. If the namespace URI of this node is `http://www.nanonull.com/LibrarySample`, and if the URI lookup prefix and type matches the value of the `xsi:type` attribute, then this is a dictionary:

```java
// find the derived type of this book
// by looking at the value of the xsi:type attribute, using DOM
if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {
    // Get the value of the xsi:type attribute
    String xsiTypeValue = bookNode.getAttributes().getNamedItem("xsi:type").getNodeValue();
```
// Get the namespace URI and lookup prefix of the book node
String namespaceUri = bookNode.getNamespaceURI();
String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

// If xsi:type matches the namespace URI and type of the book node
if (namespaceUri == "http://www.nanonull.com/LibrarySample"
 && xsiTypeValue.equals(lookupPrefix + "DictionaryType")) {
 // ...then this is a book of derived type (dictionary)
 DictionaryType dictionary = new DictionaryType(book.getNode());
 // output the value of the "FromLang" and "ToLang" elements
 System.out.println("From language: " +
 dictionary.FromLang.first().getValue());
 System.out.println("To language: " +
 dictionary.ToLang.first().getValue());
} else {
 // throw an error
 throw new java.lang.Error("This book has an unknown type.");
}

14.7.6 Example: Purchase Order

This example illustrates how to work with program code generated from a "main" XML schema that imports other schemas. Each of the imported schema has a different target namespace. The goal here is to create programmatically an XML document where all elements are prefixed according to their namespace. More specifically, the XML document created from your C++, C#, or Java code should look like the one below:

```xml
<?xml version="1.0" encoding="utf-8"?>
<p:Purchase xsi:schemaLocation="http://NamespaceTest.com/Purchase Main.xsd"
    xmlns:p="http://NamespaceTest.com/Purchase"
    xmlns:o="http://NamespaceTest.com/OrderTypes"
    xmlns:c="http://NamespaceTest.com/CustomerTypes"
    xmlns:cmn="http://NamespaceTest.com/CommonTypes"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <p:OrderDetail>
        <o:Item>
            <o:ProductName>Lawnmower</o:ProductName>
            <o:Quantity>1</o:Quantity>
            <o:UnitPrice>148.42</o:UnitPrice>
        </o:Item>
    </p:OrderDetail>
    <p:PaymentMethod>VISA</p:PaymentMethod>
    <p:CustomerDetails>
        <c:Name>Alice Smith</c:Name>
        <c:DeliveryAddress>
            <cmn:Line1>123 Maple Street</cmn:Line1>
            <cmn:Line2>Mill Valley</cmn:Line2>
        </c:DeliveryAddress>
    </p:CustomerDetails>
</p:Purchase>
```
The main schema used in this example is called **Main.xsd**. As illustrated in the code listing below, it imports three other schemas: **CommonTypes.xsd**, **CustomerTypes.xsd**, and **OrderTypes.xsd**. To get the same results as in this example, save all the code listings below to files, and use the same file names as above. Notice that the schema maps each of the prefixes `ord`, `pur`, `cmn`, and `cust` to some namespace (Order types, Purchase types, Common types, and Customer types, respectively). This means that, in the generated code, the classes corresponding to Orders, Purchases, Customers, and so on, will be available under their respective namespace.

```
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://NamespaceTest.com/Purchase"
xmlns:ord="http://NamespaceTest.com/OrderTypes"
xmlns:pur="http://NamespaceTest.com/Purchase"
xmlns:cmn="http://NamespaceTest.com/CommonTypes"
xmlns:cust="http://NamespaceTest.com/CustomerTypes"

elementFormDefault="qualified">
<xs:import schemaloction="CommonTypes.xsd"
namespace="http://NamespaceTest.com/CommonTypes" />
<xs:import schemaloction="CustomerTypes.xsd"
namespace="http://NamespaceTest.com/CustomerTypes" />
<xs:import schemaloction="OrderTypes.xsd"
namespace="http://NamespaceTest.com/OrderTypes" />
<xs:element name="Purchase">
  <xs:complexType>
    <xs:sequence>
      <xs:element name="OrderDetail" type="ord:OrderType" />
      <xs:element name="PaymentMethod" type="cmn:PaymentMethodType" />
      <xs:element ref="pur:CustomerDetails" />
    </xs:sequence>
  </xs:complexType>
</xs:element>
<xs:element name="CustomerDetails" type="cust:CustomerType" />
</xs:schema>
```

Main.xsd

```
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://NamespaceTest.com/CommonTypes"

elementFormDefault="qualified">
<xs:complexType name="AddressType">
<xs:sequence>
  <xs:element name="Line1" type="xs:string"/>
</xs:sequence>
</xs:complexType>
```
CommonTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://NamespaceTest.com/CommonTypes"
 xmlns:cmn="http://NamespaceTest.com/CommonTypes"
 elementFormDefault="qualified">
 <xs:import schemaLocation="CommonTypes.xsd"
 namespace="http://NamespaceTest.com/CommonTypes" />
 <xs:complexType name="CustomerType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="DeliveryAddress" type="cmn:AddressType" />
 <xs:element name="BillingAddress" type="cmn:AddressType" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

CustomerTypes.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://NamespaceTest.com/OrderTypes"
 xmlns:cmn="http://NamespaceTest.com/CommonTypes"
 elementFormDefault="qualified">
 <xs:import schemaLocation="CommonTypes.xsd"
 namespace="http://NamespaceTest.com/CommonTypes" />
 <xs:complexType name="OrderType">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="Item">
 <xs:complexContent>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ProductName" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:complexContent>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>
OrderTypes.xsd

To complete this example, take the following steps:

1. Save all schemas from the code listings above to files on the disk, making sure that you preserve the indicated file names.
2. Generate the schema wrapper code from the Main.xsd schema above, using the steps described in Generating Code from XML Schemas or DTDs. After completing this step, you should have generated a compilable program in the language of your choice (C++, C#, or Java).
3. Add code to your C++, C#, or Java program from one the following example code listings, as required:
 - XML Namespaces and Prefixes (C++)
 - XML Namespaces and Prefixes (C#)
 - XML Namespaces and Prefixes (Java)

14.7.6.1 XML Namespaces and Prefixes (C++)

After you generate code from the example schema, a test C++ application is created, along with several supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations. Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from the schema, namely: `Main::ord`, `Main::pur`, `Main::cmn`, and `Main::cust`.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you have the following methods at your disposal:

- `DeclareAllNamespacesFromSchema()`. Call this method if you want to declare the same namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as in this example, then `DeclareNamespace()` should be used. The method `DeclareAllNamespacesFromSchema()` is not used in this example because we specifically want to create XML elements with prefixes that are slightly different from those declared in the schema.
- `DeclareNamespace()`. Call this method to create or override the existing namespace prefix attribute on an element. The element must already be created using either the `append()` or `appendWithPrefix()` methods, as further illustrated below.
- `appendWithPrefix()`. Use this method to append an instance element with a specific prefix. To create the XML instance illustrated in this example, it was sufficient to call this method for the root element only. All other elements were appended using just `append()`, and their prefixes were added automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example: Purchase Order. Importantly, for illustrative purposes, some prefixes are overridden in the XML instance (that is, they are not exactly the same as the ones declared in the schema).
```csharp
void Example()
{
    // Create the XML document and append the root element
    Main::pur::CMain doc = Main::pur::CMain::CreateDocument();
    Main::pur::CPurchaseType purchase = doc.Purchase.appendWithPrefix(_T("p"));

    // Set schema location
    doc.SetSchemaLocation(_T("Main.xsd"));

    // Declare namespaces on root element
    purchase.DeclareNamespace(_T("o"), _T("http://NamespaceTest.com/OrderTypes"));
    purchase.DeclareNamespace(_T("c"), _T("http://NamespaceTest.com/CustomerTypes"));
    purchase.DeclareNamespace(_T("cmn"), _T("http://NamespaceTest.com/CommonTypes"));

    // Append the OrderDetail element
    Main::ord::COrderType order = purchase.OrderDetail.append();
    Main::ord::CItemType item = order.Item.append();
    item.ProductName.append() = _T("Lawnmower");
    item.Quantity.append() = 1;
    item.UnitPrice.append() = 148.42;

    // Append the PaymentMethod element
    Main::cmn::CPaymentMethodTypeType paymentMethod = purchase.PaymentMethod.append();
    paymentMethod.SetEnumerationValue(Main::cmn::CPaymentMethodTypeType::k_VISA);

    // Append the CustomerDetails element
    Main::cust::CCustomerType customer = purchase.CustomerDetails.append();
    customer.Name.append() = _T("Alice Smith");
    Main::cmn::CAddressType deliveryAddress = customer.DeliveryAddress.append();
    deliveryAddress.Line1.append() = _T("123 Maple Street");
    deliveryAddress.Line2.append() = _T("Mill Valley");
    Main::cmn::CAddressType billingAddress = customer.BillingAddress.append();
    billingAddress.Line1.append() = _T("8 Oak Avenue");
    billingAddress.Line2.append() = _T("Old Town");

    // Save to file and release object from memory
    doc.SaveToFile(_T("Main1.xml"), true);
    doc.DestroyDocument();
}
```

14.7.6.2 XML Namespaces and Prefixes (C#)

After you generate code from the example schema, a test C# application is created, along with several supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations. Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from the schema, namely: `Main.ord`, `Main.pur`, `Main.cmn`, and `Main.cust`.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you have the following methods at your disposal:
· **DeclareAllNamespacesFromSchema()**. Call this method if you want to declare the same namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as in this example, then **DeclareNamespace()** should be used. The method **DeclareAllNamespacesFromSchema()** is not used in this example because we specifically want to create XML elements with prefixes that are slightly different from those declared in the schema.

· **DeclareNamespace()**. Call this method to create or override the existing namespace prefix attribute on an element. The element must already be created using either the **Append()** or **AppendWithPrefix()** methods, as further illustrated below.

· **AppendWithPrefix()**. Use this method to append an instance element with a specific prefix. To create the XML instance illustrated in this example, it was sufficient to call this method for the root element only. All other elements were appended using just **Append()**, and their prefixes were added automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example: Purchase Order. Importantly, for illustrative purposes, some prefixes are overridden in the XML instance (that is, they are not exactly the same as the ones declared in the schema).

```csharp
protected static void Example()
{
    // Create the XML document and append the root element
    pur.Main2 doc = pur.Main2.CreateDocument();
    pur.PurchaseType purchase = doc.Purchase.AppendWithPrefix("p");

    // Set schema location
    doc.SetSchemaLocation("Main.xsd");

    // Declare namespaces on root element
    purchase.DeclareNamespace("o", "http://NamespaceTest.com/OrderTypes");

    // Append the OrderDetail element
    ord.OrderType order = purchase.OrderDetail.Append();
    ord.ItemType item = order.Item.Append();
    item.ProductName.Append().Value = "Lawnmower";
    item.Quantity.Append().Value = 1;
    item.UnitPrice.Append().Value = 148.42M;

    // Append the PaymentMethod element
    cmn.PaymentMethodTypeType paymentMethod = purchase.PaymentMethod.Append();
    paymentMethod.EnumerationValue = cmn.PaymentMethodTypeType.EnumValues.eVISA;

    // Append the CustomerDetails element
    cust.CustomerType customer = purchase.CustomerDetails.Append();
    customer.Name.Append().Value = "Alice Smith";
    cmn.AddressType deliveryAddress = customer.DeliveryAddress.Append();
    deliveryAddress.Line1.Append().Value = "123 Maple Street";
    deliveryAddress.Line2.Append().Value = "Mill Valley";
    cmn.AddressType billingAddress = customer.BillingAddress.Append();
    billingAddress.Line1.Append().Value = "8 Oak Avenue";
    billingAddress.Line2.Append().Value = "Old Town";

    // Save to file
}
```
14.7.6.3 XML Namespaces and Prefixes (Java)

After you generate code from the example schema, a test Java application is created, along with several supporting Altova libraries. Recall that the example schema (Main.xsd) has multiple namespace declarations. Consequently, the generated code includes namespaces that correspond to namespace aliases (prefixes) from the schema, namely: `com.Main.ord`, `com.Main.pur`, `com.Main.cmn`, and `com.Main.cust`.

In general, in order to control XML namespaces and prefixes with the help of the schema wrapper libraries, you have the following methods at your disposal:

- `declareAllNamespacesFromSchema()`. Call this method if you want to declare the same namespaces in your XML instance as in the schema. Otherwise, if you need different namespaces as in this example, then `declareNamespace()` should be used. The method `declareAllNamespacesFromSchema()` is not used in this example because we specifically want to create XML elements with prefixes that are slightly different from those declared in the schema.
- `declareNamespace()`. Call this method to create or override the existing namespace prefix attribute on an element. The element must already be created using either the `append()` or `appendWithPrefix()` methods, as further illustrated below.
- `appendWithPrefix()`. Use this method to append an instance element with a specific prefix. To create the XML instance illustrated in this example, it was sufficient to call this method for the root element only. All other elements were appended using just `append()`, and their prefixes were added automatically based on their namespaces, according to the rules above.

The code listing below shows you how to create an XML document with multiple namespace declarations and prefixed element names. Specifically, it generates a Purchase Order instance as illustrated in the Example: Purchase Order. Importantly, for illustrative purposes, some prefixes are overridden in the XML instance (that is, they are not exactly the same as the ones declared in the schema).

```java
protected static void example() throws Exception {
    // Create the XML document and append the root element
    com.Main.pur.PurchaseType purchase = doc.Purchase.appendWithPrefix("p");

    // Set schema location
    doc.setSchemaLocation("Main.xsd");

    // Declare namespaces on root element
    purchase.declareNamespace("o", "http://NamespaceTest.com/OrderTypes");
    purchase.declareNamespace("c", "http://NamespaceTest.com/CustomerTypes");
    purchase.declareNamespace("cmn", "http://NamespaceTest.com/CommonTypes");

    // Append the OrderDetail element
    com.Main.ord.OrderType order = purchase.OrderDetail.append();
    com.Main.ord.ItemType item = order.Item.append();
    item.ProductName.append().setValue("Lawnmower");
    item.Quantity.append().setValue(1);
}
```
item.UnitPrice.append().setValue(price);

// Append the PaymentMethod element
com.Main.cmn.PaymentMethodTypeType paymentMethod = purchase.PaymentMethod.append();
paymentMethod.setEnumerationValue(com.Main.cmn.PaymentMethodTypeType.EVISA);

// Append the CustomerDetails element
com.Main.cust.CustomerType customer = purchase.CustomerDetails.append();
customer.Name.append().setValue("Alice Smith");
com.Main.cmn.AddressType deliveryAddress = customer.DeliveryAddress.append();
deliveryAddress.Line1.append().setValue("123 Maple Street");
deliveryAddress.Line2.append().setValue("Mill Valley");
com.Main.cmn.AddressType billingAddress = customer.BillingAddress.append();
billingAddress.Line1.append().setValue("8 Oak Avenue");
billingAddress.Line2.append().setValue("Old Town");

// Save to file
doc.saveToFile("PurchaseOrder.xml", true);
14.8 Reference to Generated Classes (C++)

This chapter includes a description of C++ classes generated with MapForce from a DTD or XML schema (see Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read, modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to modification.

14.8.1 altova::DateTime

This class enables you to process XML attributes or elements that have date and time types, such as xs:dateTime.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateTime()</td>
<td>Initializes a new instance of the DateTime class to 12:00:00 midnight, January 1, 0001.</td>
</tr>
<tr>
<td>DateTime(__int64 value, short timezone)</td>
<td>Initializes a new instance of the DateTime class. The value parameter represents the number of ticks (100-nanosecond intervals) that have elapsed since 12:00:00 midnight, January 1, 0001.</td>
</tr>
<tr>
<td>DateTime(int year, unsigned char month, unsigned char day, unsigned char hour, unsigned char minute, double second)</td>
<td>Initializes a new instance of the DateTime class to the year, month, day, hour, minute, and second supplied as argument.</td>
</tr>
<tr>
<td>DateTime(int year, unsigned char month, unsigned char day, unsigned char hour, unsigned char minute, double second, short timezone)</td>
<td>Initializes a new instance of the DateTime class to the year, month, day, hour, minute, second and timezone supplied as argument. The timezone is expressed in minutes and can be positive or negative. For example, the timezone "UTC-01:00" is expressed as "-60".</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned char Day() const</td>
<td>Returns the day of month of the current DateTime object. The return values range from 1 through 31.</td>
</tr>
<tr>
<td>int DayOfYear() const</td>
<td>Returns the day of year of the current DateTime object. The return values range from 1 through 366.</td>
</tr>
<tr>
<td>bool HasTimezone() const</td>
<td>Returns Boolean true if the current DateTime object has a timezone defined; false otherwise.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>unsigned char Hour() const</code></td>
<td>Returns the hour of the current <code>DateTime</code> object. The return values range from 0 through 23.</td>
</tr>
<tr>
<td><code>static bool IsLeapYear(int year)</code></td>
<td>Returns Boolean <code>true</code> if the year of the <code>DateTime</code> class is a leap year; <code>false</code> otherwise.</td>
</tr>
<tr>
<td><code>unsigned char Minute() const</code></td>
<td>Returns the minute of the current <code>DateTime</code> object. The return values range from 0 through 59.</td>
</tr>
<tr>
<td><code>unsigned char Month() const</code></td>
<td>Returns the month of the current <code>DateTime</code> object. The return values range from 1 through 12.</td>
</tr>
<tr>
<td><code>__int64 NormalizedValue() const</code></td>
<td>Returns the value of the <code>DateTime</code> object expressed as the Coordinated Universal Time (UTC).</td>
</tr>
<tr>
<td><code>double Second() const</code></td>
<td>Returns the second of the current <code>DateTime</code> object. The return values range from 0 through 59.</td>
</tr>
<tr>
<td><code>void SetTimezone(short tz)</code></td>
<td>Sets the timezone of the current <code>DateTime</code> object to the timezone value supplied as argument. The <code>tz</code> argument is expressed in minutes and can be positive or negative.</td>
</tr>
<tr>
<td><code>short Timezone() const</code></td>
<td>Returns the timezone, in minutes, of the current <code>DateTime</code> object. Before using this method, make sure that the object actually has a timezone, by calling the <code>HasTimezone()</code> method.</td>
</tr>
<tr>
<td><code>__int64 Value() const</code></td>
<td>Returns the value of the <code>DateTime</code> object, expressed in the number of ticks (100-nanosecond intervals) that have elapsed since 12:00:00 midnight, January 1, 0001.</td>
</tr>
<tr>
<td><code>int Weekday() const</code></td>
<td>Returns the day of week of the current <code>DateTime</code> object, as an integer. Values range from 0 through 6, where 0 is Monday (ISO-8601).</td>
</tr>
<tr>
<td><code>int Weeknumber() const</code></td>
<td>Returns the number of week in the year of the current <code>DateTime</code> object. The return values are according to ISO-8601.</td>
</tr>
<tr>
<td><code>int WeekOfMonth() const</code></td>
<td>Returns the number of week in the month of the current <code>DateTime</code> object. The return values are according to ISO-8601.</td>
</tr>
<tr>
<td><code>int Year() const</code></td>
<td>Returns the year of the current <code>DateTime</code> object.</td>
</tr>
</tbody>
</table>

Example

```c++
void Example()
{
    // initialize a new DateTime instance to 12:00:00 midnight, January 1st, 0001
    altova::DateTime dt1 = altova::DateTime();

    // initialize a new DateTime instance using the year, month, day, hour, minute, and second
    altova::DateTime dt2 = altova::DateTime(2015, 11, 10, 9, 8, 7);
}
```
// initialize a new DateTime instance using the year, month, day, hour, minute,
// second, and UTC +01:00 timezone
altova::DateTime dt = altova::DateTime(2015, 11, 22, 13, 53, 7, 60);

// Get the value of this DateTime object
std::cout << "The number of ticks of the DateTime object is: " << dt.Value() << std::endl;

// Get the year
cout << "The year is: " << (int)dt.Year() << endl;
// Get the month
cout << "The month is: " << (int)dt.Month() << endl;
// Get the day of the month
cout << "The day of the month is: " << (int) dt.Day() << endl;
// Get the day of the year
cout << "The day of the year is: " << dt.DayOfYear() << endl;
// Get the hour
cout << "The hour is: " << (int) dt.Hour() << endl;
// Get the minute
cout << "The minute is: " << (int) dt.Minute() << endl;
// Get the second
cout << "The second is: " << dt.Second() << endl;
// Get the weekday
cout << "The weekday is: " << dt.Weekday() << endl;
// Get the week number
cout << "The week of year is: " << dt.Weeknumber() << endl;
// Get the week in month
cout << "The week of month is: " << dt.WeekOfMonth() << endl;

// Check whether a DateTime instance has a timezone
if (dt.HasTimezone() == TRUE)
{
 // output the value of the Timezone
 cout << "The timezone is: " << dt.Timezone() << endl;
}
el
else
{
 cout << "No timezone has been defined." << endl;
}

// Construct a DateTime object with a timezone UTC+01:00 (Vienna)
altova::DateTime vienna_dt = DateTime(2015, 11, 23, 14, 30, 59, +60);
// Output the result in readable format
cout << "The Vienna time: "
<< (int) vienna_dt.Month()
<< "-" << (int) vienna_dt.Day()
<< " " << (int) vienna_dt.Hour()
<< ":" << (int) vienna_dt.Minute()
<< ":" << (int) vienna_dt.Second()
<< endl;

// Convert the value to UTC time
```cpp
DateTime utc_dt = DateTime(vienna_dt.NormalizedValue());
// Output the result in readable format
cout << "The UTC time:    "
    << (int) utc_dt.Month() << "-" << (int) utc_dt.Day() << " "
    << (int) utc_dt.Hour() << (int) utc_dt.Minute() << (int) utc_dt.Second() << endl;

// Check if a year is a leap year
int year = 2016;
if (altova::DateTime::IsLeapYear(year)) {
    cout << year << " is a leap year" << endl;
} else {
    cout << year << " is not a leap year" << endl;
}
```

14.8.2 altova::Duration

This class enables you to process XML attributes or elements of type `xs:duration`.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Duration()</code></td>
<td>Initializes a new instance of the <code>Duration</code> class to an empty value.</td>
</tr>
<tr>
<td><code>Duration(const DayTimeDuration& dt)</code></td>
<td>Initializes a new instance of the <code>Duration</code> class to a duration defined by the <code>dt</code> argument (see altova::DayTimeDuration).</td>
</tr>
<tr>
<td><code>Duration(const YearMonthDuration& ym)</code></td>
<td>Initializes a new instance of the <code>Duration</code> class to the duration defined by the <code>ym</code> argument (see altova::YearMonthDuration).</td>
</tr>
<tr>
<td><code>Duration(const YearMonthDuration& ym, const DayTimeDuration& dt)</code></td>
<td>Initializes a new instance of the <code>Duration</code> class to the duration defined by both the <code>dt</code> and the <code>ym</code> arguments (see altova::YearMonthDuration and altova::DayTimeDuration).</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int Days() const</code></td>
<td>Returns the number of days in the current <code>Duration</code> instance.</td>
</tr>
<tr>
<td><code>DayTimeDuration DayTime() const</code></td>
<td>Returns the day and time duration in the current <code>Duration</code> instance, expressed as a <code>DayTimeDuration</code> object (see altova::DayTimeDuration).</td>
</tr>
<tr>
<td><code>int Hours() const</code></td>
<td>Returns the number of hours in the current <code>Duration</code> instance.</td>
</tr>
<tr>
<td><code>bool IsNegative() const</code></td>
<td>Returns Boolean true if the current <code>Duration</code> instance is negative.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>bool IsPositive() const</td>
<td>Returns Boolean true if the current Duration instance is positive.</td>
</tr>
<tr>
<td>int Minutes() const</td>
<td>Returns the number of minutes in the current Duration instance.</td>
</tr>
<tr>
<td>int Months() const</td>
<td>Returns the number of months in the current Duration instance.</td>
</tr>
<tr>
<td>double Seconds() const</td>
<td>Returns the number of seconds in the current Duration instance.</td>
</tr>
<tr>
<td>YearMonthDuration YearMonth() const</td>
<td>Returns the year and month duration in the current Duration instance, expressed as a YearMonthDuration object (see altova::YearMonthDuration).</td>
</tr>
<tr>
<td>int Years() const</td>
<td>Returns the number of years in the current Duration instance.</td>
</tr>
</tbody>
</table>

Example

The following code listing illustrates creating a new Duration object, as well as reading values from it.

```cpp
void ExampleDuration()
{
    // Create an empty Duration object
    altova::Duration empty_duration = altova::Duration();

    // Create a Duration object using an existing duration value
    altova::Duration duration1 = altova::Duration(empty_duration);

    // Create a YearMonth duration of six years and five months
    altova::YearMonthDuration yrduration = altova::YearMonthDuration(6, 5);

    // Create a DayTime duration of four days, three hours, two minutes, and one second
    altova::DayTimeDuration dtduration = altova::DayTimeDuration(4, 3, 2, 1);

    // Create a Duration object by combining the two previously created durations
    altova::Duration duration = altova::Duration(yrduration, dtduration);

    // Get the number of years in this Duration instance
    cout << "Years: " << duration.Years() << endl;

    // Get the number of months in this Duration instance
    cout << "Months: " << duration.Months() << endl;

    // Get the number of days in this Duration instance
    cout << "Days: " << duration.Days() << endl;

    // Get the number of hours in this Duration instance
    cout << "Hours: " << duration.Hours() << endl;

    // Get the number of hours in this Duration instance
    cout << "Minutes: " << duration.Minutes() << endl;

    // Get the number of seconds in this Duration instance
```
```cpp
cout << "Seconds: " << duration.Seconds() << endl;
```

14.8.3 altova::DayTimeDuration

This class enables you to process XML schema duration types that consist of a day and time part.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DayTimeDuration()</td>
<td>Initializes a new instance of the <code>DayTimeDuration</code> class to an empty value.</td>
</tr>
<tr>
<td>DayTimeDuration(int days, int hours, int minutes, double seconds)</td>
<td>Initializes a new instance of the <code>DayTimeDuration</code> class to the number of days, hours, minutes, and seconds supplied as arguments.</td>
</tr>
<tr>
<td>explicit DayTimeDuration(__int64 value)</td>
<td>Initializes a new instance of the <code>DayTimeDuration</code> class to a duration that consists of as many ticks (100-nanosecond intervals) as supplied in the <code>value</code> argument.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int Days() const</td>
<td>Returns the number of days in the current <code>DayTimeDuration</code> instance.</td>
</tr>
<tr>
<td>int Hours() const</td>
<td>Returns the number of hours in the current <code>DayTimeDuration</code> instance.</td>
</tr>
<tr>
<td>bool IsNegative() const</td>
<td>Returns Boolean true if the current <code>DayTimeDuration</code> instance is negative.</td>
</tr>
<tr>
<td>bool IsPositive() const</td>
<td>Returns Boolean true if the current <code>DayTimeDuration</code> instance is positive.</td>
</tr>
<tr>
<td>int Minutes() const</td>
<td>Returns the number of minutes in the current <code>DayTimeDuration</code> instance.</td>
</tr>
<tr>
<td>double Seconds() const</td>
<td>Returns the number of seconds in the current <code>DayTimeDuration</code> instance.</td>
</tr>
<tr>
<td>__int64 Value() const</td>
<td>Returns the value (in ticks) of the current <code>DayTimeDuration</code> instance.</td>
</tr>
</tbody>
</table>
14.8.4 altova::YearMonthDuration

This class enables you to process XML schema duration types that consist of a year and month part.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>YearMonthDuration()</code></td>
<td>Initializes a new instance of the <code>YearMonthDuration</code> class to an empty value.</td>
</tr>
<tr>
<td><code>YearMonthDuration(int years, int months)</code></td>
<td>Initializes a new instance of the <code>YearMonthDuration</code> class to the number of years and months supplied in the years and months arguments.</td>
</tr>
<tr>
<td><code>explicit YearMonthDuration(int value)</code></td>
<td>Initializes a new instance of the <code>YearMonthDuration</code> class to a duration that consists of as many ticks (100-nanosecond intervals) as supplied in the value argument.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bool IsNegative() const</code></td>
<td>Returns Boolean true if the current <code>YearMonthDuration</code> instance is negative.</td>
</tr>
<tr>
<td><code>bool IsPositive() const</code></td>
<td>Returns Boolean true if the current <code>YearMonthDuration</code> instance is positive.</td>
</tr>
<tr>
<td><code>int Months() const</code></td>
<td>Returns the number of months in the current <code>YearMonthDuration</code> instance.</td>
</tr>
<tr>
<td><code>int Value() const</code></td>
<td>Returns the value (in ticks) of the current <code>YearMonthDuration</code> instance.</td>
</tr>
<tr>
<td><code>int Years()</code></td>
<td>Returns the number of years in the current <code>YearMonthDuration</code> instance.</td>
</tr>
</tbody>
</table>

14.8.5 altova::meta::Attribute

This class enables you to access schema information about classes generated from attributes. Note that this class is not meant to provide dynamic information about particular instances of an attribute in an XML document. Instead, it enables you to obtain programatically information about a particular attribute defined in the XML schema.
Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleType GetDataType()</td>
<td>Returns the type of the attribute content.</td>
</tr>
<tr>
<td>string_type GetLocalName()</td>
<td>Returns the local name of the attribute.</td>
</tr>
<tr>
<td>string_type GetNamespaceURI()</td>
<td>Returns the namespace URI of the attribute.</td>
</tr>
<tr>
<td>bool IsRequired()</td>
<td>Returns true if the attribute is required.</td>
</tr>
</tbody>
</table>

Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool operator()</td>
<td>Returns true if this is not the NULL Attribute.</td>
</tr>
<tr>
<td>bool operator!()</td>
<td>Returns true if this is the NULL Attribute.</td>
</tr>
</tbody>
</table>

14.8.6 `altova::meta::ComplexType`

This class enables you to access schema information about classes generated from complex types. Note that this class is not meant to provide dynamic information about particular instances of a complex type in an XML document. Instead, it enables you to obtain programatically information about a particular complex type defined in the XML schema.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute FindAttribute(const char_type* localName, const char_type* namespaceURI)</td>
<td>Finds the attribute with the specified local name and namespace URI.</td>
</tr>
<tr>
<td>Element FindElement(const char_type* localName, const char_type* namespaceURI)</td>
<td>Finds the element with the specified local name and namespace URI.</td>
</tr>
<tr>
<td>std::vector<Attribute> GetAttributes()</td>
<td>Returns a list of all attributes.</td>
</tr>
<tr>
<td>ComplexType GetBaseType()</td>
<td>Returns the base type of this type.</td>
</tr>
<tr>
<td>SimpleType GetContentType()</td>
<td>Returns the simple type of the content.</td>
</tr>
<tr>
<td>std::vector<Element> GetElements()</td>
<td>Returns a list of all elements.</td>
</tr>
<tr>
<td>string_type GetLocalName()</td>
<td>Returns the local name of the type.</td>
</tr>
</tbody>
</table>
Reference to Generated Classes (C++)

altova::meta::Element

This class enables you to access information about classes generated from schema elements. Note that this class is not meant to provide dynamic information about particular instances of an element in an XML document. Instead, it enables you to obtain programatically information about a particular element defined in the XML schema.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComplexType GetDataType()</td>
<td>Returns the type of the element. Note that this is always a complex type even if declared as simple in the original schema. Use GetContentType() of the returned object to get the simple content type.</td>
</tr>
<tr>
<td>string_type GetLocalName()</td>
<td>Returns the local name of the element.</td>
</tr>
<tr>
<td>unsigned int GetMaxOccurs()</td>
<td>Returns the maxOccurs value defined in the schema.</td>
</tr>
<tr>
<td>unsigned int GetMinOccurs()</td>
<td>Returns the minOccurs value defined in the schema.</td>
</tr>
<tr>
<td>string_type GetNamespaceURI()</td>
<td>Returns the namespace URI of the element.</td>
</tr>
</tbody>
</table>

Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool operator()</td>
<td>Returns true if this is not the NULL ComplexType.</td>
</tr>
<tr>
<td>bool operator!()</td>
<td>Returns true if this is the NULL ComplexType.</td>
</tr>
</tbody>
</table>

14.8.8 altova::meta::SimpleType

This class enables you to access schema information about classes generated from simple types. Note that this class is not meant to provide dynamic information about particular instances of simple types in an XML document.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool operator()</td>
<td>Returns true if this is not the NULL Element.</td>
</tr>
<tr>
<td>bool operator!()</td>
<td>Returns true if this is the NULL Element.</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string_type GetNamespaceURI()</td>
<td>Returns the namespace URI of the type.</td>
</tr>
</tbody>
</table>
document. Instead, it enables you to obtain programmatically information about a particular simple type defined in the XML schema.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleType GetBaseType()</td>
<td>Returns the base type of this type.</td>
</tr>
<tr>
<td>std::vector<string_type> GetEnumerations()</td>
<td>Returns a list of all enumeration facets.</td>
</tr>
<tr>
<td>unsigned int GetFractionDigits()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>unsigned int GetLength()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>string_type GetLocalName()</td>
<td>Returns the local name of the type.</td>
</tr>
<tr>
<td>string_type GetMaxExclusive()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>string_type GetMaxInclusive()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>unsigned int GetMaxLength()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>string_type GetMinExclusive()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>string_type GetMinInclusive()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>unsigned int GetMinLength()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>string_type GetNamespaceURI()</td>
<td>Returns the namespace URI of the type.</td>
</tr>
<tr>
<td>std::vector<string_type> GetPatterns()</td>
<td>Returns a list of all pattern facets.</td>
</tr>
<tr>
<td>unsigned int GetTotalDigits()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>WhitespaceType GetWhitespace()</td>
<td>Returns the value of the whitespace facet, which is one of:</td>
</tr>
<tr>
<td></td>
<td>* Whitespace_Unknown</td>
</tr>
<tr>
<td></td>
<td>* Whitespace_Preserve</td>
</tr>
<tr>
<td></td>
<td>* Whitespace_Replace</td>
</tr>
<tr>
<td></td>
<td>* Whitespace_Collapse</td>
</tr>
</tbody>
</table>

Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool operator()</td>
<td>Returns true if this is not the NULL SimpleType.</td>
</tr>
<tr>
<td>bool operator!()</td>
<td>Returns true if this is the NULL SimpleType.</td>
</tr>
</tbody>
</table>
When code is generated from an XML Schema, the generated code provides a document class with the same name as the schema. This class contains all possible root elements as members, as well as the following methods. Note that, in the method names below, "CDoc" stands for the name of the generated document class itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>static CDoc CreateDocument()</td>
<td>Creates a new, empty XML document. Must be released using DestroyDocument().</td>
</tr>
<tr>
<td>static void DeclareAllNamespacesFromSchema(ElementType& node)</td>
<td>Declares all namespaces from the XML Schema on the element supplied as argument (typically, the XML root element). Calling this method is useful if your schema has multiple namespace declarations, each mapped to a prefix, and you would like to declare all of them on the element supplied as argument.</td>
</tr>
<tr>
<td>void DestroyDocument()</td>
<td>Destroys a document. All references to the document and its nodes are invalidated. This must be called when you finished working with a document.</td>
</tr>
<tr>
<td>static CDoc LoadFromBinary(const std::vector<unsigned char>& xml)</td>
<td>Loads an XML document from a byte array.</td>
</tr>
<tr>
<td>static CDoc LoadFromString(const string_type& xml)</td>
<td>Loads an XML document from a string.</td>
</tr>
<tr>
<td>std::vector<unsigned char> SaveToBinary(bool prettyPrint)</td>
<td>Saves an XML document to a byte array. When set to true, the prettyPrint argument re-formats the XML document for better readability.</td>
</tr>
<tr>
<td>std::vector<unsigned char> SaveToBinary(bool prettyPrint, const string_type & encoding)</td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting, with the specified encoding.</td>
</tr>
<tr>
<td>std::vector<unsigned char> SaveToBinary(bool prettyPrint, const string_type & encoding, bool bBigEndian, bool bBOM)</td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting, with the specified encoding. Byte order and Unicode byte-order mark can be specified for Unicode encodings.</td>
</tr>
<tr>
<td>void SaveToFile(const string_type & fileName, bool prettyPrint)</td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting.</td>
</tr>
<tr>
<td>void SaveToFile(const string_type & fileName, bool omitXmlDecl)</td>
<td>Saves an XML document to a file. If the omitXmlDecl argument is set to true, the XML declaration will not be written.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>void SaveToFile(const string_type & fileName, bool omitXmlDecl, const string_type & encoding)</td>
<td>Saves an XML document to a file with the specified encoding. If the <code>omitXmlDecl</code> argument is set to true, the XML declaration will not be written.</td>
</tr>
<tr>
<td>void SaveToFile(const string_type & fileName, bool prettyPrint, bool omitXmlDecl, const string_type & encoding, bool bBigEndian, bool bBOM)</td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding. Byte order and Unicode byte-order mark can be specified for Unicode encodings.</td>
</tr>
</tbody>
</table>
| void SaveToFile(const string_type & fileName, bool prettyPrint, bool omitXmlDecl, const string_type & encoding, bool bBigEndian, bool bBOM, const string_type & lineend) | Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding and the specified line end. Byte order and Unicode byte-order mark can be specified for Unicode encodings.
This method is only available if you generated the code for the Xerces3 XML library (see Code Generator Options). |
| void SaveToFile(const string_type & fileName, bool prettyPrint, const string_type & encoding) | Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding. |
| void SaveToFile(const string_type & fileName, bool prettyPrint, const string_type & encoding, bool bBigEndian, bool bBOM) | Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding. Byte order and Unicode byte-order mark can be specified for Unicode encodings. |
| void SaveToFile(const string_type & fileName, bool prettyPrint, const string_type & encoding, bool bBigEndian, bool bBOM, const string_type & lineend) | Saves an XML document to a file with the specified encoding and the specified line end. Byte order and Unicode byte-order mark can be specified for Unicode encodings.
This method is only available if you generated the code for the Xerces3 XML library (see Code Generator Options). |
| void SaveToFile(const string_type & fileName, bool prettyPrint, const string_type & encoding, const string_type & lineend) | Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding and the specified line end.
This method is only available if you generated the code for the Xerces3 XML library (see Code Generator Options). |
<p>| string_type SaveToString(bool prettyPrint) | Saves an XML document to a string, with optional "pretty-print" formatting. |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string_type SaveToString(bool prettyPrint, bool omitXmlDecl)</td>
<td>Saves an XML document to a string, with optional “pretty-print” formatting. If the <code>omitXmlDecl</code> argument is set to true, the XML declaration will not be written.</td>
</tr>
<tr>
<td>void SetDTDLocation(const string_type & dtdLocation)</td>
<td>Adds a DOCTYPE declaration with the specified system ID. A root element must already exist. This method is not supported for MSXML, since it is not possible to add a DOCTYPE declaration to a document in memory.</td>
</tr>
<tr>
<td>void SetSchemaLocation(const string_type & schemaLocation)</td>
<td>Adds an xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute to the root element. A root element must already exist.</td>
</tr>
</tbody>
</table>

14.8.10 [YourSchema]::[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't need to instantiate the class directly. Any element created using the `append()` or `appendWithPrefix()` methods is of `[ElementType]` type.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| void DeclareNamespace(const string_type prefix, const string_type nsURI) | This method takes two arguments that are both of string type: the prefix and the namespace URI that you want to use. The prefix supplied as argument will be mapped to the namespace URI value supplied as argument. If the prefix supplied as argument is empty, the method creates or overrides the default namespace declaration in the element. For example, let's assume that the XML document has an XML element called "purchase". If you call

```cpp
purchase.DeclareNamespace(_T("ord"), _T("http://OrderTypes"));
```

then the XML document becomes

```xml
<purchase xmlns:ord="http://OrderTypes" />  
```

Another example, if you call:

```cpp
purchase.DeclareNamespace(_T(""), _T("http://OrderTypes"));
```
then the XML document becomes

```xml
<purchase xmlns="http://OrderTypes" />
```

Note: The declared namespace is used when appending subsequent child elements or attributes, according to the following rules:

1. If the child namespace is the default, then use empty prefix.
2. If the child namespace is equal to the parent one, then use the parent prefix.
3. Otherwise, search for nearest prefix from parent to top, using the lookup algorithm described in section "B.2: Namespace Prefix Lookup" at https://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/namespaces-algorithms.html.
4. If there is no prefix for element namespace found, then use empty prefix.

14.8.11 [YourSchema]::MemberAttribute

When code is generated from an XML schema, a class such as this one is created for each member attribute of a type.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool exists()</td>
<td>Returns true if the attribute exists.</td>
</tr>
<tr>
<td>int GetEnumerationValue()</td>
<td>Generated for enumeration types only. Returns one of the constants generated for the possible values, or "Invalid" if the value does not match any of the enumerated values in the schema.</td>
</tr>
<tr>
<td>altova::meta::Attribute info()</td>
<td>Returns an object for querying schema information (see altova::meta::Attribute).</td>
</tr>
<tr>
<td>void remove()</td>
<td>Removes the attribute from its parent element.</td>
</tr>
<tr>
<td>void SetEnumerationValue(int)</td>
<td>Generated for enumeration types only. Pass one of the constants generated for the possible values to this method to set the value.</td>
</tr>
</tbody>
</table>
14.8.12 [YourSchema]::MemberElement

When code is generated from an XML schema, a class such as this one is created for each member element of a type. In the descriptions below, "MemberType" stands for the name of the member element itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterator<MemberType> all()</td>
<td>Returns an object for iterating instances of the member element.</td>
</tr>
<tr>
<td>MemberType append()</td>
<td>Creates a new element and appends it to its parent.</td>
</tr>
<tr>
<td>MemberType appendWithPrefix(string_type prefix)</td>
<td>Creates a new element having the prefix supplied as argument, and appends it to its parent. For an example, see Example: Purchase Order.</td>
</tr>
<tr>
<td>unsigned int count()</td>
<td>Returns the count of elements.</td>
</tr>
<tr>
<td>int GetEnumerationValue()</td>
<td>Generated for enumeration types only. Returns one of the constants generated for the possible values, or Invalid if the value does not match any of the enumerated values in the schema.</td>
</tr>
<tr>
<td>bool exists()</td>
<td>Returns true if at least one element exists.</td>
</tr>
<tr>
<td>MemberType first()</td>
<td>Returns the first instance of the member element.</td>
</tr>
<tr>
<td>MemberType operator[](unsigned int index)</td>
<td>Returns the member element specified by the index.</td>
</tr>
<tr>
<td>altova::meta::Element info()</td>
<td>Returns an object for querying schema information (see altova::meta::Element).</td>
</tr>
<tr>
<td>MemberType last()</td>
<td>Returns the last instance of the member element.</td>
</tr>
<tr>
<td>void remove()</td>
<td>Deletes all occurrences of the element from its parent.</td>
</tr>
<tr>
<td>void removeAt(unsigned int index)</td>
<td>Deletes the occurrence of the element specified by the index.</td>
</tr>
<tr>
<td>void SetEnumerationValue(int)</td>
<td>Generated for enumeration types only. Pass one of the constants generated for the possible values to this method to set the value.</td>
</tr>
</tbody>
</table>
14.9 Reference to Generated Classes (C#)

This chapter includes a description of C# classes generated with MapForce from a DTD or XML schema (see Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read, modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to modification.

14.9.1 Altova.Types.DateTime

This class enables you to process XML attributes or elements that have date and time types, such as xs:dateTime.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateTime(DateTime obj)</td>
<td>Initializes a new instance of the DateTime class to the DateTime object supplied as argument.</td>
</tr>
<tr>
<td>DateTime(System.DateTime newvalue)</td>
<td>Initializes a new instance of the DateTime class to the System.DateTime object supplied as argument.</td>
</tr>
<tr>
<td>DateTime(int year, int month, int day, int hour, int minute, double second, int offsetTZ)</td>
<td>Initializes a new instance of the DateTime class to the year, month, day, hour, minute, second, and timezone offset supplied as arguments.</td>
</tr>
<tr>
<td>DateTime(int year, int month, int day, int hour, int minute, double second)</td>
<td>Initializes a new instance of the DateTime class to the year, month, day, hour, minute, and second supplied as arguments.</td>
</tr>
<tr>
<td>DateTime(int year, int month, int day)</td>
<td>Initializes a new instance of the DateTime class to the year, month and day supplied as arguments.</td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool HasTimezone</td>
<td>Gets a Boolean value which indicates if the DateTime has a timezone.</td>
</tr>
<tr>
<td>static DateTime Now</td>
<td>Gets a DateTime object that is set to the current date and time on this computer.</td>
</tr>
<tr>
<td>short TimezoneOffset</td>
<td>Gets or sets the timezone offset, in minutes, of the DateTime object.</td>
</tr>
</tbody>
</table>
Name: System.DateTime Value

Description:
Gets or sets the value of the `DateTime` object as a `System.DateTime` value.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int CompareTo(object obj)</td>
<td>The <code>DateTime</code> class implements the <code>IComparable</code> interface. This method compares the current instance of <code>DateTime</code> to another object and returns an integer that indicates whether the current instance precedes, follows, or occurs in the same position in the sort order as the other object. See also https://msdn.microsoft.com/en-us/library/system.icomparable.compareto(v=vs.110).aspx</td>
</tr>
<tr>
<td>override bool Equals(object obj)</td>
<td>Returns <code>true</code> if the specified object is equal to the current object; <code>false</code> otherwise.</td>
</tr>
<tr>
<td>System.DateTime GetDateTime(bool correctTZ)</td>
<td>Returns a <code>System.DateTime</code> object from the current <code>Altova.Types.DateTime</code> instance. The <code>correctTZ</code> Boolean argument specifies whether the time of the returned object must be adjusted according to the timezone of the current <code>Altova.Types.DateTime</code> instance.</td>
</tr>
<tr>
<td>override int GetHashCode()</td>
<td>Returns the hash code of the current instance.</td>
</tr>
<tr>
<td>int GetWeekOfMonth()</td>
<td>Returns the number of the week in month as an integer.</td>
</tr>
</tbody>
</table>
| static DateTime Parse(string s) | Creates a `DateTime` object from the string supplied as argument. For example, the following sample string values would be converted successfully to a `DateTime` object:

```
2015-01-01
2015-11
23:23:23
```

An exception is raised if the string cannot be converted to a `DateTime` object.

Note that this method is static and can only be called on the `Altova.Types.DateTime` class itself, not on an instance of the class. |
| static DateTime Parse(string s, DateTimeFormat format) | Creates a `DateTime` object from a string, using the format supplied as argument. For the list of possible formats, see [Altova.Types.DateTimeFormat](https://msdn.microsoft.com/en-us/library/system.datetimeformat).

An exception is raised if the string cannot be converted to a `DateTime` object. |
### Name	Description
Note that this method is static and can only be called on the Altova.Types.DateTime class itself, not on an instance of the class.	Override string ToString()
Converts the DateTime object to a string.	String toString(DateTimeFormat format)
Converts the DateTime object to a string, using the format supplied as argument. For the list of possible formats, see Altova.Types.DateTimeFormat.	

Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=</td>
<td>Determines if DateTime a is not equal to DateTime b.</td>
</tr>
<tr>
<td><</td>
<td>Determines if DateTime a is less than DateTime b.</td>
</tr>
<tr>
<td><=</td>
<td>Determines if DateTime a is less than or equal to DateTime b.</td>
</tr>
<tr>
<td>==</td>
<td>Determines if DateTime a is equal to DateTime b.</td>
</tr>
<tr>
<td>></td>
<td>Determines if DateTime a is greater than DateTime b.</td>
</tr>
<tr>
<td>>=</td>
<td>Determines if DateTime a is greater than or equal to DateTime b.</td>
</tr>
</tbody>
</table>

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

```csharp
using Altova.Types;
```

The following code listing illustrates various ways to create DateTime objects:

```csharp
protected static void DateTimeExample1()
{
    // Create a DateTime object from the current system time
    Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);
    Console.WriteLine("The current time is: " + dt.ToString());

    // Create an Altova DateTime object from parts (no timezone)
    Altova.Types.DateTime dt1 = new Altova.Types.DateTime(2015, 10, 12, 10, 50, 33);
    Console.WriteLine("My custom time is : " + dt1.ToString());

    // Create an Altova DateTime object from parts (with UTC+60 minutes timezone)
    Altova.Types.DateTime dt2 = new Altova.Types.DateTime(2015, 10, 12, 10, 50, 33, 60);
    Console.WriteLine("My custom time with timezone is : " + dt2.ToString());
}
```
protected static void DateTimeExample2()
{
 // Create a DateTime object from the current system time
 Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);

 // Output the unformatted DateTime
 Console.WriteLine("Unformatted time: " + dt.ToString());

 // Output this DateTime formatted using various formats
 Console.WriteLine("S_DateTime: " + dt.ToString(DateTimeFormat.S_DateTime));
 Console.WriteLine("S_Days: " + dt.ToString(DateTimeFormat.S_Days));
 Console.WriteLine("S_Seconds: " + dt.ToString(DateTimeFormat.S_Seconds));
 Console.WriteLine("W3_date: " + dt.ToString(DateTimeFormat.W3_date));
 Console.WriteLine("W3_dateTime: " + dt.ToString(DateTimeFormat.W3_dateTime));
 Console.WriteLine("W3_gDay: " + dt.ToString(DateTimeFormat.W3_gDay));
 Console.WriteLine("W3_gMonth: " + dt.ToString(DateTimeFormat.W3_gMonth));
 Console.WriteLine("W3_gMonthDay: " + dt.ToString(DateTimeFormat.W3_gMonthDay));
 Console.WriteLine("W3_gYear: " + dt.ToString(DateTimeFormat.W3_gYear));
 Console.WriteLine("W3_gYearMonth: " + dt.ToString(DateTimeFormat.W3_gYearMonth));
 Console.WriteLine("W3_time: " + dt.ToString(DateTimeFormat.W3_time));
}

14.9.2 Altova.Types.DateTimeFormat

The DateTimeFormat enum type has the following constant values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_DateTime</td>
<td>Formats the value as standard dateTime, with a precision of a ten-millionth of a second, including timezone.</td>
<td>2015-11-12 12:19:03.9019132+01:00</td>
</tr>
<tr>
<td>S_Days</td>
<td>Formats the value as number of days elapsed since the UNIX epoch.</td>
<td>735913.6318973451087962962963</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
<td>Example</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>S_Seconds</td>
<td>Formats the value as number of seconds elapsed since the UNIX epoch, with a precision of a ten-millionth of a second.</td>
<td>63582937678.0769062</td>
</tr>
<tr>
<td>W3_date</td>
<td>Formats the value as schema date.</td>
<td>2015-11-12</td>
</tr>
<tr>
<td>W3_dateTime</td>
<td>Formats the value as schema dateTime.</td>
<td>2015-11-12T15:12:14.5194251</td>
</tr>
<tr>
<td>W3_gDay</td>
<td>Formats the value as schema gDay.</td>
<td>---12</td>
</tr>
<tr>
<td></td>
<td>(assuming that the date is 12th of the month)</td>
<td></td>
</tr>
<tr>
<td>W3_gMonth</td>
<td>Formats the value as schema gMonth.</td>
<td>--11</td>
</tr>
<tr>
<td></td>
<td>(assuming that the month is November)</td>
<td></td>
</tr>
<tr>
<td>W3_gMonthDay</td>
<td>Formats the value as schema gMonthDay.</td>
<td>--11-12</td>
</tr>
<tr>
<td></td>
<td>(assuming that the date is 12th of November)</td>
<td></td>
</tr>
<tr>
<td>W3_gYear</td>
<td>Formats the value as schema gYear.</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>(assuming that the year is 2015)</td>
<td></td>
</tr>
<tr>
<td>W3_gYearMonth</td>
<td>Formats the value as schema gYearMonth.</td>
<td>2015-11</td>
</tr>
<tr>
<td></td>
<td>(assuming that the year is 2015 and the month is November)</td>
<td></td>
</tr>
<tr>
<td>W3_time</td>
<td>Formats the value as schema time, with a precision of a ten-millionth of a second.</td>
<td>15:19:07.5582719</td>
</tr>
</tbody>
</table>

14.9.3 Altova.Types.Duration

This class enables you to process XML attributes or elements of type `xs:duration`.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration(Duration obj)</td>
<td>Initializes a new instance of the Duration class to the Duration object supplied as argument.</td>
</tr>
<tr>
<td>Duration(System.TimeSpan newvalue)</td>
<td>Initializes a new instance of the Duration class to the System.TimeSpan object supplied as argument.</td>
</tr>
<tr>
<td>Duration(long ticks)</td>
<td>Initializes a new instance of the Duration class to the number of ticks supplied as argument.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Duration(int newyears, int newmonths, int days, int hours, int minutes, int seconds, double partseconds, bool bnegative)</td>
<td>Initializes a new instance of the <code>Duration</code> class to a duration built from parts supplied as arguments.</td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int Months</td>
<td>Gets or sets the number of months of the current instance of <code>Duration</code>.</td>
</tr>
<tr>
<td>System.TimeSpan Value</td>
<td>Gets or sets the value (as <code>System.TimeSpan</code>) of the current instance of <code>Duration</code>.</td>
</tr>
<tr>
<td>int Years</td>
<td>Gets or sets the number of years of the current instance of <code>Duration</code>.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>override bool Equals(object other)</td>
<td>Returns <code>true</code> if the specified object is equal to the current object; <code>false</code> otherwise.</td>
</tr>
<tr>
<td>override int GetHashCode()</td>
<td>Returns the hash code of the current instance.</td>
</tr>
<tr>
<td>bool IsNegative()</td>
<td>Returns <code>true</code> if the current instance of <code>Duration</code> represents a negative duration.</td>
</tr>
</tbody>
</table>
| static Duration Parse(string s, ParseType pt) | Returns an `Altova.Types.Duration` object parsed from the string supplied as argument, using the parse type supplied as argument. Valid parse type values:
DURATION Parse duration assuming that year, month, day, as well as time duration parts exist.
YEARMONT Parse duration assuming that only year and month parts exist.
DAYTIME Parse duration assuming that only the day and time parts exist.
Note that this method is static and can only be called on the class itself, not on an instance of the class. |
<p>| override string ToString() | Converts the current <code>Duration</code> instance to string. For example, a time span of 3 hours, 4 minutes, and 5 seconds would be converted to "PT3H4M5S". |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToYearMonthString()</td>
<td>Converts the current Duration instance to string, using the "Year and Month" parse type.</td>
</tr>
</tbody>
</table>

Operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=</td>
<td>Determines if Duration a is not equal to Duration b.</td>
</tr>
<tr>
<td>==</td>
<td>Determines if Duration a is equal to Duration b.</td>
</tr>
</tbody>
</table>

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

```csharp
using Altova.Types;
```

The following code listing illustrates various ways to create Duration objects:

```csharp
protected static void DurationExample1()
{
    // Create a new time span of 3 hours, 4 minutes, and 5 seconds
    System TimeSpan ts = new TimeSpan(3, 4, 5);
    // Create a Duration from the time span
    Duration dr = new Duration(ts);
    // The output is: PT3H4M5S
    Console.WriteLine("Duration created from TimeSpan: " + dr.ToString());

    // Create a negative Altova.Types.Duration from 6 years, 5 months, 4 days, 3 hours,
    // 2 minutes, 1 second, and .33 of a second
    Duration dr1 = new Duration(6, 5, 4, 3, 2, 1, .33, true);
    // The output is: -P6Y5M4DT3H2M1.33S
    Console.WriteLine("Duration created from parts: " + dr1.ToString());

    // Create a Duration from a string using the DAYTIME parse type
    Duration dr2 = Altova.Types.Duration.Parse("-P4DT3H2M1S", Duration.ParseType.DAYTIME);
    // The output is -P4DT3H2M1S
    Console.WriteLine("Duration created from string: " + dr2.ToString());

    // Create a duration from ticks
    Duration dr3 = new Duration(System.DateTime.UtcNow.Ticks);
    // Output the result
    Console.WriteLine("Duration created from ticks: " + dr3.ToString());
}
```

The following code listing illustrates getting values from Duration objects:
protected static void DurationExample2()
{
 // Create a negative Altova.Types.Duration from 6 years, 5 months, 4 days, 3 hours,
 // 2 minutes, 1 second, and .33 of a second
 Duration dr = new Duration(6, 5, 4, 3, 2, 1, .33, true);
 // The output is: -P6Y5M4DT3H2M1.33S
 Console.WriteLine("The complete duration is: " + dr.ToString());

 // Get only the year and month part as string
 string dr1 = dr.ToYearMonthString();
 Console.WriteLine("The YEARMONTH part is: " + dr1);

 // Get the number of years in duration
 Console.WriteLine("Years: " + dr.Years);

 // Get the number of months in duration
 Console.WriteLine("Months: " + dr.Months);
}

14.9.4 Altova.Xml.Meta.Attribute

This class enables you to access schema information about classes generated from attributes. Note that this class is not meant to provide dynamic information about particular instances of an attribute in an XML document. Instead, it enables you to obtain programmatically information about a particular attribute defined in the XML schema.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleType DataType</td>
<td>Returns the type of the attribute content.</td>
</tr>
<tr>
<td>string LocalName</td>
<td>Returns the local name of the attribute.</td>
</tr>
<tr>
<td>string NamespaceURI</td>
<td>Returns the namespace URI of the attribute.</td>
</tr>
<tr>
<td>XmlQualifiedName QualifiedName</td>
<td>Returns the qualified name of the attribute.</td>
</tr>
<tr>
<td>bool Required()</td>
<td>Returns true if the attribute is required.</td>
</tr>
</tbody>
</table>

14.9.5 Altova.Xml.Meta.ComplexType

This class enables you to access schema information about classes generated from complex types. Note that this class is not meant to provide dynamic information about particular instances of a complex type in an XML document. Instead, it enables you to obtain programmatically information about a particular complex type defined in the XML schema.
Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute[] Attributes</td>
<td>Returns a list of all attributes.</td>
</tr>
<tr>
<td>ComplexType BaseType</td>
<td>Returns the base type of this type or null if no base type exists.</td>
</tr>
<tr>
<td>SimpleType ContentType</td>
<td>Returns the simple type of the content.</td>
</tr>
<tr>
<td>Element[] Elements</td>
<td>Returns a list of all elements.</td>
</tr>
<tr>
<td>string LocalName</td>
<td>Returns the local name of the type.</td>
</tr>
<tr>
<td>string NamespaceURI</td>
<td>Returns the namespace URI of the type.</td>
</tr>
<tr>
<td>XmlQualifiedName QualifiedName</td>
<td>Returns the qualified name of this type.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComplexType BaseType</td>
<td>Returns the base type of this type.</td>
</tr>
<tr>
<td>bool_Equals(obj)</td>
<td>Checks if two info objects refer to the same type, based on qualified name comparison. Returns true if the type has the same qualified name.</td>
</tr>
<tr>
<td>Attribute FindAttribute(string localName, string namespaceURI)</td>
<td>Finds the attribute with the specified local name and namespace URI.</td>
</tr>
<tr>
<td>Element FindElement(string localName, string namespaceURI)</td>
<td>Finds the element with the specified local name and namespace URI.</td>
</tr>
</tbody>
</table>

14.9.6 Altova.Xml.Meta.Element

This class enables you to access information about classes generated from schema elements. Note that this class is not meant to provide dynamic information about particular instances of an element in an XML document. Instead, it enables you to obtain programmatically information about a particular element defined in the XML schema.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| ComplexType DataType | Returns the type of the element. Note that this is always a
14.9.7 `Altova.Xml.Meta.SimpleType`

This class enables you to access schema information about classes generated from simple types. Note that this class is not meant to provide dynamic information about particular instances of simple types in an XML document. Instead, it enables you to obtain programmatically information about a particular simple type defined in the XML schema.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string LocalName</code></td>
<td>Returns the local name of the element.</td>
</tr>
<tr>
<td><code>int MaxOccurs</code></td>
<td>Returns the <code>maxOccurs</code> value defined in the schema.</td>
</tr>
<tr>
<td><code>int MinOccurs</code></td>
<td>Returns the <code>minOccurs</code> value defined in the schema.</td>
</tr>
<tr>
<td><code>string NamespaceURI</code></td>
<td>Returns the namespace URI of the element.</td>
</tr>
<tr>
<td><code>XmlQualifiedName</code></td>
<td>Returns the qualified name of the element.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>SimpleType BaseType</code></td>
<td>Returns the base type of this type.</td>
</tr>
<tr>
<td><code>string[] Enumerations</code></td>
<td>Returns a list of all enumeration facets.</td>
</tr>
<tr>
<td><code>int FractionDigits</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>int Length</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>string LocalName</code></td>
<td>Returns the local name of the type.</td>
</tr>
<tr>
<td><code>string MaxExclusive</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>string MaxInclusive</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>int MaxLength</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>string MinExclusive</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>string MinInclusive</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>int MinLength</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>string NamespaceURI</code></td>
<td>Returns the namespace URI of the type.</td>
</tr>
<tr>
<td><code>string[] Patterns</code></td>
<td>Returns the pattern facets, or null if no patterns are specified.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>XmlDocument.XmlQualifiedName</td>
<td>Returns the qualified name of this type.</td>
</tr>
<tr>
<td>int XmlDocument.TotalDigits</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>XmlDocumentWhitespaceWhiteSpace</td>
<td>Returns the whitespace normalization facet.</td>
</tr>
</tbody>
</table>

14.9.8 [YourSchema].[Doc]

When code is generated from an XML Schema, the generated code provides a document class with the same name as the schema. This class contains all possible root elements as members, as well as the members listed below. Note that, in the method names below, "Doc" stands for the name of the generated document class itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>static XmlDocument CreateDocument()</td>
<td>Creates a new, empty XML document.</td>
</tr>
<tr>
<td>static XmlDocument CreateDocument(string encoding)</td>
<td>Creates a new, empty XML document, with encoding of type "encoding".</td>
</tr>
<tr>
<td>static void XmlDocument DeclareAllNamespacesFromSchema(Altova.Xml.ElementType node)</td>
<td>Declares all namespaces from the XML Schema on the element supplied as argument (typically, the XML root element). Calling this method is useful if your schema has multiple namespace declarations, each mapped to a prefix, and you would like to declare all of them on the element supplied as argument.</td>
</tr>
<tr>
<td>static XmlDocument LoadFromBinary(byte[] binary)</td>
<td>Loads an XML document from a byte array.</td>
</tr>
<tr>
<td>static XmlDocument LoadFromFile(string filename)</td>
<td>Loads an XML document from a file.</td>
</tr>
<tr>
<td>static XmlDocument LoadFromString(string xmlstring)</td>
<td>Loads an XML document from a string.</td>
</tr>
<tr>
<td>byte[] XmlDocument SaveToBinary(bool prettyPrint)</td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting.</td>
</tr>
<tr>
<td>byte[] XmlDocument SaveToBinary(bool prettyPrint, string encoding)</td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting, with the specified encoding.</td>
</tr>
<tr>
<td>byte[] XmlDocument SaveToBinary(bool prettyPrint, string encoding, bool bBigEndian, bool bBOM)</td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting, with the specified encoding, byte order, and BOM (Byte Order Mark).</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>void SaveToFile(string fileName, bool prettyPrint)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting.</td>
</tr>
<tr>
<td><code>void SaveToFile(string fileName, bool prettyPrint, bool omitXmlDecl)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting. When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td><code>void SaveToFile(string fileName, bool prettyPrint, bool omitXmlDecl, string encoding)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting. When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td><code>void SaveToFile(string fileName, bool prettyPrint, string encoding, string lineend)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding, and line ending character(s).</td>
</tr>
<tr>
<td><code>void SaveToFile(string fileName, bool prettyPrint, bool omitXmlDecl, string encoding, string lineend)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding, and line ending character(s). When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td><code>void SaveToFile(string fileName, bool prettyPrint, bool omitXmlDecl, string encoding, bool bBigEndian, bool bBOM, string lineend)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding, byte order, BOM (Byte Order Mark), and line ending character(s). When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td><code>void SaveToFileWithLineEnd(string fileName, bool prettyPrint, bool omitXmlDecl, string lineend)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, and line ending character(s). When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td><code>string SaveToString(bool prettyPrint)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting.</td>
</tr>
<tr>
<td><code>string SaveToString(bool prettyPrint, bool omitXmlDecl)</code></td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting. When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td><code>void SetDTDLocation(string dtdLocation)</code></td>
<td>Adds a DOCTYPE declaration with the specified system ID. A root element must already exist.</td>
</tr>
<tr>
<td><code>void SetSchemaLocation(string schemaLocation)</code></td>
<td>Adds an xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute to the root element. A root element must already exist.</td>
</tr>
</tbody>
</table>
14.9.9 [YourSchema].[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't need to instantiate the class directly. Any element created using the `Append()` or `AppendWithPrefix()` methods is of `ElementType` type.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| `void DeclareNamespace(string prefix, string nsURI)` | This method takes two arguments that are both of string type: the prefix and the namespace URI that you want to use. The prefix supplied as argument will be mapped to the namespace URI value supplied as argument. If the prefix supplied as argument is empty, the method creates or overrides the default namespace declaration in the element. For example, let's assume that the XML document has an XML element called "purchase". If you call

```csharp
purchase.DeclareNamespace("ord", "http://OrderTypes");
```<br>then the XML document becomes<br><br>```xml
<purchase xmlns:ord="http://OrderTypes" />
```
Another example, if you call:

```csharp
purchase.DeclareNamespace("", "http://OrderTypes");
```<br>then the XML document becomes<br><br>```xml
<purchase xmlns="http://OrderTypes" />
```<br>Note: The declared namespace is used when appending subsequent child elements or attributes, according to the following rules:<br><ol><li>If the child namespace is the default, then use empty prefix.</li><li>If the child namespace is equal to the parent one, then use the parent prefix.</li><li>Otherwise, search for nearest prefix from parent to top, using the lookup algorithm described in section "B.2: Namespace Prefix Lookup" at
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4. If there is no prefix for element namespace found, then use empty prefix.</td>
</tr>
</tbody>
</table>

14.9.10 [YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a type. In the descriptions below, "AttributeType" stands for the type of the member attribute itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool Exists()</td>
<td>Returns true if the attribute exists.</td>
</tr>
<tr>
<td>void Remove()</td>
<td>Removes the attribute from its parent element.</td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int EnumerationValue</td>
<td>Generated for enumeration types only. Sets or gets the attribute value using one of the constants generated for the possible values. Returns Invalid if the value does not match any of the enumerated values in the schema.</td>
</tr>
<tr>
<td>AttributeType Value</td>
<td>Sets or gets the attribute value.</td>
</tr>
</tbody>
</table>

14.9.11 [YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for each member element of a type. The class implements the standard System.Collections.IEnumerable interface, so it can be used with the foreach statement.

In the descriptions below, "MemberType" stands for the type of the member element itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberType Append()</td>
<td>Creates a new element and appends it to its parent.</td>
</tr>
</tbody>
</table>
MemberType AppendWithPrefix(string prefix)
Creates a new element having the prefix supplied as argument, and appends it to its parent. For an example, see [Example: Purchase Order](#).

MemberType At(int index)
Returns the member element specified by the index.

System.Collections.IEnumerator GetEnumerator()
Returns an object for iterating instances of the member element.

void Remove()
Deletes all occurrences of the element from its parent.

void RemoveAt(int index)
Deletes the occurrence of the element specified by the index.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int Count</td>
<td>Returns the count of elements.</td>
</tr>
<tr>
<td>int EnumerationValue</td>
<td>Generated for enumeration types only. Sets or gets the element value using one of the constants generated for the possible values. Returns Invalid if the value does not match any of the enumerated values in the schema.</td>
</tr>
<tr>
<td>bool Exists</td>
<td>Returns true if at least one element exists.</td>
</tr>
<tr>
<td>MemberType First</td>
<td>Returns the first instance of the member element.</td>
</tr>
<tr>
<td>Altova.Xml.Meta.Element Info</td>
<td>Returns an object for querying schema information (see Altova.Xml.Meta.Element).</td>
</tr>
<tr>
<td>MemberType Last</td>
<td>Returns the last instance of the member element.</td>
</tr>
<tr>
<td>MemberType this[int index]</td>
<td>Returns the member element specified by the index.</td>
</tr>
<tr>
<td>MemberType Value</td>
<td>Sets or gets the element content (only generated if element can have mixed or simple content).</td>
</tr>
</tbody>
</table>
14.10 Reference to Generated Classes (Java)

This chapter includes a description of Java classes generated with MapForce from a DTD or XML schema (see Generating Code from XML Schemas or DTDs). You can integrate these classes into your code to read, modify, and write XML documents.

Note: The generated code does include other supporting classes, which are not listed here and are subject to modification.

14.10.1 com.altova.types.DateTime

This class enables you to process XML attributes or elements that have date and time types, such as xs:dateTime.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public DateTime()</td>
<td>Initializes a new instance of the DateTime class to an empty value.</td>
</tr>
<tr>
<td>public DateTime(DateTime newvalue)</td>
<td>Initializes a new instance of the DateTime class to the DateTime value supplied as argument.</td>
</tr>
<tr>
<td>public DateTime(int newyear, int newmonth, int newday, int newhour, int newminute, int newsecond, double newpartsecond, int newoffsetTZ)</td>
<td>Initializes a new instance of the DateTime class to the year, month, day, hour, minute, second, the fractional part of the second, and timezone supplied as arguments. The fractional part of the second newpartsecond must be between 0 and 1. The timezone offset newoffsetTZ can be either positive or negative and is expressed in minutes.</td>
</tr>
<tr>
<td>public DateTime(int newyear, int newmonth, int newday, int newhour, int newminute, int newsecond, double newpartsecond)</td>
<td>Initializes a new instance of the DateTime class to the year, month, day, hour, minute, second, and the fractional part of a second supplied as arguments.</td>
</tr>
<tr>
<td>public DateTime(Calendar newvalue)</td>
<td>Initializes a new instance of the DateTime class to the java.util.Calendar value supplied as argument.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>static DateTime now()</td>
<td>Returns the current time as a DateTime object.</td>
</tr>
</tbody>
</table>
Name

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns a <code>DateTime</code> object parsed from the string value supplied as argument. For example, the following sample string values would be converted successfully to a <code>DateTime</code> object:</td>
</tr>
</tbody>
</table>

```
2015-11-24T12:54:47.969+01:00
2015-11-24T12:54:47
2015-11-24
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>static DateTime parse(String s)</code></td>
<td>Returns a <code>DateTime</code> object parsed from the string value supplied as argument. For example, the following sample string values would be converted successfully to a <code>DateTime</code> object:</td>
</tr>
</tbody>
</table>

```
2015-11-24T12:54:47.969+01:00
2015-11-24T12:54:47
2015-11-24
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int getDay()</code></td>
<td>Returns the day of the current <code>DateTime</code> instance.</td>
</tr>
<tr>
<td><code>int getHour()</code></td>
<td>Returns the hour of the current <code>DateTime</code> instance.</td>
</tr>
<tr>
<td><code>int getMillisecond()</code></td>
<td>Returns the millisecond of the current <code>DateTime</code> instance, as an integer value.</td>
</tr>
<tr>
<td><code>int getMinute()</code></td>
<td>Returns the minute of the current <code>DateTime</code> instance.</td>
</tr>
<tr>
<td><code>int getMonth()</code></td>
<td>Returns the month of the current <code>DateTime</code> instance.</td>
</tr>
<tr>
<td><code>double getPartSecond()</code></td>
<td>Returns the fractional part of the second of the current <code>DateTime</code> instance, as a <code>double</code> value. The return value is greater than zero and smaller than one, for example:</td>
</tr>
</tbody>
</table>

```
0.313
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int getSecond()</code></td>
<td>Returns the second of the current <code>DateTime</code> instance.</td>
</tr>
<tr>
<td><code>int getTimezoneOffset()</code></td>
<td>Returns the timezone offset, in minutes, of the current <code>DateTime</code> instance. For example, the timezone "UTC-01:00" would be returned as:</td>
</tr>
</tbody>
</table>

```
-60
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Calendar getValue()</code></td>
<td>Returns the current <code>DateTime</code> instance as a <code>java.util.Calendar</code> value.</td>
</tr>
<tr>
<td><code>int getWeekday()</code></td>
<td>Returns the day in week of the current <code>DateTime</code> instance. Values range from 0 through 6, where 0 is Monday (ISO-8601).</td>
</tr>
<tr>
<td><code>int getYear()</code></td>
<td>Returns the year of the current <code>DateTime</code> instance.</td>
</tr>
<tr>
<td><code>int hasTimezone()</code></td>
<td>Returns information about the timezone of the current <code>DateTime</code> instance. Possible return values are:</td>
</tr>
</tbody>
</table>

```
CalendarBase.TZ_MISSING A timezone offset is not defined.
CalendarBase.TZ.UTC The timezone is UTC.
CalendarBase.TZ_OFFSET A timezone offset has been defined.
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>void setDay(int nDay)</code></td>
<td>Sets the day of the current <code>DateTime</code> instance to the value supplied as argument.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **void setHasTimezone(int nHasTZ)** | Sets the timezone information of the current DateTime instance to the value supplied as argument. This method can be used to strip the timezone information or set the timezone to UTC (Coordinated Universal Time). Valid values for the nHasTZ argument:
 - CalendarBase.TZ_MISSING: Set the timezone offset to undefined.
 - CalendarBase.TZ_UTC: Set the timezone to UTC.
 - CalendarBase.TZ_OFFSET: If the current object has a timezone offset, leave it unchanged. |
| **void setHour(int nHour)** | Sets the hour of the current DateTime instance to the value supplied as argument. |
| **void setMinute(int nMinute)** | Sets the minute of the current DateTime instance to the value supplied as argument. |
| **void setMonth(int nMonth)** | Sets the month of the current DateTime instance to the value supplied as argument. |
| **void setPartSecond(double nPartSecond)** | Sets the fractional part of the second of the current DateTime instance to the value supplied as argument. |
| **void setSecond(int nSecond)** | Sets the second of the current DateTime instance to the value supplied as argument. |
| **void setTimezoneOffset(int nOffsetTZ)** | Sets the timezone offset of the current DateTime instance to the value supplied as argument. The value nOffsetTZ must be an integer (positive or negative) and must be expressed in minutes. |
| **void setYear(int nYear)** | Sets the year of the current DateTime instance to the value supplied as argument. |
| **String toString()** | Returns the string representation of the current DateTime instance, for example:
 - 2015-11-24T15:50:56.968+01:00 |

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

```java
import com.altova.types.*;
```

The following code listing illustrates various ways to create DateTime objects:
The following code listing illustrates getting values from `DateTime` objects:

```java
protected static void DateTimeExample2() {
    // Initialize a new instance of the DateTime class to the current time
    DateTime dt = new DateTime(DateTime.now());
    System.out.println("DateTime created from current date and time: " + dt.toString());

    // Output the formatted year, month, and day of this DateTime instance
    String str1 = String.format("Year: %d; Month: %d; Day: %d;", dt.getYear(), dt.getMonth(), dt.getDay());
    System.out.println(str1);

    // Output the formatted hour, minute, and second of this DateTime instance
    String str2 = String.format("Hour: %d; Minute: %d; Second: %d;", dt.getHour(), dt.getMinute(), dt.getSecond());
    System.out.println(str2);

    // Return the timezone (in minutes) of this DateTime instance
    System.out.println("Timezone: " + dt.getTimezoneOffset());

    // Get the DateTime as a java.util.Calendar value
    java.util.Calendar dt_java = dt.getValue();
    System.out.println("" + dt_java.toString());

    // Return the day of week of this DateTime instance
    System.out.println("Weekday: " + dt.getWeekday());

    // Check whether the DateTime instance has a timezone defined
    switch (dt.hasTimezone()) {
        case CalendarBase.TZ_MISSING:
            System.out.println("No timezone.");
            break;
        case CalendarBase.TZ_UTC:
            break;
        default:
            System.out.println("Default timezone.");
            break;
    }
}
```
The following code listing illustrates changing the timezone offset of a `DateTime` object:

```java
protected static void DateTimeExample3() {
    // Create a new DateTime object with timezone -0100 UTC
    DateTime dt = new DateTime(2015, 11, 24, 14, 30, 24, .459, -60);
    // Output the value before the change
    System.out.println("Before: " + dt.toString());
    // Change the offset to +0100 UTC
    dt.setTimezoneOffset(60);
    // Output the value after the change
    System.out.println("After: " + dt.toString());
}
```

14.10.2 `com.altova.types.Duration`

This class enables you to process XML attributes or elements of type `xs:duration`.

Constructors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Duration(Duration newvalue)</code></td>
<td>Initializes a new instance of the <code>Duration</code> class to the <code>Duration</code> object supplied as argument.</td>
</tr>
<tr>
<td><code>Duration(int newyear, int newmonth, int newday, int newhour, int newminute, int newsecond, double newpartsecond, boolean isnegative)</code></td>
<td>Initializes a new instance of the <code>Duration</code> class to a duration built from parts supplied as arguments.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Duration getFromDayTime(int newday)</code></td>
<td>Returns a <code>Duration</code> object created from the number of days, hours, minutes, seconds, and fractional second parts supplied as</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>int newhour, int newminute, int newsecond, double newpartsecond</td>
<td>argument.</td>
</tr>
<tr>
<td>static Duration getFromYearMonth(int newyear, int newmonth)</td>
<td>Returns a Duration object created from the number of years and months supplied as argument.</td>
</tr>
<tr>
<td>static Duration parse(String s)</td>
<td>Returns a Duration object created from the string supplied as argument. For example, the string -P1Y1M1DT1H1M1.333S can be used to create a negative duration of one year, one month, one day, one hour, one minute, one second, and 0.333 fractional parts of a second. To create a negative duration, append the minus sign (-) to the string.</td>
</tr>
</tbody>
</table>
| static Duration parse(String s, ParseType pt) | Returns a Duration object created from the string supplied as argument, using a specific parse format. The parse format can be any of the following:
ParseType.DAYTIME May be used when the string s consists of any of the following: days, hours, minutes, seconds, fractional second parts, for example -P4DT4H4M4.774S.
ParseType.DURATION May be used when the string s consists of any of the following: years, months, days, hours, minutes, seconds, fractional second parts, for example P1Y1M1DT1H1M1.333S.
ParseType.YEARMONTH May be used when the string s consists of any of the following: years, months. For example: P3Y2M. |
| int getDay() | Returns the number of days in the current Duration instance. |
| long getDayTimeValue() | Returns the day and time value (in milliseconds) of the current Duration instance. Years and months are ignored. |
| int getHour() | Returns the number of hours in the current Duration instance. |
| int getMillisecond() | Returns the number of milliseconds in the current Duration instance. |
| int getMinute() | Returns the number of minutes in the current Duration instance. |
| int getMonth() | Returns the number of months in the current Duration instance. |
| double getPartSecond() | Returns the number of fractional second parts in the current Duration instance. |
Reference to Generated Classes (Java)

Code Generator

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int getSecond()</td>
<td>Returns the number of seconds in the current Duration instance.</td>
</tr>
<tr>
<td>int getYear()</td>
<td>Returns the number of years in the current Duration instance.</td>
</tr>
<tr>
<td>int getYearMonthValue()</td>
<td>Returns the year and month value (in months) of the current Duration instance. Days, hours, seconds, and milliseconds are ignored.</td>
</tr>
<tr>
<td>boolean isNegative()</td>
<td>Returns Boolean true if the current Duration instance is negative.</td>
</tr>
<tr>
<td>void setDayTimeValue(long l)</td>
<td>Sets the duration to the number of milliseconds supplied as argument, affecting only the day and time part of the duration.</td>
</tr>
<tr>
<td>void setNegative(boolean isnegative)</td>
<td>Converts the current Duration instance to a negative duration.</td>
</tr>
<tr>
<td>void setYearMonthValue(int l)</td>
<td>Sets the duration to the number of months supplied as argument. Only the years and months part of the duration is affected.</td>
</tr>
<tr>
<td>String toString()</td>
<td>Returns the string representation of the current Duration instance, for example:</td>
</tr>
<tr>
<td>String toYearMonthString()</td>
<td>Returns the string representation of the YearMonth part of the current Duration instance, for example:</td>
</tr>
</tbody>
</table>

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

```java
import com.altova.types.*;
import com.altova.types.Duration.ParseType;
```

The following code listing illustrates various ways to create Duration objects:

```java
protected static void ExampleDuration()
{
    // Create a negative duration of 1 year, 1 month, 1 day, 1 hour, 1 minute, 1 second, // and 0.333 fractional second parts
    Duration dr = new Duration(1, 1, 1, 1, 1, 1, .333, true);

    // Create a duration from an existing Duration object
    Duration dr1 = new Duration(dr);

    // Create a duration of 4 days, 4 hours, 4 minutes, 4 seconds, .774 fractional second
```
parts

Duration dr2 = Duration.getFromDayTime(4, 4, 4, 4, .774);

// Create a duration of 3 years and 2 months
Duration dr3 = Duration.getFromYearMonth(3, 2);

// Create a duration from a string
Duration dr4 = Duration.parse("-P4DT4H4M4.774S");

// Create a duration from a string, using specific parse formats
Duration dr5 = Duration.parse("-P1Y1M1DT1H1M1.333S", ParseType.DURATION);
Duration dr6 = Duration.parse("P3Y2M", ParseType.YEARMONTH);
Duration dr7 = Duration.parse("-P4DT4H4M4.774S", ParseType.DAYTIME);
}

The following code listing illustrates getting and setting the value of Duration objects:

```java
protected static void DurationExample2()
{
    // Create a duration of 1 year, 2 month, 3 days, 4 hours, 5 minutes, 6 seconds, // and 333 milliseconds
    Duration dr = new Duration(1, 2, 3, 4, 5, 6, .333, false);
    // Output the number of days in this duration
    System.out.println(dr.getDay());

    // Create a positive duration of one year and 333 milliseconds
    Duration dr1 = new Duration(1, 0, 0, 0, 0, 0, .333, false);
    // Output the day and time value in milliseconds
    System.out.println(dr1.getDayTimeValue());

    // Create a positive duration of 1 year, 1 month, 1 day, 1 hour, 1 minute, 1 second, // and 333 milliseconds
    Duration dr2 = new Duration(1, 1, 1, 1, 1, 1, .333, false);
    // Output the year and month value in months
    System.out.println(dr2.getYearMonthValue());

    // Create a positive duration of 1 year and 1 month
    Duration dr3 = new Duration(1, 1, 0, 0, 0, 0, false);
    // Output the value
    System.out.println("The duration is now: " + dr3.toString());
    // Set the DayTime part of duration to 1000 milliseconds
    dr3.setDayTimeValue(1000);
    // Output the value
    System.out.println("The duration is now: " + dr3.toString());
    // Set the YearMonth part of duration to 1 month
    dr3.setYearMonthValue(1);
    // Output the value
    System.out.println("The duration is now: " + dr3.toString());
    // Output the year and month part of the duration
    System.out.println("The YearMonth part of the duration is: " +
    dr3.toYearMonthString());
    
    
```
14.10.3 com.altova.xml.meta.Attribute

This class enables you to access schema information about classes generated from attributes. Note that this class is not meant to provide dynamic information about particular instances of an attribute in an XML document. Instead, it enables you to obtain programmatically information about a particular attribute defined in the XML schema.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleType getDataType()</td>
<td>Returns the type of the attribute content.</td>
</tr>
<tr>
<td>String getLocalName()</td>
<td>Returns the local name of the attribute.</td>
</tr>
<tr>
<td>String getNamespaceURI()</td>
<td>Returns the namespace URI of the attribute.</td>
</tr>
<tr>
<td>boolean isRequired()</td>
<td>Returns true if the attribute is required.</td>
</tr>
</tbody>
</table>

14.10.4 com.altova.xml.meta.ComplexType

This class enables you to access schema information about classes generated from complex types. Note that this class is not meant to provide dynamic information about particular instances of a complex type in an XML document. Instead, it enables you to obtain programmatically information about a particular complex type defined in the XML schema.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute findAttribute(String localName, String namespaceURI)</td>
<td>Finds the attribute with the specified local name and namespace URI.</td>
</tr>
<tr>
<td>Element findElement(String localName, String namespaceURI)</td>
<td>Finds the element with the specified local name and namespace URI.</td>
</tr>
<tr>
<td>Attribute[] GetAttributes()</td>
<td>Returns a list of all attributes.</td>
</tr>
<tr>
<td>ComplexType getBaseType()</td>
<td>Returns the base type of this type.</td>
</tr>
<tr>
<td>SimpleType getContentType()</td>
<td>Returns the simple type of the content.</td>
</tr>
<tr>
<td>Element[] GetElements()</td>
<td>Returns a list of all elements.</td>
</tr>
<tr>
<td>String getLocalName()</td>
<td>Returns the local name of the type.</td>
</tr>
<tr>
<td>String getNamespaceURI()</td>
<td>Returns the namespace URI of the type.</td>
</tr>
</tbody>
</table>
14.10.5 com.altova.xml.meta.Element

This class enables you to access information about classes generated from schema elements. Note that this class is not meant to provide dynamic information about particular instances of an element in an XML document. Instead, it enables you to obtain programatically information about a particular element defined in the XML schema.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComplexType getDataType()</td>
<td>Returns the type of the element. Note that this is always a complex type even if declared as simple in the original schema. Use <code>getContentType()</code> of the returned object to get the simple content type.</td>
</tr>
<tr>
<td>String getLocalName()</td>
<td>Returns the local name of the element.</td>
</tr>
<tr>
<td>int getMaxOccurs()</td>
<td>Returns the maxOccurs value defined in the schema.</td>
</tr>
<tr>
<td>int getMinOccurs()</td>
<td>Returns the minOccurs value defined in the schema.</td>
</tr>
<tr>
<td>String getNamespaceURI()</td>
<td>Returns the namespace URI of the element.</td>
</tr>
</tbody>
</table>

14.10.6 com.altova.xml.meta.SimpleType

This class enables you to access schema information about classes generated from simple types. Note that this class is not meant to provide dynamic information about particular instances of simple types in an XML document. Instead, it enables you to obtain programatically information about a particular simple type defined in the XML schema.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleType getBaseType()</td>
<td>Returns the base type of this type.</td>
</tr>
<tr>
<td>String[] getEnumerations()</td>
<td>Returns an array of all enumeration facets.</td>
</tr>
<tr>
<td>int getFractionDigits()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>int getLength()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>String getLocalName()</td>
<td>Returns the local name of the type.</td>
</tr>
<tr>
<td>String getMaxExclusive()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>String getMaxInclusive()</td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td>int getMaxLength()</td>
<td>Returns the value of this facet.</td>
</tr>
</tbody>
</table>
Reference to Generated Classes (Java)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>String getMinExclusive()</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>String getMinInclusive()</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>int getMinLength()</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>String getNamespaceURI()</code></td>
<td>Returns the namespace URI of the type.</td>
</tr>
<tr>
<td><code>String[] getPatterns()</code></td>
<td>Returns an array of all pattern facets.</td>
</tr>
<tr>
<td><code>int getTotalDigits()</code></td>
<td>Returns the value of this facet.</td>
</tr>
<tr>
<td><code>int getWhitespace()</code></td>
<td>Returns the value of the whitespace facet, which is one of:</td>
</tr>
<tr>
<td></td>
<td>com.altova.typeinfo.WhitespaceType.Whitespace_Unknown</td>
</tr>
<tr>
<td></td>
<td>com.altova.typeinfo.WhitespaceType.Whitespace_Preserve</td>
</tr>
<tr>
<td></td>
<td>com.altova.typeinfo.WhitespaceType.Whitespace_Replace</td>
</tr>
<tr>
<td></td>
<td>com.altova.typeinfo.WhitespaceType.Whitespace_Collapse</td>
</tr>
</tbody>
</table>

14.10.7 `com.[YourSchema].[Doc]`

When code is generated from an XML Schema, the generated code provides a document class with the same name as the schema. This class contains all possible root elements as members, as well as the members listed below. Note that, in the method names below, “Doc” stands for the name of the generated document class itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>static <code>Doc createDocument()</code></td>
<td>Creates a new, empty XML document.</td>
</tr>
<tr>
<td>static <code>void declareAllNamespacesFromSchema(com.altova.xml.ElementType node)</code></td>
<td>Declares all namespaces from the XML Schema on the element supplied as argument (typically, the XML root element). Calling this method is useful if your schema has multiple namespace declarations, each mapped to a prefix, and you would like to declare all of them on the element supplied as argument.</td>
</tr>
<tr>
<td>static <code>Doc loadFromBinary(byte[] xml)</code></td>
<td>Loads an XML document from a byte array.</td>
</tr>
<tr>
<td>static <code>Doc loadFromFile(String fileName)</code></td>
<td>Loads an XML document from a file.</td>
</tr>
<tr>
<td>static <code>Doc loadFromString(String xml)</code></td>
<td>Loads an XML document from a string.</td>
</tr>
<tr>
<td><code>byte[] saveToBinary(boolean prettyPrint)</code></td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>byte[] saveToBinary(boolean prettyPrint, String encoding)</td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting, with the specified encoding.</td>
</tr>
<tr>
<td>byte[] saveToBinary(boolean prettyPrint, String encoding, boolean bigEndian, boolean writeBOM)</td>
<td>Saves an XML document to a byte array, with optional "pretty-print" formatting, with the specified encoding. Byte order and Unicode byte-order mark can be specified for Unicode encodings.</td>
</tr>
<tr>
<td>void saveToFile(String fileName, boolean prettyPrint)</td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting.</td>
</tr>
<tr>
<td>void saveToFile(String fileName, boolean prettyPrint, boolean omitXmlDecl)</td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, with UTF-8 encoding. When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td>void saveToFile(String fileName, boolean prettyPrint, boolean omitXmlDecl, String encoding)</td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding. When <code>omitXmlDecl</code> is true, the XML declaration will not be written. Byte order and Unicode byte-order mark can be specified for Unicode encodings.</td>
</tr>
<tr>
<td>void saveToFile(String fileName, boolean prettyPrint, boolean omitXmlDecl, String encoding, boolean bBigEndian, boolean bBOM)</td>
<td>Saves an XML document to a file, with optional "pretty-print" formatting, with the specified encoding. Byte order and Unicode byte-order mark can be specified for Unicode encodings.</td>
</tr>
<tr>
<td>String saveToString(boolean prettyPrint)</td>
<td>Saves an XML document to a string, with optional "pretty-print" formatting.</td>
</tr>
<tr>
<td>String saveToString(boolean prettyPrint, boolean omitXmlDecl)</td>
<td>Saves an XML document to a string, with optional "pretty-print" formatting. When <code>omitXmlDecl</code> is true, the XML declaration will not be written.</td>
</tr>
<tr>
<td>void setSchemaLocation(String schemaLocation)</td>
<td>Adds an <code>xsi:schemaLocation</code> or <code>xsi:noNamespaceSchemaLocation</code> attribute to the root element. A root element must already exist.</td>
</tr>
</tbody>
</table>
14.10.8 com.[YourSchema].[ElementType]

This class provides methods for manipulating XML elements from your schema. Methods of this class can be called on elements, not on the XML document itself. Note that, in order to call methods of this class, you don't need to instantiate the class directly. Any element created using the `append()` or `appendWithPrefix()` methods is of `[ElementType]` type.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| void declareNamespace(String prefix, String nsURI) | This method takes two arguments that are both of string type: the prefix and the namespace URI that you want to use. The prefix supplied as argument will be mapped to the namespace URI value supplied as argument. If the prefix supplied as argument is empty, the method creates or overrides the default namespace declaration in the element. For example, let's assume that the XML document has an XML element called "purchase". If you call

```java
purchase.declareNamespace("ord", "http://OrderTypes");
```

then the XML document becomes

```xml
<purchase xmlns:ord="http://OrderTypes" />
```

Another example, if you call:

```java
purchase.declareNamespace("", "http://OrderTypes");
```

then the XML document becomes

```xml
<purchase xmlns="http://OrderTypes" />
```

Note: The declared namespace is used when appending subsequent child elements or attributes, according to the following rules:

1. If the child namespace is the default, then use empty prefix.
2. If the child namespace is equal to the parent one, then use the parent prefix.
3. Otherwise, search for nearest prefix from parent to
14.10.9 com.[YourSchema].[YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a type. In the descriptions below, "AttributeType" stands for the type of the member attribute itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean exists()</td>
<td>Returns true if the attribute exists.</td>
</tr>
<tr>
<td>int getEnumerationValue()</td>
<td>Generated for enumeration types only. Returns one of the constants generated for the possible values, or invalid if the value does not match any of the enumerated values in the schema.</td>
</tr>
<tr>
<td>AttributeType getValue()</td>
<td>Gets the attribute value.</td>
</tr>
<tr>
<td>void remove()</td>
<td>Removes the attribute from its parent element.</td>
</tr>
<tr>
<td>void setEnumerationValue(int)</td>
<td>Generated for enumeration types only. Pass one of the constants generated for the possible values to this method to set the value.</td>
</tr>
<tr>
<td>void setValue(AttributeType value)</td>
<td>Sets the attribute value.</td>
</tr>
</tbody>
</table>

14.10.10 com.[YourSchema].[YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for each member element of a type. In the descriptions below, "MemberType" stands for the type of the member element itself.

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberType append()</td>
<td>Creates a new element and appends it to its parent.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MemberType appendWithPrefix(String prefix)</td>
<td>Creates a new element having the prefix supplied as argument, and appends it to its parent. For an example, see Example: Purchase Order.</td>
</tr>
<tr>
<td>MemberType at(int index)</td>
<td>Returns the instance of the member element at the specified index.</td>
</tr>
<tr>
<td>int count()</td>
<td>Returns the count of elements.</td>
</tr>
<tr>
<td>boolean exists()</td>
<td>Returns true if at least one element exists.</td>
</tr>
<tr>
<td>MemberType first()</td>
<td>Returns the first instance of the member element.</td>
</tr>
<tr>
<td>int getEnumerationValue()</td>
<td>Generated for enumeration types only. Returns one of the constants generated for the possible values, or Invalid if the value does not match any of the enumerated values in the schema.</td>
</tr>
<tr>
<td>com.altova.xml.meta.Element getInfo()</td>
<td>Returns an object for querying schema information (see com.altova.xml.meta.Element).</td>
</tr>
<tr>
<td>MemberType getValue()</td>
<td>Gets the element content (only generated if element can have simple or mixed content).</td>
</tr>
<tr>
<td>java.util.Iterator iterator()</td>
<td>Returns an object for iterating instances of the member element.</td>
</tr>
<tr>
<td>MemberType last()</td>
<td>Returns the last instance of the member element.</td>
</tr>
<tr>
<td>void remove()</td>
<td>Deletes all occurrences of the element from its parent.</td>
</tr>
<tr>
<td>void removeAt(int index)</td>
<td>Deletes the occurrence of the element specified by the index.</td>
</tr>
<tr>
<td>void setEnumerationValue(int index)</td>
<td>Generated for enumeration types only. Pass one of the constants generated for the possible values to this method to set the value.</td>
</tr>
<tr>
<td>void setValue(MemberType value)</td>
<td>Sets the element content (only generated if element can have simple or mixed content).</td>
</tr>
</tbody>
</table>
14.11 Code Generation Tips

Resolving "Out of memory" exceptions during Java compilation
Complex mappings with large schemas can produce a large amount of code, which might cause a java.lang.OutOfMemory exception during compilation using Ant. To rectify this:

- Add the environment variable ANT_OPTS, which sets specific Ant options such as the memory to be allocated to the compiler, and set its value as shown below.

 ![Edit User Variable](image)

- To make sure that the compiler and the generated code run in the same process as Ant, change the fork attribute, in build.xml, to false.

You may need to customize the values depending on the amount of memory in your machine and the size of the project you are working with. For more details, see your Java VM documentation.

When running the ant jar command, you may get an error message similar to "[...] archive contains more than 65535 entities". To prevent this, it is recommended that you use Ant 1.9 or later, and, in the build.xml file, add zip64mode="as-needed" to the <jar> element.

Reserving method names
When customizing code generation using the supplied SPL files, it might be necessary to reserve names to avoid collisions with other symbols. To do this:

1. Navigate to the program installation directory, for example, C:\Program Files\Altova\MapForce2021.
2. In the spl subdirectory, locate the directory corresponding to the programming language, for example, ..\spl\java.
3. Open the settings.spl file and insert a new line into the "reserve" section, for example, reserve "myReservedWord".
4. Regenerate the program code.
14.12 Code Generator Options

To view or change the MapForce settings applicable to code generation:

- On the Tools menu, click Options, and then click Generation.

The available settings are as follows.

<table>
<thead>
<tr>
<th>C++ Settings</th>
<th>Defines the specific compiler settings for the C++ environment, namely:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- The XML library (MSXML, Xerces 3.x)</td>
</tr>
<tr>
<td></td>
<td>- Whether static or dynamic libraries must be generated</td>
</tr>
<tr>
<td></td>
<td>- Whether code must be generated with or without MFC support</td>
</tr>
</tbody>
</table>

<p>| C# Settings | Defines the specific compiler settings for the C# environment, namely, the Visual Studio version (2010, 2013, 2015, 2017, 2019). |</p>
<table>
<thead>
<tr>
<th>Wrapper Classes</th>
<th>Allows you to generate wrapper classes for XML schemas, see Generating Code from XML Schemas or DTDs. These wrapper classes can be used by custom code that includes the code generated by MapForce.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Execution File</td>
<td>These options are applicable when you compile mappings to MapForce Server execution files. They do not affect generation of C#, C++, or Java code. For more information, see Compiling Mappings to MapForce Server Execution Files.</td>
</tr>
</tbody>
</table>
14.13 SPL Reference

This section gives an overview of SPL (Spy Programming Language), the code generator's template language.

It is assumed that you have prior programming experience, and are familiar with operators, functions, variables and classes, as well as the basics of object-oriented programming - which is used heavily in SPL.

The templates used by MapForce are supplied in the ...\MapForce\spl folder. You can use these files as an aid to help you in developing your own templates.

How code generator works
Inputs to the code generator are the template files (.spl) and the object model provided by MapForce. The template files contain SPL instructions for creating files, reading information from the object model and performing calculations, interspersed with literal code fragments in the target programming language.

The template file is interpreted by the code generator and outputs .cpp, .java, .cs source code files, project files, or any other type of file depending on the template. The source code can then be compiled into an executable file that accesses XML data described by the schema file.

SPL files have access to a wide variety of information that is collated from the source schemas. Note that an SPL file is not tied to a specific schema, but allows access to all schemas. Make sure you write your SPL files generically and avoid structures which apply to specific schemas.

Example: Creating a new file in SPL
This is a very basic SPL file. It creates a file named test.cpp, and places the include statement within it. The close command completes the template.

```
[create "test.cpp"]
#include "stdafx.h"
[close]
```

14.13.1 Basic SPL structure
An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets \([\) and \(] \). Multiple statements can be included in a bracket pair. Additional statements have to be separated by a new line or a colon `:`.

Valid examples are:

```
[$x = 42
$x = $x + 1]
```

or
Adding text to files
Text not enclosed by [and], is written directly to the current output file. If there is no current output file, the text is ignored (see Using files how to create an output file).

To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next line, or at a block close character].

14.13.2 Declarations
The following statements are evaluated while parsing the SPL template file. They are not affected by flow control statements like conditions, loops or subroutines, and are always evaluated exactly once.

These keywords, like all keywords in SPL, are not case sensitive.

Remember that all of these declarations must be inside a block delimited by square brackets.

map ... to ...

\map mapname key to value [, key to value]...

This statement adds information to a map. See below for specific uses.

map schemanativetype schematype to typespec

The specified built-in XML Schema type will be mapped to the specified native type or class, using the specified formatter. This setting applies only to code generation for version 2007r3 and higher. Typespec is a native type or class name, followed by a comma, followed by the formatter class instance.

Example:

\map schemanativetype "double" to "double,Altova::DoubleFormatter"

map type ... to ...

\map type schematype to classname
The specified built-in XML Schema type will be mapped to the specified class. This setting applies only to code generation for version 2007 or lower.

Example:

map type "float" to "CSchemaFloat"

default ... is ...

default setting is value

This statement allows you to affect how class and member names are derived from the XML Schema. Note that the setting names are case sensitive.

Example:

default "InvalidCharReplacement" is "_"

<table>
<thead>
<tr>
<th>Setting name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ValidFirstCharSet</td>
<td>Allowed characters for starting an identifier</td>
</tr>
<tr>
<td>ValidCharSet</td>
<td>Allowed characters for other characters in an identifier</td>
</tr>
<tr>
<td>InvalidCharReplacement</td>
<td>The character that will replace all characters in names that are not in the ValidCharSet</td>
</tr>
<tr>
<td>AnonTypePrefix</td>
<td>Prefix for names of anonymous types*</td>
</tr>
<tr>
<td>AnonTypeSuffix</td>
<td>Suffix for names of anonymous types*</td>
</tr>
<tr>
<td>ClassNamePrefix</td>
<td>Prefix for generated class names</td>
</tr>
<tr>
<td>ClassNameSuffix</td>
<td>Suffix for generated class names</td>
</tr>
<tr>
<td>EnumerationPrefix</td>
<td>Prefix for symbolic constants declared for enumeration values</td>
</tr>
<tr>
<td>EnumerationUpperCase</td>
<td>"on" to convert the enumeration constant names to upper case</td>
</tr>
<tr>
<td>FallbackName</td>
<td>If a name consists only of characters that are not in ValidCharSet, use this one</td>
</tr>
</tbody>
</table>

* Names of anonymous types are built from AnonTypePrefix + element name + AnonTypeSuffix

reserve
reserves **word**

Adds the specified word to the list of reserved words. This ensures that it will never be generated as a class or member name.

Example:

```splex
reserve "while"
```

include

includes the specified file as SPL source. This allows you to split your template into multiple files for easier editing and handling.

```splex
include filename
```

Example:

```splex
include "Module.cpp"
```

14.13.3 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code generator, and new variables may be created simply by assigning values to them.

The `$` character is used when **declaring** or **using** a variable, a variable name is always prefixed by `$`. Variable names are **case sensitive**.

Variables types:

- integer - also used as boolean, where 0 is false and everything else is true
- string
- object - provided by MapForce
- iterator - see `foreach` statement

Variable types are declared by first assignment:

```splex
[$x = 0]
```

x is now an integer.

```splex
[$x = "teststring"]
```

x is now treated as a string.
Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t inside double quotes are interpreted as newline and tab, \" is a literal double quote, and \ is a backslash. String constants can also span multiple lines.

String concatenation uses the & character:

```
[$BasePath = $outputpath & "/" & $JavaPackageDir]
```

Objects
Objects represent the information contained in the XML schemas, database structures, text files and mappings. Objects have properties, which can be accessed using the . operator. It is not possible to create new objects in SPL (they are predefined by the code generator, derived from the input mapping), but it is possible to assign objects to variables.

Example:
```
class [=class.Name]
```

This example outputs the word "class", followed by a space and the value of the Name property of the $class object.

14.13.4 Predefined variables

After a Schema file is analyzed by the code generator, the objects in the table below exist in the Template Engine.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$schematype</td>
<td>integer</td>
<td>1 for DTD, 2 for XML Schema</td>
</tr>
<tr>
<td>$TheLibrary</td>
<td>Library</td>
<td>The library derived from the XML Schema or DTD</td>
</tr>
<tr>
<td>$module</td>
<td>string</td>
<td>Name of the source Schema without extension</td>
</tr>
<tr>
<td>$outputpath</td>
<td>string</td>
<td>The output path specified by the user, or the default output path</td>
</tr>
</tbody>
</table>

For C++ generation only:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$domtype</td>
<td>integer</td>
<td>1 for MSXML, 2 for Xerces</td>
</tr>
<tr>
<td>$libtype</td>
<td>integer</td>
<td>1 for static LIB, 2 for DLL</td>
</tr>
<tr>
<td>$mfc</td>
<td>boolean</td>
<td>True if MFC support is enabled</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>$VSVersion</td>
<td>integer</td>
<td>Specifies the Visual Studio version. Valid values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: No Visual Studio project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010: Visual Studio 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2013: Visual Studio 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2015: Visual Studio 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2017: Visual Studio 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2019: Visual Studio 2019</td>
</tr>
</tbody>
</table>

For C# generation only:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$VSVersion</td>
<td>integer</td>
<td>Specifies the Visual Studio version. Valid values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: No Visual Studio project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010: Visual Studio 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2013: Visual Studio 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2015: Visual Studio 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2017: Visual Studio 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2019: Visual Studio 2019</td>
</tr>
</tbody>
</table>

14.13.5 Creating output files

These statements are used to create output files from the code generation. Remember that all of these statements must be inside a block delimited by square brackets.

create

```plaintext
create filename
```

creates a new file. The file has to be closed with the **close** statement. All following output is written to the specified file.

Example:
close

closes the current output file.

=${variable}

writes the value of the specified variable to the current output file.

Example:

[$x = 20+3]
The result of your calculation is [=x] - so have a nice day!

The file output will be:

The result of your calculation is 23 - so have a nice day!

write

write string

writes the string to the current output file.

Example:

[write "C" & $name]

This can also be written as:

C[=$name]
filecopy source to target

copies the source file to the target file, without any interpretation.

Example:

```
filecopy "java/mapforce/mapforce.png" to $outputpath & "/" & $JavaPackageDir & "mapforce.png"
```
14.13.7 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

```
if condition
    statements
else
    statements
endif
```

or, without else:

```
if condition
    statements
endif
```

Note: There are no round brackets enclosing the condition.

As in any other programming language, conditions are constructed with logical and comparison operators.

Example:

```
[if $namespace.ContainsPublicClasses and $namespace.Prefix <> "]
    whatever you want ['inserts whatever you want, in the resulting file]
[endif]
```

Switch

SPL also contains a multiple choice statement.

Syntax:

```
switch $variable
    case X:
        statements
    case Y:
    case Z:
        statements
    default:
        statements
endswitch
```

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a "break" statement.
14.13.8 Collections and foreach

Collections and iterators
A collection contains multiple objects - like a ordinary array. Iterators solve the problem of storing and incrementing array indexes when accessing objects.

Syntax:

```
foreach iterator in collection
    statements
next
```

Example:

```
[foreach $class in $classes
    if not $class.IsInternal
        ]
    class [$class.Name];
[ endif
next]
```

Example 2:

```
[foreach $i in 1 To 3
    Write "// Step " & $i & "\n"
    ' Do some work
next]
```

In the first line:

$classes is the global object of all generated types. It is a collection of single class objects.

Foreach steps through all the items in $classes, and executes the code following the instruction, up to the next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class object instead of using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

- **Index**: The current index, starting with 0
- **IsFirst**: true if the current object is the first of the collection (index is 0)
- **IsLast**: true if the current object is the last of the collection
- **Current**: The current object (this is implicit if not specified and can be left out)

Example:
14.13.9 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:

- By-value and by-reference passing of values
- Local/global parameters (local within subroutines)
- Local variables
- Recursive invocation (subroutines may call themselves)

14.13.9.1 Subroutine declaration

Subroutines

Syntax example:

```cpp
Sub SimpleSub()
  ... lines of code
EndSub
```

- **Sub** is the keyword that denotes the procedure.
- **SimpleSub** is the name assigned to the subroutine.
- Round parenthesis can contain a parameter list.
- The code block of a subroutine starts immediately after the closing parameter parenthesis.
- **EndSub** denotes the end of the code block.

Note: Recursive or cascaded subroutine **declaration** is not permitted, i.e. a subroutine may not contain another subroutine.

Parameters

Parameters can also be passed by procedures using the following syntax:

- All parameters must be variables
- Variables must be prefixed by the $ character
- Local variables are defined in a subroutine
- Global variables are declared explicitly, outside of subroutines
- Multiple parameters are separated by the comma character "," within round parentheses
- Parameters can pass values
Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords **ByVal** and **ByRef** respectively.

Syntax:

```plaintext
' define sub CompleteSub()
[Sub CompleteSub( $param, ByVal $paramByValue, ByRef $paramByRef )
] ...
```

- **ByVal** specifies that the parameter is passed by value. Note that most objects can only be passed by reference.
- **ByRef** specifies that the parameter is passed by reference. This is the default if neither ByVal nor ByRef is specified.

Function return values
To return a value from a subroutine, use the **return** statement. Such a function can be called from within an expression.

Example:

```plaintext
' define a function
[Sub MakeQualifiedName( ByVal $namespacePrefix, ByVal $localName )
if $namespacePrefix = ""
  return $localName
else
  return $namespacePrefix & ":" & $localName
endif
EndSub
]
```

14.13.9.2 Subroutine invocation
Use **call** to invoke a subroutine, followed by the procedure name and parameters, if any.

```plaintext
Call SimpleSub()
```

or

```plaintext
Call CompleteSub( "FirstParameter", $ParamByValue, $ParamByRef )
```

Function invocation
To invoke a function (any subroutine that contains a **return** statement), simply use its name inside an expression. Do not use the **call** statement to call functions. Example:
14.13.9.3 Subroutine example

The following example shows subroutine declaration and invocation.

```plaintext
$QName = MakeQualifiedName($namespace, "entry")

[create $outputpath & $module & "output.txt"

' define sub SimpleSub()
Sub SimpleSub()
]SimpleSub() called
[endsub

' execute sub SimpleSub()
Call SimpleSub()

$ParamByValue = "Original Value"
]ParamByValue = [=ParamByValue]
[$ParamByRef = "Original Value"
]ParamByRef = [=ParamByRef]

' define sub CompleteSub()
[Sub CompleteSub( $param, ByVal $ParamByValue, ByRef $ParamByRef )
]CompleteSub called.
    param = [=param]
    ParamByValue = [=ParamByValue]
    ParamByRef = [=ParamByRef]
[$ParamByRef = "Local Variable"
$ParamByValue = "new value"
$ParamByRef = "new value"
] Set values inside Sub
[$ParamByRef = "Local Variable"
$ParamByValue = "new value"
$ParamByRef = "new value"
]CompleteSub finished.
[endsub

' run sub CompleteSub()
Call CompleteSub( "FirstParameter", $ParamByValue, $ParamByRef )
] ParamByValue=[=ParamByValue]
ParamByRef=[=ParamByRef]
[ Close ]
```
14.13.10 Built in Types

The section describes the properties of the built-in types used in the predefined variables which describe the parsed schema.

14.13.10.1 Library

This object represents the whole library generated from the XML Schema or DTD.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SchemaNamespaces</td>
<td>Namespace</td>
<td>Namespaces in this library</td>
</tr>
<tr>
<td></td>
<td>collection</td>
<td></td>
</tr>
<tr>
<td>SchemaFilename</td>
<td>string</td>
<td>Name of the XSD or DTD file this library is derived from</td>
</tr>
<tr>
<td>SchemaType</td>
<td>integer</td>
<td>1 for DTD, 2 for XML Schema</td>
</tr>
<tr>
<td>Guid</td>
<td>string</td>
<td>A globally unique ID</td>
</tr>
<tr>
<td>CodeName</td>
<td>string</td>
<td>Generated library name (derived from schema file name)</td>
</tr>
</tbody>
</table>

14.13.10.2 Namespace

One namespace object per XML Schema namespace is generated. Schema components that are not in any namespace are contained in a special namespace object with an empty NamespaceURI. Note that for DTD, namespaces are also derived from attributes whose names begin with "xmlns".

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CodeName</td>
<td>string</td>
<td>Name for generated code (derived from prefix)</td>
</tr>
<tr>
<td>LocalName</td>
<td>string</td>
<td>Namespace prefix</td>
</tr>
<tr>
<td>NamespaceURI</td>
<td>string</td>
<td>Namespace URI</td>
</tr>
<tr>
<td>Types</td>
<td>Type</td>
<td>All types contained in this namespace</td>
</tr>
<tr>
<td>collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td>Library</td>
<td>Library containing this namespace</td>
</tr>
</tbody>
</table>

14.13.10.3 Type

This object represents a complex or simple type. It is used to generate a class in the target language. There is one additional type per library that represents the document, which has all possible root elements as members.

Anonymous types have an empty LocalName.
<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CodeName</td>
<td>string</td>
<td>Name for generated code (derived from local name or parent declaration)</td>
</tr>
<tr>
<td>LocalName</td>
<td>string</td>
<td>Original name in the schema</td>
</tr>
<tr>
<td>Namespace</td>
<td>Namespace</td>
<td>Namespace containing this type</td>
</tr>
<tr>
<td>Attributes</td>
<td>Member collection</td>
<td>Attributes contained in this type*</td>
</tr>
<tr>
<td>Elements</td>
<td>Member collection</td>
<td>Child elements contained in this type</td>
</tr>
<tr>
<td>IsSimpleType</td>
<td>boolean</td>
<td>True for simple types, false for complex types</td>
</tr>
<tr>
<td>IsDerived</td>
<td>boolean</td>
<td>True if this type is derived from another type, which is also represented by a Type object</td>
</tr>
<tr>
<td>IsDerivedByExtension</td>
<td>boolean</td>
<td>True if this type is derived by extension</td>
</tr>
<tr>
<td>IsDerivedByRestriction</td>
<td>boolean</td>
<td>True if this type is derived by restriction</td>
</tr>
<tr>
<td>IsDerivedByUnion</td>
<td>boolean</td>
<td>True if this type is derived by union</td>
</tr>
<tr>
<td>IsDerivedByList</td>
<td>boolean</td>
<td>True if this type is derived by list</td>
</tr>
<tr>
<td>BaseType</td>
<td>Type</td>
<td>The base type of this type (if IsDerived is true)</td>
</tr>
<tr>
<td>IsDocumentRootType</td>
<td>boolean</td>
<td>True if this type represents the document itself</td>
</tr>
<tr>
<td>Library</td>
<td>Library</td>
<td>Library containing this type</td>
</tr>
<tr>
<td>IsFinal</td>
<td>boolean</td>
<td>True if declared as final in the schema</td>
</tr>
<tr>
<td>IsMixed</td>
<td>boolean</td>
<td>True if this type can have mixed content</td>
</tr>
<tr>
<td>IsAbstract</td>
<td>boolean</td>
<td>True if this type is declared as abstract</td>
</tr>
<tr>
<td>IsGlobal</td>
<td>boolean</td>
<td>True if this type is declared globally in the schema</td>
</tr>
<tr>
<td>IsAnonymous</td>
<td>boolean</td>
<td>True if this type is declared locally in an element</td>
</tr>
</tbody>
</table>

For simple types only:

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsNativeBound</td>
<td>boolean</td>
<td>True if native type binding exists</td>
</tr>
<tr>
<td>NativeBinding</td>
<td>NativeBinding</td>
<td>Native binding for this type</td>
</tr>
<tr>
<td>Facets</td>
<td>Facets</td>
<td>Facets of this type</td>
</tr>
</tbody>
</table>
14.13.10.4 Member

This object represents an attribute or element in the XML Schema. It is used to create class members of types.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CodeName</td>
<td>string</td>
<td>Name for generated code (derived from local name or parent declaration)</td>
</tr>
<tr>
<td>LocalName</td>
<td>string</td>
<td>Original name in the schema. Empty for the special member representing text content of complex types.</td>
</tr>
<tr>
<td>NamespaceURI</td>
<td>string</td>
<td>The namespace URI of this Element/Attribute within XML instance documents/streams.</td>
</tr>
<tr>
<td>DeclaringType</td>
<td>Type</td>
<td>Type originally declaring the member (equal to ContainingType for non-inherited members)</td>
</tr>
<tr>
<td>ContainingType</td>
<td>Type</td>
<td>Type where this is a member of</td>
</tr>
<tr>
<td>DataType</td>
<td>Type</td>
<td>Data type of this member's content</td>
</tr>
<tr>
<td>Library</td>
<td>Library</td>
<td>Library containing this member's DataType</td>
</tr>
<tr>
<td>IsAttribute</td>
<td>boolean</td>
<td>True for attributes, false for elements</td>
</tr>
<tr>
<td>IsOptional</td>
<td>boolean</td>
<td>True if minOccurs = 0 or optional attribute</td>
</tr>
<tr>
<td>IsRequired</td>
<td>boolean</td>
<td>True if minOccurs > 0 or required attribute</td>
</tr>
<tr>
<td>IsFixed</td>
<td>boolean</td>
<td>True for fixed attributes, value is in Default property</td>
</tr>
<tr>
<td>IsDefault</td>
<td>boolean</td>
<td>True for attributes with default value, value is in Default property</td>
</tr>
<tr>
<td>IsNillable</td>
<td>boolean</td>
<td>True for nillable elements</td>
</tr>
<tr>
<td>IsUseQualified</td>
<td>boolean</td>
<td>True if NamespaceURI is not empty</td>
</tr>
<tr>
<td>MinOccurs</td>
<td>integer</td>
<td>minOccurs, as in schema. 1 for required attributes</td>
</tr>
<tr>
<td>MaxOccurs</td>
<td>integer</td>
<td>maxOccurs, as in schema. 0 for prohibited attributes, -1 for unbounded</td>
</tr>
</tbody>
</table>

* Complex types with text content (these are types with mixed content and complexType with simpleContent) have an additional unnamed attribute member that represents the text content.
<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>string</td>
<td>Default value</td>
</tr>
</tbody>
</table>

14.13.10.5 NativeBinding

This object represents the binding of a simple type to a native type in the target programming language, as specified by the "schemanativetype" map.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ValueType</td>
<td>string</td>
<td>Native type</td>
</tr>
<tr>
<td>ValueHandler</td>
<td>string</td>
<td>Formatter class instance</td>
</tr>
</tbody>
</table>

14.13.10.6 Facets

This object represents all facets of a simple type. Inherited facets are merged with the explicitly declared facets. If a Length facet is in effect, MinLength and MaxLength are set to the same value.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeclaringType</td>
<td>Type</td>
<td>Type facets are declared on</td>
</tr>
<tr>
<td>Whitespace</td>
<td>string</td>
<td>"preserve", "collapse" or "replace"</td>
</tr>
<tr>
<td>MinLength</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>MaxLength</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>MinInclusive</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>MinExclusive</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>MaxInclusive</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>MaxExclusive</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>TotalDigits</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>FractionDigits</td>
<td>integer</td>
<td>Facet value</td>
</tr>
<tr>
<td>List</td>
<td>Facet collection</td>
<td>All facets as list</td>
</tr>
</tbody>
</table>

Facet

This object represents a single facet with its computed value effective for a specific type.
<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LocalName</td>
<td>string</td>
<td>Facet name</td>
</tr>
<tr>
<td>NamespaceURI</td>
<td>string</td>
<td>Facet namespace</td>
</tr>
<tr>
<td>FacetType</td>
<td>string</td>
<td>one of "normalization", "lexicalspace", "valuespace-length", "valuespace-enum" or "valuespace-range"</td>
</tr>
<tr>
<td>DeclaringType</td>
<td>Type (1225)</td>
<td>Type this facet is declared on</td>
</tr>
<tr>
<td>FacetCheckerName</td>
<td>string</td>
<td>Name of facet checker (from schemafacet map)</td>
</tr>
<tr>
<td>FacetValue</td>
<td>string or integer</td>
<td>Actual value of this facet</td>
</tr>
</tbody>
</table>
15 The MapForce API

The COM-based API of MapForce enables clients to access the functionality of MapForce from a custom code or application, and automate a wide range of tasks.

The MapForce COM API follows the common specifications for automation servers as set out by Microsoft. MapForce is automatically registered as a COM server object during installation. Once the COM server object is registered, you can invoke it from within applications and scripting languages that have programming support for COM calls. This makes it possible to access the MapForce API not only from development environments using .NET, C++ and Visual Basic, but also from scripting languages like JScript and VBScript.

Note the following:

- If you use the MapForce API to create an application that you intend to distribute to other clients, MapForce must be installed on each client computer. Also, your custom integration code must be deployed to (or your application installed on) each client computer.
- Certain API methods, such as `Document.GenerateOutput`, require that the MapForce main window is visible, or MapForce (running as a COM server) is embedded within a graphical user interface. If you need to run mappings in a fully unattended manner, across various platforms, consider using MapForce Server (https://www.altova.com/mapforce-server).
15.1 Accessing the API

To access the MapForce COM API, a new instance of the Application object must be created in your application (or script). Once this object is created, you can interact with MapForce by invoking its methods and properties as required (for example, create a new document, open an existing document, generate mapping code, etc).

Prerequisites

To make the MapForce COM object available in your Visual Studio project, add a reference to the MapForce type library (.tlb) file. The following instructions are applicable to Visual Studio 2013, but are similar in other Visual Studio versions:

1. On the Project menu, click Add Reference.
2. Click Browse and select the MapForce.tlb file located in the MapForce installation folder.

A sample MapForce API client in C# is available at: C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\API\C#.

In Java, the MapForce API is available through Java-COM bridge libraries. These libraries are available in the MapForce installation folder: C:\Program Files (x86)\Altova\MapForce2021\JavaAPI (note this path is valid when 32-bit MapForce runs on 64-bit Windows, otherwise adjust the path accordingly).

- AltovaAutomation.dll: a JNI wrapper for Altova automation servers
- AltovaAutomation.jar: Java classes to access Altova automation servers
- MapForceAPI.jar: Java classes that wrap the MapForce automation interface
- MapForceAPI_JavaDoc.zip: a Javadoc file containing help documentation for the Java API

To allow access to the MapForce automation server directly from Java code, the libraries above must be in the Java classpath.

A sample MapForce API client in Java is available at: C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\API\Java.

In scripting languages such as JScript or VBScript, the MapForce COM object is accessible through the Microsoft Windows Script Host (see https://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx). Such scripts can be written with a text editor, and do not need compilation, since they are executed by the Windows Script Host packaged with Windows. (To check that the Windows Script Host is running, type wscript.exe /? at the command prompt). Several JScript example files that call the MapForce API are available at: C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\API\JScript.

Note: For 32-bit MapForce, the registered name, or programmatic identifier (ProgId) of the COM object is MapForce.Application. For 64-bit MapForce, the name is MapForce_x64.Application. Be aware, though, that the calling program will access the CLASSES registry entries in its own registry hive, or group (32-bit or 64-bit). Therefore, if you run scripts using the standard command prompt and Windows Explorer on 64-bit Windows, the 64-bit registry entries will be accessed, which point to the 64-bit MapForce. For this reason, if both MapForce 32-bit and 64-bit are installed, special handling is required in order to call the 32-bit MapForce. For example, assuming that Windows Scripting Host is the calling program, do the following:

1. Change the current directory to C:\Windows\SysWOW64.
2. At the command line, type `wscript.exe` followed by the path to the script that you would like to run, for example:

```
wscript.exe "C:\Users\...\Documents\Altova\MapForce2021\MapForceExamples\API\JScript\start.js"
```

Guidelines

The following guidelines should be considered in your client code:

- Do not hold references to objects in memory longer than you need them. If a user interacts between two calls of your client, then there is no guarantee that these references are still valid.
- Be aware that if your client code crashes, instances of MapForce may still remain in the system. For details on how to avoid error messages, see Error handling.
- Free references explicitly, if using languages such as C++.

Creating the Application object

The syntax to create the starting `Application` object depends on the programming language, as shown in the examples below:

C#

```csharp
// Create a new instance of MapForce via its automation interface.
MapForceLib.Application objMapForce = new MapForceLib.Application();
```

Java

```java
// Start MapForce as COM server.
// COM servers start up invisible so we make it visible
objMapForce.setVisible(true);
```

JScript

```jscript
// Access a running instance, or create a new instance of MapForce.
try{
    // unhide application if it is a new instance
    objMapForce.Visible = true;
}
catch(err) { WScript.Echo("Can't access or create MapForce.Application"); }
```
VBA

' Create a new instance of MapForce.
Dim objMapForce As Application
Set objMapForce = CreateObject("MapForce.Application")

VBScript

' Access a running instance, or create a new instance of MapForce.
Set objMapForce = GetObject("MapForce.Application");

Visual Basic

Dim objMapForce As MapForceLib.Application = New MapForceLib.Application
15.2 The Object Model

The starting point for every application which uses the MapForce API is the **Application** object. All other interfaces are accessed through the Application object as the starting point.

The object model of the MapForce API can be represented as follows (each indentation level indicates a child–parent relationship with the level directly above):

```
Application
  Options
  Project
    ProjectItem
    Documents
      Document
        MapForceView
        Mapping
          Component
            Datapoint
            Components
            Connection
        Mappings
        ErrorMarkers
          ErrorMarker
      AppOutputLines
        AppOutputLine
          AppOutputLines
            ...
            AppOutputLineSymbol
```

For information about creating an instance the Application object, see **Accessing the API**. For reference to the objects exposed by the API, see **Object Reference**.
15.3 Error Handling

The MapForce API returns errors in two different ways. Every API method returns an HRESULT. This return value informs the caller about any malfunctions during the execution of the method. If the call was successful, the return value is equal to S_OK. C/C++ programmers generally use HRESULT to detect errors.

Visual Basic, scripting languages, and other high-level development environments do not give the programmer access to the returning HRESULT of a COM call. They use the second error-raising mechanism supported by the MapForce API, the IErrorInfo interface. If an error occurs, the API creates a new object that implements the IErrorInfo interface. The development environment takes this interface and fills its own error-handling mechanism with the provided information.

The following text describes how to deal with errors raised from the MapForce API in different development environments.

Visual Basic

A common way to handle errors in Visual Basic is to define an error handler. This error handler can be set with the On Error statement. Usually the handler displays an error message and does some cleanup to avoid spare references and any kind of resource leaks. Visual Basic fills its own Err object with the information from the IErrorInfo interface.

```vbnet
Sub Validate()
    'place variable declarations here

    'set error handler
    On Error GoTo ErrorHandler

    'if generation fails, program execution continues at ErrorHandler:
    objMapForce.ActiveDocument.GenerateXSLT()

    'additional code comes here

    'exit
    Exit Sub

ErrorHandler:
    MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &
        "Description: " & Err.Description)
End Sub
```

JavaScript

The Microsoft implementation of JavaScript (JScript) provides a try-catch mechanism to deal with errors raised from COM calls. It is very similar to the VisualBasic approach, in that you also declare an error object containing the necessary information.

```javascript
try {
    objMapForce.ActiveDocument.GenerateXSLT();
} catch (error) {
    var errorMessage = "Error: " + (error.number - 0) + " Description: " + error.description;
    alert(errorMessage);
}
```
function Generate() {
 // please insert variable declarations here
 try {
 objMapForce.ActiveDocument.GenerateXSLT();
 }
 catch (Error) {
 sError = Error.description;
 nErrorCode = Error.number & 0xffff;
 return false;
 }
 return true;
}

C/C++

C/C++ gives you easy access to the HRESULT of the COM call and to the IErrorInterface.

HRESULT hr;

 // Call GenerateXSLT() from the MapForce API
 if(FAILED(hr = ipDocument->GenerateXSLT()))
 {
 IErrorInfo *ipErrorInfo = Null;

 if(SUCCEEDED(::GetErrorInfo(0, &ipErrorInfo)))
 {
 BSTR bstrDescr;
 ipErrorInfo->GetDescription(&bstrDescr);

 // handle Error information
 wprintf(L"Error message:\t%s\n", bstrDescr);
 ::SysFreeString(bstrDescr);

 // release Error info
 ipErrorInfo->Release();
 }
 }
15.4 Example C# Project

After you install MapForce, an example MapForce API client project for C# is available in the directory `C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\API`.

To compile and run the example, open the solution .sln file in Visual Studio and run Debug | Start Debugging or Debug | Start Without Debugging.

Note: If you have a 64-bit operating system and are using a 32-bit installation of MapForce, add the `x86` platform in the solution's Configuration Manager and build the sample using this configuration. A new `x86` platform (for the active solution in Visual Studio) can be created in the New Solution Platform dialog (Build | Configuration Manager | Active solution platform | <New...>).

When you run the example, a Windows form is displayed, containing buttons that invoke basic MapForce operations:

- Start MapForce
- Create a new mapping design
- Open the CompletePO.mfd file from the `...\MapForceExamples` folder (note that you may need to adjust the path to point to the `\MapForceExamples` folder on your machine)
- Generate C# code in a temp directory
- Shut down MapForce

Code listing

The listing is commented for ease of understanding. The code essentially consists of a series of handlers for the buttons in the user interface shown above.

```csharp
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
```
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace WindowsFormsApplication2
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 // An instance of MapForce accessed via its automation interface.
 MapForceLib.Application MapForce;

 // Location of examples installed with MapForce
 String strExamplesFolder;

 private void Form1_Load(object sender, EventArgs e)
 {
 }

 // handler for the "Start MapForce" button
 private void StartMapForce_Click(object sender, EventArgs e)
 {
 if (MapForce == null)
 {
 Cursor.Current = Cursors.WaitCursor;

 // if we have no MapForce instance, we create one and make it visible.
 MapForce = new MapForceLib.Application();
 MapForce.Visible = true;

 // locate examples installed with MapForce.
 int majorVersionYear = MapForce.MajorVersion + 1998;
 strExamplesFolder = Environment.GetEnvironmentVariable("USERPROFILE") + "\My Documents\Altova\MapForce" + Convert.ToString(majorVersionYear) + "\MapForceExamples\";

 Cursor.Current = Cursors.Default;
 }
 else
 {
 // if we have already an MapForce instance running we toggle its visibility flag.
 }
 }

 // handler for the "Open CompletePO.mfd" button
 private void openCompletePO_Click(object sender, EventArgs e)
 {
 if (MapForce == null)
StartMapForce_Click(null, null);

// Open one of the sample files installed with the product.
MapForce.OpenDocument(strExamplesFolder + "CompletePO.mfd");

// handler for the "Create new mapping" button
private void newMapping_Click(object sender, EventArgs e)
{
 if (MapForce == null)
 {
 StartMapForce_Click(null, null);
 }
 // Create a new mapping
 MapForce.NewMapping();
}

// handler for the "Shutdown MapForce" button
// shut-down application instance by explicitly releasing the COM object.
private void shutdownMapForce_Click(object sender, EventArgs e)
{
 if (MapForce != null)
 {
 // allow shut-down of MapForce by releasing UI
 MapForce.Visible = false;
 // explicitly release COM object
 try
 {
 while (System.Runtime.InteropServices.Marshal.ReleaseComObject(MapForce) > 0);
 }
 finally
 {
 // avoid later access to this object.
 MapForce = null;
 }
 }
}

// handler for button "Generate C# Code"
private void generateCppCode_Click(object sender, EventArgs e)
{
 if (MapForce == null)
 {
 listBoxMessages.Items.Add("Start MapForce first.");
 }
 // COM errors get returned to C# as exceptions. We use a try/catch block to handle them.
 try
 {
 listBoxMessages.Items.Add("Active document "+doc.Name);
 doc.GenerateCHashCode();
 }
}
```csharp
    catch (Exception ex)
    {
        // The COM call was not successful.
        // Probably no application instance has been started or no document is
        // open.
        MessageBox.Show("COM error: " + ex.Message);
    }
}

delegate void addListBoxItem_delegate(string sText);
    // called from the UI thread
private void addListBoxItem(string sText)
    {
        listBoxMessages.Items.Add(sText);
    }
    // wrapper method to allow to call UI controls methods from a worker thread
void syncWithUIThread(Control ctrl, addListBoxItem_delegate methodToInvoke,
            String sText)
    {
        // Control.Invoke: Executes on the UI thread, but calling thread waits for
        // completion before continuing.
        // Control.BeginInvoke: Executes on the UI thread, and calling thread doesn't
        // wait for completion.
        if (ctrl.InvokeRequired)
        ctrl.BeginInvoke(methodToInvoke, new Object[] { sText });
    }

    // event handler for OnDocumentOpened event
    {
        String sText = "";
        if (i_ipDocument.Name.Length > 0)
            sText = "Document " + i_ipDocument.Name + " was opened!";
        else
            sText = "A new mapping was created.";
        // we need to synchronize the calling thread with the UI thread because
        // the COM events are triggered from a working thread
        addListBoxItem_delegate methodToInvoke = new
        addListBoxItem_delegate(addListBoxItem);
        // call syncWithUIThread with the following arguments:
        // 1 - listBoxMessages - list box control to display messages from COM events
        // 2 - methodToInvoke - a C# delegate which points to the method which will
        // be called from the UI thread
        // 3 - sText - the text to be displayed in the list box
        syncWithUIThread(listBoxMessages, methodToInvoke, sText);
    }

private void checkBoxEventOnOff_CheckedChanged(object sender, EventArgs e)
    {
        if (MapForce != null)
        {
```
if (checkBoxEventOnOff.Checked)
else
}
15.5 Example Java Project

After you install MapForce, an example MapForce API client project for Java is available in the directory C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\API.

You can test the Java example directly from the command line, using the batch file BuildAndRun.bat, or you can compile and run the example project from within Eclipse. See below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are listed below:

- AltovaAutomation.dll: Java-COM bridge: DLL part
- AltovaAutomation.jar: Java-COM bridge: Java library part
- MapForceAPI.jar: Java classes of the MapForce API
- RunMapForce.java: Java example source code
- BuildAndRun.bat: Batch file to compile and run example code from the command line prompt. Expects folder where Java Virtual Machine resides as parameter.
- .classpath: Eclipse project helper file
- .project: Eclipse project file
- MapForceAPI_JavaDoc.zip: Javadoc file containing help documentation for the Java API

What the example does
The example starts up MapForce and performs a few operations, including opening and closing documents. When done, MapForce stays open. You must close it manually.

Running the example from the command line
To run the example from the command line, open a command prompt window, go to the Java folder of the API Examples folder (see above for location), and then type:

```
buildAndRun.bat "<Path-to-the-Java-bin-folder>"
```

The Java binary folder must be that of a Java Development Kit (JDK) 7 or later installation on your computer.

Press the Return key. The Java source in RunMapForce.java will be compiled and then executed.

Loading the example in Eclipse
Open Eclipse and use the File | Import... | General | Existing Projects into Workspace command to add the Eclipse project file (.project) located in the Java folder of the API Examples folder (see above for location). The project RunMapForce will then appear in your Package Explorer or Navigator.

Select the project and then the command Run as | Java Application to execute the example.

Note: You can select a class name or method of the Java API and press F1 to get help for that class or method.
Java source code listing

The Java source code in the example file `RunMapForce.java` is listed below with comments.

```java
// access general JAVA-COM bridge classes
import java.util.Iterator;
import com.altova.automation.libs.*;

// access XMLSpy Java-COM bridge
import com.altova.automation.MapForce.*;

/**
 * A simple example that starts the COM server and performs a few operations on it.
 * Feel free to extend.
 */
public class RunMapForce
{
    public static void main(String[] args)
    {
        // an instance of the application.
        Application mapforce = null;

        // instead of COM error handling use Java exception mechanism.
        try
        {
            // Start MapForce as COM server.
            mapforce = new Application();
            // COM servers start up invisible so we make it visible
            mapforce.setVisible(true);

            // The following lines attach to the application events using a default implementation
            // for the events and override one of its methods.
            // If you want to override all document events it is better to derive your
            // listener class
            // from DocumentEvents and implement all methods of this interface.
            mapforce.addListener(new ApplicationEventsDefaultHandler()
            {
                @Override
                public void onDocumentOpened(Document i_ipDoc)
                throws AutomationException
                {
                    String name = i_ipDoc.getName();
                    if (name.length() > 0)
                        System.out.println("Document " + name + " was opened.");
                    else
                        System.out.println("A new mapping was created.");
                }
            });
        }
    }
}
// Locate samples installed with the product.
int majorVersionYear = mapforce.getMajorVersion() + 1998;
String strExamplesFolder = System.getenv("USERPROFILE") + "\Documents\Altova\MapForce" + Integer.toString(majorVersionYear) + "\MapForceExamples\";

// create a new MapForce mapping and generate c++ code
Document newDoc = mapforce.newMapping();
ErrorMarkers err1 = newDoc.generateCodeEx(ENUMProgrammingLanguage.eCpp);
display(err1);

// open CompletePO.mfd and generate c++ code
Document doc = mapforce.openDocument(strExamplesFolder + "CompletePO.mfd");
ErrorMarkers err2 = doc.generateCodeEx(ENUMProgrammingLanguage.eCpp);
display(err2);

doc.close();
doc = null;

System.out.println("Watch MapForce!");
}

try {}
{
    catch (AutomationException e)
    {
        e.printStackTrace();
    }
finally {}
{
    // Make sure that MapForce can shut down properly.
    if (mapforce != null)
        mapforce.dispose();

    // Since the COM server was made visible and still is visible, it will keep running
    // and needs to be closed manually.
    System.out.println("Now close MapForce!");
}
}

public static void display(ErrorMarkers err) throws AutomationException
{
    Iterator<ErrorMarker> itr = err.iterator();

    if (err.getCount() == 0)
        System.out.print("Code generation completed successfully.\n");

    while (itr.hasNext())
    {
        String sError = "";
        Object element = itr.next();
        if (element instanceof ErrorMarker)
            sError = ((ErrorMarker)element).getText();
        System.out.print("Error text: " + sError + "\n");
    }
}
1246

The MapForce API

15.6

JScript Examples

JScript Examples

After you install MapForce, several JScript example files are available in the directory C:
\Users\<username>\Documents\Altova\MapForce<%PRODYEAR%\MapForceExamples\API.
The example files can be run in one of two ways:
·

From the command line:
Open a command prompt window and type the name of one of the example scripts (for example,
Start.js). The Windows Scripting Host that is packaged with Windows will execute the script.

·

From Windows Explorer:
In Windows Explorer, browse for the JScript file and double-click it. The Windows Scripting Host that is
packaged with Windows will execute the script. After the script is executed, the command console
gets closed automatically.

The following example files are included:
Start.js

Start Mapforce registered as an automation server or connect to a running instance
(see Start Application 1246).

DocumentAccess.js

Shows how to open, iterate and close documents (see Simple Document Access 1247
).

GenerateCode.js

Shows how to invoke code generation using JScript (see Generate Code 1248 ).

Readme.txt

Provides basic help to run the scripts.

This documentation additionally includes a few extra JScript code listings:
·
·
·

Example: Code Generation 1250
Example: Mapping Execution 1252
Example: Project Support 1255

15.6.1

Start Application

The JScript code listing below starts the application and shuts it down. If an instance of the application is
already running, the running instance will be returned. To run the script, start it from a command prompt window
or from Windows Explorer, see also Accessing the API 1232 .
// Initialize application's COM object. This will start a new instance of the application
and
// return its main COM object. Depending on COM settings, a the main COM object of an
already
// running application might be returned.
try {
catch(err) {}

Altova MapForce 2021 Professional Edition

}

© 2020 Altova Gmb H


if( typeof( objMapForce ) == "undefined" )
{
    try {
        objMapForce = WScript.GetObject("", "MapForce_x64.Application")
    }
    catch(err)
    {
        WScript.Echo( "Can't access or create MapForce.Application" );
        WScript.Quit();
    }
}

// if newly started, the application will start without its UI visible. Set it to visible.
objMapForce.Visible = true;

WScript.Echo(objMapForce.Edition + " has successfully started.");

objMapForce.Visible = false; // will shutdown application if it has no more COM connections
//objMapForce.Visible = true;  // will keep application running with UI visible

15.6.2 Simple Document Access

The JScript listing below shows how to open documents, set a document as the active document, iterate through the open documents, and close documents.

// Initialize application's COM object. This will start a new instance of the application and return its main COM object. Depending on COM settings, a the main COM object of an already running application might be returned.
try {
} catch(err) {}

if( typeof( objMapForce ) == "undefined" )
{
    try {
        objMapForce = WScript.GetObject("", "MapForce_x64.Application")
    }
    catch(err)
    {
        WScript.Echo( "Can't access or create MapForce.Application" );
        WScript.Quit();
    }
}

// if newly started, the application will start without its UI visible. Set it to visible.
objMapForce.Visible = true;

// **************************************** code snippet for "Simple Document Access"
*************************************************

// Locate examples via USERPROFILE shell variable. The path needs to be adapted to major
release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objMapForce.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\Documents\Altova\MapForce" + majorVersionYear + "\MapForceExamples\";


// **************************** code snippet for "Simple Document Access"

// **************************** code snippet for "Iteration"

// go through all open documents using a JScript Enumerator
for (var iterDocs = new Enumerator(objMapForce.Documents); !iterDocs.atEnd(); iterDocs.moveNext())
{
    objName = iterDocs.item().Name;
    WScript.Echo("Document name: " + objName);
}

// go through all open documents using index-based access to the document collection
for (i = objMapForce.Documents.Count; i > 0; i--)
    objMapForce.Documents.Item(i).Close();

// **************************** code snippet for "Iteration"

//objMapForce.Visible = false; // will shutdown application if it has no more COM connections
objMapForce.Visible = true; // will keep application running with UI visible

The code listed above is available as a sample file (see JScript Examples). To run the script, start it from a
command prompt window or from Windows Explorer.

15.6.3  Generate Code

The JScript listing below shows how to open documents, set a document as the active document, iterate
through the open documents, and generate C++ code.

// Initialize application's COM object. This will start a new instance of the application and
// return its main COM object. Depending on COM settings, a the main COM object of an already
// running application might be returned.
try { objMapForce = WScript.GetObject("", "MapForce.Application"); } catch (err) {}
if ( typeof( objMapForce ) == "undefined" ) {
    try {
        objMapForce = WScript.GetObject("", "MapForce_x64.Application")
    } catch (err) {
        WScript.Echo( "Can't access or create MapForce.Application" );
        WScript.Quit();
    }
}

// if newly started, the application will start without its UI visible. Set it to visible.
objMapForce.Visible = true;

// ************************** code snippet for "Simple Document Access"
**************************

// Locate examples via USERPROFILE shell variable. The path needs to be adapted to major release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objMapForce.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\Documents\\Altova\\MapForce" + majorVersionYear + "\MapForceExamples\"

objMapForce.Documents.NewDocument();

// ************************** code snippet for "Simple Document Access"
**************************

// ************************** code snippet for "Iteration"
**************************

objText = "";
// go through all open documents using a JScript Enumerator and generate c++ code
for (var iterDocs = new Enumerator(objMapForce.Documents); !iterDocs.atEnd(); iterDocs.moveNext()) {
    objText += "Generated c++ code result for document " + iterDocs.item().Name + " :\n";
    objErrorMarkers = iterDocs.item().generateCodeEx(1); // ENUMProgrammingLanguage.eCpp = 1

    bSuccess = true;
    for (var iterErrorMarkers = new Enumerator(objErrorMarkers); !iterErrorMarkers.atEnd(); iterErrorMarkers.moveNext()) {
        bSuccess = false;
        objText += "\t" + iterErrorMarkers.item().Text + "\n";
    }

    if (bSuccess)
        objText += "\tCode generation completed successfully.\n";

    objText += "\n";
WScript.Echo(objText);

// go through all open documents using index-based access to the document collection
for (i = objMapForce.Documents.Count; i > 0; i--)
  objMapForce.Documents.Item(i).Close();

// **************************************** code snippet for "Iteration"
**********************************************

//objMapForce.Visible = false; // will shutdown application if it has no more COM connections
objMapForce.Visible = true; // will keep application running with UI visible

The code listed above is available as a sample file (see JScript Examples). To run the script, start it from a command prompt window or from Windows Explorer.

### 15.6.4 Generate Code (Alternative)

The following JScript example shows how to load an existing document and generate different kinds of mapping code for it.

```javascript
// ------------------- begin JScript example ---------------------
// Generate Code for existing mapping.
// works with Windows scripting host.

// -------------------- helper function -----------------------
function Exit(strErrorText)
{
 WScript.Echo(strErrorText);
 WScript.Quit(-1);
}

function ERROR(strText, objErr)
{
 if (objErr != null)
 Exit ("ERROR: " + (objErr.number & 0xffff) + ")" + objErr.description + " - " + strText);
 else
 Exit ("ERROR: " + strText);
}

// ---

// ---------------- MAIN ------------------
// ----- create the Shell and FileSystemObject of the windows scripting
try
{
 objWshShell = WScript.CreateObject("WScript.Shell");
 objFSO = WScript.CreateObject("Scripting.FileSystemObject");
```
catch(err) {
    Exit("Can't create WScript.Shell object");
}

// ----- open MapForce or access running instance and make it visible
try {
    objMapForce.Visible = true; // remove this line to perform background processing
} catch(err) { WScript.Echo("Can't access or create MapForce.Application");

// ----- open an existing mapping. adapt this to your needs!
objMapForce.OpenDocument(objFSO.GetAbsolutePathName("Test.mfd"));

// ----- access the mapping to have access to the code generation methods
var objDoc = objMapForce.ActiveDocument;

// ----- set the code generation output properties and call the code generation methods.
// ----- adapt the output directories to your needs
try {
    // ----- code generation uses some of these options
    var objOptions = objMapForce.Options;

    // ----- generate XSLT -----
    objOptions.XSLTDefaultOutputDirectory = "C:\\test\\TestCOMServer\\XSLT";
    objDoc.GenerateXSLT();

    // ----- generate Java Code -----
    objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\Java";
    objDoc.GenerateJavaCode();

    // ----- generate CPP Code, use same cpp code options as the last time -----
    objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\CPP";
    objDoc.GenerateCppCode();

    // ----- generate C# Code, use options C# code options as the last time -----
    objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\CHash";
    objDoc.GenerateCHashCode();
} catch(err) { ERROR("while generating XSL or program code", err); }

// hide MapForce to allow it to shut down
objMapForce.Visible = false;

// ----------------- end example ------------------
15.6.5  Run a Mapping

The following JScript example shows how to load an existing document with a simple mapping, access its components, set input- and output-instance file names and execute the mapping.

```javascript
/*
 * This sample file performs the following operations:
 * Load existing MapForce mapping document.
 * Find source and target component.
 * Set input and output instance filenames.
 * Execute the transformation.
 *
 * Works with Windows scripting host.
 */

// ---- general helpers ------------------------------
function Exit(message)
{
 WScript.Echo(message);
 WScript.Quit(-1);
}

function ERROR(message, err)
{
 if(err != null)
 {
 Exit("ERROR: (" + (err.number & 0xffff) + ") " + err.description + " - " + message);
 }
 else
 {
 Exit("ERROR: " + message);
 }
}

// ---- MapForce constants -----------------------
var eComponentUsageKind_Unknown = 0;
var eComponentUsageKind_Instance = 1;
var eComponentUsageKind_Input = 2;
var eComponentUsageKind_Output = 3;

// ---- MapForce helpers -----------------------
// Searches in the specified mapping for a component by name and returns it.
// If not found, throws an error.
function FindComponent(mapping, component_name)
{
 var components = mapping.Components;
 for(var i = 0 ; i < components.Count ; ++i)
 {
```
var component = components.Item( i + 1 );
if( component.Name == component_name )
    return component;
}
throw new Error( "Cannot find component with name " + component_name );
}

// Browses components in a mapping and returns the first one found acting as
// source component (i.e. having connections on its right side).
function GetFirstSourceComponent( mapping )
{
    var components = mapping.Components;
    for( var i = 0 ; i < components.Count ; ++i )
    {
        var component = components.Item( i + 1 );
        if( component.UsageKind == eComponentUsageKind_Instance &&
            component.HasOutgoingConnections )
            return component;
    }
throw new Error( "Cannot find a source component" );
}

// Browses components in a mapping and returns the first one found acting as
// target component (i.e. having connections on its left side).
function GetFirstTargetComponent( mapping )
{
    var components = mapping.Components;
    for( var i = 0 ; i < components.Count ; ++i )
    {
        var component = components.Item( i + 1 );
        if( component.UsageKind == eComponentUsageKind_Instance &&
            component.HasIncomingConnections )
            return component;
    }
throw new Error( "Cannot find a target component" );
}

function IndentTextLines( s )
{
    return "\t" + s.replace( /
/g, "\n\t" );
}

function GetAppoutputLineFullText( oAppoutputLine )
{
    var s = oAppoutputLine.GetLineText();
    var oAppoutputChildLines = oAppoutputLine.ChildLines;
}
var i;

for( i = 0 ; i < oAppoutputChildLines.Count ; ++i )
{
    oAppoutputChildLine = oAppoutputChildLines.Item( i + 1 );
    sChilds = GetAppoutputLineFullText( oAppoutputChildLine );
    s += "\n" + IndentTextLines( sChilds );
}

return s;

// Create a nicely formatted string from AppOutputLines
function GetResultMessagesString( oAppoutputLines )
{
    var s1 = "Transformation result messages:\n";
    var oAppoutputLine;
    var i;

    for( i = 0 ; i < oAppoutputLines.Count ; ++i )
    {
        oAppoutputLine = oAppoutputLines.Item( i + 1 );
        s1 += GetAppoutputLineFullText( oAppoutputLine );
        s1 += "\n";
    }

    return s1;
}

// ---- MAIN -------------------------------------
var wshShell;
var fso;
var mapforce;

// create the Shell and FileSystemObject of the windows scripting system
try {
    wshShell = WScript.CreateObject( "WScript.Shell" );
    fso = WScript.CreateObject( "Scripting.FileSystemObject" );
} catch( err )
{
    ERROR( "Can't create windows scripting objects", err );
}

// open MapForce or access currently running instance
try {
    mapforce = WScript.GetObject( "", "MapForce.Application" );
} catch( err )
{
    ERROR( "Can't access or create MapForce.Application", err );
}
try
{
    // Make MapForce UI visible. This is an API requirement for output generation.
    mapforce.Visible = true;

    // open an existing mapping.
    // *** adjust the examples path to your needs ! **************
    var sMapForceExamplesPath = fso.BuildPath({
        wshShell.SpecialFolders( "MyDocuments" ),
        "Altova\MapForce2021\MapForceExamples" );
    var sDocFilename = fso.BuildPath( sMapForceExamplesPath, "PersonList.mfd" );
    var doc = mapforce.OpenDocument( sDocFilename );

    // Find existing components by name in the main mapping.
    // Note, the names of components may not be unique as a schema component's name
    // is derived from its schema file name.
    var source_component = FindComponent( doc.MainMapping, "Employees" );
    var target_component = FindComponent( doc.MainMapping, "PersonList" );
    // If you do not know the names of the components for some reason, you could
    // use the following functions instead of FindComponent.
    //var source_component = GetFirstSourceComponent( doc.MainMapping );
    //var target_component = GetFirstTargetComponent( doc.MainMapping );

    // specify the desired input and output files.
    source_component.InputInstanceFile = fso.BuildPath( sMapForceExamplesPath,
        "Employees.xml" );
    target_component.OutputInstanceFile = fso.BuildPath( sMapForceExamplesPath,
        "test_transformation_results.xml" );

    // Perform the transformation.
    // You can use doc.GenerateOutput() if you do not need result messages.
    // If you have a mapping with more than one target component and you want
    // to execute the transformation only for one specific target component,
    // call target_component.GenerateOutput() instead.
    var result_messages = doc.GenerateOutputEx();

    var summary_info =
        "Transformation performed from " + source_component.InputInstanceFile + "\n"
        + "to " + target_component.OutputInstanceFile + "\n"
        + GetResultMessagesString( result_messages );
    WScript.Echo( summary_info );
}
} catch( err )
{
    ERROR( "Failure", err );
}

### 15.6.6 Project Tasks

The following JScript example shows how to use the MapForce API to automate tasks pertaining to MapForce projects. Before running the example, make sure to edit the variable `strSamplePath` so that it points to the `MapForceExamples` folder of your MapForce installation.
To successfully run all operations in this example below, you will need the Enterprise edition of MapForce. If you have the Professional edition, comment out the lines that insert the WebService project.

```jscript
// ///////////// global variables //////////////////////////
var objMapForce = null;
var objWshShell = null;
var objFSO = null;

// !!! adapt the following path to your needs. !!!
var strSamplePath = "C:\Users\<username>\Documents\Altova\MapForce2021\MapForceExamples\";

// // Helpers /////////////

function Exit(strErrorText)
{
 WScript.Echo(strErrorText);
 WScript.Quit(-1);
}

function ERROR(strText, objErr)
{
 if (objErr != null)
 Exit ("ERROR: (" + (objErr.number & 0xffff) + ")" + objErr.description + " - " + strText);
 else
 Exit ("ERROR: " + strText);
}

function CreateGlobalObjects ()
{
 // the Shell and FileSystemObject of the windows scripting host often useful
 try
 {
 objWshShell = WScript.CreateObject("WScript.Shell");
 objFSO = WScript.CreateObject("Scripting.FileSystemObject");
 } catch (err) {
 Exit("Can't create WScript.Shell object"); }

 // create the MapForce connection
 // if there is a running instance of MapForce (that never had a connection) - use it
 // otherwise, we automatically create a new instance
 try
 {
 } catch (err) {
 Exit("Can't access or create MapForce.Application"); }
}

// --
```
// print project tree items and their properties recursively.
// ----------------------------------------------------------
function PrintProjectTree( objProjectItemIter, strTab )
{
    while ( ! objProjectItemIter.atEnd() )
    {
        // get current project item
        objItem = objProjectItemIter.item();

        try
        {
            // ----- print common properties
            strGlobalText += strTab + "[" + objItem.Kind + "]" + objItem.Name + "\n";

            // ----- print code generation properties, if available
            try
            {
                if ( objItem.CodeGenSettings_UseDefault )
                    strGlobalText += strTab + " Use default code generation settings\n";
                else
                    strGlobalText += strTab + " code generation language is " + objItem.CodeGenSettings_Language + " output folder is " + objItem.CodeGenSettings_OutputFolder + "\n";
            }
            catch( err ) {}

            // ----- print WSDL settings, if available
            try
            {
                strGlobalText += strTab + " WSDL File is " + objItem.WSDLFile + " Qualified Name is " + objItem.QualifiedName + "\n";
            }
            catch( err ) {}
        }
        catch( ex )
        {
            strGlobalText += strTab + "[" + objItem.Kind + "]\n" }

        // ---- recurse
        PrintProjectTree( new Enumerator( objItem ), strTab + ' ' );
        objProjectItemIter.moveNext();
    }
    // ----------------------------------------------------------
    // Load example project installed with MapForce.
    // ----------------------------------------------------------
function LoadSampleProject()
{
    // close open project
    objProject = objMapForce.ActiveProject;
    if ( objProject != null )
        objProject.Close();
}
// open sample project and iterate through it.
objProject = objMapForce.OpenProject(strSamplePath + "MapForceExamples.mfp");
// dump properties of all project items
strGlobalText = '');
PrintProjectTree( new Enumerator (objProject), ' ' )
WScript.Echo( strGlobalText );

objProject.Close();
}

// ----------------------------------------------------------
// Create a new project with some folders, mappings and a
// Web service project.
// ----------------------------------------------------------
function CreateNewProject()
{
    try
    {
        // create new project and specify file to store it.
        objProject = objMapForce.NewProject(strSamplePath + "Sample.mfp");

        // create a simple folder structure
        objProject.CreateFolder( "New Folder 1");
        objFolder1 = objProject.Item(0);
        objFolder1.CreateFolder( "New Folder 2");
        objFolder2 = ( new Enumerator( objFolder1 ) ).item();   // an alternative to
        Item(0)

        // add two different mappings to folder structure
        objFolder1.AddFile( strSamplePath + "DB_Altova_SQLXML.mfd");
        objFolder2.AddActiveFile();

        // override code generation settings for this folder
        objFolder2.CodeGenSettings_UseDefault = false;
        objFolder2.CodeGenSettings_OutputFolder = strSamplePath + "SampleOutput"
        objFolder2.CodeGenSettings_Language = 1;      //C++

        // insert Web service project based on a wsdl file from the installed examples
        objProject.InsertWebService( strSamplePath + "TimeService/TimeService.wsdl",
            "TimeServiceSoap",
            true );
        objProject.Save();
        if (! objProject.Saved )
            WScript.Echo("problem occurred when saving project");

        // dump project tree
        strGlobalText = '';
        PrintProjectTree( new Enumerator (objProject), ' ' )
        WScript.Echo( strGlobalText );
    }
    catch (err)
    { ERROR("while creating new project", err ); }
// Generate code for a project's sub-tree. Mix default code
// generation parameters and overloaded parameters.
// ----------------------------------------------------------
function GenerateCodeForNewProject()
{
    // since the Web service project contains only initial mappings,
    // we generate code only for our custom folder.
    // code generation parameters from project are used for Folder1,
    // whereas Folder2 provides overwritten values.
    objFolder = objProject.Item(0);
    objFolder1.GenerateCode();
}

CreateGlobalObjects();
objMapForce.Visible = true;

LoadSampleProject();
CreateNewProject();
GenerateCodeForNewProject();

// uncomment to shut down application when script ends
// objMapForce.Visible = false;
15.7 Object Reference

This section provides reference to the objects of the MapForce COM API. The objects are described in a generic manner, since the API may be used with virtually any language that supports calling a COM object. For language-specific examples, see:

- Example C# Project
- Example Java Project
- JScript Examples

The API reference contains two main sections, each describing the interfaces and the enumeration types used in the API, respectively. The enumeration values contain both the string name and a numeric value. If your scripting environment does not support enumerations, use the number-values instead.

In .NET, for every interface of the MapForce COM automation interface, a .NET class exists with the same name. Also, COM types will be converted to the appropriate .NET type. For example, a type such as Long in the COM API would appear as System.Int32 in .NET.

In Java, note the following syntax variations:

- Classes and class names. For every interface of the MapForce automation interface, a Java class exists with the name of the interface.
- Method names. Method names on the Java interface are the same as used on the COM interfaces, but start with a small letter to conform to Java naming conventions. To access COM properties, Java methods that prefix the property name with get and set can be used. If a property does not support write-access, no setter method is available. For example, for the Name property of the Document interface, the Java methods getName and setName are available.
- Enumerations. For every enumeration defined in the automation interface, a Java enumeration is defined with the same name and values.
- Events and event handlers. For every interface in the automation interface that supports events, a Java interface with the same name plus 'Event' is available. To simplify the overloading of single events, a Java class with default implementations for all events is provided. The name of this Java class is the name of the event interface plus 'DefaultHandler'. For example:

```java
Application // Java class to access the application
ApplicationEvents // Events interface for the application
ApplicationEventsDefaultHandler // Default handler for "ApplicationEvents"
```

15.7.1 Interfaces

15.7.1.1 Application

The Application interface is the interface to a MapForce application object. It represents the main access point for the MapForce application itself. This interface is the starting point to do any further operations with MapForce or to retrieve or create other MapForce related automation objects. For information about creating an instance the Application object, see Accessing the API.

Properties to navigate the object model:
• Application
• Parent
• Options
• Project
• Documents

Application status:
• Visible
• Name
• Quit
• Status
• WindowHandle

MapForce designs:
• NewDocument
• OpenDocument
• OpenURL
• ActiveDocument

MapForce projects:
• NewProject
• OpenProject
• ActiveProject

MapForce code generation:
• HighlightSerializedMarker

Global resources:
• GlobalResourceConfig
• GlobalResourceFile

Version information:
• Edition
• IsAPISupported
• MajorVersion
• MinorVersion

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveDocument</td>
<td>Read-only. Returns the automation object of the currently active document.</td>
</tr>
<tr>
<td></td>
<td>This property returns the same as Documents.ActiveDocument.</td>
</tr>
<tr>
<td>ActiveProject</td>
<td>Read-only. Returns the automation object of the currently active project.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Application</td>
<td>Read-only.</td>
</tr>
<tr>
<td>Documents</td>
<td>Read-only.</td>
</tr>
<tr>
<td>GlobalResourceConfig</td>
<td>Gets or sets the name of the active global resource configuration file. By default, the file is called <strong>GlobalResources.xml</strong>.</td>
</tr>
<tr>
<td>GlobalResourceFile</td>
<td>Gets or sets the global resource definition file. By default, the file is called <strong>GlobalResources.xml</strong>.</td>
</tr>
<tr>
<td>IsAPISupported</td>
<td>Read-only.</td>
</tr>
<tr>
<td>LibraryImports</td>
<td>Read-only.</td>
</tr>
<tr>
<td>MajorVersion</td>
<td>Read-only.</td>
</tr>
<tr>
<td>MinorVersion</td>
<td>Read-only.</td>
</tr>
<tr>
<td>Name</td>
<td>Read-only.</td>
</tr>
<tr>
<td>Options</td>
<td>Read-only.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only.</td>
</tr>
<tr>
<td>ServicePackVersion</td>
<td>Read-only.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ServicePackVersion</td>
<td>The service pack version number of the product, e.g. 1 for 2016 R2 SP1.</td>
</tr>
<tr>
<td>Status</td>
<td>Read-only. The status of the application. It is one of the values of the ENUMApplicationStatus enumeration.</td>
</tr>
<tr>
<td>Visible</td>
<td>True if MapForce is displayed on the screen (though it might be covered by other applications or be iconized). False if MapForce is hidden. The default value for MapForce when automatically started due to a request from the automation server Application is false. In all other cases, the property is initialized to true. An application instance that is visible is said to be controlled by the user (and possibly by clients connected via the automation interface). It will only shut down due to an explicit user request. To shut down an application instance, set its visibility to false and clear all references to this instance within your program. The application instance will shut down automatically when no further COM clients are holding references to it.</td>
</tr>
<tr>
<td>WindowHandle</td>
<td>Read-only. Retrieves the application's Window Handle.</td>
</tr>
</tbody>
</table>

### Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HighlightSerializedMarker</td>
<td>Use this method to highlight a location in a mapping file that has been previously serialized. If the corresponding document has not already been loaded, it will be loaded first. See Document.GenerateCodeEx for a method to retrieve a serialized marker.</td>
</tr>
<tr>
<td>NewProject</td>
<td>Creates a new empty project. The current project is closed. The new project is accessible under ActiveProject.</td>
</tr>
<tr>
<td>NewWebServiceProject</td>
<td>Creates a new empty Web Service project. The new project is accessible under ActiveProject. This method is available in MapForce Enterprise Edition only.</td>
</tr>
<tr>
<td>OpenDocument</td>
<td>Loads a previously saved document file and continues working on it. The newly opened document becomes the ActiveDocument. This method is a shorter form of Documents.OpenDocument.</td>
</tr>
</tbody>
</table>
### Name | Description
--- | ---
**OpenProject** | Opens an existing MapForce project (*.mfp). The current project is closed. The newly opened project is accessible under `ActiveProject`.

**OpenURL** | Loads a previously saved document file from an URL location. Allows user name and password to be supplied.

**Quit** | Disconnects from MapForce to allow the application to shutdown. Calling this method is optional since MapForce keeps track of all external COM connections and automatically recognizes a disconnection. For more information on automatic shutdown see the `Visible` property.

### Events

Name	Description
**OnDocumentOpened** | This event is triggered when an existing or new document is opened. The corresponding close event is `Document.OnDocumentClosed`.

**OnProjectOpened** | This event is triggered when an existing or new project is loaded into the application. The corresponding close event is `Project.OnProjectClosed`.

**OnShutdown** | This event is triggered when the application is shutting down.

### 15.7.1.1.1 Properties

#### 15.7.1.1.1.1 ActiveDocument

Returns the automation object of the currently active document. This property returns the same as `Documents.ActiveDocument`.

**Signature**

```
ActiveDocument : Document
```

**Errors**

Error code	Description
1000 | The application object is no longer valid. |
1001 | Invalid address for the return parameter was specified. |
15.7.1.1.1.2  **ActiveProject**

Returns the automation object of the currently active project.

**Signature**

| ActiveProject : Project |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.1.3  **Application**

Retrieves the application's top-level object.

**Signature**

| Application : Application |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.1.4  **Documents**

Returns a collection of all currently open documents.

**Signature**

| Documents : Documents |
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.1.5 Edition


Signature

```
Edition : String
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.1.6 GlobalResourceConfig

Gets or sets the name of the active global resource configuration file. By default, the file is called GlobalResources.xml.

The configuration file can be renamed and saved to any location. You can therefore have multiple Global Resources XML files. However, only one of these Global Resources XML File can be active, per application, at one time, and only the definitions contained in this file will be available to the application.

Signature

```
GlobalResourceConfig : String
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.1.1.7   **GlobalResourceFile**

Gets or sets the global resource definition file. By default, the file is called GlobalResources.xml.

**Signature**

| GlobalResourceFile : String |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.1.8   **IsAPISupported**

Returns true if the API is supported in this version of MapForce.

**Signature**

| IsAPISupported : Boolean |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.1.9   **LibraryImports**

Gets a collection of imported libraries. In the MapForce graphical user interface, these correspond to entries from the Manage Libraries window, added at application level.

**Signature**

| LibraryImports : LibraryImports |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
### Error code

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.1.10 MajorVersion

Gets the major version number of MapForce. The version is calculated starting from 1998, and is incremented by one every year. For example, the major version is "18" for the release 2016.

**Signature**

```
MajorVersion : Long
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.1.11 MinorVersion

The minor version number of the product, e.g. 2 for 2006 R2 SP1.

**Signature**

```
MinorVersion : Long
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.1.12 Name
The name of the application.

<table>
<thead>
<tr>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name : <strong>String</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error code</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
</tr>
</tbody>
</table>

15.7.1.1.13 Options
This property gives access to options that configure the generation of code.

<table>
<thead>
<tr>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options : <strong>Options</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error code</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
</tr>
</tbody>
</table>

15.7.1.1.14 Parent
The parent object according to the object model.

<table>
<thead>
<tr>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent : <strong>Application</strong></td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.15  ServicePackVersion

The service pack version number of the product, e.g. 1 for 2016 R2 SP1.

Signature

ServicePackVersion : Long

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.16  Status

The status of the application. It is one of the values of the ENUMApplicationStatus enumeration.

Signature

Status : ENUMApplicationStatus

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.17  Visible

True if MapForce is displayed on the screen (though it might be covered by other applications or be iconized).

False if MapForce is hidden. The default value for MapForce when automatically started due to a request from the automation server Application is false. In all other cases, the property is initialized to true.
An application instance that is visible is said to be controlled by the user (and possibly by clients connected via the automation interface). It will only shut down due to an explicit user request. To shut down an application instance, set its visibility to false and clear all references to this instance within your program. The application instance will shut down automatically when no further COM clients are holding references to it.

### Signature

| Visible | Boolean |

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### WindowHandle

Retrieves the application's Window Handle.

### Signature

| WindowHandle | Long |

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### Methods

#### HighlightSerializedMarker

Use this method to highlight a location in a mapping file that has been previously serialized. If the corresponding document has not already been loaded, it will be loaded first. See `Document.GenerateCodeEx` for a method to retrieve a serialized marker.

### Signature

| HighlightSerializedMarker(in i_strSerializedMarker: String) -> Void |
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strSerializedMarker</td>
<td>String</td>
<td>The ErrorMarker object to highlight. Use ErrorMarker.Serialized to obtain this value.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1007</td>
<td>The string passed in i_strSerializedMarker is not recognized as a serialized MapForce marker.</td>
</tr>
<tr>
<td>1008</td>
<td>The marker points to a location that is no longer valid.</td>
</tr>
</tbody>
</table>

15.7.1.1.2.2  NewDocument

Creates a new empty document. The newly opened document becomes the ActiveDocument. This method is a shortened form of Documents.NewDocument.

Signature

NewDocument() -> Document

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.2.3  NewProject

Creates a new empty project. The current project is closed. The new project is accessible under ActiveProject.
### Signature

| NewProject() -> Project |

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.1.2.4 NewWebServiceProject

Creates a new empty Web Service project. The new project is accessible under `ActiveProject`. This method is available in MapForce Enterprise Edition only.

### Signature

| NewWebServiceProject() -> Project |

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1004</td>
<td>Error creating new project.</td>
</tr>
<tr>
<td>1005</td>
<td>Wrong edition of MapForce.</td>
</tr>
</tbody>
</table>

#### 15.7.1.1.2.5 OpenDocument

Loads a previously saved document file and continues working on it. The newly opened document becomes the `ActiveDocument`. This method is a shorter form of `Documents.OpenDocument`.

### Signature

| OpenDocument(in i_strFileName: String) -> Document |

### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td>The path of the document to open.</td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.2.6 OpenProject

Opens an existing MapForce project (*.mfp). The current project is closed. The newly opened project is accessible under `ActiveProject`.

Signature

```
OpenProject(in i_strFileName: String) -> Project
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td>The path of the project to open.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1002</td>
<td>The supplied filename is not valid.</td>
</tr>
</tbody>
</table>
15.7.1.1.2.7 OpenURL

Loads a previously saved document file from an URL location. Allows user name and password to be supplied.

Signature

```
OpenURL(in strURL: String, in strUser: String, in strPassword: String) -> Void
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strURL</td>
<td>String</td>
<td>The URL from which the document should be loaded.</td>
</tr>
<tr>
<td>strUser</td>
<td>String</td>
<td>The username required to access the URL.</td>
</tr>
<tr>
<td>strPassword</td>
<td>String</td>
<td>The password required to access the URL.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1002</td>
<td>The supplied URL is not valid.</td>
</tr>
<tr>
<td>1006</td>
<td>Error while opening the URL file.</td>
</tr>
</tbody>
</table>

15.7.1.1.2.8 Quit

Disconnects from MapForce to allow the application to shutdown. Calling this method is optional since MapForce keeps track of all external COM connections and automatically recognizes a disconnection. For more information on automatic shutdown see the Visible property.

Signature

```
Quit() -> Void
```
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>The application object is no longer valid.</td>
</tr>
<tr>
<td>1001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.1.3 Events

15.7.1.1.3.1 OnDocumentOpened

This event is triggered when an existing or new document is opened. The corresponding close event is Document.OnDocumentClosed.

Signature

```
```

15.7.1.1.3.2 OnProjectOpened

This event is triggered when an existing or new project is loaded into the application. The corresponding close event is Project.OnProjectClosed.

Signature

```
OnProjectOpened(in i_ipProject:Project) : Void
```

15.7.1.1.3.3 OnShutdown

This event is triggered when the application is shutting down.

Signature

```
OnShutdown : Void
```

15.7.1.2 AppOutputLine

Represents a message line. In contrast to ErrorMarker, its structure is more detailed and can contain a collection of child lines, therefore forming a tree of message lines.

Properties to navigate the object model:
- Application
- Parent

Line access:

- GetLineSeverity
- GetLineSymbol
- GetLineText
- GetLineTextEx
- GetLineTextWithChildren
- GetLineTextWithChildrenEx

A single `AppOutputLine` consists of one or more sub-lines. Sub-line access:

- GetLineCount

A sub-line consists of one or more cells. Cell access:

- GetCellCountInLine
- GetCellIcon
- GetCellSymbol
- GetCellText
- GetCellTextDecoration
- GetIsCellText

Below an `AppOutputLine` there can be zero, one, or more child lines which themselves are of type `AppOutputLine`, which thus form a tree structure.

Child lines access:

- ChildLines

### Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>ChildLines</td>
<td>Read-only. Returns a collection of the current line's direct child lines.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>

### Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCellCountInLine</td>
<td>Gets the number of cells in the sub-line indicated by nLine in the current <code>AppOutputLine</code>.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>GetCellIcon</td>
<td>Gets the icon of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine</td>
</tr>
<tr>
<td>GetCellSymbol</td>
<td>Gets the symbol of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine</td>
</tr>
<tr>
<td>GetCellText</td>
<td>Gets the text of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine</td>
</tr>
<tr>
<td>GetCellTextDecoration</td>
<td>Gets the decoration of the text cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine. It can be one of the ENUMAppOutputLine_TextDecoration values.</td>
</tr>
<tr>
<td>GetIsCellText</td>
<td>Returns true if the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine is a text cell.</td>
</tr>
<tr>
<td>GetLineCount</td>
<td>Gets the number of sub-lines the current line consists of.</td>
</tr>
<tr>
<td>GetLineSeverity</td>
<td>Gets the severity of the line. It can be one of the ENUMAppOutputLine_Severity values.</td>
</tr>
<tr>
<td>GetLineSymbol</td>
<td>Gets the symbol assigned to the whole line.</td>
</tr>
<tr>
<td>GetLineText</td>
<td>Gets the contents of the line as text.</td>
</tr>
<tr>
<td>GetLineTextEx</td>
<td>Gets the contents of the line as text using the specified part and line separators.</td>
</tr>
<tr>
<td>GetLineTextWithChildren</td>
<td>Gets the contents of the line including all child and descendant lines as text.</td>
</tr>
<tr>
<td>GetLineTextWithChildrenEx</td>
<td>Gets the contents of the line including all child and descendant lines as text using the specified part, line, tab and item separators.</td>
</tr>
</tbody>
</table>

15.7.1.2.1 Properties

15.7.1.2.1.1 Application

Retrieves the application's top-level object.

**Signature**

| Application : Application |
### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.2.1.2 ChildLines

Returns a collection of the current line's direct child lines.

**Signature**

```
ChildLines : AppOutputLines
```

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.2.1.3 Parent

The parent object according to the object model.

**Signature**

```
Parent : AppOutputLines
```

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.2.2 Methods

15.7.1.2.2.1 GetCellCountInLine

 Gets the number of cells in the sub-line indicated by \texttt{nLine} in the current \texttt{AppOutputLine}.

 **Signature**

 \[
 \text{GetCellCountInLine}(\texttt{in nLine:Long}) \rightarrow \texttt{Long}
 \]

 **Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nLine</td>
<td>Long</td>
<td>Specifies the zero-based index of the line.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.2 GetCellIcon (obsolete)

 Gets the icon of the cell indicated by \texttt{nCell} in the current \texttt{AppOutputLine}'s sub-line indicated by \texttt{nLine}.

 **Signature**

 \[
 \text{GetCellIcon}(\texttt{in nLine:Long, in nCell:Long}) \rightarrow \texttt{Long}
 \]

 **Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nLine</td>
<td>Long</td>
<td></td>
</tr>
<tr>
<td>nCell</td>
<td>Long</td>
<td></td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.3  GetCellSymbol

Gets the symbol of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by nLine

Signature


Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nLine</td>
<td>Long</td>
<td>Specifies the zero-based index of the line.</td>
</tr>
<tr>
<td>nCell</td>
<td>Long</td>
<td>Specifies the zero-based index of the cell.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.2.2.4  GetCellText

Gets the text of the cell indicated by \texttt{nCell} in the current \texttt{AppOutputLine}'s sub-line indicated by \texttt{nLine}.

**Signature**

\texttt{GetCellText(in nLine:Long, in nCell:Long) -> String}

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nLine</td>
<td>Long</td>
<td>Specifies the zero-based index of the line.</td>
</tr>
<tr>
<td>nCell</td>
<td>Long</td>
<td>Specifies the zero-based index of the cell.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.5  GetCellTextDecoration

Gets the decoration of the text cell indicated by \texttt{nCell} in the current \texttt{AppOutputLine}'s sub-line indicated by \texttt{nLine}. It can be one of the \texttt{ENUMAppOutputLine_TextDecoration} values.

**Signature**

\texttt{GetCellTextDecoration(in nLine:Long, in nCell:Long) -> Long}

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nLine</td>
<td>Long</td>
<td>Specifies the zero-based index of the line.</td>
</tr>
<tr>
<td>nCell</td>
<td>Long</td>
<td>Specifies the zero-based index of the cell.</td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.6  **GetIsCellText**

Returns true if the cell indicated by `nCell` in the current `AppOutputLine`'s sub-line indicated by `nLine` is a text cell.

**Signature**

```
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nLine</td>
<td>Long</td>
<td>Specifies the zero-based index of the line.</td>
</tr>
<tr>
<td>nCell</td>
<td>Long</td>
<td>Specifies the zero-based index of the cell.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.7  **GetLineCount**

Gets the number of sub-lines the current line consists of.

**Signature**

```
GetLineCount() -> Long
```
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.8 GetLineSeverity

Gets the severity of the line. It can be one of the `ENUMAppOutputLine_Severity` values.

Signature

GetLineSeverity() -> `Long`

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.9 GetLineSymbol

Gets the symbol assigned to the whole line.

Signature

GetLineSymbol() -> `AppOutputLineSymbol`

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.2.2.10  GetLineText

Gets the contents of the line as text.

**Signature**

```
GetLineText() -> String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.11  GetLineTextEx

Gets the contents of the line as text using the specified part and line separators.

**Signature**

```
GetLineTextEx(in psTextPartSeperator: String, in psLineSeperator: String) -> String
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>psTextPartSeperator</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>psLineSeperator</td>
<td>String</td>
<td></td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.2.2.12  GetLineTextWithChildren

Gets the contents of the line including all child and descendant lines as text.

**Signature**

```
GetLineTextWithChildren() -> String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.2.2.13  GetLineTextWithChildrenEx

Gets the contents of the line including all child and descendant lines as text using the specified part, line, tab and item separators.

**Signature**

```
GetLineTextWithChildrenEx(in psPartSep: String, in psLineSep: String, in psTabSep: String, in psItemSep: String) -> String
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>psPartSep</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>psLineSep</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>psTabSep</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>psItemSep</td>
<td>String</td>
<td></td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.3 AppOutputLines

Represents a collection of AppOutputLine message lines.

Properties to navigate the object model:

- Application
- Parent

Iterating through the collection:

- Count
- Item

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>Count</td>
<td>Read-only. Retrieves the number of lines in the collection.</td>
</tr>
<tr>
<td>Item</td>
<td>Read-only. Retrieves the line at index n from the collection. Indices start with 1.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>

15.7.1.3.1 Properties

15.7.1.3.1.1 Application

Retrieves the application's top-level object.

Signature

```
Application : Application
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.3.1.2 Count

Retrieves the number of lines in the collection.

**Signature**

```
Count : Integer
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.3.1.3 Item

Retrieves the line at index \( n \) from the collection. Indices start with 1.

**Signature**

```
Item(in n:Integer) : AppOutputLine
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
## 15.7.1.3.1.4 Parent

The parent object according to the object model.

**Signature**

<table>
<thead>
<tr>
<th>Parent</th>
<th>AppOutputLine</th>
</tr>
</thead>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

## 15.7.1.4 AppOutputLineSymbol

An AppOutputLineSymbol represents a link in an AppOutputLine message line which can be clicked in the MapForce Messages window. It is applied to a cell of an AppOutputLine or to the whole line itself.

**Properties to navigate the object model:**

- **Application**
- **Parent**

**Access to AppOutputLineSymbol methods:**

- **GetSymbolHREF**
- **GetSymbolID**
- **IsSymbolHREF**

**Properties**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>

**Methods**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetSymbolHREF</td>
<td>If the symbol is of type URL, returns the URL as a string.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>GetSymbolID</td>
<td>Gets the ID of the symbol.</td>
</tr>
<tr>
<td>IsSymbolHREF</td>
<td>Returns true if the symbol is of kind URL.</td>
</tr>
</tbody>
</table>

### 15.7.1.4.1 Properties

#### 15.7.1.4.1.1 Application

Retrieves the application's top-level object.

**Signature**

| Application : Application |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.4.1.2 Parent

The parent object according to the object model.

**Signature**

| Parent : Application |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.4.2 Methods

15.7.1.4.2.1 GetSymbolHREF
If the symbol is of type URL, returns the URL as a string.

Signature

| GetSymbolHREF() -> String |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.4.2.2 GetSymbolID
Gets the ID of the symbol.

Signature

| GetSymbolID() -> Long |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.4.2.3 IsSymbolHREF

Returns true if the symbol is of kind URL.

Signature

IsSymbolHREF() -> Boolean

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>4201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.5 Component

A Component represents a MapForce component.

To navigate the control, use the Application and Parent properties.

Component properties:

- HasIncomingConnections
- HasOutgoingConnections
- CanChangeInputInstanceFile
- CanChangeOutputInstanceFile
- ComponentName.
- ID
- IsParameterInputRequired
- IsParameterSequence
- Name
- Preview
- Schema
- SubType
- Type

Instance related properties:

- InputInstanceFile
- OutputInstanceFile

Datapoints:

- GetRootDatapoint

Execution:
## Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Application</strong></td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td><strong>CanChangeInputInstanceFile</strong></td>
<td>Read-only. Indicates if the input instance file name can be changed. Returns false if the component has a filename node and this node has a connection on its left (input) side, otherwise returns true. If the component does not have a filename node, false is returned.</td>
</tr>
<tr>
<td><strong>CanChangeOutputInstanceFile</strong></td>
<td>Read-only. Indicates if the output instance file name can be changed. Returns false if the component has a filename node and this node has a connection on its left (input) side, otherwise returns true. If the component does not have a filename node, false is returned.</td>
</tr>
<tr>
<td><strong>ComponentName</strong></td>
<td>Gets or sets the component's name.</td>
</tr>
<tr>
<td><strong>HasIncomingConnections</strong></td>
<td>Read-only. Indicates if the component has any incoming connections (on its left side) not including the filename node. An incoming connection on the filename node does not have any effect on the returned value.</td>
</tr>
<tr>
<td><strong>HasOutgoingConnections</strong></td>
<td>Read-only. Indicates if the component has any outgoing connections (on its right side).</td>
</tr>
<tr>
<td><strong>ID</strong></td>
<td>Read-only. Retrieves the component ID.</td>
</tr>
<tr>
<td><strong>InputInstanceFile</strong></td>
<td>Gets or sets the component's input instance file.</td>
</tr>
<tr>
<td><strong>IsParameterInputRequired</strong></td>
<td>Gets or sets, if the input parameter component requires an incoming connection on the function call component of the user-defined function this input parameter component is in. This property works only for components, which are input parameter components.</td>
</tr>
<tr>
<td><strong>IsParameterSequence</strong></td>
<td>Gets or sets, if the input or output parameter component supports sequences. This property works only for components, which are input or output parameter components.</td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>Read-only.</td>
</tr>
</tbody>
</table>

- GenerateOutput
### Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Gets the component's name.</td>
</tr>
</tbody>
</table>
| OutputInstanceFile | Gets or sets the component's output instance file.  
Trying to access the OutputInstanceFile of a component via the API does not return any data if the "File" connector of the component has been connected to another item in the mapping. |
| Parent        | Read-only. 
The parent object according to the object model. |
| Preview       | Gets or sets if the component is the current preview component.  
This property works only for components, which are target components in the document's main mapping. Only one target component in the main mapping can be the preview component at any time.  
When setting this property, it is only possible to set it to true. This then will also implicitly set the Preview property of all other components to false.  
If there is just a single target component in the main mapping, it is also the preview component. |
| Schema        | Read-only. 
Retrieves the component's schema file name. |
| SubType       | Read-only. 
Retrieves the component's subtype. |
| Type          | Read-only. 
Retrieves the component's type. |
| UsageKind     | Read-only. 
Retrieves the component's usage kind. |

### Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenerateOutput</td>
<td>Generates the output file(s) defined in the mapping for the current component only, using a MapForce internal mapping language. The name(s) of the output file(s) are defined as property of the current component which is the output item in the mapping for this generation process.</td>
</tr>
<tr>
<td>GetRootDatapoint</td>
<td>Gets a root datapoint on the left (input) or right (output) side of a component. To access children and descendants, the Datapoint object provides further methods.</td>
</tr>
</tbody>
</table>
15.7.1.5.1 Properties

15.7.1.5.1.1 Application
Retrieves the application's top-level object.

Signature

| Application | Application |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.5.1.2 CanChangeInputInstanceFile
Indicates if the input instance file name can be changed.

Returns false if the component has a filename node and this node has a connection on its left (input) side, otherwise returns true. If the component does not have a filename node, false is returned.

Signature

| CanChangeInputInstanceFile | Boolean |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.5.1.3 CanChangeOutputInstanceFile
Indicates if the output instance file name can be changed.

Returns false if the component has a filename node and this node has a connection on its left (input) side, otherwise returns true.
If the component does not have a filename node, false is returned.
CanChangeOutputInstanceFile : Boolean

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### ComponentName

15.7.1.5.1.4  ComponentName

Gets or sets the component's name.

Signature

ComponentName : String

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1246</td>
<td>The component does not support setting its name.</td>
</tr>
<tr>
<td>1247</td>
<td>Invalid component name.</td>
</tr>
</tbody>
</table>

### HasIncomingConnections

15.7.1.5.1.5  HasIncomingConnections

Indicates if the component has any incoming connections (on its left side) not including the filename node. An incoming connection on the filename node does not have any effect on the returned value.

Signature

HasIncomingConnections : Boolean
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.6 HasOutgoingConnections

Indicates if the component has any outgoing connections (on its right side).

**Signature**

| HasOutgoingConnections : Boolean |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.7 ID

Retrieves the component ID.

**Signature**

| ID : Long |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.5.1.8  **InputInstanceFile**
Gets or sets the component's input instance file.

**Signature**

\[
\text{InputInstanceFile} : \text{String}
\]

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.5.1.9  **IsParameterInputRequired**
Gets or sets, if the input parameter component requires an ingoing connection on the function call component of the user-defined function this input parameter component is in. This property works only for components, which are input parameter components.

**Signature**

\[
\text{IsParameterInputRequired} : \text{Boolean}
\]

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1232</td>
<td>This operation works only for an input parameter component.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
</tbody>
</table>

15.7.1.5.1.10  **IsParameterSequence**
Gets or sets, if the input or output parameter component supports sequences. This property works only for components, which are input or output parameter components.
### Signature

| IsParameterSequence : Boolean |

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1233</td>
<td>This operation works only for an input or output parameter component.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.11 Name

Gets the component’s name.

#### Signature

| Name : String |

#### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.12 OutputInstanceFile

Gets or sets the component’s output instance file.

*Trying to access the `OutputInstanceFile` of a component via the API does not return any data if the “File” connector of the component has been connected to another item in the mapping.*

#### Signature

| OutputInstanceFile : String |
## Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.13 Parent

The parent object according to the object model.

### Signature

```plaintext
Parent : Mapping
```

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.14 Preview

Gets or sets if the component is the current preview component.

This property works only for components, which are target components in the document's main mapping. Only one target component in the main mapping can be the preview component at any time.

When setting this property, it is only possible to set it to true. This then will also implicitly set the Preview property of all other components to false.

If there is just a single target component in the main mapping, it is also the preview component.

### Signature

```plaintext
Preview : Boolean
```

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1234</td>
<td>Only a target component in the main mapping can be set as preview component.</td>
</tr>
<tr>
<td>1235</td>
<td>A component cannot be set as non-preview component. Set another component as preview component instead.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.15 Schema

Retrieves the component's schema file name.

**Signature**

```
| Schema : String |
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.5.1.16 SubType

Retrieves the component's subtype.

**Signature**

```
| SubType : ENUMComponentSubType |
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.5.1.17  Type
Retrieves the component's type.

Signature

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUMComponentType</td>
</tr>
</tbody>
</table>

15.7.1.5.1.18  UsageKind
Retrieves the component's usage kind.

Signature

<table>
<thead>
<tr>
<th>UsageKind</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUMComponentUsageKind</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.5.2  Methods

15.7.1.5.2.1  GenerateOutput
Generates the output file(s) defined in the mapping for the current component only, using a MapForce internal mapping language. The name(s) of the output file(s) are defined as property of the current component which is the output item in the mapping for this generation process.

Signature

| GenerateOutput:out pbError:Boolean -> AppOutputLines |

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pbError</td>
<td>Boolean</td>
<td>This is an output-only parameter. You will receive a value only if the calling language supports output</td>
</tr>
</tbody>
</table>
The MapForce API

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>parameters. If not, the value you pass here will remain unchanged when the function has finished.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1248</td>
<td>Generating output is only supported when the graphical user interface is visible.</td>
</tr>
</tbody>
</table>

15.7.1.5.2.2 **GetRootDatapoint**

Gets a root datapoint on the left (input) or right (output) side of a component. To access children and descendants, the Datapoint object provides further methods.

Signature

```
GetRootDatapoint(in side: ENUMComponentDatapointSide, in strNamespace: String, in strLocalName: String, in strParameterName: String) -> Datapoint
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>side</td>
<td>ENUMComponentDatapointSide</td>
<td>The side parameter indicates if an input, or output, datapoint of a component is to be retrieved.</td>
</tr>
<tr>
<td>strNamespace</td>
<td>String</td>
<td>The specified namespace and local name, indicate the specific name of the node whose datapoint is to be retrieved. For components with structural information such as schema components, you will have to provide the namespace together with the local name, or you can just pass an empty string for the namespace. File-based components like the schema component contain a special node on their root, the</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>filename node. There, GetRootDatapoint can only find the filename node. You will have to pass namespace &quot;<a href="http://www.altova.com/mapforce">http://www.altova.com/mapforce</a>&quot; and local name &quot;FileInstance&quot; to retrieve a datapoint of this node.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strLocalName</td>
<td>String</td>
<td>See above.</td>
</tr>
<tr>
<td>strParameterName</td>
<td>String</td>
<td>The specified parameter name should be an empty string unless the component in question is a function call component. Since a user-defined function might contain input or output parameters of the same structure, the function call component calling this user-defined function can have more than one root node with an identical namespace and local name. They will then differ only by their parameter names, which are in fact the names of the according parameter components in the user-defined function mapping itself. It is not mandatory to specify the parameter name, though. In that case, the method will return the first root datapoint matching the specified namespace and local name.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1248</td>
<td>Datapoint not found.</td>
</tr>
</tbody>
</table>
15.7.1.6 Components

Represents a collection of Component objects.

To navigate the object model, use the following properties:

- Application
- Parent

To iterate through the collection:

- Count
- Item

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>Count</td>
<td>Read-only. Retrieves the number of components in the collection.</td>
</tr>
<tr>
<td>Item</td>
<td>Read-only. Retrieves the component at index ( n ) from the collection. Indices start with 1.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>

15.7.1.6.1 Properties

15.7.1.6.1.1 Application

Retrieves the application's top-level object.

Signature

```
Application : Application
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
### 15.7.1.6.1.2 Count
Retrieves the number of components in the collection.

**Signature**
```
Count : Integer
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.6.1.3 Item
Retrieves the component at index \( n \) from the collection. Indices start with 1.

**Signature**
```
Item(in n:Integer) : Component
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.6.1.4 Parent

The parent object according to the object model.

Signature

| Parent : Mapping |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.7 Connection

A Connection object represents a connector between two components.

To navigate the object model, use the following properties:

- Application
- Parent

To get or set the connection's type, use ConnectionType.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>ConnectionType</td>
<td>Gets or sets the connection's type.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>
15.7.1.7.1 Properties

15.7.1.7.1.1 Application
Retrieves the application's top-level object.

Signature

| Application : Application |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.7.1.2 ConnectionType
Gets or sets the connection's type.

Signature

| ConnectionType : ENUMConnectionType |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>2102</td>
<td>Changing the document is not allowed. It is read-only.</td>
</tr>
<tr>
<td>2103</td>
<td>Failed changing connection type.</td>
</tr>
</tbody>
</table>
15.7.1.7.1.3 Parent

The parent object according to the object model.

Signature

| Parent | Mapping |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2101</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.8 Datapoint

A Datapoint object represents an input or output icon of a component.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetChild</td>
<td>Scans for a direct child datapoint of the current datapoint, by namespace and local name.</td>
</tr>
</tbody>
</table>

If a schema component has elements that contain mixed content, each displays an additional child node, the so-called text() node. To retrieve a datapoint of a text() node, you will have to pass an empty string in strNamespace as well as "#text" in strLocalName and eSearchDatapointElement in searchFlags.
15.7.1.8.1 Properties

15.7.1.8.1.1 Application
Retrieves the application’s top-level object.

**Signature**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.8.1.2 Parent
The parent object according to the object model.

**Signature**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.8.2 Methods

15.7.1.8.2.1 GetChild
Scans for a direct child datapoint of the current datapoint, by namespace and local name.

If a schema component has elements that contain mixed content, each displays an additional child node, the so-called text() node. To retrieve a datapoint of a text() node, you will have to pass an empty string in strNamespace as well as "#text" in strLocalName and eSearchDatapointElement in searchFlags.
GetChild(in strNamespace: String, in strLocalName: String, in searchFlags: ENUMSearchDatapointFlags, -> Datapoint)

- **strNamespace**: String
  - The namespace of the direct child datapoint.
- **strLocalName**: String
  - The name of the direct child datapoint.
- **searchFlags**: ENUMSearchDatapointFlags
  - Search flags can be passed as combination of values (combined using binary OR) of the ENUMSearchDatapointFlags enumeration.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2001</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>2002</td>
<td>Datapoint not found.</td>
</tr>
</tbody>
</table>

### 15.7.1.9 Document

A **Document** object represents a MapForce document (a loaded MFD file). A document contains a main mapping and zero or more local user-defined-function mappings.

To navigate the object model, use the following properties:

- **Application**
- **Parent**

For file handling, use:

- **Activate**
- **Close**
- **FullName**
- **Name**
- **Path**
- **Saved**
For mapping handling, use:

- MainMapping
- Mappings
- CreateUserDefinedFunction

For component handling, use:

- FindComponentByID

For code generation, use:

- OutputSettings_ApplicationName
- JavaSettings_BasePackageName
- GenerateCHashCode
- GenerateCodeEx
- GenerateCppCode
- GenerateJavaCode
- GenerateXQuery
- GenerateXSLT
- GenerateXSLT2
- HighlightSerializedMarker

For mapping execution, use:

- GenerateOutput
- GenerateOutputEx

View access:

- MapForceView

Obsolete:

- OutputSettings_Encoding

### Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>FullName</td>
<td>Path and name of the document file.</td>
</tr>
<tr>
<td>JavaSettings_BasePackageName</td>
<td>Sets or retrieves the base package name used when generating Java code. In the MapForce graphical user interface, this setting is available in the Mapping Settings dialog box (right-click the mapping and select Mapping Settings from the context menu).</td>
</tr>
<tr>
<td>LibraryImports</td>
<td>Read-only.</td>
</tr>
</tbody>
</table>

© 2020 Altova GmbH
## Name Reference

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Read-only. Name of the document file without file path.</td>
</tr>
<tr>
<td>MainMapping</td>
<td>Read-only. Retrieves the main mapping of the document.</td>
</tr>
<tr>
<td>MapForceView</td>
<td>Read-only. This property gives access to functionality specific to the MapForce view.</td>
</tr>
<tr>
<td>Mappings</td>
<td>Read-only. Returns a collection of mappings contained in the document.</td>
</tr>
<tr>
<td>OutputSettings_ApplicationName</td>
<td>Sets or retrieves the application name available in the Mapping Settings dialog box.</td>
</tr>
<tr>
<td>OutputSettings_Encoding</td>
<td>This property is no longer supported. Mapping output encoding settings do no longer exist. Components have individual output encoding settings.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
<tr>
<td>Path</td>
<td>Read-only. Path of the document file without name.</td>
</tr>
<tr>
<td>Saved</td>
<td>Read-only. True if the document was not modified since the last save operation, false otherwise.</td>
</tr>
</tbody>
</table>

## Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate</td>
<td>Makes this document the active document.</td>
</tr>
<tr>
<td>Close</td>
<td>Closes the document without saving.</td>
</tr>
<tr>
<td>CreateUserDefinedFunction</td>
<td>Creates a user defined function in the current document.</td>
</tr>
<tr>
<td>FindComponentByID</td>
<td>Searches in the whole document, also all its mappings, for the component with the specified id.</td>
</tr>
<tr>
<td>GenerateCHashCode</td>
<td>Generates C# code that will perform the mapping. Uses the properties defined in Application.Options to configure code generation.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>GenerateCodeEx</strong></td>
<td>Generates code that will perform the mapping. The parameter <code>i_nLanguage</code> specifies the target language. The method returns an object that can be used to enumerate all messages created by the code generator. These are the same messages that get displayed in the Messages window of MapForce.</td>
</tr>
<tr>
<td><strong>GenerateCppCode</strong></td>
<td>Generates C++ code that will perform the mapping. Uses the properties defined in <code>Application.Options</code> to configure code generation.</td>
</tr>
<tr>
<td><strong>GenerateJavaCode</strong></td>
<td>Generates Java code that will perform the mapping. Uses the properties defined in <code>Application.Options</code> to configure code generation.</td>
</tr>
<tr>
<td><strong>GenerateOutput</strong></td>
<td>Generates all output files defined in the mapping using a MapForce internal mapping language. The names of the output files are defined as properties of the output items in the mapping.</td>
</tr>
<tr>
<td><strong>GenerateOutputEx</strong></td>
<td>Generates all output files defined in the mapping using a MapForce internal mapping language. The names of the output files are defined as properties of the output items in the mapping. This method is identical to <code>GenerateOutput</code> except for its return value containing the resulting messages, warnings and errors arranged as trees of <code>AppOutputLines</code>.</td>
</tr>
<tr>
<td><strong>GenerateXQuery</strong></td>
<td>Generates mapping code as XQuery. Uses the properties defined in <code>Application.Options</code> to configure code generation.</td>
</tr>
<tr>
<td><strong>GenerateXSLT</strong></td>
<td>Generates mapping code as XSLT. Uses the properties defined in <code>Application.Options</code> to configure code generation.</td>
</tr>
<tr>
<td><strong>GenerateXSLT2</strong></td>
<td>Generates mapping code as XSLT2. Uses the properties defined in <code>Application.Options</code> to configure code generation.</td>
</tr>
<tr>
<td><strong>HighlightSerializedMarker</strong></td>
<td>Use this method to highlight a location in a mapping file that has been previously serialized. If the corresponding document is not already loaded, it will be loaded first. See <code>GenerateCodeEx</code> for a method to retrieve a serialized marker.</td>
</tr>
<tr>
<td><strong>Save</strong></td>
<td>Saves the document to the file defined by <code>Document.FullName</code>.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SaveAs</td>
<td>Saves the document to the specified file name, and sets Document.FullName to this value if the save operation was successful.</td>
</tr>
</tbody>
</table>

### Events

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnDocumentClosed</td>
<td>This event is triggered when a document is closed. The document object passed into the event handler should not be accessed. The corresponding open event is Application.OnDocumentOpened.</td>
</tr>
<tr>
<td>OnModifiedFlagChanged</td>
<td>This event is triggered when a document's modification status changes.</td>
</tr>
</tbody>
</table>

#### 15.7.1.9.1 Properties

#### 15.7.1.9.1.1 Application

Retrieves the application's top-level object.

**Signature**

```
Application : Application
```

#### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.9.1.2  **FullName**
Path and name of the document file.

Signature

| FullName : String |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.1.3  **JavaSettings_BasePackageName**
Sets or retrieves the base package name used when generating Java code. In the MapForce graphical user interface, this setting is available in the Mapping Settings dialog box (right-click the mapping and select Mapping Settings from the context menu).

Signature

| JavaSettings_BasePackageName : String |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.1.4  **LibraryImports**
Gets a collection of imported libraries. In the MapForce graphical user interface, these correspond to entries from the Manage Libraries window, added at document level.

Signature

| LibraryImports : LibraryImports |
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.1.5  MainMapping

Retrieves the main mapping of the document.

Signature

```
MainMapping : Mapping
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.1.6  MapForceView

This property gives access to functionality specific to the MapForce view.

Signature

```
MapForceView : MapForceView
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.9.1.7  Mappings

Returns a collection of mappings contained in the document.

Signature

```cpp
Mappings : Mappings
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.1.8  Name

Name of the document file without file path.

Signature

```cpp
Name : String
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.1.9  OutputSettings_ApplicationName

Sets or retrieves the application name available in the Mapping Settings dialog box (To display this dialog box in MapForce, right-click the mapping and select Mapping Settings from the context menu).

Signature

```cpp
OutputSettings_ApplicationName : String
```
### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.9.1.10 OutputSettings_Encoding (obsolete)

This property is no longer supported. Mapping output encoding settings do no longer exist. Components have individual output encoding settings.

**Signature**

```
OutputSettings_Encoding : String
```

#### 15.7.1.9.1.11 Parent

The parent object according to the object model.

**Signature**

```
Parent : Documents
```

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.9.1.12 Path

Path of the document file without name.

**Signature**

```
Path : String
```
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.13   Saved

*True* if the document was not modified since the last save operation, *false* otherwise.

Signature

`Saved : Boolean`

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.2   Methods

15.7.1.9.2.1   Activate

Makes this document the active document.

Signature

`Activate() -> Void`

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
15.7.1.9.2.2  Close
Closes the document without saving.

Signature

| Close() | Void |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.3  CreateUserDefinedFunction
Creates a user defined function in the current document.

Signature

CreateUserDefinedFunction(in strFunctionName:String, in strLibraryName:String, in strSyntax:String, in strDetails:String, in bInlinedUse:Boolean) -> Mapping

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strFunctionName</td>
<td>String</td>
<td>The name of the function.</td>
</tr>
<tr>
<td>strLibraryName</td>
<td>String</td>
<td>The name of the library to which this function belongs.</td>
</tr>
<tr>
<td>strSyntax</td>
<td>String</td>
<td>A string that describes the syntax of this function (this is for information purpose only).</td>
</tr>
<tr>
<td>strDetails</td>
<td>String</td>
<td>A description of this function.</td>
</tr>
<tr>
<td>bInlinedUse</td>
<td>Boolean</td>
<td>Boolean flag that specifies if the function has inlined use.</td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1208</td>
<td>Failed creating user-defined function.</td>
</tr>
<tr>
<td>1209</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.4  FindComponentByID

Searches in the whole document, also all its mappings, for the component with the specified id.

Signature

```csharp
FindComponentByID(in nID: Unsigned Long) -> Component
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nID</td>
<td>Unsigned Long</td>
<td>The ID of the component to search for.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.5  GenerateCHashCode

Generates C# code that will perform the mapping. Uses the properties defined in `Application.Options` to configure code generation.

Signature

```csharp
GenerateCHashCode() -> Void
```
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1205</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.6 GenerateCodeEx

Generates code that will perform the mapping. The parameter `i_nLanguage` specifies the target language. The method returns an object that can be used to enumerate all messages created by the code generator. These are the same messages that get displayed in the Messages window of MapForce.

Signature

```
GenerateCodeEx(in i_nLanguage:ENUMProgrammingLanguage) -> ErrorMarkers
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_nLanguage</td>
<td>ENUMProgrammingLanguage</td>
<td>Specifies the target code generation language.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1205</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.7 GenerateCppCode

Generates C++ code that will perform the mapping. Uses the properties defined in `Application.Options` to configure code generation.

Signature

```
GenerateCppCode() -> Void
```
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1205</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.8 GenerateJavaCode

Generates Java code that will perform the mapping. Uses the properties defined in Application.Options to configure code generation.

Signature

GenerateJavaCode() -> Void

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1205</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.9 GenerateOutput

Generates all output files defined in the mapping using a MapForce internal mapping language. The names of the output files are defined as properties of the output items in the mapping.

Note: This method can only be used when the MapForce (running as a COM server) main window is visible, or is embedded with a graphical user interface. If the method is called while MapForce is not visible, then an error will occur.

Signature

GenerateOutput() -> Void
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1206</td>
<td>Error during execution of mapping algorithm.</td>
</tr>
<tr>
<td>1210</td>
<td>Generating output is only supported when the graphical user interface is visible.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.10  GenerateOutputEx

Generates all output files defined in the mapping using a MapForce internal mapping language. The names of the output files are defined as properties of the output items in the mapping. This method is identical to GenerateOutput except for its return value containing the resulting messages, warnings and errors arranged as trees of AppOutputLines.

Note: This method can only be used when the MapForce (running as a COM server) main window is visible, or is embedded with a graphical user interface. If the method is called while MapForce is not visible, then an error will occur.

Signature

GenerateOutputEx() -> AppOutputLines

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1206</td>
<td>Error during execution of mapping algorithm.</td>
</tr>
<tr>
<td>1210</td>
<td>Generating output is only supported when the graphical user interface is visible.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.11  GenerateXQuery

Generates mapping code as XQuery. Uses the properties defined in Application.Options to configure code generation.

Signature

GenerateXQuery() -> Void
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1204</td>
<td>Error during XSLT/XSLT2/XQuery code generation.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.12 GenerateXSLT

Generates mapping code as XSLT. Uses the properties defined in Application.Options to configure code generation.

Signature

GenerateXSLT() -> Void

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1204</td>
<td>Error during XSLT/XSLT2/XQuery code generation.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.13 GenerateXSLT2

Generates mapping code as XSLT2. Uses the properties defined in Application.Options to configure code generation.

Signature

GenerateXSLT2() -> Void

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
### 15.7.1.9.2.14 HighlightSerializedMarker

Use this method to highlight a location in a mapping file that has been previously serialized. If the corresponding document is not already loaded, it will be loaded first. See GenerateCodeEx for a method to retrieve a serialized marker.

**Signature**

```csharp
HighlightSerializedMarker(in i_strSerializedMarker: String) -> Void
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strSerializedMarker</td>
<td>String</td>
<td>The ErrorMarker object to highlight. Use ErrorMarker.Serialized to obtain this value.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1204</td>
<td>Error during XSLT/XSLT2/XQuery code generation.</td>
</tr>
</tbody>
</table>

### 15.7.1.9.2.15 Save

Saves the document to the file defined by Document.FullName.

**Signature**

```csharp
Save() -> Void
```
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.2.16  SaveAs

Saves the document to the specified file name, and sets `Document.FullName` to this value if the save operation was successful.

Signature

```csharp
SaveAs(in i_strFileName: String) -> Void
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td>Specifies the path where to save the document.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.9.3  Events

15.7.1.9.3.1  OnDocumentClosed

This event is triggered when a document is closed. The document object passed into the event handler should not be accessed. The corresponding open event is `Application.OnDocumentOpened`.

Signature

```csharp
```
15.7.1.9.3.2 OnModifiedFlagChanged

This event is triggered when a document's modification status changes.

Signature

| OnModifiedFlagChanged(in i_bIsModified: Boolean) : Void |

15.7.1.10 Documents

Represents a collection of Document objects.

Properties to navigate the object model:

- Application
- Parent

Open and create mappings:

- OpenDocument
- NewDocument

Iterating through the collection:

- Count
- Item
- ActiveDocument

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveDocument</td>
<td>Read-only. Retrieves the active document. If no document is open, null is returned.</td>
</tr>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>Count</td>
<td>Read-only. Retrieves the number of documents in the collection.</td>
</tr>
<tr>
<td>Item</td>
<td>Read-only. Retrieves the document at index n from the collection. Indices start with 1.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>
## Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NewDocument</strong></td>
<td>Creates a new document, adds it to the end of the collection, and makes it the active document.</td>
</tr>
<tr>
<td><strong>OpenDocument</strong></td>
<td>Opens an existing mapping document (*.mfd). Adds the newly opened document to the end of the collection and makes it the active document.</td>
</tr>
</tbody>
</table>

### 15.7.1.10.1 Properties

#### 15.7.1.10.1.1 ActiveDocument

Retrieves the active document. If no document is open, null is returned.

**Signature**

`ActiveDocument : Document`

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1601</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.10.1.2 Application

Retrieves the application's top-level object.

**Signature**

`Application : Application`

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1601</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.10.1.3  **Count**  
Retrieves the number of documents in the collection.

**Signature**  

<table>
<thead>
<tr>
<th>Count : Integer</th>
</tr>
</thead>
</table>

**Errors**  

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1601</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.10.1.4  **Item**  
Retrieves the document at index \( n \) from the collection. Indices start with 1.

**Signature**  

<table>
<thead>
<tr>
<th>Item( \text{in } n: \text{Integer} ) : Document</th>
</tr>
</thead>
</table>

**Errors**  

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1601</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.10.1.5  **Parent**  
The parent object according to the object model.

**Signature**  

<table>
<thead>
<tr>
<th>Parent : Application</th>
</tr>
</thead>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1601</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.10.2 Methods

15.7.1.10.2.1 NewDocument

Creates a new document, adds it to the end of the collection, and makes it the active document.

Signature

```plaintext
NewDocument() -> Document
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1601</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.10.2.2 OpenDocument

Opens an existing mapping document (*.mfd). Adds the newly opened document to the end of the collection and makes it the active document.

Signature

```plaintext
OpenDocument(in strPath: String) -> Document
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strPath</td>
<td>String</td>
<td>The path of the mapping file.</td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1601</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.11 ErrorMarker

Represents a simple message line. Unlike AppOutputLine objects, error markers do not have a hierarchical structure.

Properties to navigate the object model:

- Application
- Parent

Access to message information:

- DocumentFileName
- ErrorLevel
- Highlight
- Serialization
- Text

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>DocumentFileName</td>
<td>Read-only. Retrieves the name of the mapping file that the error marker is associated with.</td>
</tr>
<tr>
<td>ErrorLevel</td>
<td>Read-only. Retrieves the severity of the error.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
<tr>
<td>Serialization</td>
<td>Read-only. Serialize error marker into a string. Use this string in calls to Application.HighlightSerializedMarker or Document.HighlightSerializedMarker to highlight the marked item in the mapping. The string can be persisted and used in other instantiations of MapForce or its Control.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>Text</strong></td>
<td>Read-only. Retrieves the message text.</td>
</tr>
</tbody>
</table>

**Methods**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Highlight</strong></td>
<td>Highlights the item that the error marker is associated with. If the corresponding document is not open, it will be opened.</td>
</tr>
</tbody>
</table>

15.7.1.11.1 Properties

15.7.1.11.1.1 Application

Retrieves the application's top-level object.

**Signature**

```
Application : Application
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1901</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.11.1.2 DocumentFileName

Retrieves the name of the mapping file that the error marker is associated with.

**Signature**

```
DocumentFileName : String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1901</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.11.1.3  **ErrorLevel**

Retrieves the severity of the error.

**Signature**

```
ErrorLevel : ENUMCodeGenErrorLevel
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1901</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.11.1.4  **Parent**

The parent object according to the object model.

**Signature**

```
Parent : ErrorMarkers
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1901</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.11.1.5  **Serialization**

Serialize error marker into a string. Use this string in calls to `Application.HighlightSerializedMarker` or `Document.HighlightSerializedMarker` to highlight the marked item in the mapping. The string can be persisted and used in other instantiations of MapForce or its Control.
Signature

Serialization : String

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1901</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.11.1.6  Text

Retrieves the message text.

Signature

Text : String

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1901</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.11.2  Methods

15.7.11.2.1  Highlight

Highlights the item that the error marker is associated with. If the corresponding document is not open, it will be opened.

Signature

Highlight() -> Void

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1901</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1008</td>
<td>The marker points to a location that is no longer valid.</td>
</tr>
</tbody>
</table>

### 15.7.1.12 ErrorMarkers

Represents a collection of `ErrorMarker` objects.

Properties to navigate the object model:

- Application
- Parent

Iterating through the collection:

- Count
- Item

#### Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application’s top-level object.</td>
</tr>
<tr>
<td>Count</td>
<td>Read-only. Retrieves the number of error markers in the collection.</td>
</tr>
<tr>
<td>Item</td>
<td>Read-only. Retrieves the error marker at index ( n ) from the collection. Indices start with 1.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
</tbody>
</table>
15.7.1.12.1 Properties

15.7.1.12.1.1 Application
Retrieves the application's top-level object.

Signature

```
Application : Application
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1801</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.12.1.2 Count
Retrieves the number of error markers in the collection.

Signature

```
Count : Integer
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1801</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.12.1.3  Item
Retrieves the error marker at index \( n \) from the collection. Indices start with 1.

Signature

| Item(in \( n: \) Integer) : ErrorMarker |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1801</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.12.1.4  Parent
The parent object according to the object model.

Signature

| Parent : Application |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1801</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.13  LibraryImport
A LibraryImport represents an imported library file (an entry from the Manage Libraries window).

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top level object.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. Retrieves the parent object, according to the object model.</td>
</tr>
</tbody>
</table>
### Name | Description
--- | ---
Path | Read-only. Gets the path of the imported library.
SaveRelativePath | When you save the document, this property specifies whether the library path should be saved as absolute or relative. When `true`, the path of the library will be relative to the document. When `false`, the library path will be absolute.

Do not rely on this property to determine whether the path is absolute or relative, since the path may have been changed (either from the user interface or via API) since the document was loaded from the `.mfd` file.

If you set this property (either via API or via user interface), the "Manage Libraries" window does immediately show the correct path's state in the user interface. Internally, however, the `Path` of the `ImportedLibrary` object will not be changed until the document is saved.

Libraries imported globally cannot be saved with a relative path. Only libraries imported at document level can.

---

15.7.1.13.1 Properties

15.7.1.13.1.1 Application

Retrieves the application's top level object.

**Signature**

Application : Application

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.13.1.2  Parent
Retrieves the parent object, according to the object model.

Signature

```
Parent : LibraryImports
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.13.1.3  Path
Gets the path of the imported library.

Signature

```
Path : String
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.13.1.4  SaveRelativePath
When you save the document, this property specifies whether the library path should be saved as absolute or relative. When `true`, the path of the library will be relative to the document. When `false`, the library path will be absolute.

Do not rely on this property to determine whether the path is absolute or relative, since the path may have been changed (either from the user interface or via API) since the document was loaded from the .mfd file.

If you set this property (either via API or via user interface), the "Manage Libraries" window does immediately show the correct path’s state in the user interface. Internally, however, the `Path` of the `ImportedLibrary` object will not be changed until the document is saved.
Libraries imported globally cannot be saved with a relative path. Only libraries imported at document level can.

Signature

SaveRelativePath : Boolean

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>2502</td>
<td>Global imports cannot be saved with a relative path.</td>
</tr>
</tbody>
</table>

15.7.1.14 LibraryImports

Represents a collection of imported libraries (LibraryImport objects). Use the Application and Parent properties to navigate the object model. Use the Count and Item properties to iterate through the collection. You can get this collection as follows:

- Locally (at document level), through the Document.LibraryImports property
- Globally (at application level), through the Application.LibraryImports property.

If you get the LibraryImports collection from the application object, the Parent property of the collection will be null.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Gets the application's top level object.</td>
</tr>
<tr>
<td>Count</td>
<td>Read-only. Gets the count of LibraryImport objects in this collection.</td>
</tr>
<tr>
<td>Item</td>
<td>Read-only. Retrieves a library entry at index $n$ from this collection. The index is 1-based.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. Gets the parent document for local library imports. If you get the LibraryImports collection from the application object, the Parent property of the collection will be null.</td>
</tr>
</tbody>
</table>
## Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Adds a new library to this <code>LibraryImports</code> object. The new library will have the path supplied by the <code>i_strFileName</code> parameter.</td>
</tr>
<tr>
<td>Find</td>
<td>Returns a library reference given the path to the library file.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes a library reference from the <code>Manage Libraries</code> window.</td>
</tr>
</tbody>
</table>

## 15.7.1.14.1 Properties

### 15.7.1.14.1.1 Application

Gets the application's top level object.

**Signature**

```
Application : Application
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.14.1.2 Count

Gets the count of `LibraryImport` objects in this collection.

**Signature**

```
Count : Integer
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
### 15.7.1.14.1.3  Item
Retrieves a library entry at index \( n \) from this collection. The index is 1-based.

**Signature**

```
Item(in n: Integer) : LibraryImport
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.14.1.4  Parent
Gets the parent document for local library imports. If you get the `LibraryImports` collection from the application object, the `Parent` property of the collection will be null.

**Signature**

```
Parent : Document
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.14.2  Methods

#### 15.7.1.14.2.1  Add
Adds a new library to this `LibraryImports` object. The new library will have the path supplied by the `i_strFileName` parameter.
The MapForce API

15.7.14.2.2  Find
Returns a library reference given the path to the library file.

Signature

**Add** *(in  **i_strFileName**: String) -> LibraryImport*

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>i_strFileName</strong></td>
<td>String</td>
<td>Specifies the path of the library file. This path can be either absolute or relative to the mapping, depending on the state in which it was passed to the object. When the document is saved, the path will be made relative if the LibraryImport.SaveRelativePath flag is <strong>true</strong>; otherwise, it will be made absolute.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>2402</td>
<td>Adding library file failed.</td>
</tr>
</tbody>
</table>

**Find** *(in  **i_strFileName**: String) -> LibraryImport*

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>i_strFileName</strong></td>
<td>String</td>
<td>The path of the library file to search for. For locally imported libraries, you can specify either the absolute or the relative path to the library file (unlike the Remove function).</td>
</tr>
</tbody>
</table>
### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>2401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.14.2.3 Remove

Removes a library reference from the **Manage Libraries** window.

**Signature**

```python
Remove(in i_strFileName: String) -> Void
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td>The path of the library file to remove. Note that the path must reflect exactly the current (most recent) state of the <strong>LibraryImport</strong> object. Remember that the path may be either relative or absolute, and it may have changed if you saved the document, depending on the <strong>LibraryImport.SaveRelativePath</strong> flag. Therefore, if the <strong>LibraryImport</strong> object currently contains a relative path, then you should supply a relative path as value of this parameter. Otherwise, the library is not found and the <strong>Remove</strong> method fails.</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The above applies only for locally imported libraries. For globally imported libraries, the path must always be absolute (since globally imported libraries cannot have a relative path)</td>
</tr>
</tbody>
</table>

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

#### 15.7.1.15 MapForceView

Represents the current view in the MapForce Mapping tab for a document. A document has exactly one MapForceView which displays the currently active mapping.

Properties to navigate the object model:

- Application
- Parent

View activation and view properties:

- Active
- ShowItemTypes
- ShowLibraryInFunctionHeader
- HighlightMyConnections
- HighlightMyConnectionsRecursively

Mapping related properties:

- ActiveMapping
- ActiveMappingName

Adding items:

- InsertWSDLCall
- InsertXMLFile
- InsertXMLSchema
- InsertXMLSchemaWithSample
### Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Active</strong></td>
<td>Use this property to query if the mapping view is the active view, or set this view to be the active one.</td>
</tr>
<tr>
<td><strong>ActiveMapping</strong></td>
<td>Gets or sets the currently active mapping in the document this MapForceView belongs to.</td>
</tr>
<tr>
<td><strong>ActiveMappingName</strong></td>
<td>Gets or sets the currently active mapping by name in the document this MapForceView belongs to.</td>
</tr>
<tr>
<td><strong>Application</strong></td>
<td>Read-only. Retrieves the application’s top-level object.</td>
</tr>
<tr>
<td><strong>HighlightMyConnections</strong></td>
<td>This property defines whether connections from the selected item only should be highlighted.</td>
</tr>
<tr>
<td><strong>HighlightMyConnectionsRecursively</strong></td>
<td>This property defines if only the connections coming directly or indirectly from the selected item should be highlighted.</td>
</tr>
<tr>
<td><strong>Parent</strong></td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
<tr>
<td><strong>ShowItemTypes</strong></td>
<td>This property defines if types of items should be shown in the mapping diagram.</td>
</tr>
<tr>
<td><strong>ShowLibraryInFunctionHeader</strong></td>
<td>This property defines whether the name of the function library should be part of function names.</td>
</tr>
</tbody>
</table>

### Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>InsertWSDLCall</strong></td>
<td>Adds a new WSDL call component to the mapping.</td>
</tr>
<tr>
<td><strong>InsertXMLFile</strong></td>
<td>MapForceView.InsertXMLFile is obsolete. Use Mapping.InsertXMLFile instead.</td>
</tr>
<tr>
<td><strong>InsertXMLSchema</strong></td>
<td>MapForceView.InsertXMLSchema is obsolete. Use Mapping.InsertXMLSchema instead.</td>
</tr>
<tr>
<td><strong>InsertXMLSchemaWithSample</strong></td>
<td>MapForceView.InsertXMLSchemaWithSample is obsolete. Use Mapping.InsertXMLFile instead. Notice, Mapping.InsertXMLFile does not require a parameter for passing the root element. The root element is automatically set as the XML file’s root element name.</td>
</tr>
</tbody>
</table>
15.7.1.15.1 Properties

15.7.1.15.1.1 Active

Use this property to query if the mapping view is the active view, or set this view to be the active one.

Signature

```plaintext
Active : Boolean
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.15.1.2 ActiveMapping

Gets or sets the currently active mapping in the document this MapForceView belongs to.

Signature

```plaintext
ActiveMapping : Mapping
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.15.1.3  ActiveMappingName

Gets or sets the currently active mapping by name in the document this MapForceView belongs to.

Signature

```
ActiveMappingName : String
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.15.1.4  Application

Retrieves the application's top-level object.

Signature

```
Application : Application
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.15.1.5  HighlightMyConnections

This property defines whether connections from the selected item only should be highlighted.

Signature

```
HighlightMyConnections : Boolean
```
### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.15.1.6 HighlightMyConnectionsRecursively

This property defines if only the connections coming directly or indirectly from the selected item should be highlighted.

**Signature**

```
HighlightMyConnectionsRecursively : Boolean
```

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.15.1.7 Parent

The parent object according to the object model.

**Signature**

```
Parent : Document
```

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.15.1.8  **ShowItemTypes**  
This property defines if types of items should be shown in the mapping diagram.

**Signature**

| ShowItemTypes : Boolean |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.15.1.9  **ShowLibraryInFunctionHeader**  
This property defines whether the name of the function library should be part of function names.

**Signature**

| ShowLibraryInFunctionHeader : Boolean |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.15.2 Methods

15.7.1.15.2.1 InsertWSDLCall

Adds a new WSDL call component to the mapping.

Signature

\[
\text{InsertWSDLCall}(\text{in } i\_{\text{strWSDLFileName}}: \text{String}) \rightarrow \text{Void}
\]

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strWSDLFileName</td>
<td>String</td>
<td>Specifies the path of the WSDL file to add to the mapping.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1301</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.15.2.2 InsertXMLFile (obsolete)


Signature

\[
\text{InsertXMLFile}(\text{in } i\_{\text{strFileName}}: \text{String}, \text{in } i\_{\text{strXMLRootName}}: \text{String}) \rightarrow \text{Void}
\]

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>i_strXMLRootName</td>
<td>String</td>
<td></td>
</tr>
</tbody>
</table>
15.7.1.15.2.3  **InsertXMLSchema (obsolete)**


**Signature**

```
InsertXMLSchema(in i_strSchemaFileName: String, in i_strXMLRootName: String) -> Void
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strSchemaFileName</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>i_strXMLRootName</td>
<td>String</td>
<td></td>
</tr>
</tbody>
</table>

15.7.1.15.2.4  **InsertXMLSchemaWithSample (obsolete)**


**Signature**

```
InsertXMLSchemaWithSample(in i_strSchemaFileName: String, in i_strXMLExampleFile: String, in i_strXMLRootName: String) -> Void
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strSchemaFileName</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>i_strXMLExampleFile</td>
<td>String</td>
<td></td>
</tr>
<tr>
<td>i_strXMLRootName</td>
<td>String</td>
<td></td>
</tr>
</tbody>
</table>

15.7.1.16  **Mapping**

A Mapping object represents a mapping in a document, either the main mapping, or a local user-defined-function mapping.

Properties to navigate the object model:

- Application
- Parent
Mapping properties:

- IsMainMapping
- Name

Components in the mapping:

- Components

Adding items:

- CreateConnection
- InsertFunctionCall
- InsertXMLFile
- InsertXMLSchema
- InsertXMLSchemaInputParameter
- InsertXMLSchemaOutputParameter

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td>Components</td>
<td>Read-only. Returns a collection of all components in the current mapping.</td>
</tr>
</tbody>
</table>
| IsMainMapping | Read-only. Indicates if the current mapping is the main mapping of the document the mapping is in.  

True means it is the main mapping.  
False means it is a user-defined function (UDF).  |
| Name          | Read-only. The name of the mapping or user defined-function (UDF).           |
| Parent        | Read-only. The parent object according to the object model.                 |

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| CreateConnection    | Creates a connection between the two supplied datapoints  

(DatapointFrom & DatapointTo).

It will fail to do so if the DatapointFrom is not an output-side datapoint, the DatapointTo is not an input-side datapoint, or a connection between these two datapoints already exists. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InsertFunctionCall</td>
<td>Inserts a function call component into the current mapping. The specified library and function names indicate the function or user-defined function to be called.</td>
</tr>
<tr>
<td>InsertXMLFile</td>
<td>Adds a new XML schema component to the mapping. The component's internal structure is determined by the schema referenced in the specified XML file (<code>i_strFileName</code>) or, if the XML file does not reference a schema file, by the separately specified schema file (<code>i_strSchemaFileName</code>). If the XML file has a schema file reference, then the parameter <code>i_strSchemaFileName</code> is ignored. The root element of the XML file will be used in the component. The specified XML file is used as the input sample to evaluate the mapping.</td>
</tr>
<tr>
<td>InsertXMLSchema</td>
<td>Adds a new XML schema component to the mapping. The component's internal structure is determined by the schema file specified in the first parameter. The second parameter defines the root element of this schema if there is more than one candidate. If the passed root element is an empty string and more candidates are available, a Select Root Element dialog box will pop up if MapForce is visible. If MapForce is invisible, no dialog box will pop up and only an error is returned. No XML input sample is assigned to this component.</td>
</tr>
<tr>
<td>InsertXMLSchemaInputParameter</td>
<td>Inserts an XML schema input parameter component into the current mapping. The current mapping has to be a user-defined function. Trying to insert it (the schema input parameter) into the main mapping will fail.</td>
</tr>
<tr>
<td>InsertXMLSchemaOutputParameter</td>
<td>Inserts an XML schema output parameter component into the current mapping. The current mapping has to be a user-defined function. Trying to insert it (the schema output parameter) into the main mapping will fail.</td>
</tr>
</tbody>
</table>
15.7.1.16.1 Properties

15.7.1.16.1.1 Application
Retrieves the application's top-level object.

Signature
```
Application : Application
```

Errors
```
<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
```

15.7.1.16.1.2 Components
Returns a collection of all components in the current mapping.

Signature
```
Components : Components
```

Errors
```
<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
```

15.7.1.16.1.3 IsMainMapping
Indicates if the current mapping is the main mapping of the document the mapping is in.

- **True** means it is the main mapping.
- **False** means it is a user-defined function (UDF).

Signature
```
IsMainMapping : Boolean
```
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.16.1.4 Name

The name of the mapping or user defined-function (UDF).

Signature

Name : String

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.16.1.5 Parent

The parent object according to the object model.

Signature

Parent : Document

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.16.2 Methods

15.7.1.16.2.1 CreateConnection

Creates a connection between the two supplied datapoints (DatapointFrom & DatapointTo).

It will fail to do so if the DatapointFrom is not an output-side datapoint, the DatapointTo is not an input-side datapoint, or a connection between these two datapoints already exists.

Signature

CreateConnection(in DatapointFrom:Datapoint, in DatapointTo:Datapoint) -> Connection

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatapointFrom</td>
<td>Datapoint</td>
<td>The datapoint from which the connection is to be created.</td>
</tr>
<tr>
<td>DatapointTo</td>
<td>Datapoint</td>
<td>The destination datapoint.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
<tr>
<td>1241</td>
<td>Failed creating the connection.</td>
</tr>
</tbody>
</table>

15.7.1.16.2.2 InsertFunctionCall

Inserts a function call component into the current mapping.

The specified library and function names indicate the function or user-defined function to be called.

Signature

InsertFunctionCall(in strFunctionName:String, in strLibraryName:String) -> Component
### Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strFunctionName</td>
<td>String</td>
<td>The name of the function to be inserted.</td>
</tr>
<tr>
<td>strLibraryName</td>
<td>String</td>
<td>The library name of the function to be inserted.</td>
</tr>
</tbody>
</table>

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
<tr>
<td>1242</td>
<td>Failed creating function call component.</td>
</tr>
</tbody>
</table>

### 15.7.1.16.2.3 InsertXMLFile

Adds a new XML schema component to the mapping.

The component's internal structure is determined by the schema referenced in the specified XML file (i_strFileName) or, if the XML file does not reference a schema file, by the separately specified schema file (i_strSchemaFileName).

If the XML file has a schema file reference, then the parameter i_strSchemaFileName is ignored.

The root element of the XML file will be used in the component.

The specified XML file is used as the input sample to evaluate the mapping.

**Signature**

```
InsertXMLFile(in i_strFileName: String, in i_strSchemaFileName: String) -> Component
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td>The path of the instance XML file to add.</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>i_strSchemaFileName</td>
<td>String</td>
<td>The path of the XML Schema Definition file to add.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
<tr>
<td>1244</td>
<td>Failed creating component.</td>
</tr>
</tbody>
</table>

**15.7.1.16.2.4 InsertXMLSchema**

Adds a new XML schema component to the mapping.

The component's internal structure is determined by the schema file specified in the first parameter.

The second parameter defines the root element of this schema if there is more than one candidate.

If the passed root element is an empty string and more candidates are available, a **Select Root Element** dialog box will pop up if MapForce is visible. If MapForce is invisible, no dialog box will pop up and only an error is returned.

No XML input sample is assigned to this component.

**Signature**

InsertXMLSchema(in i_strSchemaFileName: String, in i_strXMLRootName: String) -> Component

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strSchemaFileName</td>
<td>String</td>
<td>The path of the XML Schema Definition file to add.</td>
</tr>
<tr>
<td>i_strXMLRootName</td>
<td>String</td>
<td>The root element of the schema (applicable when the schema has more than one root element).</td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
<tr>
<td>1244</td>
<td>Failed creating component.</td>
</tr>
</tbody>
</table>

15.7.1.16.2.5  InsertXMLSchemaInputParameter

Inserts an XML schema input parameter component into the current mapping.

The current mapping has to be a user-defined function. Trying to insert it (the schema input parameter) into the main mapping will fail.

Signature

```
InsertXMLSchemaInputParameter(in strParamName: String, in strSchemaFileName: String, in strXMLRootElementName: String) -> Component
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strParamName</td>
<td>String</td>
<td>The name of the input parameter component to create.</td>
</tr>
<tr>
<td>strSchemaFileName</td>
<td>String</td>
<td>The path of the XML Schema Definition file to add.</td>
</tr>
<tr>
<td>strXMLRootElementName</td>
<td>String</td>
<td>The root element of the schema (applicable when the schema has more than one root element). If the passed root element is an empty string and more candidates are available, a Select Root Element dialog will pop up if MapForce is visible. If MapForce is invisible, no dialog box will pop up and only an error is returned.</td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
<tr>
<td>1243</td>
<td>Failed creating parameter component.</td>
</tr>
<tr>
<td>1245</td>
<td>This operation is not supported for the main mapping.</td>
</tr>
</tbody>
</table>

15.7.1.16.2.6  InsertXMLSchemaOutputParameter

Inserts an XML schema output parameter component into the current mapping.

The current mapping has to be a user-defined function. Trying to insert it (the schema output parameter) into the main mapping will fail.

Signature

```csharp
InsertXMLSchemaOutputParameter(in strParamName: String, in strSchemaFileName: String, in strXMLRootElementName: String) -> Component
```

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strParamName</td>
<td>String</td>
<td>The name of the output parameter component to create.</td>
</tr>
<tr>
<td>strSchemaFileName</td>
<td>String</td>
<td>The path of the XML Schema Definition file to add.</td>
</tr>
<tr>
<td>strXMLRootElementName</td>
<td>String</td>
<td>The root element of the schema (applicable when the schema has more than one root element). If the passed root element is an empty string and more candidates are available, a Select Root Element dialog will pop up if MapForce is visible. If MapForce is invisible, no dialog box will pop up and only an error is returned.</td>
</tr>
</tbody>
</table>
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1240</td>
<td>Changing the document not allowed. It is read-only.</td>
</tr>
<tr>
<td>1243</td>
<td>Failed creating parameter component.</td>
</tr>
<tr>
<td>1245</td>
<td>This operation is not supported for the main mapping.</td>
</tr>
</tbody>
</table>

15.7.1.17 Mappings

Represents a collection of Mapping objects.

Properties to navigate the object model:

- Application
- Parent

Iterating through the collection:

- Count
- Item

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Application | Read-only.  
Retrieves the application's top-level object. |
| Count  | Read-only.  
Retrieves the number of mappings in the collection. |
| Item   | Read-only.  
Retrieves the mapping at index \( n \) from the collection. Indices start with 1. |
| Parent | Read-only.  
The parent object according to the object model. |
15.7.1.17.1  Properties

15.7.1.17.1.1  Application
Retrieves the application's top-level object.

Signature

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.17.1.2  Count
Retrieves the number of mappings in the collection.

Signature

<table>
<thead>
<tr>
<th>Count</th>
<th>Integer</th>
</tr>
</thead>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.17.1.3 Item
Retrieves the mapping at index \( n \) from the collection. Indices start with 1.

Signature

```
Item(in n: Integer) : Mapping
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.17.1.4 Parent
The parent object according to the object model.

Signature

```
Parent : Document
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1201</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18 Options
This object gives access to all MapForce options available in the Tools | Options dialog.

Properties to navigate the object model:

- Application
- Parent

General options:

- ShowLogoOnPrint
- ShowLogoOnStartup
- UseGradientBackground
Options for code generation:

- DefaultOutputEncoding
- DefaultOutputByteOrder
- DefaultOutputByteOrderMark
- XSLTDefaultOutputDirectory
- CodeDefaultOutputDirectory
- CPPSettings_DOMType
- CPPSettings_GenerateVC6ProjectFile
- CppSettings_GenerateVSPProjectFile
- CPPSettings_LibraryType
- CPPSettings_UseMFC
- CSharpSettings_ProjectType

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Application</strong></td>
<td>Read-only. Retrieves the application's top-level object.</td>
</tr>
<tr>
<td><strong>CPPSettings_DOMType</strong></td>
<td>Specifies the DOM type used by Document.GenerateCppCode.</td>
</tr>
<tr>
<td><strong>CPPSettings_GenerateVC6ProjectFile</strong></td>
<td>Specifies if VisualC++ 6.0 project files should be generated by Document.GenerateCppCode.</td>
</tr>
<tr>
<td><strong>CppSettings_GenerateVSPProjectFile</strong></td>
<td>Specifies the version of Visual Studio in which project files should be generated by Document.GenerateCppCode.</td>
</tr>
<tr>
<td><strong>CPPSettings_LibraryType</strong></td>
<td>Specifies the library type used by Document.GenerateCppCode.</td>
</tr>
<tr>
<td><strong>CPPSettings_UseMFC</strong></td>
<td>Specifies if MFC support should be used by C++ code generated by Document.GenerateCppCode.</td>
</tr>
<tr>
<td><strong>CSharpSettings_ProjectType</strong></td>
<td>Specifies the type of C# project used by Document.GenerateCHashCode.</td>
</tr>
<tr>
<td><strong>DefaultOutputByteOrder</strong></td>
<td>Byte order for the file encoding used for output files.</td>
</tr>
<tr>
<td><strong>DefaultOutputByteOrderMark</strong></td>
<td>Indicates if a byte order mark (BOM), is to be included in the file encoding of output files.</td>
</tr>
<tr>
<td><strong>DefaultOutputEncoding</strong></td>
<td>File encoding used for output files.</td>
</tr>
<tr>
<td><strong>GenerateWrapperClasses</strong></td>
<td>Indicates if wrapper classes are also to be generated when generating code.</td>
</tr>
<tr>
<td><strong>JavaSettings_ApacheAxisVersion</strong></td>
<td>This property is obsolete.</td>
</tr>
<tr>
<td><strong>Parent</strong></td>
<td>Read-only.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ShowLogoOnPrint</td>
<td>Show or hide the MapForce logo on printed outputs.</td>
</tr>
<tr>
<td>ShowLogoOnStartup</td>
<td>Show or hide the MapForce logo on application startup.</td>
</tr>
<tr>
<td>UseGradientBackground</td>
<td>Set or retrieve the background color mode for a mapping window.</td>
</tr>
<tr>
<td>XSLTDefaultOutputDirectory</td>
<td>Specifies the target directory where files generated by Document.GenerateXSLT are placed.</td>
</tr>
</tbody>
</table>

### 15.7.1.18.1 Properties

#### 15.7.1.18.1.1 Application

Retrieves the application's top-level object.

**Signature**

```plaintext
Application : Application
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.1.18.1.2 CodeDefaultOutputDirectory


**Signature**

```plaintext
CodeDefaultOutputDirectory : String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
### Error code Description

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

#### 15.7.18.1.3 CPPSettings_DOMType

Specifies the DOM type used by `Document.GenerateCppCode`.

**Signature**

```
CPPSettings_DOMType : ENUMDOMType
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1402</td>
<td>The parameter value is out of range.</td>
</tr>
<tr>
<td>1403</td>
<td>The parameter value is not available anymore.</td>
</tr>
</tbody>
</table>

#### 15.7.18.1.4 CPPSettings_GenerateVC6ProjectFile (obsolete)

Specifies if VisualC++ 6.0 project files should be generated by `Document.GenerateCppCode`.

**Signature**

```
CPPSettings_GenerateVC6ProjectFile : Boolean
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1402</td>
<td>The parameter value is out of range.</td>
</tr>
<tr>
<td>1403</td>
<td>The parameter value is not available anymore.</td>
</tr>
</tbody>
</table>
### 15.7.1.18.1.5 CppSettings_GenerateVSProjectFile

Specifies the version of Visual Studio in which project files should be generated by `Document.GenerateCppCode`.

**Signature**

```cpp
CppSettings_GenerateVSProjectFile : ENUMProjectType
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1402</td>
<td>The parameter value is out of range.</td>
</tr>
<tr>
<td>1403</td>
<td>The parameter value is not available anymore.</td>
</tr>
</tbody>
</table>

### 15.7.1.18.1.6 CPPSettings_LibraryType

Specifies the library type used by `Document.GenerateCppCode`.

**Signature**

```cpp
CPPSettings_LibraryType : ENUMLibType
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.18.1.7  **CPPSettings\_UseMFC**

Specifies if MFC support should be used by C++ code generated by `Document.GenerateCppCode`.

**Signature**

| `CPPSettings_UseMFC` : `Boolean` |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.8  **CSharpSettings\_ProjectType**

Specifies the type of C# project used by `Document.GenerateCHashCode`.

**Signature**

| `CSharpSettings_ProjectType` : `ENUMProjectType` |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1402</td>
<td>The parameter value is out of range.</td>
</tr>
<tr>
<td>1403</td>
<td>The parameter value is not available anymore.</td>
</tr>
</tbody>
</table>
15.7.1.18.1.9  **DefaultOutputByteOrder**

Byte order for the file encoding used for output files.

**Signature**

| DefaultOutputByteOrder : String |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.10  **DefaultOutputByteOrderMark**

Indicates if a byte order mark (BOM), is to be included in the file encoding of output files.

**Signature**

| DefaultOutputByteOrderMark : Boolean |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.11  **DefaultOutputEncoding**

File encoding used for output files.

**Signature**

| DefaultOutputEncoding : String |
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.12  GenerateWrapperClasses

Indicates if wrapper classes are also to be generated when generating code.

Signature

| GenerateWrapperClasses : Boolean |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.13  JavaSettings_ApacheAxisVersion (obsolete)

This property is obsolete.

Signature

| JavaSettings_ApacheAxisVersion : ENUMApacheAxisVersion |

15.7.1.18.1.14  Parent

The parent object according to the object model.

Signature

| Parent : Application |
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.15  **ShowLogoOnPrint**
Show or hide the MapForce logo on printed outputs.

Signature

```
showLogoOnPrint : Boolean
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.16  **ShowLogoOnStartup**
Show or hide the MapForce logo on application startup.

Signature

```
showLogoOnStartup : Boolean
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.18.1.17  UseGradientBackground
Set or retrieve the background color mode for a mapping window.

Signature

| UseGradientBackground : Boolean |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.18.1.18  XSLTDefaultOutputDirectory
Specifies the target directory where files generated by Document.GenerateXSLT are placed.

Signature

| XSLTDefaultOutputDirectory : String |

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1401</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.19  Project
A Project object represents a project and its tree of project items in MapForce.

Properties to navigate the object model:

- Application
- Parent

File handling:

- FullName
- Name
- Path
Project tree navigation:

- Count
- Item
- _NewEnum

Project tree manipulation:

- AddActiveFile
- AddFile
- InsertWebService (Enterprise edition only)
- CreateFolder

Code generation:

- Output_Folder
- Output_Language
- Output_TextEncoding
- Java_BasePackageName
- GenerateCode
- GenerateCodeEx
- GenerateCodeIn
- GenerateCodeInEx

For examples of how to use the properties and methods listed above, see Example: Project Tasks. Note that, in order to perform operations that involve Web services, MapForce Enterprise edition is required.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_NewEnum</td>
<td>Read-only. This property supports language-specific standard enumeration.</td>
</tr>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the top-level application object.</td>
</tr>
<tr>
<td>Count</td>
<td>Read-only. Retrieves number of children of the project's root item. For examples, see Item or _NewEnum.</td>
</tr>
<tr>
<td>FullName</td>
<td>Path and name of the project file.</td>
</tr>
<tr>
<td>Item</td>
<td>Read-only. Returns the child at n position of the project's root. The index is 1-based (the first index is 1). The largest valid index is Count. For an alternative, see _NewEnum.</td>
</tr>
<tr>
<td>Java_BasePackageName</td>
<td>Sets or gets the base package name of the Java packages that will be generated. This property is used only when generating</td>
</tr>
</tbody>
</table>
### Name Reference

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Java code.</td>
</tr>
<tr>
<td>Output_Folder</td>
<td>Read-only. Name of the project file without file path.</td>
</tr>
<tr>
<td>Output_Language</td>
<td>Sets or gets the default output folder used with <code>GenerateCode</code> and <code>GenerateCodeIn</code>. Project items can overwrite this value in their <code>CodeGenSettings_OutputFolder</code> property, when <code>CodeGenSettings_UseDefault</code> is set to false.</td>
</tr>
<tr>
<td>Output_TextEncoding</td>
<td>Sets or gets the default language for code generation when using <code>GenerateCode</code>. Project items can overwrite this value in their <code>CodeGenSettings_OutputLanguage</code> property, when <code>CodeGenSettings_UseDefault</code> is set to false.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. The parent object according to the object model.</td>
</tr>
<tr>
<td>Path</td>
<td>Read-only. Path of the project file without name.</td>
</tr>
<tr>
<td>Saved</td>
<td>Read-only. <code>True</code> if the project was not modified since the last <code>Save</code> operation, <code>false</code> otherwise.</td>
</tr>
</tbody>
</table>

### Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddActiveFile</td>
<td>Adds the currently open document to the mapping folder of the project's root.</td>
</tr>
<tr>
<td>AddFile</td>
<td>Adds the specified document to the mapping folder of the project's root.</td>
</tr>
<tr>
<td>Close</td>
<td>Closes the project without saving.</td>
</tr>
<tr>
<td>CreateFolder</td>
<td>Creates a new folder as a child of the project's root item.</td>
</tr>
<tr>
<td>GenerateCode</td>
<td>Generates code for all project items of the project. The code language and output location is determined by properties of the project and project items.</td>
</tr>
<tr>
<td>GenerateCodeEx</td>
<td>Generates code for all project items of the project. The code language and output location are determined by properties of the project and project items. An object that can be used to iterate through all messages issued by the code generation process is</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>returned. These messages are the same as those shown in the Messages window of MapForce.</td>
</tr>
<tr>
<td>GenerateCodeIn</td>
<td>Generates code for all project items of the project in the specified language. The output location is determined by properties of the project and project items.</td>
</tr>
<tr>
<td>GenerateCodeInEx</td>
<td>Generates code for all project items of the project in the specified language. The output location is determined by properties of the project and project items. Returns an object that can be used to iterate through all messages issued by the code generation process. These messages are the same as those shown in the Messages window of MapForce.</td>
</tr>
<tr>
<td>InsertWebService</td>
<td>Inserts a new Web service project into the project's Web service folder. If i_bGenerateMappings is true, initial mapping documents for all ports get generated automatically.</td>
</tr>
<tr>
<td>Save</td>
<td>Saves the project to the file defined by FullName.</td>
</tr>
</tbody>
</table>

### Events

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnProjectClosed</td>
<td>This event is triggered when the project is closed. The project object passed into the event handler should not be accessed. The corresponding open event is Application.OnProjectOpened.</td>
</tr>
</tbody>
</table>
15.7.1.19.1 Properties

15.7.1.19.1.1 _NewEnum
This property supports language-specific standard enumeration.

Signature

```
_NewEnum : IUnknown
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

Examples

```
// JScript sample - enumeration of a project's project items.
function AllChildrenOfProjectRoot()
{
 objProject = objMapForce.ActiveProject;
 if (objProject != null)
 {
 for (objProjectIter = new Enumerator(objProject); ! objProjectIter.atEnd(); objProjectIter.moveNext())
 {
 objProjectItem = objProjectIter.item();
 // do something with project item here
 }
 }
}

// JScript sample - iterate all project items, depth first.
function IterateProjectItemsRec(objProjectItemIter)
{
 while (! objProjectItemIter.atEnd())
 {
 objProjectItem = objProjectItemIter.item();
 // do something with project item here
 IterateProjectItemsRec(new Enumerator(objProjectItem));
 objProjectItemIter.moveNext();
 }
}
```
function IterateAllProjectItems()
{
    objProject = objMapForce.ActiveProject;
    if ( objProject != null )
    {
        IterateProjectItemsRec( new Enumerator(objProject) );
    }
}

15.7.1.19.1.2 Application
Retrieves the top-level application object.

Signature

Application : Application

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.19.1.3 Count
Retrieves number of children of the project's root item. For examples, see Item or _NewEnum

Signature

Count : Integer

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
15.7.1.19.1.4  **FullName**
Path and name of the project file.

**Signature**

| FullName : String |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.19.1.5  **Item**

Returns the child at \( n \) position of the project's root. The index is 1-based (the first index is 1). The largest valid index is **Count**. For an alternative, see **_NewEnum**.

**Signature**

| Item(in n:Integer) : ProjectItem |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

**Examples**

```javascript
// ---
// JScript code snippet - enumerate children using Count and Item.
for(nItemIndex = 1; nItemIndex <= objProject.Count; nItemIndex++)
{
 objProjectItem = objProject.Item(nItemIndex);
 // do something with project item here
}
```

15.7.1.19.1.6  **Java_BasePackageName**

Sets or gets the base package name of the Java packages that will be generated. This property is used only when generating Java code.
### Java_BasePackageName : String

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid package name specified. Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### Name

Name of the project file without file path.

**Signature**

```
Name : String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### Output_Folder

Sets or gets the default output folder used with `GenerateCode` and `GenerateCodeIn`. Project items can overwrite this value in their `CodeGenSettings_OutputFolder` property, when `CodeGenSettings_UseDefault` is set to false.

**Signature**

```
Output_Folder : String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid folder name specified. Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.19.1.9  **Output_Language**

Sets or gets the default language for code generation when using `GenerateCode`. Project items can overwrite this value in their `CodeGenSettings_OutputLanguage` property, when `CodeGenSettings_UseDefault` is set to false.

**Signature**

| Output_Language : ENUMProgrammingLanguage |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid language specified. Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.19.1.10  **Output_TextEncoding**

Sets or gets the text encoding used when generating XML-based code.

**Signature**

| Output_TextEncoding : String |

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid text encoding specified. Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.19.1.11  **Parent**

The parent object according to the object model.

**Signature**

| Parent : Application |
## Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.19.1.12 Path

Path of the project file without name.

### Signature

| Path : String |

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

### 15.7.1.19.1.13 Saved

**True** if the project was not modified since the last `Save` operation, **false** otherwise.

### Signature

| Saved : Boolean |

### Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.19.2 Methods

15.7.1.19.2.1 AddActiveFile
Adds the currently open document to the mapping folder of the project's root.

Signature

AddActiveFile() -> ProjectItem

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1503</td>
<td>No active document is available.</td>
</tr>
<tr>
<td>1504</td>
<td>Active documents needs to be given a path name before it can be added to the project.</td>
</tr>
<tr>
<td>1705</td>
<td>Mapping could not be assigned to project. Maybe it is already contained in the target folder.</td>
</tr>
</tbody>
</table>

15.7.1.19.2.2 AddFile
Adds the specified document to the mapping folder of the project's root.

Signature

AddFile(in i_strFileName: String) -> ProjectItem

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td>Specifies the path of the document to add.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1705</td>
<td>Mapping could not be assigned to project. The file does not exist or is not a MapForce mapping. Maybe the file is already assigned to the target folder.</td>
</tr>
</tbody>
</table>

### 15.7.1.19.2.3 Close
Closes the project without saving.

**Signature**

```plaintext
Close() -> Void
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

### 15.7.1.19.2.4 CreateFolder
Creates a new folder as a child of the project’s root item.

**Signature**

```plaintext
CreateFolder(in i_strFolderName: String) -> ProjectItem
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFolderName</td>
<td>String</td>
<td>The name of the folder to create.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid folder name or invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.19.2.5  GenerateCode

Generates code for all project items of the project. The code language and output location is determined by properties of the project and project items.

**Signature**

```
GenerateCode() -> Void
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1706</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.19.2.6  GenerateCodeEx

Generates code for all project items of the project. The code language and output location are determined by properties of the project and project items. An object that can be used to iterate through all messages issued by the code generation process is returned. These messages are the same as those shown in the Messages window of MapForce.

**Signature**

```
GenerateCodeEx() -> ErrorMarkers
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1706</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.19.2.7  GenerateCodeIn

Generates code for all project items of the project in the specified language. The output location is determined by properties of the project and project items.
Signature

GenerateCodeIn(in i_nLanguage::ENUMProgrammingLanguage) -> Void

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_nLanguage</td>
<td>ENUMProgrammingLanguage</td>
<td>Specifies the programming language in which code should be generated.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1706</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.19.2.8 GenerateCodeInEx

Generates code for all project items of the project in the specified language. The output location is determined by properties of the project and project items. Returns an object that can be used to iterate through all messages issued by the code generation process. These messages are the same as those shown in the Messages window of MapForce.

Signature

GenerateCodeInEx(in i_nLanguage::ENUMProgrammingLanguage) -> ErrorMarkers

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_nLanguage</td>
<td>ENUMProgrammingLanguage</td>
<td>Specifies the programming language in which code should be generated.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.19.2.9   **InsertWebService**

Inserts a new Web service project into the project’s Web service folder. If **i_bGenerateMappings** is true, initial mapping documents for all ports get generated automatically.

**Signature**

```
InsertWebService(in i_strWSDLFile:String, in i_strService: String, in i_strPort: String, in i_bGenerateMappings: Boolean) -> ProjectItem
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strWSDLFile</td>
<td>String</td>
<td>Specifies the path of the WSDL file to add.</td>
</tr>
<tr>
<td>i_strService</td>
<td>String</td>
<td>Specifies the name of the Web service to add.</td>
</tr>
<tr>
<td>i_strPort</td>
<td>String</td>
<td>Specifies the port of the Web service to add.</td>
</tr>
<tr>
<td>i_bGenerateMappings</td>
<td>Boolean</td>
<td>If this parameter is true, initial mapping documents for all ports get generated automatically.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1501</td>
<td>WSDL file can not be found or is invalid. Service or port names are invalid. Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1503</td>
<td>Operation not supported by current edition.</td>
</tr>
</tbody>
</table>
15.7.1.19.2.10  Save

Saves the project to the file defined by FullName.

Signature

Save() -> Void

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1502</td>
<td>Can't save to file.</td>
</tr>
</tbody>
</table>

15.7.1.19.3  Events

15.7.1.19.3.1  OnProjectClosed

This event is triggered when the project is closed. The project object passed into the event handler should not be accessed. The corresponding open event is Application.OnProjectOpened.

Signature

OnProjectClosed(in i_ipProject:Project) : Void

15.7.1.20  ProjectItem

A ProjectItem object represents one item in a project tree.

Properties to navigate the object model:

- Application
- Parent

Project tree navigation:

- Count
- Item
- _NewEnum

Project item properties:

- Kind
The MapForce API

- Name
- WSDLFile (only available to Web service project items)
- QualifiedName (only available to Web service project items)

Project tree manipulation:
- AddActiveFile (only available to folder items)
- AddFile (only available to folder items)
- CreateFolder (only available to folder items)
- CreateMappingForProject (only available to Web service operations)
- Remove

Document access:
- Open (only available to mapping items and Web service operations)

Code-generation:
- CodeGenSettings_UseDefault
- CodeGenSettings_OutputFolder
- CodeGenSettings_Language
- GenerateCode
- GenerateCodeEx
- GenerateCodeIn
- GenerateCodeInEx

For examples of how to use the properties and methods listed above, see Example: Project Tasks. For operations with Web services, the MapForce Enterprise edition is required.

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_NewEnum</td>
<td>Read-only. This property supports language specific standard enumeration. For examples, see Project.Item or Project._NewEnum.</td>
</tr>
<tr>
<td>Application</td>
<td>Read-only. Retrieves the top-level application object.</td>
</tr>
<tr>
<td>CodeGenSettings_Language</td>
<td>Gets or sets the language to be used with GenerateCode or Project.GenerateCode. This property is consulted only if CodeGenSettings_UseDefault is set to false.</td>
</tr>
<tr>
<td>CodeGenSettings_OutputFolder</td>
<td>Gets or sets the output directory to be used with GenerateCode, GenerateCodeIn, Project.GenerateCode or Project.GenerateCodeIn. This property is consulted only if CodeGenSettings_UseDefault is set to false.</td>
</tr>
<tr>
<td>CodeGenSettings_UseDefault</td>
<td>Gets or sets whether output directory and code language are used as defined by either (a) the parent folders, or (b) the project root. This property is used with calls to GenerateCode, GenerateCodeIn, Project.GenerateCode and</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Project.GenerateCodeIn</td>
<td>If this property is set to false, the values of CodeGenSettings_OutputFolder and CodeGenSettings_Language are used to generate code for this project item.</td>
</tr>
<tr>
<td>Count</td>
<td>Read-only. Retrieves the number of children of this project item. See also Item. For examples, see Project.Item or Project._NewEnum.</td>
</tr>
<tr>
<td>Item</td>
<td>Read-only. Returns the child at n position of this project item. The index is 1-based (the first index is 1). The largest valid index is ProjectItem.Count. For an alternative, see ProjectItem._NewEnum. For examples, see Project.Item or Project._NewEnum.</td>
</tr>
<tr>
<td>Kind</td>
<td>Read-only. Retrieves the kind of the project item. Availability of some properties and the applicability of certain methods is restricted to specific kinds of project items. The description of all methods and properties contains information about these restrictions.</td>
</tr>
<tr>
<td>Name</td>
<td>Retrieves or sets the name of a project item. The name of most items is read-only. Exceptions are user-created folders, the names of which can be altered after creation.</td>
</tr>
<tr>
<td>Parent</td>
<td>Read-only. Retrieves the project that this item is a child of. Has the same effect as Application.ActiveProject.</td>
</tr>
<tr>
<td>QualifiedName</td>
<td>Read-only. Retrieves the qualified name of a Web service item.</td>
</tr>
<tr>
<td>WSDLFile</td>
<td>Read-only. Retrieves the file name of the WSDL file defining the Web service that hosts the current project item.</td>
</tr>
</tbody>
</table>

### Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddActiveFile</td>
<td>Adds the currently active document to this project item if it is a valid child. Otherwise, the document is added to the Mapping Folder of the project's root.</td>
</tr>
<tr>
<td>AddFile</td>
<td>Adds the specified document to this project item if it is a valid child. Otherwise, the document is added to the Mapping Folder of the project's root.</td>
</tr>
<tr>
<td>CreateFolder</td>
<td>Creates a new folder as a child of this project item.</td>
</tr>
</tbody>
</table>
## Name | Description
--- | ---
CreateMappingForProject | Creates an initial mapping document for a Web service operation and saves it to `i_strFileName`. When using `Project.InsertWebService` you can set the `i_bGenerateMappings` flag to let MapForce automatically generate initial mappings for all ports.
GenerateCode | Generates code for this project item and its children. The code language and output location is determined by `CodeGenSettings.UseDefault`, `CodeGenSettings.Language` and `CodeGenSettings.OutputFolder`. Children of this project item can have their own property settings related to code-generation.
GenerateCodeEx | Generates code for this project item and its children. The code language and output location are determined by `CodeGenSettings.UseDefault`, `CodeGenSettings.Language` and `CodeGenSettings.OutputFolder`. Children of this project item can have their own property settings related to code-generation.
GenerateCodeIn | Generates code for the project item and its children in the specified language. The output location is determined by `CodeGenSettings.UseDefault` and `CodeGenSettings.OutputFolder`. Children of this project item can have their own property settings related to code-generation.
GenerateCodeInEx | Generates code for the project item and its children in the specified language. The output location is determined by `CodeGenSettings.UseDefault` and `CodeGenSettings.OutputFolder`. Children of this project item can have their own property settings related to code-generation.
Open | Opens the project item as a document or makes the corresponding document the active one, if it is already open. The project item must be a MapForce mapping or, for Enterprise edition only, Web service operation.
Remove | Remove this project item and all its children from the project tree.

### Events

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnModifiedFlagChanged</td>
<td>Occurs when the <code>ProjectItem</code>'s modification status changes.</td>
</tr>
</tbody>
</table>
### Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OnProjectClosed</strong></td>
<td>This event is triggered when the project is closed. The project object passed into the event handler should not be accessed. The corresponding open event is Application.OnProjectOpened.</td>
</tr>
</tbody>
</table>

### 15.7.1.20.1 Properties

#### 15.7.1.20.1.1 _NewEnum

This property supports language specific standard enumeration. For examples, see Project.Item or Project._NewEnum.

**Signature**

```
_NewEnum : IUnknown
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

#### 15.7.1.20.1.2 Application

Retrieves the top-level application object.

**Signature**

```
Application : Application
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>
15.7.1.20.1.3  CodeGenSettings_Language

Gets or sets the language to be used with GenerateCode or Project.GenerateCode. This property is consulted only if CodeGenSettings_UseDefault is set to false.

Signature

CodeGenSettings_Language : ENUMProgrammingLanguage

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid language or invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.20.1.4  CodeGenSettings_OutputFolder

Gets or sets the output directory to be used with GenerateCode, GenerateCodeIn, Project.GenerateCode or Project.GenerateCodeIn. This property is consulted only if CodeGenSettings_UseDefault is set to false.

Signature

CodeGenSettings_OutputFolder : String

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>An invalid output folder or an invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.20.1.5  CodeGenSettings_UseDefault

Gets or sets whether output directory and code language are used as defined by either (a) the parent folders, or (b) the project root. This property is used with calls to GenerateCode, GenerateCodeIn, Project.GenerateCode and Project.GenerateCodeIn. If this property is set to false, the values of CodeGenSettings_OutputFolder and CodeGenSettings_Language are used to generate code for this project item.

Signature

CodeGenSettings_UseDefault : Boolean
Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
</tbody>
</table>

15.7.1.20.1.6  Count
Retrieves the number of children of this project item. See also Item. For examples, see Project.Item or Project._NewEnum.

Signature

```
Count : Integer
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

15.7.1.20.1.7  Item
Returns the child at n position of this project item. The index is 1-based (the first index is 1). The largest valid index is ProjectItem.Count. For an alternative, see ProjectItem._NewEnum. For examples, see Project.Item or Project._NewEnum.

Signature

```
Item(in n:Integer) : ProjectItem
```

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

15.7.1.20.1.8  Kind
Retrieves the kind of the project item. Availability of some properties and the applicability of certain methods is restricted to specific kinds of project items. The description of all methods and properties contains information about these restrictions.
15.7.1.20.1.9  Name
Retrieves or sets the name of a project item. The name of most items is read-only. Exceptions are user-created folders, the names of which can be altered after creation.

Signature
Name : String

Errors
<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1702</td>
<td>Project item does not allow to alter its name.</td>
</tr>
</tbody>
</table>

15.7.1.20.1.10  Parent
Retrieves the project that this item is a child of. Has the same effect as Application.ActiveProject.

Signature
Parent : Project

Errors
<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
### 15.7.1.20.1.11 QualifiedName

Retrieves the qualified name of a Web service item.

**Signature**

```
QualifiedName : String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1702</td>
<td>The project item is not a part of a Web service.</td>
</tr>
</tbody>
</table>

### 15.7.1.20.1.12 WSDLFile

Retrieves the file name of the WSDL file defining the Web service that hosts the current project item.

**Signature**

```
WSDLFile : String
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1702</td>
<td>The project item is not a part of a Web service.</td>
</tr>
</tbody>
</table>
15.7.1.20.2 Methods

15.7.1.20.2.1 AddActiveFile

Adds the currently active document to this project item if it is a valid child. Otherwise, the document is added to the Mapping Folder of the project's root.

Signature

AddActiveFile() -> ProjectItem

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>The file name is empty. Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1703</td>
<td>No active document is available.</td>
</tr>
<tr>
<td>1704</td>
<td>Active documents needs to be given a path name before it can be added to the project.</td>
</tr>
<tr>
<td>1705</td>
<td>Mapping could not be assigned to project. The file does not exist or is not a MapForce mapping. Maybe the file is already assigned to the target folder.</td>
</tr>
</tbody>
</table>

15.7.1.20.2.2 AddFile

Adds the specified document to this project item if it is a valid child. Otherwise, the document is added to the Mapping Folder of the project's root.

Signature

AddFile(in i_strFilePath: String) -> ProjectItem

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFilePath</td>
<td>String</td>
<td>The path of the document to add.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>
### 15.7.1.20.2.3 CreateFolder

Creates a new folder as a child of this project item.

**Signature**

```
CreateFolder(in i_strFolderName: String) -> ProjectItem
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFolderName</td>
<td>String</td>
<td>The name of the folder to create.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid folder name or invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1702</td>
<td>The project item does not support children.</td>
</tr>
</tbody>
</table>

### 15.7.1.20.2.4 CreateMappingForProject

Creates an initial mapping document for a Web service operation and saves it to `i_strFileName`. When using `Project.InsertWebService` you can set the `i_bGenerateMappings` flag to let MapForce automatically generate initial mappings for all ports.

**Signature**

```
CreateMappingForProject(in i_strFileName: String) -> ProjectItem
```
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_strFileName</td>
<td>String</td>
<td>Specifies the path where the mapping should be saved.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1707</td>
<td>Cannot create new mapping. The project item does not support auto-creation of initial mappings or a mapping already exists.</td>
</tr>
<tr>
<td>1708</td>
<td>Operation not supported in current edition.</td>
</tr>
</tbody>
</table>

15.7.1.20.2.5  GenerateCode

Generates code for this project item and its children. The code language and output location is determined by CodeGenSettings_UseDefault, CodeGenSettings_Language and CodeGenSettings_OutputFolder. Children of this project item can have their own property settings related to code-generation.

Signature

GenerateCode() -> Void

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1706</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.20.2.6  GenerateCodeEx

Generates code for this project item and its children. The code language and output location are determined by CodeGenSettings_UseDefault, CodeGenSettings_Language and CodeGenSettings_OutputFolder. Children of this project item can have their own property settings related to code-generation.
15.7.1.20.2.7  GenerateCodeIn
Generates code for the project item and its children in the specified language. The output location is
determined by CodeGenSettings_UseDefault and CodeGenSettings_OutputFolder. Children of this project
item can have their own property settings related to code-generation.

Signature

\[
\text{GenerateCodeIn(} \text{in } i_{\text{nLanguage}}: \text{ENUMProgrammingLanguage} \text{)} \rightarrow \text{Void}
\]

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_nLanguage</td>
<td>ENUMProgrammingLanguage</td>
<td>Specifies the programming language for code generation.</td>
</tr>
</tbody>
</table>

Errors

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1706</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

15.7.1.20.2.8  GenerateCodeInEx
Generates code for the project item and its children in the specified language. The output location is
determined by CodeGenSettings_UseDefault and CodeGenSettings_OutputFolder. Children of this project
item can have their own property settings related to code-generation.
An object that can be used to iterate through all messages issued by the code generation process is returned. These messages are the same as those shown in the Messages window of MapForce.

**Signature**

```
GenerateCodeInEx(in i_nLanguage: ENUMProgrammingLanguage) -> ErrorMarkers
```

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_nLanguage</td>
<td>ENUMProgrammingLanguage</td>
<td>Specifies the programming language for code generation.</td>
</tr>
</tbody>
</table>

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid language specified or invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1706</td>
<td>Error during code generation.</td>
</tr>
</tbody>
</table>

**15.7.1.20.2.9 Open**

Opens the project item as a document or makes the corresponding document the active one, if it is already open. The project item must be a MapForce mapping file, or, for Enterprise edition only, Web service operation.

**Signature**

```
Open() -> Document
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
<tr>
<td>1701</td>
<td>Invalid address for the return parameter was specified.</td>
</tr>
<tr>
<td>1702</td>
<td>The project item does not refer to a MapForce mapping file.</td>
</tr>
<tr>
<td>1708</td>
<td>Operation not supported in current edition.</td>
</tr>
</tbody>
</table>
15.7.1.20.2.10  Remove

Remove this project item and all its children from the project tree.

**Signature**

```
Remove() -> Void
```

**Errors**

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>The object is no longer valid.</td>
</tr>
</tbody>
</table>

15.7.1.20.3  Events

15.7.1.20.3.1  OnModifiedFlagChanged

Occurs when the ProjectItem's modification status changes.

**Signature**

```
OnModifiedFlagChanged(in i_bIsModified: Boolean) : Void
```

15.7.1.20.3.2  OnProjectClosed

This event is triggered when the project is closed. The project object passed into the event handler should not be accessed. The corresponding open event is Application.OnProjectOpened.

**Signature**

```
OnProjectClosed(in i_ipProject: Project) : Void
```

15.7.2  Enumerations

15.7.2.1  ENUMApacheAxisVersion (obsolete)

This enumeration type is obsolete.
Members

eApacheAxisVersion_Axis = 1

15.7.2.2 ENUMApplicationStatus

Enumeration values to indicate the status of the application.

Members

eApplicationRunning = 0
eApplicationAfterLicenseCheck = 1
eApplicationBeforeLicenseCheck = 2
eApplicationConcurrentLicenseCheckFailed = 3
eApplicationProcessingCommandLine = 4

15.7.2.3 ENUMAppOutputLine_Severity

Enumeration values to identify the severity of an AppOutputLine.

Members

eSeverity_Undefined = -1
eSeverity_Info = 0
eSeverity_Warning = 1
eSeverity_Error = 2
eSeverity_CriticalError = 3
eSeverity_Success = 4
eSeverity_Summary = 5
eSeverity_Progress = 6
eSeverity_DataEdit = 7
eSeverity.ParserInfo = 8
eSeverity_PossibleInconsistencyWarning = 9
eSeverity_Message = 10
eSeverity_Document = 11
eSeverity_Rest = 12
eSeverity_NoSelect = 13
eSeverity_Select = 14
eSeverity_Autoinsertion = 15
eSeverity_GlobalResources_DefaultWarning = 16
eSeverity_XPath_Styles_Changed = 17
eSeverity_XPath_Styles_Unchanged = 18
eSeverity_XPath_Styles_Skipped = 19
eSeverity_XPath_ComboBox_Values_Changed = 20
eSeverity_XPath_ComboBox_Values_Unchanged = 21
eSeverity_XPath_ComboBox_Values_Skipped = 22
eSeverity_XPath_Assertions_Changed = 23
eSeverity_XPath_Assertions_Unchanged = 24
eSeverity_XPath_Assertions_Skipped = 25

15.7.2.4 ENUMAppOutputLine_TextDecoration

Enumeration values for the different kinds of text decoration of an AppOutputLine.

Members

eTextDecorationDefault = 0
eTextDecorationBold = 1
eTextDecorationDebugValues = 2
eTextDecorationDB_ObjectName = 3
eTextDecorationDB_ObjectLink = 4
eTextDecorationDB_ObjectKind = 5
eTextDecorationDB_TimeoutValue = 6
eTextDecorationFind_MatchingString = 7
eTextDecorationValidation_Speclink = 8
eTextDecorationValidation_ErrorPosition = 9
15.7.2.5  ENUMCodeGenErrorLevel
Enumeration values to identify severity of code generation messages.

Members
- eCodeGenErrorLevel_Information = 0
- eCodeGenErrorLevel_Warning = 1
- eCodeGenErrorLevel_Error = 2
- eCodeGenErrorLevel_Undefined = 3

15.7.2.6  ENUMComponentDatapointSide
Enumeration values to indicate the side of a datapoint on its component. See also Component.GetRootDatapoint.

Members
- eDatapointSideInput = 0
- eDatapointSideOutput = 1

15.7.2.7  ENUMComponentSubType
Enumeration values to indicate component sub types.

Members
- eComponentSubType_None = 0
- eComponentSubType_Text_EDI = 1
- eComponentSubType_Text_Flex = 2
- eComponentSubType_Text_CSVFLF = 3
15.7.2.8 ENUMComponentType

Enumeration values to indicate component types.

Members
- eComponentType_Unknown = 0
- eComponentType_XML = 1
- eComponentType_DB = 2
- eComponentType_Text = 3
- eComponentType_Excel = 4
- eComponentType_WSDL = 5
- eComponentType_XBRL = 6
- eComponentType_Input = 7
- eComponentType_JSON = 8

15.7.2.9 ENUMComponentUsageKind

 Enumeration values to indicate component usage kind.

Members
- eComponentUsageKind_Unknown = 0
- eComponentUsageKind_Instance = 1
- eComponentUsageKind_Input = 2
- eComponentUsageKind_Output = 3
- eComponentUsageKind_Variable = 4
- eComponentUsageKind_String = 5

15.7.2.10 ENUMConnectionType

 Enumeration values to indicate the type of a connection. See also Connection.ConnectionType.

Members
- eConnectionTypeTargetDriven = 0
eConnectionTypeSourceDriven = 1

eConnectionTypeCopyAll = 2

15.7.2.11 ENUMDOMType

Enumeration values to specify the DOM type used by generated C++ mapping code.

NOTE: The value eDOMType_xerces is obsolete. eDOMType_xerces3 indicates Xerces 3.x usage. Obsolete in this context means that this value is not supported and should not be used.

Members

- eDOMType_xerces = 1 (obsolete)
- eDOMType_xerces3 = 2
- eDOMType_msxml6 = 3

15.7.2.12 ENUMLibType

Enumeration values to specify the library type used by the generated C++ mapping code.

Members

- eLibType_static = 0
- eLibType_dll = 1

15.7.2.13 ENUMProgrammingLanguage

Enumeration values to select a programming language.

Members

- eUndefinedLanguage = -1
- eJava = 0
- eCpp = 1
- eCSharp = 2
- eXSLT = 3
- eXSLT2 = 4
- eXQuery = 5
15.7.2.14 ENUMProjectItemType

Enumeration to identify the different kinds of project items that can be children of `Project` or folder-like `ProjectItems`. See also `ProjectItem.Kind`.

Members

- `eProjectItemType_MappingFolder = 0`
- `eProjectItemType_Mapping = 1`
- `eProjectItemType_WebServiceFolder = 2`
- `eProjectItemType_WebServiceRoot = 3`
- `eProjectItemType_WebServiceService = 4`
- `eProjectItemType_WebServicePort = 5`
- `eProjectItemType_WebServiceOperation = 6`
- `eProjectItemType_ExternalFolder = 7`
- `eProjectItemType_LibraryFolder = 8`
- `eProjectItemType_ResourceFolder = 9`
- `eProjectItemType_VirtualFolder = 10`
- `eProjectItemType_Count = 11`
- `eProjectItemType_Invalid = -1`

15.7.2.15 ENUMProjectType

Enumeration values to select a project type for generated C# and C++ mapping code.

Members

- `eVisualStudio2010Project = 6`
- `eVisualStudio2013Project = 7`
- `eVisualStudio2015Project = 8`
- `eVisualStudio2017Project = 9`
- `eVisualStudio2019Project = 10`
15.7.2.16 ENUMSearchDatapointFlags

Enumeration values used as bit-flags; to be used as combination of flags when searching for a datapoint. See also GetChild.

Members

eSearchDatapointElement = 1

eSearchDatapointAttribute = 2

15.7.2.17 ENUMViewMode

Enumeration values to select a MapForce view.

Members

eMapForceView = 0

eXSLView = 1

eOutputView = 2
16  **ActiveX Integration**

The MapForce user interface and the functionality described in this section can be integrated into custom applications that can consume ActiveX controls. ActiveX technology enables a wide variety of languages to be used for integration, such as C++, C#, VB.NET, HTML. (Note that ActiveX components integrated in HTML must be run with Microsoft Internet Explorer versions and platforms that support ActiveX). All components are full OLE Controls. Integration into Java is provided through wrapper classes.

To integrate the ActiveX controls into your custom code, the MapForce Integration Package must be installed (see [https://www.altova.com/components/download](https://www.altova.com/components/download). Ensure that you install MapForce first, and then the MapForce Integration Package. Other prerequisites apply, depending on language and platform (see Prerequisites).

You can flexibly choose between two different levels of integration: application level and document level.

Integration at application level means embedding the complete interface of MapForce (including its menus, toolbars, panes, etc) as an ActiveX control into your custom application. For example, in the most simple scenario, your custom application could consist of only one form that embeds the MapForce graphical user interface. This approach is easier to implement than integration at document level but may not be suitable if you need flexibility to configure the MapForce graphical user interface according to your custom requirements.

Integration at document level means embedding MapForce into your own application piece-by-piece. This includes implementing not only the main MapForce control but also the main document editor window, and, optionally, any additional windows. This approach provides greater flexibility to configure the GUI, but requires advanced interaction with ActiveX controls in your language of choice.

The sections Integration at the Application Level and Integration at Document Level describe the key steps at these respective levels. The ActiveX Integration Examples section provides examples in C#, HTML, and Java. Looking through these examples will help you to make the right decisions quickly. The Object Reference section describes all COM objects that can be used for integration, together with their properties and methods.

For information about using MapForce as a Visual Studio plug-in, see MapForce in Visual Studio.
16.1 Prerequisites

To integrate the MapForce ActiveX control into a custom application, the following must be installed on your computer:

- MapForce
- The MapForce Integration Package, available for download at https://www.altova.com/components/download

To integrate the 64-bit ActiveX control, install the 64-bit versions of MapForce and MapForce Integration Package. For applications developed under Microsoft .NET platform with Visual Studio, both the 32-bit and 64-bit versions of MapForce and MapForce Integration Package must be installed, as explained below.

Microsoft .NET (C#, VB.NET) with Visual Studio

To integrate the MapForce ActiveX control into a 32-bit application developed under Microsoft .NET, the following must be installed on your computer:

- Microsoft .NET Framework 4.0 or later
- Visual Studio 2010/2012/2013/2015/2017/2019
- MapForce 32-bit and MapForce Integration Package 32-bit
- The ActiveX controls must be added to the Visual Studio toolbox (see Adding the ActiveX Controls to the Toolbox).

If you want to integrate the 64-bit ActiveX control, the following prerequisites apply in addition to the ones above:

- MapForce 32-bit and MapForce Integration Package 32-bit must still be installed (this is required to provide the 32-bit ActiveX control to the Visual Studio designer, since Visual Studio runs on 32-bit)
- MapForce 64-bit and MapForce Integration Package 64-bit must be installed (provides the actual 64-bit ActiveX control to your custom application at runtime)
- In Visual Studio, create a 64-bit build configuration and build your application using this configuration. For an example, see Running the Sample C# Solution.

Java

To integrate the MapForce ActiveX control into Java application using the Eclipse development environment, the following must be installed on your computer:

- Java Runtime Environment (JRE) or Java Development Kit (JDK) 7 or later
- Eclipse
- MapForce and MapForce Integration Package

Note: To run the 64-bit version of the MapForce ActiveX control, use a 64-bit version of Eclipse, as well as the 64-bit version of MapForce and the MapForce Integration Package.

MapForce integration and deployment on client computers

If you create a .NET application and intend to distribute it to other clients, you will need to install the following on the client computer(s):
• MapForce
• The MapForce Integration Package
• The custom integration code or application.
Adding the ActiveX Controls to the Toolbox

To use the MapForce ActiveX controls in an application developed with Visual Studio, the controls must first be added to the Visual Studio Toolbox, as follows:

1. On the Tools menu of Visual Studio, click Choose Toolbox Items.
2. On the COM Components tab, select the check boxes next to the MapForceControl, MapForceControl Document, and MapForceControl Placeholder.

In case the controls above are not available, follow the steps below:

1. On the COM Components tab, click Browse, and select the MapForceControl.ocx file from the MapForce installation folder. Remember that the MapForce Integration Package must be installed; otherwise, this file is not available, see Prerequisites.
2. If prompted to restart Visual Studio with elevated permissions, click Restart under different credentials.

If the steps above were successful, the MapForce ActiveX controls become available in the Visual Studio Toolbox.
Note: For an application-level integration, only the MapForceControl ActiveX control is used (see Integration at Application Level). The MapForceControl Document and MapForceControl Placeholder controls are used for document-level integration (see Integration at Document Level).
16.3 Integration at Application Level

Integration at application level allows you to embed the complete interface of MapForce into a window of your application. With this type of integration, you get the whole user interface of MapForce, including all menus, toolbars, the status bar, document windows, and helper windows. Customization of the application's user interface is restricted to what MapForce provides. This includes rearrangement and resizing of helper windows and customization of menus and toolbars.

The only ActiveX control you need to integrate is MapForceControl. Do not instantiate or access MapForceControlDocument or MapForceControlPlaceHolder ActiveX controls when integrating at application-level.

If you have any initialization to do or if you want to automate some behaviour of MapForce, use the properties, methods, and events described for MapForceControl. Consider using MapForceControl.Application for more complex access to MapForce functionality.

For an example that shows how the MapForce application can be embedded in an HTML page, see HTML Integration at Application Level.

In C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which integrates the MapForce ActiveX controls at application level are as follows:

1. Check that all prerequisites are met (see Prerequisites).
2. Create a new Visual Studio Windows Forms project with a new empty form.
3. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX Controls to the Toolbox).
4. Drag the MapForceControl from the toolbox onto your new form.
5. Select the MapForceControl on the form, and, in the Properties window, set the IntegrationLevel property to ICActiveXIntegrationOnApplicationLevel.
6. Create a build platform configuration that matches the platform under which you want to build (x86, x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in this example, x86).
You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration that matches your target platform (x86, x64).
16.4 Integration at Document Level

Compared to integration at application level, integration at document level is a more complex, yet more flexible way to embed MapForce functionality into your application by means of ActiveX controls. With this approach, your code can access selectively the following parts of the MapForce user interface:

- Document editing window
- Project window
- Libraries window
- Overview window
- Messages window

As mentioned in Integration at Application Level, for an ActiveX integration at application level, only one control is required, namely the MapForceControl. However, for an ActiveX integration at document level, MapForce functionality is provided by the following ActiveX controls:

- MapForceControl
- MapForceControl Document
- MapForceControl Placeholder

These controls are supplied by the MapForceControl.ocx file available in the application installation folder of MapForce. When you develop the ActiveX integration with Visual Studio, you will need to add these controls to the Visual Studio toolbox (see Adding the ActiveX Controls to the Toolbox).

The basic steps to integrate the ActiveX controls at document level into your application are as follows:

1. First, instantiate MapForceControl in your application. Instantiating this control is mandatory; it enables support for the MapForceControl Document and MapForceControl Placeholder controls mentioned above. It is important to set the IntegrationLevel property to ICAcutiveXIntegrationOnDocumentLevel (or "1"). To hide the control from the user, set its Visible property to False.

Note: When integrating at document level, do not use the Open method of the MapForceControl; this might lead to unexpected results. Use the corresponding open methods of MapForceControl Document and MapForceControl Placeholder instead.

2. Create at least one instance of MapForceControl Document in your application. This control supplies the document editing window of MapForce to your application and can be instantiated multiple times if necessary.

   Use the method Open to load any existing file. To access document-related functionality, use the Path and Save or methods and properties accessible via the property Document.

Note: The control does not support a read-only mode. The value of the property ReadOnly is ignored.

3. Optionally, add to your application the MapForceControl Placeholder control for each additional window (other than the document window) that must be available to your application.

   Instances of MapForceControl Placeholder allow you to selectively embed additional windows of MapForce into your application. The window kind (for example, Project window) is defined by the
property `PlaceholderWindowID`. Therefore, to set the window kind, set the property `PlaceholderWindowID`. For valid window identifiers, see `MapForceControlPlaceholderWindow`.

**Note:** Use only one `MapForceControl Placeholder` for each window identifier.

For placeholder controls that select the MapForce project window, additional methods are available. Use `OpenProject` to load a MapForce project. Use the property `Project` and the methods and properties from the MapForce automation interface to perform any other project related operations.

For example, in C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which integrates the MapForce ActiveX controls at document level could be similar to those listed below. Note that your application may be more complex if necessary; however, the instructions below are important to understand the minimum requirements for an ActiveX integration at document level.

1. Create a new Visual Studio Windows Forms project with a new empty form.
2. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the ActiveX Controls to the Toolbox).
3. Drag the `MapForceControl` from the toolbox onto your new form.
4. Set the `IntegrationLevel` property of the `MapForceControl` to `ICActiveXIntegrationOnDocumentLevel`, and the `Visible` property to `False`. You can do this either from code or from the `Properties` window.
5. Drag the `MapForceControl Document` from the toolbox onto the form. This control provides the main document window of MapForce to your application, so you may need to resize it to a reasonable size for a document.
6. Optionally, add one or more `MapForceControl Placeholder` controls to the form (one for each additional window type that your application needs, for example, the `Project` window). You will typically want to place such additional placeholder controls either below or to the right or left of the main document control, for example:
7. Set the `PlaceholderWindowID` property of each `MapForceControl Placeholder` control to a valid window identifier. For the list of valid values, see `MapForceControlPlaceholderWindow`.

8. Add commands to your application (at minimum, you will need to open, save and close documents), as shown below.

**Querying MapForce Commands**

When you integrate at document level, no MapForce menu or toolbar is available to your application. Instead, you can retrieve the required commands, view their status, and execute them programatically, as follows:

- To retrieve all available commands, use the `CommandsList` property of the `MapForceControl`.
- To retrieve commands organized according to their menu structure, use the `MainMenu` property.
- To retrieve commands organized by the toolbar in which they appear, use the `Toolbars` property.
- To send commands to MapForce, use the `Exec` method.
- To query if a command is currently enabled or disabled, use the `QueryStatus` method.

This enables you to flexibly integrate MapForce commands into your application's menus and toolbars.

Your installation of MapForce also provides you with command label images used within MapForce. See the folder `<ApplicationFolder>\Examples\ActiveX\Images` of your MapForce installation for icons in GIF format. The file names correspond to the command names as they are listed in the `Command Reference` section.
General considerations

To automate the behaviour of MapForce, use the properties, methods, and events described for the **MapForceControl**, **MapForceControl Document**, and **MapForceControl Placeholder**.

For more complex access to MapForce functionality, consider using the following properties:

- `MapForceControl.Application`
- `MapForceControlDocument.Document`
- `MapForceControlPlaceHolder.Project`

These properties give you access to the MapForce automation interface (MapForceAPI).

**Note:** To open a document, always use `MapForceControlDocument.Open` or `MapForceControlDocument.New` on the appropriate document control. To open a project, always use `MapForceControlPlaceHolder.OpenProject` on a placeholder control embedding a MapForce project window.

For examples that show how to instantiate and access the necessary controls in different programming environments, see **ActiveX Integration Examples**.
16.5 ActiveX Integration Examples

This section contains examples of MapForce document-level integration using different container environments and programming languages. (The HTML section additionally contains examples of integration at application level.) Source code for all examples is available in the folder <ApplicationFolder>\Examples\ActiveX of your MapForce installation.

16.5.1 C#

A basic ActiveX integration example solution for C# and Visual Studio is available in the folder <ApplicationFolder>\Examples\ActiveX\C#. Before you compile the source code and run the sample, make sure that all prerequisites are met (see Running the Sample C# Solution).

16.5.1.1 Running the Sample C# Solution

The sample Visual Studio solution available in the folder <ApplicationFolder>\Examples\ActiveX\C# illustrates how to consume the MapForce ActiveX controls. Before attempting to build and run this solution, note the following steps:

Step 1: Check the prerequisites
Visual Studio 2010 or later is required to open the sample solution. For the complete list of prerequisites, see Prerequisites.

Step 2: Copy the sample to a directory where you have write permissions
To avoid running Visual Studio as an Administrator, copy the source code to a directory where you have write permissions, instead of running it from the default location.

Step 3: Check and set all required control properties
The sample application contains one instance of MapForceControlDocument and several instances of MapForceControlPlaceHolder controls. Double-check that the following properties of these controls are set as shown in the table below:

<table>
<thead>
<tr>
<th>Control name</th>
<th>Property</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>axMapForceControl</td>
<td>IntegrationLevel</td>
<td>ICAmAxcIntegrationOnDocumentLevel</td>
</tr>
<tr>
<td>axMapForceControlLibrary</td>
<td>PlaceholderWindowID</td>
<td>0</td>
</tr>
<tr>
<td>axMapForceControlOutput</td>
<td>PlaceholderWindowID</td>
<td>2</td>
</tr>
<tr>
<td>axMapForceControlPreview</td>
<td>PlaceholderWindowID</td>
<td>1</td>
</tr>
</tbody>
</table>

Here is how you can view or set the properties of an ActiveX control:
1. Open the **MDIMain.cs** form in the designer window.

**Note:** On 64-bit Windows, it may be necessary to change the build configuration of the Visual Studio solution to “x86” before opening the designer window. If you need to build the sample as a 64-bit application, see [Prerequisites](#).

![Image of Visual Studio debugger configuration](image)

2. Open the **Document Outline** window of Visual Studio (On the **View** menu, click **Other Windows** | **Document Outline**).

![Image of Document Outline window](image)

3. Click an ActiveX control in the **Document Outline** window, and edit its required property in the **Properties** window, for example:
Step 4: Set the build platform

- Create a build platform configuration that matches the platform under which you want to build (x86, x64). Here is how you can create the build configuration:

  a. Right-click the solution in Visual Studio, and select Configuration Manager.
  b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in this example, x86).

You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration that matches your target platform (x86, x64); otherwise, runtime errors might occur.
On running the sample, the main MDI Frame window is displayed. Use **File | Open** to open a mapping file (for example, *MarketingExpenses.mfd*, which is in the MapForce examples folder). The file is loaded and displayed in a new document child window:

After you load the document, you can execute commands against the active document using the menu. Context menus are also available. You can also load additional documents. Save any modifications using the **File | Save** command.

### 16.5.1.2 Retrieving Command Information

The MapForceControl gives access to all commands of MapForce through its `CommandsList`, `MainMenu`, and `Toolbars` properties. The example project available in the folder `<ApplicationFolder>\Examples\ActiveX\C#` uses the `MainMenu` property to create the MapForce menu structure dynamically.

The code that gets the menu commands can be found in the `MDIMain` method in `MDIMain.cs` file:

```csharp
public MDIMain()
{

```
In the code listing above, `mainMenu` is the existing static menu of the main MDI Frame window. If you open the `MDIMain.cs` form in the Visual Studio Designer, you will notice that this menu contains two menu items: `File` and `Window`.

The method `InsertMenuStructure` takes as parameters the `mainMenu` and the `objCommand` objects (the former is the existing static menu, while the latter contains the full menu structure retrieved from the MapForce ActiveX control). The retrieved MapForce menu structure is then merged into the existing static menu. Note that the menus `File`, `Project`, and `Window` are not added dynamically. This is intentional, because these menus deal with actively open documents, and they would require code which is beyond the scope of this example. The basic file management commands (create, open, save, bring into focus) are handled by the existing static menus `File` and `Window`. All other menus are inserted dynamically based on the information taken from the `MainMenu` property of the ActiveX control. The new menus are inserted after "File" but before "Window", i.e. starting at menu index 1.

The method `InsertMenuStructure` iterates through all top-level menus found in `MapForceCommand` object and adds a new menu item for each. Since each top-level menu has its own child menu items, a call to the method `InsertMenuCommand` takes place for each encountered child menu item. Furthermore, since each child menu item can have its own children menu items, and so on, the `InsertMenuCommand` method recurses into itself until no more child menu items exist.

The commands added dynamically are instances of the class `CustomMenuItem`, which is defined in `CustomMenuItem.cs`. This class is derived from `System.Windows.Forms.MenuItem` class and has an additional member to store the MapForce command ID.

```csharp
public class CustomMenuItem : System.Windows.Forms.MenuItem
{
 public int m_MapForceCmdID;
}
```

All dynamically added commands (except those that are containers for other commands) get the same event handler `AltovaMenuItem_Click` which does the processing of the command:
private void AltovaMenuItem_Click(object sender, EventArgs e)
{
    if (sender.GetType() == System.Type.GetType("MapForceApplication.CustomMenuItem"))
    {
        CustomMenuItem customItem = (CustomMenuItem)sender;
        ProcessCommand(customItem.m_MapForceCmdID);
    }
}

If the command is a container for other commands (that is, if it has child commands), it gets the event handler AltovaSubMenu_Popup. This handler queries the status of each child command and enables or disables it as required. This ensures that each command is enabled only when that is meaningful (for example, the File | Save menu item should be disabled if there is no active document open).

The method ProcessCommand delegates the execution either to the MapForceControl itself or to any active MapForce document loaded in a MapForceControlDocument control. This is necessary because the MapForceControl has no way to know which document is currently active in the hosting application.

private void ProcessCommand(int nID)
{
    MapForceDoc docMapForce = GetCurrentMapForceDoc();

    if (docMapForce != null)
    {
        docMapForce.axMapForceControlDoc.Exec(nID);
    }
    else
    {
        axMapForceControl.Exec(nID);
    }
}

16.5.1.3 Handling Events

Because all events in the MapForce library are based on connection points, you can use the C# delegate mechanism to provide the custom event handlers. You will always find a complete list of events on the property page of each control of the MapForce library. The image below shows the events of the main MapForceControl:
As you can see, the example project only overrides the `OnFileExternalChange` event. The creation of the C# delegate is done for you by the C# Framework. All you need to do is fill in the empty event handler.

For example, the handler implementation shown below turns off any file reloading and displays a message box to inform the user that a file loaded by the `MapForceControl` has been changed from outside:

```csharp
private void axMapForceControl_OnFileExternalChange(object sender,
 AxMapForceControlLib._DMapForceControlEvents_OnFileExternalChangeEvent e)
{
 MessageBox.Show("Attention: The file "+ e.strPath + " has been changed from outside\nbut reloading is turned off in the sample application!");

 // This turns off any file reloading:
 e.varRet = false;
}
```
16.5.2 HTML

The code listings in this section show how to integrate the MapForceControl at application level and document level. Source code for all examples is available in the folder `<ApplicationFolder>\Examples\ActiveX\HTML` of your MapForce installation.

Note: ActiveX controls in an HTML page are supported only by Internet Explorer when it runs as a 32-bit application. When Internet Explorer 10 or 11 runs in 64-bit mode, it does not load ActiveX controls. The default browser security settings will normally block ActiveX, so you will need to explicitly allow blocked content to run on the page when prompted by Internet Explorer.

16.5.2.1 HTML Integration at Application Level

This example shows a simple integration of the MapForce control at application-level into a HTML page. The integration is described in the following sections:

- Instantiate a MapForceControl in HTML code.
- Implement buttons to load documents and automate code-generation tasks.
- Define actions for some application events.

The code for this example is available at the following location in your MapForce installation:

`<ApplicationFolder>\Examples\ActiveX\HTML\MapForceActiveX_ApplicationLevel.htm`.

16.5.2.1.1 Instantiate the Control

The HTML `OBJECT` tag is used to create an instance of the MapForceControl. The `Classid` is that of `MapForceControl`. Width and height specify the window size. No additional parameters are necessary, since application-level is the default.

```html
<OBJECT id="objMapForceControl"
 Classid="clsid:A38637E9-5759-4456-A167-F01160CC22C1"
 width="800"
 height="500"
 VIEWASTEXT>
</OBJECT>
```

16.5.2.1.2 Add Button to Open Default Document

As a simple example of how to automate some tasks, we add a button to the page:

```html
<input type="button" value="Open Marketing Expenses" onclick="BtnOpenMEFile()">
```

When clicked, a predefined document will be opened in the MapForceControl. The `MakeAbsolutePath` method creates an absolute path using the location of the script as a base path.
### 16.5.2.1.3 Add Buttons for Code Generation

Although code-generation for the active document is available via menus, we want to have buttons that will generate code without asking the user for the location of the output. The method is similar to that used in the previous section.

First come the buttons:

```html
<input type="button" value="Generate XSLT" onclick="BtnGenerate(0)">
<input type="button" value="Generate Java" onclick="BtnGenerate(1)">
<input type="button" value="Generate C++" onclick="BtnGenerate(2)">
<input type="button" value="Generate C#" onclick="BtnGenerate(3)"/>
```

Then we provide the script that will generate the code into sub-folders of the currently defined default output folders.

```javascript
// generate code for active document into language-specific subfolders of // the current default output directory. No user intercation necessary.
function BtnGenerate(languageID)
{
 // get top-level object of automation interface
 var objApp = objMapForceControl.Application;

 // get the active document
 var objDocument = objApp.ActiveDocument;

 // retrieve object to set the generation output path
 var objOptions = objApp.Options;

 if (objDocument == null)
 alert("no active document found");
 else
 {

 if (languageID == 0)
 {
 objOptions.XSLTDefaultOutputDirectory = objOptions.XSLTDefaultOutputDirectory + "\XSLTGen";
```
16.5.2.1.4 Connect to Custom Events

The example implements two event callbacks for MapForceControl custom events to show the principle:

```xml
<!-- --- -->
<!-- custom event 'OnDocumentOpened" of MapForceControl object -->
<SCRIPT FOR="objMapForceControl" event="OnDocumentOpened(objDocument)"
 LANGUAGE="javascript">
 // alert("Document '" + objDocument.Name + '" opened!");
</SCRIPT>

<!-- --- -->
<!-- custom event 'OnDocumentClosed" of MapForceControl object -->
<SCRIPT FOR="objMapForceControl" event="OnDocumentClosed(objDocument)"
 LANGUAGE="javascript">
 // alert("Document '" + objDocument.Name + '" closed!");
</SCRIPT>
```

16.5.2.2 HTML Integration at Document Level

This example shows an integration of the MapForce control at document-level into a HTML page. The following topics are covered:

- Instantiate a MapForceControl ActiveX control object in HTML code
- Instantiate a MapForceControlDocument ActiveX control to allow editing a MapForce file
- Instantiate one MapForceControlPlaceHolder for a MapForceControl project window
- Instantiate one MapForceControlPlaceHolder to alternatively host one of the MapForce helper windows
• Create a simple custom toolbar for some heavy-used MapForce commands
• Add some more buttons that use the COM automation interface of MapForce
• Use event handlers to update command buttons

This example is available in its entirety in the file MapForceActiveX_DocumentLevel.htm within the <ApplicationFolder>\Examples\ActiveX\HTML\ folder of your MapForce installation.

16.5.2.2.1 Instantiate the MapForceControl

The HTML OBJECT tag is used to create an instance of the MapForceControl. The Classid is that of MapForceControl. Width and height are set to 0 since we use this control as manager control without use for its user interface. The integration level is specified as a parameter within the OBJECT tag.

```xml
<object id="objMapForceX" classid="clsid:A38637E9-5759-4456-A167-F01160CC22C1" width="0" height="0" VIEWASTEXT>
 <param name="IntegrationLevel" value="1">
</object>
```

16.5.2.2.2 Create Editor Window

The HTML OBJECT tag is used to embed an editing window. The additional custom parameter specifies that the control is to be initialized with a new empty document.

```xml
<object id="objDoc1" classid="clsid:DFBB0871-DAFE-4502-BB66-08CEB7DF5255" width="600" height="500" VIEWASTEXT>
 <param name="NewDocument">
</object>
```

16.5.2.2.3 Create Project Window

The HTML OBJECT tag is used to create a MapForceControlPlaceHolder window. The parameter defines the placeholder to show the MapForce project window.

```xml
<!-- ----------------------------- -->
<!-- create project window placeholder control. -->
<!-- initialize it with a project. -->
<object id="objProjectWindow" classid="clsid:FDEC3B04-05F2-427d-988C-F03A85DE53C2" width="200" height="200" VIEWASTEXT>
 <param name="PlaceholderWindowID" value="3">
</object>
```
16.5.2.2.4 Create Placeholder for Helper Windows

The `MapForceControlPlaceHolder` control is required to host an application helper window, see also Integration at Document Level. In the code listing below, the HTML `object` tag is used to instantiate a control that will host the Libraries window by default (`PlaceholderWindowID` is 0).

```html
<!-- create helper window placeholder control. -->
<!-- the editor with focus will automatically direct its -->
<!-- output to the appropriate helper window. -->
<object id="objPlaceholderWindow" Classid="clsid:FDEC3B04-05F2-427d-988C-F03A85DE53C2"
 width="200" height="200" VIEWASTEXT>
 <param name="PlaceholderWindowID" value="0">
 <param name="FileName" value="">
</object>
```

The example HTML page includes a few buttons which call the `BtnHelperWindow` method when clicked. The `BtnHelperWindow` method reassigns the `PlaceholderWindowID` of the control, and thus cause the ActiveX object to display a different helper window.

```javascript
// specify which of the helper windows shall be shown in the placeholder control.
function BtnHelperWindow(i_ePlaceholderWindowID)
{
 objPlaceholderWindow.PlaceholderWindowID = i_ePlaceholderWindowID;
}
```

For the list of possible values of `PlaceholderWindowID`, see `MapForceControlPlaceHolderWindow`.

16.5.2.2.5 Create a Custom Toolbar

The example HTML page also includes a custom toolbar (intended as a replica of the MapForce menu). The custom toolbar consists of buttons with images of MapForce commands, for example:

```html
<button id="btnInsertXML" title="Insert XML Schema/File" onclick="BtnDoCommand(32393)"
 ></button>

<button id="btnInsertDB" title="Insert Database" onclick="BtnDoCommand(32389)"
 ></button>

<button id="btnInsertEDI" title="Insert EDI" onclick="BtnDoCommand(32390)"
 ></button>

<button id="btnInsertText" title="Insert Text file" onclick="BtnDoCommand(32392)"
 ></button>
```

The names of button images correspond to the command ID numbers, see Command Reference. On clicking the button, the corresponding command ID is sent to the main control and executed:
16.5.2.2.6 Create More Buttons

In the example, we add some more buttons to show some automation code.

The corresponding JavaScript looks like this:

```javascript
// perform any command specified by cmdID.
// command routing includes application, active document and view.
function BtnDoCommand(cmdID)
{
 objMapForceX.Exec(cmdID);
 msgtext.innerText = "Command " + cmdID + " performed.";
}
```

```xml
<!-- add some buttons associated with above editor. -->
<!-- generation of code is now implemented using the MapForce automation -->
<!-- interface to select a target folder without prompting the user. -->
<p>
<input type="button" value="New File" onclick="BtnNewFile(objDoc1)"/>
<input type="button" value="Save File" onclick="BtnSaveFile(objDoc1)"/>
<input type="text" title="Path" id="strPath" width="150">
<input type="button" value="Open MarketingExpenses" onclick="BtnOpenMEFile(objDoc1)"/>
<input type="button" value="Open MapForce Sample Project" onclick="BtnOpenProjectFile(objDoc1)">
</p>
</p>
```

```javascript
// open a new empty document in the specified document control window.
function BtnNewFile(objDocCtrl)
{
 objDocCtrl.OpenDocument(""");
 objDocCtrl.setActive();
}
```

```javascript
// Saves the current file in the specified document control window.
function BtnSaveFile(objDocCtrl)
{
 if(objDocCtrl.Path.length > 0)
 objDocCtrl.SaveDocument();
 else
 {
 if(strPath.value.length > 0)
 {
 objDocCtrl.Path = strPath.value;
 objDocCtrl.SaveDocument();
 }
 else
 {
 alert("Please set path for the document first!");
 }
 }
}```
ActiveX Integration Examples

1437

ActiveX Integration

Altova MapForce 2021 Professional Edition

strPath.focus();
}
}
objDocCtrl1.SetActive();
}

// ---
// open a document in the specified document control window.
function BtnOpenMEFile(objDocCtrl)
{
// do not use MapForceX.Application.OpenDocument(...) to open a document,
// since then MapForceControl wouldn't know a control window to show
// the document in. Instead:

var strPath = MakeAbsolutePath("MarketingExpenses.mfd");
var objDoc = objDocCtrl1.OpenDocument(strPath);

if (objDoc != null)
{
objDocCtrl1.SetActive();
msgtext.innerText = "Opened mapping: " + strPath;
}
else
alert("Unable to open " + strPath);
}

16.5.2.2.7 Create Event Handler to Update Button Status

Availability of a command may vary with every mouse click or keystroke. The custom event OnUpdateCmdUI of MapForceControl gives us an opportunity to update the enabled/disabled state of buttons associated with MapForce commands. The method MapForceControl.QueryStatus is used to query whether a command is enabled or not.

<!-- custom event 'OnUpdateCmdUI" of MapForceControl object -->
function objMapForceX::OnUpdateCmdUI()
{
if (document.readyState == "complete")// 'complete'
{
// update status of buttons
// set activity status of simulated toolbar
GenerateXSLT.disabled = ! (objDoc1.QueryStatus(32360) & 0x02); // not enabled
GenerateJava.disabled = ! (objDoc1.QueryStatus(32358) & 0x02); // not enabled
GenerateCpp.disabled = ! (objDoc1.QueryStatus(32356) & 0x02); // not enabled
GenerateCSharp.disabled = ! (objDoc1.QueryStatus(32357) & 0x02); // not enabled
btnInsertXML.disabled = ! (objDoc1.QueryStatus(32393) & 0x02);
btnInsertDB.disabled = ! (objDoc1.QueryStatus(32389) & 0x02);
btnInsertEDI.disabled = ! (objDoc1.QueryStatus(32390) & 0x02);
btnInsertText.disabled = ! (objDoc1.QueryStatus(32392) & 0x02);
btnInsertConstant.disabled = ! (objDoc1.QueryStatus(32388) & 0x02);
btnInsertFilter.disabled = ! (objDoc1.QueryStatus(32391) & 0x02);
btnInsertIFELSE.disabled = ! (objDoc1.QueryStatus(32394) & 0x02);
btnInsertException.disabled = ! (objDoc1.QueryStatus(32311) & 0x02);
btnFuncUserDef.disabled = ! (objDoc1.QueryStatus(32380) & 0x02);
btnFuncUserDefSel.disabled = ! (objDoc1.QueryStatus(32381) & 0x02);
btnFuncSettings.disabled = ! (objDoc1.QueryStatus(32387) & 0x02);
btnInsertInput.disabled = ! (objDoc1.QueryStatus(32383) & 0x02);
btnGenXSLT.disabled = ! (objDoc1.QueryStatus(32360) & 0x02);
btnGenXSLT2.disabled = ! (objDoc1.QueryStatus(32361) & 0x02);
btnGenXQuery.disabled = ! (objDoc1.QueryStatus(32359) & 0x02);
btnGenCPP.disabled = ! (objDoc1.QueryStatus(32356) & 0x02);
btnGenCSharp.disabled = ! (objDoc1.QueryStatus(32357) & 0x02);
btnGenJava.disabled = ! (objDoc1.QueryStatus(32358) & 0x02);
}
}

16.5.3 Java

MapForce ActiveX components can be accessed from Java code. Java integration is provided by the libraries listed below. These libraries are available in the folder `<ApplicationFolder>\Examples\JavaAPI` of your MapForce installation, after you have installed both MapForce and the MapForce Integration Package (see also Prerequisites).

- **AltovaAutomation.dll**: a JNI wrapper for Altova automation servers (in case of the 32-bit installation of MapForce)
- **AltovaAutomation_x64.dll**: a JNI wrapper for Altova automation servers (in case of the 64-bit installation of MapForce)
- **AltovaAutomation.jar**: Java classes to access Altova automation servers
- **MapForceActiveX.jar**: Java classes that wrap the MapForce ActiveX interface
- **MapForceActiveX_JavaDoc.zip**: a Javadoc file containing help documentation for the Java interface

Note: In order to use the Java ActiveX integration, the .dll and .jar files must be included in the Java class search path.

Example Java project

An example Java project is supplied with your product installation. You can test the Java project and modify and use it as you like. For more details, see Example Java Project.

Rules for mapping the ActiveX Control names to Java

For the documentation of ActiveX controls, see Object Reference. Note that the object naming conventions are slightly different in Java compared to other languages. Namely, the rules for mapping between the ActiveX controls and the Java wrapper are as follows:

- **Classes and class names**
 For every component of the MapForce ActiveX interface a Java class exists with the name of the component.
• **Method names**
 Method names on the Java interface are the same as used on the COM interfaces but start with a small letter to conform to Java naming conventions. To access COM properties, Java methods that prefix the property name with get and set can be used. If a property does not support write-access, no setter method is available. Example: For the `IntegrationLevel` property of the `MapForceControl`, the Java methods `getIntegrationLevel` and `setIntegrationLevel` are available.

• **Enumerations**
 For every enumeration defined in the ActiveX interface, a Java enumeration is defined with the same name and values.

• **Events and event handlers**
 For every interface in the automation interface that supports events, a Java interface with the same name plus 'Event' is available. To simplify the overloading of single events, a Java class with default implementations for all events is provided. The name of this Java class is the name of the event interface plus 'DefaultHandler'. For example:
 - `MapForceControl`: Java class to access the application
 - `MapForceControlEvents`: Events interface for the `MapForceControl`
 - `MapForceControlEventsDefaultHandler`: Default handler for `MapForceControlEvents`

Exceptions to mapping rules
There are some exceptions to the rules listed above. These are listed below:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Changes in Java class</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapForceControlDocument, method New</td>
<td>Renamed to newDocument</td>
</tr>
<tr>
<td>MapForceControlDocument, method OpenDocument</td>
<td>Removed. Use the Open method</td>
</tr>
<tr>
<td>MapForceControlDocument, method SaveDocument</td>
<td>Removed. Use the Save method</td>
</tr>
</tbody>
</table>

This section
This section shows how some basic MapForce ActiveX functionality can be accessed from Java code. It is organized into the following sub-sections:

• **Example Java Project**
• **Creating the ActiveX Controls**
• **Loading Data in the Controls**
• **Basic Event Handling**
• **Menus**
• **UI Update Event Handling**
• **Creating a MapForce Mapping Table**
16.5.3.1 Example Java Project

The MapForce installation package contains an example Java project, located in the ActiveX Examples folder of the application folder: `<ApplicationFolder>\Examples\ActiveX\Java`.

The Java example shows how to integrate the MapForceControl in a common desktop application created with Java. You can test it directly from the command line using the batch file `BuildAndRun.bat`, or you can compile and run the example project from within Eclipse. See below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are listed below:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.classpath</td>
<td>Eclipse project helper file</td>
</tr>
<tr>
<td>.project</td>
<td>Eclipse project file</td>
</tr>
<tr>
<td>AltovaAutomation.dll</td>
<td>Java-COM bridge: DLL part (for the 32-bit installation)</td>
</tr>
<tr>
<td>AltovaAutomation_x64.dll</td>
<td>Java-COM bridge: DLL part (for the 64-bit installation)</td>
</tr>
<tr>
<td>AltovaAutomation.jar</td>
<td>Java-COM bridge: Java library part</td>
</tr>
<tr>
<td>BuildAndRun.bat</td>
<td>Batch file to compile and run example code from the command line prompt. Expects folder where Java Virtual Machine resides as parameter.</td>
</tr>
<tr>
<td>MapForceActiveX.jar</td>
<td>Java classes of the MapForce ActiveX control</td>
</tr>
<tr>
<td>MapForceActiveX_JavaDoc.zip</td>
<td>Javadoc file containing help documentation for the Java API</td>
</tr>
<tr>
<td>MapForceContainer.java</td>
<td>Java example source code</td>
</tr>
<tr>
<td>MapForceContainerEventHandler.java</td>
<td>Java example source code</td>
</tr>
<tr>
<td>MapForceTable.java</td>
<td>Java example source code</td>
</tr>
</tbody>
</table>

What the example does
The example places one MapForce document editor window, the MapForce project window, the MapForce library window and the MapForce validation window in an AWT frame window. It reads out the main menu defined for MapForce and creates an AWT menu with the same structure. You can use this menu or the project window to open and work with files in the document editor.

You can modify the example in any way you like.

The following specific features are described in code listings:

- **Creating the ActiveX Controls**: Starts MapForce, which is registered as an automation server, or activates MapForce if it is already running.
- **Loading Data in the Controls**: Locates one of the example documents installed with MapForce and opens it.
• **Basic Event Handling**: Changes the view of all open documents to Text View. The code also shows how to iterate through open documents.

• **Menus**: Validates the active document and shows the result in a message box. The code shows how to use output parameters.

• **UI Update Event Handling**: Shows how to handle MapForce events.

• **Creating a MapForce Mapping Table**: Shows how to create a MapForce mapping table and prepare it for modal activation.

Updating the path to the Examples folder

Before running the provided sample, you may need to edit the `MapForceContainer.java` file. Namely, check that the following path refers to the actual folder where the MapForce example files are stored on your operating system:

```java
// Locate samples installed with the product.
final String strExamplesFolder = System.getenv("USERPROFILE") + "\Documents\Altova\MapForce2021\MapForceExamples\";
```

Running the example from the command line

To run the example from the command line:

1. Check that all prerequisites are met (see Prerequisites).
2. Open a command prompt window, change the current directory to the sample Java project folder, and type:

   ```
   buildAndRun.bat "<Path-to-the-Java-bin-folder>"
   ```

3. Press Enter.

 The Java source in `MapForceContainer.java` will be compiled and then executed.

Compiling and running the example in Eclipse

To import the sample Java project into Eclipse:

1. Check that all prerequisites are met (see Prerequisites).
2. On the File menu, click Import.
3. Select Existing Projects into Workspace, and browse for the Eclipse project file located at `<ApplicationFolder>\Examples\ActiveX\Java\`. Since you may not have write-access in this folder, it is recommended to select the Copy projects into workspace check box on the Import dialog box.

 To run the example application, right-click the project in Package Explorer and select the command Run as | Java Application.

 Help for Java API classes is available through comments in code as well as the Javadoc view of Eclipse. To enable the Javadoc view in Eclipse, select the menu command Window | Show View | JavaDoc.
16.5.3.2 Creating the ActiveX Controls

The code listing below show how ActiveX controls can be created. The constructors will create the Java wrapper objects. Adding these Canvas-derived objects to a panel or to a frame will trigger the creation of the wrapped ActiveX object.

```java
/**
 * MapForce manager control - always needed
 */
public static MapForceControl mapForceControl = null;

/**
 * MapForceDocument editing control
 */
public static MapForceControlDocument mapForceDocument = null;

/**
 * Tool windows - MapForce place-holder controls
 */
private static MapForceControlPlaceHolder mapForceProjectToolWindow = null;
private static MapForceControlPlaceHolder mapForceValidationToolWindow = null;
private static MapForceControlPlaceHolder mapForceLibraryToolWindow = null;

// Create the MapForce ActiveX control; the parameter determines that we want
// to place document controls and place-holder controls individually.
// It gives us full control over the menu, as well.
mapForceControl = new MapForceControl(
        ICACTiveXIntegrationLevel.ICActiveXIntegrationOnDocumentLevel.getValue(), false);
frame.add( mapForceDocument, BorderLayout.CENTER );

// Create a project window and open the sample project in it
mapForceProjectToolWindow = new MapForceControlPlaceHolder( MapForceControlPlaceholderWindow.MapForceXProjectWindow.getValue(), strExamplesFolder + "MapForceExamples.mfp" );
mapForceProjectToolWindow.setPreferredSize( new Dimension( 200, 200 ) );
```

16.5.3.3 Loading Data in the Controls

The code listing below show how data can be loaded in the ActiveX controls.

```java
// Locate samples installed with the product.
final String strExamplesFolder = System.getenv( "USERPROFILE" ) + 
        "\Documents\Altova\MapForce2020\MapForceExamples\";
mapForceProjectToolWindow = new MapForceControlPlaceHolder( MapForceControlPlaceholderWindow.MapForceXProjectWindow.getValue(), strExamplesFolder + "MapForceExamples.mfp" );
```
16.5.3.4 Basic Event Handling

The code listing below shows how basic events can be handled. When calling the MapForceControl's `open` method, or when trying to open a file via the menu or Project tree, the `onOpenedOrFocused` event is sent to the attached event handler. The basic handling for this event is opening the file by calling the MapForceDocumentControl's `open` method.

```java
// Open the Marketing file when button is pressed
btnMarkExp.addActionListener( new ActionListener() {
    public void actionPerformed(ActionEvent e) {
        try {
            // Instruct the Document control to open the file - avoid calling the open
            // method of MapForceControl (see help)
            mapForceDocument.open( strExamplesFolder + "MarketingExpenses.mfd" );
            mapForceDocument.requestFocusInWindow();
        } catch (AutomationException e1) {
            e1.printStackTrace();
        }
    }
});

public void onOpenedOrFocused( String i_strFileName, boolean i_bOpenWithThisControl, boolean i_bFileAlreadyOpened ) throws AutomationException {
    // Handle the New/Open events coming from the Project tree or from the menus
    if ( !i_bFileAlreadyOpened ) {
        // This is basically an SDI interface, so open the file in the already existing
document control
        try {
            MapForceContainer.mapForceDocument.open( i_strFileName );
            MapForceContainer.mapForceDocument.requestFocusInWindow();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
```

16.5.3.5 Menus

The code listing below shows how menu items can be created. Each `MapForceCommand` object gets a corresponding `MenuItem` object, with the `ActionCommand` set to the ID of the command. The actions generated by all menu items are handled by the same function, which can perform specific handlings (like reinterpreting the closing mechanism) or can delegate the execution to the `MapForceControl` object by calling its `exec` method. The `menuMap` object that is filled during menu creation is used later (see section UI Update Event Handling).

```java
// Load the file menu when the button is pressed
btnMenu.addActionListener( new ActionListener() {
    public void actionPerformed(ActionEvent e) {
        try {
            // Create the menubar that will be attached to the frame
```
MenuBar mb = new MenuBar();

// Load the main menu's first item - the File menu
MapForceCommand xmlSpyMenu = mapForceControl.getMainMenu().getSubCommands().getItem(0);

// Create Java menu items from the Commands objects
Menu fileMenu = new Menu();
handlerObject.fillMenu(fileMenu, xmlSpyMenu.getSubCommands());
fileMenu.setLabel(xmlSpyMenu.getLabel().replace("\", ":"));
mb.add(fileMenu);
frame.setMenuBar(mb);
frame.validate();
}

} catch (AutomationException e1) {
e1.printStackTrace();
}

// Disable the button when the action has been performed
((AbstractButton) e.getSource()).setEnabled(false);

/**
 * Populates a menu with the commands and submenus contained in an MapForceCommands object
 */

public void fillMenu(Menu newMenu, MapForceCommands mapForceMenu) throws AutomationException {

 // For each command/submenu in the mapForceMenu
 for (int i = 0; i < mapForceMenu.getCount(); ++i)
 {
 MapForceCommand mapForceCommand = mapForceMenu.getItem(i);
 if (mapForceCommand.getIsSeparator())

 newMenu.addSeparator();

 else
 {
 MapForceCommands subCommands = mapForceCommand.getSubCommands();

 // Is it a command (leaf), or a submenu?
 if (subCommands.isNull() || subCommands.getCount() == 0)
 {

 // Command -> add it to the menu, set its ActionCommand to its ID and store it in the menuMap
 MenuItem mi = new MenuItem(mapForceCommand.getLabel().replace("\", ":"));
 mi.setActionCommand("" + mapForceCommand.getID());
 mi.addActionListener(this);
 newMenu.add(mi);
 menuMap.put(mapForceCommand.getID(), mi);
 }

 else

 // Submenu -> create submenu and repeat recursively
 Menu newSubMenu = new Menu();
 fillMenu(newSubMenu, subCommands);
 newSubMenu.setLabel(mapForceCommand.getLabel().replace("\", ":"));
 newMenu.add(newSubMenu);

 }

 } /*
 * Action handler for the menu items
*/
ActiveX Integration Examples

16.5.3.6 UI Update Event Handling

The code listing below shows how a UI-Update event handler can be created.

```java
/**
 * Call-back from the MapForceControl.
 * Called to enable/disable commands
 */
@Override
public void onUpdateCmdUI() throws AutomationException {
    // A command should be enabled if the result of queryStatus contains the Supported (1) and Enabled (2) flags
    for (java.util.Map.Entry<Integer, MenuItem> pair : menuMap.entrySet())
        pair.getValue().setEnabled(MapForceContainer.mapForceControl.queryStatus(pair.getKey()) > 2);
}

/**
 * Call-back from the MapForceControl.
 * Usually called while enabling/disabling commands due to UI updates
 */
@Override
public boolean onIsActiveEditor(String i_strFilePath) throws AutomationException {
    try {
        return MapForceContainer.mapForceDocument.getDocument().getFullName().equalsIgnoreCase(i_strFilePath);
    } catch (Exception ex) {
        ex.printStackTrace();
    }
}
```
16.5.3.7 Listing the Properties of a MapForce Mapping

The listing below shows how a Mapping object in MapForce can be loaded as a table and prepared for modal activation.

```java
import com.altova.automation.MapForce.*;
import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;

class MapForceTable extends JDialog
{
    private JTable myTable;

    public MapForceTable( Mapping mapping, Frame parent )
    {
        super( parent, "MapForce component table", true );
        // Build up the tree
        fillTable( mapping );
        // Arrange controls in the dialog
        setContentPane( new JScrollPane( myTable ) );
    }
}
```
private void fillTable(Mapping mapping) {
 try {
 // count how many Instance components do we have
 int size = 0;
 for (Component comp : mapping.getComponents())
 if (comp.getUsageKind() == ENUMComponentUsageKind.eComponentUsageKind_Instance)
 ++size;

 // Prepare data
 final String[] columnNames = { "Component", "Has inputs", "Has outputs", "Input file", "Output file", "Schema" };
 final Object[][] data = new Object[size][7];
 int index = 0;
 for (Component comp : mapping.getComponents())
 if (comp.getUsageKind() == ENUMComponentUsageKind.eComponentUsageKind_Instance)
 {
 int i = 0;
 data[index][i++] = comp.getName();
 data[index][i++] = new Boolean(comp.getHasIncomingConnections());
 data[index][i++] = new Boolean(comp.getHasOutgoingConnections());
 data[index][i++] = comp.getInputInstanceFile();
 data[index][i++] = comp.getOutputInstanceFile();
 data[index++][i] = comp.getSchema();
 }

 // Set up table
 myTable = new JTable(new AbstractTableModel() {
 public String getColumnName(int col) { return columnNames[col]; }
 public int getRowCount() { return columnNames.length; }
 public int getColumnCount() { return columnNames.length; }
 public Object getValueAt(int row, int col) { return data[row][col]; }
 public boolean isCellEditable(int row, int col) { return false; }
 public Class getColumnClass(int c) { return getValueAt(0, c).getClass(); }
 });

 // Set width
 for (int index = 0; index < columnNames.length; ++index)
 myTable.getColumnModel().getColumn(index).setMinWidth(80);
 myTable.getColumnModel().getColumn(5).setMinWidth(400);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
}
16.5.4 VB.NET

Source code which illustrates integration of MapForceControl into a VB.NET application can be found in the folder `<ApplicationFolder>\Examples\ActiveX\VB.NET` of your MapForce installation. The solution consists of three windows, as follows:

1. **MainWindow.vb** - the main document window, which also includes a basic application menu.
2. **LibraryWindow.vb** - the Library window. The contents of this window is populated by a Placeholder control which has the `PlaceholderWindowID` property set to 0 (this value instructs the control to display specifically the Library window).

3. **OutputWindow.vb** - the Messages (Output) window. The contents of this window is populated by a Placeholder control which has the `PlaceholderWindowID` property set to 2 (this value instructs the control to display specifically the Output window).
Before attempting to build and run this solution, note the following steps:

Step 1: Check the prerequisites
For the list of prerequisites, see Prerequisites.

Step 2: Copy the sample to a directory where you have write permissions
To avoid running Visual Studio as an Administrator, copy the source code to a directory where you have write permissions, instead of running it from the default location.

Step 3: Set the build platform
- Create a build platform configuration that matches the platform under which you want to build (x86, x64). Here is how you can create the build configuration:
 a. Right-click the solution in Visual Studio, and select Configuration Manager.
 b. Under Active solution platform, select New... and then select the x86 or x64 configuration (in this example, x86).
You are now ready to build and run the solution in Visual Studio. Remember to build using the configuration that matches your target platform (x86, x64); otherwise, runtime errors might occur.
16.6 Command Reference

This section lists the names and identifiers of all menu commands that are available within MapForce. Every sub-section lists the commands from the corresponding top-level menu of MapForce. The command tables are organized as follows:

- The "Menu Item" column shows the command's menu text as it appears in MapForce, to make it easier for you to identify the functionality behind the command.
- The "Command Name" column specifies the string that can be used to get an icon with the same name from ActiveXImages folder of the MapForce installation directory.
- The "ID" column shows the numeric identifier of the column that must be supplied as argument to methods which execute or query this command.

To execute a command, use the MapForceControl.Exec or the MapForceControlDocument.Exec methods. To query the status of a command, use the MapForceControl.QueryStatus or MapForceControlDocument.QueryStatus methods.

Depending on the edition of MapForce you have installed, some of these commands might not be supported.

16.6.1 "File" Menu

The "File" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>New...</td>
<td>ID_FILE_NEW</td>
<td>57600</td>
</tr>
<tr>
<td>Open...</td>
<td>ID_FILE_OPEN</td>
<td>57601</td>
</tr>
<tr>
<td>Save</td>
<td>ID_FILE_SAVE</td>
<td>57603</td>
</tr>
<tr>
<td>Save As...</td>
<td>ID_FILE_SAVE_AS</td>
<td>57604</td>
</tr>
<tr>
<td>Save All</td>
<td>ID_FILE_SAVEALL</td>
<td>32377</td>
</tr>
<tr>
<td>Reload</td>
<td>IDC_FILE_RELOAD</td>
<td>32467</td>
</tr>
<tr>
<td>Close</td>
<td>ID_WINDOW_CLOSE</td>
<td>32453</td>
</tr>
<tr>
<td>Close All</td>
<td>ID_WINDOW_CLOSEALL</td>
<td>32454</td>
</tr>
<tr>
<td>Print...</td>
<td>ID_FILE_PRINT</td>
<td>57607</td>
</tr>
<tr>
<td>Print Preview</td>
<td>ID_FILE_PRINT_PREVIEW</td>
<td>57609</td>
</tr>
<tr>
<td>Print Setup...</td>
<td>ID_FILE_PRINT_SETUP</td>
<td>57606</td>
</tr>
<tr>
<td>Validate Mapping</td>
<td>ID_MAPPING_VALIDATE</td>
<td>32347</td>
</tr>
<tr>
<td>Mapping Settings</td>
<td>ID_MAPPING_SETTINGS</td>
<td>32396</td>
</tr>
<tr>
<td>Generate Code in Selected Language</td>
<td>ID_FILE_GENERATE_SELECTED_CODE</td>
<td>32362</td>
</tr>
</tbody>
</table>
16.6.2 "Edit" Menu

The "Edit" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo</td>
<td>ID_EDIT_UNDO</td>
<td>57643</td>
</tr>
<tr>
<td>Redo</td>
<td>ID_EDIT_REDO</td>
<td>57644</td>
</tr>
<tr>
<td>Find...</td>
<td>ID_EDIT_FIND</td>
<td>57636</td>
</tr>
<tr>
<td>Find Next</td>
<td>ID_EDIT_FINDNEXT</td>
<td>32349</td>
</tr>
<tr>
<td>Find Previous</td>
<td>ID_EDIT_FINDPREV</td>
<td>32350</td>
</tr>
<tr>
<td>Cut</td>
<td>ID_EDIT_CUT</td>
<td>57635</td>
</tr>
<tr>
<td>Copy</td>
<td>ID_EDIT_COPY</td>
<td>57634</td>
</tr>
<tr>
<td>Paste</td>
<td>ID_EDIT_PASTE</td>
<td>57637</td>
</tr>
<tr>
<td>Delete</td>
<td>ID_EDIT_CLEAR</td>
<td>57632</td>
</tr>
<tr>
<td>Select All</td>
<td>ID_EDIT_SELECT_ALL</td>
<td>57642</td>
</tr>
</tbody>
</table>
16.6.3 "Insert" Menu

The "Insert" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML Schema/File...</td>
<td>ID_INSERT_XSD</td>
<td>32393</td>
</tr>
<tr>
<td>Database...</td>
<td>ID_INSERT_DATABASE</td>
<td>32389</td>
</tr>
<tr>
<td>EDI...</td>
<td>ID_INSERT_EDI</td>
<td>32390</td>
</tr>
<tr>
<td>Text File...</td>
<td>ID_INSERT_TXT</td>
<td>32392</td>
</tr>
<tr>
<td>Web Service Function...</td>
<td>ID_INSERT_WEBSERVICE_FUNCTION</td>
<td>32319</td>
</tr>
<tr>
<td>Excel 2007+ File...</td>
<td>ID_INSERT_EXCEL</td>
<td>32376</td>
</tr>
<tr>
<td>XBRL Document...</td>
<td>ID_INSERT_XBRL</td>
<td>32469</td>
</tr>
<tr>
<td>JSON Schema/File...</td>
<td>ID_INSERT_JSON</td>
<td>32531</td>
</tr>
<tr>
<td>Insert Input...</td>
<td>ID_FUNCTION_INSERT_INPUT</td>
<td>32383</td>
</tr>
<tr>
<td>Insert Output...</td>
<td>ID_FUNCTION_INSERT_OUTPUT</td>
<td>32402</td>
</tr>
<tr>
<td>Constant...</td>
<td>ID_INSERT_CONSTANT</td>
<td>32388</td>
</tr>
<tr>
<td>Variable...</td>
<td>ID_INSERT_VARIABLE</td>
<td>32500</td>
</tr>
<tr>
<td>Join</td>
<td>ID_INSERT_JOIN</td>
<td>32581</td>
</tr>
<tr>
<td>Sort: Nodes/Rows</td>
<td>ID_INSERT_SORT</td>
<td>32444</td>
</tr>
<tr>
<td>Filter: Nodes/Rows</td>
<td>ID_INSERT_FILTER</td>
<td>32391</td>
</tr>
<tr>
<td>SQL-WHERE/ORDER</td>
<td>ID_INSERT_SQLWHERE_CONDITION</td>
<td>32351</td>
</tr>
<tr>
<td>Value-Map</td>
<td>ID_INSERT_VALUemap</td>
<td>32354</td>
</tr>
<tr>
<td>IF-Else Condition</td>
<td>ID_INSRT_CONDITION</td>
<td>32394</td>
</tr>
<tr>
<td>Exception</td>
<td>ID_INSERT_EXCEPTION</td>
<td>32311</td>
</tr>
</tbody>
</table>

16.6.4 "Project" Menu

The "Project" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reload Project</td>
<td>ID_PROJECT_RELOAD</td>
<td>32476</td>
</tr>
</tbody>
</table>
16.6.5 "Component" Menu

The "Component" menu has the following commands:
<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit FlexText Configuration</td>
<td>ID_COMPONENT_EDIT_MFT</td>
<td>32301</td>
</tr>
<tr>
<td>Add/Remove/Edit Database Objects...</td>
<td>ID_COMPONENT_SELECTTABLES</td>
<td>32346</td>
</tr>
<tr>
<td>Create Mapping to EDI X12 997</td>
<td>ID_COMPONENT_CREATE_MAPPING_TO_997</td>
<td>32483</td>
</tr>
<tr>
<td>Create Mapping to EDI X12 999</td>
<td>ID_COMPONENT_CREATE_MAPPING_TO_999</td>
<td>32484</td>
</tr>
<tr>
<td>Refresh</td>
<td>IDC_COMMAND_REFRESH_COMPONENT</td>
<td>32373</td>
</tr>
<tr>
<td>Add Duplicate Input Before</td>
<td>ID_COMPONENT_CREATE_DUPLICATE_ICO_N_BEFORE</td>
<td>32503</td>
</tr>
<tr>
<td>Add Duplicate Input After</td>
<td>ID_COMPONENT_CREATE_DUPLICATE_ICO_N</td>
<td>32335</td>
</tr>
<tr>
<td>Remove Duplicate</td>
<td>ID_COMPONENT_REMOVE_DUPLICATE_ICO_N</td>
<td>32339</td>
</tr>
<tr>
<td>Add Comment Before</td>
<td>ID_COMPONENT_ADD_COMMENT_BEFORE</td>
<td>32518</td>
</tr>
<tr>
<td>Add Comment After</td>
<td>ID_COMPONENT_ADD_COMMENT_AFTER</td>
<td>32519</td>
</tr>
<tr>
<td>Add Processing Instruction Before...</td>
<td>ID_COMPONENT_ADD_PI_BEFORE</td>
<td>32520</td>
</tr>
<tr>
<td>Add Processing Instruction After...</td>
<td>ID_COMPONENT_ADD_PI_AFTER</td>
<td>32521</td>
</tr>
<tr>
<td>Edit Processing Instruction Name...</td>
<td>ID_COMPONENT_EDIT_PI</td>
<td>32524</td>
</tr>
<tr>
<td>Delete Comment/Processing Instruction</td>
<td>ID_COMPONENT_REMOVE_COMMENT_PI</td>
<td>32522</td>
</tr>
<tr>
<td>Write Content as CDATA Section</td>
<td>ID_COMPONENT_TOGGLE_CDATA</td>
<td>32525</td>
</tr>
<tr>
<td>Database Table Actions</td>
<td>ID_POPUP_DATABASETABLEACTIONS</td>
<td>32400</td>
</tr>
<tr>
<td>Query Database...</td>
<td>ID_QUERY_DATABASE</td>
<td>32341</td>
</tr>
<tr>
<td>Align Tree Left</td>
<td>ID_COMPONENT_LEFTALIGNTREE</td>
<td>32338</td>
</tr>
<tr>
<td>Align Tree Right</td>
<td>ID_COMPONENT_RIGHTALIGNTREE</td>
<td>32340</td>
</tr>
<tr>
<td>Properties</td>
<td>ID_COMPONENT_PROPERTIES</td>
<td>32336</td>
</tr>
</tbody>
</table>

16.6.6 "Connection" Menu

The “Connection” menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Connect Matching Children</td>
<td>ID_CONNECTION_AUTOCONNECTCHILDREN</td>
<td>32342</td>
</tr>
</tbody>
</table>
16.6.7 "Function" Menu

The "Function" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create User-Defined Function...</td>
<td>ID_FUNCTION_CREATE_EMPTY</td>
<td>32380</td>
</tr>
<tr>
<td>Create User-Defined Function from Selection...</td>
<td>ID_FUNCTION_CREATE_FROM_SELECTION</td>
<td>32381</td>
</tr>
<tr>
<td>Function Settings</td>
<td>ID_FUNCTION_SETTINGS</td>
<td>32387</td>
</tr>
<tr>
<td>Remove Function</td>
<td>ID_FUNCTION_REMOVE</td>
<td>32385</td>
</tr>
<tr>
<td>Insert Input...</td>
<td>ID_FUNCTION_INSERT_INPUT</td>
<td>32383</td>
</tr>
<tr>
<td>Insert Output...</td>
<td>ID_FUNCTION_INSERT_OUTPUT</td>
<td>32402</td>
</tr>
</tbody>
</table>

16.6.8 "Output" Menu

The "Output" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT 1.0</td>
<td>ID_SELECT_LANGUAGE_XSLT</td>
<td>32433</td>
</tr>
<tr>
<td>XSLT 2.0</td>
<td>ID_SELECT_LANGUAGE_XSLT2</td>
<td>32434</td>
</tr>
<tr>
<td>XQuery</td>
<td>ID_SELECT_LANGUAGE_XQUERY</td>
<td>32432</td>
</tr>
<tr>
<td>Java</td>
<td>ID_SELECT_LANGUAGE_JAVA</td>
<td>32431</td>
</tr>
<tr>
<td>C# (Sharp)</td>
<td>ID_SELECT_LANGUAGE_CSHARP</td>
<td>32430</td>
</tr>
<tr>
<td>C++</td>
<td>ID_SELECT_LANGUAGE_CPP</td>
<td>32429</td>
</tr>
</tbody>
</table>
16.6.9 "Debug" Menu

The "Debug" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Debugging</td>
<td>ID_DEBUG_START</td>
<td>32540</td>
</tr>
<tr>
<td>Stop Debugging</td>
<td>ID_DEBUG_STOP</td>
<td>32541</td>
</tr>
<tr>
<td>Step Into</td>
<td>ID_DEBUG_STEP_INTO</td>
<td>32545</td>
</tr>
<tr>
<td>Step Over</td>
<td>ID_DEBUG_STEP_OVER</td>
<td>32551</td>
</tr>
<tr>
<td>Step Out</td>
<td>ID_DEBUG_STEP_OUT</td>
<td>32552</td>
</tr>
<tr>
<td>Minimal Step</td>
<td>ID_DEBUG_STEP_NEXT_TRACE</td>
<td>32554</td>
</tr>
</tbody>
</table>

16.6.10 "View" Menu

The "View" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Annotations</td>
<td>ID_SHOW_ANNOTATION</td>
<td>32435</td>
</tr>
</tbody>
</table>
Menu item
<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Types</td>
<td>ID_SHOWTYPES</td>
<td>32437</td>
</tr>
<tr>
<td>Show Library in Function Header</td>
<td>ID_VIEW_SHOWLIBRARYINFUNCTIONHEADER</td>
<td>32448</td>
</tr>
<tr>
<td>Show Tips</td>
<td>ID_SHOWTIPS</td>
<td>32436</td>
</tr>
<tr>
<td>XBRL Display Options</td>
<td>ID_VIEW_XBRL_DISPLAYOPTIONS</td>
<td>32473</td>
</tr>
<tr>
<td>Show Selected Component Connectors</td>
<td>ID_VIEW_AUTOHIGHLIGHTCOMPONENTCONNECTIONS</td>
<td>32443</td>
</tr>
<tr>
<td>Show Connectors from Source to Target</td>
<td>ID_VIEW_RECURSIVEAUTOHIGHLIGHT</td>
<td>32447</td>
</tr>
<tr>
<td>Zoom...</td>
<td>ID_VIEW_ZOOM</td>
<td>32451</td>
</tr>
<tr>
<td>Back</td>
<td>ID_CMD_BACK</td>
<td>32479</td>
</tr>
<tr>
<td>Forward</td>
<td>ID_CMD_FORWARD</td>
<td>32478</td>
</tr>
<tr>
<td>Status Bar</td>
<td>ID_VIEW_STATUS_BAR</td>
<td>59393</td>
</tr>
<tr>
<td>Library Window</td>
<td>ID_VIEW_LIBRARY_WINDOW</td>
<td>32445</td>
</tr>
<tr>
<td>Messages</td>
<td>ID_VIEW_VALIDATION_OUTPUT</td>
<td>32450</td>
</tr>
<tr>
<td>Overview</td>
<td>ID_VIEW_OVERVIEW_WINDOW</td>
<td>32446</td>
</tr>
<tr>
<td>Project Window</td>
<td>ID_VIEW_PROJECT_WINDOW</td>
<td>32302</td>
</tr>
<tr>
<td>Values</td>
<td>ID_DEBUG_VIEW_VALUES_WINDOW</td>
<td>32544</td>
</tr>
<tr>
<td>Context</td>
<td>ID_DEBUG_VIEW_CONTEXT_WINDOW</td>
<td>32546</td>
</tr>
<tr>
<td>Breakpoints</td>
<td>ID_DEBUG_VIEW_DEBUGPOINTS_WINDOW</td>
<td>32547</td>
</tr>
</tbody>
</table>

16.6.11 "Tools" Menu

The "Tools" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Resources</td>
<td>IDC_GLOBALRESOURCES</td>
<td>37401</td>
</tr>
<tr>
<td><plugin not loaded></td>
<td>IDC_GLOBALRESOURCES_SUBMENUENTRY1</td>
<td>37408</td>
</tr>
<tr>
<td>Create Reversed Mapping</td>
<td>ID_CREATE_REVERSED_MAPPING</td>
<td>32489</td>
</tr>
<tr>
<td>Customize...</td>
<td>IDC_APP_TOOLS_CUSTOMIZE</td>
<td>32959</td>
</tr>
<tr>
<td>Options...</td>
<td>ID_TOOLS_OPTIONS</td>
<td>32441</td>
</tr>
</tbody>
</table>
16.6.12 "Window" Menu

The "Window" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>ID_WINDOW_CASCADE</td>
<td>57650</td>
</tr>
<tr>
<td>Tile Horizontal</td>
<td>ID_WINDOW_TILE_HORZ</td>
<td>57651</td>
</tr>
<tr>
<td>Tile Vertical</td>
<td>ID_WINDOW_TILE_VERT</td>
<td>57652</td>
</tr>
</tbody>
</table>

16.6.13 "Help" Menu

The "Help" menu has the following commands:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Command name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents…</td>
<td>IDC_HELP_CONTENTS</td>
<td>32966</td>
</tr>
<tr>
<td>Index…</td>
<td>IDC_HELP_INDEX</td>
<td>32967</td>
</tr>
<tr>
<td>Search…</td>
<td>IDC_HELP_SEARCH</td>
<td>32969</td>
</tr>
<tr>
<td>Software Activation…</td>
<td>IDC_ACTIVATION</td>
<td>32970</td>
</tr>
<tr>
<td>Order Form…</td>
<td>IDC_OPEN_ORDER_PAGE</td>
<td>32971</td>
</tr>
<tr>
<td>Registration…</td>
<td>IDC_REGISTRATION</td>
<td>32972</td>
</tr>
<tr>
<td>Check for Updates…</td>
<td>IDC_CHECK_FOR_UPDATES</td>
<td>32973</td>
</tr>
<tr>
<td>MapForce Product Comparison…</td>
<td>IDC_PRODUCT_COMPARISON</td>
<td>32955</td>
</tr>
<tr>
<td>Support Center…</td>
<td>IDC_OPEN_SUPPORT_PAGE</td>
<td>32961</td>
</tr>
<tr>
<td>FAQ on the Web…</td>
<td>IDC_OPEN_FAQ_PAGE</td>
<td>32962</td>
</tr>
<tr>
<td>Download Components and Free Tools…</td>
<td>IDC_OPEN_COMPONENTS_PAGE</td>
<td>32963</td>
</tr>
<tr>
<td>MapForce on the Internet…</td>
<td>IDC_OPEN_HOME_PAGE</td>
<td>32964</td>
</tr>
<tr>
<td>MapForce Training…</td>
<td>IDC_OPEN_TRAINING_PAGE</td>
<td>32965</td>
</tr>
<tr>
<td>About MapForce…</td>
<td>ID_APP_ABOUT</td>
<td>57664</td>
</tr>
</tbody>
</table>
16.7 Object Reference

Objects:
MapForceCommand
MapForceCommands
MapForceControl
MapForceControlDocument
MapForceControlPlaceHolder

To give access to standard MapForce functionality, objects of the MapForce automation interface can be accessed as well. See MapForceControl.Application, MapForceControlDocument.Document and MapForceControlPlaceHolder.Project for more information.

16.7.1 MapForceCommand

Properties:
ID
Label
Name
IsSeparator
ToolTip
StatusText
Accelerator
SubCommands

Description:
A command object can be one of the following: an executable command, a command container (for example, a menu, submenu, or toolbar), or a menu separator. To determine what kind of information is stored in the current Command object, query its ID, IsSeparator, and SubCommands properties, as follows.

<table>
<thead>
<tr>
<th>The Command object is...</th>
<th>When...</th>
</tr>
</thead>
</table>
| An executable command | • ID is greater than zero
| | • IsSeparator is false
| | • SubCommands is empty |
| A command container | • ID is zero
| | • IsSeparator is false
| | • SubCommands contains a collection of Command objects. |
| Separator | • ID is zero
| | • IsSeparator is true |

16.7.1.1 Accelerator

Property: Accelerator as string
Description:
Returns the accelerator key defined for the command. If the command has no accelerator key assigned, this property returns the empty string. The string representation of the accelerator key has the following format:

\[\text{[ALT+] [CTRL+] [SHIFT+]key}\]

Where `key` is converted using the Windows Platform SDK function `GetKeyNameText`.

16.7.1.2 ID

Property: ID as long

Description:
This property gets the unique identifier of the command. A command's ID is required to execute the command (using `Exec`) or query its status (using `QueryStatus`). If the command is a container for other commands (for example, a top-level menu), or a separator, the ID is 0.

16.7.1.3 IsSeparator

Property: IsSeparator as boolean

Description:
The property returns true if the command object is a menu separator; false otherwise. See also `Command`.

16.7.1.4 Label

Property: Label as string

Description:
This property gets the text of the command as it is displayed in the graphical user interface of MapForce. If the command is a separator, "Label" is an empty string. This property may also return an empty string for some toolbar commands that do not have any GUI text associated with them.

16.7.1.5 Name

Property: Name as string

Description:
This property gets the unique name of the command. This value can be used to get the icon file of the command, where it is available. The available icon files can be found in the folder `<ApplicationFolder>\Examples\ActiveX\Images` of your MapForce installation.
16.7.1.6 StatusText

Property: Label as string

Description:
The status text is the text shown in the status bar of MapForce when the command is selected. It applies only to command objects that are not separators or containers of other commands; otherwise, the property is an empty string.

16.7.1.7 SubCommands

Property: SubCommands as Commands

Description:
The SubCommands property gets the collection of Command objects that are sub-commands of the current command. The property is applicable only to commands that are containers for other commands (menus, submenus, or toolbars). Such container commands have the ID set to 0, and the IsSeparator property set to false.

16.7.1.8 ToolTip

Property: ToolTip as string

Description:
This property gets the text that is shown as a tool-tip for each command. If the command does not have a tooltip text, the property returns an empty string.

16.7.2 MapForceCommands

Properties:
- **Count**
- **Item**

Description:
Collection of Command objects to get access to command labels and IDs of the MapForceControl. Those commands can be executed with the Exec method and their status can be queried with QueryStatus.

16.7.2.1 Count

Property: Count as long

Description:
Number of Command objects on this level of the collection.
16.7.2.2 Item

Property: Item (n as long) as Command

Description:
Gets the command with the index n in this collection. Index is 1-based.

16.7.3 MapForceControl

Properties:
IntegrationLevel, Appearance, Application, BorderStyle, CommandsList, EnableUserPrompts, MainMenu, Toolbars

Methods:
Open, Exec, QueryStatus

Events:

This object is a complete ActiveX control and should only be visible if the MapForce library is used in the Application Level mode.

CLSID: A38637E9-5759-4456-A167-F01160CC22C1
ProgID: Altova.MapForceControl

16.7.3.1 Properties

The following properties are defined:
IntegrationLevel, EnableUserPrompts, Appearance, BorderStyle

Command related properties:
Access to MapForce API:

CommandsList

16.7.3.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the control. Default value is 0.

16.7.3.1.2 Application

Property: Application as Application

Dispatch Id: 1

Description:
The Application property gives access to the Application object of the complete MapForce automation server API. The property is read-only.

16.7.3.1.3 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

16.7.3.1.4 CommandsList

Property: CommandList as Commands (read-only)

Dispatch Id: 1004

Description:
This property returns a flat list of all commands defined available with MapForce Control. To get commands organized according to their menu structure, use MainMenu. To get toolbar commands, use Toolbars.
public void GetAllMapForceCommands()
{
 // Get all commands from the MapForce ActiveX control assigned to the current form
 MapForceControlLib.MapForceCommands commands = this.axMapForceControl1.CommandList;
 // Iterate through all commands
 for (int i = 0; i < commands.Count; i++)
 {
 // Get each command by index and output it to the console
 Console.WriteLine("{0} {1} {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&", ");
 }
}

C# example

16.7.3.1.5 EnableUserPrompts

Property: EnableUserPrompts as boolean

Dispatch Id: 1006

Description:
Setting this property to false, disables user prompts in the control. The default value is true.

16.7.3.1.6 IntegrationLevel

Property: IntegrationLevel as ICACTIVEXINTEGRATIONLEVEL

Dispatch Id: 1000

Description:
The IntegrationLevel property determines the operation mode of the control. See also Integration at Application Level and Integration at Document Level for more information.

Note: It is important to set this property immediately after the creation of the MapForceControl object.

16.7.3.1.7 MainMenu

Property: MainMenu as Command (read-only)

Dispatch Id: 1003

Description:
This property provides information about the structure and commands available in the MapForceControl main menu, as a Command object. The Command object contains all available submenus of MapForce (for example "File", "Edit", "View" etc.). To access the submenu objects, use the SubCommands property of the MainMenu property. Each submenu is also a Command object. For each submenu, you can then further iterate through their
1466

ActiveX Integration

Object Reference

SubCommands property in order to get their corresponding child commands and separators (this technique may

be used, for example, to create the application menu programmatically). Note that some menu commands act
as containers ("parents") for other menu commands, in which case they also have a SubCommands property. To
get the structure of all menu commands programmatically, you will need a recursive function, as illustrated for
C# in Retrieving Command Information 1427 .

public void GetMapForceMenus()
{
// Get the main menu from the MapForce ActiveX control assigned to the current form
MapForceControlLib.MapForceCommand mainMenu = this.axMapForceControl1.MainMenu;
// Loop through entries of the main menu (e.g. File, Edit, etc.)
for (int i = 0; i < mainMenu.SubCommands.Count; i++)
{
MapForceControlLib.MapForceCommand menu = mainMenu.SubCommands[i];
Console.WriteLine("{0} menu has {1} children items (including separators)",
menu.Label.Replace("&", ""), menu.SubCommands.Count);
}
}

C# example

16.7.3.1.8

Toolbars

Property: Toolbars as Commands

1462

(read-only)

Dispatch Id: 1005
Description:
This property provides information about the structure of MapForceControl toolbars, as a Command object. The
Command object contains all available toolbars of MapForce. To access the toolbars, use the SubCommands
property of the Toolbars property. Each toolbar is also a Command object. For each toolbar, you can then
further iterate through their SubCommands property in order to get their commands (this technique may be used,
for example, to create the application's toolbars programmatically).

public void GetMapForceToolbars()
{
// Get the application toolbars from the MapForce ActiveX control assigned to the
current form
MapForceControlLib.MapForceCommands toolbars = this.axMapForceControl1.Toolbars;
// Iterate through all toolbars
for (int i = 0; i < toolbars.Count; i++)
{
MapForceControlLib.MapForceCommand toolbar = toolbars[i];
Console.WriteLine();
Console.WriteLine("The toolbar \"{0}\" has the following commands:",
toolbar.Label);
// Iterate through all commands of this toolbar

Altova MapForce 2021 Professional Edition

© 2020 Altova Gmb H


C# example

```csharp
for (int j = 0; j < toolbar.SubCommands.Count; j++)
{
    MapForceControlLib.MapForceCommand cmd = toolbar.SubCommands[j];
    // Output only command objects that are not separators
    if (!cmd.IsSeparator)
    {
        Console.WriteLine("{0}, {1}, {2}", cmd.ID, cmd.Name, cmd.Label.Replace("&", "");
    }
}
```

16.7.3.2 Methods

The following methods are defined:

- **Open**
- **Exec**
- **QueryStatus**

16.7.3.2.1 Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 6

Description: This method calls the MapForce command with the ID nCmdID. If the command can be executed, the method returns true. To get a list of all available commands, use **CommandsList**. To retrieve the status of any command, use **QueryStatus**.

16.7.3.2.2 Open

Method: Open (strFilePath as string) as boolean

Dispatch Id: 5

Description: The result of the method depends on the extension passed in the argument strFilePath. If the file extension is .sps, a new document is opened. If the file extension is .svp, the corresponding project is opened. If a different file extension is passed into the method, the control tries to load the file as a new component into the active document.

Do not use this method to load documents or projects when using the control in document-level integration mode. Instead, use **MapForceControlDocument.Open** and **MapForceControlPlaceHolder.OpenProject**.
16.7.3.2.3 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 7

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by nCmdID. The status is returned as a bit mask.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Supported</td>
<td>Set if the command is supported.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Enabled</td>
<td>Set if the command is enabled (can be executed).</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Checked</td>
<td>Set if the command is checked.</td>
</tr>
</tbody>
</table>

This means that if QueryStatus returns 0 the command ID is not recognized as a valid MapForce command. If QueryStatus returns a value of 1 or 5, the command is disabled.

16.7.3.3 Events

The MapForceControl ActiveX control provides the following connection point events:

- OnUpdateCmdUI
- OnOpenedOrFocused
- OnCloseEditingWindow
- OnFileChangedAlert
- OnContextChanged
- OnDocumentOpened
- OnValidationWindowUpdated

16.7.3.3.1 OnCloseEditingWindow

Event: OnCloseEditingWindow (i_strFilePath as String) as boolean

Dispatch Id: 1002

Description:
This event is triggered when MapForce needs to close an already open document. As an answer to this event, clients should close the editor window associated with i_strFilePath. Returning true from this event indicates that the client has closed the document. Clients can return false if no specific handling is required and MapForceControl should try to close the editor and destroy the associated document control.
16.7.3.3.2 OnContextChanged

Event: OnContextChanged (i_strContextName as String, i_bActive as bool) as bool

Dispatch Id: 1004

Description:
This event is not used in MapForce.

16.7.3.3.3 OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1

Description:
This event is triggered whenever a document is opened. The argument objDocument is a Document object from the MapForce automation interface and can be used to query for more details about the document, or perform additional operations. When integrating on document-level, it is often better to use the event MapForceControlDocument.OnDocumentOpened instead.

16.7.3.3.4 OnFileChangedAlert

Event: OnFileChangedAlert (i_strFilePath as String) as bool

Dispatch Id: 1001

Description:
This event is triggered when a file loaded with MapForceControl is changed on the hard disk by another application. Clients should return true, if they handled the event, or false, if MapForce should handle it in its customary way, i.e. prompting the user for reload.

16.7.3.3.5 OnLicenseProblem

Event: OnLicenseProblem (i_strLicenseProblemText as String)

Dispatch Id: 1005

Description:
This event is triggered when MapForceControl detects that no valid license is available for this control. In case of restricted user licenses this can happen some time after the control has been initialized. Integrators should use this event to disable access to this control's functionality. After returning from this event, the control will block access to its functionality (e.g. show empty windows in its controls and return errors on requests).
16.7.3.3.6 OnOpenedOrFocused

Event: OnOpenedOrFocused (i_strFilePath as String, i_bOpenWithThisControl as bool)

Dispatch Id: 1000

Description:
When integrating at application level, this event informs clients that a document has been opened, or made active by MapForce.

When integrating at document level, this event instructs the client to open the file i_strFilePath in a document window. If the file is already open, the corresponding document window should be made the active window.

If i_bOpenWithThisControl is true, the document must be opened with MapForceControl, since internal access is required. Otherwise, the file can be opened with different editors.

16.7.3.3.7 OnToolWindowUpdated

Event: OnToolWindowUpdated(pToolWnd as long)

Dispatch Id: 1006

Description:
This event is triggered when the tool window is updated.

16.7.3.3.8 OnUpdateCmdUI

Event: OnUpdateCmdUI()

Dispatch Id: 1003

Description:
Called frequently to give integrators a good opportunity to check status of MapForce commands using MapForceControl.QueryStatus. Do not perform long operations in this callback.

16.7.3.3.9 OnValidationWindowUpdated

Event: OnValidationWindowUpdated()

Dispatch Id: 3

Description:
This event is triggered whenever the validation output window is updated with new information.
16.7.4 MapForceControlDocument

Properties:
- Appearance
- BorderStyle
- Document
- IsModified
- Path
- ReadOnly

Methods:
- Exec
- New
- Open
- QueryStatus
- Reload
- Save
- SaveAs

Events:
- OnDocumentOpened
- OnDocumentClosed
- OnModifiedFlagChanged
- OnContextChanged
- OnFileChangedAlert
- OnActivate

If the MapForceControl is integrated in the Document Level mode each document is displayed in an own object of type MapForceControlDocument. The MapForceControlDocument contains only one document at the time but can be reused to display different files one after another.

This object is a complete ActiveX control.

CLSID: DFBB0871-DAFE-4502-BB66-08CEB7DF5255
ProgID: Altova.MapForceControlDocument

16.7.4.1 Properties

The following properties are defined:
- ReadOnly
- IsModified
- Path
- Appearance
- BorderStyle

Access to MapForceAPI:
- Document
16.7.4.1.1 Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the document control. Default value is 0.

16.7.4.1.2 BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

16.7.4.1.3 Document

Property: Document as Document

Dispatch Id: 1

Description:
The Document property gives access to the Document object of the MapForce automation server API. This interface provides additional functionality which can be used with the document loaded in the control. The property is read-only.

16.7.4.1.4 IsModified

Property: IsModified as boolean (read-only)

Dispatch Id: 1006

Description:
IsModified is true if the document content has changed since the last open, reload or save operation. It is false, otherwise.

16.7.4.1.5 Path

Property: Path as string

Dispatch Id: 1005
Description:
Sets or gets the full path name of the document loaded into the control.

16.7.4.1.6 **ReadOnly**

Property: `ReadOnly` as *boolean*

Dispatch Id: 1007

Description: Using this property you can turn on and off the read-only mode of the document. If `ReadOnly` is true it is not possible to do any modifications.

16.7.4.2 **Methods**

The following methods are defined:

Document handling:
- **New**
- **Open**
- **Reload**
- **Save**
- **SaveAs**

Command Handling:
- **Exec**
- **QueryStatus**

16.7.4.2.1 **Exec**

Method: `Exec (nCmdID as long) as boolean`

Dispatch Id: 8

Description: `Exec` calls the MapForce command with the ID `nCmdID`. If the command can be executed, the method returns true. This method should be called only if there is currently an active document available in the application.

To get commands organized according to their menu structure, use the `MainMenu` property of MapForceControl. To get toolbar commands, use the `Toolbars` property of the MapForceControl.

16.7.4.2.2 **New**

Method: `New () as boolean`

Dispatch Id: 1000
Description:
This method initializes a new document inside the control.

16.7.4.2.3 Open

Method: Open (strFileName as string) as boolean

Dispatch Id: 1001

Description:
Open loads the file strFileName as the new document into the control.

16.7.4.2.4 QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 9

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command specified by nCmdID. The status is returned as a bit mask.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Supported</td>
<td>Set if the command is supported.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Enabled</td>
<td>Set if the command is enabled (can be executed).</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Checked</td>
<td>Set if the command is checked.</td>
</tr>
</tbody>
</table>

This means that if QueryStatus returns 0 the command ID is not recognized as a valid MapForce command. If QueryStatus returns a value of 1 or 5 the command is disabled. The client should call the QueryStatus method of the document control if there is currently an active document available in the application.

16.7.4.2.5 Reload

Method: Reload () as boolean

Dispatch Id: 1002

Description:
Reload updates the document content from the file system.

16.7.4.2.6 Save

Method: Save () as boolean

Dispatch Id: 1003
Description:
Save saves the current document at the location \texttt{Path}.

16.7.4.2.7 SaveAs

Method: \texttt{SaveAs (strFileName as string) as boolean}

Dispatch Id: 1004

Description:
SaveAs sets \texttt{Path} to \texttt{strFileName} and then saves the document to this location.

16.7.4.3 Events

The MapForceControlDocument ActiveX control provides following connection point events:

- \texttt{OnDocumentOpened}
- \texttt{OnDocumentClosed}
- \texttt{OnModifiedFlagChanged}
- \texttt{OnContextChanged}
- \texttt{OnFileChangedAlert}
- \texttt{OnActivate}
- \texttt{OnSetEditorTitle}

16.7.4.3.1 OnActivate

Event: \texttt{OnActivate ()}

Dispatch Id: 1005

Description:
This event is triggered when the document control is activated, has the focus, and is ready for user input.

16.7.4.3.2 OnContextChanged

Event: \texttt{OnContextChanged (i_strContextName as String, i_bActive as bool) as bool}

Dispatch Id: 1004

Description: None

16.7.4.3.3 OnDocumentClosed

Event: \texttt{OnDocumentClosed (objDocument as Document)}
Dispatch Id: 1001

Description:
This event is triggered whenever the document loaded into this control is closed. The argument objDocument is a Document object from the MapForce automation interface and should be used with care.

16.7.4.3.4 OnDocumentopened

Event: OnDocumentopened (objDocument as Document)

Dispatch Id: 1000

Description:
This event is triggered whenever a document is opened in this control. The argument objDocument is a Document object from the MapForce automation interface, and can be used to query for more details about the document, or perform additional operations.

16.7.4.3.5 OnDocumentSaveAs

Event: OnContextDocumentSaveAs (i_strFileName as String)

Dispatch Id: 1007

Description:
This event is triggered when this document gets internally saved under a new name.

16.7.4.3.6 OnFilechangedalert

Event: OnFilechangedalert () as bool

Dispatch Id: 1003

Description:
This event is triggered when the file loaded into this document control is changed on the hard disk by another application. Clients should return true, if they handled the event, or false, if MapForce should handle it in its customary way, i.e. prompting the user for reload.

16.7.4.3.7 OnModifiedFlagchanged

Event: OnModifiedFlagchanged (i_bIsModified as boolean)

Dispatch Id: 1002

Description:
This event gets triggered whenever the document changes between modified and unmodified state. The parameter i_bIsModified is true if the document contents differs from the original content, and false, otherwise.
16.7.4.3.8 **OnSetEditorTitle**

Event: OnSetEditorTitle()

Dispatch Id: 1006

Description:
This event is being raised when the contained document is being internally renamed.

16.7.5 MapForceControlPlaceHolder

Properties available for all kinds of placeholder windows:

- **PlaceholderWindowID**

Properties for project placeholder window:

- **Project**

Methods for project placeholder window:

- **OpenProject**
- **CloseProject**

The `MapForceControlPlaceHolder` control is used to show the additional MapForce windows like Overview, Library or Project window. It is used like any other ActiveX control and can be placed anywhere in the client application.

CLSID: FDEC3B04-05F2-427d-988C-F03A85DE53C2
ProgID: Altova.MapForceControlPlaceHolder

16.7.5.1 Properties

The following properties are defined:

- **PlaceholderWindowID**

Access to MapForceAPI:

- **Project**

16.7.5.1.1 Label

Property: Label as String (read-only)

Dispatch Id: 1001

Description:
This property gives access to the title of the placeholder. The property is read-only.
16.7.5.1.2 PlaceholderWindowID

Property: PlaceholderWindowID as MapForceControlPlaceholderWindow

Dispatch Id: 1

Description:
This property specifies which MapForce window should be displayed in the client area of the control. The `PlaceholderWindowID` can be set at any time to any valid value of the `MapForceControlPlaceholderWindow` enumeration. The control changes its state immediately and shows the new MapForce window.

16.7.5.1.3 Project

Property: Project as Project (read-only)

Dispatch Id: 2

Description:
The `Project` property gives access to the `Project` object of the MapForce automation server API. This interface provides additional functionality which can be used with the project loaded into the control. The property will return a valid project interface only if the placeholder window has `PlaceholderWindowID` with a value of `MapForceXProjectWindow (=3)`. The property is read-only.

16.7.5.2 Methods

The following method is defined:
- OpenProject
- CloseProject

16.7.5.2.1 OpenProject

Method: OpenProject (strFileName as string) as boolean

Dispatch Id: 3

Description:
`OpenProject` loads the file `strFileName` as the new project into the control. The method will fail if the placeholder window has a `PlaceholderWindowID` different to `MapForceXProjectWindow (=3)`.`

16.7.5.2.2 CloseProject

Method: CloseProject ()

Dispatch Id: 4
Description:
CloseProject closes the project loaded by the control. The method will fail if the placeholder window has a PlaceholderWindowID different to MapForceXProjectWindow (=3).

16.7.5.3 Events
The MapForceControlIPlaceholder ActiveX control provides following connection point events:

16.7.5.3.1 OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1

Description:
This event gets triggered only for placeholder controls with a PlaceholderWindowID of MapForceXProjectWindow (=3). The event is fired whenever the project content changes between modified and unmodified state. The parameter i_bIsModified is true if the project contents differs from the original content, and false, otherwise.

16.7.5.3.2 OnSetLabel

Event: OnSetLabel (i_strNewLabel as string)

Dispatch Id: 1000

Description:
Raised when the title of the placeholder window is changed.

16.7.6 Enumerations

The following enumerations are defined:

ICAActiveXIntegrationLevel

MapForceControlIPlaceholderWindow

16.7.6.1 ICAActiveXIntegrationLevel

Possible values for the IntegrationLevel property of the MapForceControl.

ICAActiveXIntegrationOnApplicationLevel = 0
ICAActiveXIntegrationOnDocumentLevel = 1
16.7.6.2 MapForceControlPlaceholderWindow

This enumeration contains the list of the supported additional MapForce windows.

<table>
<thead>
<tr>
<th>MapForceControlPlaceholderWindow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MapForceXNoWindow</td>
<td>-1</td>
</tr>
<tr>
<td>MapForceXLibraryWindow</td>
<td>0</td>
</tr>
<tr>
<td>MapForceXOverviewWindow</td>
<td>1</td>
</tr>
<tr>
<td>MapForceXValidationWindow</td>
<td>2</td>
</tr>
<tr>
<td>MapForceXProjectWindow</td>
<td>3</td>
</tr>
<tr>
<td>MapForceXDebuggerValuesWindow</td>
<td>4</td>
</tr>
<tr>
<td>MapForceXDebuggerContextWindow</td>
<td>5</td>
</tr>
<tr>
<td>MapForceXDebuggerPointsWindow</td>
<td>6</td>
</tr>
</tbody>
</table>
17 Appendices

These appendices contain technical information about MapForce and important licensing information. Each appendix contains sub-sections as given below:

Technical Data
- OS and memory requirements
- Altova XML Parser
- Altova XSLT and XQuery Engines
- Unicode support
- Internet usage
- License metering

License Information
- Electronic software distribution
- Copyrights
- End User License Agreement
17.1 Engine information

This section contains information about implementation-specific features of the Altova XML Validator, Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery Engine.

17.1.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of MapForce follow the W3C specifications closely and are therefore stricter than previous Altova engines—such as those in previous versions of XMLSpy. As a result, minor errors that were ignored by previous engines are now flagged as errors by MapForce.

For example:

- It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and non-nodes.
- It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a sequence of nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance document as appropriate.

This section describes implementation-specific features of the engines, organized by specification:

- **XSLT 1.0**
- **XSLT 2.0**
- **XQuery 1.0**

17.1.1.1 XSLT 1.0

The XSLT 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT 1.0 Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November 1999. Note the following information about the implementation.

Notes about the implementation

When the method attribute of xsl:output is set to HTML, or if HTML output is selected by default, then special characters in the XML or XSLT file are inserted in the HTML document as HTML character references in the output. For instance, the character U+00A0 (the hexadecimal character reference for a non-breaking space) is inserted in the HTML code either as a character reference (or) or as an entity reference, .

17.1.1.2 XSLT 2.0

This section:
Conformance
The XSLT 2.0 engine of MapForce conforms to the World Wide Web Consortium’s (W3C’s) XSLT 2.0 Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. The only time the backwards compatibility of the XSLT 2.0 engine comes into effect is when using the XSLT 2.0 engine to process an XSLT 1.0 stylesheet. Note that there could be differences in the outputs produced by the XSLT 1.0 Engine and the backwards-compatible XSLT 2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to use the type constructors and functions available in XSLT 2.0. The prefixes given below are conventionally used; you could use alternative prefixes if you wish.

<table>
<thead>
<tr>
<th>Namespace Name</th>
<th>Prefix</th>
<th>Namespace URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML Schema types</td>
<td>xs:</td>
<td>http://www.w3.org/2001/XMLSchema</td>
</tr>
<tr>
<td>XPath 2.0 functions</td>
<td>fn:</td>
<td>http://www.w3.org/2005/xpath-functions</td>
</tr>
</tbody>
</table>

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform element, as shown in the following listing:

```xml
true
<xsl:stylesheet version="2.0"
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:fn="http://www.w3.org/2005/xpath-functions"
    ...
</xsl:stylesheet>
```

The following points should be noted:

- The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in the table above) as its default functions namespace. So you can use XPath 2.0 and XSLT 2.0 functions in your stylesheet without any prefix. If you declare the XPath 2.0 Functions namespace in your stylesheet with a prefix, then you can additionally use the prefix assigned in the declaration.
- When using type constructors and types from the XML Schema namespace, the prefix used in the namespace declaration must be used when calling the type constructor (for example, xs:date).
- Some XPath 2.0 functions have the same name as XML Schema datatypes. For example, for the XPath functions fn:string and fn:boolean there exist XML Schema datatypes with the same local names: xs:string and xs:boolean. So if you were to use the XPath expression string('Hello'), the expression evaluates as fn:string('Hello')—not as xs:string('Hello').
Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the xsl:validate instruction.

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects of the behavior of certain XSLT 2.0 functions.

xsl:result-document
Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-base64tobinary.

function-available
The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text
The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16 and x-binarytobase64.

unparsed-text-available
The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths with or without the file:// protocol. Additionally supported encodings are (the Altova-specific): x-binarytobase16 and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML’s predecessor product, AltovaXML, are now deprecated: base16tobinary, base64tobinary, binarytobase16 and binarytobase64.

17.1.1.3 XQuery 1.0

This section:

- Engine conformance
- Schema awareness
- Encoding
- Namespaces
- XML source and validation
- Static and dynamic type checking
- Library modules
- External functions
- Collations
- Precision of numeric data
- XQuery instructions support
Conformance
The XQuery 1.0 Engine of MapForce conforms to the World Wide Web Consortium’s (W3C’s) XQuery 1.0 Recommendation of 14 December 2010. The XQuery standard gives implementations discretion about how to implement many features. Given below is a list explaining how the XQuery 1.0 Engine implements these features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

<table>
<thead>
<tr>
<th>Namespace Name</th>
<th>Prefix</th>
<th>Namespace URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML Schema types</td>
<td>xs:</td>
<td>http://www.w3.org/2001/XMLSchema</td>
</tr>
<tr>
<td>Schema instance</td>
<td>xsi:</td>
<td>http://www.w3.org/2001/XMLSchema-instance</td>
</tr>
<tr>
<td>Built-in functions</td>
<td>fn:</td>
<td>http://www.w3.org/2005/xpath-functions</td>
</tr>
<tr>
<td>Local functions</td>
<td>local:</td>
<td>http://www.w3.org/2005/xquery-local-functions</td>
</tr>
</tbody>
</table>

The following points should be noted:

- The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the corresponding namespaces.
- Since the built-in functions namespace listed above is the default functions namespace in XQuery, the fn:: prefix does not need to be used when built-in functions are invoked (for example, string("Hello") will call the fn:string function). However, the prefix fn: can be used to call a built-in function without having to declare the namespace in the query prolog (for example: fn:string("Hello").)
- You can change the default functions namespace by declaring the default function namespace expression in the query prolog.
- When using types from the XML Schema namespace, the prefix xs:: may be used without having to explicitly declare the namespaces and bind these prefixes to them in the query prolog. (Example: xs:date and xs:yearMonthDuration.) If you wish to use some other prefix for the XML Schema namespace, this must be explicitly declared in the query prolog. (Example: declare namespace alt = "http://www.w3.org/2001/XMLSchema"; alt:date("2004-10-04").)
- Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes have been moved, with the CRs of 23 January 2007, from the XPath Datatypes namespace to the XML Schema namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is reported. Note, however, that some functions have the same name as schema datatypes, e.g. fn:string and fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace prefix determines whether the function or type constructor is used.
XML source document and validation

XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be well-formed. However, they do not need to be valid according to an XML Schema. If the file is not valid, the invalid file is loaded without schema information. If the XML file is associated with an external schema and is valid according to it, then post-schema validation information is generated for the XML data and will be used for query evaluation.

Static and dynamic type checking

The static analysis phase checks aspects of the query such as syntax, whether external references (e.g. for modules) exist, whether invoked functions and variables are defined, and so on. If an error is detected in the static analysis phase, it is reported and the execution is stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is incompatible with the requirement of an operation, an error is reported. For example, the expression \(\text{xs:string}("1") + 1 \) returns an error because the addition operation cannot be carried out on an operand of type \(\text{xs:string} \).

Library Modules

Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine supports modules that are stored in a single external XQuery file. Such a module file must contain a module declaration in its prolog, which associates a target namespace. Here is an example module:

```xml
module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };
```

All functions and variables declared in the module belong to the namespace associated with the module. The module is used by importing it into an XQuery file with the import module statement in the query prolog. The import module statement only imports functions and variables declared directly in the library module file. As follows:

```xml
import module namespace modlib = "urn:module-library" at "modulefilename.xq";
if ($modlib:company = "Altova")
then  modlib:webaddress()
else  error("No match found.")
```

External functions

External functions are not supported, i.e. in those expressions using the external keyword, as in:

```xml
declare function hoo($param as xs:integer) as xs:string external;
```

Collations

The default collation is the Unicode-codepoint collation, which compares strings on the basis of their Unicode codepoint. Other supported collations are the ICU collations listed here. To use a specific collation, supply its URI as given in the list of supported collations. Any string comparisons, including for the \(\text{fn:max} \) and \(\text{fn:min} \) functions, will be made according to the specified collation. If the collation option is not specified, the default Unicode-codepoint collation is used.
Precision of numeric types

- The `xs:integer` datatype is arbitrary-precision, i.e. it can represent any number of digits.
- The `xs:decimal` datatype has a limit of 20 digits after the decimal point.
- The `xs:float` and `xs:double` datatypes have limited-precision of 15 digits.

XQuery Instructions Support

The `Pragma` instruction is not supported. If encountered, it is ignored and the fallback expression is evaluated.

17.1.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in XPath and/or XQuery expressions. Altova extension functions can be used with Altova's XSLT and XQuery engines, and provide functionality additional to that available in the function libraries defined in the W3C standards.

General points

The following general points should be noted:

- Functions from the core function libraries defined in the W3C specifications can be called without a prefix. That's because the XSLT and XQuery engines read non-prefixed functions as belonging to a default functions namespace which is that specified in the XPath/XQuery functions specifications http://www.w3.org/2005/xpath-functions. If this namespace is explicitly declared in an XSLT or XQuery document, the prefix used in the namespace declaration can also optionally be used on function names.
- In general, if a function expects a sequence of one item as an argument, and a sequence of more than one item is submitted, then an error is returned.
- All string comparisons are done using the Unicode codepoint collation.
- Results that are QNames are serialized in the form `[prefix:]localname`.

Precision of `xs:decimal`

The precision refers to the number of digits in the number, and a minimum of 18 digits is required by the specification. For division operations that produce a result of type `xs:decimal`, the precision is 19 digits after the decimal point with no rounding.

Implicit timezone

When two `date`, `time`, or `dateTime` values need to be compared, the timezones of the values being compared need to be known. When the timezone is not explicitly given in such a value, the implicit timezone is used. The implicit timezone is taken from the system clock, and its value can be checked with the `implicit-timezone()` function.

Collations

The default collation is the Unicode codepoint collation, which compares strings on the basis of their Unicode codepoint. The engine uses the Unicode Collation Algorithm. Other supported collations are the ICU collations.
listed below; to use one of these, supply its URI as given in the table below. Any string comparisons, including for the max and min functions, will be made according to the specified collation. If the collation option is not specified, the default Unicode-codepoint collation is used.

<table>
<thead>
<tr>
<th>Language</th>
<th>URIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>da: Danish</td>
<td>da_DK</td>
</tr>
<tr>
<td>de: German</td>
<td>de_AT, de_BE, de_CH, de_DE, de_LI, de_LU</td>
</tr>
<tr>
<td>es: Spanish</td>
<td>es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC, es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE, es_PR, es_PY, es_SV, es_US, es_UY, es_VE</td>
</tr>
<tr>
<td>it: Italian</td>
<td>it_CH, it_IT</td>
</tr>
<tr>
<td>ja: Japanese</td>
<td>ja_JP</td>
</tr>
<tr>
<td>nb: Norwegian Bokmal</td>
<td>nb_NO</td>
</tr>
<tr>
<td>nl: Dutch</td>
<td>nl_AW, nl_BE, nl_NL</td>
</tr>
<tr>
<td>nn: Nynorsk</td>
<td>nn_NO</td>
</tr>
<tr>
<td>ru: Russian</td>
<td>ru_MD, ru_RU, ru_UA</td>
</tr>
<tr>
<td>sv: Swedish</td>
<td>sv_FI, sv_SE</td>
</tr>
</tbody>
</table>

Namespace axis

The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however, supported. To access namespace information with XPath 2.0 mechanisms, use the `in-scope-prefixes()`, `namespace-uri()` and `namespace-uri-for-prefix()` functions.

17.1.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the **Altova extension functions namespace**, http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix `altova:`, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for
Altova extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath expressions in an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this documentation we indicate the functions that can be used in the former context (XPath in XSLT) with an xp symbol and call them XPath functions; those functions that can be used in the latter (XQuery) context are indicated with an xq symbol; they work as XQuery functions. The W3C’s XSLT specifications—not XPath/XQuery Functions specifications—also define functions that can be used in XPath expressions in XSLT documents. These functions are marked with an $xslt$ symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function can be used are indicated in the description of the function (see symbols below). Functions from the XPath/XQuery and XSLT function libraries are listed without a prefix. Extension functions from other libraries, such as Altova extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT):	XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT):	XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery):	XQ1 XQ3.1

XSLT functions

XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT 2.0’s `current-group()` or `key()` functions). These functions are not intended for, and will not work in, a non-XSLT context (for instance, in an XQuery context). Note that XSLT functions for XBRL can be used only with editions of Altova products that have XBRL support.

XPath/XQuery functions

XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in XQuery expressions:

- **Date/Time**
- **Geolocation**
- **Image-related**
- **Numeric**
- **Sequence**
- **String**
- **Miscellaneous**

17.1.2.1.1 XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not work in a non-XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the **Altova extension functions namespace**, http://www.altova.com/xslt-
extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for Altova extension functions in that release.

<table>
<thead>
<tr>
<th>XPath functions (used in XPath expressions in XSLT):</th>
<th>XP1 XP2 XP3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT functions (used in XPath expressions in XSLT):</td>
<td>XSLT1 XSLT2 XSLT3</td>
</tr>
<tr>
<td>XQuery functions (used in XQuery expressions in XQuery):</td>
<td>XQ1 XQ3.1</td>
</tr>
</tbody>
</table>

Standard functions

- **distinct-nodes [altova:]**

 altova:distinct-nodes(node(*) as node*) XSLT1 XSLT2 XSLT3

 Takes a set of one or more nodes as its input and returns the same set minus nodes with duplicate values. The comparison is done using the XPath/XQuery function fn:deep-equal.

 Examples
 - **altova:distinct-nodes**(country) returns all child country nodes less those having duplicate values.

- **evaluate [altova:]**

 altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN]) XSLT1 XSLT2 XSLT3

 Takes an XPath expression, passed as a string, as its mandatory argument. It returns the output of the evaluated expression. For example: **altova:evaluate**(''//Name[1]'') returns the contents of the first Name element in the document. Note that the expression ''//Name[1]'' is passed as a string by enclosing it in single quotes.

 The **altova:evaluate** function can optionally take additional arguments. These arguments are the values of in-scope variables that have the names p1, p2, p3... pN. Note the following points about usage: (i) The variables must be defined with names of the form px, where x is an integer; (ii) the **altova:evaluate** function's arguments (see signature above), from the second argument onwards, provide the values of the variables, with the sequence of the arguments corresponding to the numerically ordered sequence of variables: p1 to pN: The second argument will be the value of the variable p1, the third argument that of the variable p2, and so on; (iii) The variable values must be of type item*.

 Example
 <xs1:variable name="xpath" select="'$p3, $p2, $p1'" />
 <xs1:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
 outputs "hi 20 10"

 In the listing above, notice the following:
 - The second argument of the **altova:evaluate** expression is the value assigned to the variable $p1, the third argument that assigned to the variable $p2, and so on.
 - Notice that the fourth argument of the function is a string value, indicated by its being enclosed in quotes.
 - The select attribute of the xs:variable element supplies the XPath expression. Since this
expression must be of type `xs:string`, it is enclosed in single quotes.

- **Examples to further illustrate the use of variables**

 - `<xsl:variable name="xpath" select="'$p1'" />`<xsl:value-of select="altova:evaluate($xpath, //Name[1])" /> Outputs value of the first Name element.

 - `<xsl:variable name="xpath" select="'$p1'" />`<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" /> Outputs "//Name[1]"

The `altova:evaluate()` extension function is useful in situations where an XPath expression in the XSLT stylesheet contains one or more parts that must be evaluated dynamically. For example, consider a situation in which a user enters his request for the sorting criterion and this criterion is stored in the attribute `UserReq/@sortkey`. In the stylesheet, you could then have the expression: `<xsl:sort select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>`. The `altova:evaluate()` function reads the sortkey attribute of the `UserReq` child element of the parent of the context node. Say the value of the sortkey attribute is `Price`, then `Price` is returned by the `altova:evaluate()` function and becomes the value of the `select` attribute: `<xsl:sort select="Price" order="ascending"/>`. If this sort instruction occurs within the context of an element called `Order`, then the `Order` elements will be sorted according to the values of their `Price` children. Alternatively, if the value of `@sortkey` were, say, `Date`, then the `Order` elements would be sorted according to the values of their `Date` children. So the sort criterion for `Order` is selected from the `sortkey` attribute at runtime. This could not have been achieved with an expression like: `<xsl:sort select="../UserReq/@sortkey" order="ascending"/>`. In the case shown above, the sort criterion would be the `sortkey` attribute itself, not `Price` or `Date` (or any other current content of `sortkey`).

- **Note:** The static context includes namespaces, types, and functions—but not variables—from the calling environment. The base URI and default namespace are inherited.

- **More examples**

 - Static variables: `<xsl:value-of select="$i3, $i2, $i1" />` Outputs the values of three variables.

 - Dynamic XPath expression with dynamic variables: `<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />`<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" /> Outputs "30 20 10"

Converts the input string into code for RTF. Whitespace and new lines will be preserved according to the boolean value specified for their respective arguments.

XBRL functions

Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

- **xbrl-footnotes** [altova:]

  ```xml
  altova:xbrl-footnotes(node()) as node()*
  ```

 Takes a node as its input argument and returns the set of XBRL footnote nodes referenced by the input node.

- **xbrl-labels** [altova:]

  ```xml
  altova:xbrl-labels(xs:QName, xs:string) as node()*
  ```

 Takes two input arguments: a node name and the taxonomy file location containing the node. The function returns the XBRL label nodes associated with the input node.

17.1.2.1.2 XPath/XQuery Functions: Date and Time

Altova’s date/time extension functions can be used in XPath and XQuery expressions and provide additional functionality for the processing of data held as XML Schema’s various date and time datatypes. The functions in this section can be used with Altova’s **XPath 3.0** and **XQuery 3.0** engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the **Altova extension functions namespace**, http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix `altova:`, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for Altova extension functions in that release.

<table>
<thead>
<tr>
<th>XPath functions (used in XPath expressions in XSLT):</th>
<th>XP1 XP2 XP3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT functions (used in XPath expressions in XSLT):</td>
<td>XSLT1 XSLT2 XSLT3</td>
</tr>
<tr>
<td>XQuery functions (used in XQuery expressions in XQuery):</td>
<td>XQ1 XQ3.1</td>
</tr>
</tbody>
</table>

Grouped by functionality
- Add a duration to xs:dateTime and return xs:dateTime
- Add a duration to xs:date and return xs:date
- Add a duration to xs:time and return xs:time
- Format and retrieve durations
- Remove timezone from functions that generate current dateTime
- Return days, hours, minutes, and seconds from durations
- Return weekday as integer from date
- Return week number as integer from date
- Build date, time, or duration type from lexical components of each type
- Construct date, dateTime, or time type from string input
- Age-related functions

Grouped alphabetically

- altova:add-days-to-date
- altova:add-days-to-dateTime
- altova:add-hours-to-dateTime
- altova:add-hours-to-time
- altova:add-minutes-to-dateTime
- altova:add-minutes-to-time
- altova:add-months-to-date
- altova:add-months-to-dateTime
- altova:add-seconds-to-dateTime
- altova:add-seconds-to-time
- altova:add-years-to-date
- altova:add-years-to-dateTime
- altova:age
- altova:age-details
- altova:build-date
- altova:build-duration
- altova:build-time
- altova:current-dateTime-no-TZ
- altova:current-date-no-TZ
- altova:current-time-no-TZ
- altova:date-no-TZ
- altova:dateTime-no-TZ
- altova:days-in-month
- altova:hours-from-dateTimeDuration-accumulated
- altova:minutes-from-dateTimeDuration-accumulated
- altova:seconds-from-dateTimeDuration-accumulated
- altova:format-duration
- altova:parse-date
- altova:parse-dateTime
- altova:parse-duration
- altova:parse-time
- altova:time-no-TZ
- altova:weekday-from-date
- altova:weekday-from-dateTime
- altova:weeknumber-from-date
- altova:weeknumber-from-dateTime
Add a duration to xs:dateTime XP3.1 XQ3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time formats separated by the letter T. A timezone suffix +01:00 (for example) is optional.

▼ **add-years-to-dateTime** [altova:]

```
altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as xs:dateTime
```

Adds a duration in years to an xs:dateTime (see examples below). The second argument is the number of years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

- `altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)` returns `2024-01-15T14:00:00`
- `altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4)` returns `2010-01-15T14:00:00`

▼ **add-months-to-dateTime** [altova:]

```
altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer) as xs:dateTime
```

Adds a duration in months to an xs:dateTime (see examples below). The second argument is the number of months to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

- `altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)` returns `2014-11-15T14:00:00`
- `altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2)` returns `2013-11-15T14:00:00`

▼ **add-days-to-dateTime** [altova:]

```
altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as xs:dateTime
```

Adds a duration in days to an xs:dateTime (see examples below). The second argument is the number of days to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

- `altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)` returns `2014-01-25T14:00:00`
- `altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8)` returns `2014-01-07T14:00:00`

▼ **add-hours-to-dateTime** [altova:]

```
altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as xs:dateTime
```

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is the number of hours to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.
Add a duration to xs:dateTime

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type has a format of CCYY-MM-DD.

add-years-to-date [altova:]

\[
\text{altova: add-years-to-date}(\text{Date as xs:dateTime}, \text{Years as xs:integer}) \text{ as xs:dateTime}
\]

Adds a duration in years to a date. The second argument is the number of years to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

- \[\text{altova: add-years-to-date}(\text{xs:dateTime("2014-01-15T14:00:00")}, 10) \text{ returns 2024-01-15}\]
- \[\text{altova: add-years-to-date}(\text{xs:dateTime("2014-01-15T14:00:00")}, -5) \text{ returns 2014-01-15}\]

add-minutes-to-dateTime [altova:]

\[
\text{altova: add-minutes-to-dateTime}(\text{DateTime as xs:dateTime}, \text{Minutes as xs:integer}) \text{ as xs:dateTime}
\]

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument is the number of minutes to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

- \[\text{altova: add-minutes-to-dateTime}(\text{xs:dateTime("2014-01-15T14:10:00")}, 45) \text{ returns 2014-01-15T14:55:00}\]
- \[\text{altova: add-minutes-to-dateTime}(\text{xs:dateTime("2014-01-15T14:10:00")}, -5) \text{ returns 2014-01-15T14:05:00}\]

add-seconds-to-dateTime [altova:]

\[
\text{altova: add-seconds-to-dateTime}(\text{DateTime as xs:dateTime}, \text{Seconds as xs:integer}) \text{ as xs:dateTime}
\]

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument is the number of seconds to be added to the xs:dateTime supplied as the first argument. The result is of type xs:dateTime.

Examples

- \[\text{altova: add-seconds-to-dateTime}(\text{xs:dateTime("2014-01-15T14:00:10")}, 20) \text{ returns 2014-01-15T14:00:30}\]
- \[\text{altova: add-seconds-to-dateTime}(\text{xs:dateTime("2014-01-15T14:00:10")}, -5) \text{ returns 2014-01-15T14:00:05}\]
• `altova:add-years-to-date(xs:date("2014-01-15"), -4)` returns `2010-01-15`

add-months-to-date [altova:]

`altova:add-months-to-date(Date as xs:date, Months as xs:integer)` as `xs:date` XP3.1 XQ3.1

Adds a duration in months to a date. The second argument is the number of months to be added to the `xs:date` supplied as the first argument. The result is of type `xs:date`.

Examples

• `altova:add-months-to-date(xs:date("2014-01-15"), 10)` returns `2014-11-15`

• `altova:add-months-to-date(xs:date("2014-01-15"), -2)` returns `2013-11-15`

add-days-to-date [altova:]

`altova:add-days-to-date(Date as xs:date, Days as xs:integer)` as `xs:date` XP3.1 XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added to the `xs:date` supplied as the first argument. The result is of type `xs:date`.

Examples

• `altova:add-days-to-date(xs:date("2014-01-15"), 10)` returns `2014-01-25`

• `altova:add-days-to-date(xs:date("2014-01-15"), -8)` returns `2014-01-07`

Format and retrieve durations XP3.1 XQ3.1

These functions parse an input `xs:duration` or `xs:string` and return, respectively, an `xs:string` or `xs:duration`.

format-duration [altova:]

`altova:format-duration(Duration as xs:duration, Picture as xs:string)` as `xs:string` XP3.1 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string submitted as the second argument. The output is a text string formatted according to the picture string.

Examples

• `altova:format-duration(xs:duration("P2DT2H53M11.7S"), "Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]")` returns "Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"

• `altova:format-duration(xs:duration("P3M2DT2H53M11.7S"), "Months:[M01] Days:[D01] Hours:[H01] Minutes:[m01]")` returns "Months:03 Days:02 Hours:02 Minutes:53"

parse-duration [altova:]

`altova:parse-duration(InputString as xs:string, Picture as xs:string)` as `xs:duration` XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument. The input
string is parsed on the basis of the picture string, and an xs:duration is returned.

- **Examples**

 - `altova:parse-duration("Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"), "Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]")` returns "P2DT2H53M11.7S"

Add a duration to xs:time **XP3.1 XQ3.1**

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical form of hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated Universal Time (UTC). All other time zones are represented by their difference from UTC in the format +hh:mm, or -hh:mm. If no time zone value is present, it is considered unknown; it is not assumed to be UTC.

- **add-hours-to-time [altova:]**

 `altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time XP3.1 XQ3.1`

 Adds a duration in hours to a time. The second argument is the number of hours to be added to the xs:time supplied as the first argument. The result is of type xs:time.

 - **Examples**

 - `altova:add-hours-to-time(xs:time("11:00:00"), 10)` returns 21:00:00
 - `altova:add-hours-to-time(xs:time("11:00:00"), -7)` returns 04:00:00

- **add-minutes-to-time [altova:]**

 `altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1`

 Adds a duration in minutes to a time. The second argument is the number of minutes to be added to the xs:time supplied as the first argument. The result is of type xs:time.

 - **Examples**

 - `altova:add-minutes-to-time(xs:time("14:10:00"), 45)` returns 14:55:00
 - `altova:add-minutes-to-time(xs:time("14:10:00"), -5)` returns 14:05:00

- **add-seconds-to-time [altova:]**

 `altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time XP3.1 XQ3.1`

 Adds a duration in seconds to a time. The second argument is the number of seconds to be added to the xs:time supplied as the first argument. The result is of type xs:time. The Seconds component can be in the range of 0 to 59.999.

 - **Examples**

 - `altova:add-seconds-to-time(xs:time("14:00:00"), 20)` returns 14:00:20
 - `altova:add-seconds-to-time(xs:time("14:00:00"), 20.895)` returns 14:00:20.895
Remove the timezone part from date/time datatypes \[\text{XP3.1 ~ XQ3.1}\]

These functions remove the timezone from the current \(\text{xs:dateTime}, \text{xs:date}, \text{or xs:time}\) values, respectively. Note that the difference between \(\text{xs:dateTime}\) and \(\text{xs:dateTimeStamp}\) is that in the case of the latter the timezone part is required (while it is optional in the case of the former). So the format of an \(\text{xs:dateTimeStamp}\) value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm or CCYY-MM-DDThh:mm:ss.sssZ. If the date and time is read from the system clock as \(\text{xs:dateTimeStamp}\), the \text{current-dateTime-no-TZ()}\) function can be used to remove the timezone if so required.

\[\text{current-date-no-TZ [altova:]}\]

\text{altova:current-date-no-TZ()} \text{as xs:date \[\text{XP3.1 ~ XQ3.1}\]}

This function takes no argument. It removes the timezone part of \text{current-date()} (which is the current date according to the system clock) and returns an \text{xs:date} value.

\text{Examples}

If the current date is 2014-01-15+01:00:

\[\cdot\text{altova:current-date-no-TZ()}\text{ returns 2014-01-15}\]

\[\text{current-dateTime-no-TZ [altova:]}\]

\text{altova:current-dateTime-no-TZ()} \text{as xs:dateTime \[\text{XP3.1 ~ XQ3.1}\]}

This function takes no argument. It removes the timezone part of \text{current-dateTime()} (which is the current date-and-time according to the system clock) and returns an \text{xs:dateTime} value.

\text{Examples}

If the current date is 2014-01-15T14:00:00+01:00:

\[\cdot\text{altova:current-dateTime-no-TZ()}\text{ returns 2014-01-15T14:00:00}\]

\[\text{current-time-no-TZ [altova:]}\]

\text{altova:current-time-no-TZ()} \text{as xs:time \[\text{XP3.1 ~ XQ3.1}\]}

This function takes no argument. It removes the timezone part of \text{current-time()} (which is the current time according to the system clock) and returns an \text{xs:time} value.

\text{Examples}

If the current time is 14:00:00+01:00:

\[\cdot\text{altova:current-time-no-TZ()}\text{ returns 14:00:00}\]

\[\text{date-no-TZ [altova:]}\]

\text{altova:date-no-TZ(InputDate as xs:date) as xs:date \[\text{XP3.1 ~ XQ3.1}\]}

This function takes an \text{xs:date} argument, removes the timezone part from it, and returns an \text{xs:date} value. Note that the date is not modified.

\text{Examples}
• `altova:date-no-TZ(xs:date("2014-01-15+01:00"))` returns `2014-01-15`

dateTime-no-TZ [altova:]

`altova:dateTime-no-TZ(InputDateTime as xs:dateTime) as xs:dateTime XP3.1 XQ3.1`

This function takes an `xs:dateTime` argument, removes the timezone part from it, and returns an `xs:dateTime` value. Note that neither the date nor the time is modified.

Examples

• `altova:dateTime-no-TZ(xs:date("2014-01-15T14:00:00+01:00"))` returns `2014-01-15T14:00:00`

time-no-TZ [altova:]

`altova:time-no-TZ(InputTime as xs:time) as xs:time XP3.1 XQ3.1`

This function takes an `xs:time` argument, removes the timezone part from it, and returns an `xs:time` value. Note that the time is not modified.

Examples

• `altova:time-no-TZ(xs:time("14:00:00+01:00"))` returns `14:00:00`

Return the number of days, hours, minutes, seconds from durations XP3.1 XQ3.1

These functions return the number of days in a month, and the number of hours, minutes, and seconds, respectively, from durations.

days-in-month [altova:]

`altova:days-in-month(Year as xs:integer, Month as xs:integer) as xs:integer XP3.1 XQ3.1`

Returns the number of days in the specified month. The month is specified by means of the Year and Month arguments.

Examples

• `altova:days-in-month(2018, 10)` returns `31`
• `altova:days-in-month(2018, 2)` returns `28`
• `altova:days-in-month(2020, 2)` returns `29`

hours-from-dayTimeDuration-accumulated

`altova:hours-from-dayTimeDuration-accumulated(DayAndTime as xs:duration) as xs:integer XP3.1 XQ3.1`

Returns the total number of hours in the duration submitted by the DayAndTime argument (which is of type `xs:duration`). The hours in the Day and Time components are added together to give a result that is an integer. A new hour is counted only for a full 60 minutes. Negative durations result in a negative hour value.

Examples

• `altova:hours-from-dayTimeDuration-accumulated(xs:duration("P5D"))` returns `120`, which
is the total number of hours in 5 days.

- \(\text{altova:hours-from-dayTimeDuration-accumulated} \) \((\text{xs:duration}("P5DT2H")) \) returns 122, which is the total number of hours in 5 days plus 2 hours.
- \(\text{altova:hours-from-dayTimeDuration-accumulated} \) \((\text{xs:duration}("P5DT2H60M")) \) returns 123, which is the total number of hours in 5 days plus 2 hours and 60 mins.
- \(\text{altova:hours-from-dayTimeDuration-accumulated} \) \((\text{xs:duration}("P5DT2H119M")) \) returns 123, which is the total number of hours in 5 days plus 2 hours and 119 mins.
- \(\text{altova:hours-from-dayTimeDuration-accumulated} \) \((\text{xs:duration}("P5DT2H120M")) \) returns 124, which is the total number of hours in 5 days plus 2 hours and 120 mins.
- \(\text{altova:hours-from-dayTimeDuration-accumulated} \) \((\text{xs:duration}("-P5DT2H")) \) returns -122

minutes-from-dayTimeDuration-accumulated

\[\text{altova:minutes-from-dayTimeDuration-accumulated}(\text{DayAndTime as xs:duration}) \text{ as xs:integer} \]

Returns the total number of minutes in the duration submitted by the \text{DayAndTime} argument (which is of type \text{xs:duration}). The minutes in the Day and Time components are added together to give a result that is an integer. Negative durations result in a negative minute value.

Examples

- \(\text{altova:minutes-from-dayTimeDuration-accumulated}(\text{xs:duration}("PT60M")) \) returns 60
- \(\text{altova:minutes-from-dayTimeDuration-accumulated}(\text{xs:duration}("PT1H")) \) returns 60, which is the total number of minutes in 1 hour.
- \(\text{altova:minutes-from-dayTimeDuration-accumulated}(\text{xs:duration}("PT1H40M")) \) returns 100
- \(\text{altova:minutes-from-dayTimeDuration-accumulated}(\text{xs:duration}("P1D")) \) returns 1440, which is the total number of minutes in 1 day.
- \(\text{altova:minutes-from-dayTimeDuration-accumulated}(\text{xs:duration}("-P1DT60M")) \) returns -1500

seconds-from-dayTimeDuration-accumulated

\[\text{altova:seconds-from-dayTimeDuration-accumulated}(\text{DayAndTime as xs:duration}) \text{ as xs:integer} \]

Returns the total number of seconds in the duration submitted by the \text{DayAndTime} argument (which is of type \text{xs:duration}). The seconds in the Day and Time components are added together to give a result that is an integer. Negative durations result in a negative seconds value.

Examples

- \(\text{altova:seconds-from-dayTimeDuration-accumulated}(\text{xs:duration}("PT1M")) \) returns 60, which is the total number of seconds in 1 minute.
- \(\text{altova:seconds-from-dayTimeDuration-accumulated}(\text{xs:duration}("PT1H")) \) returns 3600, which is the total number of seconds in 1 hour.
- \(\text{altova:seconds-from-dayTimeDuration-accumulated}(\text{xs:duration}("PT1H2M")) \) returns 3720
- \(\text{altova:seconds-from-dayTimeDuration-accumulated}(\text{xs:duration}("P1D")) \) returns 86400, which is the total number of seconds in 1 day.
- \(\text{altova:seconds-from-dayTimeDuration-accumulated}(\text{xs:duration}("-P1DT1M")) \) returns -86460
Return the weekday from xs:dateTime or xs:date

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of the week are numbered (using the American format) from 1 to 7, with Sunday=1. In the European format, the week starts with Monday (=1). The American format, where Sunday=1, can be set by using the integer 0 where an integer is accepted to indicate the format.

weekday-from-dateTime [altova:]

```
altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3.1 XQ3.1
```

Takes a date-with-time as its single argument and returns the day of the week of this date as an integer. The weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1), use the other signature of this function (see next signature below).

Examples

- `altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"))` returns 2, which would indicate a Monday.

weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer) as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as an integer. The weekdays are numbered starting with Monday=1. If the second (integer) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second argument is an integer other than 0, then Monday=1. If there is no second argument, the function is read as having the other signature of this function (see previous signature).

Examples

- `altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1)` returns 1, which would indicate a Monday
- `altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4)` returns 1, which would indicate a Monday
- `altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0)` returns 2, which would indicate a Monday.

weekday-from-date [altova:]

```
altova:weekday-from-date(Date as xs:date) as xs:integer XP3.1 XQ3.1
```

Takes a date as its single argument and returns the day of the week of this date as an integer. The weekdays are numbered starting with Sunday=1. If the European format is required (where Monday=1), use the other signature of this function (see next signature below).

Examples

- `altova:weekday-from-date(xs:date("2014-02-03+01:00"))` returns 2, which would indicate a Monday.

weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer. The weekdays are numbered starting with Monday=1. If the second (Format) argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second argument is an integer other than 0, then Monday=1. If there is no second argument, the function is read as having the other signature of this function (see previous signature).

Examples
• altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would indicate a Monday
• altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would indicate a Monday
• altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would indicate a Monday.

Return the week number from xs:dateTime or xs:date

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-numbering is available in the US, ISO/European, and Islamic calendar formats. Week-numbering is different in these calendar formats because the week is considered to start on different days (on Sunday in the US format, Monday in the ISO/European format, and Saturday in the Islamic format).

\[\text{weeknumber-from-date} [\text{altova:}] \]

\begin{verbatim}
altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as xs:integer
\end{verbatim}

Returns the week number of the submitted Date argument as an integer. The second argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:

• 0 = US calendar (week starts Sunday)
• 1 = ISO standard, European calendar (week starts Monday)
• 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

• altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13
• altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12
• altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13
• altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and Islamic calendars are one week ahead of the European calendar on this day.

\[\text{weeknumber-from-dateTime} [\text{altova:}] \]

\begin{verbatim}
altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as xs:integer) as xs:integer
\end{verbatim}

Returns the week number of the submitted DateTime argument as an integer. The second argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:
Appendices

• 0 = US calendar (week starts Sunday)
• 1 = ISO standard, European calendar (week starts Monday)
• 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

- \texttt{altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0)} returns 13
- \texttt{altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1)} returns 12
- \texttt{altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2)} returns 13
- \texttt{altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"))} returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So the US and Islamic calendars are one week ahead of the European calendar on this day.

Build date, time, and duration datatypes from their lexical components

The functions take the lexical components of the \texttt{xs:date}, \texttt{xs:time}, or \texttt{xs:duration} datatype as input arguments and combine them to build the respective datatype.

\begin{itemize}
\item \texttt{build-date [altova:]}
\end{itemize}

\begin{verbatim}
altova:build-date(Year as xs:integer, Month as xs:integer, Date as xs:integer) as xs:date
\end{verbatim}

The first, second, and third arguments are, respectively, the year, month, and date. They are combined to build a value of \texttt{xs:date} type. The values of the integers must be within the correct range of that particular date part. For example, the second argument (for the month part) should not be greater than 12.

Examples

- \texttt{altova:build-date(2014, 2, 03)} returns 2014-02-03

\begin{itemize}
\item \texttt{build-time [altova:]}
\end{itemize}

\begin{verbatim}
altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer) as xs:time
\end{verbatim}

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds (0 to 59) values. They are combined to build a value of \texttt{xs:time} type. The values of the integers must be within the correct range of that particular time part. For example, the second (Minutes) argument should not be greater than 59. To add a timezone part to the value, use the other signature of this function (see next signature).

Examples

- \texttt{altova:build-time(23, 4, 57)} returns 23:04:57

\begin{verbatim}
altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer, TimeZone as xs:string) as xs:time
\end{verbatim}

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59), and seconds (0 to 59) values. The fourth argument is a string that provides the timezone part of the value. The four
arguments are combined to build a value of xs:time type. The values of the integers must be within the
correct range of that particular time part. For example, the second (Minutes) argument should not be
greater than 59.

Examples

- `altova:build-time(23, 4, 57, '+1')` returns `23:04:57+01:00`

build-duration [altova:]

`altova:build-duration(Years as xs:integer, Months as xs:integer) as xs:yearMonthDuration` XP3.1 XQ3.1

Takes two arguments to build a value of type `xs:yearMonthDuration`. The first argument provides the
Years part of the duration value, while the second argument provides the Months part. If the second
(Months) argument is greater than or equal to 12, then the integer is divided by 12; the quotient is added to
the first argument to provide the Years part of the duration value while the remainder (of the division)
provides the Months part. To build a duration of type `xs:dayTimeDuration`, see the next signature.

Examples

- `altova:build-duration(2, 10)` returns `P2Y10M`
- `altova:build-duration(14, 27)` returns `P16Y3M`
- `altova:build-duration(2, 24)` returns `P4Y`

`altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as xs:integer, Seconds as xs:integer) as xs:dayTimeDuration` XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type `xs:dayTimeDuration`. The first argument provides the
Days part of the duration value, the second, third, and fourth arguments provide, respectively, the Hours, Minutes, and Seconds parts of the duration value. Each of the three Time arguments is converted to an equivalent value in terms of the next higher unit and the result is used for calculation of the total duration value. For example, 72 seconds is converted to `1M+12S` (1 minute and 12 seconds), and this value is used for calculation of the total duration value. To build a duration of type `xs:yearMonthDuration`, see the previous signature.

Examples

- `altova:build-duration(2, 10, 3, 56)` returns `P2DT10H3M56S`
- `altova:build-duration(1, 0, 100, 0)` returns `P1DT1H40M`
- `altova:build-duration(1, 0, 0, 3600)` returns `P1DT1H`

Construct date, dateTime, and time datatypes from string input XP2 XP3.1 XQ1

These functions take strings as arguments and construct `xs:date`, `xs:dateTime`, or `xs:time` datatypes. The string is analyzed for components of the datatype based on a submitted pattern argument.

parse-date [altova:]

`altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date` XP2 XQ1 XP3.1 XQ3.1

Returns the input string Date as an `xs:date` value. The second argument `DatePattern` specifies the
pattern (sequence of components) of the input string. `DatePattern` is described with the component
specifiers listed below and with component separators that can be any character. See the examples
The pattern in DatePattern must match the pattern in Date. Since the output is of type `xs:date`, the output will always have the lexical format `YYYY-MM-DD`.

Examples

- `altova:parse-date(xs:string("09-12-2014"), "[D]-[M]-[Y]")` returns `2014-12-09`
- `altova:parse-date(xs:string("09-12-2014"), "[M]-[D]-[Y]")` returns `2014-09-12`
- `altova:parse-date("06/03/2014", "[M]/[D]/[Y]")` returns `2014-06-03`
- `altova:parse-date("06 03 2014", "[M] [D] [Y]")` returns `2014-06-03`
- `altova:parse-date("6 3 2014", "[M] [D] [Y]")` returns `2014-06-03`

parse-datetime [altova:]

\[
\text{altova:parse-datetime}(\text{DateTime as xs:string}, \text{DateTimePattern as xs:string}) \text{ as xs:dateTime}
\]

Returns the input string `DateTime` as an `xs:dateTime` value. The second argument `DateTimePattern` specifies the pattern (sequence of components) of the input string. `DateTimePattern` is described with the component specifiers listed below and with component separators that can be any character. See the examples below.

- `D` Date
- `M` Month
- `Y` Year
- `H` Hour
- `m` minutes
- `s` seconds

The pattern in `DateTimePattern` must match the pattern in `DateTime`. Since the output is of type `xs:dateTime`, the output will always have the lexical format `YYYY-MM-DDTHH:mm:ss`.

Examples

- `altova:parse-datetime(xs:string("09-12-2014 13:56:24"), "[M]-[D]-[Y] [H]:[m]:[s]")` returns `2014-09-12T13:56:24`
- `altova:parse-datetime("time=13:56:24; date=09-12-2014", "time=[H]:[m]:[s]; date=[D]-[M]-[Y]")` returns `2014-12-09T13:56:24`

parse-time [altova:]

\[
\text{altova:parse-time}(\text{Time as xs:string}, \text{TimePattern as xs:string}) \text{ as xs:time}
\]

Returns the input string `Time` as an `xs:time` value. The second argument `TimePattern` specifies the pattern (sequence of components) of the input string. `TimePattern` is described with the component specifiers listed below and with component separators that can be any character. See the examples

- `D` Date
- `M` Month
- `Y` Year
- `H` Hour
- `m` minutes
- `s` seconds

The pattern in `TimePattern` must match the pattern in `Time`. Since the output is of type `xs:time`, the output will always have the lexical format `HH:mm:ss`.
The pattern in `TimePattern` must match the pattern in `Time`. Since the output is of type `xs:time`, the output will always have the lexical format `HH:mm:ss`.

Examples

- `altova:parse-time("13-56-24", "[H]-[m]")` returns `13:56:00`
- `altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s")` returns `13:56:24`
- `altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h")` returns `13:56:24`

Age-related functions

These functions return the age as calculated (i) between one input argument date and the current date, or (ii) between two input argument dates. The `altova:age` function returns the age in terms of years, the `altova:age-details` function returns the age as a sequence of three integers giving the years, months, and days of the age.

age [altova:]

`altova:age(StartDate as xs:date) as xs:integer`
Returns an integer that is the age in years of some object, counting from a start-date submitted as the argument and ending with the current date (taken from the system clock). If the input argument is a date anything greater than or equal to one year in the future, the return value will be negative.

Examples

If the current date is `2014-01-15`:

- `altova:age(xs:date("2013-01-15"))` returns `1`
- `altova:age(xs:date("2013-01-16"))` returns `0`
- `altova:age(xs:date("2015-01-15"))` returns `-1`
- `altova:age(xs:date("2015-01-14"))` returns `0`

`altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer`
Returns an integer that is the age in years of some object, counting from a start-date that is submitted as the first argument up to an end-date that is the second argument. The return value will be negative if the first argument is one year or more later than the second argument.

Examples

If the current date is `2014-01-15`:

- `altova:age(xs:date("2000-01-15"), xs:date("2010-01-15"))` returns `10`
- `altova:age(xs:date("2000-01-15"), current-date())` returns `14` if the current date is `2014-01-15`
• **altova:age**
 `xs:date("2014-01-15"), xs:date("2010-01-15")` returns -4

age-details [altova:]

```xml
altova:age-details(InputDate as xs:date) as (xs:integer)* XP3.1 XQ3.1
```

Returns three integers that are, respectively, the years, months, and days between the date that is submitted as the argument and the current date (taken from the system clock). The sum of the returned `years+months+days` together gives the total time difference between the two dates (the input date and the current date). The input date may have a value earlier or later than the current date, but whether the input date is earlier or later is not indicated by the sign of the return values; the return values are always positive.

Examples

If the current date is **2014-01-15**:

• `altova:age-details(xs:date("2014-01-16"))` returns (0 0 1)
• `altova:age-details(xs:date("2014-01-14"))` returns (0 0 1)
• `altova:age-details(xs:date("2013-01-16"))` returns (1 0 1)
• `altova:age-details(current-date())` returns (0 0 0)

```xml
altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)* XP3.1 XQ3.1
```

Returns three integers that are, respectively, the years, months, and days between the two argument dates. The sum of the returned `years+months+days` together gives the total time difference between the two input dates; it does not matter whether the earlier or later of the two dates is submitted as the first argument. The return values do not indicate whether the input date occurs earlier or later than the current date. Return values are always positive.

Examples

• `altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15"))` returns (0 0 1)
• `altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16"))` returns (0 0 1)

17.1.2.1.3 XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the Altova extension functions namespace, `http://www.altova.com/xslt-extensions`, and are indicated in this section with the prefix `altova:`; which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information.
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT):

| XP1 | XP2 | XP3.1 |

XSLT functions (used in XPath expressions in XSLT):

| XSLT1 | XSLT2 | XSLT3 |

XQuery functions (used in XQuery expressions in XQuery):

| XQ1 | XQ3.1 |

▼ **format-geolocation** [altova:]

```xml
altova:format-geolocation(Latitude as xs:decimal, Longitude as xs:decimal, GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1
```

Takes the latitude and longitude as the first two arguments, and outputs the geolocation as a string. The third argument, `GeolocationOutputStringFormat`, is the format of the geolocation output string; it uses integer values from 1 to 4 to identify the output string format (see ‘Geolocation output string formats’ below). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The `image-exif-data` function and the Exif metadata’s attributes can be used to supply the input strings.

Examples

- `altova:format-geolocation(33.33, -22.22, 4)` returns the `xs:string` "33.33 -22.22"
- `altova:format-geolocation(33.33, -22.22, 2)` returns the `xs:string` "33.33N 22.22W"
- `altova:format-geolocation(-33.33, 22.22, 2)` returns the `xs:string` "33.33S 22.22E"
- `altova:format-geolocation(33.33, -22.22, 1)` returns the `xs:string` "33°19'48.00"S 22°13'12.00"E"

Geolocation output string formats:

The supplied latitude and longitude is formatted in one of the output formats given below. The desired format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

| 1 |
| Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W) |
| D°M'S'SS"N/S D°M'S'SS"E/W |
| **Example:** 33°55'11.11"N 22°44'66.66"W |

| 2 |
| Decimal degrees, with suffixed orientation (N/S, E/W) |
| D.DDN/S D.DDE/W |
| **Example:** 33.33N 22.22W |

| 3 |
| Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional |
| +/-D°M'S'SS" +/-D°M'S'SS" |
| **Example:** 33°55'11.11" -22°44'66.66" |
Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSLongitude</th>
<th>GPSLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 51 21.91</td>
<td>S</td>
<td>151 13 11.73</td>
<td>E</td>
<td>33°51'21.91"S 151°13'11.73"E</td>
</tr>
</tbody>
</table>

\[\text{parse-geolocation} \text{[altova:]}

\text{altova:parse-geolocation(GeolocationInputString as xs:string) as xs:decimal+}

Parses the supplied GeolocationInputString argument and returns the geolocation's latitude and longitude (in that order) as a sequence two xs:decimal items. The formats in which the geolocation input string can be supplied are listed below.

Note: The \text{image-exif-data} function and the Exif metadata's \text{@Geolocation} attribute can be used to supply the geolocation input string (see example below).

Examples

- \text{altova:parse-geolocation("33.33 -22.22")} returns the sequence of two \text{xs:decimals} (33.33, 22.22)
- \text{altova:parse-geolocation("48°51'29.6"N 24°17'40.2"E")} returns the sequence of two \text{xs:decimals} (48.8582222222222, 24.2945)
- \text{altova:parse-geolocation("48°51’29.6"N 24°17’40.2"E")} returns the sequence of two \text{xs:decimals} (48.8582222222222, 24.2945)
- \text{altova:parse-geolocation(image-exif-data(//MyImages/Image20141130.01)/@Geolocation)} returns a sequence of two \text{xs:decimals}

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create...
a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-values and second-values. In such cases, the quotes that are used for indicating minute-values and second-values must be escaped by doubling them. In the examples in this section, quotes used to delimit the input string are highlighted in yellow (""), while unit indicators that are escaped are highlighted in blue (""").

- **Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)**
 \[D°M'S'.SS''N/S\]
 \[D°M'S'.SS''W/E\]
 Example: 33°55'11.11"N 22°44'55.25"W

- **Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is optional**
 \[+/-D°M'S'.SS''\]
 \[+/-D°M'S'.SS''\]
 Example: 33°55'11.11" -22°44'55.25"

- **Degrees, decimal minutes, with suffixed orientation (N/S, E/W)**
 \[D°.M.MM'N/S\]
 \[D°.M.MM'W/E\]
 Example: 33°55.55'N 22°44.44'W

- **Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional**
 \[+/-D°.M.MM'\]
 \[+/-D°.M.MM'\]
 Example: +33°55.55' -22°44.44'

- **Decimal degrees, with suffixed orientation (N/S, E/W)**
 \[D.DDIN/S\]
 \[D.DDW/E\]
 Example: 33.33N 22.22W

- **Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional**
 \[+/-D.DD\]
 \[+/-D.DD\]
 Example: 33.33 -22.22

Examples of format-combinations:

- 33.33N -22°44'55.25"
- 33.33 22°44'55.25"W
- 33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute `Geolocation` from standard Exif metadata tags. `Geolocation` is a concatenation of four Exif tags: `GPSLatitude`, `GPSLatitudeRef`, `GPSLongitude`, `GPSLongitudeRef`, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSLongitude</th>
<th>GPSLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 51 21.91</td>
<td>S</td>
<td>151 13 11.73</td>
<td>E</td>
<td>33°51'21.91"S 151°13'11.73"E</td>
</tr>
</tbody>
</table>

geolocation-distance-km [altova:]
altova:geolocation-distance-km(GeolocationInputString-1 as xs:string, GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1
Calculates the distance between two geolocations in kilometers. The formats in which the geolocation input string can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The `image-exif-data` function and the Exif metadata's `@Geolocation` attribute can be used to supply geolocation input strings.

Examples

- `altova:geolocation-distance-km("33.33 -22.22", "48°51'29.6"N 24°17'40.2"W")`
 returns the `xs:decimal 4183.08132372392`

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-values and second-values. In such cases, the quotes that are used for indicating minute-values and second-values must be escaped by doubling them. In the examples in this section, quotes used to delimit the input string are highlighted in yellow ("), while unit indicators that are escaped are highlighted in blue (""").

- **Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)**
 \[D°M'S.S'SS"N/S D°M'S.S'SS"W/E\]
 Example: 33°55'11.11"N 22°44'55.25"W

- **Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is optional**
 \[\pm D°M'S.S'SS" \pm D°M'S.S'SS"\]
 Example: 33°55'11.11" -22°44'55.25"

- **Degrees, decimal minutes, with suffixed orientation (N/S, E/W)**
 \[D°M.MM'MM"N/S D°M.MM'MM"W/E\]
 Example: 33°55.55'N 22°44.44'W

- **Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional**
 \[\pm D°M.MM'MM" \pm D°M.MM'MM"\]
 Example: +33°55.55' -22°44.44'

- **Decimal degrees, with suffixed orientation (N/S, E/W)**
 \[D.DDNN/S D.DDW/E\]
 Example: 33.33N 22.22W

- **Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S, E/W) is optional**
 \[\pm D.DD \pm D.DD\]
 Example: 33.33 -22.22
Examples of format-combinations:
33.33N -22°44'55.25"
33.33 22°44'55.25"W
33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSLongitude</th>
<th>GPSLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 51 21.91</td>
<td>S</td>
<td>151 13 11.73</td>
<td>E</td>
<td>33°51'21.91"S 151°13'11.73"E</td>
</tr>
</tbody>
</table>

geolocation-distance-mi [altova:]

altova:geolocation-distance-mi(GeolocationInputString-1 as xs:string, GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in miles. The formats in which a geolocation input string can be supplied are listed below. Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata’s @Geolocation attribute can be used to supply geolocation input strings.

Examples

- altova:geolocation-distance-mi("33.33 -22.22", "48°51'29.6"N 24°17'40.2"W")
 returns the xs:decimal 2599.40652340653

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-values and second-values. In such cases, the quotes that are used for indicating minute-values and second-values must be escaped by doubling them. In the examples in this section, quotes used to delimit the input string are highlighted in yellow ("�) while unit indicators that are escaped are highlighted in blue ("�).
Example: 33°55'11.11"N 22°44'55.25"W

- Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is optional
 \(+/\pm D^\circ M'.S'' \) \(+/\pm D^\circ M'.S''.S'' \)
 Example: 33°55'11.11" -22°44'55.25"

- Degrees, decimal minutes, with suffixed orientation (N/S; E/W)
 \(D^\circ.M.MM'N/S \) \(D^\circ.M.MM'W/E \)
 Example: 33°55.55'N 22°44.44'W

- Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
 \(+/\pm D^\circ.M.MM' \) \(+/\pm D^\circ.M.MM' \)
 Example: +33°55.55' -22°44.44'

- Decimal degrees, with suffixed orientation (N/S; E/W)
 \(D.DDN/S \) \(D.DDW/E \)
 Example: 33.33N 22.22W

- Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
 \(+/-D.DD \) \(+/-D.DD \)
 Example: 33.33 -22.22

Examples of format-combinations:

- 33.33N -22°44'55.25"
- 33.33 22°44'55.25"W
- 33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSSAsLongitude</th>
<th>GPSSAsLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 51 21.91</td>
<td>S</td>
<td>151 13 11.73</td>
<td>E</td>
<td>33°51'21.91"S 151°13'11.73"E</td>
</tr>
</tbody>
</table>

geolocations-bounding-rectangle [altova:]

altova:geolocations-bounding-rectangle(Geolocations as xs:sequence, GeolocationOutputStringFormat as xs:integer) as xs:string XP3.1 XQ3.1

Takes a sequence of strings as its first argument; each string in the sequence is a geolocation. The function returns a sequence of two strings which are, respectively, the top-left and bottom-right geolocation coordinates of a bounding rectangle that is optimally sized to enclose all the geolocations submitted in the first argument. The formats in which a geolocation input string can be supplied are listed below (see 'Geolocation input string formats'). Latitude values range from +90 to −90 (N to S). Longitude values range...
from +180 to -180 (E to W).

The function’s second argument specifies the format of the two geolocation strings in the output sequence. The argument takes an integer value from 1 to 4, where each value identifies a different geolocation string format (see 'Geolocation output string formats’ below).

Note: The `image-exif-data` function and the Exif metadata’s attributes can be used to supply the input strings.

- **Examples**
 - `altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 - 0.11832"), 1)` returns the sequence ("51°30'33.804"N 0°7'5.952"W", "48°12'51.6716"N 16°22'14.61576"E")
 - `altova:geolocations-bounding-rectangle(("48.2143531 16.3707266", "51.50939 - 0.11832", "42.5584577 -70.8893334"), 4)` returns the sequence ("51.50939 -70.8893334", "42.5584577 16.3707266")

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can be in one format and longitude can be in another. Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-values and second-values. In such cases, the quotes that are used for indicating minute-values and second-values must be escaped by doubling them. In the examples in this section, quotes used to delimit the input string are highlighted in yellow (”) while unit indicators that are escaped are highlighted in blue (“”).

- **Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)**
 \[D°M'S.SS" N/S \quad D°M'S.SS" W/E \]
 Example: 33°55‘11.11"N 22°44‘55.25"W

- **Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is optional**
 \[+/-D°M'S.SS" \quad +/-D°M'S.SS" \]
 Example: 33°55‘11.11" -22°44‘55.25"

- **Degrees, decimal minutes, with suffixed orientation (N/S, E/W)**
 \[D°M.MM' N/S \quad D°M.MM' W/E \]
 Example: 33°55.55’N 22°44.44’W

- **Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional**
 \[+/-D°M.MM' \quad +/-D°M.MM’ \]
 Example: +33°55.55’ -22°44.44’

- **Decimal degrees, with suffixed orientation (N/S, E/W)**
 \[D.DDN/S \quad D.DDW/E\]
 Example: 33.33N 22.22W
- Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional

 \[+/\text{-}D.DD \quad +/\text{-}D.DD \]

 Example: 33.33 -22.22

Examples of format-combinations:

- 33.33N -22°44'55.25"
- 33.33 22°44'55.25"W
- 33.33 22.45

- Geolocation output string formats:
 The supplied latitude and longitude is formatted in one of the output formats given below. The desired format is identified by its integer ID (1 to 4). Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

1. **Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)**

 \[D^\circ M' S"S/N_S \quad D^\circ M' S"S/E_W \]

 Example: 33°55'11.11"N 22°44'66.66"W

2. **Decimal degrees, with suffixed orientation (N/S, E/W)**

 \[D.DD/N/S \quad D.DD/E_W \]

 Example: 33.33N 22.22W

3. **Degrees, minutes, decimal seconds, with prefixed sign (+/-); plus sign for (N/E) is optional**

 \[+/-D^\circ M'S.S"S/N \quad +/-D^\circ M'S.S"S/E \]

 Example: 33°55'11.11" -22°44'66.66"

4. **Decimal degrees, with prefixed sign (+/-); plus sign for (N/E) is optional**

 \[+/-D.DD \quad +/-D.DD \]

 Example: 33.33 -22.22

- **Altova Exif Attribute: Geolocation**
 The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSLongitude</th>
<th>GPSLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 51 21.91</td>
<td>S</td>
<td>151 13 11.73</td>
<td>E</td>
<td>33°51'21.91"S 151° 13'11.73"E</td>
</tr>
</tbody>
</table>
geolocation-within-polygon [altova:]

`altova:geolocation-within-polygon(Geolocation as xs:string, ((PolygonPoint as xs:string)+)) as xs:boolean XP3.1 XQ3.1`

Determines whether Geolocation (the first argument) is within the polygonal area described by the PolygonPoint arguments. If the PolygonPoint arguments do not form a closed figure (formed when the first point and the last point are the same), then the first point is implicitly added as the last point in order to close the figure. All the arguments (Geolocation and PolygonPoint+) are given by geolocation input strings (formats listed below). If the Geolocation argument is within the polygonal area, then the function returns true(); otherwise it returns false(). Latitude values range from \(+90\) to \(-90\) (\(N\) to \(S\)). Longitude values range from \(+180\) to \(-180\) (\(E\) to \(W\)).

Note: The `image-exif-data` function and the Exif metadata’s `@Geolocation` attribute can be used to supply geolocation input strings.

Examples

- `altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48°51'29.6""N 24°17'40.2""W"))` returns `true()`

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can be in one format and longitude can be in another. Latitude values range from \(+90\) to \(-90\) (\(N\) to \(S\)). Longitude values range from \(+180\) to \(-180\) (\(E\) to \(W\)).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-values and second-values. In such cases, the quotes that are used for indicating minute-values and second-values must be escaped by doubling them. In the examples in this section, quotes used to delimit the input string are highlighted in yellow (`"`) while unit indicators that are escaped are highlighted in blue (`"`).

- **Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)**

 \(D°M'S''S.\overline{SS}''N/S \quad D°M'S''S.\overline{SS}''W/E\)

 Example: \(33°55'11.11''N 22°44'55.25''W\)

- **Degrees, minutes, seconds, with prefixed sign (+/-); the plus sign for (N/E) is optional**

 \(+/-D°M'S''S''\) \(+/-D°M'S''S''\)

 Example: \(33°55'11.11''-22°44'55.25''\)
• Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
 D°M.MM’N/S D°M.MM’W/E
 Example: 33°55.55’N 22°44.44’W

• Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
 +/-D°M.MM’ +/-D°M.MM’
 Example: +33°55.55’ -22°44.44’

• Decimal degrees, with suffixed orientation (N/S, E/W)
 D.DDN/S D.DDW/E
 Example: 33.33N 22.22W

• Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
 +/-D.DD +/-D.DD
 Example: 33.33 -22.22

Examples of format-combinations:
33°55.55’S 22°44.44’W
33.33N 22.22W
33.33 22.45

Altova XPath/XQuery Engine generates the custom attribute `Geolocation` from standard Exif
metadata tags. `Geolocation` is a concatenation of four Exif tags: `GPSLatitude`, `GPSLatitudeRef`,
`GPSLongitude`, and `GPSLongitudeRef`, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSLongitude</th>
<th>GPSLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 51 21.91</td>
<td>S</td>
<td>151 13 11.73</td>
<td>E</td>
<td>33°51'21.91"S 151°13'11.73"E</td>
</tr>
</tbody>
</table>

Note: The `image-exif-data` function and the Exif metadata’s `@Geolocation` attribute can be used

to supply geolocation input strings.

Examples

• `altova:geolocation-within-rectangle("33 -22", "58 -32", "-48 24")` returns `true()`
Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated by whitespace. Each can be in any of the following formats. Combinations are allowed. So latitude can be in one format and longitude can be in another. Latitude values range from +90 to −90 (N to S). Longitude values range from +180 to −180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument, this will create a mismatch with the single quotes or double quotes that are used, respectively, to indicate minute-values and second-values. In such cases, the quotes that are used for indicating minute-values and second-values must be escaped by doubling them. In the examples in this section, quotes used to delimit the input string are highlighted in yellow ("), while unit indicators that are escaped are highlighted in blue ("').

- Degrees, minutes, decimal seconds, with suffixed orientation (N/S, E/W)
 \[D^\circ M'.S.S''N/S\quad D^\circ M'.S.S''W/E\]

 Example: 33°55'11.11"N 22°44'55.25"W

- Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for (N/E) is optional
 \[+/-D^\circ M'.S.S''\quad +/-D^\circ M'.S.S''\]

 Example: +33°55'11.11" -22°44'55.25"W

- Degrees, decimal minutes, with suffixed orientation (N/S, E/W)
 \[D^\circ M.MM'N/S\quad D^\circ M.MM'W/E\]

 Example: 33°55.55'N 22°44.44'W

- Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/E) is optional
 \[+/-D^\circ M.MM'\quad +/-D^\circ M.MM'\]

 Example: +33°55.55' -22°44.44'

- Decimal degrees, with suffixed orientation (N/S, E/W)
 \[D.DDN/S\quad D.DDW/E\]

 Example: 33.33N 22.22W

- Decimal degrees, with prefixed sign (+/-); the plus sign for (N/S E/W) is optional
 \[+/-D.DD\quad +/-D.DD\]

 Example: 33.33 -22.22

Examples of format-combinations:

- 33.33N -22°44'55.25"
- 33.33 22°44'55.25"W
- 33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from standard Exif metadata tags. Geolocation is a concatenation of four Exif tags: GPSLatitude, GPSLatitudeRef,
GPSLongitude, GPSLongitudeRef, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSLongitude</th>
<th>GPSLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33°51'21.91"S</td>
<td>S</td>
<td>151°13'11.73"E</td>
<td></td>
<td>33°51'21.91"S 151°13'11.73"E</td>
</tr>
</tbody>
</table>

17.1.2.1.4 XPath/XQuery Functions: Image-Related

The following image-related XPath/XQuery extension functions are supported in the current version of MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for Altova extension functions in that release.

<table>
<thead>
<tr>
<th>XPath functions (used in XPath expressions in XSLT):</th>
<th>XP1 XP2 XP3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT functions (used in XPath expressions in XSLT):</td>
<td>XSLT1 XSLT2 XSLT3</td>
</tr>
<tr>
<td>XQuery functions (used in XQuery expressions in XQuery):</td>
<td>XQ1 XQ3.1</td>
</tr>
</tbody>
</table>

- suggested-image-file-extension [altova:]

 altova:suggested-image-file-extension(Base64String as string) as string? XP3.1 XQ3.1

 Takes the Base64 encoding of an image file as its argument and returns the file extension of the image as recorded in the Base64-encoding of the image. The returned value is a suggestion based on the image type information available in the encoding. If this information is not available, then an empty string is returned. This function is useful if you wish to save a Base64 image as a file and wish to dynamically retrieve an appropriate file extension.

 Examples

 - altova:suggested-image-file-extension(/MyImages/MobilePhone/Image20141130.01) returns 'jpg'
 - altova:suggested-image-file-extension($XML1/Staff/Person/@photo) returns ''
In the examples above, the nodes supplied as the argument of the function are assumed to contain a Base64-encoded image. The first example retrieves `.jpg` as the file's type and extension. In the second example, the submitted Base64 encoding does not provide usable file extension information.

```xml
<image-exif-data>[altova:]</image-exif-data>

altova:image-exif-data(Base64BinaryString as string) as element? XP3.1 XQ3.1

Takes a Base64-encoded JPEG image as its argument and returns an element called `Exif` that contains the Exif metadata of the image. The Exif metadata is created as attribute-value pairs of the `Exif` element. The attribute names are the Exif data tags found in the Base64 encoding. The list of Exif-specification tags is given below. If a vendor-specific tag is present in the Exif data, this tag and its value will also be returned as an attribute-value pair. Additional to the standard Exif metadata tags (see list below), Altova-specific attribute-value pairs are also generated. These Altova Exif attributes are listed below.

**Examples**

- To access any one attribute, use the function like this:
  ```xml
 image-exif-data(//MyImages/Image20141130.01)/@GPSLatitude
  ```

- To access all the attributes, use the function like this:
  ```xml
 image-exif-data(//MyImages/Image20141130.01)/@
  ```

- To access the names of all the attributes, use the following expression:
  ```xml
 for $i in image-exif-data(//MyImages/Image20141130.01)/@* return name($i)
  ```

  This is useful to find out the names of the attributes returned by the function.

**Altova Exif Attribute: Geolocation**

The Altova XPath/XQuery Engine generates the custom attribute `Geolocation` from standard Exif metadata tags. `Geolocation` is a concatenation of four Exif tags: `GPSLatitude`, `GPSLatitudeRef`, `GPSLongitude`, `GPSLongitudeRef`, with units added (see table below).

<table>
<thead>
<tr>
<th>GPSLatitude</th>
<th>GPSLatitudeRef</th>
<th>GPSLongitude</th>
<th>GPSLongitudeRef</th>
<th>Geolocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 51 21.91</td>
<td>S</td>
<td>151 13 11.73</td>
<td>E</td>
<td>33°51'21.91&quot;S 151°13'11.73&quot;E</td>
</tr>
</tbody>
</table>

**Altova Exif Attribute: OrientationDegree**

The Altova XPath/XQuery Engine generates the custom attribute `OrientationDegree` from the Exif metadata tag `Orientation`.

`OrientationDegree` translates the standard Exif tag `Orientation` from an integer value (1, 8, 3, or 6) to the respective degree values of each (0, 90, 180, 270), as shown in the figure below. Note that there are no translations of the `Orientation` values of 2, 4, 5, 7. (These orientations are obtained by flipping image 1 across its vertical center axis to get the image with a value of 2, and then rotating this image in 90-degree jumps clockwise to get the values of 7, 4, and 5, respectively).
Listing of standard Exif meta tags

- ImageWidth
- ImageLength
- BitsPerSample
- Compression
- PhotometricInterpretation
- Orientation
- SamplesPerPixel
- PlanarConfiguration
- YCbCrSubSampling
- YCbCrPositioning
- XResolution
- YResolution
- ResolutionUnit
- StripOffsets
- RowsPerStrip
- StripByteCounts
- JPEGInterchangeFormat
- JPEGInterchangeFormatLength
- TransferFunction
- WhitePoint
- PrimaryChromaticities
- YCbCrCoefficients
- ReferenceBlackWhite
- DateTime
- ImageDescription
- Make
- Model
- Software
- Artist
- Copyright

---

- ExifVersion
- FlashpixVersion
- ColorSpace
- ComponentsConfiguration
- CompressedBitsPerPixel
- PixelXDimension
- PixelYDimension
- MakerNote
- UserComment
- RelatedSoundFile
- DateTimeOriginal
- DateTimeDigitized
- SubSecTime
- SubSecTimeOriginal
- SubSecTimeDigitized
- ExposureTime
- FNumber
- ExposureProgram
- SpectralSensitivity
- ISOSpeedRatings
- OECF
- ShutterSpeedValue
- ApertureValue
- BrightnessValue
- ExposureBiasValue
- MaxApertureValue
- SubjectDistance
- MeteringMode
- LightSource
- Flash
- FocalLength
- SubjectArea
- FlashEnergy
- SpatialFrequencyResponse
- FocalPlaneXResolution
- FocalPlaneYResolution
- FocalPlaneResolutionUnit
- SubjectLocation
- ExposureIndex
- SensingMethod
- FileSource
- SceneType
- CFAPattern
- CustomRendered
- ExposureMode
- WhiteBalance
- DigitalZoomRatio
- FocalLengthIn35mmFilm
- SceneCaptureType
Altova’s numeric extension functions can be used in XPath and XQuery expressions and provide additional functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability
Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT):	XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT):	XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery):	XQ1 XQ3.1

**Auto-numbering functions**

- **generate-auto-number [altova:]**
  
  ```
 altova:generate-auto-number(ID as xs:string, StartsWith as xs:double, Increment as xs:double, ResetOnChange as xs:string) as xs:integer
  ```

  Generates a number each time the function is called. The first number, which is generated the first time the function is called, is specified by the StartsWith argument. Each subsequent call to the function generates a new number, this number being incremented over the previously generated number by the value specified in the Increment argument. In effect, the altova:generate-auto-number function creates a counter having a name specified by the ID argument, with this counter being incremented each time the function is called. If the value of the ResetOnChange argument changes from that of the previous function call, then the value of the number to be generated is reset to the StartsWith value. Auto-numbering can also be reset by using the altova:reset-auto-number function.

  **Examples**

  - ```
    altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString")
    ```

 will return one number each time the function is called, starting with 1, and incrementing by 1 with each call to the function. As long as the fourth argument remains "SomeString" in each subsequent call, the incrementing will continue. When the value of the fourth argument changes, the counter (called ChapterNumber) will reset to 1. The value of ChapterNumber can also be reset by a call to the altova:reset-auto-number function, like this: altova:reset-auto-number("ChapterNumber").

- **reset-auto-number [altova:]**

  ```
  altova:reset-auto-number(ID as xs:string) as xs:integer
  ```

 This function resets the number of the auto-numbering counter named in the ID argument. The number is reset to the number specified by the StartsWith argument of the altova:generate-auto-number function that created the counter named in the ID argument.

 Examples

 - ```
 altova:reset-auto-number("ChapterNumber")
    ```

    resets the number of the auto-numbering counter named ChapterNumber that was created by the altova:generate-auto-number function. The number is reset to the value of the StartsWith argument of the altova:generate-auto-number function that created ChapterNumber.
Numeric functions

hex-string-to-integer [altova:]

```
altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3.1 XQ3.1
```

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system (Base-10), and returns the decimal integer.

- `altova:hex-string-to-integer('1')` returns 1
- `altova:hex-string-to-integer('9')` returns 9
- `altova:hex-string-to-integer('A')` returns 10
- `altova:hex-string-to-integer('B')` returns 11
- `altova:hex-string-to-integer('F')` returns 15
- `altova:hex-string-to-integer('G')` returns an error
- `altova:hex-string-to-integer('10')` returns 16
- `altova:hex-string-to-integer('01')` returns 1
- `altova:hex-string-to-integer('20')` returns 32
- `altova:hex-string-to-integer('21')` returns 33
- `altova:hex-string-to-integer('5A')` returns 90
- `altova:hex-string-to-integer('USA')` returns an error

integer-to-hex-string [altova:]

```
altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3.1 XQ3.1
```

Takes an integer argument and returns its Base-16 equivalent as a string.

- `altova:integer-to-hex-string(1)` returns '1'
- `altova:integer-to-hex-string(9)` returns '9'
- `altova:integer-to-hex-string(10)` returns 'A'
- `altova:integer-to-hex-string(11)` returns 'B'
- `altova:integer-to-hex-string(15)` returns 'F'
- `altova:integer-to-hex-string(16)` returns '10'
- `altova:integer-to-hex-string(32)` returns '20'
- `altova:integer-to-hex-string(33)` returns '21'
- `altova:integer-to-hex-string(90)` returns '5A'

Number-formatting functions

[Top]
17.1.2.1.6 XPath/XQuery Functions: Schema

The Altova extension functions listed below return schema information. Given below are descriptions of the functions, together with (i) examples and (ii) a listing of schema components and their respective properties. They can be used with Altova’s XPath 3.0 and XQuery 3.0 engines and are available in XPath/XQuery contexts.

**Schema information from schema documents**
The function `altova:schema` has two arguments: one with zero arguments and the other with two arguments. The zero-argument function returns the whole schema. You can then, from this starting point, navigate into the schema to locate the schema components you want. The two-argument function returns a specific component kind that is identified by its QName. In both cases, the return value is a function. To navigate into the returned component, you must select a property of that specific component. If the property is a non-atomic item (that is, if it is a component), then you can navigate further by selecting a property of this component. If the selected property is an atomic item, then the value of the item is returned and you cannot navigate any further.

**Note:** In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema must have been imported into the processing environment, for example, into XSLT with the `xslt:import` instruction.

**Schema information from XML nodes**
The function `altova:type` submits the node of an XML document and returns the node’s type information from the PSVI.

**Note about naming of functions and language applicability**
Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the Altova extension functions namespace, `http://www.altova.com/xslt-extensions`, and are indicated in this section with the prefix `altova:`, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for Altova extension functions in that release.

<table>
<thead>
<tr>
<th>XPath functions (used in XPath expressions in XSLT):</th>
<th>XP1 XP2 XP3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT functions (used in XPath expressions in XSLT):</td>
<td>XSLT1 XSLT2 XSLT3</td>
</tr>
<tr>
<td>XQuery functions (used in XQuery expressions in XQuery):</td>
<td>XQ1 XQ3.1</td>
</tr>
</tbody>
</table>

**Schema (zero arguments)**

```xml
altova:schema() as {function(xs:string) as item()}*? XP3.1 XQ3.1
```

Returns the `schema` component as a whole. You can navigate further into the `schema` component by selecting one of the `schema` component’s properties.

- If this property is a component, you can navigate another step deeper by selecting one of this component’s properties. This step can be repeated to navigate further into the schema.
- If the component is an atomic value, the atomic value is returned and you cannot navigate any deeper.
The properties of the `schema` component are:

- "type definitions"
- "attribute declarations"
- "element declarations"
- "attribute group definitions"
- "model group definitions"
- "notation declarations"
- "identity-constraint definitions"

The properties of all other component kinds (besides `schema`) are listed below.

**Note:** In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema must have been imported into the processing environment, for example, into XSLT with the `xslt:import` instruction.

- **Examples**
  - `import schema "" at "C:\Test\ExpReport.xsd"; for $typedef in altova:schema() ("type definitions")
    return $typedef ("name")` returns the names of all simple types or complex types in the schema
  - `import schema "" at "C:\Test\ExpReport.xsd";
    altova:schema() ("type definitions")[1] ("name")` returns the name of the first of all simple types or complex types in the schema

**Components and their properties**

- **Assertion**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Assertion&quot;</td>
</tr>
<tr>
<td>test</td>
<td>XPath Property Record</td>
<td></td>
</tr>
</tbody>
</table>

- **Attribute Declaration**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Attribute Declaration&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the attribute</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the attribute</td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
<tr>
<td>scope</td>
<td>A function with properties (&quot;class&quot;:&quot;Scope&quot;, &quot;variety&quot;: &quot;global&quot; or &quot;local&quot;, &quot;parent&quot;: the containing Complex Type or Attribute Group)</td>
<td></td>
</tr>
</tbody>
</table>
### Attribute Group Declaration

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Attribute Group Definition&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the attribute group</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the attribute group</td>
</tr>
<tr>
<td>attribute uses</td>
<td>Sequence of (Attribute Use)</td>
<td></td>
</tr>
<tr>
<td>attribute wildcard</td>
<td>Optional Attribute Wildcard</td>
<td></td>
</tr>
</tbody>
</table>

### Attribute Use

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Attribute Use&quot;</td>
</tr>
<tr>
<td>required</td>
<td>boolean</td>
<td>true if the attribute is required, false if optional</td>
</tr>
<tr>
<td>value constraint</td>
<td>See Attribute Declaration</td>
<td></td>
</tr>
<tr>
<td>inheritable</td>
<td>boolean</td>
<td></td>
</tr>
</tbody>
</table>

### Attribute Wildcard

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Wildcard&quot;</td>
</tr>
<tr>
<td>namespace constraint</td>
<td>function with properties (&quot;class&quot;: &quot;Namespace Constraint&quot;, &quot;variety&quot;: &quot;any&quot;</td>
<td>&quot;enumeration&quot;</td>
</tr>
<tr>
<td>process contents</td>
<td>string (&quot;strict&quot;</td>
<td>&quot;lax&quot;</td>
</tr>
</tbody>
</table>

### Complex Type

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Complex Type&quot;</td>
</tr>
<tr>
<td>name</td>
<td>type</td>
<td>description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>base type definition</td>
<td></td>
<td>Complex Type Definition</td>
</tr>
<tr>
<td>final</td>
<td></td>
<td>Sequence of strings (&quot;restriction&quot;</td>
</tr>
<tr>
<td>context</td>
<td></td>
<td>Empty sequence (not implemented)</td>
</tr>
<tr>
<td>derivation method</td>
<td></td>
<td>string (&quot;restriction&quot;</td>
</tr>
<tr>
<td>abstract</td>
<td></td>
<td>boolean</td>
</tr>
<tr>
<td>attribute uses</td>
<td></td>
<td>Sequence of Attribute Use</td>
</tr>
<tr>
<td>attribute wildcard</td>
<td></td>
<td>Optional Attribute Wildcard</td>
</tr>
<tr>
<td>content type</td>
<td></td>
<td>function with properties: (&quot;class&quot;:&quot;Content Type&quot;, &quot;variety&quot;:string (&quot;element-only&quot;</td>
</tr>
<tr>
<td>prohibited</td>
<td></td>
<td>substitutions (&quot;restriction&quot;</td>
</tr>
<tr>
<td>assertions</td>
<td></td>
<td>Sequence of Assertion</td>
</tr>
</tbody>
</table>

Element Declaration

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Complex Type&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
<tr>
<td>type table</td>
<td>function with properties (&quot;class&quot;:&quot;Type Table&quot;, &quot;alternatives&quot;: sequence of Type Alternative, &quot;default type definition&quot;: Simple Type or Complex Type)</td>
<td></td>
</tr>
<tr>
<td>scope</td>
<td>function with properties (&quot;class&quot;:&quot;Scope&quot;, &quot;variety&quot;: (&quot;global&quot;</td>
<td>&quot;local&quot;), &quot;parent&quot;: optional Complex Type)</td>
</tr>
<tr>
<td>value constraint</td>
<td>see Attribute Declaration</td>
<td></td>
</tr>
</tbody>
</table>
### nillable

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>nillable</td>
<td>boolean</td>
<td></td>
</tr>
</tbody>
</table>

### identity-constraint definitions

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>identity-constraint definitions</td>
<td>Sequence of Identity Constraint</td>
<td></td>
</tr>
</tbody>
</table>

### substitution group affiliations

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>substitution group affiliations</td>
<td>Sequence of Element Declaration</td>
<td></td>
</tr>
</tbody>
</table>

### substitution group exclusions

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>substitution group exclusions</td>
<td>Sequence of strings (&quot;restriction&quot;</td>
<td>&quot;extension&quot;)</td>
</tr>
</tbody>
</table>

### disallowed substitutions

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>disallowed substitutions</td>
<td>Sequence of strings (&quot;restriction&quot;</td>
<td>&quot;extension&quot;</td>
</tr>
</tbody>
</table>

### abstract

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>abstract</td>
<td>boolean</td>
<td></td>
</tr>
</tbody>
</table>

#### Element Wildcard

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Wildcard&quot;</td>
</tr>
<tr>
<td>namespace constraint</td>
<td>function with properties (&quot;class&quot;: &quot;Namespace Constraint&quot;, &quot;variety&quot;: &quot;any&quot;</td>
<td>&quot;enumeration&quot;</td>
</tr>
<tr>
<td>process contents</td>
<td>string (&quot;strict&quot;</td>
<td>&quot;lax&quot;</td>
</tr>
</tbody>
</table>

#### Facet

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>The name of the facet, for example &quot;minLength&quot; or &quot;enumeration&quot;</td>
</tr>
<tr>
<td>value</td>
<td>depends on facet</td>
<td>The value of the facet</td>
</tr>
<tr>
<td>fixed</td>
<td>boolean</td>
<td></td>
</tr>
<tr>
<td>typed-value</td>
<td>For the enumeration facet only, array(xs:anyAtomicType*)</td>
<td>An array containing the enumeration values, each of which may in general be a sequence of atomic values. (Note: for the enumeration facet, the &quot;value&quot; property is a sequence of strings, regardless of the actual type)</td>
</tr>
</tbody>
</table>

#### Identity Constraint

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Identity-Constraint Definition&quot;</td>
</tr>
</tbody>
</table>
### Engine information

1531

### Appendices

#### Altova MapForce 2021 Professional Edition

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the constraint</td>
</tr>
<tr>
<td>identity-constraint</td>
<td>string</td>
<td>&quot;key&quot;,&quot;unique&quot;,&quot;keyRef&quot;</td>
</tr>
<tr>
<td>selector</td>
<td>XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>fields</td>
<td>Sequence of XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>referenced key</td>
<td>(For keyRef only): Identity Constraint</td>
<td>The corresponding key constraint</td>
</tr>
</tbody>
</table>
### Simple Type

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Simple Type Definition&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>final</td>
<td>Sequence of string(&quot;restriction&quot;</td>
<td>&quot;extension&quot;</td>
</tr>
<tr>
<td>context</td>
<td>containing component</td>
<td></td>
</tr>
<tr>
<td>base type definition</td>
<td>Simple Type</td>
<td></td>
</tr>
<tr>
<td>facets</td>
<td>Sequence of Facet</td>
<td></td>
</tr>
<tr>
<td>fundamental facets</td>
<td>Empty sequence (not implemented)</td>
<td></td>
</tr>
<tr>
<td>variety</td>
<td>string (&quot;atomic&quot;</td>
<td>&quot;list&quot;</td>
</tr>
<tr>
<td>primitive type definition</td>
<td>Simple Type</td>
<td></td>
</tr>
<tr>
<td>item type definition</td>
<td>(for list types only) Simple Type</td>
<td></td>
</tr>
<tr>
<td>member type definitions</td>
<td>(for union types only) Sequence of Simple Type</td>
<td></td>
</tr>
</tbody>
</table>

### Type Alternative

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Type Alternative&quot;</td>
</tr>
<tr>
<td>test</td>
<td>XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
</tbody>
</table>

### XPath Property Record

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>namespace bindings</td>
<td>Sequence of functions with properties (&quot;prefix&quot;: string, &quot;namespace&quot;: anyURI)</td>
<td></td>
</tr>
<tr>
<td>default namespace</td>
<td>anyURI</td>
<td></td>
</tr>
<tr>
<td>base URI</td>
<td>anyURI</td>
<td>The static base URI of the XPath expression</td>
</tr>
<tr>
<td>expression</td>
<td>string</td>
<td>The XPath expression as a string</td>
</tr>
</tbody>
</table>
altova:schema(ComponentKind as xs:string, Name as xs:QName) as (function(xs:string) as item()*)? XP3.1 XQ3.1

Returns the component kind that is specified in the first argument which has a name that is the same as the name supplied in the second argument. You can navigate further by selecting one of the component's properties.

- If this property is a component, you can navigate another step deeper by selecting one of this component's properties. This step can be repeated to navigate further into the schema.
- If the component is an atomic value, the atomic value is returned and you cannot navigate any deeper.

Note: In XQuery expressions, the schema must be explicitly imported. In XPath expressions, the schema must have been imported into the processing environment, for example, into XSLT with the `xslt:import` instruction.

Examples

- `import schema "" at "C:\Test\ExpReport.xsd"; altova:schema("element declaration", xs:QName("OrgChart"))("type definition")("content type")("particles")[3]."term"("kind")` returns the kind property of the term of the third `particles` component. This `particles` component is a descendant of the element declaration having a QName of `OrgChart`.

- `import schema "" at "C:\Test\ExpReport.xsd";
  let $typedef := altova:schema("type definition", xs:QName("emailType"))
  for $facet in $typedef("facets")
  return [$facet("kind"), $facet("value")]
returns, for each facet of each `emailType` component, an array containing that facet's kind and value.

Components and their properties

Assertion

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Assertion&quot;</td>
</tr>
</tbody>
</table>

Attribute Declaration

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Attribute Declaration&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the attribute</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the attribute</td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
<tr>
<td>scope</td>
<td>A function with properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(&quot;class&quot;:&quot;Scope&quot;, &quot;variety&quot;:&quot;global&quot; or &quot;local&quot;,&quot;parent&quot;: the containing)</td>
<td></td>
</tr>
<tr>
<td>Property name</td>
<td>Property type</td>
<td>Property value</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>value constraint</td>
<td></td>
<td>If present, a function with properties (“class”: ”Value Constraint“, ”variety“: ”fixed“ or ”default“, ”value“: atomic value, ”lexical form“: string. Note that the ”value“ property is not available for namespace-sensitive types</td>
</tr>
<tr>
<td>inheritable</td>
<td>boolean</td>
<td></td>
</tr>
</tbody>
</table>

**Attribute Group Declaration**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>”Attribute Group Definition“</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the attribute group</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the attribute group</td>
</tr>
<tr>
<td>attribute uses</td>
<td>Sequence of (Attribute Use)</td>
<td></td>
</tr>
<tr>
<td>attribute wildcard</td>
<td>Optional Attribute Wildcard</td>
<td></td>
</tr>
</tbody>
</table>

**Attribute Use**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>”Attribute Use“</td>
</tr>
<tr>
<td>required</td>
<td>boolean</td>
<td>true if the attribute is required, false if optional</td>
</tr>
<tr>
<td>value constraint</td>
<td>See Attribute Declaration</td>
<td></td>
</tr>
<tr>
<td>inheritable</td>
<td>boolean</td>
<td></td>
</tr>
</tbody>
</table>

**Attribute Wildcard**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>”Wildcard“</td>
</tr>
<tr>
<td>namespace constraint</td>
<td>function with properties (“class”: ”Namespace Constraint“, ”variety“: ”any“</td>
<td>”enumeration“)</td>
</tr>
<tr>
<td>process contents</td>
<td>string (“strict”</td>
<td>”lax“</td>
</tr>
</tbody>
</table>

**Complex Type**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Complex Type&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>base type definition</td>
<td>Complex Type Definition</td>
<td></td>
</tr>
<tr>
<td>final</td>
<td>Sequence of strings</td>
<td>(&quot;restriction&quot;</td>
</tr>
<tr>
<td>context</td>
<td>Empty sequence (not implemented)</td>
<td></td>
</tr>
<tr>
<td>derivation method</td>
<td>string</td>
<td>(&quot;restriction&quot;</td>
</tr>
<tr>
<td>abstract</td>
<td>boolean</td>
<td></td>
</tr>
<tr>
<td>attribute uses</td>
<td>Sequence of Attribute Use</td>
<td></td>
</tr>
<tr>
<td>attribute wildcard</td>
<td>Optional Attribute Wildcard</td>
<td></td>
</tr>
<tr>
<td>content type</td>
<td>function with properties:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(&quot;class&quot;:&quot;Content Type&quot;,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&quot;variety&quot;:string</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(&quot;element-only&quot;</td>
<td>&quot;empty&quot;</td>
</tr>
<tr>
<td></td>
<td>optional Particle, &quot;open content&quot;:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>function with properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(&quot;class&quot;:&quot;Open Content&quot;,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&quot;mode&quot;:string</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(&quot;interleave&quot;</td>
<td>&quot;suffix&quot;), &quot;wildcard&quot;:</td>
</tr>
<tr>
<td></td>
<td>Wildcard), &quot;simple type definition&quot;:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simple Type)</td>
<td></td>
</tr>
<tr>
<td>prohibited</td>
<td>Sequence of strings</td>
<td>(&quot;restriction&quot;</td>
</tr>
<tr>
<td>substitutions</td>
<td>Sequence of Assertion</td>
<td></td>
</tr>
<tr>
<td>assertions</td>
<td>Sequence of Assertion</td>
<td></td>
</tr>
</tbody>
</table>

**Element Declaration**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Complex Type&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
<tr>
<td>type table</td>
<td>function with properties (&quot;class&quot;:&quot;Type Table&quot;, &quot;alternatives&quot;: sequence of Type Alternative, &quot;default type definition&quot;: Simple Type or Complex Type)</td>
<td></td>
</tr>
<tr>
<td>scope</td>
<td>function with properties (&quot;class&quot;:&quot;Scope&quot;, &quot;variety&quot;: (&quot;global&quot;</td>
<td>&quot;local&quot;), &quot;parent&quot;: optional Complex Type)</td>
</tr>
<tr>
<td>Property name</td>
<td>Property type</td>
<td>Property value</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>value constraint</td>
<td>see Attribute Declaration</td>
<td></td>
</tr>
<tr>
<td>nillable</td>
<td>boolean</td>
<td></td>
</tr>
<tr>
<td>identity-constraint</td>
<td>Sequence of Identity Constraint</td>
<td></td>
</tr>
<tr>
<td>definitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>substitution group</td>
<td>Sequence of Element Declaration</td>
<td></td>
</tr>
<tr>
<td>affiliations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>substitution group</td>
<td>Sequence of strings</td>
<td>(&quot;restriction&quot;</td>
</tr>
<tr>
<td>exclusions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disallowed substitutions</td>
<td>Sequence of strings</td>
<td>(&quot;restriction&quot;</td>
</tr>
<tr>
<td>abstract</td>
<td>boolean</td>
<td></td>
</tr>
</tbody>
</table>

### Element Wildcard

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Wildcard&quot;</td>
</tr>
<tr>
<td>namespace constraint</td>
<td>function with properties (&quot;class&quot;: &quot;Namespace Constraint&quot;, &quot;variety&quot;: &quot;any&quot;</td>
<td>enumeration&quot;</td>
</tr>
<tr>
<td>process contents</td>
<td>string</td>
<td>(&quot;strict&quot;</td>
</tr>
</tbody>
</table>

### Facet

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>The name of the facet, for example &quot;minLength&quot; or &quot;enumeration&quot;</td>
</tr>
<tr>
<td>value</td>
<td>depends on facet</td>
<td>The value of the facet</td>
</tr>
<tr>
<td>fixed</td>
<td>boolean</td>
<td></td>
</tr>
<tr>
<td>typed-value</td>
<td>For the enumeration facet only, array(xs:anyAtomicType*)</td>
<td>An array containing the enumeration values, each of which may in general be a sequence of atomic values. (Note: for the enumeration facet, the &quot;value&quot; property is a sequence of strings, regardless of the actual type)</td>
</tr>
</tbody>
</table>

### Identity Constraint

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
</table>
### Kind

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Identity-Constraint Definition&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the constraint</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the constraint</td>
</tr>
<tr>
<td>identity-constraint category</td>
<td>string</td>
<td>(&quot;key&quot;</td>
</tr>
<tr>
<td>selector</td>
<td>XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>fields</td>
<td>Sequence of XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>referenced key</td>
<td>string</td>
<td>(For keyRef only): Identity Constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The corresponding key constraint</td>
</tr>
</tbody>
</table>

- Model Group

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Model Group&quot;</td>
</tr>
<tr>
<td>compositor</td>
<td>string</td>
<td>(&quot;sequence&quot;</td>
</tr>
<tr>
<td>particles</td>
<td>Sequence of Particle</td>
<td></td>
</tr>
</tbody>
</table>

- Model Group Definition

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Model Group Definition&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the model group</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the model group</td>
</tr>
<tr>
<td>model group</td>
<td>Model Group</td>
<td></td>
</tr>
</tbody>
</table>

- Notation

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Notation Declaration&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the notation</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the notation</td>
</tr>
<tr>
<td>system identifier</td>
<td>anyURI</td>
<td></td>
</tr>
<tr>
<td>public identifier</td>
<td>string</td>
<td></td>
</tr>
</tbody>
</table>

- Particle

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Particle&quot;</td>
</tr>
<tr>
<td>min occurs</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>max occurs</td>
<td>integer, or string(&quot;unbounded&quot;)</td>
<td></td>
</tr>
<tr>
<td>term</td>
<td>Element Declaration, Element Wildcard, or ModelGroup</td>
<td></td>
</tr>
</tbody>
</table>

- **Simple Type**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>“Simple Type Definition”</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>final</td>
<td>Sequence of string(&quot;restriction&quot;</td>
<td>extension&quot;</td>
</tr>
<tr>
<td>context</td>
<td>containing component</td>
<td></td>
</tr>
<tr>
<td>base type definition</td>
<td>Simple Type</td>
<td></td>
</tr>
<tr>
<td>facets</td>
<td>Sequence of Facet</td>
<td></td>
</tr>
<tr>
<td>fundamental facets</td>
<td>Empty sequence (not implemented)</td>
<td></td>
</tr>
<tr>
<td>variety</td>
<td>string (&quot;atomic&quot;</td>
<td>&quot;list&quot;</td>
</tr>
<tr>
<td>primitive type definition</td>
<td>Simple Type</td>
<td></td>
</tr>
<tr>
<td>item type definition</td>
<td>(for list types only) Simple Type</td>
<td></td>
</tr>
<tr>
<td>member type definitions</td>
<td>(for union types only) Sequence of Simple Type</td>
<td></td>
</tr>
</tbody>
</table>

- **Type Alternative**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>“Type Alternative”</td>
</tr>
<tr>
<td>test</td>
<td>XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
</tbody>
</table>

- **XPath Property Record**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>namespace bindings</td>
<td>Sequence of functions with properties (&quot;prefix&quot;: string, &quot;namespace&quot;: anyURI)</td>
<td></td>
</tr>
<tr>
<td>default namespace</td>
<td>anyURI</td>
<td></td>
</tr>
<tr>
<td>base URI</td>
<td>anyURI</td>
<td>The static base URI of the XPath expression</td>
</tr>
<tr>
<td>expression</td>
<td>string</td>
<td>The XPath expression as a string</td>
</tr>
</tbody>
</table>
Type

\texttt{altova:type(Node as item?) as (function(xs:string) as item()*)?} \ XP3.1 \ XQ3.1

The function \texttt{altova:type} submits an element or attribute node of an XML document and returns the node's type information from the PSVI.

\textbf{Note}: The XML document must have a schema declaration so that the schema can be referenced.

\textbf{Examples}

- \texttt{for $element in //Email}
  \texttt{let $type := altova:type($element)}
  \texttt{return $type}
  returns a function that contains the node's type information

- \texttt{for $element in //Email}
  \texttt{let $type := altova:type($element)}
  \texttt{return $type ("kind")}
  takes the node's type component (Simple Type or Complex Type) and returns the value of the component's \texttt{kind} property

\textit{Components and their properties}

\textbf{Assertion}

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Assertion&quot;</td>
</tr>
<tr>
<td>test</td>
<td>XPath Property Record</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{Attribute Declaration}

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Attribute Declaration&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the attribute</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the attribute</td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
<tr>
<td>scope</td>
<td>A function with properties (=class=&quot;Scope&quot;, &quot;variety&quot;: &quot;global&quot; or &quot;local&quot;, &quot;parent&quot;: the containing Complex Type or Attribute Group)</td>
<td></td>
</tr>
<tr>
<td>value constraint</td>
<td>If present, a function with properties (=class=&quot;Value Constraint&quot;, &quot;variety&quot;: &quot;fixed&quot; or &quot;default&quot;, &quot;value&quot;: atomic value, &quot;lexical form&quot;: string. Note that the &quot;value&quot; property is not available for namespace-sensitive types)</td>
<td></td>
</tr>
</tbody>
</table>
### Attribute Group Declaration

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Attribute Group Definition&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the attribute group</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the attribute group</td>
</tr>
<tr>
<td>attribute uses</td>
<td>Sequence of (Attribute Use)</td>
<td></td>
</tr>
<tr>
<td>attribute wildcard</td>
<td>Optional Attribute Wildcard</td>
<td></td>
</tr>
</tbody>
</table>

### Attribute Use

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Attribute Use&quot;</td>
</tr>
<tr>
<td>required</td>
<td>boolean</td>
<td>true if the attribute is required, false if optional</td>
</tr>
<tr>
<td>value constraint</td>
<td>See Attribute Declaration</td>
<td></td>
</tr>
<tr>
<td>inheritable</td>
<td>boolean</td>
<td></td>
</tr>
</tbody>
</table>

### Attribute Wildcard

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Wildcard&quot;</td>
</tr>
<tr>
<td>namespace constraint</td>
<td>function with properties (&quot;class&quot;: &quot;Namespace Constraint&quot;, &quot;variety&quot;: &quot;any&quot;</td>
<td>&quot;enumeration&quot;</td>
</tr>
<tr>
<td>process contents</td>
<td>string</td>
<td>(&quot;strict&quot;</td>
</tr>
</tbody>
</table>

### Complex Type

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Complex Type&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>base type definition</td>
<td>Complex Type Definition</td>
<td></td>
</tr>
<tr>
<td>Property name</td>
<td>Property type</td>
<td>Property value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Complex Type&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the type (empty if anonymous)</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the type (empty if anonymous)</td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
<tr>
<td>type table</td>
<td>function with properties</td>
<td>(&quot;class&quot;: &quot;Type Table&quot;, &quot;alternatives&quot;: sequence of Type Alternative, &quot;default type definition&quot;: Simple Type or Complex Type)</td>
</tr>
<tr>
<td>scope</td>
<td>function with properties</td>
<td>(&quot;class&quot;: &quot;Scope&quot;, &quot;variety&quot;: (&quot;global&quot;</td>
</tr>
<tr>
<td>value constraint</td>
<td>see AttributeDeclaration</td>
<td></td>
</tr>
<tr>
<td>nillable</td>
<td>boolean</td>
<td></td>
</tr>
<tr>
<td>identity-constraint definitions</td>
<td>Sequence of IdentityConstraint</td>
<td></td>
</tr>
<tr>
<td>substitution group affiliations</td>
<td>Sequence of ElementDeclaration</td>
<td></td>
</tr>
</tbody>
</table>
substitution group exclusions | Sequence of strings ("restriction"|"extension")
---|---
disallowed substitutions | Sequence of strings ("restriction"|"extension"|"substitution")
abstract | boolean

### Element Wildcard

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Wildcard&quot;</td>
</tr>
<tr>
<td>namespace constraint</td>
<td>function with properties (&quot;class&quot;: &quot;Namespace Constraint&quot;, &quot;variety&quot;: &quot;any&quot;</td>
<td>&quot;enumeration&quot;</td>
</tr>
<tr>
<td>process contents</td>
<td>string (&quot;strict&quot;</td>
<td>&quot;lax&quot;</td>
</tr>
</tbody>
</table>

### Facet

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>The name of the facet, for example &quot;minLength&quot; or &quot;enumeration&quot;</td>
</tr>
<tr>
<td>value</td>
<td>depends on facet</td>
<td>The value of the facet</td>
</tr>
<tr>
<td>fixed</td>
<td>boolean</td>
<td></td>
</tr>
<tr>
<td>typed-value</td>
<td>For the enumeration facet only, array(xs:anyAtomicType*)</td>
<td>An array containing the enumeration values, each of which may in general be a sequence of atomic values. (Note: for the enumeration facet, the &quot;value&quot; property is a sequence of strings, regardless of the actual type)</td>
</tr>
</tbody>
</table>

### Identity Constraint

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Identity-Constraint Definition&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the constraint</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the constraint</td>
</tr>
<tr>
<td>identity-constraint category</td>
<td>string (&quot;key&quot;</td>
<td>&quot;unique&quot;</td>
</tr>
<tr>
<td>selector</td>
<td>XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>fields</td>
<td>Sequence of XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>referenced key</td>
<td>(For keyRef only): Identity Constraint</td>
<td>The corresponding key constraint</td>
</tr>
</tbody>
</table>

- **Model Group**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Model Group&quot;</td>
</tr>
<tr>
<td>compositors</td>
<td>string (&quot;sequence&quot;</td>
<td>choice&quot;</td>
</tr>
<tr>
<td>particles</td>
<td>Sequence of Particle</td>
<td></td>
</tr>
</tbody>
</table>

- **Model Group Definition**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Model Group Definition&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the model group</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the model group</td>
</tr>
<tr>
<td>model group</td>
<td>Model Group</td>
<td></td>
</tr>
</tbody>
</table>

- **Notation**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Notation Declaration&quot;</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Local name of the notation</td>
</tr>
<tr>
<td>target namespace</td>
<td>string</td>
<td>Namespace URI of the notation</td>
</tr>
<tr>
<td>system identifier</td>
<td>anyURI</td>
<td></td>
</tr>
<tr>
<td>public identifier</td>
<td>string</td>
<td></td>
</tr>
</tbody>
</table>

- **Particle**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Particle&quot;</td>
</tr>
<tr>
<td>min occurs</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>max occurs</td>
<td>integer, or string(&quot;unbounded&quot;)</td>
<td></td>
</tr>
<tr>
<td>term</td>
<td>Element Declaration, Element Wildcard, or ModelGroup</td>
<td></td>
</tr>
</tbody>
</table>

- **Simple Type**

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Simple Type Definition&quot;</td>
</tr>
</tbody>
</table>
### Type Alternative

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>kind</td>
<td>string</td>
<td>&quot;Type Alternative&quot;</td>
</tr>
<tr>
<td>test</td>
<td>XPath Property Record</td>
<td></td>
</tr>
<tr>
<td>type definition</td>
<td>Simple Type or Complex Type</td>
<td></td>
</tr>
</tbody>
</table>

### XPath Property Record

<table>
<thead>
<tr>
<th>Property name</th>
<th>Property type</th>
<th>Property value</th>
</tr>
</thead>
<tbody>
<tr>
<td>namespace bindings</td>
<td>Sequence of functions with properties (&quot;prefix&quot;: string, &quot;namespace&quot;: anyURI)</td>
<td></td>
</tr>
<tr>
<td>default namespace</td>
<td>anyURI</td>
<td></td>
</tr>
<tr>
<td>base URI</td>
<td>anyURI</td>
<td>The static base URI of the XPath expression</td>
</tr>
<tr>
<td>expression</td>
<td>string</td>
<td>The XPath expression as a string</td>
</tr>
</tbody>
</table>
17.1.2.1.7 XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide additional functionality for the processing of data. The functions in this section can be used with Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for Altova extension functions in that release.

<table>
<thead>
<tr>
<th>XPath functions (used in XPath expressions in XSLT):</th>
<th>XP1</th>
<th>XP2</th>
<th>XP3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT functions (used in XPath expressions in XSLT):</td>
<td>XSLT1</td>
<td>XSLT2</td>
<td>XSLT3</td>
</tr>
<tr>
<td>XQuery functions (used in XQuery expressions in XQuery):</td>
<td>XQ1</td>
<td>XQ3.1</td>
<td></td>
</tr>
</tbody>
</table>

• **attributes [altova:]**

  **altova:attributes(AttributeName as xs:string) as attribute()**

  Returns all attributes that have a local name which is the same as the name supplied in the input argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. This means that the context node must be the parent element node.

  ☑ **Examples**

  • `altova:attributes("MyAttribute")` returns `MyAttribute()`

  **altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as attribute()**

  Returns all attributes that have a local name which is the same as the name supplied in the input argument, AttributeName. The search is case-sensitive and conducted along the attribute:: axis. The context node must be the parent element node. The second argument is a string containing option flags. Available flags are:

  - **r** = switches to a regular-expression search; AttributeName must then be a regular-expression search string;
  - **f** = If this option is specified, then AttributeName provides a full match; otherwise AttributeName need only partially match an attribute name to return that attribute. For example: if **f** is not specified, then MyAtt will return MyAttribute;
  - **i** = switches to a case-insensitive search;
  - **p** = includes the namespace prefix in the search; AttributeName should then contain the namespace prefix, for example: `altova:MyAttribute`.

  The flags can be written in any order. Invalid flags will generate errors. One or more flags can be omitted. The empty string is allowed, and will produce the same effect as the function having only one argument (previous signature). However, an empty sequence is not allowed as the second argument.

  ☑ **Examples**

  • `altova:attributes("MyAttribute", "rfip")` returns `MyAttribute()`
• `altova:attributes("MyAttribute", "pri")` returns `MyAttribute()`
• `altova:attributes("MyAtt", "rip")` returns `MyAttribute()`
• `altova:attributes("MyAttributes", "rfip")` returns no match
• `altova:attributes("MyAttribute", "")` returns `MyAttribute()`
• `altova:attributes("MyAttribute", "Rip")` returns an unrecognized-flag error.
• `altova:attributes("MyAttribute", )` returns a missing-second-argument error.

\section*{elements [altova:]

```
altoa:elements(ElementName as xs:string) as element()* XP3.1 XQ3.1
\``

Returns all elements that have a local name which is the same as the name supplied in the input argument, `ElementName`. The search is case-sensitive and conducted along the `child::` axis. The context node must be the parent node of the element/s being searched for.

\subsection*{Examples}

• `altova:elements("MyElement")` returns `MyElement()`

```
altoa:elements(ElementName as xs:string, SearchOptions as xs:string) as element()*
\``

• `altova:elements("MyElement", "rip")` returns `MyElement()`
• `altova:elements("MyElement", "pri")` returns `MyElement()`
• `altova:elements("MyElem", "rip")` returns `MyElement()`
• `altova:elements("MyElements", "rfip")` returns no match
• `altova:elements("MyElement", "Rip")` returns an unrecognized-flag error.
• `altova:elements("MyElement", )` returns a missing-second-argument error.

\section*{find-first [altova:]

```
altoa:find-first((Sequence as item()), (Condition(Sequence-Item as xs:boolean)) as item())? XP3.1 XQ3.1
\``

This function takes two arguments. The first argument is a sequence of one or more items of any
datatype. The second argument, Condition, is a reference to an XPath function that takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is submitted, in turn, to the function referenced in Condition. (Remember: This function takes a single argument.) The first Sequence item that causes the function in Condition to evaluate to true() is returned as the result of altova:find-first, and the iteration stops.

Examples

- **altova:find-first** (5 to 10, function($a) {($a mod 2 = 0)}) returns xs:integer 6
 The Condition argument references the XPath 3.0 inline function, function(), which declares an inline function named $a and then defines it. Each item in the Sequence argument of altova:find-first is passed, in turn, to $a as its input value. The input value is tested on the condition in the function definition ($a mod 2 = 0). The first input value to satisfy this condition is returned as the result of altova:find-first (in this case 6).

- **altova:find-first** (1 to 10, (function($a) {$a+3=7})) returns xs:integer 4

Further examples

If the file C:\Temp\Customers.xml exists:

- **altova:find-first** ("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),
 (doc-available#1) returns xs:string C:\Temp\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html exists:

- **altova:find-first** ("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),
 (doc-available#1) returns xs:string http://www.altova.com/index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/index.html also does not exist:

- **altova:find-first** ("C:\Temp\Customers.xml", "http://www.altova.com/index.html"),
 (doc-available#1) returns no result

Notes about the examples given above

- The XPath 3.0 function, doc-available, takes a single string argument, which is used as a URI, and returns true if a document node is found at the submitted URI. (The document at the submitted URI must therefore be an XML document.)
- The doc-available function can be used for Condition, the second argument of altova:find-first, because it takes only one argument (arity=1), because it takes an item() as input (a string which is used as a URI), and returns a boolean value.
- Notice that the doc-available function is only referenced, not called. The #1 suffix that is attached to it indicates a function with an arity of 1. In its entirety doc-available#1 simply means: *Use the doc-available() function that has arity=1, passing to it as its single argument, in turn, each of the items in the first sequence.* As a result, each of the two strings will be passed to doc-available(), which uses the string as a URI and tests whether a document node exists at the URI. If one does, the doc-available() evaluates to true() and that string is returned as the result of the altova:find-first function. *Note about the doc-available() function: Relative
paths are resolved relative to the the current base URI, which is by default the URI of the XML document from which the function is loaded.

find-first-combination [altova:]

```xml
<xs:function name="altova:find-first-combination"
  argument-attachments="altova:find-first-combination((Seq-01 as item()*)
  , (Seq-02 as item()*)
  , (Condition( Seq-01-Item, Seq-02-Item as xs:boolean) as item()*) XP3.1 XQ3.1"
  returns="item()"
>

This function takes three arguments:

- The first two arguments, `Seq-01` and `Seq-02`, are sequences of one or more items of any datatype.
- The third argument, `Condition`, is a reference to an XPath function that takes two arguments (has an arity of 2) and returns a boolean.

The items of `Seq-01` and `Seq-02` are passed in ordered pairs (one item from each sequence making up a pair) as the arguments of the function in `Condition`. The pairs are ordered as follows.

If 
`Seq-01` = X₁, X₂, X₃ ... Xₙ
And `Seq-02` = Y₁, Y₂, Y₃ ... Yₙ

Then (X₁ Y₁), (X₁ Y₂), (X₁ Y₃) ... (X₁ Yₙ), (X₂ Y₁), (X₂ Y₂) ... (Xₙ Yₙ)

The first ordered pair that causes the `Condition` function to evaluate to `true()` is returned as the result of `altova:find-first-combination`. Note that: (i) If the `Condition` function iterates through the submitted argument pairs and does not once evaluate to `true()`, then `altova:find-first-combination` returns `No results`; (ii) The result of `altova:find-first-combination` will always be a pair of items (of any datatype) or no item at all.

#### Examples

- `altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})` returns the sequence of `xs:integers` (11, 21)
- `altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33})` returns the sequence of `xs:integers` (11, 22)
- `altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a+$b = 34})` returns the sequence of `xs:integers` (11, 23)

---

### find-first-pair [altova:]

```xml
<xs:function name="altova:find-first-pair"
 argument-attachments="altova:find-first-pair((Seq-01 as item()*)
 , (Seq-02 as item()*)
 , (Condition(Seq-01-Item, Seq-02-Item as xs:boolean) as item()*) XP3.1 XQ3.1"
 returns="item()"
>

This function takes three arguments:

- The first two arguments, `Seq-01` and `Seq-02`, are sequences of one or more items of any datatype.
- The third argument, `Condition`, is a reference to an XPath function that takes two arguments (has an arity of 2) and returns a boolean.

The items of `Seq-01` and `Seq-02` are passed in ordered pairs as the arguments of the function in `Condition`. The pairs are ordered as follows.
If \(\text{Seq-01} = X_1, X_2, X_3 \ldots X_n \)
And \(\text{Seq-02} = Y_1, Y_2, Y_3 \ldots Y_n \)
Then \((X_1 Y_1), (X_2 Y_2), (X_3 Y_3) \ldots (X_n Y_n)\)

The first ordered pair that causes the condition function to evaluate to \(\text{true()} \) is returned as the result of \texttt{altova:find-first-pair}. Note that: (i) If the condition function iterates through the submitted argument pairs and does not once evaluate to \(\text{true()} \), then \texttt{altova:find-first-pair} returns \text{No results}; (ii) The result of \texttt{altova:find-first-pair} will always be a pair of items (of any datatype) or no item at all.

\begin{itemize}
 \item \texttt{altova:find-first-pair}(11 to 20, 21 to 30, function($a, $b) {$a+$b = 32}) returns the sequence of \texttt{xs:integers} \((11, 21)\)
 \item \texttt{altova:find-first-pair}(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33}) returns \text{No results}
\end{itemize}

Notice from the two examples above that the ordering of the pairs is: \((11, 21)\) (12, 22) (13, 23)...(20, 30). This is why the second example returns \text{No results} (because no ordered pair gives a sum of 33).

\begin{itemize}
 \item \texttt{altova:find-first-pair-pos} \((11 to 20, 21 to 30, function($a, $b) {$a+$b = 32})\) returns 1
 \item \texttt{altova:find-first-pair-pos}(11 to 20, 21 to 30, function($a, $b) {$a+$b = 33}) returns \text{No results}
\end{itemize}

Notice from the two examples above that the ordering of the pairs is: \((11, 21)\) (12, 22) (13,
In the first example, the first pair causes the condition function to evaluate to `true()`, and so its index position in the sequence, 1, is returned. The second example returns *No results* because no pair gives a sum of 33.

find-first-pos [altova:]

```
altova:find-first-pos((Sequence as item()*) , (Condition( Sequence-Item as xs:boolean))) as xs:integer
```

This function takes two arguments. The first argument is a sequence of one or more items of any datatype. The second argument, `Condition`, is a reference to an XPath function that takes one argument (has an arity of 1) and returns a boolean. Each item of `sequence` is submitted, in turn, to the function referenced in `Condition`. (*Remember:* This function takes a single argument.) The first `Sequence` item that causes the function in `Condition` to evaluate to `true()` has its index position in `Sequence` returned as the result of `altova:find-first-pos`, and the iteration stops.

Examples

- `altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0})` returns `xs:integer 2`
 The `Condition` argument references the XPath 3.0 inline function, `function()`, which declares an inline function named `$a` and then defines it. Each item in the `Sequence` argument of `altova:find-first-pos` is passed, in turn, to `$a` as its input value. The input value is tested on the condition in the function definition (`$a mod 2 = 0`). The index position in the sequence of the first input value to satisfy this condition is returned as the result of `altova:find-first-pos` (in this case 2, since 6, the first value (in the sequence) to satisfy the condition, is at index position 2 in the sequence).

- `altova:find-first-pos((2 to 10), (function($a) {$a+3=7}))` returns `xs:integer 3`

Further examples

If the file `C:\Temp\Customers.xml` exists:

- `altova:find-first-pos("C:\Temp\Customers.xml", "http://www.altova.com/index.html"), (doc-available#1) ` returns 1

If the file `C:\Temp\Customers.xml` does not exist, and `http://www.altova.com/index.html` exists:

- `altova:find-first-pos("C:\Temp\Customers.xml", "http://www.altova.com/index.html"), (doc-available#1) ` returns 2

If the file `C:\Temp\Customers.xml` does not exist, and `http://www.altova.com/index.html` also does not exist:

- `altova:find-first-pos("C:\Temp\Customers.xml", "http://www.altova.com/index.html"), (doc-available#1) ` returns no result

Notes about the examples given above

- The XPath 3.0 function, `doc-available`, takes a single string argument, which is used as a URI, and returns `true` if a document node is found at the submitted URI. (The document at the
submitted URI must therefore be an XML document.)

- The `doc-available` function can be used for condition, the second argument of `altova:find-first-pos`, because it takes only one argument (arity=1), because it takes an `item()` as input (a string which is used as a URI), and returns a boolean value.

- Notice that the `doc-available` function is only referenced, not called. The `#1` suffix that is attached to it indicates a function with an arity of 1. In its entirety `doc-available#1` simply means: Use the `doc-available()` function that has arity=1, passing to it as its single argument, in turn, each of the items in the first sequence. As a result, each of the two strings will be passed to `doc-available()`, which uses the string as a URI and tests whether a document node exists at the URI. If one does, the `doc-available()` function evaluates to `true()` and the index position of that string in the sequence is returned as the result of the `altova:find-first-pos` function. Note about the `doc-available()` function: Relative paths are resolved relative to the the current base URI, which is by default the URI of the XML document from which the function is loaded.

for-each-attribute-pair [altova:]

```xml
altova:for-each-attribute-pair(Seq1 as element()?, Seq2 as element()?, Function as function()) as item()*
```

The first two arguments identify two elements, the attributes of which are used to build attribute pairs, where one attribute of a pair is obtained from the first element and the other attribute is obtained from the second element. Attribute pairs are selected on the basis of having the same name, and the pairs are ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the other element exists, then the pair is "disjoint", meaning that it consists of one member only. The function item (third argument `Function`) is applied separately to each pair in the sequence of pairs (joint and disjoint), resulting in an output that is a sequence of items.

Examples

- `altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, function($a, $b) {#a+$b})` returns ...

| (2, 4, 6) if | `<Test-A att1="1" att2="2" att3="3" />`
| | `<Test-B att1="1" att2="2" att3="3" />` |
| (2, 4, 6) if | `<Test-A att2="2" att1="1" att3="3" />`
| | `<Test-B att3="3" att2="2" att1="1" />` |
| (2, 6) if | `<Test-A att4="4" att1="1" att3="3" />`
| | `<Test-B att3="3" att2="2" att1="1" />` |

Note: The result (2, 6) is obtained by way of the following action: (1+1, ()+2, 3+3, 4+()). If one of the operands is the empty sequence, as in the case of items 2 and 4, then the result of the addition is an empty sequence.

- `altova:for-each-attribute-pair(/Example/Test-A, /Example/Test-B, concat#2)` returns ...

...
for-each-combination [altova:]

\[
\text{altova:for-each-combination (FirstSequence as item()*, SecondSequence as item()*,}
\]

Function($i,$j)($i || $j) as item()* XP3.1 XQ3.1

The items of the two sequences in the first two arguments are combined so that each item of the first
sequence is combined, in order, once with each item of the second sequence. The function given as the
third argument is applied to each combination in the resulting sequence, resulting in an output that is a
sequence of items (see example).

Examples

- \(\text{altova:for-each-combination}((a', 'b', 'c'), ('1', '2', '3'), function($i, $j)
\)

\(($i || $j) \) returns ('a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3')

for-each-matching-attribute-pair [altova:]

\[
\text{altova:for-each-matching-attribute-pair(Seq1 as element()?, Seq2 as element()?,}
\]

Function as function() as item()* XP3.1 XQ3.1

The first two arguments identify two elements, the attributes of which are used to build attribute pairs,
where one attribute of a pair is obtained from the first element and the other attribute is obtained from the
second element. Attribute pairs are selected on the basis of having the same name, and the pairs are
ordered alphabetically (on their names) into a set. If, for one attribute no corresponding attribute on the
other element exists, then no pair is built. The function item (third argument Function) is applied
separately to each pair in the sequence of pairs, resulting in an output that is a sequence of items.

Examples

- \(\text{altova:for-each-matching-attribute-pair}(/\text{Example/Test-A}, /\text{Example/Test-B},
\)

function(a, b)($a+b)) returns ...

\((2, 4, 6) \) if

- \(\text{altova:for-each-matching-attribute-pair}(/\text{Example/Test-A}, /\text{Example/Test-B},
\)

concat#2) returns ...
17.1.2.1.8 XPath/XQuery Functions: String

Altova’s string extension functions can be used in XPath and XQuery expressions and provide additional functionality for the processing of data. The functions in this section can be used with Altova’s XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the behavior of individual functions might change. Consult the documentation of future releases for information about support for Altova extension functions in that release.

<table>
<thead>
<tr>
<th>XPath functions (used in XPath expressions in XSLT):</th>
<th>XP1</th>
<th>XP2</th>
<th>XP3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT functions (used in XPath expressions in XSLT):</td>
<td>XSLT1</td>
<td>XSLT2</td>
<td>XSLT3</td>
</tr>
<tr>
<td>XQuery functions (used in XPath expressions in XQuery):</td>
<td>XQ1</td>
<td>XQ3.1</td>
<td></td>
</tr>
</tbody>
</table>

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3.1 XQ3.1

Returns the input string InputString in CamelCase. The string is analyzed using the regular expression
(which is a shortcut for the whitespace character). The first non-whitespace character after a whitespace or sequence of consecutive whitespaces is capitalized. The first character in the output string is capitalized.

Examples

- `altova:camel-case("max")` returns Max
- `altova:camel-case("max max")` returns Max Max
- `altova:camel-case("file01.xml")` returns File01.xml
- `altova:camel-case("file01.xml file02.xml")` returns File01.xml File02.xml
- `altova:camel-case("file01.xml file02.xml")` returns File01.xml File02.xml
- `altova:camel-case("file01.xml -file02.xml")` returns File01.xml -file02.xml

`altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex as xs:boolean)` as xs:string

Converts the input string `InputString` to camel case by using `SplitChars` to determine the character/s that trigger the next capitalization. `SplitChars` is used as a regular expression when `IsRegex = true()`, or as plain characters when `IsRegex = false()`. The first character in the output string is capitalized.

Examples

- `altova:camel-case("setname getname", "set|get", true())` returns setName getName
- `altova:camel-case("altova\documents\testcases", ",", false())` returns Altova\Documents\Testcases

char [altova:]

`altova:char(Position as xs:integer) as xs:string` as xs:string

Returns a string containing the character at the position specified by the `Position` argument, in the string obtained by converting the value of the context item to `xs:string`. The result string will be empty if no character exists at the index submitted by the `Position` argument.

Examples

If the context item is 1234ABCD:

- `altova:char(2)` returns 2
- `altova:char(5)` returns A
- `altova:char(9)` returns the empty string.
- `altova:char(-2)` returns the empty string.

`altova:char(InputString as xs:string, Position as xs:integer)` as xs:string

Returns a string containing the character at the position specified by the `Position` argument, in the string submitted as the `InputString` argument. The result string will be empty if no character exists at the index submitted by the `Position` argument.

Examples

- `altova:char("2014-01-15", 5)` returns -
- `altova:char("USA", 1)` returns U
- `altova:char("USA", 10)` returns the empty string.
- `altova:char("USA", -2)` returns the empty string.

create-hash-from-string[altova:]
altova:create-hash-from-string(InputString as xs:string) as xs:string

Generates a hash string from InputString by using the hashing algorithm specified by the HashAlgo argument. The following hashing algorithms may be specified (in upper or lower case): MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512. If the second argument is not specified (see the first signature above), then the SHA-256 hashing algorithm is used.

Examples

- altova:create-hash-from-string('abc') returns a hash string generated by using the SHA-256 hashing algorithm.
- altova:create-hash-from-string('abc', 'md5') returns a hash string generated by using the MD5 hashing algorithm.
- altova:create-hash-from-string('abc', 'MD5') returns a hash string generated by using the MD5 hashing algorithm.

altova:first-chars(X-Number as xs:integer) as xs:string

Returns a string containing the first X-Number of characters of the string obtained by converting the value of the context item to xs:string.

Examples

If the context item is 1234ABCD:

- altova:first-chars(2) returns 12
- altova:first-chars(5) returns 1234A
- altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as xs:string

Returns a string containing the first X-Number of characters of the string submitted as the InputString argument.

Examples

- altova:first-chars("2014-01-15", 5) returns 2014-
- altova:first-chars("USA", 1) returns U

altova:format-string(InputString as xs:string, FormatSequence as item()*) as xs:string

The input string (first argument) contains positional parameters (%1, %2, etc). Each parameter is replaced by the string item that is located at the corresponding position in the format sequence (submitted as the second argument). So the first item in the format sequence replaces the positional parameter %1, the second item replaces %2, and so on. The function returns this formatted string that contains the replacements. If no string exists for a positional parameter, then the positional parameter itself is returned. This happens when the index of a positional parameter is greater than the number of items in the format sequence.

Examples
• `altova:format-string('Hello %1, %2, %3', ('Jane', 'John', 'Joe'))` returns "Hello Jane, John, Joe"
• `altova:format-string('Hello %1, %2, %3', ('Jane', 'John', 'Joe', 'Tom'))` returns "Hello Jane, John, Joe, Tom"
• `altova:format-string('Hello %1, %2, %4', ('Jane', 'John', 'Joe', 'Tom'))` returns "Hello Jane, John, Tom"
• `altova:format-string('Hello %1, %2, %4', ('Jane', 'John', 'Joe'))` returns "Hello Jane, John, %4"

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1
Returns a string containing the last X-Number of characters of the string obtained by converting the value of the context item to xs:string.

Examples

If the context item is 1234ABCD:

• `altova:last-chars(2)` returns CD
• `altova:last-chars(5)` returns 4ABCD
• `altova:last-chars(9)` returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as xs:string XP3.1 XQ3.1
Returns a string containing the last X-Number of characters of the string submitted as the InputString argument.

Examples

• `altova:last-chars("2014-01-15", 5)` returns 01-15
• `altova:last-chars("USA", 10)` returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, StringLength as xs:integer, PadCharacter as xs:string) as xs:string XP3.1 XQ3.1
The PadCharacter argument is a single character. It is padded to the left of the string to increase the number of characters in StringToPad so that this number equals the integer value of the StringLength argument. The StringLength argument can have any integer value (positive or negative), but padding will occur only if the value of StringLength is greater than the number of characters in StringToPad. If StringToPad has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

• `altova:pad-string-left('AP', 1, 'Z')` returns 'AP'
• `altova:pad-string-left('AP', 2, 'Z')` returns 'AP'
• `altova:pad-string-left('AP', 3, 'Z')` returns 'ZAP'
• `altova:pad-string-left('AP', 4, 'Z')` returns 'ZAP'
• `altova:pad-string-left('AP', -3, 'Z')` returns 'AP'
• `altova:pad-string-left('AP', 3, 'YZ')` returns a pad-character-too-long error
The PadCharacter argument is a single character. It is padded to the right of the string to increase the number of characters in StringToPad so that this number equals the integer value of the StringLength argument. The StringLength argument can have any integer value (positive or negative), but padding will occur only if the value of StringLength is greater than the number of characters in StringToPad. If StringToPad has more characters than the value of StringLength, then StringToPad is left unchanged.

Examples

- `altova:pad-string-right('AP', 1, 'Z')` returns 'AP'
- `altova:pad-string-right('AP', 2, 'Z')` returns 'AP'
- `altova:pad-string-right('AP', 3, 'Z')` returns 'APZ'
- `altova:pad-string-right('AP', 4, 'Z')` returns 'APZZ'
- `altova:pad-string-right('AP', -3, 'Z')` returns 'AP'
- `altova:pad-string-right('AP', 3, 'YZ')` returns a pad-character-too-long error

repeat-string [altova:]

Generates a string that is composed of the first InputString argument repeated Repeats number of times.

Examples

- `altova:repeat-string("Altova ", 3)` returns "Altova #Altova #Altova #"

substring-after-last [altova:]

If CheckString is found in MainString, then the substring that occurs after CheckString in MainString is returned. If CheckString is not found in MainString, then the empty string is returned. If CheckString is an empty string, then MainString is returned in its entirety. If there is more than one occurrence of CheckString in MainString, then the substring after the last occurrence of CheckString is returned.

Examples

- `altova:substring-after-last('ABCDEFGH', 'B')` returns 'CDEFGH'
- `altova:substring-after-last('ABCDEFGH', 'BC')` returns 'DEFGH'
- `altova:substring-after-last('ABCDEFGH', 'BD')` returns ''
- `altova:substring-after-last('ABCDEFGH', 'Z')` returns ''
- `altova:substring-after-last('ABCDEFGH', '')` returns 'ABCDEFGH'
- `altova:substring-after-last('ABCD-ABCD', 'B')` returns 'CD'
- `altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD')` returns ''

substring-before-last [altova:]

If CheckString is found in MainString, then the substring that occurs before CheckString in MainString...
is returned. If CheckString is not found in MainString, or if CheckString is an empty string, then the empty string is returned. If there is more than one occurrence of CheckString in MainString, then the substring before the last occurrence of CheckString is returned.

Examples

- `altova:substring-before-last('ABCDEFGH', 'B')` returns 'A'
- `altova:substring-before-last('ABCDEFGH', 'BC')` returns 'A'
- `altova:substring-before-last('ABCDEFGH', 'BD')` returns ''
- `altova:substring-before-last('ABCDEFGH', 'Z')` returns ''
- `altova:substring-before-last('ABCDEFGH', '')` returns ''
- `altova:substring-before-last('ABCD-ABCD', 'B')` returns 'ABCD-A'
- `altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD')` returns 'ABCD-ABCD-'

substring-pos [altova:]

`altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string) as xs:integer`

XP3.1 XQ3.1

Returns the character position of the first occurrence of StringToFind in the string StringToCheck. The character position is returned as an integer. The first character of StringToCheck has the position 1. If StringToFind does not occur within StringToCheck, the integer 0 is returned. To check for the second or a later occurrence of StringToCheck, use the next signature of this function.

Examples

- `altova:substring-pos('Altova', 'to')` returns 3
- `altova:substring-pos('Altova', 'tov')` returns 3
- `altova:substring-pos('Altova', 'tv')` returns 0
- `altova:substring-pos('Altova Altova', 'to')` returns 3
- `altova:substring-pos('Altova-Altova', 'to', 0)` returns 3
- `altova:substring-pos('Altova-Altova', 'to', 4)` returns 10

trim-string [altova:]

`altova:trim-string(InputString as xs:string) as xs:string`

XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading and trailing whitespace, and returns a "trimmed" xs:string.

Examples
• altova:trim-string(" Hello World ") returns "Hello World"
• altova:trim-string("Hello World ") returns "Hello World"
• altova:trim-string(" Hello World") returns "Hello World"
• altova:trim-string("Hello World") returns "Hello World"
• altova:trim-string("Hello World") returns "Hello World"

\[\text{trim-string-left} [\text{altova:}]\]

altova:trim-string-left(InputString as xs:string) as xs:string XP3.1 XQ3.1
This function takes an xs:string argument, removes any leading whitespace, and returns a left-trimmed xs:string.

\[\text{Examples}\]
• altova:trim-string-left(" Hello World ") returns "Hello World
• altova:trim-string-left("Hello World ") returns "Hello World
• altova:trim-string-left(" Hello World") returns "Hello World"
• altova:trim-string-left("Hello World") returns "Hello World"
• altova:trim-string-left("Hello World") returns "Hello World"

\[\text{trim-string-right} [\text{altova:}]\]

altova:trim-string-right(InputString as xs:string) as xs:string XP3.1 XQ3.1
This function takes an xs:string argument, removes any trailing whitespace, and returns a right-trimmed xs:string.

\[\text{Examples}\]
• altova:trim-string-right(" Hello World ") returns " Hello World"
• altova:trim-string-right("Hello World ") returns "Hello World"
• altova:trim-string-right(" Hello World") returns " Hello World"
• altova:trim-string-right("Hello World") returns "Hello World"
• altova:trim-string-right("Hello World") returns "Hello World"

17.1.2.1.9 XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current version of MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional functionality to the functionality that is available in the standard library of XPath, XQuery, and XSLT functions. Altova extension functions are in the Altova extension functions namespace, http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future versions of your product, support for a function might be discontinued or the
behavior of individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

<table>
<thead>
<tr>
<th>XPath functions (used in XPath expressions in XSLT):</th>
<th>XP1 XP2 XP3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT functions (used in XPath expressions in XSLT):</td>
<td>XSLT1 XSLT2 XSLT3</td>
</tr>
<tr>
<td>XQuery functions (used in XQuery expressions in XQuery):</td>
<td>XQ1 XQ3.1</td>
</tr>
</tbody>
</table>

get-temp-folder [altova:]

```
altova:get-temp-folder() as xs:string XP2 XQ1 XP3.1 XQ3.1
```

This function takes no argument. It returns the path to the temporary folder of the current user.

Examples

- `altova:get-temp-folder()` would return, on a Windows machine, something like `C:\Users\<UserName>\AppData\Local\Temp` as an `xs:string`.

generate-guid [altova:]

```
altova:generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1
```

Generates a unique string GUID string.

Examples

- `altova:generate-guid()` returns (for example) `85F971DA-17F3-4E4E-994E-99137873ACCD`

high-res-timer [altova:]

```
altova:high-res-timer() as xs:double XP3.1 XQ3.1
```

Returns a system high-resolution timer value in seconds. A high-resolution timer, when present on a
system, enables high precision time measurements when these are required (for example, in animations
and for determining precise code-execution time). This function provides the resolution of the system's
high-res timer.

Examples

- `altova:high-res-timer()` returns something like `1.16766146154566E6`

parse-html [altova:]

```
altova:parse-html (HTMLText as xs:string) as node() XP3.1 XQ3.1
```

The `HTMLText` argument is a string that contains the text of an HTML document. The function creates an
HTML tree from the string. The submitted string may or may not contain the HTML element. In either case,
the root element of the tree is an element named `HTML`. It is best to make sure that the HTML code in the
submitted string is valid HTML.

Examples

- `altova:parse-html("<html><head/><body><h1>Header</h1></body></html>")` creates an
 HTML tree from the submitted string
17.1.2.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are not available as XQuery/XPath functions or as XSLT functions. A good example would be the math functions available in Java, such as `sin()` and `cos()`. If these functions were available to the designers of XSLT stylesheets and XQuery queries, it would increase the application area of stylesheets and queries and greatly simplify the tasks of stylesheet creators. The XSLT and XQuery engines used in a number of Altova products support the use of extension functions in Java and .NET, as well as MSXSL scripts for XSLT. This section describes how to use extension functions and MSXSL scripts in your XSLT stylesheets and XQuery documents. The available extension functions are organized into the following sections:

- Java Extension Functions
- .NET Extension Functions
- MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective libraries are called; and (ii) what rules are followed for converting arguments in a function call to the required input format of the function, and what rules are followed for the return conversion (function result to XSLT/XQuery data object).

Requirements

For extension functions support, a Java Runtime Environment (for access to Java functions) and .NET Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine running the XSLT transformation or XQuery execution, or must be accessible for the transformations.

17.1.2.2.1 Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java constructor or call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or instance. How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

- Java: Constructors

Examples

- `altova:sleep(Millisecs as xs:integer) as empty-sequence()` suspends execution of the current operation for the number of milliseconds given by the `Millisecs` argument.

 - `altova:sleep(1000)` suspends execution of the current operation for 1000 milliseconds.
Note the following

- If you are using an Altova desktop product, the Altova application attempts to detect the path to the Java virtual machine automatically, by reading (in this order): (i) the Windows registry, and (ii) the JAVA_HOME environment variable. You can also add a custom path in the Options dialog of the application; this entry will take priority over any other Java VM path detected automatically.
- If you are running an Altova server product on a Windows machine, the path to the Java virtual machine will be read first from the Windows registry; if this is not successful the JAVA_HOME environment variable will be used.
- If you are running an Altova server product on a Linux or macOS machine, then make sure that the path to the Java virtual machine is stored in the JAVA_HOME environment variable. The path must point to the jvm.dll file in the \bin\server or \bin\client directory.

Form of the extension function

The extension function in the XPath/XQuery expression must have the form prefix:fname().

- The prefix: part identifies the extension function as a Java function. It does so by associating the extension function with an in-scope namespace declaration, the URI of which must begin with java: (see below for examples). The namespace declaration should identify a Java class, for example: xmlns:myns="java:java.lang.Math". However, it could also simply be: xmlns:myns="java" (without a colon), with the identification of the Java class being left to the fname() part of the extension function.
- The fname() part identifies the Java method being called, and supplies the arguments for the method (see below for examples). However, if the namespace URI identified by the prefix: part does not identify a Java class (see preceding point), then the Java class should be identified in the fname() part, before the class and separated from the class by a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example

Here are two examples of how a static method can be called. In the first example, the class name (java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname() part. In the second example, the prefix: part supplies the prefix java: while the fname() part identifies the class as well as the method.

```xml
              select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
              select="jmath:java.lang.Math.cos(3.14)" />
```

The method named in the extension function (cos() in the example above) must match the name of a public static method in the named Java class (java.lang.Math in the example above).
XQuery example

Here is an XQuery example similar to the XSLT example above:

```
<cosine xmlns:jMath="java:java.lang.Math">
  {jMath:cos(3.14)}
</cosine>
```

User-defined Java classes

If you have created your own Java classes, methods in these classes are called differently according to: (i) whether the classes are accessed via a JAR file or a class file, and (ii) whether these files (JAR or class) are located in the current directory (the same directory as the XSLT or XQuery document) or not. How to locate these files is described in the sections User-Defined Class Files and User-Defined Jar Files. Note that paths to class files not in the current directory and all JAR files must be specified.

17.1.2.2.1.1 User-Defined Class Files

If access is via a class file, then there are four possibilities:

- The class file is in a package. The XSLT or XQuery file is in the same folder as the Java package. (See example below.)
- The class file is not packaged. The XSLT or XQuery file is in the same folder as the class file. (See example below.)
- The class file is in a package. The XSLT or XQuery file is at some random location. (See example below.)
- The class file is not packaged. The XSLT or XQuery file is at some random location. (See example below.)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or XQuery document. In this case, since all classes in the folder are found, the file location does not need to be specified. The syntax to identify a class is:

```
java:classname
```

where

- `java:` indicates that a user-defined Java function is being called; (Java classes in the current directory will be loaded by default)
- `classname` is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call.

Class file packaged, XSLT/XQuery file in same folder as Java package

The example below calls the `getVehicleType()` method of the `Car` class of the `com.altova.extfunc` package. The `com.altova.extfunc` package is in the folder `JavaProject`. The XSLT file is also in the folder `JavaProject`.

```java
getVehicleType()
```
Class file referenced, XSLT/XQuery file in same folder as class file

The example below calls the `getVehicleType()` method of the `Car` class. Let us say that: (i) the `Car` class file is in the following folder: JavaProject/com/altova/extfunc, and (ii) that this folder is the current folder in the example below. The XSLT file is also in the folder JavaProject/com/altova/extfunc.

```xml
<xsl:stylesheet version="2.0"
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:fn="http://www.w3.org/2005/xpath-functions"
    xmlns:car="java:com.altova.extfunc.Car" >
<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/"
    <a>
        <xsl:value-of select="car:getVehicleType()"/>
    </a>
</xsl:template>

</xsl:stylesheet>
```

Class file packaged, XSLT/XQuery file at any location

The example below calls the `getCarColor()` method of the `Car` class of the `com.altova.extfunc` package. The `com.altova.extfunc` package is in the folder JavaProject. The XSLT file is at any location. In this case, the location of the package must be specified within the URI as a query string. The syntax is:

```xml
java:classname[?path=uri-of-package]
```

where

- `java:` indicates that a user-defined Java function is being called
- `uri-of-package` is the URI of the Java package
- `classname` is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The example below shows how to access a class file that is located in another directory than the current directory.
Class file referenced, XSLT/XQuery file at any location

The example below calls the `getCarColor()` method of the `Car` class. Let us say that the `Car` class file is in the folder `C:/JavaProject/com/altova/extfunc`, and the XSLT file is at any location. The location of the class file must then be specified within the namespace URI as a query string. The syntax is:

```
java:classname?[?path=<uri-of-classfile>]
```

where

- `java:` indicates that a user-defined Java function is being called
- `uri-of-classfile` is the URI of the folder containing the class file
- `classname` is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a method call. The example below shows how to access a class file that is located in another directory than the current directory.

```
<xsl:stylesheet version="2.0"
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:fn="http://www.w3.org/2005/xpath-functions"

    <xsl:output exclude-result-prefixes="fn car xsl xs"/>

    <xsl:template match="/">
        <xsl:variable name="myCar" select="car:new('red')"/>
        <a><xsl:value-of select="car:getCarColor($myCar)"/></a>
    </xsl:template>

</xsl:stylesheet>
```

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.
17.1.2.2.1.2 User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

\[xmlns:\text{classNS}="\text{java:classname?path=jar:uri-of-jarfile!/}"\]

The method is then called by using the prefix of the namespace URI that identifies the class:

\text{classNS}:\text{method}()

In the above:

- \text{java:} indicates that a Java function is being called
- \text{classname} is the name of the user-defined class
- \text{?} is the separator between the classname and the path
- \text{path=jar:} indicates that a path to a JAR file is being given
- \text{uri-of-jarfile} is the URI of the jar file
- \text{!/} is the end delimiter of the path
- \text{classNS}:\text{method}() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the syntax:

\[xmlns:ns1="\text{java:docx.layout.pages?path=jar:file:///c:/projects/docs/docx.jar!/}"\]

\text{ns1:main}()

\[xmlns:ns2="\text{java?path=jar:file:///c:/projects/docs/docx.jar!/}"\]

\text{ns2:docx.layout.pages.main}()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

```xml
<xsl:stylesheet version="2.0"
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:fn="http://www.w3.org/2005/xpath-functions"
    xmlns:car="\text{java?path=jar:file:///C:/test/Car1.jar!/}" >
    <xsl:output exclude-result-prefixes="fn car xsl xs"/>
    <xsl:variable name="myCar" select="car:Car1.new('red')"/>
    <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/></a>
</xsl:stylesheet>
```

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.
17.1.2.2.1.3 Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the pseudo-function `new()`.

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes, then the Java extension function will return a sequence that is an XPath/XQuery datatype. If the result of a Java constructor call cannot be converted to a suitable XPath/XQuery datatype, then the constructor creates a wrapped Java object with a type that is the name of the class returning that Java object. For example, if a constructor for the class `java.util.Date` is called (`java.util.Date.new()`), then an object having a type `java.util.Date` is returned. The lexical format of the returned object may not match the lexical format of an XPath datatype and the value would therefore need to be converted to the lexical format of the required XPath datatype and then to the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

- It can be assigned to a variable:

```
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />
```

- It can be passed to an extension function (see Instance Method and Instance Fields):

```
<xsl:value-of select="date:toString(date:new())" xmlns:date="java:java.util.Date" />
```

17.1.2.2.1.4 Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the method. Static fields (methods that take no arguments), such as the constant-value fields `E` and `PI`, are accessed without specifying any argument.

XSLT examples

Here are some examples of how static methods and fields can be called:

```
  select="jMath:cos(3.14)" />
```

```
  select="jMath:cos( jMath:PI() )" />
```

```
  select="jMath:E() * jMath:cos(3.14)" />
```

Notice that the extension functions above have the form `prefix:fname()`. The prefix in all three cases is `jMath:`, which is associated with the namespace URI `java:java.lang.Math`. (The namespace URI must begin with `java:`. In the examples above it is extended to contain the class name (`java.lang.Math`).) The `fname()` part of the extension functions must match the name of a public class (e.g. `java.lang.Math`) followed by the name of a public static method with its argument/s (such as `cos(3.14)`) or a public static field (such as `PI()`).
In the examples above, the class name has been included in the namespace URI. If it were not contained in the namespace URI, then it would have to be included in the $name() part of the extension function. For example:

```xml
<xsl:value-of xmlns:java="java:"
              select="java:java.lang.Math.cos(3.14)" />
```

XQuery example

A similar example in XQuery would be:

```xml
<cosine xmlns:jMath="java:java.lang.Math">
  {jMath:cos(3.14)}
</cosine>
```

17.1.2.2.1.5 Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such a Java object typically would be created by using an extension function (for example a constructor call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

```xml
<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
                xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
                xmlns:date="java:java.util.Date"
                xmlns:jlang="java:java.lang">
  <xsl:param name="CurrentDate" select="date:new()"/>
  <xsl:template match="/">
    <enrollment institution-id="Altova School"
               date="{date:toString($CurrentDate)}"
               type="{jlang:Object.toString(jlang:Object.getClass( date:new() ))}"/>
  </xsl:template>
</xsl:stylesheet>
```

In the example above, the value of the node `enrollment/@type` is created as follows:

1. An object is created with a constructor for the class `java.util.Date` (with the `date:new()` constructor).
2. This Java object is passed as the argument of the `jlang.Object.getClass` method.
3. The object obtained by the `getClass` method is passed as the argument to the `jlang.Object.toString` method.

The result (the value of `@type`) will be a string having the value: `java.util.Date`.

An instance field is theoretically different from an instance method in that it is not a Java object per se that is passed as an argument to the instance field. Instead, a parameter or variable is passed as the argument. However, the parameter/variable may itself contain the value returned by a Java object. For example, the parameter `CurrentDate` takes the value returned by a constructor for the class `java.util.Date`. This value is then passed as an argument to the instance method `date:toString` in order to supply the value of `/enrollment/@date`.
17.1.2.2.1.6 Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the function's arguments is important in determining which of multiple Java classes having the same name is called.

In Java, the following rules are followed:

- If there is more than one Java method with the same name, but each has a different number of arguments than the other/s, then the Java method that best matches the number of arguments in the function call is selected.
- The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a corresponding Java datatype. If the supplied XPath/XQuery type can be converted to more than one Java type (for example, xs:integer), then that Java type is selected which is declared for the selected method. For example, if the Java method being called is fx(decimal) and the supplied XPath/XQuery datatype is xs:integer, then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to Java datatypes.

<table>
<thead>
<tr>
<th>XPath/XQuery Type</th>
<th>Java Datatype</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:string</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>xs:boolean</td>
<td>boolean (primitive), java.lang.Boolean</td>
</tr>
<tr>
<td>xs:integer</td>
<td>int, long, short, byte, float, double, and the wrapper classes of these, such as java.lang.Integer</td>
</tr>
<tr>
<td>xs:float</td>
<td>float (primitive), java.lang.Float, double (primitive)</td>
</tr>
<tr>
<td>xs:double</td>
<td>double (primitive), java.lang.Double</td>
</tr>
<tr>
<td>xs:decimal</td>
<td>float (primitive), java.lang.Float, double (primitive), java.lang.Double</td>
</tr>
</tbody>
</table>

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied information. For example, consider the following case.

- The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method mymethod(float).
- However, there is another method in the class which takes an argument of another datatype: mymethod(double).
- Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted correctly to either float or double, it is possible that xs:untypedAtomic is converted to double instead of float.
- Consequently the method selected will not be the required method and might not produce the expected result. To work around this, you can create a user-defined method with a different name and use this method.
Types that are not covered in the list above (for example `xs:date`) will not be converted and will generate an error. However, note that in some cases, it might be possible to create the required Java type by using a Java constructor.

17.1.2.2.1.7 Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean type, then it is converted to the corresponding XPath/XQuery type. For example, Java's `java.lang.Boolean` and `boolean` datatypes are converted to `xsd:boolean`.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional arrays will not be converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you can ensure conversion to the required XPath/XQuery type by first using a Java method (e.g. `toString`) to convert the Java object to a string. In XPath/XQuery, the string can be modified to fit the lexical representation of the required type and then converted to the required type (for example, by using the `cast as` expression).

17.1.2.2 .NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions written in any of the .NET languages (for example, C#). A .NET extension function can be used within an XPath or XQuery expression to invoke a constructor, property, or method (static or instance) within a .NET class.

A property of a .NET class is called using the syntax `get_PropertyName()`.

This section is organized into the following sub-sections:

- .NET: Constructors
- .NET: Static Methods and Static Fields
- .NET: Instance Methods and Instance Fields
- Datatypes: XPath/XQuery to .NET
- Datatypes: .NET to XPath/XQuery

Form of the extension function

The extension function in the XPath/XQuery expression must have the form `prefix:fname()`.

- The `prefix:` part is associated with a URI that identifies the .NET class being addressed.
- The `fname()` part identifies the constructor, property, or method (static or instance) within the .NET class, and supplies any argument/s, if required.
- The URI must begin with `clitype:` (which identifies the function as being a .NET extension function).
- The `prefix:fname()` form of the extension function can be used with system classes and with classes in a loaded assembly. However, if a class needs to be loaded, additional parameters containing the required information will have to be supplied.
Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.
ver The version number (maximum of four integers separated by periods).
sn The key token of the assembly’s strong name (16 hex digits).
from A URI that gives the location of the assembly (DLL) to be loaded. If the URI is relative, it is relative to the XSLT or XQuery document. If this parameter is present, any other parameter is ignored.
partialname The partial name of the assembly. It is supplied to Assembly.LoadWith.PartialName(), which will attempt to load the assembly. If partialname is present, any other parameter is ignored.
loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If the assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and omit the from parameter.

A question mark must be inserted before the first parameter, and parameters must be separated by a semi-colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class MyManagedDLL.testClass. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
 declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;ver=1.2.3.4;loc=neutral;sn=b9f091b72d9c8b68";

2. When the assembly is loaded from the DLL (complete and partial references below):
 declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///C:/Altova Projects/extFunctions/MyManagedDLL.dll;"

 declare namespace cs="clitype:MyManagedDLL.testClass?from=MyManagedDLL.dll;"
XSLT example

Here is a complete XSLT example that calls functions in system class System.Math:

```xml
<xsl:stylesheet version="2.0"
    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:fn="http://www.w3.org/2005/xpath-functions">
  <xsl:output method="xml" omit-xml-declaration="yes"/>
  <xsl:template match="/">
    <math xmlns:math="clitype:System.Math">
      <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>
      <pi><xsl:value-of select="math:PI()"/></pi>
      <e><xsl:value-of select="math:E()"/></e>
      <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>
    </math>
  </xsl:template>
</xsl:stylesheet>
```

The namespace declaration on the element math associates the prefix math: with the URI clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies either a system class or a loaded class. The math: prefix in the XPath expressions associates the extension functions with the URI (and, by extension, the class) System.Math. The extension functions identify methods in the class System.Math and supply arguments where required.

XQuery example

Here is an XQuery example fragment similar to the XSLT example above:

```xquery
<math xmlns:math="clitype:System.Math">
  {math:Sqrt(9)}
</math>
```

As with the XSLT example above, the namespace declaration identifies the .NET class, in this case a system class. The XQuery expression identifies the method to be called and supplies the argument.

17.1.2.2.2.1 .NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the pseudo-function new(). If there is more than one constructor for a class, then the constructor that most closely matches the number of arguments supplied is selected. If no constructor is deemed to match the supplied argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes

If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes, then the .NET extension function will return a sequence that is an XPath/XQuery datatype.
Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped .NET object with a type that is the name of the class returning that object. For
example, if a constructor for the class System.DateTime is called (with System.DateTime.new()), then an
object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath datatype. In such
cases, the returned value would need to be: (i) converted to the lexical format of the required XPath datatype;
and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

- It can be used within a variable:
 <xsl:variable name="currentdate" select="date:new(2008, 4, 29)" xmlns:date="clitype:System.DateTime" />

- It can be passed to an extension function (see Instance Method and Instance Fields):<n
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))" xmlns:date="clitype:System.DateTime" />

- It can be converted to a string, number, or boolean:
 - <xsl:value-of select="xs:integer(data:get_Month(date:new(2008, 4, 29)))" xmlns:date="clitype:System.DateTime" />

17.1.2.2.2.2 .NET: Static Methods and Static Fields
A static method is called directly by its name and by supplying the arguments for the method. The name used
in the call must exactly match a public static method in the class specified. If the method name and the
number of arguments that were given in the function call matches more than one method in a class, then the
types of the supplied arguments are evaluated for the best match. If a match cannot be found unambiguously,
an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is called using
the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):

An XSLT example showing a call to a property (syntax is get_PropertyName()) (System.String()):
<xsl:value-of select="string:get_Length('my string')" xmlns:string="clitype:System.String"/>
An XQuery example showing a call to a method with one argument (`System.Math.Sin(arg)`):

```xml
<sin xmlns:math="clitype:System.Math">
  { math:Sin(30) }
</sin>
```

17.1.2.2.2.3 .NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This .NET object typically would be created by using an extension function (for example a constructor call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

```xml
<xsl:stylesheet version="2.0"
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:fn="http://www.w3.org/2005/xpath-functions">
  <xsl:output method="xml" omit-xml-declaration="yes"/>
  <xsl:template match="/">
    <xsl:variable name="releasedate"
      select="date:new(2008, 4, 29)"
      xmlns:date="clitype:System.DateTime"/>
    <doc>
      <date>
        <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"
          xmlns:date="clitype:System.DateTime"/>
      </date>
      <date>
        <xsl:value-of select="date:ToString($releasedate)"
          xmlns:date="clitype:System.DateTime"/>
      </date>
    </doc>
  </xsl:template>
</xsl:stylesheet>
```

In the example above, a `System.DateTime` constructor `new(2008, 4, 29)` is used to create a .NET object of type `System.DateTime`. This object is created twice, once as the value of the variable `releasedate`, a second time as the first and only argument of the `System.DateTime.ToString()` method. The instance method `System.DateTime.ToString()` is called twice, both times with the `System.DateTime` constructor `new(2008, 4, 29)` as its first and only argument. In one of these instances, the variable `releasedate` is used to get the .NET object.

Instance methods and instance fields

The difference between an instance method and an instance field is theoretical. In an instance method, a .NET object is directly passed as an argument; in an instance field, a parameter or variable is passed instead—though the parameter or variable may itself contain a .NET object. For example, in the example above, the variable `releasedate` contains a .NET object, and it is this variable that is passed as the argument of `ToString()` in the second `date` element constructor. Therefore, the `ToString()` instance in the first `date` element is an instance method while the second is considered to be an instance field. The result produced in both instances, however, is the same.
17.1.2.2.2.4 Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the function's arguments are important for determining which one of multiple .NET methods having the same name is called.

In .NET, the following rules are followed:

- If there is more than one method with the same name in a class, then the methods available for selection are reduced to those that have the same number of arguments as the function call.
- The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly converted to a corresponding .NET datatype. If the supplied XPath/XQuery type can be converted to more than one .NET type (for example, xs:integer), then that .NET type is selected which is declared for the selected method. For example, if the .NET method being called is fx(double) and the supplied XPath/XQuery datatype is xs:integer, then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types to .NET datatypes.

<table>
<thead>
<tr>
<th>XML Schema Type</th>
<th>Equivalent .NET Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>xs:string</td>
<td>StringValue, string</td>
</tr>
<tr>
<td>xs:boolean</td>
<td>BooleanValue, bool</td>
</tr>
<tr>
<td>xs:integer</td>
<td>IntegerValue, decimal, long, integer, short, byte, double, float</td>
</tr>
<tr>
<td>xs:float</td>
<td>FloatValue, float, double</td>
</tr>
<tr>
<td>xs:double</td>
<td>DoubleValue, double</td>
</tr>
<tr>
<td>xs:decimal</td>
<td>DecimalValue, decimal, double, float</td>
</tr>
</tbody>
</table>

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery) will also be converted to the .NET type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct .NET method based on the supplied information. For example, consider the following case.

- The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the method mymethod(float).
- However, there is another method in the class which takes an argument of another datatype: mymethod(double).
- Since the method names are the same and the supplied type (xs:untypedAtomic) could be converted correctly to either float or double, it is possible that xs:untypedAtomic is converted to double instead of float.
- Consequently the method selected will not be the required method and might not produce the expected result. To work around this, you can create a user-defined method with a different name and use this method.
Types that are not covered in the list above (for example \texttt{xs:dateTime}) will not be converted and will generate an error.

17.1.2.2.2.5 Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean type, then it is converted to the corresponding XPath/XQuery type. For example, .NET's \texttt{decimal} datatype is converted to \texttt{xsd:decimal}.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can ensure conversion to the required XPath/XQuery type by first using a .NET method (for example \texttt{System.DateTime.ToString()}) to convert the .NET object to a string. In XPath/XQuery, the string can be modified to fit the lexical representation of the required type and then converted to the required type (for example, by using the \texttt{cast as} expression).

17.1.2.2.3 MSXSL Scripts for XSLT

The \texttt{<msxsl:script>} element contains user-defined functions and variables that can be called from within XPath expressions in the XSLT stylesheet. The \texttt{<msxsl:script>} is a top-level element, that is, it must be a child element of \texttt{<xsl:stylesheet>} or \texttt{<xsl:transform>}.

The \texttt{<msxsl:script>} element must be in the namespace \texttt{urn:schemas-microsoft-com:xslt} (see example below).

Scripting language and namespace

The scripting language used within the block is specified in the \texttt{<msxsl:script>} element's \texttt{language} attribute and the namespace to be used for function calls from XPath expressions is identified with the \texttt{implements-prefix} attribute (see below).

\begin{verbatim}
<msxsl:script language="scripting-language" implements-prefix="user-namespace-prefix">
 function-1 or variable-1
 ...
 function-n or variable-n
</msxsl:script>
\end{verbatim}

The \texttt{<msxsl:script>} element interacts with the Windows Scripting Runtime, so only languages that are installed on your machine may be used within the \texttt{<msxsl:script>} element. The \texttt{.NET Framework 2.0 platform or higher must be installed for MSXSL scripts to be used}. Consequently, the \texttt{.NET} scripting languages can be used within the \texttt{<msxsl:script>} element.

The \texttt{language} attribute accepts the same values as the \texttt{language} attribute on the HTML \texttt{<script>} element. If the \texttt{language} attribute is not specified, then Microsoft JScript is assumed as the default.

The \texttt{implements-prefix} attribute takes a value that is a prefix of a declared in-scope namespace. This namespace typically will be a user namespace that has been reserved for a function library. All functions and
variables defined within the `<msxsl:script>` element will be in the namespace identified by the prefix specified in the `implements-prefix` attribute. When a function is called from within an XPath expression, the fully qualified function name must be in the same namespace as the function definition.

Example

Here is an example of a complete XSLT stylesheet that uses a function defined within a `<msxsl:script>` element.

```
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:fn="http://www.w3.org/2005/xpath-functions"
    xmlns:msxsl="urn:schemas-microsoft-com:xslt"
    xmlns:user="http://mycompany.com/mynamespace">
    <msxsl:script language="VBScript" implements-prefix="user">
        <![CDATA[
          ' Input: A currency value: the wholesale price
          ' Returns: The retail price: the input value plus 20% margin,
          ' rounded to the nearest cent
          dim a as integer = 13
          Function AddMargin(WholesalePrice) as integer
            AddMargin = WholesalePrice * 1.2 + a
          End Function
        ]]>}
    </msxsl:script>
    <xsl:template match="/">
        <html>
            <body>
                <p>
                    <b>Total Retail Price =</b>
                    $<xsl:value-of select="user:AddMargin(50)"/>
                </p>
                <br/>
                <b>Total Wholesale Price =</b>
                $<xsl:value-of select="50"/>
            </body>
        </html>
    </xsl:template>
</xsl:stylesheet>
```

Datatypes

The values of parameters passed into and out of the script block are limited to XPath datatypes. This restriction does not apply to data passed among functions and variables within the script block.
Assemblies
An assembly can be imported into the script by using the `<msxsl:assembly>` element. The assembly is identified via a name or a URI. The assembly is imported when the stylesheet is compiled. Here is a simple representation of how the `<msxsl:assembly>` element is to be used.

```xml
<msxsl:script>
  <msxsl:assembly name="myAssembly.assemblyName" />
  <msxsl:assembly href="pathToAssembly" />

  ...
</msxsl:script>
```

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

Namespaces
Namespaces can be declared with the `<msxsl:using>` element. This enables assembly classes to be written in the script without their namespaces, thus saving you some tedious typing. Here is how the `<msxsl:using>` element is used so as to declare namespaces.

```xml
<msxsl:script>
  <msxsl:using namespace="myAssemblyNS.NamespaceName" />

  ...
</msxsl:script>
```

The value of the `namespace` attribute is the name of the namespace.
17.2 Technical Data

This section contains information on some technical aspects of your software. This information is organized into the following sections:

- OS and Memory Requirements
- Altova Engines
- Unicode Support
- Internet Usage

17.2.1 OS and Memory Requirements

Operating System

Altova software applications are available for the following platforms:

- Windows 7 SP1 with Platform Update, Windows 8, Windows 10
- Windows Server 2008 R2 SP1 with Platform Update or newer

Memory

Since the software is written in C++ it does not require the overhead of a Java Runtime Environment and typically requires less memory than comparable Java-based applications. However, each document is loaded fully into memory so as to parse it completely and to improve viewing and editing speed. As a result, the memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting and pasting large selections in large documents, available memory can rapidly be depleted.

17.2.2 Altova Engines

XML Validator

When opening an XML document, the application uses its built-in XML validator to check for well-formedness, to validate the document against a schema (if specified), and to build trees and infosets. The XML validator is also used to provide intelligent editing help while you edit documents and to dynamically display any validation error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0 and 1.1 specifications. New developments recommended by the W3C's XML Schema Working Group are continuously being incorporated in the XML validator, so that Altova products give you a state-of-the-art development environment.

XSLT and XQuery Engines

Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.1 Engines. If one of these engines is included in the product, then documentation about implementation-specific behavior for each engine is given in the appendices of the documentation.
Note: Altova MapForce generates code using the XSLT 1.0, 2.0 and XQuery 1.0 engines.

17.2.3 Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need a font that supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and are therefore typically targeted at the corresponding writing system. If some text appears garbled, the reason could be that the font you have selected does not contain the required glyphs. So it is useful to have a font that covers the entire Unicode range, especially when editing XML documents in different languages or writing systems. A typical Unicode font found on Windows PCs is Arial Unicode MS.

In the /Examples folder of your application folder you will find an XHTML file called UnicodeUTF-8.html that contains the following sentence in a number of different languages and writing systems:

- When the world wants to talk, it speaks Unicode
- Wenn die Welt miteinander spricht, spricht sie Unicode
- 世界的に話すなら、Unicodeです

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also indicate what writing systems are supported by the fonts available on your PC.

17.2.4 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

- If you click the "Request evaluation key-code" in the Registration dialog (Help | Software Activation), the three fields in the registration dialog box are transferred to our web server by means of a regular http (port 80) connection and the free evaluation key-code is sent back to the customer via regular SMTP e-mail.
- In some Altova products, you can open a file over the Internet (File | Open | Switch to URL). In this case, the document is retrieved using one of the following protocol methods and connections: HTTP (normally port 80), FTP (normally port 20/21), HTTPS (normally port 443). You could also run an HTTP server on port 8080. (In the URL dialog, specify the port after the server name and a colon.)
- If you open an XML document that refers to an XML Schema or DTD and the document is specified through a URL, the referenced schema document is also retrieved through a HTTP connection (port 80) or another protocol specified in the URL (see Point 2 above). A schema document will also be retrieved when an XML file is validated. Note that validation might happen automatically upon opening a document if you have instructed the application to do this (in the File tab of the Options dialog (Tools | Options)).
- In Altova applications using WSDL and SOAP, web service connections are defined by the WSDL documents.
- If you are using the Send by Mail command (File | Send by Mail) in XMLSpy, the current selection or file is sent by means of any MAPI-compliant mail program installed on the user's PC.
- As part of Software Activation and LiveUpdate as further described in the Altova Software License Agreement.
17.3 License Information

This section contains information about:

- the distribution of this software product
- software activation and license metering
- the license agreement governing the use of this product

Please read this information carefully. It is binding upon you since you agreed to these terms when you installed this software product.

To view the terms of any Altova license, go to the Altova Legal Information page at the Altova website.

17.3.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that provides the following unique benefits:

- You can evaluate the software free-of-charge for 30 days before making a purchasing decision. (Note: Altova MobileTogether Designer is licensed free of charge.)
- Once you decide to buy the software, you can place your order online at the Altova website and get a fully licensed product within minutes.
- When you place an online order, you always get the latest version of our software.
- The product package includes an onscreen help system that can be accessed from within the application interface. The latest version of the user manual is available at www.altova.com in (i) HTML format for online browsing, and (ii) PDF format for download (and to print if you prefer to have the documentation on paper).

30-day evaluation period

After downloading this product, you can evaluate it for a period of up to 30 days free of charge. About 20 days into the evaluation period, the software will start to remind you that it has not yet been licensed. The reminder message will be displayed once each time you start the application. If you would like to continue using the program after the 30-day evaluation period, you must purchase a product license, which is delivered in the form of a license file containing a key code. Unlock the product by uploading the license file in the Software Activation dialog of your product.

You can purchase product licenses at https://shop.altova.com/.

Helping Others within Your Organization to Evaluate the Software

If you wish to distribute the evaluation version within your company network, or if you plan to use it on a PC that is not connected to the Internet, you may distribute only the installer file, provided that this file is not modified in any way. Any person who accesses the software installer that you have provided must request their own 30-day evaluation license key code and after expiration of their evaluation period, must also purchase a license in order to be able to continue using the product.
17.3.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet connection for the purpose of transmitting license-related data at the time of installation, registration, use, or update to an Altova-operated license server and validating the authenticity of the license-related data in order to protect Altova against unlicensed or illegal use of the software and to improve customer service. Activation is based on the exchange of license-related data such as operating system, IP address, date/time, software version, and computer name, along with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any unintentional violation of the End User License Agreement. Your product is licensed either as a single-user or multi-user installation, and the license-metering module makes sure that no more than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between instances of the application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a short broadcast datagram to find any other instance of the product running on another computer in the same network segment. If it doesn't get any response, it will open a port for listening to other instances of the application.

Multi-user license
If more than one instance of the application is used within the same LAN, these instances will briefly communicate with each other on startup. These instances exchange key-codes in order to help you to better determine that the number of concurrent licenses purchased is not accidentally violated. This is the same kind of license metering technology that is common in the Unix world and with a number of database development tools. It allows Altova customers to purchase reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as to not put a burden on your network. The TCP/IP ports (2799) used by your Altova product are officially registered with the IANA (see the IANA Service Name Registry for details) and our license-metering module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers that are running Altova products. You are, of course, free to block such traffic between different groups in your organization, as long as you can ensure by other means, that your license agreement is not violated.

If you are online, you will also notice that your Altova software provides many useful functions. These are unrelated to the license-metering technology.

Note about certificates
Your Altova application contacts the Altova licensing server (link.altova.com) via HTTPS. For this communication, Altova uses a registered SSL certificate. If this certificate is replaced (for example, by your IT department or an external agency), then your Altova application will warn you about the connection being insecure. You could use the replacement certificate to start your Altova application, but you would be doing this at your own risk. If you see a Non-secure connection warning message, check the origin of the certificate and
consult your IT team (who would be able to decide whether the interception and replacement of the Altova certificate should continue or not).

If your organization needs to use its own certificate (for example, to monitor communication to and from client machines), then we recommend that you install Altova's free license management software, Altova LicenseServer, on your network. Under this setup, client machines can continue to use your organization's certificates, while Altova LicenseServer can be allowed to use the Altova certificate for communication with Altova.

17.3.3 Altova End-User License Agreement

- The Altova End-User License Agreement is available here: https://www.altova.com/legal/eula
- Altova's Privacy Policy is available here: https://www.altova.com/privacy
18 Glossary

The glossary section includes the list of terms pertaining to MapForce.
Component
In MapForce, the term "component" is what represents visually the structure (schema) of your data, or how data is to be transformed (functions). Components are the central building pieces of any mapping. On the mapping area, components appear as rectangles. The following are examples of MapForce components:

- Constants
- Databases
- Filters
- Conditions
- Function components
- EDI documents (UN/EDIFACT, ANSI X12, HL7)
- Excel 2007+ files
- Simple input components
- Simple output components
- XML Schemas and DTDs

Connection
A connection is a line that you can draw between two connectors. By drawing connections, you instruct MapForce to transform data in a specific way (for example, read data from an XML document and write it to another XML document).

Connector
A connector is a small triangle displayed on the left or right side of a component. The connectors displayed on the left of a component provide data entry points to that component. The connectors displayed on the right of a component provide data exit points from that component.

Credentials
Credential objects provide a way to make authentication data portable across various mapping execution environments, in a secure way. Credentials are useful in mappings that require basic HTTP authentication. You can define credentials in MapForce and also in FlowForce Server. If credentials were defined in MapForce, you can optionally deploy them to FlowForce Server, similar to how mappings are deployed.
Fixed Length Field (FLF)
A common text format where data is conventionally separated into fields which have a fixed length (for example, the first 5 characters of every row represent a transaction ID, and the next 20 characters represent a transaction description).

FlexText
FlexText is a module in MapForce Enterprise Edition which enables you to convert data from non-standard or legacy text files of high complexity to other formats supported by MapForce, and vice versa.
Global Resources

Altova Global Resources are portable references to files, folders, or databases. When stored as Global Resources, paths and database connection details become reusable and available across multiple Altova applications. For example, if you frequently need to open the same file in multiple Altova desktop applications, you may find it convenient to define it as a Global Resource. This way, you don't even need to remember the file path because you can select the respective Global Resource from the "Open File" dialog box instead. This also has the advantage that, if the file path ever changes, you will change it in one place only.

A typical usage of Global Resources is to define a database connection once and reuse it across all Altova applications that support Global Resources. For example, you can create a database connection on the machine where a MapForce mapping was designed and then reuse the same connection on the machine where MapForce Server runs the mapping (this may require, in some cases, that both machines have the same database client software installed).

Optionally, you can create multiple variations of the same Global Resource (known as "configurations"). This lets you easily switch file or folder paths (or even databases) depending on your needs. For example, you could create a "database" resource with two configurations: "development" and "production". Taking MapForce as example, you could then easily retrieve data from either the development or production database, by choosing the desired configuration from a list before previewing the mapping.

You can create Global Resources from the following Altova desktop applications: Altova Authentic, DatabaseSpy, MobileTogether Designer, MapForce, StyleVision, and XMLSpy. On the server side, Global Resources can be consumed by the following Altova server applications: FlowForce Server, MapForce Server, RaptorXML Server, RaptorXML+XBRL Server.
Input component

An input component is a MapForce component that enables you to pass simple values to a mapping. Input components are commonly used to pass file names or other string values to a mapping at runtime. Input components should not be confused with source components.
Join component

A Join component is a MapForce component which enables joining two or more structures on the mapping based on custom-defined conditions. It returns the association (joined set) of items that satisfy the condition. Joins are particularly useful to combine data from two structures which share a common field (such as an identity).
MapForce

MapForce is a Windows-based, multi-purpose IDE (integrated development environment) that enables you to transform data from one format to another, or from one schema to another, by means of a visual, “drag-and-drop”-style graphical user interface that does not require writing any program code. In fact, MapForce generates for you the program code which performs the actual data transformation (or data mapping). When you prefer not to generate program code, you can just run the transformation using the MapForce built-in transformation language (available in the MapForce Professional or Enterprise Editions).

Mapping

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to be transformed from one format to another. A mapping consists of components that you add to the MapForce mapping area in order to create your data transformations (for example, convert XML documents from one schema to another). A valid mapping consists of one or several source components connected to one or several target components. You can run a mapping and preview its result directly in MapForce. You can generate code and execute it externally. You can also compile a mapping to a MapForce execution file and automate mapping execution using MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

MFF

The file name extension of MapForce function files.

MFD

The file name extension of MapForce design documents (mappings).

MFP

The file name extension of MapForce Project files.
Output component

An output component (or "simple output") is a MapForce component which enables you to return a string value from the mapping. Output components represent just one possible type of target components, but should not be confused with the latter.
parent-context

parent-context is an optional argument in some MapForce core aggregation functions such as `min`, `max`, `avg`, `count`. In a source component which has multiple hierarchical sequences, the parent context determines the set of nodes on which the function should operate.
Source component

A source component is a component from which MapForce reads data. When you run the mapping, MapForce reads the data supplied by the connector of the source component, converts it to the required type, and sends it to the connector of the target component.
Target component
A target component is a component to which MapForce writes data. When you run the mapping, a target component instructs MapForce to either generate a file (or multiple files) or output the result as a string value for further processing in an external program. A target component is the opposite of a source component.
Index

.NET extension functions,
 constructors, 1572
 datatype conversions (.NET to XPath/XQuery), 1576
 datatype conversions (XPath/XQuery to .NET), 1575
 for XSLT and XQuery, 1570
 instance methods, instance fields, 1574
 overview, 1570
 static methods, static fields, 1573

A

A to Z,
 sort component, 199
abs,
 as MapForce function (in lang | math functions), 894
 as MapForce function (in xpath2 | numeric functions), 948
Access database,
 updating based on IF condition, 642
acos,
 as MapForce function (in lang | math functions), 895
ActiveX,
 integration at application level, 1417
 integration at document level, 1420
 integration prerequisites, 1413
ActiveX controls,
 adding to the Visual Studio Toolbox, 1415
add,
 as MapForce function (in core | math functions), 814
 custom library, 742
ADO,
 as data connection interface, 353
 setting up a connection, 360
ADO.NET,
 setting up a connection, 365
age,
 as MapForce function (in lang | datatime functions), 871
Altova extensions,
 chart functions (see chart functions), 1488
Breakpoints,
 about, 310
 adding, 313
 removing, 313
Breakpoints window,
 about, 310, 319
Browser,
 applying filters, 573
 Database Query, 572
 filtering, 573
Browser view,
 context menu options, 575
 generating SQL statements, 575
build.xml,
 enabling the zip64-mode in, 1210
Built-in engine,
 definition, 86
 using, 86

C
C#,
 code, 1080
 code generation settings, 1211
 error handling, 1236
 generating program code, 1081, 1090
 integrate generated code, 1111
 integration of MapForce, 1424
 reference to generated classes, 1180
C++,
 code, 1080
 code generation settings, 1211
 error handling, 1236
 generating program code, 1081, 1085
 integrate generated code, 1113
 reference to generated classes, 1165
capitalize,
 as MapForce function (in lang | string functions), 904
CDATA, 340
ceiling,
 as MapForce function (in core | math functions), 815
char-from-code,
 as MapForce function (in core | string functions), 853
charset-decode,
 as MapForce function (in lang | string functions), 905
charset-encode,
 as MapForce function (in lang | string functions), 906
Class ID,
 in MapForce integration, 1431
Code,
 built in types, 1226
 integrating MapForce code, 1108
 SPL, 1213
Code generation,
 sample, 1250
 supported platforms, 1081
Code generation settings,
 defining for a folder in a project, 133
 defining globally for the entire project, 132
Code Generator, 1080
Code point,
 collation, 199
code-from-char,
 as MapForce function (in core | string functions), 854
Collapse,
 regions, 571
Collation,
 locale collation, 199
 sort component, 199
 unicode code point, 199
COM API,
 documentation, 1231
Command reference, 1451
Comments,
 Adding to target files, 339
Complex type,
 sorting, 199
Component,
 as application menu, 1064
 definition of, 1585
 deleted items, 124
 sort data, 199
Components,
 adding to the mapping, 81
 aligning, 107
 changing settings, 108
 overview, 105
 searching, 106
concat,
 (as function) example of usage, 642
 as MapForce function (in core | string functions), 854
Configure,
 mff file, 742
 SQL Editor settings, 580

© 2020 Altova GmbH
Index

Connection,
as application menu, 1066
definition of, 1585

Connections,
moving to a different component, 119
preserving on root element change, 119

Connector,
definition of, 1585
viewing the history of processed values, 315

Consolidating data,
merging XML files, 346

Constants,
adding to the mapping, 663
contains,
as MapForce function (in core | string functions), 856

Context window,
about, 310, 317

current-date,
as MapForce function (in xpath2 | context functions), 923

current-date-time,
as MapForce function (in xpath2 | context functions), 924

current-time,
as MapForce function (in xpath2 | context functions), 924

Custom library,
adding, 742

D

Data overlays,
about, 310

Data streaming,
definition, 85

Database,
assign XML schema to field, 555
generate multiple XML files from, 171
generating sequential and unique values for, 467
querying, 565
writing XML files to, 558

Database connection,
reusing from Global Resources, 382
setting up, 353
setup examples, 383
starting the wizard, 355

Database drivers,
overview, 357

Database exceptions,
handling, 608, 613
logging, 620, 624

Database objects,
adding to the mapping, 441
filtering, 441
removing from the mapping, 441

Database Query,
bookmarks, 570
commenting out text, 570
filtering tables, 573
generating SQL, 572, 577
regions, 571
Result view options, 582
text font options, 582

Database relationships,
defining in mappings, 456
preserving in mappings, 446

Database transactions,
Database transactions,
enabling for stored procedures, 595
rolling back, 613
using in mappings, 608

Databases,
add to mapping, 438
and mapping context, 288
as Global Resources, 992
deleting table data, 500
executing mappings against, 463
inserting data into a table, 472
inserting data into multiple linked tables, 475
merging data into, 483
updating and inserting table data, 483
updating table data, 480
using bulk insert, 508
date-from-datetime,
as MapForce function (in lang | datetime functions), 872
datetime-add,
as MapForce function (in lang | datetime functions), 873
datetime-diff,
as MapForce function (in lang | datetime functions), 874
datetime-from-date-and-time,
as MapForce function (in lang | datetime functions), 875
datetime-from-parts,
as MapForce function (in lang | datetime functions), 875
day-from-datetime,
as MapForce function (in lang | datetime functions), 876
day-from-duration,
as MapForce function (in lang | datetime functions), 877

DB,
ORDER BY, 539

Debugger position,
viewing the current value of, 315

Debugging,
about, 310
limitations, 304
preparation for, 307
settings, 326
starting, 308
step-by-step, 304
stopping, 308
with breakpoints, 304
Default values,
applying to multiple descendant items, 667
applying to multiple items, 667
default-collation,
as MapForce function (in xpath2 | context functions), 924
degrees,
as MapForce function (in lang | math functions), 896
Delete,
deletions - missing items, 124
Delimiter,
changing in CSV files, 638
changing in flat text files, 649
Derived types,
mapping to/from, 334
Digital signature,
creating in XML output, 329
distinct-values,
as MapForce function (in core | sequence functions), 827
Distribution,
of Altova's software products, 1581
divide,
as MapForce function (in core | math functions), 815
divide-integer,
as MapForce function (in lang | math functions), 897
document,
as MapForce function (in xslt | xslt functions library), 964
Document-level,
examples of integration of XMLSpy, 1424
DoTransform.bat,
execute with RaptorXML Server, 969
DTD,
source and target, 333
Duplicate input, 57
adding, 1064
duration-add,
as MapForce function (in lang | datetime functions), 877
duration-from-parts,
as MapForce function (in lang | datetime functions), 878
duration-subtract,
as MapForce function (in lang | datetime functions), 879

e
Eclipse,
compiling Java code with, 1100
generating mapping code for, 1094
Edit,
as application menu, 1060
element-available,
as MapForce function (in xslt | xslt functions library), 965
empty,
empty,
 as MapForce function (in lang | string functions), 909

Empty fields,
 in CSV files, 638
 in flat text files, 649

Encoding,
 changing in CSV files, 638
 changing in flat text files, 649

Encoding settings,
 in XML output, 329

End User License Agreement, 1581, 1583

Enumerations,
 in MapForceControl, 1479

Environment variables,
 ANT_OPS, 1210

equal,
 as MapForce function (in core | logical functions), 809

equal-or-greater,
 as MapForce function (in core | logical functions), 809

equal-or-less,
 as MapForce function (in core | logical functions), 810

Error handling,
 general description, 1236

Evaluation period,
 of Altova's software products, 1581

Exceptions,
 adding, 239
 example, 240
 throwing when node is missing, 240

exists,
 as MapForce function (in core | sequence functions), 829

exp,
 as MapForce function (in lang | math functions), 897

Expand,
 regions, 571

Extension functions for XSLT and XQuery, 1561

Extension Functions in .NET for XSLT and XQuery,
 see under .NET extension functions, 1570

Extension Functions in Java for XSLT and XQuery,
 see under Java extension functions, 1561

Extension Functions in MSXSL scripts, 1576

Field,
 keys in text files, 635

File,
 as application menu, 1057
 as button on a component, 108
 as button on components, 164

File DSN,
 setting up, 372

File names,
 supplying as mapping input parameters, 168

File paths,
 fixing broken references, 141
 in generated code, 142
 of file-based databases, 139
 relative versus absolute, 137, 142

File/String,
 as button on a component, 108
 as button on components, 164

File: (default),
 as name of root node, 164

File: <dynamic>,
 as name of root node, 164

Fill character,
 in flat text files, 649

Filter,
 database objects, 573
 merging XML files, 346
 the Online Browser, 573

Filtering,
 data from components, 211
 database objects on the mapping, 441
 database tables, 211
 in databases, 542

Filters,
 adding to the mapping, 211

find-substring,
 as MapForce function (in lang | string functions), 909

Firebird,
 Connecting through JDBC, 384
 Connecting through ODBC, 385

first-items,
 as MapForce function (in core | sequence functions), 831

Fixed,
 length files - mapping, 630

Flat file,
 mapping, 630

FlexText,
 definition of, 1586
FLF,
 definition of, 1586
floor,
 as MapForce function (in core | math functions), 816
FlowForce Server,
 deploying Global Resources to, 979, 998
 deploying mappings to, 979
 Global Resources in, 997
Folder,
 layout - Database Query, 572
Foreign Key,
 in database mappings, 446, 456
format-date,
 as MapForce function (in core | conversion functions), 788
format-dateTime,
 as MapForce function (in core | conversion functions), 789
format-gid-string,
 as MapForce function (in lang | string functions), 910
format-number,
 as MapForce function (in core | conversion functions), 792
format-time,
 as MapForce function (in core | conversion functions), 795
Function,
 as application menu, 1067
function-available,
 as MapForce function (in xslt | xslt functions library), 965
Functions,
 adding as mapping components, 662
 adding parameters to, 666
 applying to multiple descendant items, 667, 673
 applying to multiple items, 667
 applying to multiple items conditionally, 679
 deleting parameters from, 666
 finding in the Libraries window, 664
 finding occurrences in active mapping, 664
 viewing the argument data type of, 665
 viewing the description of, 665
generate-sequence,
 as MapForce function (in core | sequence functions), 832
get-fileext,
 as MapForce function (in core | file path functions), 802
get-fold,
 as MapForce function (in core | file path functions), 803
Global Resources,
 creating, 990
 deploying to FlowForce Server, 979, 998
 examples of usage, 1000, 1002, 1004, 1008
 in FlowForce Server, 997
 introduction to, 989
greater,
 as MapForce function (in core | logical functions), 810
group-adjacent,
 as MapForce function (in core | sequence functions), 833
group-by,
 as MapForce function (in core | sequence functions), 835
group-ending-with,
 as MapForce function (in core | sequence functions), 837
group-into-blocks,
 as MapForce function (in core | sequence functions), 838
group-starting-with,
 as MapForce function (in core | sequence functions), 840
H
Help,
 as application menu, 1075
Hierarchy,
 from text files, 635
hour-from-datetime,
 as MapForce function (in lang | datetime functions), 880
hour-from-duration,
 as MapForce function (in lang | datetime functions), 881
HRESULT,
 and error handling, 1236
HTML,
 generate mapping documentation, 275
 integration of MapForce, 1433
 preview mapping output as, 271
HTML example,
 of MapForceControl integration, 1431, 1432, 1433
G
Generate,
 code from schema, 1080
Generated code,
 throwing exceptions from, 239
generate-id,
 as MapForce function (in xslt | xslt functions library), 966
IBM DB2,
- connecting through JDBC, 388
- connecting through ODBC, 390
- reading from XML type fields, 554
- writing to XML type fields, 554
IBM DB2 for i,
- connecting through JDBC, 396
- connecting through ODBC, 397
IBM Informix,
- connecting through JDBC, 399
Icons,
- in Messages window of Database Query, 577
- in Results window of Database Query, 577
If-Else conditions,
- adding to the mapping, 211
implicit-timezone,
- as MapForce function (in xpath2 | context functions), 925
INNER JOIN,
- in Join components, 523
Input component,
- definition of, 1588
Input parameters,
- in user-defined functions, 696, 699
Insert,
- as application menu, 1061
- block comment, 570
- bookmarks, 570
- comments, 570
- line comment, 570
- regions, 571
- SQL WHERE component, 539
Instance,
- changing the path reference to, 137
Integrate,
- into C#, 1111
- into C++, 1113
- into Java, 1109
Integrate MapForce code, 1108
Integrating,
- MapForce in applications, 1412
Internet usage,
- in Altova products, 1580
is-not-null,

as MapForce function (in db functions), 868
is-null,
- as MapForce function (in db functions), 869
is-xsi-nil,
- as MapForce function (in core | node functions), 820
Item,
- missing, 124
item-at,
- as MapForce function (in core | sequence functions), 842
items-from-till,
- as MapForce function (in core | sequence functions), 843
Java, 1438
- avoiding exceptions in generated code, 1210
code, 1080
generating program code, 1094, 1100
integrate generated code, 1109
reference to generated classes, 1195
Java extension functions,
- constructors, 1567
datatype conversions, Java to Xpath/XQuery, 1570
datatype conversions, XPath/XQuery to Java, 1569
for XSLT and XQuery, 1561
instance methods, instance fields, 1568
overview, 1561
static methods, static fields, 1567
user-defined class files, 1563
user-defined JAR files, 1566
JavaScript,
- error handling, 1236
JDBC,
- as data connection interface, 353
connect to Teradata, 431
handling references in generated code, 1098
setting up a connection (Windows), 375
JScript,
- code-generation sample, 1250
K
Key,
- fields in text files, 635
Key,
sort key, 199

Key-value pairs,
using on the mapping, 229

L

last,
as MapForce function (in xpath2 | context functions), 925
last-items,
as MapForce function (in core | sequence functions), 844

Layout,
Browser, 572

leapyear,
as MapForce function (in lang | datetime functions), 881
left,
as MapForce function (in lang | string functions), 911

LEFT OUTER JOIN,
in Join components, 523
left-trim,
as MapForce function (in lang | string functions), 911

Legal information, 1581
less,
as MapForce function (in core | logical functions), 811

Libraries window,
finding functions in, 664
Library, 1226
add custom, 742
automatic loading of, 742
Library file,
mff, 742
License, 1583
information about, 1581
License metering,
in Altova products, 1582

Line comment, 570
Local relations,
and stored procedures, 598, 599, 603
Locale collation, 199
local-name-from-QName,
as MapForce function (in lang | QName functions), 825
log,
as MapForce function (in lang | math functions), 898
log10,
as MapForce function (in lang | math functions), 898
Logging,
database exceptions, 620, 624

logical-and,
as MapForce function (in core | logical functions), 811
logical-not,
as MapForce function (in core | logical functions), 812
logical-or,
as MapForce function (in core | logical functions), 812
logical-xor,
as MapForce function (in lang | logical functions), 892

Look-up tables,
using on the mapping, 229

lowercase,
as MapForce function (in lang | string functions), 912

M

main-mfd-filepath,
as MapForce function (in core | file path functions), 803
MapForce,
API, 1231
basic concepts, 34
integration, 1412
overview, 29

MapForce API, 1231
MapForce integration,
example of, 1431, 1432, 1433
MapForce plug-in for Eclipse,
about, 1033, 1038, 1045
accessing common menus and functions, 1041
configuring for automatic code generation, 1052
creating a MapForce/Eclipse project, 1045
creating new mappings, 1047
extending functionality, 1055
extension point, 1055
importing mappings into an Eclipse project, 1049
installing, 1034
switching to the MapForce perspective, 1038
working with mappings and projects, 1045

MapForce plug-in for Visual Studio,
about, 1027
accessing common menus and functions, 1031
enabling, 1028
working with mappings and projects, 1030

MapForce samples,
location on disk, 45

MapForce Server,
MapForce Server,
 automating mappings, 970
 compiling mappings for, 976
 Global Resources in, 997
 throwing exceptions from, 239
MapForceCommand,
 in MapForceControl, 1460
MapForceCommands,
 in MapForceControl, 1462
MapForceControl, 1463
 documentation of, 1412
 example of integration at application level, 1431, 1432, 1433
 examples of integration at document level, 1424
 integration using C#, 1424
 integration using HTML, 1433
 integration using Visual Basic, 1448
 object reference, 1460
MapForceControlDocument, 1471
MapForceControlPlaceHolder, 1477
Mapping,
 creating, 81
 debugging, 304
 definition of, 1590
 flat file format, 630
 source driven - mixed content, 144
 validating, 87
Mapping context, 286
Mapping documentation,
 generating, 275
Mapping input,
 supplying custom file name as, 168
 Supplying multiple files as, 164, 166, 168
Mapping methods,
 standard, 144
 standard / mixed / copy all, 144
 target-driven, 144
Mapping output,
 Generating multiple files as, 164, 168
Mappings,
 automated processing, 970
MariaDB,
 connect through ODBC, 401
Marked items,
 missing items, 124
match-pattern,
 as MapForce function (in lang | string functions), 912
max,
 as MapForce function (in core | aggregate functions), 783
 as MapForce function (in lang | math functions), 898
maxLength,
 using in node functions, 684
max-string,
 as MapForce function (in core | aggregate functions), 783
Memory requirements, 1579
MERGE,
 as statement in MapForce-generated SQL, 483
 in MapForce-generated SQL, 490
Merging,
 XML files, 346
Messages,
 icons in Database Query, 577
 window - Database Query, 577
Method names in generating code,
 reserving, 1210
mfd,
 as file extension, 1590
mfd-filepath,
 as MapForce function (in core | file path functions), 804
mff,
 as file extension, 1590
 library file, 742
 mff.xsd file, 742
mff file,
 configuring, 742
mfp,
 as file extension, 1590
mft,
 as file extension, 1590
Microsoft Access,
 connecting through ADO, 360, 403
Microsoft SharePoint Server,
 adding files as components from, 82
Microsoft SQL Server,
 connecting through ADO, 406
 connecting through ODBC, 409
millisecond-from-datetime,
 as MapForce function (in lang | datetime functions), 882
millisecond-from-duration,
 as MapForce function (in lang | datetime functions), 882
min,
 as MapForce function (in core | aggregate functions), 784
 as MapForce function (in lang | math functions), 899
minLength,
 using in node functions, 684
min-string,
 as MapForce function (in core | aggregate functions), 785
minute-from-datetime, as MapForce function (in lang | datetime functions), 883
minute-from-duration, as MapForce function (in lang | datetime functions), 883
Missing items, 124
Mixed, 144
content mapping, 144
content mapping example, 150
content mapping method, 144
source-driven mapping, 144
Mixed content, Mapping, 151
modulus, as MapForce function (in core | math functions), 816
month-from-datetime, as MapForce function (in lang | datetime functions), 884
month-from-duration, as MapForce function (in lang | datetime functions), 884
MSXML, generating code for, 1211
supported versions, 1081
msxsl:script, 1576
Multiple source, to single target, 346
multiply, as MapForce function (in core | math functions), 817
MySQL, connecting through ODBC, 415

N

Namespace URI, DTD, 333
Namespace URIs, and QNames, 336
Namespaces, and wildcards (xs:any), 342
declaring custom, 348
namespace-uri-form-QName, as MapForce function (in lang | QName functions), 826
Navigate, bookmarks, 570
negative, as MapForce function (in lang | logical functions), 893
nullable, as attribute in XML schema, 336

Node functions, creating, 667
deleting, 671
editing, 671
Node names, mapping data from/to, 251
node-name, as MapForce function (in core | node functions), 822
as MapForce function (in xpath2 | accessors library), 919
node-name function, alternatives to using, 251
normalize-space, as MapForce function (in core | string functions), 857
not-equal, as MapForce function (in core | logical functions), 813
not-exists, as MapForce function (in core | sequence functions), 845
now, as MapForce function (in lang | datetime functions), 885
NULL, handling in database mappings, 512
NULL values, replace in multiple occurrences, 667
Nulls, handling in database components, 466
number, as MapForce function (in core | conversion functions), 796
numeric, as MapForce function (in lang | logical functions), 893

O

Object model, overview, 1235
ODBC, as data connection interface, 353
connect to MariaDB, 401
connect to Teradata, 433
setting up a connection, 372
ODBC Drivers, checking availability of, 372
OLE DB, as data connection interface, 353
OpenJDK, as Java Virtual Machine, 375
Options,
Options,
 Result view - Database Query, 582
text fonts - Database Query, 582
Oracle,
 reading from XML type fields, 554
 writing to XML type fields, 554
Oracle database,
 connecting through JDBC, 417
 connecting through ODBC, 419
Oracle package,
 stored procedures and functions, 586
ORDER BY,
 SQL where component, 539
Ordering data,
 sort component, 199
OS,
 for Altova products, 1579
Out of memory errors,
 troubleshooting, 85
Out of memory exceptions,
 resolving, 1210
Output,
 as application menu, 1068
 previewing, 90
 saving, 90
 validating, 88
Output component,
 definition of, 1591
Output parameters,
 in user-defined functions, 696
 in user-defined functoins, 699

P

pad-string-left,
 as MapForce function (in lang | string functions), 913
pad-string-right,
 as MapForce function (in lang | string functions), 914
Parameters,
 in user-defined functions, 699
 supplying to the mapping, 174, 178
Parent context,
 example, 291
parent-context,
 definition of, 1592
parse-date,
 as MapForce function (in core | conversion functions), 797
parse-dateTime,
 as MapForce function (in core | conversion functions), 798
parse-number,
 as MapForce function (in core | conversion functions), 800
Parser,
 built into Altova products, 1579
parse-time,
 as MapForce function (in core | conversion functions), 801
Paths in generated code,
 making absolute, 102
PDF,
 generate mapping documentation, 275
 preview mapping output as, 271
pi,
 as MapForce function (in lang | math functions), 900
Platforms,
 for Altova products, 1579
position,
 as MapForce function (in core | sequence functions), 846
positive,
 as MapForce function (in lang | logical functions), 894
PostgreSQL,
 connecting natively, 380
 connecting through ODBC, 423
pow,
 as MapForce function (in lang | math functions), 900
Precision,
 using in node functions, 684
Primary Key,
 generating during database insert action, 472
 generating for a database component, 467
 in database mappings, 446, 456
Priority context, 295
 example, 297
Processing,
 automating mappings, 970
Processing Instructions,
 Adding to target files, 339
Processing Instructions and Comments,
 mapping, 145
Progress OpenEdge database,
 connecting through JDBC, 425
 connecting through ODBC, 427
Project,
 as application menu, 1063
Projects,
 closing, 130
Projects,
creating, 130
opening, 130
searching, 130

Q

QName,
 as MapForce function (in lang | QName functions), 825
QName support, 336
QName-as-string,
 as MapForce function (in lang | QName functions), 903
Question mark,
 missing items, 124
Quote character,
 in CSV files, 638

R

radians,
 as MapForce function (in lang | math functions), 900
random,
 as MapForce function (in lang | math functions), 901
RaptorXML Server,
 executing a transformation, 969
read-binary-file,
 as MapForce function (in lang | file functions), 890
Reference, 1056
Regions,
 collapsing, 571
 creating, 571
 expanding, 571
 inserting, 571
 removing, 571
Regular expressions,
 in node functions, 679
 using in mappings, 762
Remove,
 block comment, 570
 bookmarks, 570
 comments, 570
 line comment, 570
 regions, 571
 remove-fileext,
 as MapForce function (in core | file path functions), 804
remove-folder,
 as MapForce function (in core | file path functions), 805
remove-timezone,
 as MapForce function (in lang | datetime functions), 885
repeat-string,
 as MapForce function (in lang | string functions), 914
replace,
 as MapForce function (in lang | string functions), 915
replace-fileext,
 as MapForce function (in core | file path functions), 805
replicate-item,
 as MapForce function (in core | sequence functions), 848
replicate-sequence,
 as MapForce function (in core | sequence functions), 850
resolve-filepath,
 as MapForce function (in core | file path functions), 806
resolve-uri,
 as MapForce function (in xpath2 | anyURI functions), 920
Results,
 icons in Database Query, 577
 window - Database Query, 577
reversefind-substring,
 as MapForce function (in lang | string functions), 915
right,
 as MapForce function (in lang | string functions), 916
right-trim,
 as MapForce function (in lang | string functions), 917
round,
 as MapForce function (in core | math functions), 817
round-half-to-even,
 as MapForce function (in xpath2 | numeric functions), 948
round-precision,
 as MapForce function (in core | math functions), 818
Rows,
 mapping from - text files, 635
 preview mapping output as, 271

S

Scale,
 using in node functions, 684
Schema,
 and XML mapping, 328
Schema,
 changing the path reference to, 137
 code generator, 1080
 generating for an XML file, 328
schemanativetype, 1214
Scripts in XSLT/XQuery,
 see under Extension functions, 1561
Search,
 files in the Projects window, 130
 functions in the Libraries window, 664
 items within mapping components, 106
second-from-datetime,
 as MapForce function (in lang | datetime functions), 886
second-from-duration,
 as MapForce function (in lang | datetime functions), 886
Section,
 CDATA, 340
Select,
 table data - Database Query, 577
Sequence, 285
set-empty,
 as MapForce function (in core | sequence functions), 851
set-null,
 as MapForce function (in db functions), 869
Settings,
 Result view - Database Query, 582
 text fonts - Database Query, 582
set-xsi-nil,
 as MapForce function (in core | node functions), 823
Simple type,
 sorting, 199
sin,
 as MapForce function (in lang | math functions), 901
Single target,
 multiple sources, 346
skip-first-items,
 as MapForce function (in core | sequence functions), 852
Software product license, 1583
Sort,
 column icon in Results window, 577
 data in result window, 577
 sort component, 199
 tables Database Query, 572
Sort key,
 sort component, 199
Sort order,
 changing, 199
Sorting,
 in databases, 542
Source component,
 definition of, 1593
Source-driven,
 - mixed content mapping, 144
Source-driven connections,
 as opposed to standard (target-driven) connections, 151
SPL, 1213
 code blocks, 1213
 conditions, 1221
 foreach, 1222
 global objects, 1217
 subroutines, 1223
 using files, 1218
 variables, 1216
SQL, 568
 executing statements, 567, 569
 exporting statements as SQL scripts, 569
 generating statements, 567, 568
 importing SQL scripts, 569
 joining data, 523
 load from scripts, 567
 writing statements, 568
SQL Editor,
 bookmark margin, 570
 commenting out text, 570
 creating regions, 571
 inserting bookmarks, 570
 inserting comments, 570
 inserting regions, 571
 removing bookmarks, 570
 removing comments, 570
 removing regions, 571
 settings - general, 580
 using bookmarks, 570
 using regions, 571
SQL Server,
 connecting through ADO, 360
 connecting through ADO.NET, 365
 connecting via JDBC, 375
 reading from XML type fields, 554, 555
 writing to XML type fields, 554, 555
SQL WHERE,
 component - insert, 539
 ORDER BY, 539
SQL WHERE/ORDER,
 as MapForce component, 542
SQLite,
SQLite,
 changing database path to absolute in generated code, 142
 mapping data to, 245, 518
 using an absolute or relative path, 139
 writing XML files to, 558
sqrt,
 as MapForce function (in lang | math functions), 902
Standard,
 mapping method, 144
starts-with,
 as MapForce function (in core | string functions), 857
static-node-annotation,
 as MapForce function (in core | node functions), 823
static-node-name,
 as MapForce function (in core | node functions), 824
Stored procedures,
 adding to a mapping, 586
 calling from a mapping, 583, 588, 591, 595, 599, 603
 support notes, 583
string,
 as MapForce function (in core | conversion functions), 802
 as MapForce function (in xpath2 | accessors library), 920
 parsing data from, 243
 serializing data to, 243, 245
string-as-QName,
 as MapForce function (in lang | QName functions), 904
string-compare,
 as MapForce function (in lang | string functions), 917
string-compare-ignore-case,
 as MapForce function (in lang | string functions), 918
string-join,
 as MapForce function (in core | aggregate functions), 785
string-length,
 as MapForce function (in core | string functions), 858
Strip schema names from table names,
 as code generation option, 444
Stylevision,
 creating stylesheets with, 281
 generating mapping documentation with, 277
substitute-missing,
 as MapForce function (in core | sequence functions), 853
substitute-missing-with-xsi-nil,
 as MapForce function (in core | node functions), 824
substitute-null,
 as MapForce function (in db functions), 870
substring,
 as MapForce function (in core | string functions), 858
substring-after,
 as MapForce function (in core | string functions), 859
substring-before,
 as MapForce function (in core | string functions), 859
subtract,
 as MapForce function (in core | math functions), 818
sum,
 as MapForce function (in core | aggregate functions), 786
Sybase,
 connecting through JDBC, 429
System DSN,
 setting up, 372
system-property,
 as MapForce function (in xslt | xslt functions library), 966

Table data,
 sorting, 199
tan,
 as MapForce function (in lang | math functions), 902
Target component,
 changing the processing order of, 300
 definition of, 1594
Target-driven connections,
 as opposed to source-driven connections, 151
Target-driven mapping, 144
Technical Information, 1579
Teradata,
 connect through JDBC, 431
 connect through ODBC, 433
Text,
 files - defining key fields, 635
 mapping text files, 630
Text files,
 adding or removing fields in, 649
 as source component, 649
 as target component, 649
 mapping data from, 642
 previewing data from, 649
 setting the encoding of, 649
 setting the fill character, 642
 setting the fixed field size, 642
time-from-datetime,
 as MapForce function (in lang | datetime functions), 887
timezone,
 as MapForce function (in lang | datetime functions), 887
tokenize,
 as MapForce function (in core | string functions), 860

tokenize-by-length,
 as MapForce function (in core | string functions), 862
tokenize-regexp,
 as MapForce function (in core | string functions), 865

Tools,
 as application menu, 1073

Transformation language,
 selecting, 86

Transformations,
 RaptorXML Server, 969

translate (in core | string functions),
 as MapForce function, 867

t,
 as MapForce function (in xpath2 | boolean functions), 922

Types,
 built in, 1226
 derived types - xsi:type, 334

UDFs,
 and mapping context, 289

unary-minus,
 as MapForce function (in lang | math functions), 902

Unicode,
 code point collation, 199
 replacing special characters, 465

Unicode support,
 in Altova products, 1580

unparsed-entity-uri,
 as MapForce function (in xslt | xslt functions library), 967

uppercase,
 as MapForce function (in lang | string functions), 918

URI,
 in DTDS, 333

URIs,
 and QNames, 336

URL,
 adding files as components from, 82

Use object names relative to default schema,
 as option, 444

User DSN,
 setting up, 372

User-defined functions,
 adding parameters, 699
 calling, 708
 calling recursively, 715
 copying and pasting, 710
 creating, 696
 deleting, 707
 editing, 707
 examples, 694, 711, 715
 importing into a mapping, 708
 inline versus regular, 704
 navigating, 706
 overview, 694

Validate,
 mapping design, 87
 mapping output, 88

Validator,
 in Altova products, 1579

Value-Map,
 as mapping component, 229
 examples, 233, 235

Values window,
 about, 310, 315
 Context tab, 315
 History tab, 315
 Related tab, 315

Variables,
 adding to the mapping, 189
 changing the scope of, 192
 examples of use, 194, 195, 196
 in SPL, 1216
 introduction to, 187

View,
 as application menu, 1071

Visual Basic,
 error handling, 1236
 integration of MapForce, 1448

Visual Studio,
 adding the MapForce ActiveX Controls to the toolbox, 1415
 generating code for, 1211
 generating mapping code for, 1085, 1090
 supported versions in code generator, 1081

Visual Studio plug-in,
Visual Studio plug-in,
running MapForce as, 1027

WebDAV Server,
adding files as components from, 82

weekday,
as MapForce function (in lang | datetime functions), 888

weeknumber,
as MapForce function (in lang | datetime functions), 888

WHERE,
SQL WHERE component, 539

Wildcards,
xs:any - xs:anyAttribute, 342

Windows,
support for Altova products, 1579

Word,
generate mapping documentation, 275

Word 2007+,
preview mapping output as, 271

Wrapper classes,
in generated code, 1211

write-binary-file,
as MapForce function (in lang | file functions), 891

generate from database records, 171
generate from single XML source, 170

XML output,
changing encoding settings, 329
changing instance file name, 329
changing schema, 329
creating digital signature, 329

XML Parser,
about, 1579

XML to XML, 328

XQuery,
adding custom functions, 728, 729
Extension functions, 1561
importing modules, 729
previewing generated code, 100

xs: any (xs:anyAttribute), 342

xs: nil,
as attribute in XML instance, 336

xs: type,
mapping to derived types, 334

XSLT,
adding custom functions, 721
Extension functions, 1561
previewing the generated code, 99
removing custom functions, 721
template namespace, 721

template namespace, 721

year-from-datetime,
as MapForce function (in lang | datetime functions), 889

year-from-duration,
as MapForce function (in lang | datetime functions), 889

Z

Z to A,
sort component, 199

zip64mode,
 enabling in the build.xml file, 1210