
User and Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2018

© 2018 Altova GmbH

Altova MapForce 2018 Professional Edition
User & Reference Manual

1Altova MapForce 2018 Professional Edition

Table of Contents

1 Altova MapForce 2018 Professional Edition 3

... 41.1 What's new...

2 Introduction 12

... 132.1 Support Notes

... 142.2 What Is MapForce?

... 202.3 Basic Concepts

... 222.4 User Interface Overview

... 302.5 Conventions

3 Tutorials 32

... 333.1 Convert XML to New Schema

... 433.2 Map Multiple Sources to One Target

... 493.3 Work with Multiple Target Schemas

... 583.4 Process and Generate Files Dynamically

4 Common Tasks 68

... 694.1 Working with Mappings

... 694.1.1 Adding Components to the Mapping

... 704.1.2 Adding Components from a URL

... 734.1.3 About Data Streaming

... 744.1.4 Selecting a Transformation Language

... 754.1.5 Validating Mappings

... 774.1.6 Validating the Mapping Output

... 784.1.7 Previewing the Output

... 794.1.8 Text View Features

... 844.1.9 Searching in Text View

... 884.1.10 Previewing the XSLT Code

... 884.1.11 Generating XSLT Code

... 894.1.12 Previewing the XQuery Code

Altova MapForce 2018 Professional Edition2

... 894.1.13 Working with Multiple Mapping Windows

... 914.1.14 Changing the Mapping Settings

... 934.2 Working with Components

... 944.2.1 Searching within Components

... 954.2.2 Aligning Components

... 964.2.3 Changing the Component Settings

... 964.2.4 Duplicating Input

... 984.3 Working with Connections

... 994.3.1 About Mandatory Inputs

... 1004.3.2 Changing the Connection Display Preferences

... 1014.3.3 Annotating Connections

... 1014.3.4 Connection Settings

... 1034.3.5 Connection Context Menu

... 1044.3.6 Connecting Matching Children

... 1064.3.7 Notifications on Missing Parent Connections

... 1074.3.8 Moving Connections and Child Connections

... 1104.3.9 Keeping Connections After Deleting Components

... 1124.3.10 Dealing with Missing Items

... 1174.4 Working with Mapping Projects

... 1184.4.1 Opening, Searching, and Closing Projects

... 1184.4.2 Creating a New Project

... 1204.4.3 Setting the Code Generation Settings

... 1214.4.4 Managing Project Folders

5 Designing Mappings 124

... 1265.1 Using Relative and Absolute Paths

... 1265.1.1 Using Relative Paths on a Component

... 1285.1.2 Setting the Path to File-Based Databases

... 1305.1.3 Fixing Broken Path References

... 1315.1.4 Paths in Various Execution Environments

... 1325.1.5 Copy-Paste and Relative Paths

... 1335.2 Connection Types

... 1335.2.1 Target-driven connections

... 1335.2.2 Source-driven connections

... 1415.2.3 Copy-All Connections

... 1455.3 Chained Mappings

... 1475.3.1 Example: Pass-Through Active

3Altova MapForce 2018 Professional Edition

... 1515.3.2 Example: Pass-Through Inactive

... 1555.4 Processing Multiple Input or Output Files Dynamically

... 1575.4.1 Mapping Multiple Input Files to a Single Output File

... 1595.4.2 Mapping Multiple Input Files to Multiple Output Files

... 1605.4.3 Supplying File Names as Mapping Parameters

... 1605.4.4 Previewing Multiple Output Files

... 1615.4.5 Example: Split One XML File into Many

... 1635.4.6 Example: Split Database Table into Many XML Files

... 1665.5 Supplying Parameters to the Mapping

... 1675.5.1 Adding Simple Input Components

... 1675.5.2 Simple Input Component Settings

... 1695.5.3 Creating a Default Input Value

... 1705.5.4 Example: Using File Names as Mapping Parameters

... 1735.6 Returning String Values from a Mapping

... 1745.6.1 Adding Simple Output Components

... 1755.6.2 Example: Previewing Function Output

... 1775.7 Using Variables

... 1795.7.1 Adding Variables

... 1825.7.2 Changing the Context and Scope of Variables

... 1845.7.3 Example: Counting Database Table Rows

... 1855.7.4 Example: Filtering and Numbering Nodes

... 1875.7.5 Example: Grouping and Subgrouping Records

... 1895.8 Sorting Data

... 1915.8.1 Sorting by Multiple Keys

... 1925.8.2 Sorting with Variables

... 1955.9 Filters and Conditions

... 1975.9.1 Example: Filtering Nodes

... 1995.9.2 Example: Returning a Value Conditionally

... 2015.10 Joining Data

... 2035.10.1 Adding Join Conditions

... 2065.10.2 Joining Three or More Structures

... 2075.10.3 Example: Join XML Structures

... 2135.11 Using Value-Maps

... 2165.11.1 Passing data through a Value-Map unchanged

... 2185.11.2 Value-Map component properties

... 2215.12 Adding Exceptions

... 2225.12.1 Example: Exception on "Greater Than" Condition

Altova MapForce 2018 Professional Edition4

... 2225.12.2 Example: Exception When Node Does Not Exist

... 2255.13 Parsing and Serializing Strings

... 2255.13.1 About the Parse/Serialize Component

... 2275.13.2 Example: Serialize to String (XML to Database)

... 2335.14 Mapping Node Names

... 2345.14.1 Getting Access to Node Names

... 2415.14.2 Accessing Nodes of Specific Type

... 2465.14.3 Example: Map Element Names to Attribute Values

... 2495.14.4 Example: Group and Filter Nodes by Name

... 2545.15 Mapping Rules and Strategies

... 2585.15.1 Changing the Processing Order of Mapping Components

... 2615.15.2 Priority Context node/item

... 2635.15.3 Overriding the Mapping Context

6 Debugging Mappings 270

... 2736.1 Debugger Preparation

... 2746.2 Debugger Commands

... 2766.3 About the Debug Mode

... 2796.4 Adding and Removing Breakpoints

... 2826.5 Using the Values Window

... 2846.6 Using the Context Window

... 2866.7 Using the Breakpoints Window

... 2886.8 Previewing Partially Generated Output

... 2896.9 Viewing the Current Value of a Connector

... 2906.10 Stepping back into Recent Past

... 2916.11 Viewing the History of Values Processed by a Connector

... 2926.12 Setting the Context to a Value

... 2936.13 Debugger Settings

7 Data Sources and Targets 296

... 2977.1 XML and XML schema

... 2977.1.1 Generating an XML Schema

... 2987.1.2 XML Component Settings

... 3027.1.3 Using DTDs as "Schema" Components

... 3037.1.4 Derived XML Schema Types

... 3057.1.5 QNames

5Altova MapForce 2018 Professional Edition

... 3057.1.6 Nil Values / Nillable

... 3097.1.7 Comments and Processing Instructions

... 3107.1.8 CDATA Sections

... 3117.1.9 Wildcards - xs:any / xs:anyAttribute

... 3157.1.10 Merging Data from Multiple Schemas

... 3177.1.11 Declaring Custom Namespaces

... 3207.2 Databases and MapForce

... 3227.2.1 Connecting to a Database

... 3977.2.2 Introduction to Database Mappings

... 4287.2.3 Mapping Data to Databases

... 4807.2.4 Joining Database Data

... 4967.2.5 Filtering and Sorting Database Data (SQL WHERE/ORDER)

... 5027.2.6 SQL SELECT Statements as Virtual Tables

... 5127.2.7 Mapping XML Data to / from Database Fields

... 5227.2.8 Browsing and Querying Databases

... 5407.2.9 Stored Procedures

... 5637.3 CSV and Text Files

... 5637.3.1 Example: Mapping CSV Files to XML

... 5657.3.2 Example: Iterating Through Items

... 5687.3.3 Example: Creating Hierarchies from CSV and Fixed-Length Text Files

... 5717.3.4 Setting the CSV Options

... 5757.3.5 Example: Mapping Fixed-Length Text Files to Databases

... 5827.3.6 Setting the FLF Options

... 5897.4 HL7 Version 3

8 Functions 592

... 5938.1 How To...

... 5938.1.1 Add a Built-in Function to the Mapping

... 5948.1.2 Add a Constant to the Mapping

... 5958.1.3 Search for a Function

... 5968.1.4 View a Function's Type and Description

... 5978.1.5 Add or Delete Function Arguments

... 5988.2 Defaults and Node Functions

... 5988.2.1 How to Create Defaults and Node Functions

... 6018.2.2 Choosing the Input or Output Side

... 6028.2.3 How Defaults and Node Functions Work

... 6098.2.4 Example: Replace Empty CSV Fields

Altova MapForce 2018 Professional Edition6

... 6158.3 User-Defined Functions

... 6208.3.1 Function parameters

... 6238.3.2 Inline and regular user-defined functions

... 6248.3.3 Creating a simple look-up function

... 6288.3.4 User-defined function - example

... 6338.3.5 Complex user-defined function - XML node as input

... 6398.3.6 Complex user-defined function - XML node as output

... 6438.3.7 Recursive user-defined mapping

... 6538.4 Importing Custom XSLT 1.0 or 2.0 Functions

... 6548.4.1 Example: Adding Custom XSLT Functions

... 6578.4.2 Example: Summing Node Values

... 6608.5 Importing Custom XQuery 1.0 Functions

... 6618.6 Importing Custom Java and .NET Libraries

... 6638.6.1 Example: Import Custom Java Class

... 6648.6.2 Example: Import Custom .NET DLL Assembly

... 6668.7 Referencing Java, C# and C++ Libraries Manually

... 6668.7.1 Configuring the .mff File

... 6728.7.2 Importing the .mff File Into MapForce

... 6728.7.3 Data Type Mapping

... 6758.7.4 Example: Create a Custom C# Library

... 6768.7.5 Example: Create a Custom C++ Library

... 6798.7.6 Example: Create a Custom Java Library

... 6818.8 Regular Expressions

... 6848.9 Function Library Reference

... 6848.9.1 core | aggregate functions

... 6898.9.2 core | conversion functions

... 7008.9.3 core | file path functions

... 7028.9.4 core | generator functions

... 7058.9.5 core | logical functions

... 7088.9.6 core | math functions

... 7118.9.7 core | node functions

... 7138.9.8 core | QName functions

... 7148.9.9 core | sequence functions

... 7298.9.10 core | string functions

... 7378.9.11 db

... 7398.9.12 lang | QName functions

... 7398.9.13 lang | datetime functions

7Altova MapForce 2018 Professional Edition

... 7528.9.14 lang | generator functions

... 7528.9.15 lang | logical functions

... 7538.9.16 lang | math functions

... 7578.9.17 lang | string functions

... 7628.9.18 xpath2 | accessors

... 7628.9.19 xpath2 | anyURI functions

... 7638.9.20 xpath2 | boolean functions

... 7638.9.21 xpath2 | constructors

... 7648.9.22 xpath2 | context functions

... 7668.9.23 xpath2 | durations, date and time functions

... 7688.9.24 xpath2 | node functions

... 7698.9.25 xpath2 | numeric functions

... 7698.9.26 xpath2 | string functions

... 7718.9.27 xslt | xpath functions

... 7748.9.28 xslt | xslt functions

9 Automating Mappings and MapForce 778

... 7799.1 Automation with RaptorXML Server

... 7809.2 Automation with MapForce Server

... 7819.3 Preparing Mappings for Server Execution

... 7859.4 Compiling Mappings to MapForce Server Execution Files

... 7889.5 Deploying Mappings to FlowForce Server

... 7929.6 MapForce Command Line Interface

10 Customizing MapForce 800

... 80110.1 Changing the MapForce Options

... 80310.2 Altova Global Resources

... 80310.2.1 Creating Global Resources

... 80510.2.2 Databases as Global Resources

... 80810.2.3 MapForce and StyleVision Transformation Result as Global Resource

... 80810.2.4 The Global Resources XML File

... 80810.2.5 Global Resources in Various Execution Environments

... 81010.2.6 Example: Run Mapping with Variable Input Files

... 81210.2.7 Example: Generate Output to Variable Folders

... 81310.2.8 Example: Switch Databases

... 81710.2.9 Example: Create an Application Workflow

Altova MapForce 2018 Professional Edition8

... 82210.3 Styling Mapping Output with StyleVision

... 82310.3.1 Examples of Mappings with StyleVision Stylesheets

... 82610.4 Generating and Customizing Mapping Documentation

... 83110.4.1 Predefined StyleVision Power Stylesheets

... 83410.4.2 Custom Design

... 83610.5 Customizing Keyboard Shortcuts

... 83810.6 Catalog Files

... 84310.7 Network Proxy Settings

11 MapForce Plug-in for Visual Studio 846

... 84711.1 Enabling the Plug-in

... 84911.2 Working with Mappings and Projects

... 85111.3 Accessing Common Menus and Functions

12 MapForce Plug-in for Eclipse 854

... 85512.1 Installing the MapForce Plug-in for Eclipse

... 86012.2 The MapForce Perspective

... 86312.3 Accessing Common Menus and Functions

... 86612.4 Working with Mappings and Projects

... 86612.4.1 Creating a MapForce/Eclipse Project

... 86812.4.2 Creating New Mappings

... 87012.4.3 Importing Existing Mappings into an Eclipse Project

... 87312.4.4 Configuring Automatic Build and Generation of MapForce Code

... 87612.5 Extending MapForce Plug-in for Eclipse

13 Menu Reference 882

... 88313.1 File

... 88613.2 Edit

... 88713.3 Insert

... 88913.4 Project

... 89013.5 Component

... 89113.6 Connection

... 89213.7 Function

... 89313.8 Output

... 89413.9 Debug

9Altova MapForce 2018 Professional Edition

... 89513.10 View

... 89713.11 Tools

... 89813.12 Window

... 89913.13 Help Menu

14 Code Generator 906

... 90714.1 Introduction to code generator

... 90914.2 What's new ...

... 91114.3 Generating C++ code

... 91214.3.1 Generating code from a mapping

... 91214.3.2 Generating code from a mapping project

... 91314.3.3 Building the project

... 91414.3.4 Running the application

... 91514.4 Generating C# code

... 91614.4.1 Generating code from a mapping

... 91614.4.2 Generating code from a mapping project

... 91714.4.3 Building the project

... 91714.4.4 Running the application

... 91814.5 Generating Java code

... 91914.5.1 Generating code from a mapping

... 92014.5.2 Generating code from a mapping project

... 92014.5.3 Handling JDBC references

... 92114.5.4 Building the project with Ant

... 92214.5.5 Example: Build a Java application with Eclipse and Ant

... 93214.6 Integrating MapForce-Generated Code

... 93314.6.1 Java example

... 93514.6.2 C# example

... 93714.6.3 C++ example

... 93814.6.4 Changing the data type of the mapping input/output (C#, Java)

... 94314.7 Generating Code from XML Schemas or DTDs

... 94514.7.1 About Schema Wrapper Libraries (C++)

... 94814.7.2 About Schema Wrapper Libraries (C#)

... 95014.7.3 About Schema Wrapper Libraries (Java)

... 95314.7.4 Integrating Schema Wrapper Libraries

... 95614.7.5 Example: Using the Schema Wrapper Libraries

... 98014.8 Reference to Generated Classes (C++)

... 98014.8.1 altova::DateTime

Altova MapForce 2018 Professional Edition10

... 98314.8.2 altova::Duration

... 98514.8.3 altova::DayTimeDuration

... 98614.8.4 altova::YearMonthDuration

... 98714.8.5 altova::meta::Attribute

... 98814.8.6 altova::meta::ComplexType

... 98914.8.7 altova::meta::Element

... 98914.8.8 altova::meta::SimpleType

... 99114.8.9 [YourSchema]::[CDoc]

... 99314.8.10[YourSchema]::MemberAttribute

... 99414.8.11[YourSchema]::MemberElement

... 99614.9 Reference to Generated Classes (C#)

... 99614.9.1 Altova.Types.DateTime

... 100014.9.2 Altova.Types.DateTimeFormat

... 100114.9.3 Altova.Types.Duration

... 100414.9.4 Altova.Xml.Meta.Attribute

... 100414.9.5 Altova.Xml.Meta.ComplexType

... 100514.9.6 Altova.Xml.Meta.Element

... 100614.9.7 Altova.Xml.Meta.SimpleType

... 100614.9.8 [YourSchema].[Doc]

... 100814.9.9 [YourSchemaType].MemberAttribute

... 100914.9.10[YourSchemaType].MemberElement

... 101114.10 Reference to Generated Classes (Java)

... 101114.10.1com.altova.types.DateTime

... 101614.10.2com.altova.types.Duration

... 101914.10.3com.altova.xml.meta.Attribute

... 102014.10.4com.altova.xml.meta.ComplexType

... 102114.10.5com.altova.xml.meta.Element

... 102114.10.6com.altova.xml.meta.SimpleType

... 102214.10.7com.[YourSchema].[Doc]

... 102414.10.8com.[YourSchema].[YourSchemaType].MemberAttribute

... 102514.10.9com.[YourSchema].[YourSchemaType].MemberElement

... 102714.11 Code Generation Tips

... 102814.12 Code Generator Options

... 103014.13 SPL (Spy Programming Language)

... 103014.13.1Basic SPL structure

... 103114.13.2Declarations

... 103214.13.3Variables

11Altova MapForce 2018 Professional Edition

... 103314.13.4Predefined variables

... 103414.13.5Creating output files

... 103514.13.6Operators

... 103614.13.7Conditions

... 103714.13.8Collections and foreach

... 103814.13.9Subroutines

... 104014.13.10Built in Types

15 The MapForce API 1048

... 104915.1 Overview

... 104915.1.1 Accessing the API

... 105115.1.2 The Object Model

... 105215.1.3 Error Handling

... 105315.1.4 Examples

... 107615.2 Object Reference

... 107615.2.1 Application

... 108515.2.2 AppOutputLine

... 109015.2.3 AppOutputLines

... 109115.2.4 AppOutputLineSymbol

... 109215.2.5 Component

... 110015.2.6 Components

... 110115.2.7 Connection

... 110215.2.8 Datapoint

... 110315.2.9 Document

... 111315.2.10Documents

... 111515.2.11ErrorMarker

... 111715.2.12ErrorMarkers

... 111815.2.13MapForceView

... 112315.2.14Mapping

... 112815.2.15Mappings

... 112915.2.16Options

... 113415.2.17Project

... 114315.2.18ProjectItem

... 115215.3 Enumerations

... 115215.3.1 ENUMApacheAxisVersion (obsolete)

... 115215.3.2 ENUMApplicationStatus

... 115215.3.3 ENUMAppOutputLine_Severity

Altova MapForce 2018 Professional Edition12

... 115315.3.4 ENUMAppOutputLine_TextDecoration

... 115315.3.5 ENUMCodeGenErrorLevel

... 115315.3.6 ENUMComponentDatapointSide

... 115415.3.7 ENUMComponentSubType

... 115415.3.8 ENUMComponentType

... 115415.3.9 ENUMComponentUsageKind

... 115415.3.10ENUMConnectionType

... 115515.3.11ENUMDOMType

... 115515.3.12ENUMLibType

... 115515.3.13ENUMProgrammingLanguage

... 115615.3.14ENUMProjectItemType

... 115615.3.15ENUMProjectType

... 115615.3.16ENUMSearchDatapointFlags

... 115715.3.17ENUMViewMode

16 ActiveX Integration 1160

... 116116.1 Prerequisites

... 116316.2 Adding the ActiveX Controls to the Toolbox

... 116516.3 Integration at Application Level

... 116816.4 Integration at Document Level

... 117216.5 ActiveX Integration Examples

... 117216.5.1 C#

... 117916.5.2 HTML

... 118616.5.3 Java

... 119616.5.4 VB.NET

... 119916.6 Command Reference

... 119916.6.1 "File" Menu

... 120016.6.2 "Edit" Menu

... 120116.6.3 "Insert" Menu

... 120116.6.4 "Project" Menu

... 120216.6.5 "Component" Menu

... 120416.6.6 "Connection" Menu

... 120416.6.7 "Function" Menu

... 120416.6.8 "Output" Menu

... 120516.6.9 "Debug" Menu

... 120616.6.10"View" Menu

... 120616.6.11"Tools" Menu

13Altova MapForce 2018 Professional Edition

... 120716.6.12"Window" Menu

... 120716.6.13"Help" Menu

... 120916.7 Object Reference

... 120916.7.1 MapForceCommand

... 121116.7.2 MapForceCommands

... 121216.7.3 MapForceControl

... 122016.7.4 MapForceControlDocument

... 122616.7.5 MapForceControlPlaceHolder

... 122916.7.6 Enumerations

17 Appendices 1232

... 123317.1 Engine information

... 123317.1.1 XSLT and XQuery Engine Information

... 123817.1.2 XSLT and XPath/XQuery Functions

... 130617.2 Technical Data

... 130617.2.1 OS and Memory Requirements

... 130617.2.2 Altova XML Validator

... 130617.2.3 Altova XSLT and XQuery Engines

... 130717.2.4 Unicode Support

... 130717.2.5 Internet Usage

... 130817.3 License Information

... 130817.3.1 Electronic Software Distribution

... 130917.3.2 Software Activation and License Metering

... 131017.3.3 Intellectual Property Rights

... 131017.3.4 Altova End User License Agreement

18 Glossary 1312

... 131318.1 C

... 131418.2 F

... 131518.3 G

... 131618.4 I

... 131718.5 J

... 131818.6 M

... 131918.7 O

... 132018.8 P

... 132118.9 S

Altova MapForce 2018 Professional Edition14

... 132218.10 T

Index

Chapter 1

Altova MapForce 2018 Professional Edition

© 2018 Altova GmbH

 3Altova MapForce 2018 Professional Edition

Altova MapForce 2018 Professional Edition

1 Altova MapForce 2018 Professional Edition

MapForce® 2018 Professional Edition is a visual data mapping tool for advanced data
integration projects. MapForce® is a 32/64-bit Windows application that runs on Windows 7 SP1
with Platform Update, Windows 8, Windows 10, and Windows Server 2008 R2 SP1 with Platform
Update or newer. 64-bit support is available for the Enterprise and Professional editions.
MapForce also integrates with Visual Studio and Eclipse, as well as Microsoft Office products,
see Support Notes.

Last updated: 21 June 2018

4 Altova MapForce 2018 Professional Edition What's new...

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1.1 What's new...

New in MapForce 2018 Release 2:

Support for the following databases: MariaDB 10, Teradata 16

Built-in functions, user-defined functions, and constants can be conveniently added to
the mapping by double-clicking an empty area on the mapping (see Add a Built-in
Function to the Mapping and Add a Constant to the Mapping)

Internal updates and optimizations

New in MapForce 2018:

Support for generating program code for Visual Studio 2013, 2015, and 2017, see Code
Generator

Support for the following database versions: Sybase ASE 16, PostgreSQL 9.6, MySQL
5.7

Internal updates and optimizations

New in MapForce 2017 Release 3:

A new component type (Join) has been introduced which can be used to join data from
two or more different structures based on custom-defined conditions (see Joining Data).
When the mapping reads data from a database, it is possible to join database tables or
views in SQL JOIN mode, see Joining Database Data.

The text search options in the Output pane, the XQuery pane, as well as the XSLT
pane have been enhanced (see Searching in Text View). Also, text highlighting is
available in the above-mentioned panes (see Text Highlighting).

Mappings which update databases can be optionally configured to compare data in a
NULL-aware manner. NULL-aware comparisons provide a better way (tailored to each
specific database) to handle data that contains null values (see Handling Nulls in
Database Table Actions).

In the MapForce ActiveX control, the structure of the MapForceCommand object has been
enhanced to include a new Name property, which can be used to get the unique name of
the command. This simplifies retrieving information about MapForce commands
programmatically (see Retrieving Command Information).

Internal updates and optimizations

New in MapForce 2017:

It is possible to read node names from a source XML (or field names from a CSV/Fixed-
length field file) and map this information to a target. It is also possible to dynamically
create new XML attributes or elements in a target based on values supplied from a
source. See Mapping Node Names.

XML instance files can be created with custom namespaces, at element level (see
Declaring Custom Namespaces)

MapForce Server execution files (.mfx) can be compiled for specific MapForce Server
versions (see Compiling mappings for a specific MapForce Server version)

© 2018 Altova GmbH

What's new... 5Altova MapForce 2018 Professional Edition

Altova MapForce 2018 Professional Edition

Mappings can connect to PostgreSQL databases through native connections (see
Setting up a PostgreSQL Connection)

Mappings can connect to SQL Server and other database types through ADO.NET
providers (see Setting up an ADO.NET Connection)

A new database type is supported: Progress OpenEdge. See Connecting to Progress
OpenEdge (ODBC) and Connecting to Progress OpenEdge (JDBC).

When connecting to a database through JDBC, the search path to .jar libraries can be
specified directly in the database connection dialog box (see Setting up a JDBC
Connection)

When a database is updated by the mapping through "Update if... Insert Rest" actions,
MERGE statements are created for selected databases (see MERGE statements)

Internal updates and optimizations

New in MapForce 2016 R2:

More intuitive code folding in the XSLT pane: collapsed text is displayed with an ellipsis
symbol and can be previewed as a tooltip. The same rules apply for text in the XQuery
pane and the SQL Editor
You can search for all occurrences of a function within the active mapping (in the Libraries
window, right-click the function, and select Find All Calls).
Internal updates and optimizations

New features in MapForce 2016:

Improved generation of XSLT 1.0 code (generated stylesheets are easier to read and often
faster to execute)
Two new aggregate functions are available in the MapForce core library: min-string and

max-string. These functions enable you to get the minimum or maximum value from a

sequence of strings.
Mappings written for the Built-in execution engine can be debugged (see Debugging
Mappings)
The MapForce Plug-in for Visual Studio supports Visual Studio 2015 (adds to support for
previous versions)
New database versions are supported: SQL Server 2014, Oracle 12c, IBM DB2 10.5,
PostgreSQL 9.4, MySQL 5.6 (adds to support for previous versions)
Firebird databases are supported (see Connecting to Firebird (ODBC) and Connecting to
Firebird (JDBC))

New features in MapForce Version 2015 R4:
In the MapForce plug-in for Eclipse, the commands specific to MapForce files are now
available under a new MapForce menu (see Accessing Common Menus and Functions)
Internal updates and optimizations

New features in MapForce Version 2015 R3 include:

Option to suppress the <?xml ... ?> declaration in XML output
Text-based components (including EDI, CSV, fixed-length field, JSON, and XML) can
parse and serialize strings in addition to plain files
SQLite database support (see Setting up a SQLite connection)

6 Altova MapForce 2018 Professional Edition What's new...

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

New string padding functions: pad-string-left and pad-string-right
New component type: Simple Output
Internal updates and optimizations

New features in MapForce Version 2015 include:

New language argument available in the format-date and format-dateTime functions
New sequence function: replicate-item

New features in MapForce Version 2014 R2 include:

New sequence functions: generate sequence, item-at, etc.
Ability to define CDATA sections in output components
Ability to define timeout values for database execution
Keeping connections after deleting components
Bulk transfer of database data (bulk Insert all)
Automatic highlighting of mandatory items in target components

New features in MapForce Version 2014 include:

Integration of RaptorXML validator and basic support for XML Schema 1.1
Integration of new RaptorXML XSLT and XQuery engines
XML Schema Wildcard support, xs:any and xs:anyAttribute
Support for Comments and Processing Instructions in XML target components
Age function
Ability to always insert quote character for CSV files

New features in MapForce Version 2013 R2 SP1 include:

New super-fast transformation engine RaptorXML Server

New features in MapForce Version 2013 R2 include:

MapForce Server support.
Ability to generate a MapForce Server execution file from the command line and File
menu, to be executed by MapForce Server.
Ability to deploy MapForce mappings to FlowForce Server.
Support for Informix 11.7 databases, and extended support for other databases.
User defined end-of-line settings for output files.
Internal updates and optimizations.

New features in MapForce Version 2013 include:

Ability to call stored procedures in mappings
Support for database functions (functionally similar to stored procedures)
Support for SELECT statements with parameters
Internal updates and optimizations

© 2018 Altova GmbH

What's new... 7Altova MapForce 2018 Professional Edition

Altova MapForce 2018 Professional Edition

New features in MapForce Version 2012 R2 include:

New Sort component for XSLT 2.0, XQuery, and the Built-in execution engine
User defined component names
Extended SQL-Where functionality: ORDER BY
MapForce supports logical files of the IBM iSeries database and shows logical files as
views
Support for IBM DB2 logical files. A logical file in IBM iSeries editions of the DB2
database represents one or more physical files. A logical file allows users to access data
in a sequence or format that can be different from the physical file. Users who connect to
IBM iSeries computers may encounter existing databases constructed with logical files.
These were previously not accessible, but are now supported in Version 2012 Release 2.

New features in MapForce Version 2012 include:

Data streaming for XML, CSV and fixed-length field files (when using the built-in execution
engine)
New database engine supports direct ODBC and JDBC connections
Auto-alignment of components in the mapping window
New functions: parse-date and parse-time
Find items in Project tab/window
Prompt to connect to target parent node
Specific rules governing the sequence that components are processed in a mapping
New Programming Languages examples section in MapForce API

New features in MapForce Version 2011R3 include:

Intermediate variablesSupport for .NET Framework 4.0 assembly files
Ability to output StyleVision formatted documents from the command line

New features in MapForce Version 2011R2 include:

Built-in Execution Engine now supports streaming output
Find function capability in Library window
Reverse mapping
Extendable IF-ELSE function
Node Name and parsing functions in Core LibraryImproved database table actions dialog
with integrated key generation settings
New option of using StyleVision Power Stylesheets when documenting a mapping

New features in MapForce Version 2011 include:

Ability to preview intermediate components in a mapping chain of two or more
components connected to a target component (pass-through preview).
Formatting functions for dateTime and numbers for all supported languages
Enhancement to auto-number function
New timezone functions: remove-timezone and convert-to-utc

8 Altova MapForce 2018 Professional Edition What's new...

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Ability to preview target components using StyleVision Power Stylesheets containing
StyleVision Charts

New features in MapForce Version 2010 Release 3 include:

Support for generation of Visual Studio 2010 project files for C# and C++ added
Support for MSXML 6.0 in generated C++ code
Support for Nillable values, and xsi:nil attribute in XML instance files
Ability to disable automatic casting to target types in XML documents

New features in MapForce Version 2010 Release 2 include:

64-bit MapForce Enterprise / Professional editions on 64-bit operating systemsAutomatic
connection of identical child connections when moving a parent connection
Support for fields in the SQL Where component
Ability to add compiled Java .class and .NET assembly files
Ability to tokenize input strings for further processing

New features in MapForce Version 2010 include:

Multiple input/output files per component
Upgraded relative path support
xsi:type support allowing use of derived types
New internal data type system
Improved user-defined function navigation
Enhanced handling of mixed content in XML elements

New features in MapForce Version 2009 SP1 include:

Parameter order in user-defined functions can be user-defined
Ability to process XML files that are not valid against XML Schema
Regular (Standard) user-defined functions now support complex hierarchical parameters
Apache Xerces 3.x support when generating C++ code

New features in MapForce Version 2009 include:

EDI HL7 versions 3.x XML as source and target components
Documentation of mapping projects
Native support for XML fields in SQL Server
Grouping of nodes or node content
Ability to filter data based on a nodes position in a sequence
QName support
Item/node search in components

New features in MapForce Version 2008 Release 2 include:

Ability to automatically generate XML Schemas for XML files
Support for stream objects as input/output in generated Java and C# code

© 2018 Altova GmbH

What's new... 9Altova MapForce 2018 Professional Edition

Altova MapForce 2018 Professional Edition

Generation of Visual Studio 2008 project files for C++ and C#
Ability to strip database schema names from generated code
SQL SELECT Statements as virtual tables in database components
Local Relations - on-the-fly creation of primary/foreign key relationships
Support for Altova Global Resources
Performance optimizations

New features in MapForce Version 2008 include:

Aggregate functions
Value-Map lookup component
Enhanced XML output options: pretty print XML output, omit XML schema reference and
Encoding settings for individual components
Various internal updates

New features in MapForce Version 2007 Release 3 include:

XML data mapping to/from database fields (see Mapping XML Data to / from Database
Fields)
Direct querying of databases
SQL-WHERE filter and SQL statement wizard
Code generator optimization and improved documentation

Chapter 2

Introduction

12 Introduction

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2 Introduction

This introduction includes an overview of the MapForce features and user interface, the basic
concepts in MapForce, as well as the conventions used in this documentation.

© 2018 Altova GmbH

Support Notes 13Introduction

Altova MapForce 2018 Professional Edition

2.1 Support Notes

MapForce® is a 32/64-bit Windows application that runs on the following operating systems:

Windows 7 SP1 with Platform Update, Windows 8, Windows 10
Windows Server 2008 R2 SP1 with Platform Update or newer

64-bit support is available for the Enterprise and Professional editions.

MapForce is optionally available as a plug-in to the following integrated development
environments:

Visual Studio 2008/2010/2012/2013/2015/2017, see MapForce Plug-in for Visual Studio
Eclipse 4.5 / 4.6 / 4.7, see MapForce Plug-in for Eclipse.

MapForce integrates with Microsoft Office products as follows:

It can map data to or from Access databases. For supported versions, see Databases
and MapForce
It can generate mapping documentation in Word 2000 or later format, see Generating and
Customizing Mapping Documentation.

For support information applicable to program code generation, see Introduction to Code
Generator.

For other technical information, see Technical Data.

14 Introduction What Is MapForce?

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2.2 What Is MapForce?

Altova website: Data mapping tool

MapForce is a Windows-based, multi-purpose IDE (integrated development environment) that
enables you to transform data from one format to another, or from one schema to another, by
means of a visual, "drag-and-drop" -style graphical user interface that does not require writing any
program code. In fact, MapForce generates for you the program code which performs the actual
data transformation (or data mapping). When you prefer not to generate program code, you can
just run the transformation using the MapForce built-in transformation language (available in the
MapForce Professional or Enterprise Editions).

Mappings designed with MapForce enable you to conveniently convert and transform data from
and to a variety of file-based and other formats. Regardless of the technology you work with,
MapForce determines automatically the structure of your data, or gives you the option to supply a
schema for your data, or generate it automatically from a sample instance file. For example, if you
have an XML instance file but no schema definition, MapForce can generate it for you, thus
making the data inside the XML file available for mapping to other files or formats.

The technologies supported as mapping sources or targets are as follows.

MapForce Basic Edition MapForce Professional
Edition

MapForce Enterprise Edition

XML and XML schema
HL7 version 3.x (schema-
based)

XML and XML schema
Flat files, including comma-
separated values (CSV) and
fixed-length field (FLF)
format
Databases (all major
relational databases,
including Microsoft Access
and SQLite databases)

XML and XML schema
Flat files, including comma-
separated values (CSV) and
fixed-length field (FLF)
format
Data from legacy text files
can be mapped and
converted to other formats
with MapForce FlexText
Databases (all major
relational databases,
including Microsoft Access
and SQLite databases)
EDI family of formats
(including UN/EDIFACT,
ANSI X12, HL7, IATA
PADIS, SAP IDoc,
TRADACOMS)
JSON files
Microsoft Excel 2007 and
later files
XBRL instance files and
taxonomies

Based on the MapForce edition, you can choose the preferred language for your data
transformation as follows.

https://www.altova.com/mapforce

© 2018 Altova GmbH

What Is MapForce? 15Introduction

Altova MapForce 2018 Professional Edition

MapForce Basic Edition MapForce Professional
Edition

MapForce Enterprise Edition

XSLT 1.0
XSLT 2.0

MapForce built-In
transformation language
XSLT 1.0
XSLT 2.0
XQuery
Java
C#
C++

MapForce built-In
transformation language
XSLT 1.0
XSLT 2.0
XQuery
Java
C#
C++

You can preview the result of all transformations, as well as the generated XSLT or XQuery code
without leaving the graphical user interface. Note that, as you design or preview mappings,
MapForce validates the integrity of your schemas or transformations and displays any validation
errors in a dedicated window, so that you can immediately review and address them.

When you choose Java, C#, or C++ as transformation language, MapForce generates the required
projects and solutions so that you can open them directly in Visual Studio or Eclipse, and run the
generated data mapping program. For advanced data integration scenarios, you can also extend
the generated program with your own code, using Altova libraries and the MapForce API.

In MapForce, you design all mapping transformations visually. For example, in case of XML, you
can connect any element, attribute, or comment in an XML file to an element or attribute of
another XML file, thus instructing MapForce to read data from the source element (or attribute),
and write it to the target element (or attribute).

Sample data transformation between two XML files

Likewise, when working with databases in MapForce Professional or Enterprise Editions, you can
see any database column in the MapForce mapping area and map data to or from it by making
visual connections. As with other Altova MissionKit products, when setting up a database
connection from MapForce, you can flexibly choose the database driver and the connection type
(ADO, ODBC, or JDBC) according to your existing infrastructure and data mapping needs.
Additionally, you can visually build SQL queries, use stored procedures, or query a database
directly (support varies by database type, edition and driver).

16 Introduction What Is MapForce?

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Sample data transformation between an XML file and a database

In a very simple scenario, a mapping design created with MapForce could be resumed as "read
data from the source X and write it to target Y". However, you can easily design MapForce
scenarios such as "read data from the source X and write it to target Y, and then read data from
the source Y and write it to the target Z". These are known as "pass-through", or "chained"
mappings, and enable you to access your data at an intermediary stage in the transformation
process (in order to save it to a file, for example).

Note that the data mappings you can create in MapForce are not limited to single, predefined
files. In the same transformation, you can process dynamically multiple input files from a directory
and generate multiple output files. Therefore, you can have scenarios such as "read data from
multiple X files and write it to a single Y file", or "read file X and generate multiple files Y", and so
on.

Importantly, in the same transformation, you can mix multiple sources and multiple targets, which
can be of any type supported by your MapForce edition. For example, in case of MapForce
Professional or Enterprise, this makes it possible to merge data from two different databases into
a single XML file. Or, you can merge data from multiple XML files, and write some of the data to
one database, and some of the data to another database. You can preview the SQL statements
before committing them to the database.

© 2018 Altova GmbH

What Is MapForce? 17Introduction

Altova MapForce 2018 Professional Edition

Direct conversion of data from a source to a target is not typically the only thing you want to
achieve. In many cases, you might want to process your data in a particular way (for example,
sort, group or filter it) before it reaches the destination. For this reason, MapForce includes, on
one hand, miscellaneous functional components that are simplified programming language
constructs (such as constants, variables, SQL-WHERE conditions, Filter and Sort components).
On the other hand, MapForce includes rich and extensible function libraries which can assist you
with virtually any kind of data manipulation.

If necessary, you can extend the built-in library either with functions you design in MapForce
directly (the so-called User-Defined Functions, or UDF), or with functions or libraries created
externally in XSLT, XQuery, Java, or C# languages.

Libraries pane (MapForce Basic Edition)

18 Introduction What Is MapForce?

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

When your data mapping design files become too many, you can organize them into mapping
projects (available in MapForce Professional and Enterprise edition). This allows for easier access
and management. Importantly, you can generate program code from entire projects, in addition to
generating code for individual mappings within the project.

For advanced data processing needs (such as when running mapping transformations with the
MapForce Server API), you can design a mapping so that you can pass values to it at run-time, or
get a simple string value from it at run-time. This feature also enables you to quickly test the
output of functions or entire mappings that produce a simple string value. The Professional and
Enterprise editions of MapForce also include components that enable you to perform run-time
string parsing and serialization, similar to how this works in many other programming languages.

With MapForce Enterprise Edition, you can visually design SOAP 1.0 and SOAP 2.0 Web
services based on Web Service Language Definition (WSDL) files. You can also call and get data
from a WSDL 1.0 or a WSDL 2.0 Web service from within a mapping. This includes Web services
available both through the HTTP and HTTPS protocols, as well as Web services which require that
the caller uses the WS-Security mechanism, or HTTP authentication.

With MapForce Professional and Enterprise Editions, you can generate detailed documentation of
your mapping design files, in HTML, Word 2007+, or RTF formats. Documentation design can be
customized (for example, you can choose to include or exclude specific components from the
documentation).

If you are using MapForce alongside other Altova MissionKit products, MapForce integrates with
them as well as with the Altova server-based products, as shown in the following table.

MapForce Basic Edition MapForce Professional
Edition

MapForce Enterprise Edition

You can choose to run the generated XSLT directly in MapForce and preview the data
transformation result immediately. When you need increased performance, you can process
the mapping using RaptorXML Server, an ultra-fast XML transformation engine.

If XMLSpy is installed on the same machine, you can conveniently open and edit any supported
file types, by opening XMLSpy directly from the relevant MapForce contexts (for example, the
Component | Edit Schema Definition in XMLSpy menu command is available when you
click an XML component).

You can run data transformations either directly in MapForce,
or deploy them to a different machine and even operating
system for command-line or automated execution. More
specifically, you can design mappings on Windows, and run
them on a Windows, Linux, or Mac server machine which runs
MapForce Server (either standalone or under FlowForce Server
management).

If StyleVision is installed on the same machine, you can
design or reuse existing StyleVision Power Stylesheets and
preview the result of the mapping transformations as HTML,
RTF, PDF, or Word 2007+ documents.

MapForce Professional and Enterprise edition can be installed as a plug-in of Visual Studio and
Eclipse integrated development environments. This way, you can design mappings and get

© 2018 Altova GmbH

What Is MapForce? 19Introduction

Altova MapForce 2018 Professional Edition

access to MapForce functionality without leaving your preferred development environment.

In MapForce, you can completely customize not only the look and feel of the development
environment (graphical user interface), but also various other settings pertaining to each
technology and to each mapping component type, for example:

When mapping to or from XML, you can choose whether to include a schema reference,
or whether the XML declaration must be suppressed in the output XML files. You can also
choose the encoding of the generated files (for example, UTF-8).
When mapping to or from databases, you can define settings such as the time-out period
for executing database statements, whether MapForce should use database
transactions, or whether it should strip the database schema name from table names
when generating code.
In case of XBRL, you can select the structure views MapForce should display (such as
the "Presentation and definition linkbases" view, the "Table Linkbase" View, or the "All
concepts" view).

All editions of MapForce are available as a 32-bit application. The MapForce Professional and
Enterprise editions are additionally available as a 64-bit application.

20 Introduction Basic Concepts

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2.3 Basic Concepts

This section outlines the basic concepts that will help you get started with data mapping.

Mapping

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to
be transformed from one format to another. A mapping consists of components that you add to
the MapForce mapping area in order to create your data transformations (for example, convert
XML documents from one schema to another). A valid mapping consists of one or several source
components connected to one or several target components. You can run a mapping and preview
its result directly in MapForce. You can generate code and execute it externally. You can also
compile a mapping to a MapForce execution file and automate mapping execution using
MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

Basic structure of a MapForce mapping

Component

In MapForce, the term "component" is what represents visually the structure (schema) of your
data, or how data is to be transformed (functions). Components are the central building pieces of

© 2018 Altova GmbH

Basic Concepts 21Introduction

Altova MapForce 2018 Professional Edition

any mapping. On the mapping area, components appear as rectangles. The following are
examples of MapForce components:

Constants
Databases
Filters
Conditions
Function components
EDI documents (UN/EDIFACT, ANSI X12, HL7)
Excel 2007+ files
Simple input components
Simple output components
XML Schemas and DTDs

Connector

A connector is a small triangle displayed on the left or right side of a component. The connectors
displayed on the left of a component provide data entry points to that component. The connectors
displayed on the right of a component provide data exit points from that component.

Connection

A connection is a line that you can draw between two connectors. By drawing connections, you
instruct MapForce to transform data in a specific way (for example, read data from an XML
document and write it to another XML document).

Source component

A source component is a component from which MapForce reads data. When you run the
mapping, MapForce reads the data supplied by the connector of the source component, converts
it to the required type, and sends it to the connector of the target component.

Target component

A target component is a component to which MapForce writes data. When you run the mapping,
a target component instructs MapForce to either generate a file (or multiple files) or output the
result as a string value for further processing in an external program. A target component is the
opposite of a source component.

22 Introduction User Interface Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2.4 User Interface Overview

The graphical user interface of MapForce is organized as an integrated development environment.
The main interface components are illustrated below. You can change the interface settings by
using the menu command Tools | Customize.

Use the buttons displayed in the upper-right corner of each window to show, hide, pin, or
dock it. If you need to restore toolbars and windows to their default state, use the menu
command Tools | Restore Toolbars and Windows.

MapForce graphical user interface (MapForce Professional Edition)

Menu Bar and Toolbars

The Menu Bar displays the menu items. Each toolbar displays a group of buttons
representing MapForce commands. You can reposition the toolbars by dragging their
handles to the desired locations.

© 2018 Altova GmbH

User Interface Overview 23Introduction

Altova MapForce 2018 Professional Edition

Libraries window

The Libraries window lists the MapForce built-in functions, organized by library. The list of
available functions changes based on the transformation language you select. If you have
created user-defined functions, or if you imported external libraries, they also appear in
the Libraries window.

To search functions by name or by description, enter the search value in the text box at
the bottom of the Libraries window. To find all occurrences of a function (within the
currently active mapping), right-click the function, and select Find All Calls from the
context menu. You can also view the function data type and description directly from the
Libraries window. For more information, see Working with Functions.

Project window

MapForce supports the Multiple Document Interface, and allows you to group your
mappings into mapping projects. The Project window shows all files and folders that have

24 Introduction User Interface Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

been added to the project. Project files have the extension *.mfp (MapForce Project). To
search for mappings inside projects, click anywhere inside the Projects window, and
press CTRL + F. For more information, see Working with Mapping Projects.

Mapping pane

The Mapping pane is the working area where you design mappings. You can add
mapping components (such as files, schemas, constants, variables, and so on) to the
mapping area from the Insert menu (see Adding Components to the Mapping). You can
also drag into the Mapping pane functions displayed in the Libraries window (see Working
with Functions).

© 2018 Altova GmbH

User Interface Overview 25Introduction

Altova MapForce 2018 Professional Edition

XSLT (XSLT2) pane

The XSLT (or XSLT2) pane displays the XSLT 1.0 (or 2.0) transformation code generated
from your mapping. To switch to this pane, select XSLT (or XSLT 2) as transformation
language, and then click the XSLT tab (or XSLT2 tab, respectively).

This pane provides line numbering and code folding functionality. To expand or collapse
portions of code, click the "+" and "-" icons at the left side of the window. Any portions of
collapsed code are displayed with an ellipsis symbol. To preview the collapsed code
without expanding it, move the mouse cursor over the ellipsis. This opens a tooltip that
displays the code being previewed, as shown in the image below. Note that, if the
previewed text is too big to fit in the tooltip, an additional ellipsis appears at the end of the
tooltip.

To configure the display settings (including indentation, end of line markers, and others),
right-click the pane, and select Text View Settings from the context menu. Alternatively,

click the Text View Settings () toolbar button.

XQuery pane

The XQuery pane displays the XQuery transformation code generated from your mapping,
when you click the XQuery button. This pane is available when you select XQuery as
transformation language. This pane also provides line numbering and code folding
functionality, which works in a similar way as in the XSLT pane (see above).

DB Query pane

The DB Query pane allows you to directly query any major database. You can work with
multiple active connections to different databases.

26 Introduction User Interface Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

For more information, see Browsing and Querying Databases.

Output pane

The Output pane displays the result of the mapping transformation (for example, an XML
file), when you click the Output button. If the mapping generates multiple files, you can
navigate sequentially through each generated file.

© 2018 Altova GmbH

User Interface Overview 27Introduction

Altova MapForce 2018 Professional Edition

This pane also provides line numbering and code folding functionality, which works in a
similar way as in the XSLT pane (see above).

StyleVision Output buttons

If you have installed Altova StyleVision (https://www.altova.com/stylevision.html), the
StyleVision output buttons enable you to preview and save the mapping output in HTML,
RTF, PDF, and Word 2007+ formats. This is possible by means of StyleVision Power
Stylesheet (SPS) files designed in StyleVision and assigned to a mapping component in
MapForce.

Overview window

The Overview window gives a bird's-eye view of the Mapping pane. Use it to navigate
quickly to a particular location on the mapping area when the size of the mapping is very
large. To navigate to a particular location on the mapping, click and drag the red
rectangle.

https://www.altova.com/stylevision.html

28 Introduction User Interface Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Messages window

The Messages window shows messages, errors, and warnings when you execute a
mapping (see Previewing the Output) or perform a mapping validation (see Validating
Mappings).

To highlight on the mapping area the component or structure which triggered the
information, warning, or error message, click the underlined text in the Messages
window.

The results of a mapping execution or validation operation is displayed in the Messages
window with one of the following status icons:

Icon Description

Operation completed successfully.

Operation completed with warnings.

Operation has failed.

The Message window may additionally display any of the following message types:
information messages, warnings, and errors.

Icon Description

Denotes an information message. Information messages do not stop the
mapping execution.

Denotes a warning message. Warnings do not stop the mapping execution.
They may be generated, for example, when you do not create connections to
some mandatory input connectors. In such cases, output will still be generated
for those component where valid connections exist.

Denotes an error. When an error occurs, the mapping execution fails, and no
output is generated. The preview of the XSLT or XQuery code is also not
possible.

© 2018 Altova GmbH

User Interface Overview 29Introduction

Altova MapForce 2018 Professional Edition

Other buttons in the Messages window enable you to take the following actions:

Icon Description

Filter messages by severity (information messages, errors, warnings). Select
Check All to include all severity levels (this is the default behaviour).

Select Uncheck All to remove all severity levels from the filter. In this case, only
the general execution or validation status message is displayed.

Jump to next line.

Jump to previous line.

Copy the selected line to clipboard.

Copy the selected line to clipboard, including any lines nested under it.

Copy the full contents of the Messages window to clipboard.

Find a specific text in the Messages window. Optionally, to find only words,
select Match whole word only. To find text while preserving the upper or lower
case, select Match case.

Find a specific text starting from the currently selected line up to the end.

Find a specific text starting from the currently selected line up to the beginning.

Clear the Messages window.

When you work with multiple mapping files simultaneously, you might want to display
information, warning, or error messages in individual tabs for each mapping. In this case,
click the numbered tabs available on the left side of the Messages window before
executing or validating the mapping.

Application status bar

The application status bar appears at the bottom of the application window, and shows
application-level information. The most useful of this information are the tooltips that are
displayed here when you move the mouse over a toolbar button. If you are using the 64-bit
version of MapForce, the application name appears in the status bar with the suffix (x64).
There is no suffix for the 32-bit version.

30 Introduction Conventions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2.5 Conventions

Example files
Most of the data mapping design files (files with .mfd extension, as well as other accompanying
instance files) illustrated or referenced in this documentation are available in the following folders:

C:\Users\<username>\Documents\Altova\MapForce2018\MapForce Examples
C:\Users\<username>\Documents\Altova\MapForce2018\MapForce Examples
\Tutorials

The example mappings and instance files accompanying MapForce illustrate most aspects of
how it works, and you are highly encouraged to experiment with them as you learn about
MapForce. When in doubt about the possible effects of making changes to the MapForce original
examples, create back-ups before changing them.

Graphical user interface
Some of the images (screen shots) accompanying this documentation depict graphical user
interface elements that may not be applicable to your MapForce edition. In relevant contexts,
images typically include the name of the source mapping design (*.mfd) file, as well as the edition
of MapForce in which the graphic was produced.

Chapter 3

Tutorials

32 Tutorials

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3 Tutorials

The MapForce tutorials are intended to help you understand and use the basic data
transformation capabilities of MapForce in a short amount of time. You can regard these tutorials
as a "crash course" of MapForce. While the goal is not to illustrate completely all MapForce
features, you will be guided through the MapForce basics step-by-step, so it is recommended that
you follow the tutorials sequentially. It is important that you understand each concept before
moving on to the next one, as the tutorials gradually grow in complexity. Basic knowledge of XML
and XML schema will be advantageous.

Convert XML to New Schema

This tutorial shows you how to convert data from an XML structure to another using the
XSLT 2.0 language, without writing any code. You will also learn about MapForce
sequences and items, creating mapping connections, using a function, validating and
previewing a mapping, as well as saving the resulting output to the disk.

Map Multiple Sources to One Target

This tutorial shows you how to read data from two XML files with different schema and
merge it into a single target XML file. You will also learn how to change the name and
instance files of each mapping component, and the concept of "duplicate inputs".

Work with Multiple Target Schemas

This tutorial shows you how to work with more complex mappings that produce two or
more target outputs. More specifically, you will learn how to generate, in the same
mapping, an XML file that stores a list of book records, and another XML file that contains
only a subset of the books in the first file, filtered by a specific publication year. To
support filtering data, you will use a Filter component, a function and a numeric constant.

Process and Generate Files Dynamically

This tutorial shows you how to read data from multiple XML instance files located in the
same folder and write it to multiple XML files generated on the fly. You will also learn
about stripping the XML and schema declarations and using functions to concatenate
strings and extract file extensions.

© 2018 Altova GmbH

Convert XML to New Schema 33Tutorials

Altova MapForce 2018 Professional Edition

3.1 Convert XML to New Schema

This tutorial shows you how to convert data between two XML files, while helping you learn the
basics of the MapForce development environment. Both XML files store a list of books, but their
elements are named and organized in a slightly different way (that is, the two files have different
schemas).

Abstract model of the data transformation

The code listing below shows sample data from the file that will be used as data source (for the
sake of simplicity, the XML and the namespace declarations are omitted).

<books>

 <book id="1">

 <author>Mark Twain</author>

 <title>The Adventures of Tom Sawyer</title>

 <category>Fiction</category>

 <year>1876</year>

 </book>

 <book id="2">

 <author>Franz Kafka</author>

 <title>The Metamorphosis</title>

 <category>Fiction</category>

 <year>1912</year>

 </book>

</books>

books.xml

This is how data should look in the target (destination) file:

<library>

 <last_updated>2015-06-02T16:26:55+02:00</last_updated>

 <publication>

 <id>1</id>

 <author>Mark Twain</author>

34 Tutorials Convert XML to New Schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <title>The Adventures of Tom Sawyer</title>

 <genre>Fiction</genre>

 <publish_year>1876</publish_year>

 </publication>

 <publication>

 <id>2</id>

 <author>Franz Kafka</author>

 <title>The Metamorphosis</title>

 <genre>Fiction</genre>

 <publish_year>1912</publish_year>

 </publication>

</library>

lib rary.xml

As you may have noticed, some element names in the source and target XML are not the same.
Our goal is to populate the <author>, <title>, <genre> and <publish_year> elements of the
target file from the equivalent elements in the source file (<author>, <title>, <category>,
<year>). The attribute id in the source XML file must be mapped to the <id> element in the target
XML file. Finally, we must populate the <last_updated> element of the target XML file with the
date and time when the file was last updated.

To achieve the required data transformation, let's take the following steps.

Step 1: Select XSLT2 as transformation language

You can do this in one of the following ways:

Click the XSLT2 () toolbar button.
On the Output menu, click XSLT 2.0.

Step 2: Add the source XML file to the mapping

The source XML file for this mapping is located at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\books.xml. You can add it to the mapping in
one of the following ways:

Click the Insert XML Schema/File () toolbar button.
On the Insert menu, click XML Schema/File.
Drag the XML file from Windows Explorer into the mapping area.

Now that the file has been added to the mapping area, you can see its structure at a glance. In
MapForce, this structure is known as a mapping component, or simply component. You can
expand elements in the component either by clicking the collapse () and expand icons (), or
by pressing the + and - keys on the numeric keypad.

© 2018 Altova GmbH

Convert XML to New Schema 35Tutorials

Altova MapForce 2018 Professional Edition

Mapping component

To move the component inside the mapping pane, click the component header and drag the
mouse to a new position. To resize the component, drag the corner of the component . You
can also double-click the corner so that MapForce adjusts the size automatically.

The top level node represents the file name; in this particular case, its title displays the name

of the XML instance file. The XML elements in the structure are represented by the icon, while

XML attributes are represented by the icon.

The small triangles displayed on both sides of the component represent data inputs (if they are on
the left side) or outputs (when they are on the right side). In MapForce, they are called input
connectors and output connectors, respectively.

Step 3: Add the target XML schema to the mapping

To generate the target XML, we will use an existing XML schema file. In a real-life scenario, this
file may have been provided to you by a third party, or you can create it yourself with a tool such
as XMLSpy. If you don't have a schema file for your XML data, MapForce prompts you to generate
it whenever you add to the mapping an XML file without an accompanying schema or schema
reference.

For this particular example, we are using an existing schema file available at: <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\library.xsd. To add it to the mapping,
follow the same steps as with the source XML file (that is, click the Insert XML Schema/File (

) toolbar button). Click Skip when prompted by MapForce to supply an instance file.

36 Tutorials Convert XML to New Schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

At this stage, the mapping design looks as follows:

Step 4: Make the connections

For each <book> in the source XML file, we want to create a new <publication> in the target
XML file. We will therefore create a mapping connection between the <book> element in the
source component and the <publication> element in the target component. To create the
mapping connection, click the output connector (the small triangle) to the right of the <book>
element and drag it to the input connector of the <publication> element in the target.

When you do this, MapForce may automatically connect all elements which are children of
<book> in the source file to elements having the same name in the target file; therefore, four
connections are being created simultaneously. This behavior is called "Auto Connect Matching
Children" and it can be disabled and customized if necessary.

© 2018 Altova GmbH

Convert XML to New Schema 37Tutorials

Altova MapForce 2018 Professional Edition

You can enable or disable the "Auto Connect Matching Children" behavior in one of the following
ways:

Click the Toggle auto connect of children () toolbar button.
On the Connection menu, click Auto Connect Matching Children.

Notice that some of the input connectors on the target component have been highlighted by
MapForce in orange, which indicates that these items are mandatory. To ensure the validity of the
target XML file, provide values for the mandatory items as follows:

Connect the <category> element in the source with the <genre> element in the target
Connect the <year> element in the source with the <publish_year> element in the
target

Finally, you need to supply a value to the <last_updated> element. If you move the mouse over
its input connector, you can see that the element is of type xs:dateTime. Note that, for tips to be

displayed, the Show tips () toolbar button must be enabled.

You can also make the data type of each item visible at all times, by clicking the Show Data

38 Tutorials Convert XML to New Schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Types () toolbar button.

You can get the current date and time (that is, the xs:dateTime value) by means of a date and
time XSLT function. To find the XSLT function to the mapping, start typing "date" in the text box
located in the lower part of the Libraries window. Alternatively, double-click an empty area on the
mapping and start typing "current-date".

As shown above, if you move the mouse over the "result" part of the function, you can see its

description. For tips to be displayed, make sure that the Show tips () toolbar button is
enabled.

To add the function to the mapping, drag the function into the mapping pane, and connect its
output to the input of the <last_updated> element.

You have now created a MapForce mapping design (or simply a "mapping") which converts data
from the books.xml instance file (having the books.xsd schema) to the new library.xml file
(having the library.xsd schema). If you double-click the header of each component, you can view

© 2018 Altova GmbH

Convert XML to New Schema 39Tutorials

Altova MapForce 2018 Professional Edition

these and other settings in the Component Settings dialog box, as shown below.

Component settings for the source

Component settings for the target

Step 5: Validate and save the mapping

Validating a mapping is an optional step that enables you to see and correct potential mapping
errors and warnings before you run the mapping. To check whether the mapping is valid, do one of
the following:

On the File menu, click Validate Mapping.

Click the Validate () toolbar button.

The Messages window displays the validation results:

40 Tutorials Convert XML to New Schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Messages window

At this point, you might also want to save the mapping to a file. To save the mapping, do one of
the following:

On the File menu, click Save.

Click the Save () toolbar button.

For your convenience, the mapping created in this tutorial is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\\BooksToLibrary.mfd.
Therefore, from this point onwards, you can either continue with the mapping file you created, or
with the BooksToLibrary.mfd file.

Step 6: Preview the mapping result
You can preview the result of the mapping directly in MapForce. To do this, click the Output
button located in the lower part of the mapping pane. MapForce runs the transformation and
displays the result of the mapping in the Output pane.

© 2018 Altova GmbH

Convert XML to New Schema 41Tutorials

Altova MapForce 2018 Professional Edition

Output pane

You can now see the result of the transformation in MapForce.

By default, the files displayed for preview in the Output pane are not written to the disk.
Instead, MapForce creates temporary files. To save the file displayed in the Output pane to
the disk, select the menu command Output | Save Output File, or click the Save

generated output () toolbar button.

To configure MapForce to write the output directly to final files instead of temporary, go to
Tools | Options | General, and then select the Write directly to final output files check
box. Note that enabling this option is not recommended while you follow this tutorial, because
you may unintentionally overwrite the original tutorial files.

You can also preview the generated XSLT code that performs the transformation. To preview the
code, click the XSLT2 button located in the lower area of the mapping pane.

42 Tutorials Convert XML to New Schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

XSLT2 pane

To generate and save the XSLT2 code to a file, select the menu item File | Generate Code in |
XSLT 2.0. When prompted, select a folder where the generated code must be saved. After code
generation completes, the destination folder includes the following two files:

1. An XSLT transformation file, named after the target schema (in this example,
MappingMaptolibrary.xslt).

2. A DoTransform.bat file. The DoTransform.bat file enables you to run the XSLT
transformation in RaptorXML Server (for more information, see https://www.altova.com/
raptorxml.html).

https://www.altova.com/raptorxml.html
https://www.altova.com/raptorxml.html

© 2018 Altova GmbH

Map Multiple Sources to One Target 43Tutorials

Altova MapForce 2018 Professional Edition

3.2 Map Multiple Sources to One Target

In the previous tutorial, you have converted data from a source file (books.xml) to a target file
(library.xml). The target file (library.xml) did not exist before running the mapping; it was
generated by the mapping transformation. Let's now imagine a scenario where you already have
some data in the library.xml file, and you want to merge this data with data converted from the
books.xml. The goal in this tutorial is to design a mapping that generates a file called
merged_library.xml. The generated file will include data from two sources: the books.xml file
and the library.xml file. Note that the files used as source (books.xml and library.xml) have
different schemas. If the source files had the same schema, you could also merge their data
using a different approach (see Process and Generate Files Dynamically).

Abstract model of the data transformation

To achieve the required goal, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the BooksToLibrary.mfd mapping from the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. You have already designed this
mapping in the Convert XML to New Schema tutorial. To begin, open the BooksToLibrary.mfd
file in MapForce, and save it with a new name.

Make sure to save the new mapping in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder, because it references several files from it.

44 Tutorials Map Multiple Sources to One Target

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

BooksToLibrary.mfd (MapForce Basic Edition)

Step 2: Create a second source component

First, select the target component and copy it (press Ctrl + C), and then paste it (press Ctrl + V)
into the same mapping. Click the header of the new component and drag it under the books
component.

© 2018 Altova GmbH

Map Multiple Sources to One Target 45Tutorials

Altova MapForce 2018 Professional Edition

The mapping now has two source components: books and library, and one target component:
library.

You can always move the mapping components in any direction (left, right, top, bottom).
Nevertheless, placing a source component to the left of a target component will make your
mapping easier to read and understand by others. This is also the convention for all mappings
illustrated in this documentation, as well as in the sample mapping files accompanying your
MapForce installation.

Step 3: Verify and set the input/output files

In the previous step, the new source component was copy-pasted from the target component, so
it inherits the same settings. To ensure that the name input/output instance files are correctly set,
double-click the header of each component, and, in the Component Settings dialog box, verify and
change the name and the input/output files of each component as shown below.

46 Tutorials Map Multiple Sources to One Target

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Components settings for the first source (books)

Component settings for the second source (library)

© 2018 Altova GmbH

Map Multiple Sources to One Target 47Tutorials

Altova MapForce 2018 Professional Edition

Component settings for the target (merged_library)

As shown above, the first source component reads data from books.xml. The second source
component reads data from library.xml. Finally, the target component outputs data to a file
called merged_library.xml.

Step 4: Make the connections

To instruct MapForce to write data from the second source to the target, click the output
connector (small triangle) of the publications item in the source library component and drag it
to the input connector of the publications item in the target library component. Because the
target input connector already has a connection to it, the following notification message appears.

48 Tutorials Map Multiple Sources to One Target

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

In this particular tutorial, replacing the connection is not what we want to achieve; our goal is to
map data from two sources. Therefore, click Duplicate Input. By doing so, you configure the
target component to accept data from the new source as well. The mapping now looks as follows:

Notice that the publication item in the target component has now been duplicated. The new
publication(2) node will accept data from the source library component. Importantly, even
though the name of this node appears as publication(2) in the mapping, its name in the
resulting XML file will be publication, which is the intended goal.

You can now click the Output button at the bottom of the mapping pane, and view the mapping
result. You will notice that data from both library.xml and books.xml files has now been merged
into the new merged_library.xml file.

© 2018 Altova GmbH

Work with Multiple Target Schemas 49Tutorials

Altova MapForce 2018 Professional Edition

3.3 Work with Multiple Target Schemas

In the previous tutorial, Map Multiple Sources to One Target, you have seen how to map data from
multiple source schemas to a single target schema. You have also created a file called
merged_library.xml, which stores book records from two sources. Now let's assume that
someone from another department has asked you to provide a subset of this XML file.
Specifically, you must deliver an XML file that includes only the books published after 1900.

For convenience, you can modify the existing MultipleSourcesToOneTarget.mfd mapping so
that, whenever required, you can generate both the complete XML library, and the filtered library.

Abstract model of the data transformation

In the diagram above, the data is first merged from two different schemas (books.xsd and
library.xsd) into a single XML file called merged_library.xml. Secondly, the data is transformed
using a filtering function and passed further to the next component, which creates an XML file
called filtered_library.xml. The "intermediate" component acts both as data target and source.
In MapForce, this technique is known as "chaining mappings", which is also the subject of this
tutorial.

Our goal is to make it possible to generate at any time both the merged_library.xml and the
filtered_library.xml. To achieve the goal, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the MultipleSourcesToOneTarget.mfd mapping from the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. You have already
designed this mapping in the Map Multiple Sources to One Target tutorial. To begin, open the
MultipleSourcesToOneTarget.mfd file in MapForce, and save it with a new name.

50 Tutorials Work with Multiple Target Schemas

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Make sure to save the new mapping in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder, because it references several files from it.

MultipleSourcesToOneTarget.mfd (MapForce Basic Edition)

Step 2: Add and configure the second target component

To add the second target component, click the Insert XML Schema/File () toolbar button,
and open the library.xsd file located in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder. Click Skip when prompted to supply a sample instance
file. The mapping now looks as follows:

© 2018 Altova GmbH

Work with Multiple Target Schemas 51Tutorials

Altova MapForce 2018 Professional Edition

As shown above, the mapping now has two source components: books and library, and two
target components. To distinguish between the target components, we will rename the second
one to filtered_library, and also set the name of the XML file that should be generated by it. To
do this, double-click the header of the right-most component and edit the component settings as
follows:

Notice that the new name of the component is filtered_library, and the output XML file is named
filtered_library.xml.

52 Tutorials Work with Multiple Target Schemas

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 3: Make the connections

Create a connection from the item publication in the merged_library to the item publication in
the filtered_library. When you do this, a notification message is displayed.

Click OK. Notice that new buttons are now available in the upper-right corner of both target

components: Preview () and Pass-through (). These buttons will be used and
explained in the following steps.

© 2018 Altova GmbH

Work with Multiple Target Schemas 53Tutorials

Altova MapForce 2018 Professional Edition

Step 4: Filter data

To filter data before supplying it to the filtered_library, we will use a Filter component. To add a
filter component, right-click the connection between merged_library and filtered_library, and
select Insert Filter: Nodes/Rows from the context menu.

54 Tutorials Work with Multiple Target Schemas

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The filter component has now been added to the mapping.

As shown above, the bool input connector is highlighted in orange, which suggests that an input
is required. If you move the mouse over the connector, you can see that an input of type

xs:boolean is required. Note that, for tips to be displayed, the Show tips () toolbar button
must be enabled.

© 2018 Altova GmbH

Work with Multiple Target Schemas 55Tutorials

Altova MapForce 2018 Professional Edition

The filter component requires a condition that returns either true or false. When the Boolean
condition returns true, data of the current publication sequence will be copied over to the target.
When the condition returns false, data will not be copied.

In this tutorial, the required condition is to filter all books which were published after 1900. To
create the condition, do the following:

1. Add a constant of numeric type having the value "1900" (On the Insert menu, click
Constant). Choose Number as type.

2. In the Libraries window, locate the function greater and drag it to the mapping pane.

3. Make the mapping connections to and from the function greater as shown below. By

doing this, you are instructing MapForce: "When publish_year is greater than 1900,
copy the current publication source item to the publication target item".

56 Tutorials Work with Multiple Target Schemas

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 5: Preview and save the output of each target component

You are now ready to preview and save the output of both target components. When multiple
target components exist in the same mapping, you can choose which one to preview by clicking

the Preview () button. When the Preview button is in a pressed state (), it indicates
that that specific component is currently enabled for preview (and this particular component will
generate the output in the Preview pane). Only one component at a time can have the preview
enabled.

Therefore, when you want to view and save the output of the merged_library (that is, the
"intermediate") component, do the following:

1. Click the Preview button () on the merged_library component.
2. Click the Output button at the bottom of the mapping pane.
3. On the Output menu, click Save Output File if you want to save the output to a file.

When you want to view and save the output of the filtered_library component :

1. Click the Pass-through button () on the merged_library component.

2. Click the Preview button () on the filtered_library component.
3. Click the Output button at the bottom of the mapping pane.
4. On the Output menu, click Save Output File if you want to save the output to a file.

Notice the Pass-through () button—clicking or not clicking it makes a big difference in any
mapping which has multiple target components, including this one. When this button is in a

pressed state (), MapForce lets data pass through the intermediate component, so that you
can preview the result of the entire mapping.

Release the button () if you want to preview only the portion of the mapping between the
merged_library and the filtered_library. In the latter case, an error will be generated. This
behavior is expected, because the intermediate component does not have a valid input XML file
from which it should read data. To solve the problem, double-click the header of the component

© 2018 Altova GmbH

Work with Multiple Target Schemas 57Tutorials

Altova MapForce 2018 Professional Edition

and edit so as to supply a valid input XML file, as shown below:

You have now finished designing a mapping which has multiple target components, and you can
view and save the output of each target, which was the intended goal of this tutorial. For further
information about working with pass-through components, see Chained mappings / pass-through
components.

58 Tutorials Process and Generate Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3.4 Process and Generate Files Dynamically

This tutorial shows you how to read data from multiple source XML files and write it to multiple
target files in the same transformation. To illustrate this technique, we will now create a mapping
with the following goals:

1. Read data from multiple XML files in the same directory.
2. Convert each file to a new XML schema.
3. For each source XML file, generate a new XML target file under the new schema.
4. Strip the XML and namespace declaration from the generated files.

Abstract model of the data transformation

We will use three source XML files as example. The files are located in the <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\ folder, and they are named bookentry1.xml,
bookentry2.xml, and bookentry3.xml. Each of the three files stores a single book.

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd">

 <book id="1">

 <author>Mark Twain</author>

 <title>The Adventures of Tom Sawyer</title>

 <category>Fiction</category>

 <year>1876</year>

 </book>

</books>

bookentry1.xml

© 2018 Altova GmbH

Process and Generate Files Dynamically 59Tutorials

Altova MapForce 2018 Professional Edition

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd">

 <book id="2">

 <author>Franz Kafka</author>

 <title>The Metamorphosis</title>

 <category>Fiction</category>

 <year>1912</year>

 </book>

</books>

bookentry2.xml

<?xml version="1.0" encoding="UTF-8"?>
<books xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="books.xsd">

 <book id="3">

 <author>Herman Melville</author>

 <title>Moby Dick</title>

 <category>Fiction</category>

 <year>1851</year>

 </book>

</books>

bookentry3.xml

The source XML files use the books.xsd schema available in the following folder: <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\. To convert the source files to a new
XML schema, we will use the library.xsd schema (available in the same folder). After the
transformation, the mapping will generate three files according to this new schema (see the code
listings below). We will also configure the mapping so that the name of the generated files will be:
publication1.xml, publication2.xml, and publication3.xml. Notice that the XML declaration
and the namespace declaration must be stripped.

<library>

 <publication>

 <id>1</id>

 <author>Mark Twain</author>

 <title>The Adventures of Tom Sawyer</title>

 <genre>Fiction</genre>

 <publish_year>1876</publish_year>

 </publication>

</library>

publication1.xml

60 Tutorials Process and Generate Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

<library>

 <publication>

 <id>2</id>

 <author>Franz Kafka</author>

 <title>The Metamorphosis</title>

 <genre>Fiction</genre>

 <publish_year>1912</publish_year>

 </publication>

</library>

publication2.xml

<library>

 <publication>

 <id>3</id>

 <author>Herman Melville</author>

 <title>Moby Dick</title>

 <genre>Fiction</genre>

 <publish_year>1851</publish_year>

 </publication>

</library>

publication3.xml

To achieve the goals, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the BooksToLibrary.mfd mapping from the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. You have already designed this
mapping in the Convert XML to New Schema tutorial. To begin, open the BooksToLibrary.mfd
file in MapForce, and save it with a new name, in the same folder.

Make sure to save the new mapping in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder, because it references several files from it.

© 2018 Altova GmbH

Process and Generate Files Dynamically 61Tutorials

Altova MapForce 2018 Professional Edition

BooksToLibrary.mfd (MapForce Basic Edition)

Step 2: Configure the input

To instruct MapForce to process multiple XML instance files, double-click the header of the
source component. In the Component Settings dialog box, enter bookentry*.xml as input file.

Component Settings dialog box

The asterisk (*) wildcard character in the file name instructs MapForce to use as mapping input
all the files that have the bookentry- prefix. Because the path is a relative one, MapForce will
look for all bookentry- files in the same directory as the mapping file. Note that you could also
enter an absolute path if necessary, while still using the * wildcard character.

Step 3: Configure the output

To create the file name of each output file, we will use the concat function. This function

concatenates (joins) all the values supplied to it as argument.

62 Tutorials Process and Generate Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To build the file name using the concat function:

1. Search for the concat function in the Libraries window and drag it to the mapping area.

By default, this function is added to the mapping with two parameters; however, you can
add new parameters if necessary. Click the Add parameter () symbol inside the
function component and add a third parameter to it. Note that clicking the Delete
parameter () symbol deletes a parameter.

2. Insert a constant (on the Insert menu, click Constant). When prompted to supply a
value, enter "publication" and leave the String option unchanged.

3. Connect the constant with value1 of the concat function.

4. Connect the id attribute of the source component with value2 of the concat function.

© 2018 Altova GmbH

Process and Generate Files Dynamically 63Tutorials

Altova MapForce 2018 Professional Edition

5. Search for the get-fileext function in the Libraries window and drag it to the mapping

area. Create a connection from the top node of the source component (File: books.xml)
to the filepath parameter of this function. Then create a connection from the result of the
get-fileext function to value3 of the concat function. By doing this, you are extracting

only the extension part (in this case, .xml) from the source file name.

So far, you have provided as parameters to the concat function the three values which, when

joined together, will create the generated file name (for example, publication1.xml):

64 Tutorials Process and Generate Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Part Example

The constant "publication" supplies the constant string value
"publication".

publication

The attribute id of the source XML file supplies a unique
identifier value for each file. This is to prevent all files from
being generated with the same name.

1

The get-fileext function returns the extension of the file

name to be generated.

.xml

You can now instruct MapForce to actually build the file name when the mapping runs. To do this,

click the File () or File/String () button of the target component and select Use
Dynamic File Names Supplied by Mapping.

You have now instructed MapForce to generate the instance files dynamically, with whatever
name will be provided by the mapping. In this particular example, the name is created by the
concat function; therefore, we will connect the result of the concat function with the File:

<dynamic> node of the target component.

© 2018 Altova GmbH

Process and Generate Files Dynamically 65Tutorials

Altova MapForce 2018 Professional Edition

If you double-click the target component header at this time, you will notice that the Input XML
File and Output XML File text boxes are disabled, and their value shows <File names
supplied by the mapping>.

This serves as an indication that you have supplied the instance file names dynamically from a
mapping, so it is no longer relevant to define them in the component settings.

Finally, you need to strip the XML namespace and schema declaration from the target. To achieve
this, clear the selection from the Add schema/DTD reference... and Write XML Declaration
check boxes on the Component Settings dialog box.

66 Tutorials Process and Generate Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

You can now run the mapping and see the result, as well as the name of generated files. This
mapping generates multiple output files. You can navigate through the output files using the left
and right buttons in the upper left corner of the output pane, or by picking a file from the adjacent
drop-down list.

Chapter 4

Common Tasks

68 Common Tasks

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4 Common Tasks

This section describes common MapForce tasks and concepts, such as working with mappings,
components, connections, and mapping projects.

© 2018 Altova GmbH

Working with Mappings 69Common Tasks

Altova MapForce 2018 Professional Edition

4.1 Working with Mappings

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to
be transformed from one format to another. A mapping consists of components that you add to
the MapForce mapping area in order to create your data transformations (for example, convert
XML documents from one schema to another). A valid mapping consists of one or several source
components connected to one or several target components. You can run a mapping and preview
its result directly in MapForce. You can generate code and execute it externally. You can also
compile a mapping to a MapForce execution file and automate mapping execution using
MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

To create a new mapping:

1. Do one of the following:
o On the File menu, click New.

o Click the New () toolbar button.

2. Click Mapping, and then click OK.

Your mapping is now created; however, it does not yet do anything because it is empty. A
mapping requires at least two connected components to become valid, so the next step is to add
components to the mapping (see Adding Components to the Mapping) and draw connections
between components (see Working with Connections).

4.1.1 Adding Components to the Mapping

In MapForce, the term "component" is what represents visually the structure (schema) of your
data, or how data is to be transformed (functions). Components are the central building pieces of
any mapping. On the mapping area, components appear as rectangles. The following are
examples of MapForce components:

Constants
Databases
Filters
Conditions
Function components
EDI documents (UN/EDIFACT, ANSI X12, HL7)
Excel 2007+ files

70 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Simple input components
Simple output components
XML Schemas and DTDs

To add a component to the mapping, do one of the following:

On the Insert menu, click the option relevant for the component type you wish to add (for
example, XML Schema/File).
Drag a file from Windows File Explorer onto the mapping area. Note that this operation is
possible only for compatible file-based components.
Click the relevant button on the Insert Component toolbar.

Insert Component toolbar (MapForce Enterprise Edition)

Each component type has specific purpose and behavior. For component types where that is
necessary, MapForce walks you through the process by displaying contextual wizard steps or
dialog boxes. For example, if you are adding an XML schema, a notification dialog box prompts
you to optionally select an instance file as well.

For an introduction to components, see Working with Components. For specific information about
each technology supported as mapping source or target, see Data Sources and Targets. For
information about MapForce built-in components used to store data temporarily or transform it
(such as filtering or sorting), see Designing Mappings.

4.1.2 Adding Components from a URL

In addition to adding local files as mapping components, you can also add files from a URL. Note
that this operation is supported when you add a component as source component (that is, your
mapping reads data from the remote file). The supported protocols are HTTP, HTTPS, and FTP.

To add a component from a URL:

1. On the Insert menu, select the type of the component type you wish to add (for
example, XML Schema/File).

2. On the Open dialog box, click Switch to URL.

© 2018 Altova GmbH

Working with Mappings 71Common Tasks

Altova MapForce 2018 Professional Edition

3. Enter the URL of the file in the File URL text box, and click Open.

72 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Make sure that the file type in the File URL text box is the same as the file type you
specified in step 1.

If the server requires password authentication, you will be prompted to enter the user name and
password. If you want the user name and password to be remembered next time you start
MapForce, enter them in the Open dialog box and select the Remember password between
application starts check box.

The Open As setting defines the grammar for the parser when opening the file. The default and
recommended option is Auto.

If the file you are loading is not likely to change, select the Use cache/proxy option to cache
data and speed up loading the file. Otherwise, if you want the file to be reloaded each time when
you open the mapping, select Reload.

For servers with Web Distributed Authoring and Versioning (WebDAV) support, you can browse
files after entering the server URL in the Server URL text box and clicking Browse. Although the
preview shows all file types, make sure that you choose to open the same file type as specified in
step 1 above; otherwise, errors will occur.

If the server is a Microsoft SharePoint Server, select the This is a Microsoft SharePoint Server
check box. Doing so displays the check-in or check-out state of the file in the preview area. If you
want to make sure that no one else can edit the file on the server while you are using it in

© 2018 Altova GmbH

Working with Mappings 73Common Tasks

Altova MapForce 2018 Professional Edition

MapForce to read data from it, right-click the file and select Check Out. To check in any file that
was previously checked out by you, right-click the file and select Check In.

Open dialog box (in Switch to URL mode)

4.1.3 About Data Streaming

Data streaming is a MapForce built-in mechanism that allows you to use arbitrarily large data
sources as input or output to your mappings. Data streaming should not be confused with stream
objects in MapForce generated code. (The latter represent a possible way of handling data if you
integrate MapForce generated code with a custom C# and Java application.)

Data streaming applies to the following data sources:

XML files
CSV files
Fixed-length field files
Databases

When you use any of the above data sources as input or output in your mappings, MapForce
treats the data source as an open stream of data, and processes its contents sequentially,
instead of loading all data into the memory.

74 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: Data streaming is possible only if you have selected BUILT-IN as transformation language
(see Selecting a transformation language).

Memory usage considerations
When you work with mapping inputs and outputs that are data streaming candidates, “Out of
memory” errors can occur if your mapping requires random access to the input source.

For example, let’s assume that your mapping contains a component that applies a group-by

function on the source data. If you apply the group-by function on the entire tree structure of the

input file, this would require the entire source file to be loaded into memory, and, consequently,
file streaming would no longer be possible. The same is true for any operation which would require
the whole contents of the mapping source to be loaded into memory, such as sorting.

When situations such as the one described above occur, the transformation will nevertheless
complete successfully if there is enough virtual memory and disk space available on your
system.

4.1.4 Selecting a Transformation Language

To meet your data mapping needs, MapForce provides the ability to choose between various
transformation languages.

By default, MapForce provides a robust, built-in engine capable of performing the same
transformations supported in other languages. When you deploy MapForce mappings to
MapForce Server, the built-in engine executes them without the need for any external processors.
Furthermore, if you require minimal or no manual intervention in your data transformation process,
you can use FlowForce Server to automate mapping processes by means of scheduled jobs.

Consider choosing the transformation language after testing several approaches and determining
what works best for your data. The available transformation languages are as follows:

BUILT-IN (This is the default native transformation engine used by MapForce.)
C++
C#
Java
XQuery
XSLT 1.0
XSLT 2.0

To select a transformation language, do one of the following:

On the Output menu, click the name of the language you wish to use for transformation.
Click the name of the language in the Language Selection toolbar.

Note: Some mapping inputs and outputs are not supported by certain languages. For example,
if you use a database as mapping input or output, you cannot generate XSLT code.

© 2018 Altova GmbH

Working with Mappings 75Common Tasks

Altova MapForce 2018 Professional Edition

Therefore, if you attempt to generate the code or preview the output of a mapping that has
sources or targets not supported by the selected language, MapForce displays a relevant
notification message.

Using the BUILT-IN option

When you select BUILT-IN () as a transformation language for your mapping, MapForce uses
its internal transformation engine to execute the data mapping. MapForce also uses this option
implicitly, whenever you want to preview the output of a mapping where the selected
transformation language is Java, C#, or C++.

It is recommended to set the transformation language to BUILT-IN in the following cases:

As default option, when you do not necessarily need to use a specific language to
transform data.
If you are processing large files and memory usage is a concern.

4.1.5 Validating Mappings

MapForce validates mappings automatically, when you click the Output tab to preview the
transformation result. You can also validate a mapping explicitly, before attempting to preview its
result. This helps you identify and correct potential mapping errors and warnings before the
mapping is run. Note that running a mapping may generate additional runtime errors or warnings
depending on the processed data, for example, when values mapped to attributes are overwritten.

To validate a mapping explicitly, do one of the following:

On the File menu, click Validate Mapping.

Click the Validate () toolbar button.

The Messages window displays the validation results, for example:

Messages window

When you validate a mapping, MapForce checks for the validity of the mapping (such as incorrect
or missing connections, unsupported component kinds), and the validation result is then
displayed in the Messages window with one of the following status icons:

76 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Icon Meaning

Validation has completed successfully.

Validation has completed with warnings.

Validation has failed.

The Message window may additionally display any of the following message types: information
messages, warnings, and errors.

Icon Meaning

Denotes an information message. Information messages do not stop the
mapping execution.

Denotes a warning message. Warnings do not stop the mapping execution.
They may be generated, for example, when you do not create connections to
some mandatory input connectors. In such cases, output will still be generated
for those component where valid connections exist.

Denotes an error. When an error occurs, the mapping execution fails, and no
output is generated. The preview of the XSLT or XQuery code is also not
possible.

To highlight on the mapping area the component or structure which triggered the information,
warning, or error message, click the underlined text in the Messages window.

For components that transform data (such as functions or variables), MapForce validation works
as follows:

If a mandatory input connector is unconnected, an error message is generated and the
transformation is stopped.
If an output connector is unconnected, then a warning is generated and the
transformation process continues. The offending component and its data are ignored and
are not mapped to the target document.

To display the result of each validation in an individual tab, click the numbered tabs available on
the left side of the Messages window. This may be useful, for example, if you work with multiple
mapping files simultaneously

Other buttons in the Messages window enable you to take the following actions:

Filter the message by types (for example, to show only errors or warnings)
Move up or down through the entries
Copy the message text to the clipboard
Find a specific text in the window
Clear the Messages window.

For general information about the Messages window, see User Interface Overview.

© 2018 Altova GmbH

Working with Mappings 77Common Tasks

Altova MapForce 2018 Professional Edition

4.1.6 Validating the Mapping Output

After you click the Output tab to preview the mapping, the resulting output becomes available in
the Output pane. You can validate this output against the schema associated with it. For
example, if the mapping transformation generates an XML file, then the resulting XML document
can be validated against the XML schema.

For XML files, you can specify the schema associated with the instance file in the Add Schema/
DTD reference field of the Component Settings dialog box (see XML Component Settings). The
path specifies where the schema file referenced by the produced XML output is to be located. This
ensures that the output instance can be validated when the mapping is executed. You can enter
an http:// address in this field, as well as an absolute or relative path. If you do not select the
Add Schema/DTD reference field, then the validation of the output file against the schema is not
possible. If you select this check box but leave it empty, then the schema filename of the
Component Settings dialog box is generated into the output and the validation is done against it.

To validate the mapping output, do one of the following:

Click the Validate Output toolbar button.

On the Output menu, click Validate Output File.

Note: The Validate Output button and its corresponding menu command (Output | Validate
Output File) are enabled only if the output file supports validation against a schema.

The result of the validation is displayed in the Messages window, for example:

If the validation was not successful, the message contains detailed information on the errors that
occurred.

78 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The validation message contains a number of hyperlinks you can click for more detailed
information:

Clicking the file path opens the output of the transformation in the Output tab of
MapForce.
Clicking <ElementName> link highlights the element in the Output tab.
Clicking the icon opens the definition of the element in XMLSpy (if installed).
Clicking the hyperlinks in the Details subsection (e.g., cvc-model-group) opens a
description of the corresponding validation rule on the https://www.w3.org/ website.

4.1.7 Previewing the Output

When working with MapForce mappings, you can preview the resulting output without having to
run and compile the generated code with an external processor or compiler. In general, it is a
good idea to preview the transformation output within MapForce before attempting to process the
generated code externally.

When you choose to preview the mapping results, MapForce executes the mapping and
populates the Output pane with the resulting output.

Once data is available in the Output pane, you can validate and save it if necessary (see
Validating the Mapping Output). You can also use the Find command (Ctrl + F key combination)
to quickly locate a particular text pattern within the output file (see also Searching in Text View).

Any errors, warning, or information messages related to the mapping execution are displayed in
the Messages window (see User Interface Overview).

To preview the transformation output:

Click the Output tab under the Mapping window. MapForce executes the mapping using
the transformation language selected in the Language toolbar and populates the Output
pane with the resulting output.

Note: If you select C++, C#, or Java as transformation language, MapForce executes the
mapping using its built-in transformation engine. The result that appears in the Output
pane is the same as if the Java, C++, or C# code had been generated, compiled and
executed.

To save the transformation output, do one of the following:

On the Output menu, click Save Output File.
Click the Save Generated Output toolbar button.

https://www.altova.com/xmlspy-xml-editor
https://www.w3.org/

© 2018 Altova GmbH

Working with Mappings 79Common Tasks

Altova MapForce 2018 Professional Edition

Partial output preview
When you are previewing large output files, MapForce limits the amount of data displayed in the
Output pane. More specifically, MapForce displays only a part of the file in the Output pane, and
a Load more... button appears in the lower area of the pane. Clicking the Load more... button
appends the next file part to the currently visible data, and so on.

Note: The Pretty-print button becomes active when the complete file has been loaded into the
Output pane.

You can configure the preview settings from the General tab of the Options dialog box (see
Changing the MapForce Options).

4.1.8 Text View Features

The Output pane, the XSLT pane, as well as the XQuery pane have multiple visual aids to make
the display of text easier. These include:

Line Numbers
Syntax Coloring
Bookmarks
Source Folding
Indentation Guides
End-of-Line and Whitespace Markers
Zooming
Pretty-printing
Word wrapping
Text highlighting

Where applicable, you can toggle or customize the features above from the Text View Settings
dialog box. Settings in the Text View Settings dialog box apply to the entire application—not
only to the active document.

80 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Text View Settings dialog box

To open the Text View settings dialog box, do one of the following:

On the Output menu, select Text View Settings.

Click the Text View Settings toolbar button.
Right-click the Output pane, and select Text View Settings from the context menu.

Some of the navigation aids can also be toggled from the Text View toolbar, the application menu,
or keyboard shortcuts.

Text View toolbar

For reference to all applicable shortcuts, see the "Key Map" section of the Text View Settings
dialog box illustrated above.

Line numbers
Line numbers are displayed in the line numbers margin, which can be toggled on and off in the
Text View Settings dialog box. When a section of text is collapsed, the line numbers of the
collapsed text are also hidden.

© 2018 Altova GmbH

Working with Mappings 81Common Tasks

Altova MapForce 2018 Professional Edition

Syntax coloring
Syntax coloring is applied according to the semantic value of the text. For example, in XML
documents, depending on whether the XML node is an element, attribute, content, CDATA
section, comment, or processing instruction, the node name (and in some cases the node's
content) is colored differently.

Bookmarks
Lines in the document can be bookmarked for quick reference and access. If the bookmarks
margin is toggled on, bookmarks are displayed in the bookmarks margin.

Otherwise, bookmarked lines are highlighted in cyan.

82 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The bookmarks margin can be toggled on or off in the Text View Settings dialog box.

You can edit and navigate bookmarks using the following commands:

Insert/Remove Bookmark (Ctrl + F2)

Go to Next Bookmark (F2)

Go to Previous Bookmark (Shift + F2)

Delete All Bookmarks (Ctrl + Shift + F2)

The commands above are available in the Output menu. Bookmark commands are also available
through the context menu, when you right-click the Output (or XSLT, or XQuery) pane.

Source folding
Source folding refers to the ability to expand and collapse nodes and is displayed in the source
folding margin. The margin can be toggled on and off in the Text View Settings dialog box. To
expand or collapse portions of text, click the "+" and "-" nodes at the left side of the window. Any
portions of collapsed code are displayed with an ellipsis symbol. To preview the collapsed code
without expanding it, move the mouse cursor over the ellipsis. This opens a tooltip that displays
the code being previewed, as shown in the image below. Note that, if the previewed text is too big
to fit in the tooltip, an additional ellipsis appears at the end of the tooltip.

© 2018 Altova GmbH

Working with Mappings 83Common Tasks

Altova MapForce 2018 Professional Edition

Indentation guides
Indentation guides are vertical dotted lines that indicate the extent of a line's indentation. They can
be toggled on and off in the Text View Settings dialog box.

Note: The Insert tabs and Insert spaces options take effect when you use the Output | Pretty-
Print XML text option.

End-of-line markers, whitespace markers
End-of-line (EOL) markers and whitespace markers can be toggled on in the Text View Settings
dialog box. The image below shows a document where both end-of-line and whitespace markers
are visible. An arrow represents a tab character, a "CR" is a carriage return, and a dot represents
a space character.

Zooming in and out
You can zoom in and out by scrolling (with the scroll-wheel of the mouse) while holding the Ctrl
key pressed. Alternatively, press the "-" or "+" keys while holding the Ctrl key pressed.

Pretty-printing
The Pretty-Print XML Text command reformats the active XML document in Text View to give a
structured display of the document. By default, each child node is offset from its parent by four
space characters. This can be customized from the Text View Settings dialog box.

84 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To pretty-print an XML document, select the Output | Pretty-Print XML Text menu command, or

click the Pretty Print toolbar button.

Word wrapping
To toggle word wrapping in the currently active document, select the Output | Word Wrap menu

command, or click the Word Wrap toolbar button.

Text highlighting
When you select text, all matches in the document of the text selection that you make are
highlighted automatically. The selection is highlighted in pale blue, and matches are highlighted in
pale orange. The selection and its matches are indicated in the scroll bar by gray marker-squares.
The current cursor position is given by the blue cursor-marker in the scroll bar.

To switch text highlighting on, select Enable auto-highlighting in the Text View Settings dialog
box. A selection can be defined to be an entire word or a fixed number of characters. You can
also specify whether casing should be taken into account or not.

For a character selection, you can specify the minimum number of characters that must match,
starting from the first character in the selection. For example, you can choose to match two or
more characters. In this case, one-character selections will not be matched, but a selection
consisting of two or more characters will be matched. So, in this case, if you select t, then no

matches will be shown; selecting ty will show all ty matches; selecting typ will show all typ

matches; and so on.

For word searches, the following are considered to be separate words: element names (without
angular brackets), the angular brackets of element tags, attribute names, and attribute values
without quotes.

4.1.9 Searching in Text View

The text in the Output pane, the XQuery pane, as well as the XSLT pane can be searched using
an extensive set of options and visual aids.

To start a search , press Ctrl+F (or select the menu command Edit | Find). You can then search
in the entire document or within a text selection for a search term that you enter in the dialog.

Enter a string to find, or use the combo box to select a string from one of the last 10
strings.
When you enter or select a string to find, all matches are highlighted and the positions of
the matches are indicated by beige markers in the scroll bar.
The currently selected match has a different highlight color than the other matches, and
its position is indicated in the scroll bar by the dark blue cursor-marker.
The total number of matches is listed below the search term field, together with the index
position of the currently selected match. For example, 2 of 4 indicates that the second

of four matches is currently selected.
You can move from one match to the next, in both directions, by selecting the Previous

 (Shift+F3) and Next (F3) buttons at bottom right.

© 2018 Altova GmbH

Working with Mappings 85Common Tasks

Altova MapForce 2018 Professional Edition

To close the Find dialog, click the Close button at top right, or press Esc.

Note the following points:

The Find dialog is modeless. This means that it can remain open while you continue to
use Text View.
If text is selected prior to opening the dialog box, then the selected text is automatically
inserted into the search term field.
To search within a selection, do the following: (i) Mark the selection; (ii) Toggle on the

Find in Selection option to lock the selection; (iii) Enter the search term. To search
within another selection, unlock the current selection by toggling off the Find in Selection

 option, then make the new selection and toggle on the Find in Selection option.
After the Find dialog is closed, you can repeat the current search by pressing F3 for a
forward search, or Shift+F3 for a backward search. The Find dialog will appear again in
this case.

Find options
Find criteria can be specified via buttons located below the search term field. When an option is
toggled on, its button color changes to blue. You can select from the following options:

Option Icon Description

Match case Performs a case-sensitive search when toggled on ("Address" is
not the same as "address").

86 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Option Icon Description

Match whole word Only the exact words in the text will be matched. For example, for
the input string fit, with Match whole word toggled on, only the
word fit will match the search string; the fit in fitness, for example,
will not.

Regular
expression

If toggled on, the search term will be read as a regular expression.
See "Using regular expressions" below.

Find anchor When a search term is entered, the matches in the document are
highlighted and one of these matches will be marked as the current
selection. The Find anchor toggle determines whether that first
current selection is made relative to the cursor position or not. If
Find anchor is toggled on, then the first currently selected match
will be the next match from the current cursor location. If Find
anchor is toggled off, then the first currently selected match will
be the first match in the document, starting from the top.

Find in selection When toggled on, locks the current text selection and restricts the
search to the selection. Otherwise, the entire document is
searched. Before selecting a new range of text, unlock the current
selection by toggling off the Find in Selection option.

Using regular expressions
You can use regular expressions (regex) to find a text string. To do this, first, switch the Regular

expression option on. This specifies that the text in the search term field is to be evaluated as
a regular expression. Next, enter the regular expression in the search term field. For help with

building a regular expression, click the Regular Expression Builder button, which is located
to the right of the search term field. Click an item in the Builder to enter the corresponding regex
metacharacter/s in the search term field. The screenshot below shows a simple regular
expression to find email addresses.

© 2018 Altova GmbH

Working with Mappings 87Common Tasks

Altova MapForce 2018 Professional Edition

The following custom set of regular expression metacharacters are supported when finding and
replacing text.

. Matches any character. This is a placeholder for a single character.

(abc) The (and) metacharacters mark the start and end of a tagged expression. Tagged
expressions may be useful when you need to tag ("remember") a matched region for
the purpose of referring to it later (back-reference). Tagged expressions are similar to
matched subexpressions (indexed groups) in the .NET flavour of regular
expressions. Up to nine sub-expressions can be tagged (and then back-referenced
later).

For example, (the) \1 matches the string the the. This expression can be

literally explained as follows: match the string "the" (and remember it as a tagged
region), followed by a space character, followed by a back-reference to the tagged
region matched previously.

\n Where n is 1 through 9 , n refers to the first through ninth tagged region (see
above).

\< Matches the start of a word.

\> Matches the end of a word.

\ Escapes the character following the backslash. In other words, the expression \x
allows you to use the character x literally. For example, \[would be interpreted as
[and not as the start of a character set.

[...] Matches any characters in this set. For example, [abc] matches any of the

characters a, b or c. You can also use ranges: for example [a-z] for any lower

case character.

88 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

[^...] Matches any characters not in this set. For example, [^A-Za-z] matches any

character except an alphabetic character.

^ Matches the start of a line (unless used inside a set, see above).

$ Matches the end of a line. For example, A+$ matches one or more A's at end of line.

* Matches zero or more occurrences of the preceding expression. For example, Sa*m

matches Sm, Sam, Saam, Saaam and so on.

+ Matches one or more occurrences of the preceding expression. For example, Sa+m

matches Sam, Saam, Saaam and so on.

Finding special characters
You can search for any the following special characters within text, provided that the Regular

expression option is enabled:
\t (Tab)
\r (Carriage Return)
\n (New line)
\\ (Backslash)

For example, to find a tab character, press Ctrl + F, select the option, and then
enter \t in the Find dialog box.

4.1.10 Previewing the XSLT Code

You can preview the XSLT code generated by MapForce if you selected XSLT 1.0 or XSLT 2.0 as
data transformation language (see Selecting a transformation language).

To preview the generated XSLT 1.0 (or XSLT 2.0) code, do one of the following:

To preview the XSLT 1.0 code, click the XSLT tab under the Mapping window.
To preview the XSLT 2.0 code, click the XSLT2 tab under the Mapping window.

Note: The XSLT (or XSLT2) tab becomes available if you have selected XSLT (or XSLT2,
respectively) as transformation language.

4.1.11 Generating XSLT Code

To generate XSLT code:

1. Select the menu item File | Generate code in | XSLT 1.0 (XSLT 2.0).
2. Select the folder you want to save the generated XSLT file, and click OK. MapForce

generates the code and displays the result of the operation in the Messages window.

The name of the generated .xslt file has the form <A>MapTo.xslt, where:

"<A>" is the value of the Application Name field in mapping settings (see Changing the
Mapping Settings).

© 2018 Altova GmbH

Working with Mappings 89Common Tasks

Altova MapForce 2018 Professional Edition

"" is the name of the target mapping component. To change this value, open the
settings of the target component and edit the value of the Component Name field (see
Changing the Component Settings).

The folder where the .xslt file is saved also contains a batch file called DoTransform.bat which
can be run with RaptorXML Server to transform the data (see Automation with RaptorXML Server).

To run the transformation with RaptorXML Server:

1. Download and install RaptorXML from the download page (https://www.altova.com/
download#server).

2. Start the DoTransform.bat batch file located in the previously designated output folder.

Note that you might need to add the RaptorXML installation location to the path variable of the
Environment Variables. You can find the RaptorXML documentation on the website documentation
page (https://www.altova.com/documentation).

4.1.12 Previewing the XQuery Code

You can preview the XQuery code generated by MapForce if you selected XQuery as data
transformation language (see Selecting a transformation language).

To preview the generated XQuery code:

Click the XQuery tab under the Mapping window.

Note: The XQuery tab becomes available if you have selected XQuery as transformation
language.

4.1.13 Working with Multiple Mapping Windows

MapForce uses a Multiple Document Interface (MDI). Each mapping file you open in MapForce
has a separate window. This enables you to work with multiple mapping windows and arrange or
resize them in various ways inside the main (parent) MapForce window. You can also arrange all
open windows using the standard Windows layouts: Tile horizontally, Tile vertically, Cascade.

When multiple mappings are open in MapForce, you can quickly switch between them using the
tabs displayed in the lower part of the Mapping pane.

https://www.altova.com/download#server
https://www.altova.com/download#server
https://www.altova.com/documentation

90 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Window management options are available both on the Window menu and on the Windows
dialog box. From the Windows dialog box, you can take actions against any or all currently open
mapping windows (including saving, closing, or minimizing them).

Windows dialog box

You can open the Windows dialog box using the menu command Window | Windows... To
select multiple windows in the Windows dialog box, click the required entries while holding the
Ctrl key pressed.

© 2018 Altova GmbH

Working with Mappings 91Common Tasks

Altova MapForce 2018 Professional Edition

4.1.14 Changing the Mapping Settings

You can change the document-specific settings of the currently active mapping design file from
the Mapping Settings dialog box. This information is stored in the *.mfd file.

To open the Mapping Settings dialog box:

On the File menu, click Mapping Settings.

Mapping Settings dialog box

The available settings are as follows.

Application Name Defines the XSLT1.0/2.0 file name prefix or the Java, C# or C
++ application name for the generated transformation files.

Base Package Name Defines the base package name for the Java output.

Make paths absolute in
generated code

Defines whether the file paths should be relative or absolute
in the generated program code, as well as in MapForce
Server Execution files (mfx) and in mapping functions
deployed to FlowForce Server. For more information, see
About Paths in Generated Code.

92 Common Tasks Working with Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Ensure Windows path
convention for file path

The "Ensure Windows path convention...." check box makes
sure that Windows path conventions are followed. When
outputting XSLT2 (and XQuery), the currently processed file
name is internally retrieved using the document-uri function,
which returns a path in the form file:// URI for local files.

When this check box is active, a file:// URI path specification
is automatically converted to a complete Windows file path
(e.g. "C:\...") to simplify further processing.

Line ends This combo box allows you to specify the line endings of the
output files. "Platform default" is the specific default for the
target operating system, e.g. Windows (CR+LF), Mac OS X
(LF), or Linux (LF). You can also select a specific line ending
manually. The settings you select here are crucial when you
deploy a mapping to FlowForce Server running on a different
operating system.

XML Schema Version Lets you define the XML Schema Version used in the
mapping file. You can define if you always want to load the
Schemas conforming to version 1.0 or 1.1. Note that not all
version 1.1 specific features are currently supported.

If the xs:schema vc:minVersion="1.1" declaration is present,
then version 1.1 will be used; if not, version 1.0 will be used.

If the XSD document has no vc:minVersion attribute or the
value of the vc:minVersion attribute is other than 1.0 or
1.1, then XSD 1.0 will be the default mode.

Note: Do not confuse the vc:minVersion attribute with
the xsd:version attribute. The former holds the XSD
version number, while the latter holds the document
version number.

Changing this setting in an existing mapping causes a
reloading of all schemas of the selected XML schema
version, and might also change its validity.

© 2018 Altova GmbH

Working with Components 93Common Tasks

Altova MapForce 2018 Professional Edition

4.2 Working with Components

Components are the central elements of any mapping design in MapForce. Generally, the term
"component" is a convenient way to call any object which acts as a data source, or as a data
target, or represents your data in the mapping at an intermediary processing stage.

There are two main categories of components: structure components and transformation
components.

The structure components represent the abstract structure or schema of your data. For example,
when you add an XML file to the mapping area (using the menu command Insert | XML Schema/
File), it becomes a mapping component. For further information about structure components and
their specifics, see Data Sources and Targets. With a few exceptions, structure components
consist of items and sequences. An item is the lowest level mapping unit (for example, a single
attribute in the XML file, or an element of simple type). A sequence is a collection of items.

The transformation components either transform data (for example, functions), or assist you in
transformations (for example, constants or variables). For information on how you can use these
components to achieve various data transformation tasks, see Designing Mappings.

With the help of structure components, you can either read data from files or other sources, write
data to files or other sources, or store data at some intermediary stage in the mapping process
(for example, in order to preview it). Consequently, structure components can be of the following
types:

Source. You declare a component as source by placing it on the left of the mapping area,
and, thus, instructing MapForce to read data from it.
Target. You declare a component as target by placing on the right of the mapping area,
and, thus, instructing MapForce to write data to it.
Pass-through. This is a special component type which acts both as a source and target
(for further information, see Chained mappings / pass-through components).

On the mapping area, components appear as rectangles. The following sample mapping
illustrates three source components, one target XML component, and various transformation
components (functions and filters) through which data goes before being written to the source.

94 Common Tasks Working with Components

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

CompletePO.mfd

This mapping sample is available at the following path: <Documents>\Altova\MapForce2018
\MapForceExamples\CompletePO.mfd.

4.2.1 Searching within Components

To search for a specific node/item in a component:

1. Click the component you want to search in, and press the CTRL+F keys.
2. Enter the search term and click Find Next.

© 2018 Altova GmbH

Working with Components 95Common Tasks

Altova MapForce 2018 Professional Edition

Use the Advanced options to define which items (nodes) are to be searched, as well as restrict
the search options based on the specific connections.

4.2.2 Aligning Components

When you move components in the mapping pane, MapForce displays auto-alignment guide
lines. These guide lines help you align a component to any other component in the mapping
window.

In the sample mapping below, the lower component is being moved. The guide lines show that it
can be aligned to the component on the left side of the mapping.

Component auto-alignment guide lines

96 Common Tasks Working with Components

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To enable or disable this option:

1. On the Tools menu, click Options.
2. In the Editing group, select the Align components on mouse dragging check box.

4.2.3 Changing the Component Settings

After you add a component to the mapping area, you can configure the settings applicable to it
from the Component Settings dialog box. You can open the Component settings dialog box in one
of the following ways:

Select the component and, on the Component menu, click Properties.
Double-click the component header.
Right-click the component header, and then click Properties.

Note that the available options depend on the type of the component. For reference to the settings
applicable to each component type, see:

XML Component Settings
Database Component Settings
CSV Component Settings
Fixed-Length Field Component Settings

For any file-based component, such as XML, a File/String () button appears next to
the root node. This button specifies advanced options applicable if you want to process or
generate multiple files in a single mapping (see Processing Multiple Input or Output Files
Dynamically). Additionally, it enables advanced options for parsing strings or serializing data to
strings (see Parsing and Serializing Strings).

4.2.4 Duplicating Input

Sometimes, you may need to configure a component to accept data from more than one source.
For example, you may need to convert data from two different XML schemas into a single
schema. To make the destination schema accept data from both source schemas, you can
duplicate any of the input items in the component. Duplicating input is meaningful only for a
component which is a target component. On any given target component, you can duplicate as
many items as required.

To duplicate a particular input item, right-click it and select Add Duplicate Input After/Before
from the context menu.

© 2018 Altova GmbH

Working with Components 97Common Tasks

Altova MapForce 2018 Professional Edition

In the image above, the item LineItem is being duplicated in order to provide the ability to map
data from a second source.

Once you duplicate an input, you can make connections both to the original input and to the
duplicate input. For example, this would enable you to copy data from source A to original input,
and data from source B to the duplicate input.

Note: Duplication of XML attributes is not allowed, as it would make the resulting XML instance
invalid. In case of XML elements, duplicating input is allowed regardless of the value of the
element's maxOccurs attribute in the schema. This behaviour is intentional, since the
schema could change later, or the source data could be optional. For example, a
mapping could generate a single XML element, even if the input is duplicated on the
mapping.

For a step-by-step example, see Map Multiple Sources to One Target.

98 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4.3 Working with Connections

A mapping is ultimately about transforming data from one format or structure into another. In a
very basic mapping scenario, you add to the mapping area the components which represent your
source and your target data (for example, a source XML schema and a destination one), and then
draw visually the mapping connections between the two structure. A connection is, therefore, the
visual representation of how data is mapped from a source to a destination.

Components have inputs and outputs which appear on the mapping as small triangles, called
connectors. Input connectors are positioned to the left of any item to which you can draw a
connection. Output connectors are positioned to the right of any item from which you can draw a
connection.

To draw a connection between two items:

Click the output connector of a source item and drag it to a destination item. When the
drop action is allowed, a link tooltip appears next to the text cursor.

An input connector accepts only one incoming connection. If you try to add a second connection
to the same input, a message box appears asking if you want to replace the connection with a
new one or duplicate the input item. An output connector can have several connections, each to a
different input.

To move a connection to a different item:

Click the stub of the connection (the straight section closer to the target) and drag it to
the destination.

To copy a connection to a different item:

Click the stub of the connection (the straight section closer to the target), and drag it to
the destination while holding down the Ctrl key.

© 2018 Altova GmbH

Working with Connections 99Common Tasks

Altova MapForce 2018 Professional Edition

To view the item(s) at the other end of a connection:

Point to the straight section of a connection (close to the input/output connector). A
tooltip appears which displays the name(s) of the item(s) at the other end of the
connection. If multiple connections have been defined from the same output, then a
maximum of ten item names are displayed. In the sample below, the two target items
are SinglePrice and value2 of the multiply function.

To change the connection settings, do one of the following:

On the Connection menu, click Properties (this menu item becomes enabled when you
select a connection).
Double-click the connection.
Right-click the connection, and then click Properties.

See also Connection Settings.

To delete a connection, do one of the following:

Click the connection, and then press the Delete key.
Right-click the connection, and then click Delete.

4.3.1 About Mandatory Inputs

To aid you in the mapping process, MapForce highlights in orange the mandatory inputs in target
components:

In XML and EDI components these are items where the minOccurs parameter is equal/
greater than 1.
In databases these are fields that have been defined as "not null"
WSDL calls and WSDL response (all nodes)
XBRL nodes that have been defined as mandatory
In functions these are the specific mandatory parameters such that once one parameter
has been mapped, then the other mandatory ones will be highlighted to show that a
connection is needed. E.g. once one of the filter input parameters is mapped, then the
other one is automatically highlighted.
Worksheet names in MS Excel sheets

Example:
When creating a mapping like CompletePO.mfd, available in the ...\MapForceExamples folder, the

100 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

inserted XML Schema files exist as shown below.

The Number element of the Customers component is then connected to the Number element of
the CompletePO component. As soon as the connection has been made, the mandatory items/
nodes of the CompletePO component are highlighted. Note that the collapsed "Article" node/icon
is also highlighted.

4.3.2 Changing the Connection Display Preferences

You can selectively view the connections in the mapping window.

Show selected component connectors switches between showing:
all mapping connectors in black, or
those connectors relating to the currently selected component in black. Other
connectors appear dimmed.

© 2018 Altova GmbH

Working with Connections 101Common Tasks

Altova MapForce 2018 Professional Edition

Show connectors from source to target switches between showing:
connectors that are directly connected to the currently selected component, or
connectors linked to the currently selected component, originating from source and
terminating at the target components.

4.3.3 Annotating Connections

Individual connections can be labeled allowing you to comment your mapping in great detail. This
option is available for all connection types.

To annotate to a connection:

1. Right-click the connection, and select Properties from the context menu.
2. Enter the name of the currently selected connection in the Description field. This

enables all the options in the Annotation Settings group.
2. Use the remaining groups to define the starting location, alignment and position of the

label.

3. Activate the Show annotations icon in the View Options toolbar to see the
annotation text.

Note: If the Show annotations icon is inactive, you can still see the annotation text if you
place the mouse cursor over the connection. The annotation text will appear in a callout if

the Show tips toolbar button is active in the View Options toolbar.

4.3.4 Connection Settings

Right-clicking a connection and selecting Properties from the context menu, or double-clicking a
connection, opens the Connection Settings dialog box in which you can define the settings of the
current connection. Note that unavailable options are disabled.

102 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Connection Settings dialog box

For items of complexType, you can choose one of the following connection types for mapping
(note that these settings also apply to complexType items which do not have any text nodes):

Target Driven
(Standard)

Changes the connection type to "Target-driven" (see Target-driven /
Standard mapping).

Copy-all (Copy
child items)

Changes the connection type to "Copy-all" and automatically connects all
identical items in the source and target components (see Copy-all
connections).

Source Driven
(mixed content)

Changes the connection type to "Source-driven", and enables the
selection of additional elements to be mapped. The additional elements
must be child items of the mapped item in the XML source file, to qualify
for mapping.

Activating the Map Processing Instructions or Map Comments check
boxes enables you to include these data groups in the output file.

© 2018 Altova GmbH

Working with Connections 103Common Tasks

Altova MapForce 2018 Professional Edition

Note: CDATA sections are treated as text.

The Annotation Settings group enables you to annotate the connection (see Annotating
Connections).

4.3.5 Connection Context Menu

When you right-click a connection, the following context commands are available.

Connect matching children Opens the "Connect Matching Children" dialog box (see
Connecting Matching Children). This command is enabled
when the connection is eligible to have matching children.

Delete Deletes the selected connection.

Go to source: <item name> Selects the source connector of the current connection.

Go to target: <item name> Selects the target connector of the current connection.

Target Driven (Standard) Changes the connection type to "Target-driven" (see Target-
driven connections).

104 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Copy-All (Copy Child Items) Changes the connection type to "Copy-all" and automatically
connects all identical items in the source and target
components (see Copy-all connections).

This command is enabled (and meaningful) when both the
source item and the target item have children items.

Source Driven (Mixed Content) Changes the connection type to "Source-driven" (see Source-
driven connections).

This command is enabled (and meaningful) when both the
source item and the target item have children items.

Insert Sort: Nodes/Rows Adds a Sort component between the source and the target
item (see Sorting Data).

Insert Filter: Nodes/Rows Adds a Filter component between the source and the target
item (see Filters and Conditions).

Insert SQL-Where Condition Adds a SQL-Where component between the source and the
target item (see SQL WHERE / ORDER Component).

Insert Value-Map Adds a Value-Map component between the source and the
target item (see Using Value-Maps).

Properties Opens the Connections Settings dialog box (see Connection
Settings).

4.3.6 Connecting Matching Children

You can create multiple connections between items of the same name in both the source and
target components. Note that a "Copy-all" connection (see Copy-all connections) is created by
default.

To toggle the "Auto Connect Matching Children" option on or off, do one of the following:

Click the Auto Connect Matching Children () toolbar button.
On the Connection menu, click Auto Connect Matching Children.

To change the settings for "Connect Matching Children":

1. Connect two (parent) items that share identically named child items in both
components.

2. Right click the connection and select the Connect matching child elements option.

© 2018 Altova GmbH

Working with Connections 105Common Tasks

Altova MapForce 2018 Professional Edition

3. Select the required options (see the table below), and click OK. Connections are created
for all the child items that have identical names and adhere to the settings defined in the
dialog box.

Note: The settings you define here are applied when connecting two items if the Toggle auto

connect of children () toolbar button is active.

Ignore Case Ignores the case of the child item names.

Ignore Namespaces Ignores the namespaces of the child items.

Recursive Creates new connections between any matching items
recursively. That is, a connection is created no matter how
deep the items are nested in the hierarchy, as long as they
have the same name.

Mix Attributes and Elements When enabled, allows connections to be created between
attributes and elements which have the same name. For
example, a connection is created if two "Name" items
exist, even though one is an element, and the other is an
attribute.

Create copy-all connections This setting is active by default. It creates (if possible) a
connection of type "Copy-all" between source and target
items.

Ignore existing output
connections

Creates additional connections for any matching items,
even if they already have outgoing connections.

Retain Retains existing connections.

Overwrite Recreates connections according to the settings defined.
Existing connections are discarded.

106 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Delete all existing Deletes all existing connections, before creating new ones.

Deleting connections
Connections that have been created using the Connect Matching Children dialog, or during the
mapping process, can be removed as a group.

To delete connections:

1. Right-click the item name in the component, not the connection itself ("Person" in this
example).

2. Select Delete Connections | Delete all ... connections.

Delete all direct connections Deletes all connections directly mapped to, or from, the
current component to any other source or target
components.

Delete all incoming child
connections

Only active if you have right clicked an item in a target
component. Deletes all incoming child connections.

Delete all outgoing child
connections

Only active if you have right clicked an item in a source
component. Deletes all outgoing child connections.

4.3.7 Notifications on Missing Parent Connections

When you create connections between source and target items manually, MapForce
automatically analyzes the possible mapping outcomes. If you are mapping two child items, a
notification message can appear suggesting that you also connect the parent of the source item
with the parent in the target item.

This notification message helps you prevent situations where a single child item appears in the
Output window when you preview the mapping. This will generally be the case if the source node
supplies a sequence instead of a single value.

To understand how this works, open the sample mapping Tut-OrgChart.mfd available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. If you connect the
source text() item to the target text() item, a notification message appears, stating that the
parent item "para" is not connected and will only be generated once in the output.

© 2018 Altova GmbH

Working with Connections 107Common Tasks

Altova MapForce 2018 Professional Edition

Tut-OrgChart.mfd (MapForce Basic Edition)

To generate multiple para items in the target, connect the source and target para items to each
other.

To disable such notifications, do the following:

1. On the Tools menu, click Options.
2. Click the Messages group.
3. Click to clear the When creating a connection, suggest connecting ancestor items

check box.

4.3.8 Moving Connections and Child Connections

When you move a connection to a different component, MapForce automatically matches
identical child connections and will prompt you whether it should move them to the new location
as well. A common use of this feature is if you have an existing mapping and then change the root
element of the target schema. Normally, when this happens, you would need to remap all
descending connections manually. This feature helps you prevent such situations.

This example uses the Tut-ExpReport.mfd file available in the <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\ folder.

108 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Tut-ExpReport.mfd (MapForce Basic Edition)

To understand how it works, do the following:

1. Open the Tut-ExpReport.mfd sample mapping.
2. Edit the ExpReport-Target.xsd schema outside MapForce so as to change the Company

root element of the target schema to Company-EU. You do not need to close MapForce.
3. After you have changed the Company root element of the target schema to Company-EU,

a "Changed files" prompt appears in MapForce.

© 2018 Altova GmbH

Working with Connections 109Common Tasks

Altova MapForce 2018 Professional Edition

4. Click the Reload button to reload the updated Schema. Since the root element was
deleted, the component displays multiple missing nodes.

5. Click Select new root element at the top of the component. (You can also change the
root element by right clicking the component header and selecting Change Root
Element from the context menu.)

6. Select Company-EU as new root element and click OK to confirm. The Company-EU root
element is now visible at the top of the component.

110 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

7. Click the target stub of the connection that exists between the expense-report item of
the source component and the Company item of the target component, and then drag-and-
drop it on the Company-EU root element of the target component.

A notification dialog box appears.

8. Click Include descendent connections. This instructs MapForce to re-map the correct
child items under the new root element, and the mapping becomes valid again.

Note: If the node to which you are mapping has the same name as the source node but is in a
different namespace, then the notification dialog box will contain an additional button:
"Include descendants and map namespace". Clicking this button moves the child
connections of the same namespace as the source parent node to the same child nodes
under the different namespace node.

4.3.9 Keeping Connections After Deleting Components

You can decide what happens when you delete a component that has multiple (child) connections
to another component, e.g. a filter or sort component. This is very useful if you want to keep all
the child connections and not have to restore each one individually.

You can opt to keep/restore the child connections after the component is deleted, or to delete all
child connections immediately.

Select Tools | Options | Editing (tab) to see the current setting. The default setting for the check
box is inactive, i.e. "Smart component deletion (keep useful connections)" is disabled.

© 2018 Altova GmbH

Working with Connections 111Common Tasks

Altova MapForce 2018 Professional Edition

E.g. using the CompletePO.mfd mapping in the ...\MapForceExamples folder, and the check box
is active, the Customer filter is a copy-all connection with many connected child items, as shown
below.

Deleting the Customer filter opens a prompt asking if you really want to delete it. If you select
Yes, then the filter is deleted but all the child connectors remain.

Note that the remaining connectors are still selected (i.e. shown in red). If you want to delete
them as well, hit the Del. key.

112 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Clicking anywhere in the mapping area deselects the connectors.

If the "Smart component deletion..." check box is inactive, then deleting the filter will delete all
child connectors immediately.

Note: If a filter component has both "on-true" and "on-false" outputs connected, then the
connectors for both outputs will be retained.

4.3.10 Dealing with Missing Items

Over time, it is likely that the structure of one of the components in a mapping may change e.g.
elements or attributes are added/deleted to an XML schema. MapForce uses placeholder items to
retain all the connectors, and any relevant connection data between components, when items
have been deleted.

Example:
Using the MFCompany.xsd schema file as an example. The schema is renamed to
MyCompany.xsd and a connector is created between the Company item in both schemas. This
creates connectors for all child items between the components, if the Autoconnect Matching
Children is active.

While editing MyCompany.xsd, in XMLSpy, the First and Last items in the schema are deleted.
Returning to MapForce opens a Changed Files notification dialog box, prompting you to reload the
schema. Clicking Reload updates the components in MapForce.

© 2018 Altova GmbH

Working with Connections 113Common Tasks

Altova MapForce 2018 Professional Edition

The deleted items and their connectors are now marked in the MyCompany component. You
could now reconnect the connectors to other items if necessary, or delete the connectors.

Note that you can still preview the mapping (or generate code), but warnings will appear in the
Messages window if you do so at this point. All connections to, and from, missing items are
ignored during preview or code-generation.

Clicking one of the highlighted connectors and deleting it, removes the "missing" item from the
component, e.g. Last, in MyCompany.

Renamed items
If a parent item is renamed e.g. Person to ZPerson, then the original parent item connector is
retained and the child items and their connectors are deleted.

114 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

"Copy all" connectors and missing items
Copy all connections are treated in the same way as normal connections, with the only difference
being that the connectors to the missing child items are not retained or displayed.

Renamed or deleted component sources
If the data source of a component i.e. schema, database etc. has been renamed or deleted, then
all items it contained are highlighted. The red frame around the component denotes that there is
no valid connection to a schema or database file and prevents preview and code generation.

© 2018 Altova GmbH

Working with Connections 115Common Tasks

Altova MapForce 2018 Professional Edition

Placing the mouse cursor over the highlighted component, opens a popup containing pertinent
information.

Double-clicking the title bar of the highlighted component opens the Component Settings dialog
box. Clicking the Browse button in the Schema file group allows you to select a different, or
backed-up version of the schema. Please see "Component" in the Reference section for more
information.

Clicking the Change button in the dialog box that opens if the component is a database, allows
you to select a different database, or change the tables that appear in the database component.
Connectors to tables of the same name will be retained.

116 Common Tasks Working with Connections

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

All valid/correct connections (and relevant database data, if the component is a database) will be
retained if you select a schema or database of the same structure.

© 2018 Altova GmbH

Working with Mapping Projects 117Common Tasks

Altova MapForce 2018 Professional Edition

4.4 Working with Mapping Projects

In addition to creating standalone mappings, you can also create mapping projects that include
multiple mappings. Mappings added to a project are easily accessible from the Project window.

Project window (MapForce Enterprise Edition)

The main advantage of projects is that you can define common code generation settings (such as
the target language and the output directory) for all the mapping files included in that particular
project. You can also create folders inside projects, and specify custom code generation settings
for each individual folder in a project. For more information about the MapForce-generated program

118 Common Tasks Working with Mapping Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

code (in C++, C#, and Java), see Code Generator.

In MapForce Enterprise edition, you can additionally create Web Service projects. Such projects
enable you to generate Java or C# program code that implements SOAP Web services, based on
existing Web Services Description Language (WSDL) files.

4.4.1 Opening, Searching, and Closing Projects

MapForce project files have the *.mfp extension. You can open existing MapForce projects in the
same way as you open mappings (on the File menu, click Open).

When a mapping project is opened in MapForce, the Project window shows all files and folders
that have been added to the project. By default, when you run MapForce for the first time, it loads
the MapForceExamples.mfp project in the Project window.

To search for files within a project:

1. In the Project window, click the project or the folder to be searched.
2. Press Ctrl + F.
3. Optionally, select your search options. For example, if you want to include folder names

in the search, select the Find in folder names option.

To close a project:

On the Project menu, click Close Project.

4.4.2 Creating a New Project

To create a new project:

1. On the File menu, click New.
2. Select Project File, and then click OK.

© 2018 Altova GmbH

Working with Mapping Projects 119Common Tasks

Altova MapForce 2018 Professional Edition

3. Enter the project name in the Save Project As dialog box, and click Save. The new
project is now displayed in the Project window.

You can now add mappings to the project.

To add the currently active mapping to the project, do one of the following:

On the Project menu, click Add Active File to Project .

Right-click the project, and select Add Active File to Project .

To add existing mapping files to the project, do one of the following:

On the Project menu, click Add Files to Project .

Right-click the project, and select Add Files to Project .

Tip: To open multiple files, hold the Ctrl key while selecting the files in the Open dialog box.

To remove a file or folder from a project, do one of the following:

Right-click the file in the Project window, and select Delete from the context menu.
Select the file in the Project window, and press Delete.

120 Common Tasks Working with Mapping Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4.4.3 Setting the Code Generation Settings

For any project, you can specify code generation settings that will affect all the mappings inside a
project. To open the Project Settings dialog box, do one of the following:

Right-click the project name in the Project window and choose Properties from the
context menu
On the Project menu, click Properties.

Project Settings dialog box

The available settings are as follows. Note that the project name and the project directory cannot
be changed after the project has been created.

Output name The value entered here determines the name of the
generated project or solution, as well as other objects
names in the generated code.

Output directory Defines the Windows folder where the generated code
(from all mappings in this project) will be saved. By default,
output is saved to the output/ directory located in the
project directory.

Language Defines the code generation language for all mapping files
in this project.

Base package name This setting is applicable if you selected Java as
transformation language. It defines the name of the base
package in the generated Java project.

© 2018 Altova GmbH

Working with Mapping Projects 121Common Tasks

Altova MapForce 2018 Professional Edition

4.4.4 Managing Project Folders

If you want to organize the mappings inside a project into folders, you can create as many folders
as required, and add mappings to (or drag mappings into) them. Such folders are "virtual" and
meaningful only inside a MapForce project; they do not correspond to actual folders on your
operating system. One of the advantages of creating folders is that you can define common code
generation settings (such as the target language and the output directory) for all the mapping files
under that particular folder.

Folder Properties dialog box

To create a folder inside a MapForce project:

1. Do one of the following:

o On the Project menu, click Create Folder .

o Right-click the project, and select Create Folder .

2. In the Properties dialog box, enter the required code generation settings, and click OK.

The settings you can define in the Folder Properties dialog box are as follows.

Name The name of the folder.

Use default project settings This is the default option and it means that the code
generation settings in the current folder are the same as for
the entire project. Therefore, when you generate code from
you project, MapForce will use the code generation
settings defined at the project level, not at the folder level.

If your folder requires custom code generation settings
(other than those set at the project level), select Use the

122 Common Tasks Working with Mapping Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

following settings and specify the code output directory
and language as required.

Output directory Defines the Windows folder where the generated code
(from all mappings in this folder) will be saved.

Language Defines the code generation language for all mapping files
in this folder.

Chapter 5

Designing Mappings

124 Designing Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5 Designing Mappings

Altova website: Data integration tool

This section describes how to design data mappings, and ways in which you can transform data
on the mapping area. It also includes various considerations applicable to mapping design. Use
the following roadmap for quick access to specific tasks or concepts:

I want to... Read this topic...

Create or edit path references to
miscellaneous schema, instance, and other
files used by a mapping.

Using Relative and Absolute Paths

Fine-tune the data mapping for specific needs
(for example, influence the sequence of items
in a target component).

Connection Types

Use the output of a component as input of
another component.

Chained mappings / pass-through components

Process multiple files (for example, all files
within a directory) in the same mapping, either
as a source or a target.

Processing Multiple Input or Output Files
Dynamically

Pass an external value (such as a string
parameter) to the mapping.

Supplying Parameters to the Mapping

Get a string value out of the mapping, instead
of a file.

Returning String Values from a Mapping

Store some mapping data temporarily for later
processing (similar to variables in a
programming language).

Using Variables

Sort data in ascending or descending order. Sorting Data

Filter nodes/rows based on specific criteria, or
process values conditionally.

Filters and Conditions

Merge or join data from multiple sources with
different schema.

Joining Data
Merging Data from Multiple Schemas

Process key-value pairs, for example, to
convert months from numerical representation
(01, 02, and so on) to text representation
(January, February, and so on).

Using Value-Maps

Configure a mapping to return an error when a
specific condition occurs.

Adding Exceptions

Learn how to avoid undesired results when
designing complex mappings.

Mapping rules and strategies

https://www.altova.com/mapforce

© 2018 Altova GmbH

 125Designing Mappings

Altova MapForce 2018 Professional Edition

Importantly, MapForce additionally includes an extensive built-in function library (see Function
Library Reference) to help you with a wide array of processing tasks. When the built-in library is
not sufficient, you can always build your own custom functions in MapForce, or re-use external
XSLT files, as well as .dll or Java .class libraries. For further information, see Using Functions.

126 Designing Mappings Using Relative and Absolute Paths

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5.1 Using Relative and Absolute Paths

A mapping design file (*.mfd) may have references to several schema and instance files. The
schema files are used by MapForce to determine the structure of the data to be mapped, and to
validate it. The instance files, on the other hand, are required to read, preview, and validate the
source data against the schema.

Mappings may also include references to StyleVision Power Stylesheets (*.sps) files, used to
format data for outputs such as PDF, HTML and Word. Also, mappings may have references to
file-based databases such as Microsoft Access or SQLite.

All references to files used by a mapping design are created by MapForce when you add a
component to the mapping. However, you can always set or change such path references
manually if required.

This section provides instructions for setting or changing the path to miscellaneous file types
referenced by a mapping, and the implications of using relative versus absolute paths.

5.1.1 Using Relative Paths on a Component

The Component Settings dialog box (illustrated below for an XML component) provides the option
to specify either absolute or relative paths for various files which may be referenced by the
component:

Input files (that is, files from which MapForce reads data)
Output files (that is, files to which MapForce writes data)
Schema files (applicable to components which have a schema)
Structure files (applicable to components which may have a complex structure, such as
input or output parameters of user-defined functions, or variables)
StyleVision Power Stylesheet (*.sps) files, used to format data for outputs such as PDF,
HTML and Word.

You can enter relative paths directly in the relevant text boxes (shown enclosed in a red frame in
the image below).

Before entering relative file paths, make sure to save the mapping file (.mfd) first. Otherwise,
all relative paths are resolved against the personal application folder of Windows (Documents
\Altova\MapForce2018), which may not be the intended behavior.

You can also instruct MapForce to save all above-mentioned file paths relative to the mapping
.mfd file. In the sample image below, notice the option Save all file paths relative to MFD file.
If the check box is enabled (which is the default and recommended option), the paths of any files
referenced by the component will be saved relative to the path of the mapping design file (.mfd).
This affects all files referenced by the component (shown enclosed in a red frame in the image).

© 2018 Altova GmbH

Using Relative and Absolute Paths 127Designing Mappings

Altova MapForce 2018 Professional Edition

Component Settings dialog box

Although the component illustrated above is an XML component, the setting Save all file paths
relative to MFD file works in the same way for the following files:

Structure files used by complex input or output parameters of user-defined functions and

128 Designing Mappings Using Relative and Absolute Paths

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

variables of complex type
Input or output flat files *
Schema files referenced by database components which support XML fields *
Input or output XBRL, FlexText, EDI, Excel 2007+, JSON files **

* MapForce Professional and Enterprise Edition

** MapForce Enterprise Edition only

Taking the component above as an example, if the .mfd file is in the same folder as the
books.xsd and books.xml files, the paths will be changed as follows:

C:\Users\altova\Documents\MyMapping\books.xsd will change to books.xsd
C:\Users\altova\Documents\MyMapping\books.xml will change to books.xml

Paths that reference a non-local drive or use a URL will not be made relative.

When the check box is enabled, MapForce will also keep track of the files referenced by the
component if you save the mapping to a new folder using the Save as menu command. Also, if all
files are in the same directory as the mapping, path references will not be broken when you move
the entire directory to a new location on the disk.

Using relative paths (and, therefore, enabling the Save all file paths relative to MFD file check
box) may be important in many cases, for example:

The location of the mapping on your operating system is likely to change in future.
The mapping is stored in a directory which is under source control (using a version control
system such as TortoiseSVN, for example).
You intend to deploy the mapping for execution to a different machine or even to a
different operating system.

If the Save all file paths relative to MFD file check box is disabled, saving the mapping does
not modify the file paths (that is, they remain as they appear in the Component Settings dialog
box).

5.1.2 Setting the Path to File-Based Databases

When you add a database file such as Microsoft Access or SQLite to the mapping (see Starting
the Database Connection Wizard), you can use a relative path instead of an absolute one. To use
a relative path, enter the required relative path instead of clicking Browse in the Database
Connection Wizard.

Before entering relative file paths, make sure to save the mapping file (.mfd) first. Otherwise,
all relative paths are resolved against the personal application folder of Windows (Documents
\Altova\MapForce2018), which may not be the intended behavior.

© 2018 Altova GmbH

Using Relative and Absolute Paths 129Designing Mappings

Altova MapForce 2018 Professional Edition

Database Connection Wizard

If the database is a SQLite database, the Connect button becomes enabled if the following is
true:

The path points to a file that can be resolved relatively to the mapping (.mfd) file
The referenced file is a SQLite database.

To change the path of a database component which is already in the mapping, do the following:

1. Right-click the header of the database component, and select Properties (see also
Changing the Component Settings). Alternatively, double-click the component title bar.

2. On the Component Settings dialog box, click Change.

130 Designing Mappings Using Relative and Absolute Paths

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

This re-opens the Database Connection Wizard, from where you can change the database
connection properties (including the path) as already shown above.

Note that “Connection String” always contains an absolute path. It is the database which is used
for the structure information in the component. The relative path in “Data Source” indicates that
the component was created with a relative file path.

Note: When you generate program code, or when you compile MapForce Server execution files
(.mfx), or when you deploy the mapping to FlowForce Server, a relative path will be
converted to an absolute path if the check box Make paths absolute in generated
code is selected from the mapping settings (see About Paths in Generated Code).

5.1.3 Fixing Broken Path References

When you add or change a file reference in a mapping, and the path cannot be resolved,
MapForce displays a warning message. This way, MapForce diminishes the chance for broken
path references to happen. Nevertheless, broken path references may still occur in cases such
as:

You use relative paths, and then move the mapping file to a new directory without moving
the schema and instance files.
You use absolute paths to files in the same directory as the mapping file, and then move
the directory to another location.

When this happens, MapForce highlights the component in red, for example:

© 2018 Altova GmbH

Using Relative and Absolute Paths 131Designing Mappings

Altova MapForce 2018 Professional Edition

Broken path reference

The solution in this case is to double-click the component header and update any broken path
references in the Component Settings dialog box (see also Changing the Component Settings).

5.1.4 Paths in Various Execution Environments

If you generate code from mappings, compile mappings to MapForce Server execution files (.mfx),
or deploy mappings to FlowForce Server, the generated files are no longer run by MapForce.
Instead, the mappings are run by the target environment you have chosen (for example,
RaptorXML Server, MapForce Server, or a C# application). The implication is that, for the mapping
to run successfully, any relative paths must be meaningful in the environment where the mapping
runs.

Consequently, when the mapping uses relative paths to instance or schema files, consider the
base path to be as follows for each target language:

Target language Base path

XSLT/XSLT2 Path of the XSLT file.

XQuery* Path of the XQuery file.

C++, C#, Java* Working directory of the generated
application.

BUILT-IN* (when previewing the mapping in
MapForce)

Path of the mapping (.mfd) file.

BUILT-IN* (when running the mapping with MapForce
Server)

The current working directory.

BUILT-IN* (when running the mapping with MapForce
Server under FlowForce Server control)

The working directory of the job or the
working directory of FlowForce Server.

132 Designing Mappings Using Relative and Absolute Paths

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

* Languages availab le in MapForce Professional and Enterprise editions

If required, you can instruct MapForce to convert all paths from relative to absolute when
generating code for a mapping. This option might be useful if you run the mapping code (or the
MapForce Server execution file) on the same operating system, or perhaps on another operating
system where any absolute path references used by the mapping can still be resolved.

To convert all paths to absolute in the generated code, select the Make paths absolute in
generated code check box, on the Mapping Settings dialog box (see Changing the Mapping
Settings).

When you generate code and the check box is selected, MapForce resolves any relative paths
based on the directory of the mapping file (.mfd), and makes them absolute in the generated
code. This setting affects the path of the following files:

Input and output instance files for all file-based component kinds
Access and SQLite database files used as mapping components

When the check box is not selected, the file paths will be preserved as they are defined in the
component settings.

5.1.5 Copy-Paste and Relative Paths

When you copy a component from a mapping and paste it into another, a check is performed to
ensure that relative paths of schema files can be resolved against the folder of the destination
mapping. If the path cannot be resolved, you will be prompted to make the relative paths absolute
by means of the folder of the source mapping. It is recommended to save the destination mapping
first, otherwise relative paths are resolved against the personal application folder.

© 2018 Altova GmbH

Connection Types 133Designing Mappings

Altova MapForce 2018 Professional Edition

5.2 Connection Types

When you create a mapping connection (and both the source and the target item have child
items), you can optionally choose the type of the connection to be one of the following.

Target Driven (Standard)
Source Driven (Mixed Content)
Copy-All (Copy Child Items).

The connection type determines the sequence of children items in the output generated by the
mapping. This section provides information about each connection type and the scenarios when
they are useful.

5.2.1 Target-driven connections

When a connection is "target-driven" (or "standard"), the sequence of child nodes in the mapping
output is determined by the sequence of nodes in the target schema. This connection type is
suitable for most mapping scenarios and is the default connection type used in MapForce.

On a mapping, target-driven connections are shown with a solid line.

Target-driven connections might not be suitable when you want to map XML nodes that contain
mixed context (character data as well as child elements), for example:

<p>This is our <i>best-selling</i> product.</p>

With mixed content, it is likely that you want to preserve the sequence of items as they appear in
the source file, in which case a source-driven connection is recommended (see Source-driven
connections).

5.2.2 Source-driven connections

Source-driven (Mixed Content) mapping enables you to automatically map text and child nodes in
the same sequence that they appear in the XML source file.

Mixed content text node content is supported/mapped.
The sequence of child nodes is dependent on the source XML instance file.

134 Designing Mappings Connection Types

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Mixed content mappings are shown with a dotted line.

Source-driven / mixed content mapping can also be applied to XML schema complexType items.
Child nodes will then be mapped according to their sequence in the XML source file.

Source-driven / mixed content mapping supports:

Mappings from

As source components:
– XML schema complexTypes (including mixed content, i.e. mixed=true)
– XML schema complexTypes (including mixed content) in embedded schemas of a

database field

As target components:
– XML schema complexTypes (including mixed content),
– XML schema complexTypes (including mixed content) in embedded schemas of a

database field

Note: CDATA sections are treated as text.

Mapping mixed content5.2.2.1

The files used in the following example (Tut-OrgChart.mfd, Tut-OrgChart.mfd.xml, Tut-
OrgChart.mfd.xsd, Tut-Person.xsd) are available in the ...\MapForceExamples\Tutorial\
folder.

Source XML instance
A portion of the Tut-OrgChart.xml file used in this section is shown below. Our area of concern
is the mixed content element "para", along with its child nodes "bold" and "italic".

The para element also contains a Processing Instruction (<?sort alpha-ascending?>) as well
as Comment text (<!--Company details... -->) which can also be mapped, as shown below.

© 2018 Altova GmbH

Connection Types 135Designing Mappings

Altova MapForce 2018 Professional Edition

Note the sequence of the text and bold/italic nodes in the XML instance file:

<para> The company...
<bold>Vereno</bold>in 1995 ...
<italic>multi-core...</italic>February 1999

<bold>Nano-grid.</bold>The company ...
<italic>offshore...</italic>to drive...

</para>

Initial mapping
The initial state of the mapping when you open Tut-Orgchart.mfd is shown below.

Output of above mapping
The result of the initial mapping is shown below: Organization Chart as well as the individual office
names have been output.

136 Designing Mappings Connection Types

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Mapping the para element
The image below shows an example of mixed content mapping. The para element is of mixed
content, and the connector is shown as a dotted line to highlight this. The text() node contains
the textual data and needs to be mapped for the text to appear in the target component.

To annotate (add a label to) any connection, right-click it and select Properties (see Annotating
Connections).

The image below shows the content model of the Description element (Desc) of the Tut-
OrgChart.xsd schema file. This definition is identical in both the source and target schemas used
in this example.

Note the following properties of the para element in the Content model:

para is a complexType with mixed="true", of type "TextType"
bold and italic elements are both of type "xs:string", they have not been defined as
recursive in this example, i.e. neither bold, nor italic are of type "TextType"
bold and italic elements can appear any number of times in any sequence within para
any number of text nodes can appear within the para element, interspersed by any
number of bold and italic elements.

© 2018 Altova GmbH

Connection Types 137Designing Mappings

Altova MapForce 2018 Professional Edition

To create mixed content connections between items:

1. Select the menu option Connection | Auto Connect Matching Children to activate this
option, if it is not currently activated.

2. Connect the para item in the source schema, with the para item in the target schema. A
message appears, asking if you would like MapForce to define the connectors as source
driven.

3. Click Yes to create a mixed content connection.

Note: Para is of mixed content, and makes the message appear at this point. The mixed-
content message also appears if you only map the para items directly, without having the
autoconnect option activated.

All child items of para have been connected. The connector joining the para items is
displayed as a dotted line, to show that it is of type mixed content.

4. Click the Output tab to see the result of the mapping.

 5. Click the word Wrap icon in the Output tab icon bar, to view the complete text in the
Output window.

138 Designing Mappings Connection Types

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The mixed content text of each office description has been mapped correctly; the text, as
well as the bold and italic tag content, have been mapped as they appear in the XML
source file.

6. Switch back to the Mapping view.

To remove text nodes from mixed content items:

1. Click the text() node connector and press Del. to delete it.

2. Click the Output tab to see the result of the mapping.

© 2018 Altova GmbH

Connection Types 139Designing Mappings

Altova MapForce 2018 Professional Edition

Result:
all text nodes of the para element have been removed.
mapped bold and italic text content remain
the bold and italic item sequence still follows that of the source XML file.

To map the Processing Instructions and Comments:

1. Right-click the mixed content connection, and select Properties.
2. Under Source-Drive (Mixed content), select the Map Processing Instructions and

Map Comments check boxes.

Mixed content example5.2.2.2

The following example is available as "ShortApplicationInfo.mfd" in the ...\MapForceExamples
folder.

A snippet of the XML source file for this example is shown below.

The mapping is shown below. Please note the following:

140 Designing Mappings Connection Types

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The "SubSection" item connector is of mixed content, and is mapped to the Description
item in the target XML/schema.
The text() nodes are mapped to each other
Trademark text is mapped to the Bold item in the target
Keyword text is mapped to the Italic item in the target

Mapping result
The mixed content text of each description has been mapped correctly; the text, as well as the
bold and italic tag content, have been mapped as they appear in the XML source file.

Using standard connections on mixed content items5.2.2.3

As mentioned before, source-driven (not standard) connections are normally used when mapping
data from mixed content nodes. Otherwise, the resulting output may be undesirable. To see the
consequences of using a standard (target-driven) connection when mapping data from a mixed
content node, follow the steps below:

1. Open the mapping Tut-OrgChart.mfd from the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder.

2. Create a connection between the para node in the source and the para node in the
target. A message appears, asking if you would like MapForce to define the connections

© 2018 Altova GmbH

Connection Types 141Designing Mappings

Altova MapForce 2018 Professional Edition

as source-driven. Click No (this disregards the MapForce suggestion and creates a
standard connection).

Note: Make sure that the connection is standard (target-driven), as shown above. If a Copy-All
connection is created automatically, right-click the connection, and select Target Driven
(Standard) from the context menu.

3. Click the Output tab to see the result of the mapping.

As illustrated above, mapping mixed content nodes using standard connections produces the
following result:

The content of the text() source item is copied to the target; however, the sequence of
child nodes (bold and italic, in this case) in the output corresponds to the sequence in
the target XML schema. In other words, the child nodes (bold and italic, in this case)
appear after the mixed content node text.
For each para element, MapForce has mapped the text() node first, then all bold
items, and, finally, all italic items. As a result, multiple bold and italic items appear
stacked on each other. Note that the content of each item is mapped if a connection
exists to it from the source.

5.2.3 Copy-All Connections

Copy-All connections map data between complex structures (nodes with children items) that are
very similar or identical. The main benefit of "Copy-All" connections is that they simplify the
mapping workspace (one "thick" connection is created instead of multiple).

On the mapping, a "Copy-All" connection appears as a single bold line (with input and output

142 Designing Mappings Connection Types

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

"forks" for each child item) that connects two identical or similar structures.

Copy-All connection

When you draw a mapping connection between two structures on the mapping, MapForce creates
a "Copy-All" connection automatically if it detects that the source and target structure are
assignment compatible (that is, when both structures are either of the same type, or the target is
a subtype of the source type). At mapping runtime, all instance data will be copied from the
source to the target recursively, including children.

To create a "Copy-All" connection manually, right-click an existing connection between two
similar nodes with child items, and select Copy-All (Copy Child Items) from the context menu.

Note the following:

In contexts where a "Copy-All" connection is not meaningful or not supported, it is not
possible to create this kind of connection manually.
A "Copy-All" connection cannot be created to the root element of an XML/Schema
component.
When creating "Copy-All" connections between a schema and a parameter of a user-
defined function, the two components must be based on the same schema. It is not
necessary that they both have the same root elements, however.

For an example of a "Copy-All" connection created manually, take the following steps:

1. Create a new mapping.
2. On the Insert menu, click XML Schema/File and browse for the books.xml file located

in the folder <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\.
3. On the Insert menu, click XML Schema/File and browse for the library.xsd file located

in the folder <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\.
4. Draw a mapping connection between the book node of the "books" component to the

publication node of the "library" component.
5. Right-click the new connection, and select Copy-All (Copy Child Items) from the

context menu.

© 2018 Altova GmbH

Connection Types 143Designing Mappings

Altova MapForce 2018 Professional Edition

If there are slight differences between the source and the target structures, the "Copy-All"
connection will enumerate, at mapping runtime, the source items (such as elements and
attributes) and will copy only those that exist in the target type. This is repeated recursively.

For example, in the mapping above, only two child items are identical between the two structures
(author and title) and thus they are mapped to the target. The item id is not included
automatically because it is an attribute in the source and an element in the target. If you need to
map, for example, category to genre, the "Copy-All" connection is no longer possible, because
these are different items.

When an input connector (the small triangle to the side of the component) receives a "Copy-All"
connection, it cannot accept any other connections. In the example above, if you attempt to
create a connection between category and genre, MapForce prompts you to either replace it, or
duplicate the input.

Duplicating input is meaningful only if you want the target to accept data from more than one
input, which is not required here (see also Duplicating Input). If you choose to replace the "Copy-
All" connection, a message box prompts you again to either resolve or delete the "Copy-All"
connection.

Click Resolve copy-all connection if you want to replace the "Copy-All" connection by standard

144 Designing Mappings Connection Types

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

individual target-driven connections to corresponding child items. If you prefer to remove the
"Copy-All" connection completely, click Delete child connections.

© 2018 Altova GmbH

Chained Mappings 145Designing Mappings

Altova MapForce 2018 Professional Edition

5.3 Chained Mappings

MapForce supports mappings that consist of multiple components in a mapping chain. Chained
mappings are mappings where at least one component acts both as a source and a target. Such
a component creates output which is later used as input for a following mapping step in the chain.
Such a component is called an "intermediate" component.

For example, the mapping illustrated below shows an expense report (in XML format) that is being
processed in two stages. The part of the mapping from A to B filters out only those expenses that
are marked as "Travel". The mapping from B to C filters out only those "Travel" expenses that
have a travel cost less than 1500. Component B is the "intermediate" component, as it has both
input and output connections. This mapping is available at the following path: <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ChainedReports.mfd.

ChainedReports.mfd

Chained mappings introduce a feature called "pass-through". "Pass-through" is a preview
capability allowing you to view the output produced at each stage of a chained mapping in the
Output window. For example, in the mapping above, you can preview and save the XML output
resulting from A to B, as well as the XML output resulting from B to C.

Note: The "pass-through" feature is available only for file-based components (for example, XML,
CSV, and text). Database components can be intermediate, but the pass-through button
is not shown. The intermediate component is always regenerated from scratch when
previewing or generating code. This would not be feasible with a database as it would
have to be deleted prior to each regeneration.

If the mapping is executed by MapForce Server, or by generated code, then the full mapping chain
is executed. The mapping generates the necessary output files at each step in the chain, and the
output of a step of a mapping chain is forwarded as input to the following mapping step.

It is also possible for intermediate components to generate dynamic file names. That is, they can
accept connections to the "File:" item from the mapping, provided that the component is

146 Designing Mappings Chained Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

configured correspondingly. For more information, see Processing Multiple Input or Output Files
Dynamically.

 Preview button
Both the component B and the component C have preview buttons. This allows you to preview in
MapForce the intermediate mapping result of B, as well as the final result of the chained mapping.
Click the preview button of the respective component, then click Output to see the mapping result.

"Intermediate" components with the pass-through button active cannot be previewed. Their preview
button is automatically disabled, because it is not meaningful to preview and let data pass through
at the same time. To see the output of such a component, first click the "pass-through" button to
deactivate it, and then click the preview button.

 Pass-through button
The intermediate component B has an extra button in the component title bar called "pass-
through".

If the pass-through button is active , MapForce maps all data into the preview window in one
go; from component A to component B, then on to component C. Two result files will be created:

the result of mapping component A to intermediate component B
the result of the mapping from the intermediate component B, to target component C.

If the pass-through button is inactive , MapForce will execute only parts of the full mapping
chain. Data is generated depending on which preview buttons are active:

If the preview button of component B is active, then the result of mapping component A to
component B is generated. The mapping chain actually stops at component B.
Component C is not involved in the preview at all.
If the preview button of component C is active, then the result of mapping intermediate
component B to the component C is generated. Because pass-through is inactive,
automatic chaining has been interrupted for component B. Only the right part of the
mapping chain is executed. Component A is not used.

When the "pass-through" button is inactive, it is important that the intermediate component
has identical file names in the "Input XML File" and "Output XML File" fields. This ensures
that the file generated as output when you preview the portion of the mapping between A and
B is used as input when you preview the portion of the mapping between B and C. Also, in
generated code, or in MapForce Server execution, this ensures that the mapping chain is not
broken.

As previously mentioned, if the mapping is executed by MapForce Server, or by generated code,
then the output of all components is generated. In this case, the settings of the pass-through
button of component B, as well as the currently selected preview component, are disregarded.
Taking the mapping above as example, two result files will be generated, as follows:

1. The output file resulting from mapping component A to B
2. The output file resulting from mapping component B to C.

© 2018 Altova GmbH

Chained Mappings 147Designing Mappings

Altova MapForce 2018 Professional Edition

The following sections, Example: Pass-Through Active and Example: Pass-Through Inactive,
illustrate in more detail how the source data is transferred differently when the pass-through button
is active or inactive.

5.3.1 Example: Pass-Through Active

The mapping used in this example (ChainedReports.mfd) is available in the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. This mapping processes an XML
file called ReportA.xml that contains travel expenses and looks as shown below. For simplicity,
the namespace declaration and some expense-item elements have been omitted:

<?xml version="1.0" encoding="UTF-8"?>
<expense-report currency="USD" detailed="true">

 <Person>

 <First>Fred</First>

 <Last>Landis</Last>

 <Title>Project Manager</Title>

 <Phone>123-456-78</Phone>

 <Email>f.landis@nanonull.com</Email>

 </Person>

 <expense-item type="Travel" expto="Development">

 <Date>2003-01-02</Date>

 <Travel Trav-cost="337.88">

 <Destination/>

 </Travel>

 <description>Biz jet</description>

 </expense-item>

 <expense-item type="Lodging" expto="Sales">

 <Date>2003-01-01</Date>

 <Lodging Lodge-cost="121.2">

 <Location/>

 </Lodging>

 <description>Motel mania</description>

 </expense-item>

 <expense-item type="Travel" expto="Marketing">

 <Date>2003-02-02</Date>

 <Travel Trav-cost="2000">

 <Destination/>

 </Travel>

 <description>Hong Kong</description>

 </expense-item>

</expense-report>

ReportA.xml

The goal of the mapping it to produce, based on the file above, two further reports:

ReportB.xml - this report should contain only those travel expenses that are of type
"Travel".
ReportC.xml - this report should contain only those travel expenses that are of type
"Travel" and do not exceed 1500.

148 Designing Mappings Chained Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To achieve this goal, the intermediate component of the mapping (component B) has the pass-

through button active, as shown below. This causes the mapping to be executed in stages:
from A to B, and then from B to C. The output created by the intermediate component will be used
as input for the mapping between B and C.

The names of generated output files at each stage in the mapping chain is determined by the
settings of each component. (To open the component settings, right-click it, and then select
Properties from the context menu). Namely, the first component is configured to read data from
an XML file called ReportA.xml. Because this is a source component, the Output XML File field
is irrelevant and it was left empty.

Settings of the source component

As shown below, the second component (ReportB) is configured to create an output file called
ReportB.xml. Notice that the Input XML File field is grayed out. When pass-through is active
(as in this example), the Input XML File field of the intermediate component is automatically
deactivated. An input file name need not exist for the mapping to execute, because the output
created at this stage in the mapping is stored in a temporary file and reused further in the
mapping. Also, if an Output XML File is defined (as illustrated below), then it is used for the file
name of the intermediate output file. If no Output XML File is defined, a default file name will be
automatically used.

© 2018 Altova GmbH

Chained Mappings 149Designing Mappings

Altova MapForce 2018 Professional Edition

Settings of the intermediate component

Finally, the third component is configured to produce an output file called ReportC.xml. The
Input XML File field is irrelevant here, because this is a target component.

Settings of the target component

If you preview the mapping by clicking the Output tab in the mapping window, two files are shown
in the output, as expected:

1. ReportB.xml, which represents the result of the mapping A to B
2. ReportC.xml, which represents the result of mapping B to C.

To select which of the two generated output files should be displayed in the Output window, either
click the arrow buttons, or select the desired entry from the dropdown list.

150 Designing Mappings Chained Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Generated output files

When the mapping is executed by MapForce, the setting "Write directly to final output
file" (configured from Tools | Options | General) determines whether the intermediate files are
saved as temporary files or as physical files. Note that this is only valid when the mapping is
previewed directly in MapForce. Had this mapping been executed by MapForce Server or by
generated code, actual files would be produced at each stage in the mapping chain.

If StyleVision is installed, and if a StyleVision Power Stylesheet (SPS) file has been assigned to
the target component (as in this example), then the final mapping output can be viewed (and
saved as) HTML, RTF file. To generate and view this output in MapForce, click the tab with the
corresponding name.

© 2018 Altova GmbH

Chained Mappings 151Designing Mappings

Altova MapForce 2018 Professional Edition

Generated HTML output

Note that only the output of the final target component in the mapping chain is displayed. To
display StyleVision output of intermediary components, you would need to deactivate the pass-
through button, and preview the intermediate component (as shown in Example: Pass-Through
Inactive).

5.3.2 Example: Pass-Through Inactive

The mapping used in this example (ChainedReports.mfd) is available in the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. This example illustrates how

output is generated differently when the pass-through button is deactivated on the
intermediate component.

152 Designing Mappings Chained Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

As explained in Example: Pass-Through Active, the goal of the mapping is to produce two

separate reports. In the previous example, the pass-through button was active , and both
reports were generated as expected and could be viewed in the Output tab. However, if you want
to preview only one of the reports (either ReportB.xml or ReportC.xml), then the pass-through

button must be deactivated (). More precisely, deactivating the pass-through button may be
useful if you want to achieve the following:

Preview only output generated from A to B, and disregard the portion of the mapping from
B to C
Preview only output generated from B to C, and disregard the portion of the mapping from
A to B.

When you deactivate the pass-through button as shown above, you can choose whether to

preview either ReportB or ReportC (notice that both have preview buttons).

Deactivating the pass-through button also lets you to choose what input file should be read by the
intermediate component. In most cases, this should be the same file as defined in Output XML
File field (as in this example).

Settings of the intermediate component

Having the same input and output file on the intermediate component is particularly important if
you intend to generate code from the mapping, or run the mapping with MapForce Server. As
previously mentioned, in these environments, all outputs created by each component in the
mapping chain are generated. So, it usually makes sense for the intermediate component to
receive one file for processing (in this case ReportB.xml) and forward the same file to the
subsequent mapping, rather than look for a different file name. Be aware that, not having the same
input and output file names on the intermediate component (when the pass-through button is
inactive) might cause errors such as "The system cannot find the file specified" in generated code
or in MapForce Server execution.

If you click the preview button on the third component (ReportC), and attempt to preview the
mapping in MapForce, you will notice that an execution error occurs. This is expected, since,

© 2018 Altova GmbH

Chained Mappings 153Designing Mappings

Altova MapForce 2018 Professional Edition

according to the settings above, a file called ReportB.xml is expected as input. However, the
mapping did not produce yet such a file (because the pass-through button is not active, and only
the portion of the mapping from B to C is executed). You can easily fix this problem as follows:

1. Click the preview button on the intermediate component.
2. Click the Output tab to preview the mapping.
3. Save the resulting output file as ReportB.xml, in the same folder as the mapping

(<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\).

Now, if you click again the preview button on the third component (ReportC), the error is no longer
shown.

When the pass-through button is inactive, you can also preview the StyleVision-generated output
for each component that has an associated StyleVision Power StyleSheet (SPS) file. In
particular, you can view the HTML version of the intermediate report as well (in addition to that of
the final report):

154 Designing Mappings Chained Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

HTML output of the intermediate component

© 2018 Altova GmbH

Processing Multiple Input or Output Files Dynamically 155Designing Mappings

Altova MapForce 2018 Professional Edition

5.4 Processing Multiple Input or Output Files Dynamically

You can configure MapForce to process multiple files (for example, all files in a directory) when
the mapping runs. Using this feature, you can solve tasks such as:

Supply to the mapping a list of input files to be processed
Generate as mapping output a list of files instead of a single output file
Generate a mapping application where both the input and output file names are defined at
runtime
Convert a set of files to another format
Split a large file (or database) into smaller parts
Merge multiple files into one large file (or load them into a database)

You can configure a MapForce component to process multiple files in one of the following ways:

Supply the path to the required input or output file(s) using wildcard characters instead of
a fixed file name, in the component settings (see Changing the Component Settings).
Namely, you can enter the wildcards * and ? in the Component Settings dialog box, so
that MapForce resolves the corresponding path when the mapping runs.
Connect to the root node of a component a sequence which supplies the path
dynamically (for example, the result of the replace-fileext function). When the

mapping runs, MapForce will read dynamically all the input files or generate dynamically
all the output files.

Depending on what you want to achieve, you can use either one or both of these approaches on
the same mapping. However, it is not meaningful to use both approaches at the same time on the
same component. To instruct MapForce which approach you want to use for a particular

component, click the File () or File/String () button available next to the root
node of a component. This button enables you to specify the following behavior:

Use File Names from Component
Settings

If the component should process one or several
instance files, this option instructs MapForce to
process the file name(s) defined in the Component
Settings dialog box.

If you select this option, the root node does not
have an input connector, as it is not meaningful.

If you did not specify yet any input or output files in
the Component Settings dialog box, the name of
the root node is File: (default). Otherwise, the root
node displays the name of the input file, followed by

156 Designing Mappings Processing Multiple Input or Output Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

a semi-colon (;), followed by the name of the
output file.

If the name of the input is the same with that of the
output file, it is displayed as name of the root node.

Note that you can select either this option or the
Use Dynamic File Names Supplied by Mapping
option.

Use Dynamic File Names Supplied by
Mapping

This option instructs MapForce to process the file
name(s) that you define on the mapping area, by
connecting values to the root node of the
component.

If you select this option, the root node gets an input
connector to which you can connect values that
supply dynamically the file names to be processed
during mapping execution. If you have defined file
names in the Component Settings dialog box as
well, those values are ignored.

When this option is selected, the name of the root
node is displayed as File: <dynamic>.

This option is mutually exclusive with the Use File
Names from Component Settings option.

Parse Strings to XML, Parse Strings to
JSON, Parse Strings to CSV, Parse
Strings to FLF, Parse Strings to EDI

When switched on, this option enables the
component to accept a string value as input to the
root node, and convert it to an XML, JSON, CSV,
FLF, or EDI structure, respectively. For more
information, see Parsing and Serializing Strings.

Serialize XML to Strings, Serialize JSON
to Strings, Serialize CSV to Strings,

When switched on, this option enables the
component to accept a structure as input, and

© 2018 Altova GmbH

Processing Multiple Input or Output Files Dynamically 157Designing Mappings

Altova MapForce 2018 Professional Edition

Serialize FLF to Strings, Serialize EDI to
Strings

convert it to string. The input structure can be XML,
JSON, CSV, Fixed-length Field, or EDI,
respectively. For more information, see Parsing and
Serializing Strings.

Multiple input or output files can be defined for the following components:

XML files
Text files (CSV*, FLF* files and FlexText** files)
EDI documents**
Excel spreadsheets**
XBRL documents**

* Requires MapForce Professional Edition
** Requires MapForce Enterprise Edition

The following table illustrates support for dynamic input and output file and wildcards in MapForce
languages.

Target
language

Dynamic input
file name

Wildcard support for
input file name

Dynamic output file
name

XSLT 1.0 * Not supported by XSLT 1.0 Not supported by XSLT
1.0

XSLT 2.0 * *(1) *

XQuery * *(1) Not supported by
XQuery

C++ * * *

C# * * *

Java * * *

BUILT-IN * * *

Legend:

* Supported

(1) Uses the fn:collection function. The implementation in the Altova XSLT 2.0 and

XQuery engines resolves wildcards. Other engines may behave differently. For details on
how to transform XSLT 1.0/2.0 and XQuery code using the RaptorXML Server engine, see
Generating XSLT 1.0, or 2.0 code and Generating XQuery 1.0 code.

5.4.1 Mapping Multiple Input Files to a Single Output File

To process multiple input files, do one of the following:

158 Designing Mappings Processing Multiple Input or Output Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Enter a file path with wildcards (* or ?) as input file in the Component Settings dialog box.
All matching files will be processed. The example below uses the * wildcard character in
the Input XML file field to supply as mapping input all files whose name begins with
"Nanonull-". Multiple input files are being merged into a single output file because there
is no dynamic connector to the target component, while the source component accesses
multiple files using the wildcard *. Notice that the name of the root node in the target
component is File: <default>, indicating that no output file path has been defined in the
Component Settings dialog box. The multiple source files are thus appended in the target
document.

MergeMultipleFiles.mfd (MapForce Basic Edition)

Map a sequence of strings to the File node of the source component. Each string in the
sequence represents one file name. The strings may also contain wildcards, which are
automatically resolved. A sequence of file names can be supplied by components such
as an XML file , database text fields.

© 2018 Altova GmbH

Processing Multiple Input or Output Files Dynamically 159Designing Mappings

Altova MapForce 2018 Professional Edition

MergeMultipleFiles_List.mfd (MapForce Basic Edition)

5.4.2 Mapping Multiple Input Files to Multiple Output Files

To map multiple files to multiple target files, you need to generate unique output file names. In
some cases, the output file names can be derived from strings in the input data, and in other
cases it is useful to derive the output file name from the input file name, e.g. by changing the file
extension.

In the following mapping, the output file name is derived from the input file name, by adding the
prefix "Persons-" with the help of the concat function.

160 Designing Mappings Processing Multiple Input or Output Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

MultipleInputToMultipleOutputFiles.mfd (MapForce Basic Edition)

Note: Avoid simply connecting the input and output root nodes directly, without using any
processing functions. Doing this will overwrite your input files when you run the mapping.
You can change the output file names using functions such as the concat function, as

shown above.

The menu option File | Mapping Settings allows you to define globally the file path settings used
by the mapping (see Changing the mapping settings).

5.4.3 Supplying File Names as Mapping Parameters

To supply custom file names as input parameters to the mapping, do the following:

1. Add an Input component to the mapping (On the Function menu, click Insert Input). For
more information about such components, see Simple Input.

1. Click the File () or File/String () button of the source component and
select Use Dynamic File Names Supplied by Mapping.

2. Connect the Input component to the root node of the component which acts as mapping
source.

For a worked example, see Example: Using File Names as Mapping Parameters.

5.4.4 Previewing Multiple Output Files

Click the Output tab to display the mapping result in a preview window. If the mapping produces
multiple output files, each file has its own numbered pane in the Output tab. Click the arrow

© 2018 Altova GmbH

Processing Multiple Input or Output Files Dynamically 161Designing Mappings

Altova MapForce 2018 Professional Edition

buttons to see the individual output files.

MultipleInputToMultipleOutputFiles.mfd

To save the generated output files, do one of the following:

On the Output menu, click Save All Output Files ().

Click the Save all generated outputs () toolbar button.

5.4.5 Example: Split One XML File into Many

This example shows you how to generate dynamically multiple XML files from a single source
XML file. The accompanying mapping for this example is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\Tut-ExpReport-dyn.mfd.

The source XML file (available in the same folder as the mapping) consists of the expense report
for a person called "Fred Landis" and contains five expense items of different types. The aim of
the example is to generate a separate XML file for each of the expense items listed below.

162 Designing Mappings Processing Multiple Input or Output Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

mf-ExpReport.xml (as shown in XMLSpy Grid view)

As the type attribute defines the specific expense item type, this is the item we will use to split
up the source file. To achieve the goal of this example, do the following:

1. Insert a concat function (you can drag it from the core | string functions library of the

Libraries pane).
2. Insert a constant (on the Insert menu, click Constant) and enter ".xml" as its value.
3. Insert the auto-number function (you can drag it from the core | generator functions

library of the Libraries pane).

1. Click the File () or File/String () button of the target component and
select Use Dynamic File Names Supplied by Mapping.

4. Create the connections as shown below and then click the Output tab to see the result of
the mapping.

© 2018 Altova GmbH

Processing Multiple Input or Output Files Dynamically 163Designing Mappings

Altova MapForce 2018 Professional Edition

Tut-ExpReport-dyn.mfd (MapForce Basic Edition)

Note that the resulting output files are named dynamically as follows:

The type attribute supplies the first part of the file name (for example, "Travel").
The auto-number function supplies the sequential number of the file (for example,

"Travel1", "Travel2", and so on).
The constant supplies the file extension, which is ".xml", thus "Travel1.xml" is the file
name of the first file.

5.4.6 Example: Split Database Table into Many XML Files

This example shows you how to generate dynamically multiple XML files, one for each record of a
database table. The accompanying mapping for this example is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\PersonDB-dyn.mfd.

The source database file (available in the same folder as the mapping) includes a Person table

164 Designing Mappings Processing Multiple Input or Output Files Dynamically

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

which contains 21 records. The aim of the example is to generate a separate XML file for each
record in the Person table.

As the "PrimaryKey" field uniquely identifies each person in the table, this is the item we will use
to split up the source database into separate files. To achieve the goal of this example, do the
following:

1. Insert a concat function (you can drag it from the core | string functions library of the

Libraries pane).
2. Insert a constant (on the Insert menu, click Constant) and enter ".xml" as its value.

3. Click the File () or File/String () button of the target component and
select Use Dynamic File Names Supplied by Mapping.

4. Create the connections as shown below and then click the Output tab to see the result of
the mapping.

PersonDB-dyn.mfd (MapForce Professional Edition)

© 2018 Altova GmbH

Processing Multiple Input or Output Files Dynamically 165Designing Mappings

Altova MapForce 2018 Professional Edition

Note that the resulting output files are named dynamically as follows:

The PrimaryKey field supplies the first part of the file name (for example, "1").
The constant supplies the file extension (".xml"), thus "1.xml" is the file name of the
first file.

166 Designing Mappings Supplying Parameters to the Mapping

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5.5 Supplying Parameters to the Mapping

You can pass simple values to a mapping by means of simple input components. On the mapping
area, simple input components play the role of a source component which has a simple data type
(for example, string, integer, and so on) instead of a structure of items and sequences.
Consequently, you can create a simple input component instead of (or in addition to) a file-based
source component.

You can use simple input components in any the following MapForce transformation languages:

BUILT-IN (when you preview the mapping transformation directly in MapForce, from the
Preview tab)
BUILT-IN (when you run a compiled MapForce Server execution file)
XSLT 1.0, XSLT 2.0
XQuery
C++
C#
Java

In case of mappings executed with MapForce Server or by means of generated code, simple input
components become command line parameters. In case of mappings generated as XSLT
transformations, simple input components correspond to stylesheet parameters in the generated
XSLT file.

You can create each simple input component (or parameter) as optional or mandatory (see Input
Component Settings). If necessary, you can also create default values for the mapping input
parameters (see Creating a Default Input Value). This enables you to safely run the mapping even
if you do not explicitly supply a parameter value at mapping execution time.

Input parameters added on the main mapping area should not be confused with input parameters
in user-defined functions (see User-defined functions). There are some similarities and differences
between the two, as follows.

Input parameters on the mapping Input parameters of user-defined functions

Added from Function | Insert Input menu. Added from Function | Insert Input menu.

Can have simple data types (string, integer,
and so on).

Can have simple as well as complex data
types.

Applicable to the entire mapping. Applicable only in the context of the function
in which they were defined.

When you create a reversed mapping (using the menu command Tools | Create Reversed
Mapping), a simple input component becomes a simple output component.

For an example, see Example: Using File Names as Mapping Parameters.

© 2018 Altova GmbH

Supplying Parameters to the Mapping 167Designing Mappings

Altova MapForce 2018 Professional Edition

5.5.1 Adding Simple Input Components

To add a simple input to the mapping:

1. Make sure that the mapping window displays the main mapping (not a user-defined
function).

2. On the Function menu, click Input.
3. Enter a name and select the data type required for this input. If the input should be

treated as a mandatory mapping parameter, select the Input is required check box. For
a complete list of settings, see Simple Input Component Settings.

Note: The parameter name can contain only letters, digits, and underscores; no other
characters are allowed. This makes it possible for a mapping to work across all code
generation languages.

4. Click OK.

Create Input dialog box

You can change later any of the settings defined here (see Simple Input Component Settings).

5.5.2 Simple Input Component Settings

You can define the settings applicable to a simple input component when adding it to the mapping
area. You can also change the settings at a later time, from the Edit Input dialog box.

168 Designing Mappings Supplying Parameters to the Mapping

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Edit Input dialog box

To open the Edit Input dialog box, do one of the following:

Select the component, and, on the Component menu, click Properties.
Double-click the component.
Right-click the component, and then click Properties.

The available settings are as follows.

Name Enter a descriptive name for the input parameter corresponding to this
component. At mapping execution time, the value entered in this text box
becomes the name of the parameter supplied to the mapping; therefore, no
spaces or special characters are allowed.

Datatype By default, any input parameter is treated as string data type. If the
parameter should have a different data type, select the respective value from
the list. When the mapping is executed, MapForce casts the input
parameter to the data type selected here.

Input is required When enabled, this setting makes the input parameter mandatory (that is,
the mapping cannot be executed unless you supply a parameter value).

Disable this check box if you want to specify a default value for the input
parameter (see Creating a Default Input Value).

Specify value This setting is applicable only if you execute the mapping during design
time, by clicking the Preview tab. It allows you to enter directly in the
component the value to use as mapping input.

Value This setting is applicable only if you execute the mapping during design
time, by clicking the Preview tab. To enter a value to be used by
MapForce as mapping input, select the Specify Value check box, and then

© 2018 Altova GmbH

Supplying Parameters to the Mapping 169Designing Mappings

Altova MapForce 2018 Professional Edition

type the required value.

5.5.3 Creating a Default Input Value

After you add an Input component to the mapping area, notice the default item to the left of the
component.

Simple input component

The default item enables you to connect an optional default value to this input component, as
follows:

1. Add a constant component (on the Insert menu, click Constant), and then connect it to
the default item of the input component.

2. Double click the input component and make sure that the Input is required check box is
disabled. When you create a default input value, this setting is not meaningful and
causes mapping validation warnings.

170 Designing Mappings Supplying Parameters to the Mapping

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. Click OK.

Note: If you click the Specify value check box and enter a value in the adjacent box, the
entered value takes precedence over the default value when you preview the mapping (that
is, at design-time execution). However, the same value has no effect in the generated
code.

5.5.4 Example: Using File Names as Mapping Parameters

This example walks you through the steps required to execute a mapping that takes input
parameters at runtime. The mapping design file used in this example is available at the following
path: <Documents>\Altova\MapForce2018\MapForceExamples
\FileNamesAsParameters.mfd.

The mapping uses two input components: InputFileName and OutputFileName. These supply
the input file name (and the output file name, respectively) of the source and target XML file. For
this reason, they are connected to the File: <dynamic> item.

FileNamesAsParameters.mfd (MapForce Basic Edition)

Both the InputFileName and OutputFileName components are simple input components in the
mapping, so you can supply them as input parameters when executing the mapping. The
following sections illustrate how to do this in the following transformation languages:

XSLT 2.0, using RaptorXML Server
Built-in (MapForce Server Execution File), using MapForce Server
Java

XSLT 2.0
If you generate code in XSLT 1.0 or XSLT 2.0, the input parameters are written to the

© 2018 Altova GmbH

Supplying Parameters to the Mapping 171Designing Mappings

Altova MapForce 2018 Professional Edition

DoTransform.bat batch file, for execution by RaptorXML Server (see Automation with RaptorXML
Server). To use a different input (or output) file, you can either pass the required parameters at
command line, when calling the DoTransform.bat file, or edit the latter to include the required
parameters.

To supply a custom input parameter in the DoTransform.bat file:

1. Generate the XSLT 2.0 code (File | Generate Code In | XSLT 2.0) from the
FileNamesAsParameters.mfd sample.

2. Copy the Altova_Hierarchical.xml file from the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory to the directory where you generated the XSLT 2.0 code
(in this example, c:\codegen\examples\xslt2\). This file will act as custom parameter.

3. Edit DoTransform.bat to include the custom input parameter either before or after %* (as
highlighted below). Note that the parameter value is enclosed with single quotes. The
available input parameters are listed in the rem (Remark) section.

@echo off

RaptorXML xslt --xslt-version=2 --
input="MappingMapToAltova_Hierarchical.xslt" --

param=InputFileName:'Altova_Hierarchical.xml' %*

"MappingMapToAltova_Hierarchical.xslt"
rem --param=InputFileName:
rem --param=OutputFileName:
IF ERRORLEVEL 1 EXIT/B %ERRORLEVEL%

When you run the DoTransform.bat file, RaptorXML Server completes the transformation using
Altova_Hierarchical.xml as input parameter.

MapForce Server Execution File
To supply custom input parameters to a MapForce Server execution file:

1. Compile the FileNamesAsParameters.mfd to a MapForce Server execution file (see
Compiling Mappings to MapForce Server Execution Files). When prompted, save the .mfx
execution file to a directory on your computer (in this example, c:\codegen\examples
\mfx\).

2. Copy the Altova_Hierarchical.xml file from the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory to the directory where you saved the .mfx file. This file
will act as the custom parameter supplied to the mapping execution file.

3. Run MapForce Server with the following command:

MapForceServer.exe run "C:\codegen\examples\mfx
\FileNamesAsParameters.mfx" -p=InputFileName:"C:\codegen\examples\mfx

172 Designing Mappings Supplying Parameters to the Mapping

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

\Altova_Hierarchical.xml" -p=OutputFileName:"C:\codegen\examples\mfx
\OutputFile.xml"

In the MapForce Server command above, -p=InputFileName and -p=OutputFileName are the
input parameters to the mapping. You can use any file name as the value of -OutputFileName.
However, the file name supplied in -InputFileName parameter must exist as a physical file;
otherwise, the mapping will fail.

Note: If you see the message "MapForceServer.exe is not recognized as an internal or external
command, operable program, or batch file", change the current directory to the one where
the MapForce Server executable is installed. To avoid changing path every time when you
run a mapping, add to your operating system's PATH environment variable the path of the
directory where MapForce Server executable is installed (for example, C:\Program Files
(x86)\Altova\MapForceServer2018\bin) .

Java
To supply a custom input parameter to a Java .jar application:

1. Generate the Java code (File | Generate Code In | Java) from the
FileNamesAsParameters.mfd sample.

2. Compile the Java code into an executable JAR file (for instructions on how to do this in
Eclipse, see Example: Build a Java application with Eclipse and Ant).

3. Copy the Altova_Hierarchical.xml file from the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory to the directory where the .jar file is. This file will act as
the custom parameter supplied to the Java mapping application.

4. At the command line, enter: java -jar Mapping.jar /InputFileName
"InputFile.xml"

If you use wildcards when passing parameters to .jar files, place the wildcard
parameters in quotes, for example:

java -jar Mapping.jar /InputFileName "altova-*.xml"

© 2018 Altova GmbH

Returning String Values from a Mapping 173Designing Mappings

Altova MapForce 2018 Professional Edition

5.6 Returning String Values from a Mapping

Use a simple output component when you need to return a string value from the mapping. On the
mapping area, simple output components play the role of a target component which has a string
data type instead of a structure of items and sequences. Consequently, you can create a simple
output component instead of (or in addition to) a file-based target component. For example, you
can use a simple output component to quickly test and preview the output of a function (see
Example: Testing Function Output). The main purpose of a simple output component is, however,
to get back a string when calling the MapForce Server API, without writing any files.

Simple output components should not be confused with output parameters of user-defined
functions (see User-defined functions). There are some similarities and differences between the
two, as follows.

Output components Output parameters of user-defined
functions

Added from Function | Insert Output menu. Added from Function | Insert Output menu.

Have "string" as data type. Can have simple as well as complex data
types.

Applicable to the entire mapping. Applicable only in the context of the function
in which they were defined.

If necessary, you can add multiple simple output components to a mapping. You can also use
simple output components in combination with file-based and database target components. When
your mapping contains multiple target components, you can preview the data returned by a

particular component by clicking the Preview () button in the component title bar, and then
clicking the Output tab on the Mapping window.

You can use simple output components as follows in MapForce transformation languages:

Language How it works

BUILT-IN (when previewing
the mapping
transformation)

You can preview Output components in the same way as you
would preview a file-based mapping output—by clicking the
Output tab on the Mapping window.

BUILT-IN (when running the
MapForce Server execution
file)

When you run a compiled MapForce Server execution file (see
Compiling a MapForce mapping), the mapping output is returned
in the standard output stream (stdout), so you can view it or
redirect to a file. For example, assuming that the name of the
MapForce server execution file is MyMapping.mfx, use the
following syntax to redirect the mapping output to output.txt file
and any errors to the log.txt file:

MapForceServer.exe run MyMapping.mfx >output.txt
2>log.txt

174 Designing Mappings Returning String Values from a Mapping

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

XSLT 1.0, XSLT 2.0 If the generated XSLT files, a simple output components defined
in the mapping becomes the output of the XSLT transformation.

If you are using RaptorXML Server, you can instruct RaptorXML
Server to write the mapping output to the file passed as value to
the --output parameter.

To write the output to a file, add or edit to the --output
parameter in the DoTransform.bat file. For example, the
following DoTransform.bat file has been edited to write the
mapping output to the Output.txt file (see highlighted text).

RaptorXML xslt --xslt-version=2 --
input="MappingMapToResult1.xslt" --
output="Output.txt" %* "MappingMapToResult1.xslt"

If an --output parameter is not defined, the mapping output will
be written to the standard output stream (stdout) when the
mapping is executed.

C++, C#, Java In the generated C++, C#, and Java code, the mapping output is
written to the standard output of the generated application.

If the mapping contains multiple target components, the
generated application concatenates the standard output of each
target component and returns it as one unified standard output.

When you create a reversed mapping (using the menu command Tools | Create Reversed
Mapping), the simple output component becomes a simple input component.

5.6.1 Adding Simple Output Components

To add an Output component to the mapping area:

1. Make sure that the mapping window displays the main mapping (not a user-defined
function).

2. On the Function menu, click Output.
3. Enter a name for the component.
4. Click OK.

© 2018 Altova GmbH

Returning String Values from a Mapping 175Designing Mappings

Altova MapForce 2018 Professional Edition

Create Output dialog box

You can change the component name at any time later, in one of the following ways:

Select the component, and, on the Component menu, click Properties.
Double-click the component header.
Right-click the component header, and then click Properties.

5.6.2 Example: Previewing Function Output

This example illustrates how to preview the output returned by MapForce functions with the help of
simple output components. You will make the most of this example if you already have a basic
understanding of functions in general, and of MapForce functions in particular. If you are new to
MapForce functions, you may want to refer to Using Functions before continuing.

Our aim is to add a number of functions to the mapping area, and learn how to preview their output
with the help of simple output components. In particular, the example uses a few simple functions
available in the core library. Here is a summary of their usage:

string-length Returns the number of characters in the string provided as argument. For
example, if you pass to this function the value "Lorem ipsum", the result is
"11", since this is the number of characters that the text "Lorem ipsum"
takes.

substring-after Returns the part of the string that occurs after the separator provided as
argument. For example, if you pass to this function the value "Lorem
ipsum" and the space character (" "), the result is "ipsum".

substring-

before
Returns the part of the string that occurs before the separator provided as
argument. For example, if you pass to this function the value "Lorem
ipsum" and the space character (" "), the result is "Lorem".

To test each of these functions against a custom text value ("Lorem ipsum", in this example),
follow the steps below:

1. Add a constant with the value "Lorem ipsum" to the mapping area (use the menu
command Insert | Constant). The constant will be the input parameter for each of the

176 Designing Mappings Returning String Values from a Mapping

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

functions to be tested.
2. Add the string-length, substring-after, and substring-before functions to the

mapping area, by dragging them to the mapping area from the core library, string
functions section.

3. Add a constant with an empty space (" ") as value. This will be the separator parameter
required by the substring-after and substring-before functions.

4. Add three simple output components (use the menu command Function | Insert
Output). In this example, they have been named Result1, Result2, and Result3, although
you can give them another title.

5. Connect the components as illustrated below.

Testing function output with simple output components

As shown in the sample above, the "Lorem ipsum" string acts as input parameter to each of the
string-length, substring-after, and substring-before functions. In addition to this, the

substring-after and substring-before functions take a space value as second input

parameter. The Result1, Result2, and Result3 components can be used to preview the result of
each function.

To preview the output of any function

Click the Preview () button in the component title bar, and then click the Output tab
on the Mapping window.

© 2018 Altova GmbH

Using Variables 177Designing Mappings

Altova MapForce 2018 Professional Edition

5.7 Using Variables

Variables are a special type of component used to store an intermediate mapping result for further
processing. They might be necessary in situations where you want to temporarily "remember"
some data on the mapping and process it in some way (for example, filter it, or apply some
functions) before it is copied to the target component.

Variables can be of simple type (for example, string, integer, boolean, etc) or complex type (a tree
structure).

Simple variab le

You can create a variable of complex type by supplying an XML schema which expresses the
structure of the variable. If the schema defines any elements globally, you can choose which one
should become the root node of the variable structure. Note that a variable does not have any
associated instance XML file; the data of the variable is computed at mapping runtime.

Complex variab le created from an XML schema

It is also possible to create variables of complex type from databases. In case of databases, you
can choose a specific database table as root item for the variable structure.

178 Designing Mappings Using Variables

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Complex variab le created from a database tab le

In the images above, you may notice that each variable has an item called compute-when.
Connecting this item is optional; this enables you to control how the variable value should be
computed on the mapping (see Changing the Context and Scope of Variables).

When necessary, items of a variable structure can be duplicated to accept data from more than
one source connection, similar to how this is done for standard components (see Duplicating
Input). This does not apply, however, to variables created from database tables.

Simple variab le with duplicated inputs

One of the most important things about variables is that they are sequences, and can be used to
create sequences. The term "sequence" here means a list of zero or more items (see also
Mapping Rules and Strategies). This makes it possible for a variable to process multiple items for
the duration of the mapping lifetime. If, however, you want to assign a value once to a variable and
keep it the same for the rest of the mapping, it is also possible (see Changing the Context and
Scope of Variables).

To some extent, variables can be compared to intermediate components of a chained mapping
(see Chained Mappings). However, they are more flexible and convenient if you don't need to
produce intermediary files at each stage in the mapping. The following table outlines differences
between variables and chained mappings.

Chained mappings Variables

Chained mappings involve two totally
independent steps. For example, let's assume
a mapping that has three components A, B,
and C. Running the mapping involves two
stages: executing the mapping from A to B,
and then executing the mapping from B to C.

While the mapping is executed, variables are
evaluated according to their context and
scope. Their context and scope can be
influenced (see Changing the Context and
Scope of Variables).

© 2018 Altova GmbH

Using Variables 179Designing Mappings

Altova MapForce 2018 Professional Edition

Chained mappings Variables

When the mapping is executed, intermediate
results are stored externally in files.

When the mapping is executed, intermediate
results are stored internally. No external files
containing a variable's results are produced.

The intermediate result can be previewed

using the preview button.

A variable's result cannot be previewed, since
it is computed at mapping runtime.

Note: Variables are not supported if the mapping transformation language is set to XSLT 1.0.

5.7.1 Adding Variables

There are several ways to add variables to a mapping, as shown below.

Using a menu or toolbar command

1. On the Insert menu, click Variable. (Alternatively, click the Variable toolbar
button).

2. Select the type of variable you want to insert (simple or complex type).

If you select "Complex type", there are a few additional steps:

3. Click Choose to select the source which should provide the structure of the variable (for
example, an XML Schema or database).

180 Designing Mappings Using Variables

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. When prompted, specify a root item of the structure. In case of XML Schemas, the root
item can be any element defined globally. In case of databases, the root item can be any
table.

© 2018 Altova GmbH

Using Variables 181Designing Mappings

Altova MapForce 2018 Professional Edition

Using a context menu

Right-click the output connector of a component (in this example, "Article") and select
Create Variable from Source node.

This creates a complex variable using the same source schema and automatically
connects all items with a Copy-All connection.

182 Designing Mappings Using Variables

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Right-click the input connector of a target component and select Create Variable for
Target Node. This creates a complex variable using the same schema as the target, and
automatically connects all items with a Copy-All connection.
Right-click the output connector of a filter component (on-true/on-false) and select Create
Variable from Source Node. This creates a complex component using the source
schema, and automatically uses the item linked to the filter input as the root element of
the intermediate component.

5.7.2 Changing the Context and Scope of Variables

Every variable has a compute-when input item which allows you to control the scope of the
variable; in other words, when and how often the variable value is computed when the mapping is
executed. You do not have to connect this input in many cases, but it can be essential to override
the default context, or to optimize the mapping performance.

The "compute-when" item

In the following text, a subtree means the set of an item/node in a target component and all of its
descendants, for example, a <Person> element with its <FirstName> and <LastName> child
elements.

A variable value means the data that is available at the output side of the variable component.

For simple variables, it is a sequence of atomic values that have the datatype specified in
the component properties.
For complex variables, it is a sequence of root nodes (of the type specified in the
component properties), each one including all its descendant nodes.

The sequence of atomic values (or nodes) may contain one or even zero elements. This depends
on what is connected to the input side of the variable, and to any parent items in the source and
target components.

"Compute-when" is not connected (default)

If the compute-when input item is not connected (to an output node of a source component), the

© 2018 Altova GmbH

Using Variables 183Designing Mappings

Altova MapForce 2018 Professional Edition

variable value is computed whenever it is first used in a target subtree (either directly via a
connector from the variable component to a node in the target component, or indirectly via
functions). The same variable value is also used for all target child nodes inside the subtree.

The actual variable value depends on any connections between parent items of the source and
target components.

This default behavior is the same as that of complex outputs of regular user-defined functions and
Web service function calls.

If the variable output is connected to multiple unrelated target nodes, the variable value is
computed separately for each of them. This can produce different results in each case, because
different parent connections influence the context in which the variable's value is evaluated.

"Compute-when" is connected

By connecting an output connector of a source component to compute-when, the variable is
computed whenever that source item is first used in a target subtree.

The variable actually acts as if it were a child item of the item connected to compute-when. This
makes it possible to bind the variable to a specific source item. That is, at runtime the variable is
re-evaluated whenever a new item is read from the sequence in the source component. This
relates to the general rule governing connections in MapForce: "for each source item, create one
target item". With compute-when, it means "for each source item, compute the variable
value" (see Mapping Rules and Strategies).

"Compute-once"

If necessary, you can choose to compute the variable value once before each of the target
components, making the variable essentially a global constant for the rest of the mapping. To do
this, right-click the compute-when item and select Compute Once from the context menu:

When you change the scope of a variable to compute-when=once, the input connector is removed
from the compute-when item, since such a variable is only evaluated once.

In a user-defined function, the compute-when=once variable is evaluated each time the function is
called, before the actual function result is evaluated.

184 Designing Mappings Using Variables

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Parent-context

Adding a parent-context may be necessary, for example, if your mapping uses multiple filters and
you need an additional parent node to iterate over, see also Overriding the Mapping Context.

To add a parent-context to a variable, right-click the root node (in this example, "PersonList") and
select Add Parent Context from the context menu. This adds a new node, parent-context, to
the existing hierarchy.

The parent context adds a virtual "parent" node to the hierarchy within the component. This allows
you to iterate over an additional node in the same, or in a different source component.

5.7.3 Example: Counting Database Table Rows

The mapping illustrated in this example is available as DB_UserList.mfd in the <Documents>
\Altova\MapForce2018\MapForceExamples\ folder. This mapping extracts user records from a
database table called "Users" and writes them to an XML file. The database column "Username"
contains both the first name and the surname of a person (for example, "Vernon Callaby"). This
mapping has the following goals:

1. For each record in the "Users" table, create a new Person element in the XML file.
2. Split the value extracted from the database field "Username" into two separate fields in

the XML file ("First" and "Last").
3. For each record, find its sequential number compared to the number of total records

present in the database (for example, "Record 1 of 4") and write this information to the
Details element.

© 2018 Altova GmbH

Using Variables 185Designing Mappings

Altova MapForce 2018 Professional Edition

DB_UserList.mfd

As illustrated above, in order to achieve the first goal, a connection is drawn between the source
"Users" table and the Person element of the target XML file. This ensures that, for each record in
the source table, a new Person element will be created in the target.

The value of the field "Username" is supplied to the substring-before and substring-after

functions. These two functions extract the text before and after the space character (" "),
respectively, which takes care of the second mapping goal.

Finally, to achieve the third goal, the mapping uses the count function. The result of the count

function is passed on to a variable. The variable ensures that this result is stored on the mapping
and available when writing the "Details" element of each person to the target XML. Note that, for
efficiency reasons, database records should be counted only once, so the variable scope is set
to compute-when=once (see Changing the Context and Scope of Variables)

5.7.4 Example: Filtering and Numbering Nodes

The mapping illustrated in this example is available as PositionInFilteredSequence.mfd in the
<Documents>\Altova\MapForce2018\MapForceExamples\ folder.

This mapping reads an XML file which contains contact data of several people, filters them, and
writes them to a target XML file. The goal of the mapping is to filter from the source XML file only
those people whose last name begins with letter "M" or a subsequent letter. Secondly, the
extracted contacts must be numbered. The number is going to act as the unique identifier of each
contact in the target XML file.

186 Designing Mappings Using Variables

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

PositionInFilteredSequence.mfd

To achieve the goal above, the following component types were added to the mapping:

A filter (see Filters and Conditions)
A complex variable (see Adding Variables)
The functions greater and position (see Working with Functions)

A constant (To add a constant, select the menu command Insert | Constant).

The variable uses the same schema as the source component. If your right-click the variable and
select Properties from the context menu, notice that the node BranchOffices/Office/Contact is
selected as root node for this variable structure.

First, data of the source component is passed on to the filter. The filter passes onwards to the
variable only those records that meet the filter condition. Namely, the filter is configured to get
only those Contact nodes where the first name is equal or greater than M". To achieve this, the
function greater compares each last item with the constant value "M".

The variable has the compute-when input connected to the root item of the source component
(BranchOffices). At runtime, this causes the variable to be re-evaluated whenever a new item is
read from the sequence in the source component. In this mapping, however, connecting or not
connecting the compute-when item does not make a difference. The reason is that the variable is
connected to the Contact source item (indirectly through the filter), and it would compute as
many times as there are instances of Contact which meet the filter condition.

The position functions returns, for each iteration of the variable, the number of the current

sequence. Only eight contacts meet the filter condition; therefore, if you preview the mapping and
look at the output, notice how IDs 1 through 8 were written to the ID element of the target
component.

In case you were wondering why the variable was necessary at all, it is because of the
requirement to number all records. Had we connected the filter result directly to the target
component, there would have been no way to number each occurrence of Contact. The purpose
of the variable in this mapping is, therefore, to store each instance of Contact temporarily on the
mapping, so that it can be numbered before it is written to the target.

© 2018 Altova GmbH

Using Variables 187Designing Mappings

Altova MapForce 2018 Professional Edition

5.7.5 Example: Grouping and Subgrouping Records

The mapping illustrated in this example is available as
DividePersonsByDepartmentIntoGroups.mfd in the <Documents>\Altova\MapForce2018
\MapForceExamples\ folder.

This mapping processes an XML file that contains employee records of a fictitious company. The
company has two offices: "Nanonull, Inc." and "Nanonull Partners, Inc". Each office has several
departments (for example, "IT", "Marketing", and so on), and each department has one or more
employees. The goal of the mapping is to create groups of maximum three people from each
department, regardless of the office. The size of each group is three by default; however, it should
be easy to change if necessary. Each group must be saved as a separate XML file, with the name
having the format "<Department Name>_GroupN" (for example, Marketing_Group1.xml,
Marketing_Group2.xml, and so on).

DividePersonsByDepartmentIntoGroups.mfd

As illustrated above, in order to achieve the mapping goal, a complex variable was added to the
mapping, and a few other component types (primarily functions). The variable has the same
structure as a Department item in the source XML. If you right-click the variable in order to view
its properties, you will notice that it uses the same XML schema as the source component, and
has Department as root element. Importantly, the variable has two nested parent-context
items, which ensure that the variable is computed first in the context of each department, and
then in the context of each group within each department (see also Changing the Context and
Scope of Variables).

Initially, the mapping iterates through all departments in order to obtain the name of each
department (this will be subsequently required to create the file name corresponding to each
group). This is achieved by connecting the group-by function to the Department source item, and

by supplying the department name as grouping key.

Next, within the context of each department, a second grouping takes place. Namely, the

188 Designing Mappings Using Variables

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

mapping calls the group-into-blocks function in order to create the required groups of people.

The size of each group is supplied by a simple input component which has a default value of "3".
The default value is supplied by a constant. In this example, in order to change the size of each
group, one can easily modify the constant value as required. However, the "size" input component
can also be modified so that, if the mapping is run by generated code or with MapForce Server,
the size of each group could be conveniently supplied as a parameter to the mapping. For more
information, see Supplying Parameters to the Mapping.

Next, the value of the variable is supplied to the target PersonList XML component. The file name
for each created group was computed by concatenating the following parts, with the help of the
concat function:

1. The name of each department
2. The string "_Group"
3. The number of the group in the current sequence (for example, "1" if this is the first group

for this department)
4. The string ".xml"

The result of this concatenation is stored in the Name item of the variable, and then supplied as a
dynamic file name to the target component. This causes a new file name to be created for each
received value. In this example, the variable computes eight groups in total, so eight output files
are created when the mapping runs, as required. For more information about this technique, see
Processing Multiple Input or Output Files Dynamically.

© 2018 Altova GmbH

Sorting Data 189Designing Mappings

Altova MapForce 2018 Professional Edition

5.8 Sorting Data

To sort input data based on a specific sort key, use a Sort component. The Sort component
supports the following target languages: XSLT2, XQuery, and Built-in. When the transformation
language is "Built-in", the Sort component can be used to sort database table data. Better
performance is, however, achieved using an SQL-WHERE/ORDER component. For more details,
see Filtering and Sorting Database Data (SQL WHERE/ORDER).

To add a sort component to the mapping, do one of the following:

Right-click an existing connection, and select Insert Sort: Nodes/Rows from the context
menu. This inserts the Sort component and automatically connects it to the source and
target components. For example, in the mapping below, the Sort component was inserted
between a variable and an XML component. The only thing that remains to be connected
manually is the sorting key (the field by which you want to sort).

On the Insert menu, click Sort (alternatively, click the Sort toolbar button). This
inserts the Sort component in its "unconnected" form.

As soon as a connection is made to the source component, the title bar name changes
to that of the item connected to the nodes/rows item.

To define the item by which you want to sort:

Connect the item by which you want to sort to the key parameter of the Sort component.
For example, in the mapping below, the Person nodes/rows are sorted by the field Last.

190 Designing Mappings Sorting Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To change the sort order:

Click the icon in the Sort component. It changes to to show that the sort
order has been reversed.

To sort input data consisting of simple type items:

Connect the item to both the nodes/rows and key parameters of the sort component. In
the mapping below, the element of simple type first is being sorted.

To sort strings using language-specific rules:

Double-click the header of the Sort component to open the Sort Properties dialog box.

© 2018 Altova GmbH

Sorting Data 191Designing Mappings

Altova MapForce 2018 Professional Edition

Unicode codepoint collation: This (default) option compares/orders strings based on code point
values. Code point values are integers that have been assigned to abstract characters in the
Universal Character Set adopted by the Unicode Consortium. This option allows sorting across
many languages and scripts.

Language-specific collation: This option allows you to define the specific language and country
variant you want to sort by. This option is supported when using the BUILT-IN execution engine.
For XSLT, support depends on the specific engine used to execute the code.

5.8.1 Sorting by Multiple Keys

After you add a Sort component to the mapping, one sorting key called key is created by default.

Default Sort component

If you want to sort by multiple keys, adjust the Sort component as follows:

Click the Add Key () icon to add a new key (for example, key2 in the mapping below).
Click the Delete Key () icon to delete a key.
Drop a connection onto the icon to add a key and also connect to it.

A mapping which illustrates sorting by multiple key is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\SortByMultipleKeys.mfd.

192 Designing Mappings Sorting Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

SortByMultipleKeys.mfd

In the mapping above, Person records are sorted by three sorting keys:

1. Shares (number of shares a person holds)
2. Last (last name)
3. First (first name)

Note that the position of the sorting key in the Sort component determines its sort priority. For
example, in the mapping above, records are initially sorted by the number of shares. This is the
sorting key with the highest priority. If the number of shares is the same, people are then sorted
by their last name. Finally, when multiple people have the same number of shares and the same
last name, the person's first name is taken into account.

The sort order of each key can be different. In the mapping above, the key Shares has a
descending sort order (Z-A), while the other two keys have ascending sort order (A-Z).

5.8.2 Sorting with Variables

In some cases, it may be necessary to add intermediate variables to the mapping in order to
achieve the desired result. This example illustrates how to extract records from an XML file, and
sort them, with the help of intermediate variables. The example is accompanied by a mapping
sample located at the following path: <Documents>\Altova\MapForce2018
\MapForceExamples\Altova_Hierarchical_Sort.mfd.

© 2018 Altova GmbH

Sorting Data 193Designing Mappings

Altova MapForce 2018 Professional Edition

Altova_Hierarchical_Sort.mfd

This mapping reads data from a source XML file called Altova_Hierarchical.xml and writes it to
a target XML file. As shown above, the source XML contains information about a fictitious
company. The company is divided into offices. Offices are sub-divided into departments, and
departments are further divided into people.

The target XML component, PersonList, contains a list of Person records. The Details item is
meant to store information about the office and department where the person belongs.

The aim is to extract all persons from the source XML and sort them alphabetically by last name.
Also, the office and department name where each person belongs must be written to the Details
item.

To achieve this goal, this example makes use of the following component types:

1. The concat function. In this mapping, this function returns a string in the format

Office(Department). It takes as input the office name, the department name, and two
constants which supply the start and end brackets. See also Working with Functions.

2. An intermediate variable. The role of the variable is to bring all data relevant to a person
into the same mapping context. The variable causes the mapping to look up the
department and office of each person, in the context of each person. To put it differently,
the variable "remembers" the office and department name to which a person belongs.
Without the variable, the context would be incorrect, and the mapping would produce

194 Designing Mappings Sorting Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

unwanted output (for more information about how a mapping is executed, see Mapping
Rules and Strategies). Notice that the variable replicates the structure of the target XML
file (it uses the same XML schema). This makes it possible to connect the sort result to
the target, through a Copy-All connection. See also Using Variables and Copy-All
Connections.

3. A Sort component, which performs the actual sorting. Notice that the key input of the
Sort component is connected to the Last item of the variable, which sorts all person
records by their last name.

© 2018 Altova GmbH

Filters and Conditions 195Designing Mappings

Altova MapForce 2018 Professional Edition

5.9 Filters and Conditions

When you need to filter data, or get a value conditionally, you can use one of the following
component types:

Filter: Nodes/Rows ()

SQL WHERE/ORDER ()

If-Else Condition ()

You can add these components to the mapping either from the Insert menu, or from the Insert
Component toolbar. Importantly, each of the components above has specific behavior and
requirements. The differences are explained in the following sections.

Filtering nodes or rows

When you need to filter data, including XML nodes or CSV rows, use a Filter Nodes/Rows
component. The Filter Nodes/Rows component enables you to retrieve a subset of nodes from a
larger set of data, based on a true or false condition. Its structure on the mapping area reflects
this:

In the structure above, the condition connected to bool determines whether the connected node/
row goes to the on-true or on-false output. Namely, if the condition is true, the node/row will be
redirected the on-true output. Conversely, if the condition is false, the node/row will be
redirected to the on-false output.

When your mapping needs to consume only items that meet the filter condition, you can leave
the on-false output unconnected. If you need to process the items that do not meet the filter
condition, connect the on-false output to a target where such items should be redirected. If you
want to add an exception when the filter condition is not met, connecting the on-false output is
mandatory (see Adding Exceptions).

For a step-by-step mapping example, see Example: Filtering Nodes.

Filtering database data

Filter Nodes/Rows components can filter data from any other component structure supported by
MapForce, including databases. However, if you want to filter data from a database, it is
recommended to use a SQL WHERE/ORDER component instead. The SQL WHERE/ORDER
component is optimized for working with databases and provides better performance than a Filter
Nodes/Rows component.

196 Designing Mappings Filters and Conditions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

For more information about such components, see SQL WHERE / ORDER Component.

Returning a value conditionally

If you need to get a single value (not a node or row) conditionally, use an If-Else Condition. Note
that If-Else conditions are not suitable for filtering nodes or rows. Unlike Filter Nodes/Rows
components, an If-Else Condition returns a value of simple type (such as a string or integer).
Therefore, If-Else Conditions are only suitable for scenarios where you need to process a simple
value conditionally. For example, let's assume you have a list of average temperatures per month,
in the format:

<Temperatures>

 <data temp="19.2" month="2010-06" />

 <data temp="22.3" month="2010-07" />

 <data temp="19.5" month="2010-08" />

 <data temp="14.2" month="2010-09" />

 <data temp="7.8" month="2010-10" />

 <data temp="6.9" month="2010-11" />

 <data temp="-1.0" month="2010-12" />

</Temperatures>

An If-Else Condition would enable you to return, for each item in the list, the value "high" if
temperature exceeds 20 degrees Celsius, and value "low" if temperature is lower than 5 degrees
Celsius.

On the mapping, the structure of the If-Else Condition looks as follows:

If the condition connected to bool is true, then the value connected to value-true is output as
result. If the condition is false, the value connected to value-false is output as result. The data
type of result is not known in advance; it depends on the data type of the value connected to
value-true or value-false. The important thing is that it should always be a simple type (string,
integer, and so on). Connecting input values of complex type (such as nodes or rows) is not
supported by If-Else Conditions.

If-Else Conditions are extendable. This means that you can add multiple conditions to the
component, by clicking the Add () button. To delete a previously added condition, click the
Delete () the button. This feature enables you to check for multiple conditions and return a
different value for each condition, if it is true.

© 2018 Altova GmbH

Filters and Conditions 197Designing Mappings

Altova MapForce 2018 Professional Edition

Expanded If-Else Conditions are evaluated from top to bottom (first conditions is checked first,
then the second one, and so on). If you want to return a value when none of the conditions are
true, connect it to otherwise.

For a step-by-step mapping example, see Example: Returning a Value Conditionally.

5.9.1 Example: Filtering Nodes

This example shows you how to filter nodes based on a true/false condition. A Filter: Nodes/

Rows () component is used to achieve this goal. The technique illustrated in this example
works in the same way not only for XML, but also for other component types, such as CSV or
text. In case of databases, although you can use a filter, it is recommended to use a SQL
WHERE/ORDER component instead, for better performance (see SQL WHERE / ORDER
Component).

The mapping described in this example is available at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\MarketingExpenses.mfd.

As shown above, the mapping reads data from a source XML which contains an expense report
("ExpReport") and writes data to a target XML ("MarketingExpenses"). There are several other
components between the target and source. The most relevant component is the expense-item

filter (), which represents the subject of this topic.

198 Designing Mappings Filters and Conditions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The goal of the mapping is to filter out only those expense items that belong to the Marketing
department. To achieve this goal, a filter component has been added to the mapping. (To add a
filter, click the Insert menu, and then click Filter: Nodes/Rows.)

To identify whether each expense item belongs to Marketing, this mapping looks at the value of
the "expto" attribute in the source. This attribute has the value "Marketing" whenever the expense
is a marketing expense. For example, in the code listing below, the first and third expense item
belongs to Marketing, the second belongs to Development, and the fourth belongs to Sales:

...

 <expense-item type="Meal" expto="Marketing">

 <Date>2003-01-01</Date>

 <expense>122.11</expense>

 </expense-item>

 <expense-item type="Lodging" expto="Development">

 <Date>2003-01-02</Date>

 <expense>122.12</expense>

 </expense-item>

 <expense-item type="Lodging" expto="Marketing">

 <Date>2003-01-02</Date>

 <expense>299.45</expense>

 </expense-item>

 <expense-item type="Entertainment" expto="Sales">

 <Date>2003-01-02</Date>

 <expense>13.22</expense>

 </expense-item>

...

XML input before the mapping is executed

On the mapping area, the node/row input of the filter is connected to the expense-item node in
the source component. This ensures that the filter component gets the list of nodes that it must
process.

To add the condition based on which filtering should occur, we have added the equal function

from the MapForce core library (for more information, see Working with Functions). The equal

function compares the value of the "type" attribute to a constant which has the value "Marketing".
(To add a constant, click the Insert menu, and then click Constant.)

Since we need to filter only those items that satisfy the condition, we connected only the on-true
output of the filter to the target component.

When you preview the mapping result, by clicking the Output tab, MapForce evaluates, for each
expense-item node, the condition connected to the bool input of the filter. When the condition is
true, the expense-item node is passed on to the target; otherwise, it is ignored. Consequently,
only the expense items matching the criteria are displayed in the output:

...

 <expense-item>

 <type>Meal</type>

© 2018 Altova GmbH

Filters and Conditions 199Designing Mappings

Altova MapForce 2018 Professional Edition

 <Date>2003-01-01</Date>

 <expense>122.11</expense>

 </expense-item>

 <expense-item>

 <type>Lodging</type>

 <Date>2003-01-02</Date>

 <expense>299.45</expense>

 </expense-item>

...

XML output after the mapping is executed

5.9.2 Example: Returning a Value Conditionally

This example shows you how to return a simple value from a component, based on a true/false

condition. An If-Else Condition () is used to achieve the goal. Note that If-Else Conditions
should not be confused with filter components. If-Else Conditions are only suitable when you
need to process simple values conditionally (string, integer, etc.). If you need to filter complex
values such as nodes, use a filter instead (see Example: Filtering Nodes).

The mapping described in this example is available at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\ClassifyTemperatures.mfd.

This mapping reads data from a source XML which contains temperature data ("Temperatures")
and writes data to a target XML which conforms to the same schema. There are several other
components between the target and source, one of them being the if-else condition (highlighted in

200 Designing Mappings Filters and Conditions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

red), which is also the subject of this topic.

The goal of the mapping is to add short description to each temperature record in the target.
Specifically, if temperature is above 20 degrees Celsius, the description should be "high". If the
temperature is below 5 degrees Celsius, the description should be "low". For all other cases, no
description should be written.

To achieve this goal, conditional processing is required; therefore, an If-Else Condition has been
added to the mapping. (To add an If-Else Condition, click the Insert menu, and then click If-Else
Condition.) In this mapping, the If-Else Condition has been extended (with the help of the
button) to accept two conditions: bool1 and bool2.

The conditions themselves are supplied by the greater and less functions, which have been

added from the MapForce core library (for more information, see Working with Functions). These
functions evaluate the values provided by two input components, called "upper" and "lower". (To
add an input component, click the Insert menu, and then click Insert Input. For more information
about input components, see Supplying Parameters to the Mapping.)

The greater and less functions return either true or false. The function result determines what is

written to the target instance. Namely, if the value of the "temp" attribute in the source is greater
than 20, the constant value "high" is passed to the if-else condition. If the value of the "temp"
attribute in the source is less than 5, the constant value "low" is passed on to the if-else
condition. The otherwise input is not connected. Therefore, if none of the above conditions is
met, nothing is passed to the result output connector.

Finally, the result output connector supplies this value (once for each temperature record) to the
"desc" attribute in the target.

When you are ready to preview the mapping result, click the Output tab. Notice that the resulting
XML output now includes the "desc" attribute, whenever the temperature is either greater than 20
or lower than 5.

...

 <data temp="-3.6" month="2006-01" desc="low"/>

 <data temp="-0.7" month="2006-02" desc="low"/>

 <data temp="7.5" month="2006-03"/>

 <data temp="12.4" month="2006-04"/>

 <data temp="16.2" month="2006-05"/>

 <data temp="19" month="2006-06"/>

 <data temp="22.7" month="2006-07" desc="high"/>

 <data temp="23.2" month="2006-08" desc="high"/>

...

XML output after the mapping is executed

© 2018 Altova GmbH

Joining Data 201Designing Mappings

Altova MapForce 2018 Professional Edition

5.10 Joining Data

Sometimes, you may need to combine data from two or more structures based on some condition
(for example, if field A in the first structure has the same value as field B in the second structure).
For such mapping requirements, a Join component can be used.

A Join component is a MapForce component which enables joining two or more structures on the
mapping based on custom-defined conditions. It returns the association (joined set) of items that
satisfy the condition. Joins are particularly useful to combine data from two structures which
share a common field (such as an identity).

For example, on the mapping illustrated below, the middle component is a "Join" component. In
this mapping, two XML structures (a list of people and a list of addresses) are being joined. The
goal here is to get the full details of each person into a target XML file. The FirstName and
LastName fields act as joining keys. Namely, if value of FirstName and LastName (under Person)
is the same as that of FirstName and LastName (under Address), the address details belong to
one and the same person and they become "joined". Any items from the joined structure can
further be mapped to a subsequent target (in this case, an XML file). The join condition itself is

defined in the properties of the Join component, by clicking the Define Join Condition ()
button. This example is accompanied by a mapping sample and is explained in more detail in
Example: Join XML Structures.

JoinPeopleInfo.mfd

As illustrated above, the source structures and the Join component are connected by means of
"Copy-All" connection, which reduces the mapping clutter. In general, such connections are
created automatically by MapForce when the context is relevant (for more information, see Copy-
All Connections).

The structures that are to be joined may either be from separate components (as in the mapping
above), or belong to the same component. The structures to be joined may also be of different
kinds (for example, an XML structure and a database table). For more information about database-

202 Designing Mappings Joining Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

related joins, see Joining Database Data.

To add a Join component:

1. Set the mapping transformation language to BUILT-IN (to do this, either click the
toolbar button, or use the Output | Built-In Execution Engine menu command).

2. On the Insert menu, click Join. Alternatively, click the Join () toolbar button. The
Join component appears on the mapping. By default, it accepts data from two structures,
so it has two nodes/rows inputs. If necessary, you can add new inputs to the join by
clicking the Add Input () button, see Joining Three or More Structures.

3. Connect the structures that are to be joined to the nodes/rows items of the join
component.

4. Add the condition for the join (or multiple conditions). To do this, right-click the Join
component and select Properties. Join conditions can also be added directly from the
mapping, by connecting the Boolean result of some function to the condition item of the
Join component. In certain cases when database tables are joined, the join condition (or
conditions) can be created automatically by MapForce. For further information, see
Adding Join Conditions.

Notes:

Join components are supported when the target language of the mapping is set to BUILT-
IN. Code generation in C#, C++, or Java is not supported.
When a structure is not a valid or supported input source for the join, MapForce displays
hints either immediately directly on the mapping, or in the Messages window, when you
validate the mapping (see Validating Mappings).
Join components should not be connected to input parameters or results of inline user-
defined functions. If such connections exist, validation errors will occur during mapping
validation.
When you connect eligible database components (such as tables or views) directly to a

Join component, an SQL mode () button automatically appears at the top-right
corner of the Join component. When enabled, this button provides special SQL features
applicable to the join operation (see About Joins in SQL Mode).
It is not possible to connect the output of the joined item to another Join component. If
necessary, however, you can connect a partial result of one join to another one.

Join components compared to other component types
In some cases, complex variables or filters can be used instead of Join components to achieve
the same results (see Using Variables and Filters and Conditions, respectively). However, unlike
other component types, Join components make the mapping easier to understand, because you
can see at a glance the data that is being joined. Additionally, if SQL mode is enabled on the join

© 2018 Altova GmbH

Joining Data 203Designing Mappings

Altova MapForce 2018 Professional Edition

component, the mapping performance improves significantly (this applies to database joins, see
Joining Database Tables).

Adding a parent context
In some special cases, in order to achieve a specific mapping result, you can explicitly provide a
mapping context (a so-called "parent context") for data connected to the Join component. To add
a parent context, right-click the joined item of the Join component, and select Add Parent
Context from the context menu. The Join component changes appearance to include an
additional parent-context input where you can connect the required source item. For more
information, see Overriding the Mapping Context.

5.10.1 Adding Join Conditions

A join works by combining items of two or more structures according to a condition, so a join
always requires at least one condition. There are several ways to add join conditions, as shown
below.

Note: When database tables are joined in SQL mode, MapForce will create the join condition
(or conditions) automatically, based on foreign key relationships detected between tables.
For automatic join conditions to happen, the database tables must be in a child-parent
relationship on the MapForce component (that is, one table must be "parent" or "child" of
another one on the component), see Example: Join Tables in SQL Mode.

Approach 1: Add a join condition from the component properties

1. On the mapping, make sure that at least two structures (or database tables) are
connected to the Join component. The Join component illustrated in this example is part
of the JoinPeopleInfo.mfd mapping available in the folder <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\. This mapping is discussed in more
detail in Example: Join XML Structures.

2. On the Join component, click the Define Join Condition () button (or right-click the
header of the component, and select Properties from the context menu).

3. Select an item from the left structure and another one from the right structure (that is,
whenever the comparison of this pair returns true, the left and right structures become
joined).

204 Designing Mappings Joining Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

If you need to add multiple conditions, click Add Condition, and then select a new pair of
items. For example, in the image above, two join conditions are defined:

1. FirstName in the Structure 1 must be equal to FirstName in Structure 2, and
2. LastName in Structure 1 must be equal to LastName in Structure 2.

To remove a join condition, click the Delete button next to it.

Notes:

When multiple join conditions exist, all of them must be satisfied in order for the two
structures to be joined. In other words, multiple conditions are joined by a logical AND
operation. This also includes optional conditions that were added from the mapping (see
Approach 2 below).
If more than two structures are connected to the Join component, such additional
structures appear in the drop-down list below "Structure 2". When you select such an
additional structure from the drop-down list, the left pane displays all structures that
occur before it on the Join component. This way you can define join conditions between
any of the multiple structures. For an example, see Example: Create CSV Report from
Multiple Tables.

© 2018 Altova GmbH

Joining Data 205Designing Mappings

Altova MapForce 2018 Professional Edition

To view the data type of items in each structure, select the Show types check box. The
Show annotations option displays additional information about items, provided that such
information exists in the underlying schema (or database). If both check boxes are
selected, the layout changes to accommodate the display of both annotations and types,
for example:

Approach 2: Add a join condition from the mapping

On the mapping, add components which produce a Boolean value, and then connect the
Boolean output to the input of the condition item. For example, the equal function may

compare a value with some mapping item, and supply the Boolean result as input to the
condition item of the join component.

206 Designing Mappings Joining Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: If no condition is defined from the join component properties (Approach 1), the condition
item of the join component must be connected (Approach 2).

Approach 3: Mixed approach

In the same mapping, it is possible to define some join conditions in component properties
(Approach 1) and combine them with the one from the mapping (Approach 2). However, if you
intend to join database tables in SQL mode, the conditions must be defined strictly using
Approach 1 (see also About Joins in SQL Mode).

5.10.2 Joining Three or More Structures

When you add a Join component to the mapping using the menu command Insert | Join, it
accepts two structures by default (that is, the component contains only two nodes/rows inputs).

If you need to join more than two structures, click the Add input () button and create as many
nodes/rows as necessary. If you need to remove a nodes/rows input, click the Delete input (
) button. Note that a join requires at least two structures, so the button is only available when

© 2018 Altova GmbH

Joining Data 207Designing Mappings

Altova MapForce 2018 Professional Edition

more than two inputs exist.

When a join has multiple inputs, the join conditions must accordingly take into consideration each
of the inputs that you want to be joined, see Adding Join Conditions. For a step-by-step example
of how to join multiple database tables, see Example: Create CSV Report from Multiple Tables.

5.10.3 Example: Join XML Structures

This example shows you how to combine data from two XML structures conditionally, by using a
join component. The example is accompanied by a mapping sample which is available at the
following path: <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\JoinPeopleInfo.mfd.

The purpose of this mapping is to collect people data (name, surname, address, email, and
phone) from two source XML files into a single target XML file.

The first XML file stores the name and surname of each person, as well as their email and phone,
as shown in the sample code listing below (note that the XML declaration, namespaces, and
some records have been omitted, for simplicity):

<People>

 <Person>

 <FirstName>Marquita</FirstName>

 <LastName>Bailey</LastName>

 <Email>m.bailey@nanonull.com</Email>

 <Phone>555323698</Phone>

 </Person>

 <Person>

 <FirstName>Totie</FirstName>

 <LastName>Rea</LastName>

 <Email>t.rea@nanonull.com</Email>

 <Phone>555598653</Phone>

 </Person>

</People>

People.xml

The second XML file stores the name and surname of each person, as well as their address
details:

<Addresses>

208 Designing Mappings Joining Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <Address>

 <FirstName>Marquita</FirstName>

 <LastName>Bailey</LastName>

 <City>Bridgedell</City>

 <Street>Olive Street</Street>

 <Number>4</Number>

 </Address>

 <Address>

 <FirstName>Totie</FirstName>

 <LastName>Rea</LastName>

 <City>Roseford</City>

 <Street>Evergreen Lane</Street>

 <Number>34</Number>

 </Address>

</Addresses>

Addresses.xml

The goal of the mapping is to combine the <Person> information from the first file with <Address>
information from the second file, wherever the first and last names match. Specifically, for each
<Person> in the first file, and for each <Address> in the second file, the FirstName and LastName
must be compared. If both values are the same, then the corresponding <Person> and <Address>
records refer to the same person, and must be joined. The target XML structure should look like
this:

<PeopleInfo>

 <Row>

 <FirstName>Marquita</FirstName>

 <LastName>Bailey</LastName>

 <City>Bridgedell</City>

 <Street>Olive Street</Street>

 <Number>4</Number>

 <Email>m.bailey@nanonull.com</Email>

 <Phone>555323698</Phone>

 </Row>

 <Row>

 <FirstName>Totie</FirstName>

 <LastName>Rea</LastName>

 <City>Roseford</City>

 <Street>Evergreen Lane</Street>

 <Number>34</Number>

 <Email>t.rea@nanonull.com</Email>

 <Phone>555598653</Phone>

 </Row>

</PeopleInfo>

PeopleInfo.xml

This mapping goal can be easily achieved by adding a Join component to the mapping. Note that
it is also possible to achieve the same result using other component types; however, in the steps
below, you will be using a Join component, which is the subject of this example.

© 2018 Altova GmbH

Joining Data 209Designing Mappings

Altova MapForce 2018 Professional Edition

To create the required mapping, follow the steps below.

Step 1: Add the source XML files to the mapping

1. On the Insert menu, click XML Schema/File, and browse for the following source file:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\People.xml.

2. Repeat the step above for Addresses.xml (the second source file).

Step 2: Add the target schema file to the mapping

On the Insert menu, click XML Schema/File, and browse for <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\PeopleInfo.xsd (the target XSD
schema file). When prompted to supply a sample XML file, click Skip. When prompted to
select a root element, select PeopleInfo as root element.

Step 3: Add the Join component

1. On the Insert menu, click Join. (Alternatively, click the Join toolbar button). At this
stage, the mapping should look as follows (you will need to drag and resize the
components in order to make them look as illustrated below):

Observe the structure of the Join component. It has two nodes/rows items, which makes
it possible to connect to it the two structures that need to be compared (in this case, the
Person and the Address structures).

2. Draw a connection from Person to the first nodes/rows item of the Join component.

Likewise, connect Address to the second nodes/rows item.

210 Designing Mappings Joining Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. As mentioned earlier, the join should take place only if the FirstName and LastName
values are equal in both structures. To define this condition, click the Define Join

Condition button.
4. Select the pair of items that define the first join condition (FirstName under Structure 1,

and FirstName under Structure 2).
5. Click Add Condition, and repeat the step above for LastName.

© 2018 Altova GmbH

Joining Data 211Designing Mappings

Altova MapForce 2018 Professional Edition

In some mappings, a condition consisting of one comparison may be sufficient to perform the join.
However, in this example, it is important that two comparisons are created:

1) FirstName in Structure1 = FirstName in Structure 2
2) LastName in Structure 1 = LastName in Structure 2.

When multiple conditions are defined, all of them must be true in order for the join to take place.
Therefore, in this example, a join will happen only when both comparisons are true (which is the
intended behaviour). Otherwise, if only one of the comparisons above were defined, a join could
happen for persons that have the same first name but different last names.

Step 4: Map the Join component to the target schema

Now that the two structures are joined, you can define which items of the joined structure should
be mapped to the target. To do this, create connections from items of both joined structures to
the target component, as shown below. The connection between joined and Row has the
following purpose: whenever the join condition is satisfied, it creates a new Row item in the target.

212 Designing Mappings Joining Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To preview the mapping output, click the Output tab. As expected, each person record (<Row>)
now includes the full address details, joined from two different sources.

© 2018 Altova GmbH

Using Value-Maps 213Designing Mappings

Altova MapForce 2018 Professional Edition

5.11 Using Value-Maps

The Value-Map component allows you to transform an input value to a different output value using
a lookup table. This is useful for converting different enumeration types. The component only has
one input and output item.

Note: if you want to retrieve/filter data based on specific criteria, please use the Filter component,
see Filters and Conditions.

To use a Value-Map component:

1. Select the menu option Insert | Value-Map, or click the Value-Map icon in the icon
bar.

2. Double click the Value-Map component to open the value map table.

3. Click into the column headers and enter Weekday input in the first, and Day of the
Week in the second.

4. Enter the input value that you want to transform, in the Weekday input column.
5. Enter the output value you want to transform that value to, in the Day of the week

214 Designing Mappings Using Value-Maps

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

column.
6. Simply type in the (new entry) input field to enter a new value pair.
7. Click the datatype combo box, below the column header to select the input and output

datatypes, e.g. integer and string.

Note: activate the Otherwise check box, and enter the value, to define an alternative
output value if the supplied values are not available on input. To pass through source data
without changing it please see Passing data through a Value-Map unchanged.

8. You can click the edit icons in the header rows to change the column names, which are
also displayed in the mapping. This will make it easier to identify the purpose of the
component in the mapping.

The Expense-valmap.mfd file in the ...\MapForceExamples\Tutorial\ folder is a sample mapping
that shows how the Value-Map can be used.

© 2018 Altova GmbH

Using Value-Maps 215Designing Mappings

Altova MapForce 2018 Professional Edition

What this mapping does:
Extracts the day of the week from the Date item in the data source, converts the numerical value
into text, and places it in the Weekday item of the target component i.e. Sunday, Monday etc.

The weekday function extracts the weekday number from the Date item in the
ExpReport source file. The result of this function are integers ranging from 1 to 7.
The Value-Map component transforms the integers into weekdays, i.e. Sunday, Monday,
etc. as shown in the graphic at the top of this section.
If the output contains "Tuesday", then the corresponding output "Prepare Financial
Reports" is mapped to the Notes item in the target component.

Clicking the Output tab displays the target XML file with the transformed data.

Note:
Placing the mouse cursor over the value map component opens a popup containing the
currently defined values.

The output from various types of logical, or string functions, can only be a boolean "true"

216 Designing Mappings Using Value-Maps

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

or "false" value. The value you want to test for, must thus be entered into the input field
of the value map table e.g. "true".

5.11.1 Passing data through a Value-Map unchanged

This section describes a mapping situation where some specific node data have to be
transformed, while the rest of the node data have to be passed on to the target node unchanged.

An example of this would be a company that changes some of the titles in a subsidiary. In this
case it might change two title designations and want to keep the rest as they currently are.

The obvious mapping would be the one shown above, which uses the value-map component to
transform the specific titles.
Clicking the Output tab shows us the result of the mapping:

For those persons who are neither of the two types shown in the value-map component, the Title
element is deleted in the output file.

© 2018 Altova GmbH

Using Value-Maps 217Designing Mappings

Altova MapForce 2018 Professional Edition

Possible alternative:
Clicking the Otherwise check box and entering a substitute term, does make the Title node
reappear in the output file, but it now contains the same New Title for all other persons of the
company.

Solution:
Create a user-defined function containing the value-map component, and use the substitute-
missing function to supply the original data for the empty nodes.

1. Click the value-map component and select Function | Create user-defined function
from Selection.

2. Enter a name for the function e.g. Pass-Through and click OK.

3. Insert a substitute-missing function from the core | node function section of the
Libraries pane, and create the connections as shown in the screen shot below.

218 Designing Mappings Using Value-Maps

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Click the Output tab to see the result:

Result of the mapping:

The two Title designations in the value-map component are transformed to New Title.
All other Title nodes of the source file, retain their original Title data in the target file.

Why is this happening:
The value-map component evaluates the input data.

If the incoming data matches one of the entries in the first column, the data is
transformed and passed on to the node parameter of substitute-missing, and then on to
Title2.

If the incoming data does not match any entry in the left column, then nothing is passed
on from value-map to the node parameter i.e. this is an empty node.

When this occurs the substitute-missing function retrieves the original node and data from
the Title node, and passes it on through the replace-with parameter, and then on to
Title2.

5.11.2 Value-Map component properties

Actions:

Click the insert icon to insert a new row before the currently active one.

© 2018 Altova GmbH

Using Value-Maps 219Designing Mappings

Altova MapForce 2018 Professional Edition

Click the delete icon to delete the currently active row.

Click the edit icon to edit the column header.

You can also reorder lines by dragging them.

Changing the column header:
Double clicking the column header, or clicking the pencil icon, allows you to edit the column
name and change it to something more meaningful. This will make it easier to identify the purpose
of the component, as the column names are also displayed in the mapping.

Using unique Input values:
The values entered into the input column must be unique. If you enter two identical values, both
are automatically highlighted for you to enable you to correct one of them.

Having corrected one of the values, the OK button is again enabled.

Input and output datatypes
The input and result datatypes are automatically checked when a selection is made using the
combo box. If a mismatch occurs, then the respective fields are highlighted and the OK button is
disabled. Change the datatype to one that is supported.

In the screenshot below a boolean and string have been selected.

220 Designing Mappings Using Value-Maps

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

© 2018 Altova GmbH

Adding Exceptions 221Designing Mappings

Altova MapForce 2018 Professional Edition

5.12 Adding Exceptions

An exception is a special component type that enables you to stop the mapping process and
display an error when a condition returned by a filter occurs. You can add an exception when your
mapping includes a filter that checks for a true/false condition (see Filters and Conditions). For
example, you may want to throw an exception if the value of some mapping item is greater than
some custom threshold.

To add an exception to the mapping:

1. On the Insert menu, click Exception.

2. Click the Insert Exception () toolbar button.
3. Connect the throw input of the exception either to an on-true or on-false output of a

filter.
4. Optionally, connect the error-text input of the exception to another component (typically,

a constant) that supplies the text of the error when this exception is thrown.

Note: Both the on-true and on-false outputs of the filter must be connected. Specifically, one
of these outputs must be connected directly to the exception (without any intermediary
functions or components). The other output must be connected to the target component,
either directly, or through other intermediary components.

When the mapping encounters an exception, you are notified about it as follows:

In MapForce, the Messages window displays an error, and the exception text (in this
case, "Expense limit exceeded").

If the mapping language is XSLT 2.0 or XQuery, an "Execution failed" error appears in the
Messages window, and the respective XSLT2 or XQuery tab is opened. The error line is
highlighted in the Messages window.

If you run the mapping with MapForce Server, the error "Exception was thrown!" is
returned, followed by the custom exception text you have defined in MapForce.

If you run the mapping from the generated C#, C++, or Java code, the error "USER
EXCEPTION" is returned, followed by the custom exception text you have defined in
MapForce.

222 Designing Mappings Adding Exceptions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5.12.1 Example: Exception on "Greater Than" Condition

This example illustrates a mapping that throws an exception when a "Greater Than" condition
occurs. The sample mapping accompanying this example can be found at: <Documents>
\Altova\MapForce2018\MapForceExamples\ExpenseLimit.mfd.

This mapping throws an exception whenever the expense item in the source XML instance has a
value greater than 200. The value "200" is provided by a constant. The less function is then used

to compare the two values. If the value of expense is less than 200, then its parent, the
expense-item, is passed on to the filter, and no exception is thrown. Otherwise, an exception is
thrown, with the custom text "Expense limit exceed".

As shown above, the exception is identified by the icon and it consists of two items: throw
and error-text. The throw item must be connected to the on-false or on-true output of a filter.
The error-text is connected to a constant which provides the custom text of the exception.

Importantly, both outputs of the filter are connected; otherwise, the exception would not be
thrown. In this particular example, the on-false output is connected to the exception, while the
on-true output is connected to the target component.

5.12.2 Example: Exception When Node Does Not Exist

This example illustrates how to throw an exception when a node in the source XML schema does
not exist. For the sake of simplicity, this example uses the same XML schema both as source
and target component.

© 2018 Altova GmbH

Adding Exceptions 223Designing Mappings

Altova MapForce 2018 Professional Edition

To add the source schema to the mapping:

1. On the Insert menu, click XML Schema/File, and browse for <Documents>\Altova
\MapForce2018\MapForceExamples\BookList.xsd.

2. When prompted to provide an instance file, click Skip.
3. When prompted to select a schema root element, select BookList as root element.

To add the target schema, follow the same steps. Then, using the corresponding commands from
Insert menu (or the corresponding toolbar buttons), add the following:

A Filter: Nodes/Rows component (see also Filters and Conditions)
A constant with the text "No year defined!"
An exception

Finally, drag the exists function from the Libraries window into the mapping area, and make the

connections as illustrated below.

According to the XML schema, all attributes of the Book element are optional, except the book
title. Therefore, the "Year" attribute may or may not exist in a valid XML instance. The goal of the
mapping is to process successfully an XML instance where the "Year" attribute exists for each
book. Otherwise, the mapping must throw an exception.

To test the successful execution of the mapping:

1. Double-click the header of the source component and, next to Input XML file, browse for
the following file: <Documents>\Altova\MapForce2018\MapForceExamples
\BookList.xml.

2. Click the Output button to run the mapping.

To test the exception:

1. Create, in the same directory, a copy of the BookList.xml file called
BookListInvalid.xml.

2. Modify it so as to remove the "Year" attribute from a Book element.
3. Double-click the header of the source component, and, next to Input XML file, browse

for the BookListInvalid.xml file.
4. Click the Output button to run the mapping.

224 Designing Mappings Adding Exceptions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Let's now have a closer look at how the mapping works.

Connection A ensures that a book in the target instance is created for each book in the source
instance. Connections B, C, D, E ensure that the "Title", "Year", "Price", and "Author" are copied
from the source to the target, for each book.

Connection F triggers the exists function to check for the existence of the "Year" attribute.

Connection G passes the function result (true or false) to the filter. If the result is true, the
"Year" attribute exists, and the book is passed on to the filter, and subsequently to the target
through connection H.

Notice that the filter was not connected directly to the Year output of the source component.
Had we done so, the filter would filter the Year by its own existence, which is not meaningful,
and the exception would never be thrown.

Connection I is there because the exception must be connected either to an on-false or on-true
output of a filter, according to the rules. Finally, connection K passes the custom error text from
the constant to the exception component.

© 2018 Altova GmbH

Parsing and Serializing Strings 225Designing Mappings

Altova MapForce 2018 Professional Edition

5.13 Parsing and Serializing Strings

String parsing and serialization is an advanced mapping technique that enables you to configure
the component to either parse data from a string, or serialize data to a string. This technique can
be regarded as an alternative to reading data from (or writing data to) files. MapForce components
which parse strings or serialize data to strings can be useful in a variety of situations, for
example:

You need to insert structures such as XML into database fields.
You need to convert XML fragments stored in database fields into standalone XML files.
You have legacy data stored as text (for example, fixed-length content in a single
database field), and you would like to convert this data into a fully sortable, field-based
structure

String parsing and serialization is available for the following MapForce component types:

Text (CSV, fixed-length field text)
XML schema files

String parsing and serialization is supported in MapForce target languages as follows.

Language Reading Writing

BUILT-IN (preview the
mapping transformation)

Yes Yes

BUILT-IN (run the MapForce
Server execution file)

Yes Yes

This section includes the following topics:

About the Parse/Serialize Component
Example: Serialize to String (XML to Database)

5.13.1 About the Parse/Serialize Component

A Parse/Serialize component in MapForce is a hybrid component which is neither a source nor a
target component. Given the role they play in the mapping design, such components must be
placed in between other source and target components.

You can use a "Parse/Serialize String" component for string parsing when, for some reason, you
need to convert a string that has structure (for example, some XML stored as string in a database)
into another format. Parsing data from the source string to the "Parse/Serialize" component
means that the source string is turned into a MapForce structure, and, thus, you get access to
any element or attribute of the source XML stored as string.

226 Designing Mappings Parsing and Serializing Strings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Generic "Parse String" component

The diagram above illustrates the typical structure of a MapForce component which parses a
string. Note that the "Parse/Serialize String" component is placed in between the source and
target of the mapping. What this component does is accept some string structure as input, by
means of a single MapForce connector which is connected to its top String node. The output
structure can be any of the data targets supported by MapForce.

When you serialize data from a component to string, the reverse happens. Specifically, the entire
structure of the MapForce component becomes a string structure which you can further
manipulate as necessary. For example, this enables you to write an XML file (or XML fragment) to
a database field or to a single cell of an Excel spreadsheet.

Generic "Serialize to String" component

The diagram above illustrates a generic MapForce "Serialize to String" component. What this
component does is accept as input any data source supported by MapForce (by means of
standard MapForce connectors). The output structure is a string which you can pass further by
means of a single MapForce connector drawn from the top String node of the component to a
target component item (for example, a spreadsheet cell). For an example, see Example: Serialize
to String (XML to Database).

© 2018 Altova GmbH

Parsing and Serializing Strings 227Designing Mappings

Altova MapForce 2018 Professional Edition

You can designate a component for string parsing or serialization at any time from the mapping

window. To do so, click the File/String () button adjacent to the root node, and then
select the desired option.

Changing the component mode

Note: A "Parse/Serialize String" component cannot read data from a string and write to a string
simultaneously. Therefore, the root node can have either an incoming connector or an
outgoing connector (not both). An error will be generated if you attempt to use the same
component for both operations.

When you designate a component for string parsing or serialization, the appearance of component
changes as follows:

The component gets the parse or serialize prefix in the title.
The title bar has yellow background color, similar to function components.
The top node begins with the String: prefix and is identified by the icon.
If the component parses a string, the output connector from the root node is not
meaningful and thus it is not available.
If the component serializes to a string, the input connector to the root node is not
meaningful and thus it is not available.

When a component is in "Parse/Serialize String" mode, you can change its settings in a similar
way as if it were in a file-based mode (see Changing the Component Settings). Note that not all
component settings are available when a component is in either "Parse" or "Serialize" mode.

5.13.2 Example: Serialize to String (XML to Database)

This example walks you through the steps required to create a mapping design which serializes
data to a string. The example is accompanied by a sample file. If you want to look at the sample
file before starting this example, you can open it from the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\SerializeToString.mfd.

Let's assume you have an XML file (and its related schema) which consists of multiple <Person>
elements. Each <Person> element describes a person's first name, last name, job title, phone

228 Designing Mappings Parsing and Serializing Strings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

extension, and email address, as follows:

<Person>

 <First>Joe</First>

 <Last>Firstbread</Last>

 <Title>Marketing Manager Europe</Title>

 <PhoneExt>621</PhoneExt>

 <Email>j.firstbread@nanonull.com</Email>

</Person>

Your goal is to extract each <Person> element from the XML file and insert it literally (including
XML tags) as a new database record in the PEOPLE table of a SQLite database. The PEOPLE table
contains only two columns: ID and PERSON. Its full definition is as follows:

CREATE TABLE PEOPLE (ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, PERSON
TEXT);

After the mapping is executed, the expected result is that the PEOPLE table will have the same
number of rows as the number of <Person> elements in the XML file.

To achieve the goal, do the following:

1. Add to the mapping area the source XML component (use the Insert | XML Schema/File
menu command). The sample file is available at: <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\MFCompany.xml.

2. Duplicate (copy-paste) the XML component.

3. On the duplicated XML component, click , and then select Serialize XML to
Strings.

4. Right-click the duplicated component and select Change Root Element from the
context menu. Then change the root element to <Person>.

© 2018 Altova GmbH

Parsing and Serializing Strings 229Designing Mappings

Altova MapForce 2018 Professional Edition

In general, you can change the root element to any element that has a global (not
local) declaration in the XML schema. Any elements that are not defined globally in
your schema are not listed in the "Select Root Element" dialog box.

5. Double-click the component and disable the Write XML Declaration option. This
prevents the XML declaration from being written for each <Person> element.

230 Designing Mappings Parsing and Serializing Strings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6. Add to the mapping area the target SQLite database component, from the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\\dbserialize.db.
(To add the database component, use the Insert | Database menu command, see also
Connecting to a Database). When prompted to insert a database object, select the
PEOPLE table.

7. Link the components as shown below. On the left side of the mapping, the <Person>
element maps to the serialization component. On the right side of the mapping, the
serialized string value is inserted into the PERSON column of the PEOPLE database table.
Finally, the connector drawn from <Person> to PEOPLE table instructs MapForce to create
a new record for each <Person> element encountered.

© 2018 Altova GmbH

Parsing and Serializing Strings 231Designing Mappings

Altova MapForce 2018 Professional Edition

8. Click the A:In button on the database component, and instruct MapForce to perform the
following actions every time when the mapping transformation runs:
a. Delete all records from the table;
b. Increment the value of ID by 1.

Observe the max()+1 action selected for the ID column. This instructs MapForce to
analyze what is the maximum ID value already existing in the database, and insert
the next available integer, incremented by 1.

232 Designing Mappings Parsing and Serializing Strings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

You have now created a mapping design which serializes data to string. If you click the Output
tab, the preview SQL query indicates that separate records will be inserted into the database for
each <Person> element in the XML file, which was the goal of this mapping.

© 2018 Altova GmbH

Mapping Node Names 233Designing Mappings

Altova MapForce 2018 Professional Edition

5.14 Mapping Node Names

Most of the time when you create a mapping with MapForce, the goal is to read values from a
source and write values to a target. However, there might be cases when you want to access not
only the node values from the source, but also the node names. For example, you might want to
create a mapping which reads the element or attribute names (not values) from a source XML and
converts them to element or attribute values (not names) in a target XML.

Consider the following example: you have an XML file that contains a list of products. Each
product has the following format:

 <product>

 <id>1</id>

 <color>red</color>

 <size>10</size>

 </product>

Your goal is to convert information about each product into name-value pairs, for example:

 <product>

 <attribute name="id" value="1" />

 <attribute name="color" value="red" />

 <attribute name="size" value="10" />

 </product>

For such scenarios, you would need access to the node name from the mapping. With dynamic
access to node names, which the subject of this topic, you can perform data conversions such as
the one above.

Note: You can also perform the transformation above by using the node-name and static-

node-name core library functions. However, in this case, you need to know exactly what

element names you expect from the source, and you need to connect every single such
element manually to the target. Also, these functions might not be sufficient, for example,
when you need to filter or group nodes by name, or when you need to manipulate the data
type of the node from the mapping.

Accessing node names dynamically is possible not only when you need to read node names, but
also when you need to write them. In a standard mapping, the name of attributes or elements in a
target is always known before the mapping runs; it comes from the underlying schema of the
component. With dynamic node names, however, you can create new attributes or elements
whose name is not known before the mapping runs. Specifically, the name of the attribute or
element is supplied by the mapping itself, from any source supported by MapForce.

For dynamic access to a node's children elements or attributes to be possible, the node
must actually have children elements or attributes, and it must not be the XML root node.

Dynamic node names are supported when you map to or from the following component types:

234 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

XML
CSV/FLF*

* Requires MapForce Professional or Enterprise Edition.

Note: In case of CSV/FLF, dynamic access implies access to "fields" instead of "nodes", since
CSV/FLF structures do not have "nodes".

When the mapping target is a CSV or FLF (fixed-length field) file, the fields must be defined in
the component settings (and it is not possible to change the name, order, or number of the
target fields). Unlike XML, the format of text files is fixed, so only the actual field value can be
manipulated, not the field name, number or order.

Dynamic node names are supported in any of the following mapping languages: Built-In*, XSLT2,
XQuery*, C#*, C++*, Java*.

* Requires MapForce Professional or Enterprise Edition.

For information about how dynamic node names work, Getting Access to Node Names. For a
step-by-step mapping example, see Example: Map Element Names to Attribute Values.

5.14.1 Getting Access to Node Names

When a node in an XML component (or a field in a CSV/FLF component) has children nodes, you
can get both the name and value of each child node directly on the mapping. This technique is
called "dynamic node names". "Dynamic" refers to the fact that processing takes place "on the
fly", during mapping runtime, and not based on the static schema information which is known
before the mapping runs. This topic provides details on how to enable dynamic access to node
names and what you can do with it.

When you read data from a source, "dynamic node names" means that you can do the following:

Get a list of all children nodes (or attributes) of a node, as a sequence. In MapForce,
"sequence" is a list of zero or more items which you can connect to a target and create
as many items in the target as there are items in the source. So, for example, if a node
has five attributes in the source, you could create five new elements in the target, each
corresponding to an attribute.
Read not only the children node values (as a standard mapping does), but also their
names.

When you write data to a target, "dynamic node names" means that you can do the following:

Create new nodes using names supplied by the mapping (so-called "dynamic" names),
as opposed to names supplied by the component settings (so-called "static" names).

To illustrate dynamic node names, this topic makes use of the following XML schema:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\Products.xsd. This
schema is accompanied by a sample instance document, Products.xml. To add both the
schema and the instance file to the mapping area, select the Insert | XML Schema/File menu

© 2018 Altova GmbH

Mapping Node Names 235Designing Mappings

Altova MapForce 2018 Professional Edition

command and browse for <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\Products.xml. When prompted to select a root element, choose products.

To enable dynamic node names for the product node, right-click it and select one of the following
context menu commands:

Show Attributes with Dynamic Name, if you want to get access to the node's
attributes
Show Child Elements with Dynamic Name, if you want to get access to the node's
children elements

Fig. 1 Enabling dynamic node names (for child elements)

Note: The commands above are available only for nodes that have children nodes. Also, the
commands are not available for root nodes.

When you switch a node into dynamic mode, a dialog box such as the one below appears. For
the purpose of this topic, set the options as shown below; these options are further discussed in
Accessing Nodes of Specific Type.

236 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Fig. 2 "Dynamically Named Children Settings" dialog box

Fig. 3 illustrates how the component looks when dynamic node names are enabled for the
product node. Notice how the appearance of the component has now significantly changed.

Fig.3 Enabled dynamic node names (for elements)

© 2018 Altova GmbH

Mapping Node Names 237Designing Mappings

Altova MapForce 2018 Professional Edition

To switch the component back to standard mode, right-click the product node, and disable the
option Show Child Elements with Dynamic Name from the context menu.

The image below shows how the same component looks when dynamic access to attributes of a
node is enabled. The component was obtained by right-clicking the product element, and
selecting Show Attributes with Dynamic Name from the context menu.

Fig. 4 Enabled dynamic node names (for attributes)

To switch the component back to standard mode, right-click the product node, and disable the
option Show Attributes with Dynamic Name from the context menu.

As illustrated in Fig. 3 and Fig. 4, the component changes appearance when any node (in this
case, product) is switched into "dynamic node name" mode. The new appearance opens
possibilities for the following actions:

Read or write a list of all children elements or attributes of a node. These are provided by
the element() or attribute() item, respectively.
Read or write the name of each child element or attribute. The name is provided by the
node-name() and local-name() items.
In case of elements, read or write the value of each child element, as specific data type.
This value is provided by the type cast node (in this case, the text() item). Note that
only elements can have type cast nodes. Attributes are treated always as "string" type.
Group or filter child elements by name. For an example, see Example: Group and Filter
Nodes by Name.

The node types that you can work with in "dynamic node name" mode are described below.

element()

This node has different behaviour in a source component compared to a target component. In a
source component, it supplies the child elements of the node, as a sequence. In Fig.3,
element() provides a list (sequence) of all children elements of product. For example, the
sequence created from the following XML would contain three items (since there are three child
elements of product):

 <product>

238 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <id>1</id>

 <color>red</color>

 <size>10</size>

 </product>

Note that the actual name and type of each item in the sequence is provided by the node-name()
node and the type cast node, respectively (discussed below). To understand this, imagine that
you need to transform data from a source XML into a target XML as follows:

Fig. 6 Mapping XML element names to attribute values (requirement)

The mapping which would achieve this goal looks as follows:

Fig. 7 Mapping XML element names to attribute values (in MapForce)

The role of element() here is to supply the sequence of child elements of product, while node-
name() and text() supply the actual name and value of each item in the sequence. This
mapping is accompanied by a tutorial sample and is discussed in more detail in Example: Map
Element Names to Attribute Values.

In a target component, element() does not create anything by itself, which is an exception to the

© 2018 Altova GmbH

Mapping Node Names 239Designing Mappings

Altova MapForce 2018 Professional Edition

basic rule of mapping "for each item in the source, create one target item". The actual elements
are created by the type cast nodes (using the value of node-name()) and by name test nodes
(using their own name).

attribute()

As shown in Fig. 4, this item enables access to all attributes of the node, at mapping runtime. In
a source component, it supplies the attributes of the connected source node, as a sequence. For
example, in the following XML, the sequence would contain two items (since product has two
attributes):

 <product id="1" color="red" />

Note that the attribute() node supplies only the value of each attribute in the sequence, always
as string type. The name of each attribute is supplied by the node-name() node.

In a target component, this node processes a connected sequence and creates an attribute value
for each item in the sequence. The attribute name is supplied by the node-name(). For example,
imagine that you need to transform data from a source XML into a target XML as follows:

Fig. 8 Mapping attribute values to attribute names (requirement)

The mapping which would achieve this goal looks as follows:

240 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Fig. 9 Mapping attribute values to attribute names (in MapForce)

Note: This transformation is also possible without enabling dynamic access to a node's
attributes. Here it just illustrates how attribute() works in a target component.

If you want to reconstruct this mapping, it uses the same XML components as the
ConvertProducts.mfd mapping available in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder. The only difference is that the target has now become the
source, and the source has become the target. As input data for the source component, you will
need an XML instance that actually contains attribute values, for example:

<?xml version="1.0" encoding="UTF-8"?>
<products>

 <product>

 <attribute name="id" value="1"/>

 <attribute name="color" value="red"/>

 <attribute name="size" value="big"/>

 </product>

</products>

Note that, in the code listing above, the namespace and schema declaration have been omitted,
for simplicity.

node-name()

In a source component, node-name() supplies the name of each child element of element(), or
the name of each attribute of attribute(), respectively. By default, the supplied name is of type
xs:QName. To get the name as string, use the local-name() node (see Fig. 3), or use the
function QName-as-string.

In a target component, node-name() writes the name of each element or attribute contained in
element() or attribute().

local-name()

This node works in the same way as node-name(), with the difference that the type is xs:string

© 2018 Altova GmbH

Mapping Node Names 241Designing Mappings

Altova MapForce 2018 Professional Edition

instead of xs:QName.

Type cast node

In a source component, the type cast node supplies the value of each child element contained in
element(). The name and structure of this node depends on the type selected from the
"Dynamically Named Children Settings" dialog box (Fig. 2).

To change the type of the node, click the Change Selection () button and select a type from
the list of available types, including a schema wildcard (xs:any). For more information, see
Accessing nodes of specific type.

In a target component, the type cast node writes the value of each child element contained in
element(), as specific data type. Again, the desired data type can be selected by clicking the

Change Selection () button.

Name test nodes

In a source component, name test nodes provide a way to group or filter child elements from a
source instance by name. You may need to filter child elements by name in order to ensure that
the mapping accesses the instance data using the correct type (see Accessing Nodes of Specific
Type). For an example, see Example: Group and Filter Nodes by Name.

In general, the name test nodes work almost like normal element nodes for reading and writing
values and subtree structures. However, because the mapping semantics is different when
dynamic access is enabled, there are some limitations. For example, you cannot concatenate the
value of two name test nodes.

On the target side, name test nodes create as many elements in the output as there are items in
the connected source sequence. Their name overrides the value mapped to node-name().

If necessary, you can hide the name test nodes from the component. To do this, click the

Change Selection () button next to the element() node. Then, in the "Dynamically Named

Children Settings" dialog box (Fig. 2), clear the Show name test nodes... check box.

5.14.2 Accessing Nodes of Specific Type

As mentioned in the previous section, Getting Access to Node Names, you can get access to all
child elements of a node by right-clicking the node and selecting the Show Child Elements with
Dynamic Name context menu command. At mapping runtime, this causes the name of each
child element to be accessible through the node-name() node, while the value—through a special
type cast node. In the image below, the type cast node is the text() node.

242 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Importantly, the data type of each child element is not known before the mapping runtime.
Besides, it may be different for each child element. For example, a product node in the XML
instance file may have a child element id of type xs:integer and a child element size of type
xs:string. To let you access the node content of a specific type, the dialog box shown below
opens every time when you enable dynamic access to a node's child elements. You can also

open this dialog box at any time later, by clicking the Change Selection () button next to
the element() node.

© 2018 Altova GmbH

Mapping Node Names 243Designing Mappings

Altova MapForce 2018 Professional Edition

"Dynamically Named Children Settings" dialog box

To access the content of each child element at mapping runtime, you have several options:

1. Access the content as string. To do this, select the text() check box on the dialog box
above. In this case, a text() node is created on the component when you close the
dialog box. This option is suitable if the content is of simple type (xs:int, xs:string,
etc.) and is illustrated in the Example: Map Element Names to Attribute Values. Note
that a text() node is displayed only if a child node of the current node can contain text.

2. Access the content as a particular complex type allowed by the schema. When custom
complex types defined globally are allowed by the schema for the selected node, they are
also available in the dialog box above, and you can select the check box next to them. In
the image above, there are no complex types defined globally by the schema, so none
are available for selection.

3. Access the content as any type. This may be useful in advanced mapping scenarios (see
"Accessing deeper structures" below). To do this, select the check box next to
xs:anyType.

Be aware that, at mapping runtime, MapForce (through the type cast node) has no
information as to what the actual type of the instance node is. Therefore, your mapping must
access the node content using the correct type. For example, if you expect that the node of
a source XML instance may have children nodes of various complex types, do the following:
 a) Set the type cast node to be of the complex type that you need to match (see item 2 in

244 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

the list above).
 b) Add a filter to read from the instance only the complex type that you need to match. This
technique is illustrated in Example: Group and Filter Nodes by Name.

Accessing deeper structures

It is possible to access nodes at deeper levels in the schema than the immediate children of a
node. It is useful for advanced mapping scenarios. In simple mappings such as Example: Map
Element Names to Attribute Values, you don't need this technique because the mapping
accesses only the immediate children of an XML node. However, if you need to access deeper
structures dynamically, such as "grandchildren", "grand-grandchildren", and so on, this is
possible as shown below.

1. Create a new mapping.
2. On the Insert menu, click Insert XML Schema/File and browse for the XML instance file

(in this example, the Articles.xml file from the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder).

3. Right-click the Articles node and select the Show Child Elements with Dynamic
Name context command.

4. Select xs:anyType from the "Dynamically Named Children Settings" dialog box.
5. Right-click the xs:anyType node and select again the Show Child Elements with

Dynamic Name context command.
6. Select text() from the "Dynamically Named Children Settings" dialog box.

In the component above, notice there are two element() nodes. The second element() node
provides dynamic access to grandchildren of the <Articles> node in the Articles.xml instance.

<?xml version="1.0" encoding="UTF-8"?>

© 2018 Altova GmbH

Mapping Node Names 245Designing Mappings

Altova MapForce 2018 Professional Edition

<Articles xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Articles.xsd">

 <Article>

 <Number>1</Number>

 <Name>T-Shirt</Name>

 <SinglePrice>25</SinglePrice>

 </Article>

 <Article>

 <Number>2</Number>

 <Name>Socks</Name>

 <SinglePrice>2.30</SinglePrice>

 </Article>

 <Article>

 <Number>3</Number>

 <Name>Pants</Name>

 <SinglePrice>34</SinglePrice>

 </Article>

 <Article>

 <Number>4</Number>

 <Name>Jacket</Name>

 <SinglePrice>57.50</SinglePrice>

 </Article>

</Articles>

Articles.xml

For example, to get "grandchildren" element names (Number, Name, SinglePrice), you would
draw a connection from the local-name() node under the second element() node to a target
item. Likewise, to get "grandchildren" element values (1, T-Shirt, 25), you would draw a
connection from the text() node.

Although not applicable to this example, in real-life situations, you can further enable dynamic
node names for any subsequent xs:anyType node, so as to reach even deeper levels.

Note the following:

The button allows you to select any derived type from the current schema and
display it in a separate node. This may only be useful if you need to map to or from
derived schema types (see Derived XML Schema Types).

The Change Selection () button next to an element() node opens the
"Dynamically Named Children Settings" dialog box discussed in this topic.

The Change Selection () button next to xs:anyAttribute allows you to select any

attribute defined globally in the schema. Likewise, the Change Selection () button
next to xs:any element allows you to select any element defined globally in the schema.
This works in the same way as mapping to or from schema wildcards (see also
Wildcards - xs:any / xs:anyAttribute). If using this option, make sure that the selected
attribute or element can actually exist at that particular level according to the schema.

246 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5.14.3 Example: Map Element Names to Attribute Values

This example shows you how to map element names from an XML document to attribute values in
a target XML document. The example is accompanied by a sample mapping, which is available at
the following path: <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\ConvertProducts.mfd.

To understand what the example does, let's assume you have an XML file that contains a list of
products. Each product has the following format:

 <product>

 <id>1</id>

 <color>red</color>

 <size>10</size>

 </product>

Your goal is to convert information about each product into name-value pairs, for example:

 <product>

 <attribute name="id" value="1" />

 <attribute name="color" value="red" />

 <attribute name="size" value="10" />

 </product>

To perform a data mapping such as the one above with minimum effort, this example uses a
MapForce feature known as "dynamic access to node names". "Dynamic" means that, when the
mapping runs, it can read the node names (not just values) and use these names as values. You
can create the required mapping in a few simple steps, as shown below.

Step 1: Add the source XML component to the mapping

On the Insert menu, click XML Schema/File, and browse for the following file:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\Products.xml.
This XML file points to the Products.xsd schema located in the same folder.

Step 2: Add the target XML component to the mapping

On the Insert menu, click XML Schema/File, and browse for the following schema file:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\ProductValuePairs.xsd. When prompted to supply an instance file, click Skip. When
prompted to select a root element, select products as root element.

At this stage, the mapping should look as follows:

© 2018 Altova GmbH

Mapping Node Names 247Designing Mappings

Altova MapForce 2018 Professional Edition

Step 3: Enable dynamic access to child nodes

1. Right-click the products node on the source component, and select Show Child
Elements with Dynamic Name from the context menu.

2. In the dialog box which opens, select text() as type. Leave other options as is.

Notice that a text() node has been added on the source component. This node will supply the
content of each child item to the mapping (in this case, the value of "id", "color", and "size").

248 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 4: Draw the mapping connections

Finally, draw the mapping connections A, B, C, D as illustrated below. Optionally, double-click
each connection, starting from the top one, and enter the text "A", "B", "C", and "D", respectively,
into the Description box.

ConvertProducts.mfd

In the mapping illustrated above, connection A creates, for each product in the source, a product
in the target. So far, this is a standard MapForce connection that does not address the node
names in any way. The connection B, however, creates, for each encountered child element of
product, a new element in the target called attribute.

Connection B is a crucial connection in the mapping. To reiterate the goal of this connection,
it carries a sequence of child elements of product from the source to the target. It does not
carry the actual names or values. Therefore, it must be understood as follows: if the source
element() has N child elements, create N instances of that item in the target. In this

© 2018 Altova GmbH

Mapping Node Names 249Designing Mappings

Altova MapForce 2018 Professional Edition

particular case, product in the source has three children elements (id, color and size).
This means that each product in the target will have three child elements with the name
attribute.

Although not illustrated in this example, the same rule is used to map child elements of
attribute(): if the source attribute() item has N child attributes, create N instances of that
item in the target.

Next, connection C copies the actual name of each child element of product to the target
(literally, "id", "color", and "size").

Finally, connection D copies the value of each child element of product, as string type, to the
target.

To preview the mapping output, click the Output tab and observe the generated XML. As
expected, the output contains several products whose data is stored as name-value pairs, which
was the intended goal of this mapping.

<?xml version="1.0" encoding="UTF-8"?>
<products xsi:noNamespaceSchemaLocation="ProductValuePairs.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <product>

 <attribute name="id" value="1"/>

 <attribute name="color" value="red"/>

 <attribute name="size" value="10"/>

 </product>

 <product>

 <attribute name="id" value="2"/>

 <attribute name="color" value="blue"/>

 <attribute name="size" value="20"/>

 </product>

 <product>

 <attribute name="id" value="3"/>

 <attribute name="color" value="green"/>

 <attribute name="size" value="30"/>

 </product>

</products>

Generated mapping output

5.14.4 Example: Group and Filter Nodes by Name

This example shows you how to design a mapping that reads key-value pairs from an XML
property list (or XML plist) and writes them to a CSV file. (XML property lists represent a way of
storing OS X and iOS object information in XML format, see https://developer.apple.com/library/
mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXMLPlist/
UnderstandXMLPlist.html.) The example is accompanied by a mapping sample which is available
at the following path: <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\ReadPropertyList.mfd.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXMLPlist/UnderstandXMLPlist.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXMLPlist/UnderstandXMLPlist.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/UnderstandXMLPlist/UnderstandXMLPlist.html

250 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The code listing below represents the source XML file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM "https://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>First Name</key>

 <string>William</string>

 <key>Last Name</key>

 <string>Shakespeare</string>

 <key>Birthdate</key>

 <integer>1564</integer>

 <key>Profession</key>

 <string>Playwright</string>

 <key>Lines</key>

 <array>

 <string>It is a tale told by an idiot,</string>

 <string>Full of sound and fury, signifying nothing.</string>

 </array>

 </dict>

</plist>

The goal of the mapping is to create a new line in the CSV file from certain key-value pairs found
under <dict> node in the property list file. Specifically, the mapping must filter only <key> -

<string> pairs. Other key-value pairs (for example, <key> - <integer>) must be ignored. In the

CSV file, the line must store the name of the property, separated from the value of the property by
a comma. In other words, the output must look as follows:

First Name,William
Last Name,Shakespeare
Profession,Playwright

To achieve this goal, the mapping uses dynamic access to all children nodes of the dict node.
Secondly, the mapping uses the group-starting-with function to group the key-value pairs retrieved
from the XML file. Finally, the mapping uses a filter to filter only those nodes where the node
name is "string".

The following steps show how the required mapping can be created.

Step 1: Add the source XML component to the mapping

1. Set the mapping transformation language to BUILT-IN (see Selecting a Transformation
Language).

2. On the Insert menu, click XML Schema/File, and browse for the following file:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\plist.xml. This
XML file points to the plist.dtd schema located in the same folder.

© 2018 Altova GmbH

Mapping Node Names 251Designing Mappings

Altova MapForce 2018 Professional Edition

Step 2: Add the target CSV component to the mapping

1. On the Insert menu, click Text File. When prompted, select the Use simple
processing for standard CSV... option.

2. Add a CSV field to the component, by clicking Append field.
3. Double-click the name of each field, and enter "Key" as name of the first field, and

"Value" as name of the second field. The "Key" field will store the name of the property,
while the "Value" field will store the property value. For more information about CSV
components, see CSV and Text Files.

Step 3: Add the filter and functions

1. Drag the equal, exists and group-starting-with functions from the Libraries window

into the mapping. For general information about functions, see Working with Functions.
2. To add the filter, click the Insert menu, and then click Filter: Nodes/Rows. For general

information about filters, see Filters and Conditions.
3. On the Insert menu, click Constant, and then enter the text "string".
4. In the source component, right-click the dict node select Show Child Elements with

Dynamic Name from the context menu. On the "Dynamically Named Children Settings"
dialog box, make sure that the check box Show name test nodes to filter or create
elements by fixed node name is selected.

252 Designing Mappings Mapping Node Names

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Draw the connections as shown below.

© 2018 Altova GmbH

Mapping Node Names 253Designing Mappings

Altova MapForce 2018 Professional Edition

ReadPropertyList.mfd

The mapping explained

The element() item on the source component provides all children of the dict node, as a
sequence, to the group-starting-with function. The group-starting-with function creates a

new group whenever a node with the name key is encountered. The exists function checks for

this condition and returns the result as Boolean true/false to the grouping function.

For each group, the filter checks if the name of the current node is equal to "string", with the help
of the equal function. The name itself is read from the local-name(), which supplies the node's

name as a string.

The connections to the target component have the following role:

Only when the filter condition is true, a new row is created in the target CSV.
Key (property name) is taken from the value of the key element in the source.
Value (property value) is taken from the string name test node.

254 Designing Mappings Mapping Rules and Strategies

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5.15 Mapping Rules and Strategies

MapForce generally maps data in an intuitive way, but you may come across situations where the
resulting output seems to have too many, or too few items. This topic is intended to help you
avoid such mapping problems.

General rule
Generally, every connection between a source and target item means: for each source item,
create one target item. If the source node contains simple content (for example, string or integer)
and the target node accepts simple content, then MapForce copies the content to the target node
and, if necessary, converts the data type.

This generally holds true for all connections, with the following exceptions:

A target XML root element is always created once and only once. If you connect a
sequence to it, only the contents of the element will be repeated, but not the root element
itself, and the result might not be schema-valid. If attributes of the root element are also
connected, the XML serialization will fail at runtime, so you should avoid connecting a
sequence to the root element. If what you want to achieve is creating multiple output files,
connect the sequence to the "File" node instead, via some function that generates file
names.
Some nodes accept a single value, not a sequence (for example, XML attributes,
database fields , and output components in user-defined functions).

The "context" and "current" items
MapForce displays the structure of a schema, database file as a hierarchy of mappable items in
the component. Each of these nodes may have many instances (or none) in the instance file or
database.

Example: If you look at the source component in PersonListByBranchOffice.mfd, there is only
a single node first (under Contact). In the BranchOffices.xml instance file, there are multiple
first nodes and Contact nodes having different content, under different Office parent nodes.

It depends on the current context (of the target node) which source nodes are actually selected
and have their data copied, via the connector, to the target component/item.

© 2018 Altova GmbH

Mapping Rules and Strategies 255Designing Mappings

Altova MapForce 2018 Professional Edition

PersonListByBranchOffice.mfd

This context is defined by the current target node and the connections to its ancestors:

Initially the context contains only the source components, but no specific nodes. When
evaluating the mapping, MapForce processes the target root node first (PersonList),
then works down the hierarchy.
The connector to the target node is traced back to all source items directly or indirectly
connected to it, even via functions that might exist between the two components. The
source items and functions results are added to the context for this node.
For each new target node a new context is established, that initially contains all items of
the parent node's context. Target sibling nodes are thus independent of each other, but
have access to all source data of their parent nodes.

Applied to the example mapping above (PersonListByBranchOffice.mfd):

The connection from Office through the filter (Office) to PersonList defines a single office
as the context for the whole target document (because PersonList is the root element of
the target component). The office name is supplied by the input component, which has a
default containing "Nanonull, Inc."
All connections/data to the descendants of the root element PersonList, are
automatically affected by the filter condition, because the selected single office is in the
context.
The connection from Contact to Person creates one target Person per Contact item of
the source XML (general rule). For each Person one specific Contact is added to the
context, from which the children of Person will be created.
The connector from first to First selects the first name of the current Contact and writes it
to the target item First.

Leaving out the connector from Contact to Person would create only one Person with multiple

256 Designing Mappings Mapping Rules and Strategies

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

First, Last, and Detail nodes, which is not what we want here. In such situations, MapForce
issues a warning and a suggestion to fix the problem: "You can try to connect Contact with
Person to resolve":

Sequences
MapForce displays the structure of a schema, database file as a hierarchy of mappable items in
the component.

Depending on the (target) context, each mappable item of a source component can represent:

a single instance node of the assigned input file (or database)
a sequence of zero to multiple instance nodes of the input file (or database)

If a sequence is connected to a target node, a loop is created to create as many target nodes as
there are source nodes.

If a filter is placed between the sequence and target node, the bool condition is checked for each
input node i.e. each item in the sequence. More exactly, a check is made to see if there is at
least one bool in each sequence that evaluates to true. The priority context setting can influence
the order of evaluation, see below.

As noted above, filter conditions automatically apply to all descendant nodes.

Note: If the source schema specifies that a specific node occurs exactly once, MapForce may
remove the loop and take the first item only, which it knows must exist. This optimization
can be disabled in the source Component Settings dialog box (check box "Enable input
processing optimizations based on min/maxOccurs").

Function inputs (of normal, non-sequence functions) work similar to target nodes: If a sequence
is connected to such an input, a loop is created around the function call, so it will produce as
many results as there are items in the sequence.

If a sequence is connected to more than one such function input, MapForce creates nested
loops which will process the Cartesian product of all inputs. Usually this is not desired, so only
one single sequence with multiple items should be connected to a function (and all other
parameters bound to singular current items from parents or other components).

Note: If an empty sequence is connected to such a function (e.g. concat), you will get an
empty sequence as result, which will produce no output nodes at all. If there is no result
in your target output because there is no input data, you can use the “substitute-missing”
function to insert a substitute value.

Functions with sequence inputs are the only functions that can produce a result if the input
sequence is empty:

exists, not-exists and substitute-missing (also, is-not-null, is-null and

substitute-null, which are aliases for the first three)

© 2018 Altova GmbH

Mapping Rules and Strategies 257Designing Mappings

Altova MapForce 2018 Professional Edition

aggregate functions (sum, count, etc.)

regular user-defined functions that accept sequences (i.e. non-inlined functions)

The sequence input to such functions is always evaluated independently of the current target node
in the context of its ancestors. This also means that any filter or SQL-Where components
connected to such functions, do not affect any other connections.

Priority context
Usually, function parameters are evaluated from top to bottom, but its is possible to define one
parameter to be evaluated before all others, using the priority context setting.

In functions connected to the bool input of filter conditions, the priority context affects not only
the comparison function itself but also the evaluation of the filter, so it is possible to join together
two source sequences (see CompletePO.mfd, CustomerNo and Number). See Priority Context
node/item

Overriding the context
Some aggregate functions have an optional “parent-context” input. If this input is not connected, it
has no effect and the function is evaluated in the normal context for sequence inputs (that is, in
the context of the target node's parent).

258 Designing Mappings Mapping Rules and Strategies

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

If the parent-context input is connected to a source node, the function is evaluated for each
parent-context node and will produce a separate result for each occurrence. See also
Overriding the Mapping Context.

Bringing multiple nodes of the same source component into the context
This is required in some special cases and can be done with Intermediate variables.

5.15.1 Changing the Processing Order of Mapping Components

MapForce supports mappings that have several target components. Each of the target
components has a preview button allowing you to preview the mapping result for that specific
component.

If the mapping is executed from the command line or from generated code, then, regardless of the
currently active preview, the full mapping is executed and the output for each target component is
generated.

The order in which the target components are processed can be directly influenced by changing
the position of target components in the mapping window. The position of a component is defined
as its top left corner.

Target components are processed according to their Y-X position on screen, from top to bottom
and left to right.

If two components have the same vertical position, then the leftmost takes precedence.
If two component have the same horizontal position, then the highest takes precedence.
In the unlikely event that components have the exact same position, then an unique
internal component ID is automatically used, which guarantees a well-defined order but
which cannot be changed.

© 2018 Altova GmbH

Mapping Rules and Strategies 259Designing Mappings

Altova MapForce 2018 Professional Edition

The screenshot below shows the tutorial sample Tut-ExpReport-multi.mfd available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. Both target
components (ExpReport-Target) have the same vertical position, and the preview button is active
on the right hand target component.

Tut-ExpReport-multi.mfd (MapForce Enterprise Edition)

Having selected XSLT2 and generated the code:

The leftmost target component is processed first and generates the ExpReport.xml file.
The component to the right of it is processed next and generates the SecondXML.xml
file.

You can check that this is the case by opening the DoTransform.bat file (in the output folder you
specified) and see the sequence the output files are generated. ExpReport-Target.xml is the
first output to be generated by the batch file, and SecondXML.xml the second.

260 Designing Mappings Mapping Rules and Strategies

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Changing the mapping processing sequence:

1. Click the left target component and move it below the one at right.

2. Regenerate your code and take a look at the DoTransform.bat file.

SecondXML.xml is now the first output to be generated by the batch file, and
ExpReport-Target.xml the second.

Chained mappings
The same processing sequence as described above is followed for chained mappings. The
chained mapping group is taken as one unit however. Repositioning the intermediate or final target
component of a single chained mapping has no effect on the processing sequence.

Only if multiple "chains" or multiple target components exist in a mapping does the position of
the final target components of each group determine which is processed first.

If two final target components have the same vertical position, then the leftmost takes
precedence.
If two final target component have the same horizontal position, then the highest takes
precedence.
In the unlikely event that components have the exact same position, then an unique
internal component ID is automatically used, which guarantees a well-defined order but
which cannot be changed.

© 2018 Altova GmbH

Mapping Rules and Strategies 261Designing Mappings

Altova MapForce 2018 Professional Edition

5.15.2 Priority Context node/item

When applying a function to different items in a schema or database, MapForce needs to know
what the context node will be. All other items are then processed relative to this one. This is
achieved by designating the item (or node) as the priority context.

Priority-context is used to prioritize execution when mapping unrelated items.

Mappings are always executed top-down; if you loop/search through two tables then each loop is
processed consecutively. When mapping unrelated elements, without setting the priority context,
MapForce does not know which loop needs to be executed first, it therefore automatically selects
the first table, or data source.

Solution:
Decide which table, or source data is to be looped/searched first, and then set the priority context
on the connector to that table.

A simplified version of the complete DB_CompletePO.mfd file available in the ...
\MapForceExamples folder, is shown below.

Note that there are multiple source components in this example. ShortPO is a Schema with an
associated XML instance file, while CustomersAndArticles is a database. The data from both are
then mapped to the CompletePO schema / XML file. The priority context icon is enclosed in a
circle as a visual indication.

Designating the a parameter of the equal function as the priority context would cause:

The CustomerNr in ShortPO is compared with the item Number in the database.
CustomerNr has been designated as the priority context, and is placed in the a
parameter of the equal function.

The CustomersAndArticles database is then searched (once) for the same number.
The b parameter contains the Number item from the database.
If the number is found, then the result is passed to the bool parameter of the filter
component (Customers).
The node/row parameter passes on the Customer data to "on-true" when the bool
parameter is true, i.e. when the same number has been found.
The rest of the customer data is then passed on as: Number, FirstName, LastName
items, are all connected to the corresponding items in the target schema.

262 Designing Mappings Mapping Rules and Strategies

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

This means that the database is only searched once per CustomerNr supplied by
ShortPO.

Designating the b parameter of the equal function as the priority context would cause:
MapForce to search and load the first Number into the b parameter from the database
Check against the CustomerNr in the a parameter of ShortPO
If not equal, search through all CustomerNr of ShortPO
Search the database and load the next Number into b, check against a, and
Iterate through every Number in the database while trying to find that number in ShortPO.

This means that a database query is generated for each Number and the result is then

© 2018 Altova GmbH

Mapping Rules and Strategies 263Designing Mappings

Altova MapForce 2018 Professional Edition

compared to every CustomerNr of ShortPO.

Priority context and user-defined functions:
If a user-defined function has been defined of type "inline", the default setting, then a priority
context cannot be defined on one of the parameters of the user-defined function. The user-defined
function can, of course, contain other regular (non-inlined) user-defined functions which have
priority contexts set on their parameters.

5.15.3 Overriding the Mapping Context

In some mappings, in order to achieve the desired mapping output, it may be necessary to
override the mapping context. For this reason, some components provide an optional parent-
context item in their structure which enables you to influence the mapping context if so required.
Examples of such components are: aggregate functions, variables, and Join components.

An aggregate function with optional parent-context

To understand why the mapping context is important, let's add to the mapping an XML file that
contains nested nodes with multiple levels. On the Insert menu, click XML Schema/File, and
browse for the file: <Documents>\Altova\MapForce2018\MapForceExamples
\Altova_Hierarchical.xml.

264 Designing Mappings Mapping Rules and Strategies

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Altova_Hierarchical.xml

Importantly, in the XML file above, the Office parent node contains multiple Department nodes,
and each Department contains multiple Person nodes. If you open the actual XML file in an XML
editor, you can see that the distribution of people by office and department is as follows:

Office Department Number of people

Nanonull, Inc. Administration 3

Marketing 2

Engineering 6

IT & Technical Support 4

Nanonull Partners, Inc. Administration 2

Marketing 1

IT & Technical Support 3

© 2018 Altova GmbH

Mapping Rules and Strategies 265Designing Mappings

Altova MapForce 2018 Professional Edition

Now let's assume that your mapping should count all people in all departments. To achieve this
requirement, you can add the count function from core | aggregate functions and map data as

follows:

If you preview the mapping at this stage, the output is 21, which corresponds to the total number
of people in all departments. Notice that the count function includes an optional parent-context

item, which so far has not been connected. As a result, the parent context of the count function

is the default root node of the source component (which, in this case, is the Altova item). This
means that all the persons, from all departments, are considered for the scope of the count

function. This is the way the mapping context works by default, as outlined in Mapping Rules and
Strategies, and this is sufficient in most mapping scenarios.

However, it is possible to override the default mapping context if necessary. To do this, add a
connection from the Department node to the parent-context item as shown below.

266 Designing Mappings Mapping Rules and Strategies

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

By changing the mapping as shown above, you are instructing the mapping to iterate over people
records in the context of each office. Therefore, if you preview the mapping now, the output will
be 15*. This is exactly the number of people in the first office, "Nanonull, Inc.". The explanation is
that this time the people nodes were counted twice (once for each office). The count of people in
each office was 15 and 6, respectively. However, only the first result was returned (because the
function cannot return a sequence of values, only a simple value).

* Assuming that the target language of the mapping is other than XSLT 1.0.

You can further modify the mapping so as to change the mapping context to Department, as
shown below. This time the people records would be counted in the context of each department
(that is, 7 times, which corresponds to the total number of departments). Again, only the first of
the results is returned, so the mapping output is 3, which corresponds to the number of people in
the first department of the first office.

© 2018 Altova GmbH

Mapping Rules and Strategies 267Designing Mappings

Altova MapForce 2018 Professional Edition

While this mapping is not doing much yet, its point is to illustrate how the parent-context item
influences the output of the mapping. Having this in mind, you can override the parent-context
in other mappings, such as those that contain variables or Join components. See also Example:
Grouping and Subgrouping Records.

Chapter 6

Debugging Mappings

270 Debugging Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6 Debugging Mappings

MapForce includes a mapping debugger available for the MapForce BUILT-IN transformation
language. The mapping debugger helps you achieve the following goals:

View and analyze the values produced by the mapping at each individual connector level.
Highlight on the mapping the context (set of nodes) responsible for producing a particular
value.
Execute a mapping step-by-step, in order to see how MapForce processes or computes
each value in real time, and preview the mapping output as it is being generated.
Set milestones (breakpoints) at which the mapping execution should stop and display the
value(s) currently being processed.
View the history of values processed by a connector since mapping execution began up
until the current execution position.

The mapping debugger is available when the transformation language of the mapping is BUILT-IN.
If you start debugging a mapping designed for a different language, you will be prompted to
change the mapping language to BUILT-IN. You can also convert a mapping to BUILT-IN by
selecting the menu command Output | Built-in Execution Engine. In either case, the conversion
to BUILT-IN will be successful if the mapping does not include components that are not available
in the BUILT-IN language (for example, XSLT functions).

The MapForce debugger is unlike a traditional debugger in that it does not traverse your program
code line by line (since you do not write any code with MapForce). Instead, the debugger exposes
the results of MapForce-generated code produced from the mappings you design. More
specifically, the debugger logs values that are passed from and to mapping components through
their input and output connectors. The logged values are then available for your analysis directly
on the mapping or through dedicated windows.

The following sections highlight various ways in which you can use the mapping debugger.

Debug with breakpoints

When you need to stop the debugging execution at a particular place in the mapping, you
can set breakpoints, similar to how you would do that in a traditional development
environment. The difference is that breakpoints are added not to a line of code, but to an
input or output connector of a mapping component. You can also add conditions to
breakpoints (this can be useful if you want to stop the execution only if the set condition
is satisfied).

You can define breakpoints on the desired connectors and execute the mapping up to the

© 2018 Altova GmbH

 271Debugging Mappings

Altova MapForce 2018 Professional Edition

first encountered breakpoint, then go to the next one, and so on. This way you can
analyze the mapping context and values associated with chosen connectors. You can
also speed up or slow down the execution by means of the Step Into, Step Out, Step
Over, and Minimal Step commands provided by the debugger. These commands enable
you to skip portions of the mapping, or, on the contrary, execute portions of the mapping
in a more granular way if necessary.

Debug step-by-step

You can debug a mapping step-by-step, and analyze the mapping context and values
associated with each step. This scenario is similar to the previous one, in that you can
speed up or slow down execution using the Step Into, Step Out, Step Over, and
Minimal Step commands.

Analyze the log of values

You can configure MapForce to remember the log of all values (trace history) that were
processed by all connectors while you debug a mapping. Keeping the full trace history
may not be suitable for mappings that are data-intensive, so this option can be disabled if
necessary. When the option is enabled, you can analyze the full log of values processed
by each connector up until the current execution position. You can also instruct
MapForce to recreate the mapping context associated with any particular value, which
would help you understand why that value was produced.

Set the context to a value related to the current execution position

When the debugger is at a particular execution position on the mapping, it is possible to
analyze the context of a past value relative to the current execution position (this can be
compared to stepping slightly back in time):

272 Debugging Mappings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

A context is meant to explain why a value is computed; in other words, it describes how
a particular value on the mapping came to be generated. The context is normally the
current execution position, although it can also be a context in the recent past that
MapForce enables you to set. When the context is set to a particular value, MapForce
highlights directly on the mapping the nodes that are relevant to it, provides tips next to
mapping connectors, and exposes additional information in debugger-related windows
(the Values, Context, and Breakpoints windows).

After you have inspected a mapping context that is not the same as the current execution
position, you can reset the context back to the current execution position:

Limitations

When MapForce executes a mapping, it may internally optimize code (for example, by
caching data, or by calculating intermediate results at arbitrary points). This may cause
certain connectors (and thus breakpoints) to be unreachable for debugging, in which case
MapForce displays a notification. Note that the MapForce code optimizations (and,
consequently, the behavior exposed by the debugger) may be different from one
MapForce release to the other, even though the mapping output is the same for a given
mapping.
The debugger can debug the output generation for one target component at a time. If
there are multiple target components on the mapping, you will need to select which one
should be executed by the debugger.
Currently, debugging is not supported for the database table actions (such as "Insert All",
"Update If", etc.) of database components.
Breakpoints cannot be added on any of the following entities: constants, the core |

position function, descendent items of "Copy-all" connections, parameters of "inline"

user-defined functions.

© 2018 Altova GmbH

Debugger Preparation 273Debugging Mappings

Altova MapForce 2018 Professional Edition

6.1 Debugger Preparation

Debugging preparation is primarily required for big data mappings that are likely to need a lot of
system memory to execute. This is the case of mappings that either process very big input or
output files, or repeatedly iterate through large collections of data.

To make debugging faster and reduce memory requirements, it is recommended to do the
following before you start debugging:

If the mapping is complex, remove or disconnect parts of the mapping that need not be
debugged.
If the mapping uses big input files, replace them with files of smaller size.
Ensure that the Keep full trace history option is disabled (see Debugger Settings)

Also, to ensure you are debugging the right output, check the following if applicable:

If the mapping has multiple target components, select the target component to be

debugged by clicking the Preview button ().
If the mapping is a chained mapping (see Chained Mappings), release the Pass-

Through () button on the intermediary component. Debugging Pass-Through
components is currently not supported.

Optionally, if you want the debugger to stop at some important connectors whose value you want
to analyze, add breakpoints to these connectors (see Adding and Removing Breakpoints).

274 Debugging Mappings Debugger Commands

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.2 Debugger Commands

You can access the debugger commands as follows:

In the Debug menu
As keyboard shortcuts
In the Debug toolbar.

Menu Command Keyboard
Shortcut

Toolbar
button

Description

Debug | Start
debugging

F5 Starts or continues debugging until a
breakpoint is hit or the mapping finishes.

Debug | Stop
debugging

Shift + F5 Stops debugging. This command exits the
debug mode and switches MapForce back
to standard mode.

Debug | Step Into F11 Executes the mapping until a single step is
finished anywhere in the mapping. In the
mapping debugger, a step is a logical
group of dependent computations which
normally produce a single item of a
sequence.

Depending on the mapping context, this
command roughly translates into "go to the
left/go to target child/go to source parent".

Debug | Step Over F10 Continues execution until the current step
finishes (or finishes again for another item
of the sequence), or an unrelated step
finishes. This command steps over
computations that are inputs of the current
step.

Debug | Step Out Shift + F11 Continues execution until the result of the
current step is consumed or a step is
executed that is not an input or child of the
consumption. This command steps out of
the current computation.

Depending on the mapping context, this
command roughly translates into "go to the
right/go to target parent/go to source child".

Debug | Minimal
Step

Ctrl + F11 Continues execution until a value is
produced or consumed. This command
subdivides a step and will typically stop
twice for each connection: once when its
source produces a value and once when its
target consumes it. MapForce does not

© 2018 Altova GmbH

Debugger Commands 275Debugging Mappings

Altova MapForce 2018 Professional Edition

Menu Command Keyboard
Shortcut

Toolbar
button

Description

necessarily compute values in the order the
mapping would suggest, so production and
consumption events do not always follow
each other.

Debug toolbar

276 Debugging Mappings About the Debug Mode

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.3 About the Debug Mode

When you start debugging (by pressing F5, or F11, or Ctrl + F11), MapForce executes the
mapping in debug mode.

While MapForce is in debug mode, the mapping is read-only. Although you can move
components on the mapping area, most commands are not available. This includes
commands such as mapping validation and deployment, code generation,
documenting mappings, adding new components to the mapping area or reloading
existing ones, and others.

The debug mode enables you to analyze the context responsible for producing a particular value.
This information is available directly on the mapping, as well as in the Values, Context, and
Breakpoints windows. By default, these windows are displayed when you start debugging and are
hidden when you stop debugging.

MapForce is in debug mode (and the mapping is read-only) until you stop debugging, by pressing

Shift + F5 (or by clicking the Stop debugging toolbar button).

The following image illustrates a sample mapping (SimpleTotal.mfd, from the <Documents>
\Altova\MapForce2018\MapForceExamples\ directory) that is debugged in steps (by pressing
F11 to advance a step).

The MapForce development environment in debug mode

The visual clues and other information provided by MapForce while in debug mode are described
below.

© 2018 Altova GmbH

About the Debug Mode 277Debugging Mappings

Altova MapForce 2018 Professional Edition

The mapping pane

While debugging, the mapping pane displays additional information:

o Data overlays (see below) show the current value and related values near their

connectors.
o The current context (shown as a structure in the Context window) is highlighted as

follows:

Connectors in the context are striped magenta ().

Connectors in ambiguous context are dotted magenta ().
Connections in the context are striped magenta.
Connections in ambiguous context are striped magenta but lighter.

o The current execution location is displayed with a green connector icon ().

Data overlays

The values processed by each connector are displayed as data overlays (small
rectangles) near their corresponding connector. A currently selected data overlay is
displayed with thick red border. Values changed from the last step are displayed in dark
red. For nodes with simple content, the data overlay combines two values - the node
name and the value. If the node name has been iterated multiple times before the current
execution position, the index of the current iteration is indicated by the number in square
brackets.

Data overlays have the following behavior:

o Pointing the mouse to a data overlay brings it temporarily to the foreground, clicking it

does it permanently. Clicking also selects the corresponding connector.
o Data overlays can be moved by dragging.

o Data overlays move when a component is moved. Therefore, if the data overlays appear

stacked because the components are too close to each other, drag the components
around the mapping area to make more space, and the data overlays will move together
with the component.

o Clicking a data overlay shows its value in the Values window.

o Clicking a connector also selects its data overlay.

Breakpoints

Breakpoints are designated milestones at which the mapping should break during
execution in debug mode. This term may be already familiar to you by analogy with other
integrated development environments. Unlike other development environments where you
add breakpoints to a line of code, a breakpoint in MapForce can be added to an input or
output connector (small triangle to the left or right of the connection). On the mapping
pane, breakpoints are represented as red circles. Any defined breakpoints are also
displayed in the Breakpoints window. See also Adding and Removing Breakpoints.

278 Debugging Mappings About the Debug Mode

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Current debugger position

The green triangle () indicates the position of the debugger. This position is either an
input or an output connector of any given component.

The value currently being processed is also displayed in the Values window, on the
Context tab.

The set of connections and/or connectors colored in striped magenta indicate the current
mapping context. The same information is also displayed as a hierarchical structure in
the Context window (see Using the Context Window).

When you set manually the context of a value, the current debugger position is in a
position in the past relative to the most current execution position. To help you
distinguish between the most current execution position and the one in the past, the
"current position" connector may appear with the following colors in the debugger
interface.

Green is "the present"; it indicates the current execution position (see Viewing the
Current Value of a Connector).

Yellow is "the past"; it indicates that you are looking at some connector in the
past, relative to the current execution position. This may happen after you set a
context manually (see Setting the Context to a Value).

Values window

The Values window provides information about the values processed by the mapping. It
enables you to see what the mapping processes at the current execution position, or in a
particular context that you can set yourself. See also Using the Values Window.

Context window

The Context window provides a hierarchical view of the set of nodes and functions that are
relevant for the current debugger position. See also Using the Context Window.

Breakpoints window

The Breakpoints window displays the list of debugging breakpoints created since
MapForce was started. If you have defined breakpoints on multiple mappings, all of them
appear in the Breakpoints window. See also Using the Breakpoints Window.

© 2018 Altova GmbH

Adding and Removing Breakpoints 279Debugging Mappings

Altova MapForce 2018 Professional Edition

6.4 Adding and Removing Breakpoints

Breakpoints are designated milestones at which the mapping should break during execution in
debug mode. Any breakpoints you create are stored globally for all mappings and are displayed in
the Breakpoints window. Breakpoints are valid until you either explicitly delete them, or close
MapForce.

Note: Breakpoints cannot be added on any of the following entities: constants, the core |

position function, descendent items of "Copy-all" connections, parameters of "inline"

user-defined functions.

Breakpoints can be simple or conditional. Simple breakpoints stop the mapping execution
unconditionally. Conditional breakpoints stop the mapping execution only when the condition
assigned to them is satisfied. Conditions take the form of MapForce built-in library functions to
which you supply custom values. In other words, if the condition returns true, the breakpoint will
stop the mapping execution.

To create a simple breakpoint, do one of the following:

Right-click an input or output connector (the small triangles to the left or right of a
component), and select Debugger Breakpoint.
Click an input or output connector, and then press F9.

To create a conditional breakpoint:

1. Right-click a connector, and select Breakpoint properties.

280 Debugging Mappings Adding and Removing Breakpoints

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2. Click to select both the Breakpoint and Condition check boxes.
3. Select the required function from the list, and enter the function value (if applicable). For

example, in the example above, the breakpoint will stop the mapping execution if the
value passing through it is greater than 2.

If the data type of the connector where you add the conditional breakpoint does not
match the type(s) expected by the function, MapForce will attempt to convert the
data type automatically. If automatic conversion is not possible, mapping execution
will fail. To avoid this, make sure to use compatible data types. For example, the
function core.starts-with expects a string value, so the breakpoint's connector

must have the same type.

Removing breakpoints

To remove a breakpoint, right-click the connector on which the breakpoint exists, and select
Debugger Breakpoint. Alternatively, click the input or output connector on which the breakpoint
exists, and then press F9.

You can also remove breakpoints from the Breakpoints window (see Using the Breakpoints
Window).

Unreachable breakpoints

There may be cases when MapForce displays a "Breakpoints cannot be reached" message:

This indicates that breakpoints cannot be reached by the debugger, because of one of the
following reasons:

A breakpoint has been defined on a connector that does not take part in the mapping.
The breakpoint cannot be reached by MapForce because of execution optimizations (see
Limitations).

Click Continue to advance to the next defined breakpoint (or go to the end of debugging
execution). Click Step to start debugging in steps.

You can disable notifications about unreachable breakpoint encountered by the debugger, either
by clicking Don't show this message again, or as follows:

1. On the Tools menu, click Options.
2. Click Messages.

© 2018 Altova GmbH

Adding and Removing Breakpoints 281Debugging Mappings

Altova MapForce 2018 Professional Edition

3. Click to clear the Inform about unreachable breakpoints check box.

282 Debugging Mappings Using the Values Window

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.5 Using the Values Window

The Values window displays information about the values processed by the mapping when in
debug mode. The information displayed in the Values window depends on the current debugger
position, and on the user interface elements that you clicked. The Values window contains the
following tabs:

The "Context" tab

The Context tab displays the value currently being processed (the same value whose
context is shown in the Context window). This is either the value at the current execution
position of the debugger, or the value of a connector processed in the past. MapForce
helps you distinguish between the two using colors:

Green is "the present"; it indicates the current execution position (see Viewing the
Current Value of a Connector).

Yellow is "the past"; it indicates that you are looking at some connector in the
past, relative to the current execution position. This may happen after you set a
context manually (see Setting the Context to a Value).

The "Related" tab

The Related tab displays values that are related to (or represent the "near past" of) the
currently processed value. Normally, you do need to explicitly click this tab; MapForce
switches to it automatically when you click the data overlay of a connector that is related
to the current execution position of the debugger. See Stepping back into Recent Past.

The "Sequence" tab

When present, the Sequence tab enables you to get access to the values of a connector
that processes a sequence. This tab is visible only when a connector has processed a
sequence of items (for example, an aggregate function such as sum or count does that).

When you click the data overlay of a connector that processed a sequence of items, the
Values window displays an entry in the format "n items", where n is the number of items
processed by the connector. To get access to each value, double-click this entry (or
right-click it, and select Expand Sequence from the context menu).

The values are then displayed in the Sequence tab.

© 2018 Altova GmbH

Using the Values Window 283Debugging Mappings

Altova MapForce 2018 Professional Edition

The "History" tab

The History tab displays values have been processed by a particular node since
debugging started and up to the current execution position. See Viewing the History of
Values Processed by a Connector.

284 Debugging Mappings Using the Context Window

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.6 Using the Context Window

While MapForce is in debug mode, the Context window displays a structure of connectors that
are relevant to the current position of the debugger. In other words, it provides the mapping
context responsible for producing the current mapping value.

MapForce builds the current context as follows:

1. Start with the root node of the target structure.
2. Descend to the current target node.
3. From the current target node, move left inside the mapping through any components that

lead to the current position. These components may be filter or sort components, built-in
or user-defined functions, variables, and so on.

The Context window serves both as informational and as a navigational aid. To select a particular
node in the mapping directly from the current context, right-click the node in the Context window,
and click Select in mapping. This might be especially useful when the mapping is large, so as
to avoid extensive scrolling.

The Context window may display the following special icons and notation:

Icon Description

Represents the mapping to which the context belongs. This can be either the
main mapping or the mapping of a user-defined function.

Represents a connector. The target nodes processed so far have their position
displayed in square brackets.

© 2018 Altova GmbH

Using the Context Window 285Debugging Mappings

Altova MapForce 2018 Professional Edition

Icon Description

Represents the current connector (the most recent execution position). This is
the source of the current value in the Values window.

In some rare situations, it is possible that a computed value is used for
multiple connectors. In this case, multiple green icons may appear.

Represents the current connector when the debugger is at some position in
the past relative to the most recent execution post. This may happen after you
set the context to a value (see Setting the Context to a Value).

In addition to the icons above, the Context window includes the standard icons of any component
types that are present in the mapping.

Context window and user-defined functions

If the current context includes any user-defined functions, they are displayed in the Context
window as well. Note that if the current context is for computing an input value of a user-defined
function, the context is determined as follows:

1. From the target to the output connector of the user-defined function to the input connector
of the user-defined function

2. From there further to the left.

Note: A user-defined function may occur multiple times in the context. This happens either
because several function calls are chained or because the user-defined function is defined
as recursive.

286 Debugging Mappings Using the Breakpoints Window

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.7 Using the Breakpoints Window

The Breakpoints window enables you to view and manage breakpoints globally. By default, the
Breakpoints window is displayed when MapForce is in debug mode. To make the Breakpoints
window visible at all times, select the menu command View | Debug Windows | Breakpoints.

The Breakpoints window displays all breakpoints created since you started MapForce, grouped by
the mapping file to which they belong. While MapForce is open, any breakpoints associated with
any mapping are "remembered" by MapForce and displayed in the Breakpoints window, even if
you closed the mapping file in the meanwhile. The mapping that is currently being debugged is
represented with standard text color in the Breakpoints window, while other mappings (the ones
that are closed or not active) are grayed out.

You can quickly open any mapping by double-clicking it (or any of its breakpoints) in the
Breakpoints window.

Note: Once you close or restart MapForce, all breakpoints are removed.

Information about breakpoints is displayed as a grid with the following columns:

Column Description

Name The name of the node where the breakpoint belongs.

Parent The name of the mapping component where the breakpoint belongs.

Trace
value

The value that passes through the connector on which the breakpoint is.
The trace value is displayed during debugging execution.

Condition If the breakpoint is conditional, this column displays the condition of the
breakpoint.

Breakpoints may be associated with any of the following icons.

Icon Description

Active breakpoint. Denotes a breakpoint from the mapping that is currently
being debugged.

© 2018 Altova GmbH

Using the Breakpoints Window 287Debugging Mappings

Altova MapForce 2018 Professional Edition

Icon Description

Inactive breakpoint. Denotes a breakpoint from a mapping that is open, but is
not currently being debugged.

Inaccessible breakpoint. Denotes a breakpoint that cannot be reached by the
debugger.

Conditional breakpoint. Denotes a breakpoint with a condition attached to it.

To view or change the properties of a breakpoint:

Right-click it, and select Breakpoint Properties from the context menu.

To delete a breakpoint:

Right-click the breakpoint you want to delete, and then select Delete Breakpoint from
the context menu.
Click a breakpoint, and then press Delete.

The context command Delete All Breakpoints removes all breakpoints displayed in the
Breakpoints window, regardless of the mapping where they belong.

See also: Adding and Removing Breakpoints

288 Debugging Mappings Previewing Partially Generated Output

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.8 Previewing Partially Generated Output

When you are debugging in steps or using breakpoints, you can view the mapping output
generated up to the current debugger position. Previewing partially generated output is supported
by XML, flat text, and EDI target components.

By default, when you press F5 (without having defined any breakpoints), MapForce executes the
entire mapping in debug mode, and then switches to the Output tab, displaying the final
generated output. However, if you have defined breakpoints, or if you are debugging in steps (F11,
or Ctrl + F11), the debugger execution stops while the mapping output is still being generated.
Even if the mapping output is partially written at this stage, you can still click to the Output tab,
and preview it.

Limitations

The currently computed target node is not always displayed in the Output tab. For
example, XML attributes are collected internally and written at once.
If the output produces multiple files, only the currently written file can be displayed;
switching to another output file is disabled.

© 2018 Altova GmbH

Viewing the Current Value of a Connector 289Debugging Mappings

Altova MapForce 2018 Professional Edition

6.9 Viewing the Current Value of a Connector

When the current execution position of the debugger () is on a particular connector (either
because you are debugging in steps, or because there is a breakpoint defined on the connector),
the current value processed by the connector is displayed in the Context tab of the Values
window. This is the value that is about to be written to the output, that is, "the present". It is also
the value whose context is displayed in the Context window (see Using the Context Window).

To understand this case, open the PreserveFormatting.mfd sample from the <Documents>
\Altova\MapForce2018\MapForceExamples\ directory. Click the input connector of the Number
node on the target component, and press F9 to add a breakpoint on it.

Then press F5 to start debugging and observe the results.

As shown in the image, the current debugger position (and the breakpoint) is on the
Number node of the target component. The Values window indicates that this node processes the
value "1" (this value is also highlighted with a thick red border on the mapping).

290 Debugging Mappings Stepping back into Recent Past

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.10 Stepping back into Recent Past

When you click a data overlay (small rectangular box) next to a mapping connector, the Values
window displays the name and, optionally, the value associated with the selected connector. The
focus now is no longer on the current debugger position, but on the selected data overlay. You
can consider this view as stepping slightly back in the debugging history. This is the "near" past,
since the mapping displays data overlays only for the last few connectors related to the current
debugger position. When you click such a "related" data overlay, the Values window switches
automatically to the Related tab.

For an illustration of this scenario, open the mapping PreserveFormatting.mfd from the
<Documents>\Altova\MapForce2018\MapForceExamples\ directory.

After opening the mapping, click the connector next to the Number node on the target component,
and press F9 to add a breakpoint on it. Press F5 to start debugging, and then click the data
overlay (small rectangular box) next to the Number node of the source component.

Because a connector is typically iterated multiple times for the lifetime of a mapping, the current
index of the iteration is displayed enclosed with square brackets: <Number>[1]. Also, because
the connector carries a value, its value is also represented after the equal sign: <Number>[1]=1.
The same value is displayed on a new row in the Values window, as shown below.

If you need additional information about a particular value, remember that you can recreate the
context that produced it (see Setting the Context to a Value).

© 2018 Altova GmbH

Viewing the History of Values Processed by a Connector 291Debugging Mappings

Altova MapForce 2018 Professional Edition

6.11 Viewing the History of Values Processed by a Connector

If the option Keep full trace history is enabled (see Debugger Settings), you can view the
history of all values that were processed by that connector (up to the current execution position).

The history is displayed when you click a connector, and then click the History tab of the Values
window. Note that this operation is meaningful only for connectors that have processed values
since the beginning of mapping execution until the current debugger position.

To illustrate this case, let's debug a mapping from begging till end without using any breakpoints,
and then watch the history of all values that were processed by a particular connector. First, open
the mapping PreserveFormatting.mfd from the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory. If it is already open, make sure to do the following:

Clear any breakpoints, if such exist (see Adding and Removing Breakpoints)
Stop debugging if it is currently in progress, by pressing Shift + F5.

When ready, press F5 start a new debugging operation. When you press F5, MapForce executes
the mapping in debug mode, and switches to the Output tab. Click the Mapping tab to go back
to the main mapping window, and then click the result node of the format-number function
(highlighted in red in the image below). Finally, click the History tab of the Values window, and
notice the displayed values.

As shown in the image above, this particular node (result) has processed four values in total. If
you need additional information about a particular value, remember that you can recreate the
context that produced it (see Setting the Context to a Value).

292 Debugging Mappings Setting the Context to a Value

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6.12 Setting the Context to a Value

Setting the context to a value is an action that can be compared to stepping into the past, in order
to view more details about the mapping context that produced that value. You can set the context
to any value displayed in the Values window (in the Related tab, Sequence tab, or History tab).
If you have enabled the Keep full trace history option (see Debugger Settings), the History tab
displays all values processed by the currently selected connector; therefore, in this case, you can
additionally set the context to any value in the past for that connector.

To set the context to a value, do one of the following:

Right-click the value, and select Set Context from the context menu.
Double-click the value.

When you set the context to a value, MapForce highlights the mapping area so as to recreate the
situation that produced that value, and populates the Values window and the Context window
according to the selected context. For a legend to visual clues used on the mapping area while in
a context, see About the Debug Mode. For information about the context itself, see Using the
Context Window.

The connector of a manually-set context is yellow (), which indicates that you are no longer at
the most recent execution position. To switch back to the most recent execution position (when
applicable), click the Reset to Current button on the Context tab of the Values window.

© 2018 Altova GmbH

Debugger Settings 293Debugging Mappings

Altova MapForce 2018 Professional Edition

6.13 Debugger Settings

To access the settings applicable to the MapForce debugger, select the menu command Tools |
Options, and then click Debugger. The available settings are as follows:

Maximum storage length of values

Defines the string length of values displayed in the Values window (at least 15
characters). Note that setting the storage length to a high value may deplete available
system memory.

Keep full trace history

Instructs MapForce to keep the history of all values processed by all connectors of all
components in the mapping for the duration of debugging. If this option is enabled, all
values processed by MapForce since the beginning of debug execution will be stored in
memory and available for your analysis in the Values window, until you stop debugging. It
is not recommended to enable this option if you are debugging data-intensive mappings,
since it may slow down debugging execution and deplete available system memory. If
this option is disabled, MapForce keeps only the most recent trace history for nodes
related to the current execution position.

Chapter 7

Data Sources and Targets

296 Data Sources and Targets

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

7 Data Sources and Targets

This section provides information specific to various source and target component types that
MapForce can map from or to:

XML and XML Schema
Databases
CSV and Text Files
HL7 Version 3

© 2018 Altova GmbH

XML and XML schema 297Data Sources and Targets

Altova MapForce 2018 Professional Edition

7.1 XML and XML schema

Altova website: XML mapping

In the introductory part of this documentation, you have seen examples of simple mappings that
use XML and XML schema files as source or target components. This section provides further
information about using XML components in your mappings. It includes the following topics:

XML Component Settings
Using DTDs as "schema" components
Derived XML Schema types - mapping to
QName support
Nil Values / Nillable
Comments and Processing Instructions
CData sections
Wildcards - xs:any

7.1.1 Generating an XML Schema

MapForce can automatically generate an XML schema based on an existing XML file if the XML
Schema is not available. Whenever you add to the mapping area an XML file without a schema
(using the menu command Insert | XML Schema/File), the following dialog box appears.

Click Yes to generate the schema, you will then be prompted to select the directory where the
generated schema should be saved.

When MapForce generates a schema from an XML file, data types for elements/attributes must
be inferred from the XML instance document and may not be exactly what you expect. It is
recommended that you check whether the generated schema is an accurate representation of the
instance data.

If elements or attributes in more than one namespace are present, MapForce generates a
separate XML Schema for each distinct namespace; therefore, multiple files may be created on
the disk.

https://www.altova.com/mapforce/xml-mapping

298 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

7.1.2 XML Component Settings

After you add an XML component to the mapping area, you can configure the settings applicable
to it from the Component Settings dialog box. You can open the Component settings dialog box in
one of the following ways:

Select the component on the mapping, and, on the Component menu, click Properties.
Double-click the component header.
Right-click the component header, and then click Properties.

© 2018 Altova GmbH

XML and XML schema 299Data Sources and Targets

Altova MapForce 2018 Professional Edition

XML Component Settings dialog box

The available settings are as follows.

Component name The component name is automatically generated when you

300 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

create the component. You can however change the name at
any time.

If the component name was automatically generated and you
select an instance file after that, MapForce will prompt you to
optionally update the component name as well.

The component name can contain spaces (for example,
"Source XML File") and full stop characters (for example,
"Orders.EDI"). The component name may not contain
slashes, backslashes, colons, double quotes, leading or
trailing spaces. In general, be aware of the following
implications when changing the name of the component:

If you intend to deploy the mapping to FlowForce
Server, the component name must be unique.
It is recommended to use only characters that can
be entered at the command line. National characters
may have different encodings in Windows and at the
command line.

Schema file Specifies the name or path of the XML schema file used by
MapForce to validate and map data.

To change the schema file, click Browse and select the new
file. To edit the file in XMLSpy, click Edit.

Input XML file Specifies the XML instance file from which MapForce will
read data. This field is meaningful for a source component
and is filled when you first create the component and assign
to it an XML instance file.

In a source component, the instance file name is also used
to detect the XML root element and the referenced schema,
and to validate against the selected schema.

To change the location of the file, click Browse and select
the new file. To edit the file in XMLSpy, click Edit.

Output XML file Specifies the XML instance file to which MapForce will write
data. This field is meaningful for a target component.

To change the location of the file, click Browse and select
the new file. To edit the file in XMLSpy, click Edit.

Prefix for target namespace Allows you to enter a prefix for the target namespace. Ensure
that the target namespace is defined in the target schema,
before assigning the prefix.

Add schema/DTD reference Adds the path of the referenced XML Schema file to the root
element of the XML output. The path of the schema entered
in this field is written into the generated target instance files
in the xsi:schemaLocation attribute, or into the DOCTYPE

© 2018 Altova GmbH

XML and XML schema 301Data Sources and Targets

Altova MapForce 2018 Professional Edition

declaration if a DTD is used.

Note that, if you generate code in XQuery or C++, adding the
DTD reference is not supported.

Entering a path in this field allows you to define where the
schema file referenced by the XML instance file is to be
located. This ensures that the output instance can be
validated at the mapping destination when the mapping is
executed. You can enter an http:// address as well as an
absolute or relative path in this field.

Deactivating this option allows you to decouple the XML
instance from the referenced XML Schema or DTD (for
example, if you want to send the resulting XML output to
someone who does not have access to the underlying XML
Schema).

Write XML declaration This option enables you to suppress the XML declaration
from the generated output. By default, the option is enabled,
meaning that the XML declaration is written to the output.

This feature is supported as follows in MapForce target
languages and execution engines.

Target language
/ Execution
engine

When output is
a file

When output is
a string

Built-in Yes Yes

MapForce Server Yes Yes

XSLT, XQuery Yes No

Code generator (C
++, C#, Java)

Yes Yes

Cast values to target types Allows you to define if the target XML schema types should
be used when mapping, or if all data mapped to the target
component should be treated as string values. By default,
this setting is enabled.

Deactivating this option allows you to retain the precise
formatting of values. For example, this is useful to satisfy a
pattern facet in a schema that requires a specific number of
decimal digits in a numeric value.

You can use mapping functions to format the number as a
string in the required format, and then map this string to the
target.

302 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note that disabling this option will also disable the detection
of invalid values, e.g. writing letters into numeric fields.

Pretty print output Reformats the output XML document to give it a structured
look. Each child node is offset from its parent by a single tab
character.

Output Encoding Allows you specify the following settings of the output
instance file:

Encoding name
Byte order
Whether the byte order mark (BOM) character
should be included.

By default, any new components have the encoding defined
in the Default encoding for new components option. You
can access this option from Tools | Options, General tab.

If the mapping generates XSLT 1.0/2.0, activating the Byte
Order Mark check box does not have any effect, as these
languages do not support Byte Order Marks.

StyleVision Power Stylesheet
file

This option allows you to select or create an Altova
StyleVision stylesheet file. Such files enable you to output
data from the XML instance file to a variety of formats suitable
for reporting, such as HTML, RTF, and others.

See also Using Relative Paths on a Component.

Enable input processing
optimizations based on min/
maxOccurs

This option allows special handling for sequences that are
known to contain exactly one item, such as required
attributes or child elements with minOccurs and
maxOccurs="1". In this case, the first item of the sequence
is extracted, then the item is directly processed as an atomic
value (and not as a sequence).

If the input data is not valid against the schema, an empty
sequence might be encountered in a mapping, which stops
the mapping with an error message. To allow the processing
of such invalid input, disable this check box.

Save all file paths relative to
MFD file

When this option is enabled, MapForce saves the file paths
displayed on the Component Settings dialog box relative to
the location of the MapForce Design (.mfd) file. See also
Using Relative Paths on a Component.

7.1.3 Using DTDs as "Schema" Components

Starting with MapForce 2006 SP2, namespace-aware DTDs are supported for source and target
components. The namespace-URIs are extracted from the DTD "xmlns"-attribute declarations, to
make mappings possible.

© 2018 Altova GmbH

XML and XML schema 303Data Sources and Targets

Altova MapForce 2018 Professional Edition

However, some DTDs contain xmlns*-attribute declarations without namespace-URIs (for
example, DTDs used by StyleVision). Such DTDs have to be extended to make them useable in
MapForce. Specifically, you can make such DTDs useable by defining the xmlns-attribute with
the namespace-URI, as shown below:

<!ATTLIST fo:root

 xmlns:fo CDATA #FIXED 'http://www.w3.org/1999/XSL/Format'

 ...
>

7.1.4 Derived XML Schema Types

MapForce supports the mapping to/from derived types of a complex type. Derived types are
complex types of an XML Schema that use the xsi:type attribute to identify the specific derived
types.

The screenshot below shows the definition of a derived type called US-Address, in XMLSpy. The
base type (or originating complex type) is AddressType. Two extra elements were added to
create the derived type US-Address: Zip and State.

Sample derived type (XMLSpy schema view)

The following example shows you how to map data to or from derived XML schema types.

1. On the Insert menu, click XML Schema/File, and open the following XML Schema:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\MFCompany.xsd.

2. When prompted to supply an instance file, click Skip, and then select Company as the
root element.

304 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. Click the button next to the Address element. This button indicates that derived
types exist for this element in the schema.

4. Select the check box next to the derived type you want to use (US-Address, in this
case), and confirm with OK. A new element Address xsi:type="US-Address" has been
added to the component.

© 2018 Altova GmbH

XML and XML schema 305Data Sources and Targets

Altova MapForce 2018 Professional Edition

You can now map data to or from the US-Address derived type.

Note that you can also include multiple derived types by selecting them in the Derived Types
dialog box. In this case, each would have its own xsi:type element in the component.

7.1.5 QNames

MapForce resolves QName (qualified name) prefixes (https://www.w3.org/TR/xml-names/#ns-
qualnames) when reading data from XML files at mapping execution run-time.

QNames are used to reference and abbreviate namespace URIs in XML instance documents.
There are two types of QNames: Prefixed and Unprefixed QNames.

PrefixedName Prefix ':'

LocalPart

UnPrefixedName LocalPart

where LocalPart is an Element or Attribute name.

For example, in the listing below, <x:p/> is a QName, where:

the prefix "x" is an abbreviation of the namespace "http://myCompany.com".
p is the local part.

<?xml version='1.0'?>
<doc xmlns:x="http://myCompany.com">

 <x:p/>

</doc>

MapForce also includes several QName-related functions in the core | QName functions

library.

7.1.6 Nil Values / Nillable

The XML Schema specification allows for an element to be valid without content if the
nillable="true" attribute has been defined for that specific element in the schema. In the

https://www.w3.org/TR/xml-names/#ns-qualnames
https://www.w3.org/TR/xml-names/#ns-qualnames

306 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

instance XML document, you can then indicate that the value of an element is nil by adding the
xsi:nil="true" attribute to it. This section describes how MapForce handles nil elements in
source and target components.

'xsi:nil' versus 'nillable'
The xsi:nil="true" attribute is defined in the XML instance document.

The xsi:nil="true" attribute indicates that, although the element exists, it has no content. Note
that the xsi:nil="true" attribute applies to element values, and not to attribute values. An
element with xsi:nil="true" may still have other attributes, even if it does not have content.

The xsi:nil attribute is not displayed explicitly in the MapForce graphical mapping, because it is
handled automatically in most cases. Specifically, a "nilled" node (one that has the
xsi:nil="true" attribute) exists, but its content does not exist.

The nillable="true" attribute is defined in the XML schema. In MapForce, it can be present in
both the source and target components.

Nillable elements as mapping source
MapForce checks the xsi:nil attribute automatically, whenever a mapping reads data from nilled
XML elements. If the value of xsi:nil is true, the content will be treated as non-existent.

When you create a Target-driven mapping from a nillable source element to a nillable target

© 2018 Altova GmbH

XML and XML schema 307Data Sources and Targets

Altova MapForce 2018 Professional Edition

element with simple content (a single value with optional attributes, but without child elements),
where xsi:nil is set on a source element, MapForce adds the xsi:nil attribute to the target
element (for example, <OrderID xsi:nil="true"/>).

When you create a Copy-All mapping from a nillable source element to a nillable target element,
where xsi:nil is set on a source element, MapForce adds the xsi:nil attribute to the target
element (for example, <OrderID xsi:nil="true"/>).

To check explicitly whether a source element has the xsi:nil attribute set to true, use the is-

xsi-nil function. It returns TRUE for nilled elements and FALSE for other nodes.

To substitute a nilled (non-existing) source element value with something specific, use the
substitute-missing function.

Notes:
Connecting the exists function to a nilled source element returns TRUE, since the

element node actually exists, even if it has no content.
Using functions that expect simple values (such as multiply and concat) on

elements where xsi:nil has been set does not yield a result, as no element
content is present and no value can be extracted. These functions behave as if the
source node did not exist.

Nillable elements as mapping target
When you create a Target-driven mapping from a nillable source element to a nillable target
element with simple content (a single value with optional additional attributes, but without child
elements), where xsi:nil is set on a source element, MapForce inserts the xsi:nil attribute
into the target element (for example, <OrderID xsi:nil="true"/>). If the xsi:nil="true"
attribute has not been set in the XML source element, then the element content is mapped to the
target element in the usual fashion.

When mapping to a nillable target element with complex type (with child elements), the xsi:nil
attribute will not be written automatically, because MapForce cannot know at the time of writing
the element's attributes if any child elements will follow. For such cases, define a Copy-All
connection to copy the xsi:nil attribute from the source element.

When mapping an empty sequence to a target element, the element will not be created at all,
independent of its nillable designation.

To force the creation of an empty target element with xsi:nil set to true, connect the set-xsi-

nil function directly to the target element. This works for target elements with simple and

complex types.

If the node has simple type, use the substitute-missing-with-xsi-nil function to insert

xsi:nil in the target if no value from your mapping source is available. This can happen if the
source node does not exist at all, or if a calculation (for example, multiply) involved a nilled source
node and therefore yielded no result.

Note:

308 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Functions which generate xsi:nil cannot be passed through functions or
components which only operate on values (such as the if-else function).

Mapping NULL database fields to xsi:nil
If you map a NULL database field to an nillable element of an XML schema, MapForce generates
only those target elements which actually contain database data. Elements of NULL database
fields are not created in the target component. Connecting the exists node function to such a

source element results in false for the NULL fields.

To force the creation of all elements in the target component, use the substitute-missing-

with-xsi-nil function from the node functions of the core library.

The screenshot above illustrates how the substitute-missing-with-xsi-nil function is used

to create target elements for all database fields:

All missing/NULL database fields contain <OrderID xsi:nil="true"/> in the target element.
Existing data from database fields is mapped directly to the target element e.g.
<OrderID>1</OrderID>.

To see the NULL fields of a database component, click the Database Query button and run a
query on the database table(s). Null fields are shown as [NULL] in the Results window.

Mapping xsi:nil to NULL database fields
If you map a nilled XML element to a database column, MapForce writes a NULL value to the
database. You can also use the set-null function if you want to set a database field to NULL

unconditionally.

© 2018 Altova GmbH

XML and XML schema 309Data Sources and Targets

Altova MapForce 2018 Professional Edition

7.1.7 Comments and Processing Instructions

Comments and Processing Instructions can be inserted into target XML components. Processing
instructions are used to pass information to applications that further process XML documents.
Note that Comments and Processing instructions cannot be defined for nodes that are part of a
copy-all mapped group.

To insert a Processing Instruction:

1. Right-click an element in the target component and select Comment/Processing
Instruction, then one of the Processing Instruction options from the menu (Before, After)

2. Enter the Processing Instruction (target) name in the dialog and press OK to confirm, e.g.
xml-stylesheet.
This adds a node of this name to the component tree.

3. You can use, for example, a constant component to supply the value of the Processing
Instruction attribute, e.g. href="book.css" type="text/css".

Note:
Multiple Processing Instructions can be added before or after any element in the target
component.

To insert a comment:

1. Right-click an element in the target component and select Comment/Processing
Instruction, then one of the Comment options from the menu (Before, After).

This adds the comment node (<!--comment()) to the component tree.
2. Use a constant component to supply the comment text, or connect a source node to the

comment node.

310 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note:
Only one comment can be added before and after a single target node. To create multiple
comments, use the duplicate input function.

To delete a Comment/Processing Instruction:

Right-click the respective node, select Comment/Processing Instruction, then select
Delete Comment/Processing Instruction from the flyout menu.

7.1.8 CDATA Sections

CDATA sections are used to escape blocks of text containing characters which would normally
be interpreted as markup. CDATA sections start with "<![CDATA[" and end with the "]]>".

Target nodes can now write the input data that they receive as CDATA sections. The target node
components can be:

XML data
XML data embedded in database fields
XML child elements of typed dimensions in an XBRL target

To create a CDATA section:

1. Right-click the target node that you want to define as the CDATA section and select
"Write Content as CDATA section".

A prompt appears warning you that the input data should not contain the CDATA section
close delimiter ']]>', click OK to close the prompt.
The [C.. icon shown below the element tag shows that this node is now defined as a
CDATA section.

Note:
CDATA sections can also be defined on duplicate nodes, and xsi:type nodes.

© 2018 Altova GmbH

XML and XML schema 311Data Sources and Targets

Altova MapForce 2018 Professional Edition

Example:
The HTMLinCDATA.mfd mapping file available in the ...\MapForceExamples folder shows an
example of where CDATA sections can be very useful.

In this example:
Bold start () and end () tags are added to the content of the Trademark source
element.
Italic start (<i>) and end (</i>) tags are added to the content of the Keyword source
element.
The resulting data is passed on to duplicate text() nodes in the order that they appear in
the source document, due to the fact the Subsection element connector, has been
defined as a Source Driven (Mixed content) node.
The output of the MixedContent node is then passed on to the Description node in the
ShortInfo target component, which has been defined as a CDATA section.

Clicking the Output button shows the CDATA section containing the marked-up text.

7.1.9 Wildcards - xs:any / xs:anyAttribute

The wildcards xs:any (and xs:anyAttribute) allow you to use any elements/attributes from
schemas. The screenshot shows the "any" element in the Schema view of XMLSpy.

312 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

In MapForce, a Change Selection () button appears to the right of the xs:any element (or
xs:anyAttribute).

When clicked, the Change Selection button opens the "Wildcard selections" dialog box. The
entries in this list show the global elements and attributes declared in the current schema.

© 2018 Altova GmbH

XML and XML schema 313Data Sources and Targets

Altova MapForce 2018 Professional Edition

Clicking one or more of the check boxes and confirming with OK, inserts that element/attribute
(and any other child nodes) into the component. The wildcard elements or attributes are inserted

immediately after the node whose Change Selection () button was clicked.

You can now map to/from these nodes as with any other element.

On a component, the wildcard elements or attributes can be recognized by the (xs:any) text
appended to their name.

To remove a wildcard element, click the Change Selection () button, and then deselect it from
the "Wildcard selections" dialog box.

Wildcards and dynamic node names

Mapping data to or from wildcards is generally suitable where all possible elements or attributes
that appear in the XML instance are declared by the component's XML schema (or can be
imported from external schemas). However, there may be situations where elements or attributes
appearing in an instance are too many to be declared in the schema. Consider the following
instance where the number of child elements of <message> is arbitrary:

314 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

<?xml version="1.0" encoding="UTF-8"?>
<message>

 <line1>1</line1>

 <line2>2</line2>

 <line3>3</line3>

 <line999></line999>

</message>

For such situations, use dynamic access to node names (see Mapping Node Names) instead of
wildcards.

Adding elements from a different schema as wildcards

Elements from a schema other than the one assigned to the component can also be used as
wildcards. To make such elements visible on the component, click the Import a different
schema button on the "Wildcard selections" dialog box. This opens a new dialog box where you
have two options:

1. Import schema
2. Generate wrapper schema

For example, the image below illustrates what happens if you attempt to import an external
schema called HasExpenses.xsd into a current schema assigned to a component.

The Import schema option imports the external schema into the current schema assigned to the
component. Be aware that this option overrides the existing schema of the component on the
disk. If the current schema is a remote schema that was opened from a URL (see Adding
Components from a URL) and not from the disk, it cannot be modified. In this case, use the
Generate wrapper schema option.

© 2018 Altova GmbH

XML and XML schema 315Data Sources and Targets

Altova MapForce 2018 Professional Edition

The Generate wrapper schema option creates a new schema file called a "wrapper" schema.
The advantage of using this option is that the existing schema of the component is not modified.
Instead, a new schema will be created (that is, the wrapper schema) which will include both the
existing schema and the schema to be imported. When you select this option, you are prompted
to choose where the wrapper schema should be saved. By default, the wrapper schema has a
name in the form somefile-wrapper.xsd. After you save the wrapper schema, it is by default
automatically assigned to the component, and a dialog box prompts you:

Click Yes to revert to the previous schema; otherwise click No to keep the newly created wrapper
schema assigned to the component.

7.1.10 Merging Data from Multiple Schemas

MapForce allows you to merge multiple files into a single target file.

This example merges multiple source components with different schemas to a target schema. To
merge an arbitrary number of files using the same schema, see Processing Multiple Input or
Output Files Dynamically.

The CompletePO.mfd file available in the ...\MapForceExamples folder shows how three XML
files are merged into one purchasing order XML file.

316 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note that multiple source component data are combined into one target XML file - CompletePO

ShortPO is a schema with an associated XML instance file and contains only customer
number and article data, i.e. Line item, number and amount. (There is only one customer
in this file with the Customer number of 3)
Customers is a schema with an associated XML instance file and contains customer
number and customer information details, i.e. Name and Address info.
Articles is a schema with an associated XML instance and contains article data, i.e.
article name number and price.
CompletePO is a schema file without an instance file as all the data is supplied by the
three XML instance files. The hierarchical structure of this file makes it possible to merge
and output all XML data.

This schema file has to be created in an XML editor such as XMLSpy, it is not generated by
MapForce (although it would be possible to create if you had a CompletePO.xml instance file).

The structure of CompletePO is a combination of the source XML file structures.

The filter component (Customer) is used to find/filter the data where the customer numbers are
identical in both the ShortPO and Customers XML files, and pass on the associated data to the
target CompletePO component.

The CustomerNr in ShortPO is compared with the Number in Customers using the
"equal" function.
As ShortPO only contains one customer (number 3), only customer and article data for

© 2018 Altova GmbH

XML and XML schema 317Data Sources and Targets

Altova MapForce 2018 Professional Edition

customer number 3, can be passed on to the filter component.
The node/row parameter, of the filter component, passes on the Customer data to "on-
true" when the bool parameter is true, i.e. when the same number has been found, in this
case customer number 3.
The rest of the customer and article data are passed on to the target schema through the
two other filter components.

7.1.11 Declaring Custom Namespaces

By default, when a mapping produces XML output, the namespace (or set of namespaces) of
each element and attribute is automatically derived by MapForce from the schema associated
with the target component. This is the default behavior in MapForce and is suitable for most
mapping scenarios that involve generation of XML output.

However, there might be cases when you want to have more control over namespaces of elements
in the resulting XML output. For example, you may want to manually declare the namespace of an
element directly from the mapping.

To understand how this works, open the BooksToLibrary.mfd mapping available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\. Right-click the library
node, and select Add Namespace from the context menu.

Notice that two new nodes are now available under the library node: a namespace and a
prefix.

318 Data Sources and Targets XML and XML schema

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

You can now map to them string values from the mapping. In the image below, two constants
were defined (from Insert | Constant menu command) that provide the namespace "altova.library"
and the prefix "lib":

The result is that, in the generated output, an xmlns:<prefix>="<namespace>" attribute is added
to the element, where <prefix> and <namespace> are values that come from the mapping (in this
case, from constants). The generated output will now look as follows (notice the highlighted part):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns:lib="altova.library" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:noNamespaceSchemaLocation="library.xsd">

...

Note: Declaring custom namespaces (and the Add Namespace command) is meaningful only
for target XML components, and applies to elements only. The Add Namespace

© 2018 Altova GmbH

XML and XML schema 319Data Sources and Targets

Altova MapForce 2018 Professional Edition

command is not available for attributes and wildcard nodes. It is also not available for
nodes which receive data by means of a Copy-All connection.

You can also declare multiple namespaces for the same element, if necessary. To do this, right-
click the node again, and select Add Namespace from the context menu. A new pair of
namespace and prefix nodes become available, to which you can connect the new prefix and
namespace values.

To remove a previously added namespace declaration, right-click the ns:namespace node, and
select Remove Namespace from the context menu.

Both the namespace and prefix input connectors must be mapped, even if you provide
empty values to them.

If you want to declare a default namespace (that is, one in the format
xmlns="mydefaultnamespace"), map an empty string value to prefix. To see this case in
action, edit the example mapping above so as to make the second constant an empty string.

The resulting output would then looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="altova.library" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="library.xsd">

...

If you need to create prefixes for attribute names, for example <number
prod:id="prod557">557</number>, you can achieve this by either enabling dynamic access to
node's attributes (see Mapping Node Names), or by editing the schema so that it has a prod:id
attribute for <number>.

320 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

7.2 Databases and MapForce

Altova website: Database mapping

MapForce 2018 provides powerful support for mapping databases to XML, flat files, and other
database formats. With MapForce Enterprise edition, you can additionally map databases to EDI
formats, Excel 2007+, JSON, XBRL, and Web services.

The following databases are supported. The available root object for each database is also listed.
While Altova endeavors to support other databases, successful connection and data processing
have only been tested with the databases listed below. If your Altova application is a 64-bit
version, ensure that you have access to the 64-bit database drivers needed for the specific
database you are connecting to.

Database Root Object Notes

Firebird 2.5.4 database

IBM DB2 8.x, 9.1, 9.5, 9.7,
10.1, 10.5

schema

IBM DB2 for i 6.1, 7.1 schema Logical files are supported and shown as
views.

IBM Informix 11.70 database Informix supports connections via ADO, JDBC
and ODBC. The implementation does not
support large object data types in any of the
code generation languages. MapForce will
generate an error message (during code
generation) if any of these data types are
used.

MariaDB 10 database

Microsoft Access 2003, 2007,
2010, 2013

database

Microsoft Azure SQL
Database

database SQL Server 2016 codebase

Microsoft SQL Server 2005,
2008, 2012, 2014, 2016

database

MySQL 5.0, 5.1, 5.5, 5.6, 5.7 database

Oracle 9i, 10g, 11g, 12c schema

PostgreSQL 8.0, 8.1, 8.2, 8.3,
9.0.10, 9.1.6, 9.2.1, 9.4, 9.5,
9.6

database PostgreSQL connections are supported both
as native connections and driver-based
connections through interfaces (drivers) such
as ODBC or JDBC. Native connections do not
require any drivers.

https://www.altova.com/mapforce/database-mapping

© 2018 Altova GmbH

Databases and MapForce 321Data Sources and Targets

Altova MapForce 2018 Professional Edition

Database Root Object Notes

Progress OpenEdge 11.6 database

SQLite 3.x database SQLite connections are supported as native,
direct connections to the SQLite database file.
No separate drivers are required.

Sybase ASE 15, 16 database

Teradata 16 database Connections are supported through ADO.NET,
JDBC, and ODBC.

When a mapping inserts data into a database
table, database-generated identity fields are
not supported.

Database mappings in various execution environments

When you generate program code from a mapping, or when you compile a mapping to MapForce
Server execution files, or when you deploy a mapping to FlowForce Server, the database
connection details saved with the generated files are adapted to drivers applicable or supported for
the chosen target environment, as shown in the table below. For example, if the mapping
transformation language is set to Java, ADO connections are converted to JDBC when Java code
is generated from the mapping.

When the mapping is executed in an environment other than MapForce, you will need to make
sure that the database connection details are meaningful on the machine which executes the
mapping (for example, the database driver is installed, the database path is correct, the database
server is accessible, etc.).

Some database connection types are not supported in some target environments, as shown in the
table below.

Connection
type/
Execution
Environment

C# C++ Java MapForce
Server on
Windows

MapForce
Server on
Linux/Mac

ADO ADO bridge As is Converted to
JDBC

As is Converted to
JDBC

ADO.NET As is User defined Converted to
JDBC

As is Converted to
JDBC

JDBC User defined User defined As is As is As is

ODBC ODBC bridge ODBC bridge Converted to
JDBC

As is Converted to
JDBC

Native
PostgreSQL

Not supported Not supported Not supported As is As is

322 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Native
SQLite

Not supported Not supported Not supported As is As is

Table legend:

"As is" means that the database connection type (for example, JDBC, ODBC) remains as
defined in MapForce.
"Converted to JDBC" means that the database connection will be converted into a JDBC-
like database connection URL.
"ADO bridge" or "ODBC bridge" means that the connection string remains as defined in
MapForce, but the generated code will use a suitable class which acts as an ADO bridge
(or ODBC bridge, respectively), for example, System.Data.OleDb.OleDbConnection or
System.Data.Odbc.OdbcConnection.
"User defined" means that, in order for the connection to work in generated code, you will
need to manually enter the connection details into the Database Component Settings
dialog box. Depending on the case, these connection details must be entered under
ADO/OLE-DB-specific settings or under JDBC-specific settings.

See also:

Database Connections on Linux and Mac
Compiling Mappings to MapForce Server Execution Files
Deploying Mappings to FlowForce Server
Code Generator

7.2.1 Connecting to a Database

In the most simple case, a database can be a local file such as a Microsoft Access or SQLite
database file. In a more advanced scenario, a database may reside on a remote or network
database server which does not necessarily use the same operating system as the application
that connects to it and consumes data. For example, while MapForce runs on a Windows
operating system, the database from which you want to access data (for example, MySQL) might
run on a Linux machine.

To interact with various database types, both remote and local, MapForce relies on the data
connection interfaces and database drivers that are already available on your operating system or
released periodically by the major database vendors. In the constantly evolving landscape of
database technologies, this approach caters for better cross-platform flexibility and
interoperability.

The following diagram illustrates, in a simplified way, data connectivity options available between
MapForce (illustrated as a generic client application) and a data store (which may be a database
server or database file).

© 2018 Altova GmbH

Databases and MapForce 323Data Sources and Targets

Altova MapForce 2018 Professional Edition

* Direct native connections are supported for SQLite and PostgreSQL databases. To connect to
such databases, no additional drivers are required to be installed on your system.

As shown in the diagram above, MapForce can access any of the major database types through
the following data access technologies:

ADO (Microsoft® ActiveX® Data Objects), which, in its turn, uses an underlying OLE DB
(Object Linking and Embedding, Database) provider
ADO.NET (A set of libraries available in the Microsoft .NET Framework that enable
interaction with data)
JDBC (Java Database Connectivity)
ODBC (Open Database Connectivity)

Some ADO.NET providers are not supported or have limited support. See ADO.NET Support
Notes.

The data connection interface you should choose largely depends on your existing software
infrastructure. You will typically choose the data access technology and the database driver which
integrates tighter with the database system to which you want to connect. For example, to
connect to a Microsoft Access 2013 database, you would build an ADO connection string that
uses a native provider such as the Microsoft Office Access Database Engine OLE DB
Provider. To connect to Oracle, on the other hand, you may want to download and install the
latest JDBC, ODBC, or ADO.NET interfaces from the Oracle website.

While drivers for Windows products (such as Microsoft Access or SQL Server) may already be
available on your Windows operating system, they may not be available for other database types.
Major database vendors routinely release publicly available database client software and drivers
which provide cross-platform access to the respective database through any combination of ADO,

324 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

ADO.NET, ODBC, or JDBC. In addition to this, several third party drivers may be available for any
of the above technologies. In most cases, there is more than one way to connect to the required
database from your operating system, and, consequently, from MapForce. The available features,
performance parameters, and the known issues will typically vary based on the data access
technology or drivers used.

Starting the Database Connection Wizard7.2.1.1

Whenever you take an action that requires a database connection, a wizard appears that guides
you through the steps required to set up the connection.

Before you go through the wizard steps, be aware that for some database types it is necessary to
install and configure separately several database prerequisites, such as a database driver or
database client software. These are normally provided by the respective database vendors, and
include documentation tailored to your specific Windows version. For a list of database drivers
grouped by database type, see Database Drivers Overview.

To add the database as a source or target component on a mapping:

On the Insert menu, click Database.

To add the database as a reusable global resource:

1. On the Tools menu, click Global Resources.
2. Click Add, and then click Database.
3. Click Choose Database.

© 2018 Altova GmbH

Databases and MapForce 325Data Sources and Targets

Altova MapForce 2018 Professional Edition

After you select a database type and click Next, the on-screen instructions will depend on the
database kind, technology (ADO, ADO.NET, ODBC, JDBC) and driver used.

For examples applicable to each database type, see Database Connection Examples. For
instructions applicable to each database access technology, refer to the following topics:

Setting up an ADO Connection
Setting up an ADO.NET Connection
Setting up an ODBC Connection
Setting up a JDBC Connection

326 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Database Drivers Overview7.2.1.2

The following table lists common database drivers you can use to connect to a particular
database through a particular data access technology. Note that this list does not aim to be either
exhaustive or prescriptive; you can use other native or third party alternatives in addition to the
drivers shown below.

Even though a number of database drivers might be already available on your Windows operating
system, you may still need to download an alternative driver. For some databases, the latest
driver supplied by the database vendor is likely to perform better than the driver that shipped with
the operating system.

Database vendors may provide drivers either as separate downloadable packages, or bundled with
database client software. In the latter case, the database client software normally includes any
required database drivers, or provides you with an option during installation to select the drivers
and components you wish to install. Database client software typically consists of administration
and configuration utilities used to simplify database administration and connectivity, as well as
documentation on how to install and configure the database client and any of its components.

Configuring the database client correctly is crucial for establishing a successful connection to the
database. Before installing and using the database client software, it is strongly recommended to
read carefully the installation and configuration instructions of the database client; these may vary
for each database version and for each Windows version.

To understand the capabilities and limitations of each data access technology with respect to
each database type, refer to the documentation of that particular database product and also test
the connection against your specific environment. To avoid common connectivity issues, note the
following:

Some ADO.NET providers are not supported or have limited support. See ADO.NET
Support Notes.
When installing a database driver, it is recommended that it has the same platform as the
Altova application (32-bit or 64-bit). For example, if you are using a 32-bit Altova
application on a 64-bit operating system, install the 32-bit driver, and set up your
database connection using the 32-bit driver, see also Viewing the Available ODBC
Drivers.
When setting up an ODBC data source, it is recommended to create the data source
name (DSN) as System DSN instead of User DSN. For more information, see Setting up
an ODBC Connection.
When setting up a JDBC data source, ensure that JRE (Java Runtime Environment) or
Java Development Kit (JDK) is installed and that the CLASSPATH environment variable of
the operating system is configured. For more information, see Setting up a JDBC
Connection.
For the installation instructions and support details of any drivers or database client
software that you install from a database vendor, check the documentation provided with
the installation package.

Database Interface Drivers

Firebird ADO.NET Firebird ADO.NET Data Provider (https://www.firebirdsql.org/en/
additional-downloads/)

https://www.firebirdsql.org/en/additional-downloads/
https://www.firebirdsql.org/en/additional-downloads/

© 2018 Altova GmbH

Databases and MapForce 327Data Sources and Targets

Altova MapForce 2018 Professional Edition

Database Interface Drivers

JDBC Firebird JDBC driver (https://www.firebirdsql.org/en/jdbc-driver/)

ODBC Firebird ODBC driver (https://www.firebirdsql.org/en/odbc-driver/)

IBM DB2 ADO IBM OLE DB Provider for DB2

ADO.NET IBM Data Server Provider for .NET

JDBC IBM Data Server Driver for JDBC and SQLJ

ODBC IBM DB2 ODBC Driver

IBM DB2 for i ADO IBM DB2 for i5/OS IBMDA400 OLE DB Provider
IBM DB2 for i5/OS IBMDARLA OLE DB Provider
IBM DB2 for i5/OS IBMDASQL OLE DB Provider

ADO.NET .NET Framework Data Provider for IBM i

JDBC IBM Toolbox for Java JDBC Driver

ODBC iSeries Access ODBC Driver

IBM Informix ADO IBM Informix OLE DB Provider

JDBC IBM Informix JDBC Driver

ODBC IBM Informix ODBC Driver

Microsoft
Access

ADO Microsoft Jet OLE DB Provider
Microsoft Access Database Engine OLE DB Provider

ADO.NET .NET Framework Data Provider for OLE DB

ODBC Microsoft Access Driver

MariaDB ADO.NET In the absence of a dedicated .NET connector for MariaDB, use
Connector/NET for MySQL (https://dev.mysql.com/downloads/
connector/net/).

JDBC MariaDB Connector/J (https://downloads.mariadb.org/)

ODBC MariaDB Connector/ODBC (https://downloads.mariadb.org/)

Microsoft
SQL Server

ADO Microsoft OLE DB Provider for SQL Server
SQL Server Native Client

ADO.NET .NET Framework Data Provider for SQL Server
.NET Framework Data Provider for OLE DB

JDBC Microsoft JDBC Driver for SQL Server (https://
docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-
for-sql-server)

ODBC SQL Server Native Client

MySQL ADO.NET Connector/NET (https://dev.mysql.com/downloads/connector/net/)

https://www.firebirdsql.org/en/jdbc-driver/
https://www.firebirdsql.org/en/odbc-driver/
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/
https://downloads.mariadb.org/
https://downloads.mariadb.org/
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://dev.mysql.com/downloads/connector/net/

328 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Database Interface Drivers

JDBC Connector/J (https://dev.mysql.com/downloads/connector/j/)

ODBC Connector/ODBC (https://dev.mysql.com/downloads/connector/
odbc/)

Oracle ADO Oracle Provider for OLE DB
Microsoft OLE DB Provider for Oracle

ADO.NET Oracle Data Provider for .NET (http://www.oracle.com/technetwork/
topics/dotnet/index-085163.html)

JDBC JDBC Thin Driver
JDBC Oracle Call Interface (OCI) Driver

These drivers are typically installed during the installation of your
Oracle database client. Connect through the OCI Driver (not the
Thin Driver) if you are using the Oracle XML DB component.

ODBC Microsoft ODBC for Oracle
Oracle ODBC Driver (typically installed during the installation of
your Oracle database client)

PostgreSQL JDBC PostgreSQL JDBC Driver (https://jdbc.postgresql.org/
download.html)

ODBC psqlODBC (https://odbc.postgresql.org/)

Native
Connectio
n

Available. There is no need to install any drivers if using native
connection.

Progress
OpenEdge

JDBC JDBC Connector (https://www.progress.com/jdbc/openedge)

ODBC ODBC Connector (https://www.progress.com/odbc/openedge)

SQLite Native
Connectio
n

Available. There is no need to install any drivers if using native
connection.

Sybase ADO Sybase ASE OLE DB Provider

JDBC jConnect™ for JDBC

ODBC Sybase ASE ODBC Driver

Teradata ADO.NET .NET Data Provider for Teradata (https://downloads.teradata.com/
download/connectivity/net-data-provider-for-teradata)

JDBC Teradata JDBC Driver (https://downloads.teradata.com/download/
connectivity/jdbc-driver)

ODBC Teradata ODBC Driver for Windows (https://
downloads.teradata.com/download/connectivity/odbc-driver/
windows)

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/odbc/
https://dev.mysql.com/downloads/connector/odbc/
http://www.oracle.com/technetwork/topics/dotnet/index-085163.html
http://www.oracle.com/technetwork/topics/dotnet/index-085163.html
https://jdbc.postgresql.org/download.html
https://jdbc.postgresql.org/download.html
https://odbc.postgresql.org/
https://www.progress.com/jdbc/openedge
https://www.progress.com/odbc/openedge
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/jdbc-driver
https://downloads.teradata.com/download/connectivity/jdbc-driver
https://downloads.teradata.com/download/connectivity/odbc-driver/windows
https://downloads.teradata.com/download/connectivity/odbc-driver/windows
https://downloads.teradata.com/download/connectivity/odbc-driver/windows

© 2018 Altova GmbH

Databases and MapForce 329Data Sources and Targets

Altova MapForce 2018 Professional Edition

Setting up an ADO Connection7.2.1.3

Microsoft ActiveX Data Objects (ADO) is a data access technology that enables you to connect
to a variety of data sources through OLE DB. OLE DB is an alternative interface to ODBC or
JDBC; it provides uniform access to data in a COM (Component Object Model) environment. ADO
is the typical choice for connecting to Microsoft native databases such as Microsoft Access or
SQL Server, although you can also use it for other data sources.

To set up an ADO connection:

1. Start the database connection wizard.
2. Click ADO Connections.

3. Click Build.

330 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Select the data provider through which you want to connect. The table below lists a few
common scenarios.

To connect to this
database...

Use this provider...

Microsoft Access Microsoft Office Access Database Engine OLE DB
Provider

When connecting to Microsoft Access 2003, you can
also use the Microsoft Jet OLE DB Provider.

SQL Server SQL Server Native Client
Microsoft OLE DB Provider for SQL Server

Other database Select the provider applicable to your database.

If an OLE DB provider to your database is not available,
install the required driver from the database vendor (see
Database Drivers Overview). Alternatively, set up an
ODBC or JDBC connection.

If the operating system has an ODBC driver to the
required database, you can also use the Microsoft OLE
DB Provider for ODBC Drivers.

5. Click Next and complete the wizard.

© 2018 Altova GmbH

Databases and MapForce 331Data Sources and Targets

Altova MapForce 2018 Professional Edition

The subsequent wizard steps are specific to the provider you chose. For SQL Server, you will
need to provide or select the host name of the database server, as well as the database username
and password. For Microsoft Access, you will be asked to browse for or provide the path to the
database file.

The complete list of initialization properties (connection parameters) is available in the All tab of
the connection dialog box—these properties vary depending on the chosen provider. The following
sections provide guidance on configuring the basic initialization properties for Microsoft Access
and SQL Server databases:

Setting up the SQL Server Data Link Properties
Setting up the Microsoft Access Data Link Properties

Connecting to an Existing Microsoft Access Database

This approach is suitable when you want to connect to a Microsoft Access database which is not
password-protected. If the database is password-protected, set up the database password as
shown in Connecting to Microsoft Access (ADO).

To connect to an existing Microsoft Access database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select Microsoft Access (ADO), and then click Next.
3. Browse for the database file, or enter the path to it (either relative or absolute).
4. Click Connect.

Setting up the SQL Server Data Link Properties

When you connect to a Microsoft SQL Server database through ADO (see Setting up an ADO
Connection), ensure that the following data link properties are configured correctly in the All tab of
the Data Link Properties dialog box.

332 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Data Link Properties dialog box

Property Notes

Integrated Security If you selected the SQL Server Native Client data provider
on the Provider tab, set this property to a space character.

Persist Security Info Set this property to True.

Setting up the Microsoft Access Data Link Properties

When you connect to a Microsoft Access database through ADO (see Setting up an ADO
Connection), ensure that the following properties are configured correctly in the All tab of the Data
Link Properties dialog box.

© 2018 Altova GmbH

Databases and MapForce 333Data Sources and Targets

Altova MapForce 2018 Professional Edition

Data Link Properties dialog box

Property Notes

Data Source This property stores the path to the Microsoft Access
database file. To avoid database connectivity issues, it is
recommended to use the UNC (Universal Naming Convention)
path format, for example:

\\anyserver\share$\filepath

Jet OLEDB:System
Database

This property stores the path to the workgroup information file.
You may need to explicitly set the value of this property
before you can connect to a Microsoft Access database.

If you cannot connect due to a "workgroup information file"
error, locate the workgroup information file (System.MDW)
applicable to your user profile, and set the property value to
the path of the System.MDW file.

334 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Property Notes

Jet OLEDB:Database
Password

If the database is password-protected, set the value of this
property to the database password.

Setting up an ADO.NET Connection7.2.1.4

ADO.NET is a set of Microsoft .NET Framework libraries designed to interact with data, including
data from databases. To connect to a database from MapForce through ADO.NET, Microsoft
.NET Framework 4 or later is required. As shown below, you connect to a database through
ADO.NET by selecting a .NET provider and supplying a connection string.

A .NET data provider is a collection of classes that enables connecting to a particular type of data
source (for example, a SQL Server, or an Oracle database), executing commands against it, and
fetching data from it. In other words, with ADO.NET, an application such as MapForce interacts
with a database through a data provider. Each data provider is optimized to work with the specific
type of data source that it is designed for. There are two types of .NET providers:

1. Supplied by default with Microsoft .NET Framework.
2. Supplied by major database vendors, as an extension to the .NET Framework. Such

ADO.NET providers must be installed separately and can typically be downloaded from
the website of the respective database vendor.

Note: Certain ADO.NET providers are not supported or have limited support. See ADO.NET
Support Notes.

To set up an ADO.NET connection:

1. Start the database connection wizard.
2. Click ADO.NET Connections.

© 2018 Altova GmbH

Databases and MapForce 335Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. Select a .NET data provider from the list.

The list of providers available by default with the .NET Framework appears in the
"Provider" list. Vendor-specific .NET data providers are available in the list only if they
are already installed on your system. To become available, vendor-specific .NET
providers must be installed into the GAC (Global Assembly Cache), by running the
.msi or .exe file supplied by the database vendor.

4. Enter a database connection string. A connection string defines the database connection
information, as semicolon-delimited key/value pairs of connection parameters. For
example, a connection string such as Data Source=DBSQLSERV;Initial

Catalog=ProductsDB;User ID=dbuser;Password=dbpass connects to the SQL Server

database ProductsDB on server DBSQLSERV, with the user name dbuser and password
dbpass. You can create a connection string by typing the key/value pairs directly into the
"Connection String" dialog box. Another option is to create it with Visual Studio (see
Creating a Connection String in Visual Studio).

The syntax of the connection string depends on the provider selected from the
"Provider" list. For examples, see Sample ADO.NET Connection Strings.

336 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Click Connect.

Creating a Connection String in Visual Studio

In order to connect to a data source using ADO.NET, a valid database connection string is
required. The following instructions show you how to create a connection string from Visual
Studio.

To create a connection string in Visual Studio:

1. On the Tools menu, click Connect to Database.
2. Select a data source from the list (in this example, Microsoft SQL Server). The Data

Provider is filled automatically based on your choice.

© 2018 Altova GmbH

Databases and MapForce 337Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. Click Continue.

338 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Enter the server host name and the user name and password to the database. In this
example, we are connecting to the database ProductsDB on server DBSQLSERV, using
SQL Server authentication.

5. Click OK.

If the database connection is successful, it appears in the Server Explorer window. You can
display the Server Explorer window using the menu command View | Server Explorer. To obtain
the database connection string, right-click the connection in the Server Explorer window, and
select Properties. The connection string is now displayed in the Properties window of Visual
Studio. Note that, before pasting the string into the "Connection String" box of MapForce, you will
need to replace the asterisk (*) characters with the actual password.

© 2018 Altova GmbH

Databases and MapForce 339Data Sources and Targets

Altova MapForce 2018 Professional Edition

Sample ADO.NET Connection Strings

To set up an ADO.NET connection, you need to select an ADO.NET provider from the database
connection dialog box and enter a connection string (see also Setting up an ADO.NET
Connection). Sample ADO.NET connection strings for various databases are listed below under
the .NET provider where they apply.

.NET Data Provider for Teradata

This provider can be downloaded from Teradata website (https://downloads.teradata.com/
download/connectivity/net-data-provider-for-teradata). A sample connection string looks as follows:

Data Source=ServerAddress;User Id=user;Password=password;

.NET Framework Data Provider for IBM i

This provider is installed as part of IBM i Access Client Solutions - Windows Application Package.
A sample connection string looks as follows:

DataSource=ServerAddress;UserID=user;Password=password;DataCompression=True;

For more information, see the ".NET Provider Technical Reference" help file included in the
installation package above.

.NET Framework Data Provider for MySQL

This provider can be downloaded from MySQL website (https://dev.mysql.com/downloads/
connector/net/). A sample connection string looks as follows:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

See also: https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-
connection-string.html

.NET Framework Data Provider for SQL Server

A sample connection string looks as follows:

Data Source=DBSQLSERV;Initial Catalog=ProductsDB;User

ID=dbuser;Password=dbpass

See also: https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://downloads.teradata.com/download/connectivity/net-data-provider-for-teradata
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting-connection-string.html
https://msdn.microsoft.com/en-us/library/ms254500(v=vs.110).aspx

340 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

IBM DB2 Data Provider 10.1.2 for .NET Framework 4.0

Database=PRODUCTS;UID=user;Password=password;Server=localhost:50000;

Note: This provider is typically installed with the IBM DB2 Data Server Client package. If the
provider is missing from the list of ADO.NET providers after installing IBM DB2 Data
Server Client package, refer to the following technical note: https://www-01.ibm.com/
support/docview.wss?uid=swg21429586.

See also: https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/
com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html

Oracle Data Provider for .NET (ODP.NET)

The installation package which includes the ODP.NET provider can be downloaded from Oracle
website (see http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html). A sample
connection string looks as follows:

Data Source=DSORCL;User Id=user;Password=password;

Where DSORCL is the name of the data source which points to an Oracle service name defined in
the tnsnames.ora file, as described in Connecting to Oracle (ODBC).

To connect without configuring a service name in the tnsnames.ora file, use a string such as:

Data Source=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=host)

(PORT=port)))(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=MyOracleSID)));User

Id=user;Password=password;

See also: https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

ADO.NET Support Notes

The following table lists known ADO.NET database drivers that are currently not supported or have
limited support in MapForce.

Database Driver Support notes

All databases .Net Framework Data
Provider for ODBC

Limited support. Known issues exist
with Microsoft Access connections. It
is recommended to use ODBC direct
connections instead. See Setting up an
ODBC Connection.

.Net Framework Data
Provider for OleDb

Limited support. Known issues exist
with Microsoft Access connections. It
is recommended to use ADO direct
connections instead. See Setting up an

https://www-01.ibm.com/support/docview.wss?uid=swg21429586
https://www-01.ibm.com/support/docview.wss?uid=swg21429586
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.1.0/com.ibm.swg.im.dbclient.adonet.ref.doc/doc/DB2ConnectionClassConnectionStringProperty.html
http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html
https://docs.oracle.com/cd/B28359_01/win.111/b28375/featConnecting.htm

© 2018 Altova GmbH

Databases and MapForce 341Data Sources and Targets

Altova MapForce 2018 Professional Edition

Database Driver Support notes

ADO Connection.

Firebird Firebird ADO.NET Data
Provider

Limited support. It is recommended to
use ODBC or JDBC instead. See
Connecting to Firebird (ODBC) and
Connecting to Firebird (JDBC).

Informix IBM Informix Data Provider
for .NET Framework 4.0

Not supported. Use DB2 Data Server
Provider instead.

IBM DB2 for i
(iSeries)

.Net Framework Data
Provider for i5/OS

Not supported. Use .Net Framework
Data Provider for IBM i instead,
installed as part of the IBM i Access
Client Solutions - Windows Application
Package.

Oracle .Net Framework Data
Provider for Oracle

Limited support. Although this driver is
provided with the .NET Framework, its
usage is discouraged by Microsoft,
because it is deprecated.

PostgreSQL - No ADO.NET drivers for this vendor are
supported.

Sybase - No ADO.NET drivers for this vendor are
supported.

Setting up an ODBC Connection7.2.1.5

ODBC (Open Database Connectivity) is a widely used data access technology that enables you
to connect to a database from MapForce. It can be used either as primary means to connect to a
database, or as an alternative to OLE DB- or JDBC-driven connections.

To connect to a database through ODBC, first you need to create an ODBC data source name
(DSN) on the operating system. This step is not required if the DSN has already been created,
perhaps by another user of the operating system. The DSN represents a uniform way to describe
the database connection to any ODBC-aware client application on the operating system, including
MapForce. DSNs can be of the following types:

System DSN
User DSN
File DSN

A System data source is accessible by all users with privileges on the operating system. A User
data source is available to the user who created it. Finally, if you create a File DSN, the data
source will be created as a file with the .dsn extension which you can share with other users,
provided that they have installed the drivers used by the data source.

Any DSNs already available on your machine are listed by the database connection dialog box
when you click ODBC connections on the ODBC connections dialog box.

342 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

ODBC Connections dialog box

If a DSN to the required database is not available, the MapForce database connection wizard will
assist you to create it; however, you can also create it directly on your Windows operating
system. In either case, before you proceed, ensure that the ODBC driver applicable for your
database is in the list of ODBC drivers available to the operating system (see Viewing the
Available ODBC Drivers).

To connect by using a new DSN:

1. Start the database connection wizard.
2. On the database connection dialog box, click ODBC Connections.
3. Select a data source type (User DSN, System DSN, File DSN).

To create a System DSN, you need administrative rights on the operating system,
and MapForce must be run as administrator.

4. Click Add .
5. Select a driver, and then click User DSN or System DSN (depending on the type of the

DSN you want to create). If the driver applicable to your database is not listed, download
it from the database vendor and install it (see Database Drivers Overview).

6. On the dialog box that pops up, fill in any driver specific connection information to
complete the setup.

For the connection to be successful, you will need to provide the host name (or IP address) of the
database server, as well as the database username and password. There may be other optional

© 2018 Altova GmbH

Databases and MapForce 343Data Sources and Targets

Altova MapForce 2018 Professional Edition

connection parameters—these parameters vary between database providers. For detailed
information about the parameters specific to each connection method, consult the documentation
of the driver provider. Once created, the DSN becomes available in the list of data source names.
This enables you to reuse the database connection details any time you want to connect to the
database. Note that User DSNs are added to the list of User DSNs whereas System DSNs are
added to the list of System DSNs.

To connect by using an existing DSN:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Choose the type of the existing data source (User DSN, System DSN, File DSN).
4. Click the existing DSN record, and then click Connect.

To build a connection string based on an existing .dsn file:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select Build a connection string, and then click Build.
4. If you want to build the connection string using a File DSN, click the File Data Source

tab. Otherwise, click the Machine Data Source tab. (System DSNs and User DSNs are
known as "Machine" data sources.)

5. Select the required .dsn file, and then click OK.

To connect by using a prepared connection string:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select Build a connection string.
4. Paste the connection string into the provided box, and then click Connect.

Viewing the Available ODBC Drivers

You can view the ODBC drivers available on your operating system in the ODBC Data Source
Administrator. You can access the ODBC Data Source Administrator (Odbcad32.exe) from the
Windows Control Panel, under Administrative Tools. On 64-bit operating systems, there are two
versions of this executable:

The 32-bit version of the Odbcad32.exe file is located in the C:\Windows\SysWoW64
directory (assuming that C: is your system drive).
The 64-bit version of the Odbcad32.exe file is located in the C:\Windows\System32
directory.

Any installed 32-bit database drivers are visible in the 32-bit version of ODBC Data Source
Administrator, while 64-bit drivers—in the 64-bit version. Therefore, ensure that you check the
database drivers from the relevant version of ODBC Data Source Administrator.

344 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

ODBC Data Source Administrator

If the driver to your target database does not exist in the list, or if you want to add an alternative
driver, you will need to download it from the database vendor (see Database Drivers Overview).
Once the ODBC driver is available on your system, you are ready to create ODBC connections
with it (see Setting up an ODBC Connection).

Setting up a JDBC Connection7.2.1.6

JDBC (Java Database Connectivity) is a database access interface which is part of the Java
software platform from Oracle. JDBC connections are generally more resource-intensive than
ODBC connections but may provide features not available through ODBC.

Prerequisites

JRE (Java Runtime Environment) or Java Development Kit (JDK) must be installed. If you
have not installed it already, check the official Java website for the download package and
installation instructions.
The JDBC drivers from the database vendor must be installed. If you are connecting to an
Oracle database, note that some Oracle drivers are specific to certain JRE versions and
may require additional components and configuration. The documentation of your Oracle
product (for example, the "Oracle Database JDBC Developer's Guide and Reference")
includes detailed instructions about the configuration procedure for each JDBC driver.
The operating system's PATH environment variable must include the path to the bin

© 2018 Altova GmbH

Databases and MapForce 345Data Sources and Targets

Altova MapForce 2018 Professional Edition

directory of the JRE or JDK installation directory, for example C:\Program Files (x86)
\Java\jre1.8.0_51\bin.
The CLASSPATH environment variable must include the path to the JDBC driver (one or
several .jar files) on your Windows operating system. When you install some database
clients, the installer may configure this variable automatically. The documentation of the
JDBC driver will typically include step-by-step instructions on setting the CLASSPATH
variable (see also Configuring the CLASSPATH).

Setting up a JDBC connection

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Optionally, enter a semicolon-separated list of .jar file paths in the "Classpaths" text box.

The .jar libraries entered here will be loaded into the environment in addition to those
already defined in the CLASSPATH environment variable. When you finish editing the
"Classpaths" text box, any JDBC drivers found in the source .jar libraries are
automatically added to the "Driver" list (see the next step).

4. Next to "Driver", select a JDBC driver from the list, or enter a Java class name. Note that
this list contains any JDBC drivers configured through the CLASSPATH environment variable
(see Configuring the CLASSPATH), as well as those found in the "Classpaths" text box.

The JDBC driver paths defined in the CLASSPATH variable, as well as any .jar file
paths entered directly in the database connection dialog box are all supplied to the

346 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Java Virtual Machine (JVM). The JVM then decides which drivers to use in order to
establish a connection. It is recommended to keep track of Java classes loaded into
the JVM so as not to create potential JDBC driver conflicts and avoid unexpected
results when connecting to the database.

5. Enter the username and password to the database in the corresponding boxes.
6. In the Database URL text box, enter the JDBC connection URL (string) in the format

specific to your database type. The following table describes the syntax of JDBC
connection URLs (strings) for common database types.

Database JDBC Connection URL

Firebird jdbc:firebirdsql://<host>[:<port>]/<database path

or alias>

IBM DB2 jdbc:db2://hostName:port/databaseName

IBM Informix jdbc:informix-sqli://hostName:port/

databaseName:INFORMIXSERVER=myserver

MariaDB jdbc:mariadb://hostName:port/databaseName

Microsoft SQL Server jdbc:sqlserver://hostName:port;databaseName=name

MySQL jdbc:mysql://hostName:port/databaseName

Oracle jdbc:oracle:thin:@//hostName:port:service

Oracle XML DB jdbc:oracle:oci:@//hostName:port:service

PostgreSQL jdbc:postgresql://hostName:port/databaseName

Progress OpenEdge jdbc:datadirect:openedge://
host:port;databaseName=db_name

Sybase jdbc:sybase:Tds:hostName:port/databaseName

Teradata jdbc:teradata://databaseServerName

Note: Syntax variations to the formats listed above are also possible (for example, the database
URL may exclude the port or may include the username and password to the database).
Check the documentation of the database vendor for further details.

7. Click Connect.

Configuring the CLASSPATH

The CLASSPATH environment variable is used by the Java Runtime Environment (JRE) to locate
Java classes and other resource files on your operating system. When you connect to a database
through JDBC, this variable must be configured to include the path to the JDBC driver on your
operating system, and, in some cases, the path to additional library files specific to the database
type you are using.

© 2018 Altova GmbH

Databases and MapForce 347Data Sources and Targets

Altova MapForce 2018 Professional Edition

The following table lists sample file paths that must be typically included in the CLASSPATH
variable. Importantly, you may need to adjust this information based on the location of the JDBC
driver on your system, the JDBC driver name, as well as the JRE version present on your
operating system. To avoid connectivity problems, check the installation instructions and any pre-
installation or post-installation configuration steps applicable to the JDBC driver installed on your
operating system.

Database Sample CLASSPATH entries

Firebird C:\Program Files\Firebird\Jaybird-2.2.8-JDK_1.8\jaybird-
full-2.2.8.jar

IBM DB2 C:\Program Files (x86)\IBM\SQLLIB\java\db2jcc.jar;C:
\Program Files (x86)\IBM\SQLLIB\java
\db2jcc_license_cu.jar;

IBM Informix C:\Informix_JDBC_Driver\lib\ifxjdbc.jar;

Microsoft SQL Server C:\Program Files\Microsoft JDBC Driver 4.0 for SQL
Server\sqljdbc_4.0\enu\sqljdbc.jar

MariaDB <installation directory>\mariadb-java-client-2.2.0.jar

MySQL <installation directory>\mysql-connector-java-version-

bin.jar;

Oracle ORACLE_HOME\jdbc\lib\ojdbc6.jar;

Oracle (with XML DB) ORACLE_HOME\jdbc\lib\ojdbc6.jar;ORACLE_HOME\LIB

\xmlparserv2.jar;ORACLE_HOME\RDBMS\jlib\xdb.jar;

PostgreSQL <installation directory>\postgresql.jar

Progress OpenEdge %DLC%\java\openedge.jar;%DLC%\java\pool.jar;

Note: Assuming the Progress OpenEdge SDK is installed on the
machine, %DLC% is the directory where OpenEdge is installed.

Sybase C:\sybase\jConnect-7_0\classes\jconn4.jar

Teradata <installation directory>\tdgssconfig.jar;<installation

directory>\terajdbc4.jar

Changing the CLASSPATH variable may affect the behavior of Java applications on your
machine. To understand possible implications before you proceed, refer to the Java
documentation.
Environment variables can be user or system. To change system environment variables,
you need administrative rights on the operating system.
After you change the environment variable, restart any running programs for settings to take
effect. Alternatively, log off or restart your operating system.

348 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To configure the CLASSPATH on Windows 7:

1. Open the Start menu and right-click Computer.
2. Click Properties.
3. Click Advanced system settings.
4. In the Advanced tab, click Environment Variables,
5. Locate the CLASSPATH variable under user or system environment variables, and then

click Edit. If the CLASSPATH variable does not exist, click New to create it.
6. Edit the variable value to include the path on your operating system where the JDBC

driver is located. To separate the JDBC driver path from other paths that may already be
in the CLASSPATH variable, use the semi-colon separator (;).

To configure the CLASSPATH on Windows 10:

1. Press the Windows key and start typing "environment variables".
2. Click the suggestion Edit the system environment variables.
3. Click Environment Variables.
4. Locate the CLASSPATH variable under user or system environment variables, and then

click Edit. If the CLASSPATH variable does not exist, click New to create it.
5. Edit the variable value to include the path on your operating system where the JDBC

driver is located. To separate the JDBC driver path from other paths that may already be
in the CLASSPATH variable, use the semi-colon separator (;).

Setting up a PostgreSQL Connection7.2.1.7

Connections to PostgreSQL databases can be set up either as native connections, or
connections via ODBC, JDBC, and other drivers. The advantage of setting up a native connection
is that no drivers are required to be installed on your system. Also, if you intend to deploy files for
execution on a Linux or OS X server, no drivers are required to be installed on the target server as
well (see also Database Connections on Linux and Mac).

If you prefer to establish a connection by means of a non-native driver, see the following topics:

Setting up a JDBC Connection
Connecting to PostgreSQL (ODBC)

Otherwise, if you want to set up a native connection to PostgreSQL, follow the steps below. To
proceed, you need the following prerequisites: host name, port, database name, username, and
password.

To set up a native PostgreSQL connection:

1. Start the database connection wizard.
2. Click PostgreSQL Connections.
3. Enter the host (localhost, if PostgreSQL runs on the same machine), port (typically 5432,

this is optional), the database name, username, and password in the corresponding
boxes.

© 2018 Altova GmbH

Databases and MapForce 349Data Sources and Targets

Altova MapForce 2018 Professional Edition

4. Click Connect.

If the PostgreSQL database server is on a different machine, note the following:

The PostgreSQL database server must be configured to accept connections from clients.
Specifically, the pg_hba.conf file must be configured to allow non-local connections.
Secondly, the postgresql.conf file must be configured to listen on specified IP
address(es) and port. For more information, check the PostgreSQL documentation
(https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html).
The server machine must be configured to accept connections on the designated port
(typically, 5432) through the firewall. For example, on a database server running on
Windows, a rule may need to be created to allow connections on port 5432 through the
firewall, from Control Panel > Windows Firewall > Advanced Settings > Inbound
Rules.

https://www.postgresql.org/docs/9.5/static/client-authentication-problems.html

350 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Setting up a SQLite Connection7.2.1.8

SQLite (https://www.sqlite.org/index.html) is a file-based, self-contained database type, which
makes it ideal in scenarios where portability and ease of configuration is important. Since SQLite
databases are natively supported by MapForce, you do not need to install any drivers to connect
to them.

SQLite database support notes

SQLite databases are supported in the MapForce BUILT-IN transformation language
(either when you preview the mapping or when you run a MapForce Server execution file).
SQLite databases are not supported in user-defined functions (UDF).
On Linux, statement execution timeout for SQLite databases is not supported.
Full text search tables are not supported
SQLite allows values of different data types in each row of a given table. In MapForce, all
processed values must be compatible with the declared column type; therefore, run-time
errors may occur if your SQLite database has row values which are not the same as the
declared column type.
If your mapping should write data to a SQLite database, and if you don't have the target
database file already, you will need to create it separately. In this case, you can either
create it with a tool such as DatabaseSpy (https://www.altova.com/databasespy) or
download the SQLite command-line shell from the official website, and create the
database file from the command line (see also Example: Mapping data from XML to
SQLite). For complete reference to SQLite command syntax, refer to the official SQLite
documentation.

Connecting to an Existing SQLite Database

To connect to an existing SQLite database:

1. Run the database connection wizard (see Starting the Database Connection Wizard).
2. Select SQLite, and then click Next.
3. Browse for the SQLite database file, or enter the path (either relative or absolute) to the

database. The Connect button becomes enabled once you enter the path to a SQLite
database file.

4. Click Connect.

Using a Connection from Global Resources7.2.1.9

Altova Global Resources represent a way to refer to files, folders, or databases so as to make
these resources reusable, configurable and available across multiple Altova applications.

If you have already configured a database connection to be available as a global resource, you
can reuse the connection at any time (even across different Altova applications).

To use a database connection from Global Resources:

1. Start the database connection wizard.

https://www.sqlite.org/index.html
https://www.altova.com/databasespy

© 2018 Altova GmbH

Databases and MapForce 351Data Sources and Targets

Altova MapForce 2018 Professional Edition

2. Click Global Resources. Any database connections previously configured as global
resources are listed.

3. Select the database connection record, and click Connect.

Tip: To get additional information about each global resource, move the mouse cursor over the
global resource.

Database Connection Examples7.2.1.10

This section includes sample procedures for connecting to a database from MapForce. Note that
your Windows machine, the network environment, and the database client or server software is
likely to have a configuration that is not exactly the same as the one presented in the following
examples.

Note: For most database types, it is possible to connect using more than one data access
technology (ADO, ADO.NET, ODBC, JDBC) or driver. The performance of the database
connection, as well as its features and limitations will depend on the selected driver,
database client software (if applicable), and any additional connectivity parameters that
you may have configured outside MapForce.

352 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Connecting to Firebird (ODBC)

This topic provides sample instructions for connecting to a Firebird 2.5.4 database running on a
Linux server.

Prerequisites:

The Firebird database server is configured to accept TCP/IP connections from clients.
The Firebird ODBC driver must be installed on your operating system. This example uses
the Firebird ODBC driver version 2.0.3.154 downloaded from the Firebird website (https://
www.firebirdsql.org/).
The Firebird client must be installed on your operating system. Note that there is no
standalone installer available for the Firebird 2.5.4 client; the client is part of the Firebird
server installation package. You can download the Firebird server installation package
from the Firebird website (https://www.firebirdsql.org/), look for "Windows executable
installer for full Superclassic/Classic or Superserver". To install only the client files,
choose "Minimum client install - no server, no tools" when going through the wizard
steps.

Important:

The platform of both the Firebird ODBC driver and client (32-bit or 64-bit)
must correspond to that of MapForce.
The version of the Firebird client must correspond to the version of Firebird
server to which you are connecting.

You have the following database connection details: server host name or IP address,
database path (or alias) on the server, user name, and password.

To connect to Firebird via ODBC:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select User DSN (or System DSN, if you have administrative privileges), and then click

Add .

4. Select the Firebird driver, and then click User DSN (or System DSN, depending on what

https://www.firebirdsql.org/
https://www.firebirdsql.org/
https://www.firebirdsql.org/

© 2018 Altova GmbH

Databases and MapForce 353Data Sources and Targets

Altova MapForce 2018 Professional Edition

you selected in the previous step). If the Firebird driver is not available in the list, make
sure that it is installed on your operating system (see also Viewing the Available ODBC
Drivers).

5. Enter the database connection details as follows:

Data Source Name (DSN) Enter a descriptive name for the data source you are
creating.

Database Enter the server host name or IP address, followed by a
colon, followed by the database alias (or path). In this
example, the host name is firebirdserv, and the
database alias is products, as follows:

firebirdserv:products

Using a database alias assumes that, on the server side,
the database administrator has configured the alias
products to point to the actual Firebird (.fdb) database file
on the server (see the Firebird documentation for more
details).

You can also use the server IP address instead of the host
name, and a path instead of an alias; therefore, any of the
following sample connection strings are valid:

354 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

firebirdserver:/var/Firebird/databases/
butterflies.fdb
127.0.0.1:D:\Misc\Lenders.fdb

If the database is on the local Windows machine, click
Browse and select the Firebird (.fdb) database file directly.

Client Enter the path to the fbclient.dll file. By default, this is
the bin subdirectory of the Firebird installation directory.

Database Account Enter the database user name supplied by the database
administrator (in this example, PROD_ADMIN).

Password Enter the database password supplied by the database
administrator.

6. Click OK.

Connecting to Firebird (JDBC)

This topic provides sample instructions for connecting to a Firebird database server through
JDBC.

Prerequisites:

Java Runtime Environment (JRE) or Java Development Kit (JDK) must be installed on your
operating system.
The operating system's PATH environment variable must include the path to the bin
directory of the JRE or JDK installation directory, for example C:\Program Files (x86)
\Java\jre1.8.0_51\bin.
The Firebird JDBC driver must be available on your operating system (it takes the form of
a .jar file which provides connectivity to the database). The driver can be downloaded from
the Firebird website (https://www.firebirdsql.org/). This example uses Jaybird 2.2.8.
You have the following database connection details: host, database path or alias,
username, and password.

To connect to Firebird through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the

database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In
this example, the required .jar file is located at the following path: C:\jdbc\firebird
\jaybird-full-2.2.8.jar. Note that you can leave the "Classpaths" text box empty if you
have added the .jar file path(s) to the CLASSPATH environment variable of the operating
system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select org.firebirdsql.jdbc.FBDriver. Note that this entry is available
if a valid .jar file path is found either in the "Classpath" text box, or in the operating
system's CLASSPATH environment variable (see the previous step).

https://www.firebirdsql.org/

© 2018 Altova GmbH

Databases and MapForce 355Data Sources and Targets

Altova MapForce 2018 Professional Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by

replacing the highlighted values with the ones applicable to your database server.

jdbc:firebirdsql://<host>[:<port>]/<database path or alias>

7. Click Connect.

Connecting to IBM DB2 (ODBC)

This topic provides sample instructions for connecting to an IBM DB2 database through ODBC.

Prerequisites:

IBM Data Server Client must be installed and configured on your operating system (this
example uses IBM Data Server Client 9.7). For installation instructions, check the
documentation supplied with your IBM DB2 software. After installing the IBM Data Server
Client, check if the ODBC drivers are available on your machine (see Viewing the
Available ODBC Drivers).
Create a database alias. There are several ways to do this:
o From IBM DB2 Configuration Assistant

o From IBM DB2 Command Line Processor

o From the ODBC data source wizard (for this case, the instructions are shown below)

You have the following database connection details: host, database, port, username, and

356 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

password.

To connect to IBM DB2:

1. Start the database connection wizard and select IBM DB2 (ODBC/JDBC).
2. Click Next.

3. Select ODBC, and click Next. If prompted to edit the list of known drivers for the
database, select the database drivers applicable to IBM DB2 (see Prerequisites), and
click Next.

© 2018 Altova GmbH

Databases and MapForce 357Data Sources and Targets

Altova MapForce 2018 Professional Edition

4. Select the IBM DB2 driver from the list, and then click Connect. (To edit the list of
available drivers, click Edit Drivers, and then check or uncheck the IBM DB2 drivers you
wish to add or remove, respectively.)

358 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Enter a data source name (in this example, DB2DSN), and then click Add.

6. On the Data Source tab, enter the user name and password to the database.

© 2018 Altova GmbH

Databases and MapForce 359Data Sources and Targets

Altova MapForce 2018 Professional Edition

7. On the TCP/IP tab, enter the database name, a name for the alias, the host name and
the port number, and then click OK.

360 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8. Enter again the username and password, and then click OK.

Connecting to IBM DB2 for i (ODBC)

This topic provides sample instructions for connecting to an IBM DB2 for i database through
ODBC.

Prerequisites:

IBM System i Access for Windows must be installed on your operating system (this
example uses IBM System i Access for Windows V6R1M0). For installation instructions,
check the documentation supplied with your IBM DB2 for i software. After installation,
check if the ODBC driver is available on your machine (see Viewing the Available ODBC
Drivers).

© 2018 Altova GmbH

Databases and MapForce 361Data Sources and Targets

Altova MapForce 2018 Professional Edition

You have the following database connection details: the I.P. address of the database
server, database user name, and password.
Run System i Navigator and follow the wizard to create a new connection. When
prompted to specify a system, enter the I.P. address of the database server. After
creating the connection, it is recommended to verify it (click on the connection, and
select File > Diagnostics > Verify Connection). If you get connectivity errors, contact
the database server administrator.

To connect to IBM DB2 for i:

1. Start the database connection wizard.
2. Click ODBC connections.
3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the

subsequent instructions will be similar).

4. Click Add .
5. Select the iSeries Access ODBC Driver from the list, and click User DSN (or System

DSN, if applicable).

6. Enter a data source name and select the connection from the System combo box. In this

362 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

example, the data source name is iSeriesDSN and the System is 192.0.2.0.

Note: When adding an ODBC data source for an IBM DB2 for i database, a default flag is set
which enables query timeouts. This setting must be disabled for MapForce to correctly
load mapping files. To disable the setting, select the Performance tab, click Advanced,
and clear the Allow query timeout check box.

7. Click Connection Options, select Use the User ID specified below and enter the name
of the database user (in this example, DBUSER).

© 2018 Altova GmbH

Databases and MapForce 363Data Sources and Targets

Altova MapForce 2018 Professional Edition

8. Click OK. The new data source becomes available in the list of DSNs.
9. Click Connect.
10. Enter the user name and password to the database when prompted, and then click OK.

Connecting to IBM Informix (JDBC)

This topic provides sample instructions for connecting to an IBM Informix database server through
JDBC.

Prerequisites:

Java Runtime Environment (JRE) must be installed on your operating system.
The JDBC driver (one or several .jar files that provide connectivity to the database) must
be available on your operating system. In this example, IBM Informix JDBC driver version
3.70 is used. For the driver's installation instructions, see the documentation
accompanying the driver or the "IBM Informix JDBC Driver Programmer's Guide").
You have the following database connection details: host, name of the Informix server,
database, port, username, and password.

To connect to IBM Informix through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the

database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In

364 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

this example, the required .jar file is located at the following path: C:
\Informix_JDBC_Driver\lib\ifxjdbc.jar. Note that you can leave the "Classpaths" text
box empty if you have added the .jar file path(s) to the CLASSPATH environment variable
of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.informix.jdbc.IfxDriver. Note that this entry is available
if a valid .jar file path is found either in the "Classpath" text box, or in the operating
system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by

replacing the highlighted values with the ones applicable to your database server.

jdbc:informix-sqli://hostName:port/

databaseName:INFORMIXSERVER=myserver;

7. Click Connect.

Connecting to MariaDB (ODBC)

This example illustrates how to connect to a MariaDB database server through ODBC.

Prerequisites:

The MariaDB Connector/ODBC (https://downloads.mariadb.org/connector-odbc/) must be
installed.

https://downloads.mariadb.org/connector-odbc/

© 2018 Altova GmbH

Databases and MapForce 365Data Sources and Targets

Altova MapForce 2018 Professional Edition

You have the following database connection details: host, database, port, username, and
password.

To connect to MariaDB through ODBC:

1. Start the database connection wizard.
2. Select MariaDB (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and choose MariaDB
ODBC 3.0 Driver. If no such driver is available in the list, click Edit Drivers, and select
any available MariaDB drivers (the list contains all ODBC drivers installed on your
operating system).

4. Click Connect.

5. Enter name and, optionally, a description that will help you identify this ODBC data
source in future.

366 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a
database, and then click Test DSN. Upon successful connection, a message box
appears:

7. Click Next and complete the wizard. Other parameters may be required, depending on
the case (for example, SSL certificates if you are connecting to MariaDB through a
secure connection).

Note: If the database server is remote, it must be configured by the server administrator to
accept remote connections from your machine's IP address.

Connecting to Microsoft Access (ADO)

A simple way to connect to a Microsoft Access database is to follow the wizard and browse for
the database file, as shown in Connecting to an Existing Microsoft Access Database. An
alternative approach is to set up an ADO connection explicitly, as shown in this topic. This
approach is useful if your database is password-protected.

It is also possible to connect to Microsoft Access through an ODBC connection, but there are
some limitations in this scenario, so it is best to avoid it.

© 2018 Altova GmbH

Databases and MapForce 367Data Sources and Targets

Altova MapForce 2018 Professional Edition

To connect to a password-protected Microsoft Access database:

1. Start the database connection wizard.
2. Click ADO Connections.
3. Click Build.

4. Select the Microsoft Office 15.0 Access Database Engine OLE DB Provider, and then
click Next.

368 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. In the Data Source box, enter the path to the Microsoft Access file. Because the file is on
the local network share U:\Departments\Finance\Reports\Revenue.accdb, we will
convert it to UNC format, and namely \\server1\\dfs\Departments\Finance\Reports
\Revenue.accdb, where server1 is the name of the server and dfs is the name of the
network share.

6. On the All tab, double click the Jet OLEDB:Database Password property and enter the
database password as property value.

Note: If you are still unable to connect, locate the workgroup information file (System.MDW)
applicable to your user profile (see http://support.microsoft.com/kb/305542 for
instructions), and set the value of the Jet OLEDB: System database property to the path
of the System.MDW file.

http://support.microsoft.com/kb/305542

© 2018 Altova GmbH

Databases and MapForce 369Data Sources and Targets

Altova MapForce 2018 Professional Edition

Connecting to Microsoft SQL Server (ADO)

This example illustrates how to connect to a SQL Server database through ADO.

To connect to SQL Server using the Microsoft OLE DB Provider:

1. Start the database connection wizard.
2. Select Microsoft SQL Server (ADO), and then click Next. The list of available ADO

drivers is displayed.

3. Select Microsoft OLE DB Provider for SQL Server, and then click Next.

370 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Select or enter the name of the database server (in this example, SQLSERV01). To view
the list of all servers on the network, expand the drop-down list.

5. If the database server was configured to allow connections from users authenticated on
the Windows domain, select Use Windows NT integrated security. Otherwise, select
Use a specific user name and password, and type them in the relevant boxes.

6. Select the database to which you are connecting (in this example, NORTHWIND).
7. To test the connection at this time, click Test Connection. This is an optional,

recommended step.
8. Do one of the following:

a. Select the Allow saving password check box.
b. On the All tab, change the value of the Persist Security Info property to True.

© 2018 Altova GmbH

Databases and MapForce 371Data Sources and Targets

Altova MapForce 2018 Professional Edition

9. Click OK.

Connecting to Microsoft SQL Server (ODBC)

This example illustrates how to connect to a SQL Server database through ODBC.

To connect to SQL Server using ODBC:

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Select User DSN (or System DSN, if you have administrative privileges), and then click

Add .

372 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Select SQL Server (or SQL Server Native Client, if available), and then click User
DSN (or System DSN if you are creating a System DSN).

5. Enter a name and description to identify this connection, and then select from the list the
SQL Server to which you are connecting (SQLSERV01 in this example).

© 2018 Altova GmbH

Databases and MapForce 373Data Sources and Targets

Altova MapForce 2018 Professional Edition

6. If the database server was configured to allow connections from users authenticated on
the Windows domain, select With Windows NT authentication. Otherwise, select With
SQL Server authentication... and type the user name and password in the relevant
boxes.

7. Select the name of the database to which you are connecting (in this example,

374 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Northwind).
8. Click Finish.

Connecting to MySQL (ODBC)

This topic provides sample instructions for connecting to a MySQL database server from a
Windows machine through the ODBC driver. The MySQL ODBC driver is not available on
Windows, so it must be downloaded and installed separately. This example uses MySQL ODBC
driver version 5.3.4 downloaded from the official website (see also Database Drivers Overview).

Prerequisites:

MySQL ODBC driver must be installed on your operating system (for installation
instructions, check the documentation supplied with the driver).
You have the following database connection details: host, database, port, username, and
password.

To connect to MySQL via ODBC:

1. Start the database connection wizard.
2. Select MySQL (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and select a MySQL
driver. If no MySQL driver is available in the list, click Edit Drivers, and select any

© 2018 Altova GmbH

Databases and MapForce 375Data Sources and Targets

Altova MapForce 2018 Professional Edition

available MySQL drivers (the list contains all ODBC drivers installed on your operating
system).

4. Click Connect.

5. In the Data Source Name box, enter a descriptive name that will help you identify this
ODBC data source in future.

6. Fill in the database connection credentials (TCP/IP Server, User, Password), select a
database, and then click OK.

Note: If the database server is remote, it must be configured by the server administrator to
accept remote connections from your machine's IP address. Also, if you click Details>>,
there are several additional parameters available for configuration. Check the driver's
documentation before changing their default values.

Connecting to Oracle (ODBC)

This example illustrates a common scenario where you connect from MapForce to an Oracle
database server on a network machine, through an Oracle database client installed on the local
operating system.

The example includes instructions for setting up an ODBC data source (DSN) using the database
connection wizard in MapForce. If you have already created a DSN, or if you prefer to create it
directly from ODBC Data Source administrator in Windows, you can do so, and then select it
when prompted by the wizard. For more information about ODBC data sources, see Setting up an
ODBC Connection.

Prerequisites:

376 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The Oracle database client (which includes the ODBC Oracle driver) must be installed
and configured on your operating system. For instructions on how to install and configure
an Oracle database client, refer to the documentation supplied with your Oracle software.
The tnsnames.ora file located in Oracle home directory contains an entry that describes
the database connection parameters, in a format similar to this:

ORCL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = server01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SID = orcl)
 (SERVER = DEDICATED)
)
)

The path to the tnsnames.ora file depends on the location where Oracle home directory
was installed. For Oracle database client 11.2.0, the default Oracle home directory path
could be as follows:

C:\app\username\product\11.2.0\client_1\network\admin\tnsnames.ora

You can add new entries to the tnsnames.ora file either by pasting the connection
details and saving the file, or by running the Oracle Net Configuration Assistant wizard (if
available).

To connect to Oracle using ODBC:

1. Start the database connection wizard.
2. Select Oracle (ODBC / JDBC), and then click Next.

© 2018 Altova GmbH

Databases and MapForce 377Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. Select ODBC.

4. Click Edit Drivers.

378 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Select the Oracle drivers you wish to use (in this example, Oracle in
OraClient11g_home1). The list displays the Oracle drivers available on your system
after installation of Oracle client.

6. Click Back.
7. Select Create a new data source name (DSN) with the driver, and then select the

Oracle driver chosen in step 4.

© 2018 Altova GmbH

Databases and MapForce 379Data Sources and Targets

Altova MapForce 2018 Professional Edition

Avoid using the Microsoft-supplied driver called Microsoft ODBC for Oracle driver.
Microsoft recommends using the ODBC driver provided by Oracle (see http://
msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx)

8. Click Connect.

http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714756%28v=vs.85%29.aspx

380 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

9. In the Data Source Name text box, enter a name to identify the data source (in this
example, Oracle DSN 1).

10. In the TNS Service Name box, enter the connection name as it is defined in the
tnsnames.ora file (see prerequisites). In this example, the connection name is ORCL.

11. Click OK.

12. Enter the username and password to the database, and then click OK.

Connecting to Oracle (JDBC)

This example shows you how to connect to an Oracle database server from a client machine,
using the JDBC interface. The connection is created as a pure Java connection, using the Oracle
Instant Client Package (Basic) available from the Oracle website. The advantage of this
connection type is that it requires only the Java environment and the .jar libraries supplied by the
Oracle Instant Client Package, saving you the effort to install and configure a more complex
database client.

© 2018 Altova GmbH

Databases and MapForce 381Data Sources and Targets

Altova MapForce 2018 Professional Edition

Prerequisites:

Java Runtime Environment (JRE) or Java Development Kit (JDK) must be installed on your
operating system.
The operating system's PATH environment variable must include the path to the bin
directory of the JRE or JDK installation directory, for example C:\Program Files (x86)
\Java\jre1.8.0_51\bin.
The Oracle Instant Client Package (Basic) must be available on your operating
system. The package can be downloaded from the official Oracle website. This example
uses Oracle Instant Client Package version 12.1.0.2.0, for Windows 32-bit.
You have the following database connection details: host, port, service name, username,
and password.

To connect to Oracle through the Instant Client Package:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the

database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In
this example, the required .jar file is located at the following path: C:\jdbc
\instantclient_12_1\odbc7.jar. Note that you can leave the "Classpaths" text box empty
if you have added the .jar file path(s) to the CLASSPATH environment variable of the
operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select either oracle.jdbc.OracleDriver or
oracle.jdbc.driver.OracleDriver. Note that these entries are available if a valid .jar file
path is found either in the "Classpath" text box, or in the operating system's
CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.

382 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6. Enter the connection string to the database server in the Database URL text box, by
replacing the highlighted values with the ones applicable to your database server.

jdbc:oracle:thin:@//host:port:service

7. Click Connect.

Connecting to PostgreSQL (ODBC)

This topic provides sample instructions for connecting to a PostgreSQL database server from a
Windows machine through the ODBC driver. The PostgreSQL ODBC driver is not available on
Windows, so it must be downloaded and installed separately. This example uses the psqlODBC
driver (version 09_03_300-1) downloaded from the official website (see also Database Drivers
Overview).

Note: You can also connect to a PostgreSQL database server directly (without the ODBC
driver), see Setting up a PostgreSQL Connection.

Prerequisites:

psqlODBC driver must be installed on your operating system (for installation instructions,
check the documentation supplied with the driver).
You have the following database connection details: server, port, database, user name,
and password.

© 2018 Altova GmbH

Databases and MapForce 383Data Sources and Targets

Altova MapForce 2018 Professional Edition

To connect to PostgreSQL using ODBC:

1. Start the database connection wizard.
2. Select PostgreSQL (ODBC), and then click Next.

3. Select Create a new Data Source Name (DSN) with the driver, and select the
PostgreSQL driver. If no PostgreSQL driver is available in the list, click Edit Drivers, and
select any available PostgreSQL drivers (the list contains all ODBC drivers installed on
your operating system).

4. Click Connect.

5. Fill in the database connection credentials (Database, Server, Port, User Name,
Password), and then click OK.

384 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Connecting to Progress OpenEdge (ODBC)

This topic provides sample instructions for connecting to a Progress OpenEdge database server
through the Progress OpenEdge 11.6 ODBC driver.

Prerequisites

The ODBC Connector for Progress OpenEdge driver must be installed on your operating
system. The Progress OpenEdge ODBC driver can be downloaded from the vendor's
website (see also Database Drivers Overview). Make sure to download the 32-bit driver
when running the 32-bit version of MapForce, and the 64-bit driver when running the 64-bit
version. After installation, check if the ODBC driver is available on your machine (see
also Viewing the Available ODBC Drivers).

You have the following database connection details: host name, port number, database
name, user ID, and password.

Connecting to Progress OpenEdge through ODBC

1. Start the database connection wizard.
2. Click ODBC Connections.
3. Click User DSN (alternatively, click System DSN, or File DSN, in which case the

subsequent instructions will be similar).

4. Click Add .

© 2018 Altova GmbH

Databases and MapForce 385Data Sources and Targets

Altova MapForce 2018 Professional Edition

5. Select the Progress OpenEdge Driver from the list, and click User DSN (or System
DSN, if applicable).

6. Fill in the database connection credentials (Database, Server, Port, User Name,
Password), and then click OK. To verify connectivity before saving the entered data, click
Test Connect.

7. Click OK. The new data source now appears in the list of ODBC data sources.

386 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8. Click Connect.

Connecting to Progress OpenEdge (JDBC)

This topic provides sample instructions for connecting to a Progress OpenEdge 11.6 database
server through JDBC.

Prerequisites

Java Runtime Environment (JRE) or Java Development Kit (JDK) must be installed on your
operating system. Make sure that the platform of MapForce (32-bit, 64-bit) matches that
of the JRE/JDK.
The operating system's PATH environment variable must include the path to the bin
directory of the JRE or JDK installation directory, for example C:\Program Files (x86)
\Java\jre1.8.0_51\bin.
The Progress OpenEdge JDBC driver must be available on your operating system. In this
example, JDBC connectivity is provided by the openedge.jar and pool.jar driver
component files available in C:\Progress\OpenEdge\java as part of the OpenEdge SDK
installation.
You have the following database connection details: host, port, database name,
username, and password.

© 2018 Altova GmbH

Databases and MapForce 387Data Sources and Targets

Altova MapForce 2018 Professional Edition

Connecting to OpenEdge through JDBC

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the

database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In
this example, the required .jar file paths are: C:\Progress\OpenEdge\java

\openedge.jar;C:\Progress\OpenEdge\java\pool.jar;. Note that you can leave the

"Classpaths" text box empty if you have added the .jar file path(s) to the CLASSPATH
environment variable of the operating system (see also Configuring the CLASSPATH).

4. In the "Driver" box, select com.ddtek.jdbc.openedge.OpenEdgeDriver. Note that this
entry is available if a valid .jar file path is found either in the "Classpath" text box, or in the
operating system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by

replacing the highlighted values with the ones applicable to your database server.

jdbc:datadirect:openedge://host:port;databaseName=db_name

7. Click Connect.

388 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Connecting to Sybase (JDBC)

This topic provides sample instructions for connecting to a Sybase database server through
JDBC.

Prerequisites:

Java Runtime Environment (JRE) must be installed on your operating system.
Sybase jConnect component must be installed on your operating system (in this
example, jConnect 7.0 is used, installed as part of the Sybase Adaptive Server
Enterprise PC Client installation). For the installation instructions of the database client,
refer to Sybase documentation.
You have the following database connection details: host, port, database name,
username, and password.

To connect to Sybase through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the

database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In
this example, the required .jar file path is: C:\sybase\jConnect-7_0\classes\jconn4.jar.
Note that you can leave the "Classpaths" text box empty if you have added the .jar file
path(s) to the CLASSPATH environment variable of the operating system (see also
Configuring the CLASSPATH).

4. In the "Driver" box, select com.sybase.jdbc4.jdbc.SybDriver. Note that this entry is
available if a valid .jar file path is found either in the "Classpath" text box, or in the
operating system's CLASSPATH environment variable (see the previous step).

© 2018 Altova GmbH

Databases and MapForce 389Data Sources and Targets

Altova MapForce 2018 Professional Edition

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by

replacing the highlighted values with the ones applicable to your database server.

jdbc:sybase:Tds:hostName:port/databaseName

7. Click Connect.

Connecting to Teradata (ODBC)

This example illustrates how to connect to a Teradata database server through ODBC.

Prerequisites:

The Teradata ODBC driver must be installed (see https://downloads.teradata.com/
download/connectivity/odbc-driver/windows. This example uses Teradata ODBC Driver for
Windows version 16.20.00.
You have the following database connection details: host, username, and password.

To connect to Teradata through ODBC:

1. Press the Windows key, start typing "ODBC", and select Set up ODBC data sources
(32-bit) from the list of suggestions. If you have a 64-bit ODBC driver, select Set up

https://downloads.teradata.com/download/connectivity/odbc-driver/windows
https://downloads.teradata.com/download/connectivity/odbc-driver/windows

390 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

ODBC data sources (64-bit) and use 64-bit MapForce in the subsequent steps.

2. Click the System DSN tab, and then click Add.

3. Select Teradata Database ODBC Driver and click Finish.

© 2018 Altova GmbH

Databases and MapForce 391Data Sources and Targets

Altova MapForce 2018 Professional Edition

4. Enter name and, optionally, a description that will help you identify this ODBC data
source in future. Also, enter the database connection credentials (Database server, User,
Password), and, optionally, select a database.

5. Click OK. The data source now appears in the list.

392 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6. Run MapForce and start the database connection wizard.
7. Click ODBC Connections.

© 2018 Altova GmbH

Databases and MapForce 393Data Sources and Targets

Altova MapForce 2018 Professional Edition

8. Click System DSN, select the data source created previously, and then click Connect.

Note: If you get the following error: "The driver returned invalid (or failed to return)
SQL_DRIVER_ODBC_VER: 03.80", make sure that the path to the ODBC client (for

example, C:\Program Files\Teradata\Client\16.10\bin, if you installed it to this

location) exists in your system's PATH environment variable. If this path is missing, add it
manually.

Connecting to Teradata (JDBC)

This example illustrates how to connect to a Teradata database server through JDBC.

Prerequisites:

Java Runtime Environment (JRE) or Java Development Kit (JDK) must be installed on your
operating system.
The JDBC driver (one or more .jar files that provide connectivity to the database) must be
available on your operating system. In this example, Teradata JDBC Driver 16.20.00.02 is

394 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

used. For more information, see https://downloads.teradata.com/download/connectivity/
jdbc-driver.
You have the following database connection details: host, database, port, username, and
password.

To connect to Teradata through JDBC:

1. Start the database connection wizard.
2. Click JDBC Connections.
3. Next to "Classpaths", enter the path to the .jar file which provides connectivity to the

database. If necessary, you can also enter a semicolon-separated list of .jar file paths. In
this example, the .jar files are located at the following path: C:\jdbc\teradata\. Note that
you can leave the "Classpaths" text box empty if you have added the .jar file path(s) to
the CLASSPATH environment variable of the operating system (see also Configuring the
CLASSPATH).

4. In the "Driver" box, select com.teradata.jdbc.TeraDriver. Note that this entry is
available if a valid .jar file path is found either in the "Classpath" text box, or in the
operating system's CLASSPATH environment variable (see the previous step).

5. Enter the username and password to the database in the corresponding text boxes.
6. Enter the connection string to the database server in the Database URL text box, by

https://downloads.teradata.com/download/connectivity/jdbc-driver
https://downloads.teradata.com/download/connectivity/jdbc-driver

© 2018 Altova GmbH

Databases and MapForce 395Data Sources and Targets

Altova MapForce 2018 Professional Edition

replacing the highlighted value with the one applicable to your database server.

jdbc:teradata://databaseServerName

7. Click Connect.

Database Connections on Linux and macOS7.2.1.11

If you have licensed any of the following Altova server products—MobileTogether Server, MapForce
Server, or StyleVision Server, a common scenario is to design MobileTogether designs, MapForce
mappings, or StyleVision transformations on a Windows desktop machine, and then deploy them
to a server machine (either Windows, Linux, or OS X / macOS) to automate their execution.

In this documentation, the term "server execution files" is used to denote the following file types:

MapForce Server execution files (.mfx)
MobileTogether design files (.mtd)
StyleVision transformations (.sps) packaged as Portable XML Forms (.pxf).

The following scenarios are possible when deploying server execution files:

1. "Design and execute on Windows". In this scenario, you design the MobileTogether
designs, MapForce mappings, or StyleVision transformations on Windows, and then run
their corresponding server execution files on a Windows system as well (which can either
be the same Windows machine, or a remote Windows server).

2. "Design on Windows, execute on Linux or macOS". In this scenario, you design all
of the above files on Windows, and then deploy their corresponding server execution files
to Linux or OS X / macOS for execution.

In the "Design and execute on Windows" scenario, the selection of available database
technologies and drivers comprises any of ADO, ODBC, JDBC, as well as SQLite
connections (see Database Drivers Overview).

In the "Design on Windows, execute on Linux or macOS" scenario, ADO and ODBC
connections are not supported. In this scenario, you can use direct SQLite connections (see
SQLite connections) and JDBC connections (see JDBC connections).

When you deploy server execution files to a server, databases are not included in the deployed
package (this also applies to file-based databases such as SQLite and Microsoft Access), so a
connection to them must be set up on the deployment server as well. In other words, the same
database configuration must be in place both on the operating system where you design and on
the server to which you deploy the files. An exception to this rule are native (not driver-based)
PostgreSQL connections. Native PostgreSQL connections do not require configuration outside
MapForce. For more information, see Setting up a PostgreSQL Connection.

In general, the scenario in which you deploy server execution files to a different operating system
is slightly more complex, since it requires that the same database configuration exist on both
machines. To bypass complexity while designing locally and deploying remotely, consider using
the Global Resources feature available in MapForce, MobileTogether Designer, and StyleVision.

396 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

For example, you can define two different Global Resource configurations to connect to the same
database: one which would specify the connection settings using the Windows-style path
conventions, and another one—using Linux-style path conventions. You could then use the first
connection to test your files during the design phase, and the second connection to run the
execution file on the Linux server.

SQLite connections on Linux and macOS

There is no need to separately install SQLite on Linux and macOS since support for it is
integrated into Altova server products as well. Therefore, if your server execution files include calls
to a SQLite database, you will be able to run them without having to install SQLite first. You need
to ensure, however, that the server execution files use the correct path to the database file on the
Linux or OS X / macOS machine. That is, before running the server execution files on the Linux or
OS X / macOS server, make sure that the SQLite database file is referenced through a path which
is POSIX (Portable Operating System Interface) compliant. This assumes that no Windows-style
drive letters are used in the path, and directories are delimited by the forward slash character (/).
For example, the path /usr/local/mydatabase.db is POSIX compliant, while the path c:\sqlite
\mydatabase.db isn't.

JDBC connections on Linux and macOS

To set up a JDBC connection on Linux or macOS:

1. Download the JDBC driver supplied by the database vendor and install it on the operating
system. Make sure to select the 32-bit version if your operating system runs on 32-bit,
and the 64-bit version if your operating system runs on 64-bit.

2. Set the environment variables to the location where the JDBC driver is installed. Typically,
you will need to set the CLASSPATH variable, and possibly a few others. To find out
which specific environment variables must be configured, check the documentation
supplied with the JDBC driver.

Note: On macOS, the system expects any installed JDBC libraries to be in the /Library/Java/
Extensions directory. Therefore, it is recommended that you unpack the JDBC driver to
this location; otherwise, you will need to configure the system to look for the JDBC library
at the path where you installed the JDBC driver.

Oracle Connections on OS X Yosemite

On OS X Yosemite, you can connect to an Oracle database through the Oracle Database
Instant Client. Note that, if you have a Mac with a Java version prior to Java 8, you can also
connect through the JDBC Thin for All Platforms library, in which case you may disregard the
instructions in this topic.

You can download the Oracle Instant Client from the Oracle official download page. Note that
there are several Instant Client packages available on the Oracle download page. Make sure to
select a package with Oracle Call Interface (OCI) support, (for example, Instant Client Basic).
Also, make sure to select the 32-bit version if your operating system runs on 32-bit, and the 64-bit
version if your operating system runs on 64-bit.

© 2018 Altova GmbH

Databases and MapForce 397Data Sources and Targets

Altova MapForce 2018 Professional Edition

Once you have downloaded and unpacked the Oracle Instant Client, edit the property list (.plist)
file shipped with the installer so that the following environment variables point to the location of the
corresponding driver paths, for example:

Variable Sample Value

CLASSPATH /opt/oracle/instantclient_11_2/ojdbc6.jar:/opt/oracle/
instantclient_11_2/ojdbc5.jar

TNS_ADMIN /opt/oracle/NETWORK_ADMIN

ORACLE_HOME /opt/oracle/instantclient_11_2

DYLD_LIBRARY_PATH /opt/oracle/instantclient_11_2

PATH $PATH:/opt/oracle/instantclient_11_2

Note: Edit the sample values above to fit the paths where Oracle Instant Client files are installed
on your operating system.

7.2.2 Introduction to Database Mappings

This section is an introduction to working with databases in MapForce. It shows you how to work
with a database after the connection to it is successfully established (see Connecting to a
Database). This includes selecting the database objects that you want to appear on the mapping,
handling database relationships, and configuring the database settings applicable to the mapping
process. Examples of how to achieve specific goals when mapping data to or from database
components are also included.

Adding Databases to the Mapping7.2.2.1

Before adding a database to the mapping, make sure to select a transformation language where
database mappings are supported. This can be either the BUILT-IN transformation language, or
any of the following languages: C++, C#, Java (see also Selecting a Transformation Language).
Note that, if you intend to deploy the mapping to FlowForce Server or execute it with MapForce
Server, or use features such as Bulk Transfer and stored procedures, BUILT-IN must be selected
as transformation language.

Once the desired transformation language is selected, you can add a database to the mapping in
one of the following ways:

On the Insert menu, click Database.

Click the Insert Database () toolbar button.

When you take any of these actions, a database connection wizard appears, guiding you through
the steps required to connect to the database.

398 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Database Connection Wizard

Note: In some advanced scenarios, databases can also be added to the mapping as variables
(see Using Variables). When you choose to add a database structure as a variable, the
same database connection wizard mentioned above appears.

For instructions on how to proceed with this wizard so as to set up a connection to any of the
databases supported by MapForce, see Connecting to a Database and, in particular, the step-by-
step examples, including:

Connecting to Firebird (ODBC)
Connecting to IBM DB2 (ODBC)
Connecting to an Existing Microsoft Access Database
Connecting to Microsoft SQL Server (ADO)

© 2018 Altova GmbH

Databases and MapForce 399Data Sources and Targets

Altova MapForce 2018 Professional Edition

Connecting to MySQL (ODBC)
Connecting to Oracle (ODBC)
Connecting to PostgreSQL (ODBC)
Connecting to Progress OpenEdge (JDBC)
Connecting to an Existing SQLite Database
Connecting to Sybase (JDBC)

Once the database connection is successfully established, you are prompted to select the
database objects that should appear on the mapping. See Adding, Editing, and Removing
Database Objects for further information.

Example: Adding the "altova.mdb" Database to the Mapping7.2.2.2

This example shows you how to add a sample Microsoft Access database to a mapping. The
sample database is called altova.mdb and can be found in the <Documents>\Altova
\MapForce2018\MapForceExamples\ folder. The altova.mdb database supports various
database-related actions and concepts described in this documentation.

To add the altova.mdb database to the mapping:

1. On the Insert menu, click Database. Alternatively, click the Insert Database ()
toolbar button.

400 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2. Click Microsoft Access (ADO), and then click Next.

© 2018 Altova GmbH

Databases and MapForce 401Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. Browse for the altova.mdb file available in the <Documents>\Altova\MapForce2018
\MapForceExamples\ folder, and then click Connect.

4. When prompted to select the database objects, select User Tables.

402 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Adding, Editing, and Removing Database Objects7.2.2.3

Some databases can have a large number of objects (such as schemas, tables, views, and so
on). This topic shows you how to get on the mapping only those database objects that are
required for mapping purposes. Below, we will be using a sample Access database; the
instructions are similar for other database types.

1. On the Insert menu, click Database.
2. Click Connection Wizard, and then click Microsoft Access (ADO).
3. Click Next, and browse for the altova.mdb available in the <Documents>\Altova

\MapForce2018\MapForceExamples\ folder.

A dialog box appears, enabling you to select the database objects that you want to be included
into the mapping.

To include a database object (for example, a table) it in the mapping, click the check box next to
it. For the purpose of this example, click the check box next to User Tables.

The Object Locator button () allows you to find specific database items. Select a particular
object (or type its name) in the combo box which appears in the lower area of dialog box.

© 2018 Altova GmbH

Databases and MapForce 403Data Sources and Targets

Altova MapForce 2018 Professional Edition

The Filter button () allows you to filter objects by name. Once you click the Filter button, a
filter icon is available next to objects which supports filtering (in this example, "Tables").

Click the filter icon to choose whether the object name should begin with, end with, be equal with,
or contain the search text.

404 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Now you can enter the search text next to the filter (in this example, "A"):

The Show checked objects only button () displays those items where a check box is
active.

The Add/Edit SELECT Statement button enables you to add or edit custom SELECT statements
for the current database. The data returned by such statements then becomes available as
mapping source. For more information, see SQL SELECT Statements as Virtual Tables.

The Add/Edit Relations button enables you to define local primary and foreign key relationships
between fields in the database, in addition to those that may already be present. For more
information, see Defining Local Relationships.

The Add/Edit Recordset Structures button applies for databases that support stored procedures.
It is only enabled if a stored procedure is currently selected from the database tree. For more
information, see Stored Procedures.

The Show Preview button enables you to quickly preview the data of the currently selected table

© 2018 Altova GmbH

Databases and MapForce 405Data Sources and Targets

Altova MapForce 2018 Professional Edition

or view. Note that you can also browse and query a database independently of the mapping
process, by using the Database Browser. For more information, see Browsing and Querying
Databases.

When you are ready to add the database objects to the mapping, click OK. Only the selected
tables, views, etc. will appear on the database component, and you can draw mapping
connections to or from them in the standard MapForce way.

To change at any time the database objects, right-click the component, and select Add/Remove/
Edit Database Objects.

Handling Database Relationships7.2.2.4

Relational databases, as their name implies, normally have relationships defined between their
tables. Taking as example the altova.mdb database found in the folder <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\, several relationships exist in it, for example:

The sample company (corresponding to the table "Altova") consists of one or more offices
(for example, in Brenton and in Vereno). In database terminology, there is a one-to-many

406 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

relationship between the "Altova" and "Office" tables. In other words, for each
PrimaryKey record in "Altova" table there can be multiple ForeignKey records in the
"Office" table. Any "Office" record where ForeignKey value corresponds to PrimaryKey
value in "Altova" should therefore be considered an office of "Altova".
Each office consists of one or several departments (for example, "Marketing", "IT",
"Development"). Again, there is a one-to-may relationship between "Office" and
"Department" tables.
Finally, each department consists of one or several people. Hence, the one-to-many
relationship between the "Department" and "Person" tables.

Table relationships in altova.mdb database (Microsoft Access "Relationships" view)

Relationships between database tables are important for mapping purposes. MapForce keeps
track of such database relationships when you add a database to the mapping. This enables you
to preserve the database relationships when mapping data to or from a database. To understand
this concept better, add the altova.mdb database to the mapping (using the Insert | Database
menu command). Let us call each of the tables below a "root" table:

© 2018 Altova GmbH

Databases and MapForce 407Data Sources and Targets

Altova MapForce 2018 Professional Edition

"Root" tab les

Expanding a "root" table displays all related tables beneath it in a tree view. For example, if you
expand the Office table, notice how the related table hierarchy is displayed:

A left arrow () in front of a table denotes that this is a child table. For example,
Address is a child of Office. Department is also a child of Office, as well as a "sibling"
table of Address, so both have the same indentation level. As you can see, the
relationship on the mapping corresponds to the "Relationships" diagram above.
A right arrow () in front of a table denotes a parent table. For example, Altova is a
parent of Office.

408 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Tables relationships in MapForce (altova.mdb database)

This hierarchical representation of tables helps you preserve the existing database relationships
when your mapping reads from or writes to a database. For example, let's assume you want to
get all the records from the Person table into an XML file, grouped by their department.
Specifically, your XML file should link every person to a department, similar to the altova.mdb
database used in this example:

© 2018 Altova GmbH

Databases and MapForce 409Data Sources and Targets

Altova MapForce 2018 Professional Edition

As illustrated above, the "Administration" department has three people, "Marketing" has two
people, "Engineering" has six people, etc.

When mapping data from this database, if you want every person to be distributed to the correct
department, it is important that you use Department as "root" table, and then map from the
Person table which is child of Department:

410 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The mapping above is a modified DB_Altova_Hierarchical.mfd from the <Documents>\Altova
\MapForce2018\MapForceExamples\ folder. When you preview the mapping, the result is that
each person is grouped by department, which was the intended behaviour. That is,
"Administration" has three people, "Marketing" has two people, "Engineering" has six people, etc.

Now have a look at the slightly modified mapping below, where connections have been

© 2018 Altova GmbH

Databases and MapForce 411Data Sources and Targets

Altova MapForce 2018 Professional Edition

deliberately drawn so that both Department and Person are "root" tables.

This time, when you preview the mapping, all persons (regardless of their source department) are
grouped under each target department, which was not the intended behaviour. That is,
"Administration" has 21 people, "Marketing" has 21 people, "Engineering" has 21 people, etc.

412 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

In the second example, the database relationships are disregarded, due to the way the
connections were made.

Therefore, when you want to preserve database relationships, make sure that connections are
drawn to or from the same "root" table, which contains the child tables whose relationships you
want to preserve. This works in the same way for both source and target databases. For
examples of database mappings which preserve relationships, see the
DB_Altova_Hierarchical.mfd and Altova_Hierarchical_DB.mfd files available in the
<Documents>\Altova\MapForce2018\MapForceExamples\ folder (see also Inserting Data into
Multiple Linked Tables).

There might also be cases when you do not want to preserve database relationships. For
example, let's assume that you want to export all data from the altova.mdb database to a flat
XML file adhering to the SQL/XML specification (Part 14 of the Structured Query Language (SQL)
specification). This kind of mapping is illustrated by the DB_Altova_SQLXML.mfd sample,
available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder. The goal of
the mapping is to get database data as flat XML file. The target SQL/XML schema was generated
with XMLSpy, using the Convert | Create XML Schema from DB Structure menu command.

© 2018 Altova GmbH

Databases and MapForce 413Data Sources and Targets

Altova MapForce 2018 Professional Edition

DB_Altova_SQLXML.mfd

As illustrated above, every database table has a corresponding element in the target XML. When
you preview the mapping result, you can see that the actual database rows from each table are
written to "row" elements in the target.

414 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

As the XML output shows, no hierarchies exist between the XML elements; it is a flat SQL/XML
structure. The database relationships were ignored, because we intentionally mapped data from
multiple "root" tables.

© 2018 Altova GmbH

Databases and MapForce 415Data Sources and Targets

Altova MapForce 2018 Professional Edition

Defining Local Relationships7.2.2.5

When database tables do not have explicitly defined relationships between them, you can define
such relationships locally in MapForce. In particular, you can create, from MapForce, primary and
foreign key relationships between columns of different tables, without affecting the database in
any way. Any database columns can be used as primary or foreign keys. Also, new relations can
be created, in addition to those existing in the database. Locally defined relationships are saved
together with the mapping.

These "on-the-fly" relationships are called Local Relations in MapForce. Local relations can be
defined for the following database objects:

Database tables
Database views
Stored procedures and functions
User-defined SELECT statements

The altova-no-relation.mdb database used in this example is a simplified version of the
altova.mdb database supplied with MapForce. The "Person" and "Address" tables, as well as all
table relationships have been removed in Microsoft Access. As illustrated below, none of the
tables visible in the altova-no-relation tree have any child tables; all tables are on the same
"root" level. The content of each table is limited to the fields it contains.

Database structure with no explicit relationships

The aim of the example is to display the offices of "Altova" and show the departments in each

416 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

office. Note that, in the altova-no-relation.mdb, the primary and foreign key relationships do not
exist explicitly, as mentioned above. They exist only logically (implicitly), so we will be re-creating
them locally in MapForce to achieve the goal of the mapping.

Local relations can be defined while adding a database to the mapping, or by right-clicking an
existing database component and selecting Add/Remove/Edit Database Objects from the
context menu, as illustrated in the steps below.

1. On the Insert menu, click Database.
2. In the connection wizard, click Microsoft Access (ADO), and then click Next.
3. Browse for the altova-no-relation.mdb database available in the <Documents>\Altova

\MapForce2018\MapForceExamples\Tutorial\ folder, and click Connect.
4. Select the User Tables check box.

5. Click the Add/Edit Relations button in the icon bar.
6. The "Add/Edit Table Relations" dialog box opens. Click Add Relation.

© 2018 Altova GmbH

Databases and MapForce 417Data Sources and Targets

Altova MapForce 2018 Professional Edition

7. Select values from the two drop-down lists so as to create a primary and foreign key
relationship between the "Altova" and "Office" tables, as illustrated below. The two drop-
down lists allow you to select the tables or database objects you want to create relations
for. The left list specifies the object which stores the primary/unique key, while the right
one specifies the foreign key object. The Primary/Unique Key object will be the parent
object in MapForce, and the Foreign Key object will be shown as child in the database
component (see also Handling Database Relationships).

8. Click OK to complete the local relation definition, and then click the Insert button to
insert the database into the mapping area.

At this stage, you have created a local relationship between the PrimaryKey column of the
"Altova" table and the ForeignKey column of the "Office" table. As illustrated below, the "Altova"
root table is now a parent to the "Office" table. Namely, the Office table is shown as a related
table below the Altova table with its own expand icon.

418 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

However, the mapping goal is not yet complete. To complete the mapping goal, use the same
method to create a relationship between the Office and Department tables, as shown below.

To open again the "Add/Edit Relations" dialog box, right-click the database component, and
select Add/Remove/Edit Database Objects from the context menu.

Finally, add the target schema to the mapping as follows:

1. On the Insert menu, click Insert XML Schema/File.
2. Browse for the Altova_Hierarchical.xsd file available in the <Documents>\Altova

\MapForce2018\MapForceExamples\ folder. When prompted to supply a sample XML
file, click Skip. When prompted to select a root element, select "Altova".

Notice that, in order to preserve relationships between tables in the target XML, all connections
were drawn from the same "root" table, hierarchically (in this case, "Altova"). For more
information, see Handling Database Relationships.

© 2018 Altova GmbH

Databases and MapForce 419Data Sources and Targets

Altova MapForce 2018 Professional Edition

Having defined the mapping as shown above, click the Output tab, to preview the result. The
mapping result shows the department elements nested under each respective office, which was
the intended goal of this mapping.

420 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Executing Mappings Which Modify Databases7.2.2.6

When a mapping modifies database data in any way (for example, by inserting, updating, or
deleting records), the changes are applied to the database by the engine that executes the
mapping. The engine that executes the mapping can be MapForce, MapForce Server (both
standalone or under FlowForce Server management), or the execution environment of the code
generated for C++, C#, or Java.

When you preview the mapping result directly in MapForce (by clicking the Output tab), an
update script is displayed. This script shows the SQL statements that are to be applied against
the database. The script is not actually executed against the database until you take this action
explicitly; it is available for preview only.

Output preview of a mapping which modifies a database (Altova_Hierarchical_DB.mfd)

Note that this script must not be manually applied to the database using SQL tools other than the
execution engines mentioned above. The script may contain formatting of values not "understood"
by external SQL editors. Also, if multiple actions are defined against a table (for example, "Update
if... Insert Rest") only the first action is shown in the preview, since the second action is executed
conditionally.

If you want to apply the mapping changes to the database directly from MapForce, click the Run
SQL-Script command available in the Output menu. Remember that this action will actually
modify the database with immediate effect.

When the mapping is executed with MapForce Server (both standalone or under FlowForce Server
management), the changes to the database are applied with immediate effect. The same happens
in the generated code: the database changes are applied when you compile and run the code (for
example, by clicking the Run command in Visual Studio).

Your MapForce installation includes several example databases (Microsoft Access or SQLite
files) available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder. It
is advisable not to apply database changes from MapForce, using the Run SQL-Script

© 2018 Altova GmbH

Databases and MapForce 421Data Sources and Targets

Altova MapForce 2018 Professional Edition

command, against any of the example databases supplied with MapForce; this may render
the examples unusable. A simple way to avoid overriding original data is to back up the
entire <Documents>\Altova\MapForce2018\MapForceExamples\ folder before updating
any files in it.

For information about running mappings in execution environments other than MapForce, see:

Deploying Mappings to FlowForce Server
Compiling Mappings to MapForce Server Execution Files
Code Generator

Replacing Special Characters7.2.2.7

When transforming database data, you might need to remove specific special characters, such as
the carriage return/line feed (CR/LF) characters, from the data source. This can be done with the
help of the MapForce library function char-from-code.

Consider a Microsoft Access database consisting of a table "Lines" which has two columns: "ID"
and "Description".

The goal is to extract each description to a CSV file (one description per line); therefore, a
mapping to achieve this goal could look as follows:

However, because each "Description" row in Access contains multiple lines separated by CR/LF
characters, the mapping output includes line breaks also, which is not the intended result:

422 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To overcome this problem, we are going to add to the mapping the char-from-code and replace

functions from the MapForce built-in library (see also Working with Functions). Every description
must be processed so that, whenever the characters above are encountered, they should be
replaced by a space character.

In the Unicode chart (http://www.unicode.org/charts/), the LF and CR characters correspond to
hex 0A | dec 10 and hex 0D | dec 13 characters, respectively. Therefore, the mapping has to be
modified to convert the decimal Unicode values 13 and 10 to a string, so as to allow further
processing by the replace function.

If you preview the mapping now, notice that the CR/LF characters within each database field have
been replaced by a space.

Handling Null Values7.2.2.8

To check at mapping runtime whether a database field is null, use the is-null and is-not-null

MapForce library functions. To see from MapForce if a table has null fields, query it using the
Database Browser (see Browsing and Querying Databases).

To set a database field to null, use the set-null function.

To replace null database values with a string, use the substitute-null function. A sample

mapping that illustrates this is DB_ApplicationList.mfd available in the <Documents>\Altova
\MapForce2018\MapForceExamples\ folder.

http://www.unicode.org/charts/

© 2018 Altova GmbH

Databases and MapForce 423Data Sources and Targets

Altova MapForce 2018 Professional Edition

For information about handling NULL value comparisons in mappings which update databases,
see Handling Nulls in Database Table Actions.

For information about handling nulls when mapping database to or from XML documents, see Nil
Values / Nillable.

Generating Sequential and Unique Values7.2.2.9

When inserting data or updating a database, sometimes you might need to create "on-the-fly"
sequential or unique values for those database fields which do not have any input from the
mapped source. For such cases, use the following built-in MapForce library functions:

auto-number (available in the "core | generator functions" library). This function is

generally used to generate primary key values for a numeric field.
create-guid (available in the "lang | generator functions" library). This function creates a

globally-unique identifier (as a hex-encoded string) for the specific field.

Note that values for database fields can also be written using database-generated values. This
option is available on the Database Table actions dialog box (see Database Table Actions
Settings) and is particularly useful when generating primary keys.

SQL Auto-Completion Suggestions7.2.2.10

When you type SQL statements in certain contexts, MapForce may suggest text entries
automatically. Auto-completion is available in the following contexts:

SQL Editor (see Browsing and Querying Databases)
"Custom SQL" text box in the "Database Table Actions" dialog box (see Database Table
Actions Settings)
"Enter a SQL SELECT statement" dialog box (see Creating SELECT Statements)

Auto-completion

Use the Up and Down keyboard keys to navigate through the list of suggestions. To pick a
suggested entry, click it or press Enter.

To disable auto-completion suggestions:

1. On the Tools menu, click Options (or press Ctrl+Alt+O).
2. Under Database, click SQL Editor.
3. Under Entry Helpers, clear the Automatically open check box.

424 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To invoke auto-completion suggestions manually as and when required:

Press Ctrl+Space.

Database Component Settings7.2.2.11

After you add a database component to the mapping area, you can configure the settings
applicable to it from the Component Settings dialog box. You can open the Component settings
dialog box in one of the following ways:

Select the component, and then, on the Component menu, click Properties.
Double-click the component header.
Right-click the component, and then click Properties.

© 2018 Altova GmbH

Databases and MapForce 425Data Sources and Targets

Altova MapForce 2018 Professional Edition

Database Component Settings dialog box

The available settings are as follows.

Database

This group displays database connection information. Click Change to select a different
database, or to redefine the database objects in the existing database component. Connectors to
tables of the same name will be retained. You can also change the tables in the component, by

426 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

right clicking a database component and selecting Add/Remove/Edit Database Objects.

Data Source Specifies the name of the current data source. For file-based
databases, this can be a path on the file system.

Use this setting to determine whether a file-based database
was added to the mapping using an absolute or relative path.
In case of relative paths, "Data Source" contains a path; in
case of absolute paths, it contains just the database
filename.

Connection Name Specifies the name of the connection (this is the same as the
data source name if the database uses a data source)

Database Kind Specifies the kind of the database.

Connection String Displays the current database connection string. This read-
only field is generated based on the information you supply
when creating or changing the database connection.

Login Settings

The login settings are used for all code generation targets and the built-in execution engine.

User Enables you to change the user name for connecting to the
database. Mandatory if the database requires a user name to
connect.

Password Enables you to change the password for connecting to the
database. Mandatory if the database requires a password to
connect.

JDBC-Specific Settings

These settings are used to connect to the database if the mapping contains a JDBC connection
and is executed by generated Java code or by MapForce Server.

Note: ADO, ADO.NET, and ODBC connections are converted to JDBC (and the JDBC settings
below apply) when the mapping is run on a Linux or OS X / macOS machine, see
Database mappings in various execution environments.

JDBC Driver Displays the currently active driver for the database
component. The default driver is automatically entered when
you define the database component. You can change the
driver entered here to suit your needs. Make sure that the
syntax of the entry in the Database URL field conforms to the
specific driver you choose.

Database URL URL of the currently selected database. Make sure that this

© 2018 Altova GmbH

Databases and MapForce 427Data Sources and Targets

Altova MapForce 2018 Professional Edition

entry conforms to the JDBC driver syntax, of the specific
driver entered in the JDBC-driver field.

ADO/OLEDB-Specific Settings

These settings are used to connect to the database if the mapping contains an ADO connection
and it is executed by generated C# or C++ code, or by MapForce Server running on Windows,
see Database mappings in various execution environments. The Data Source and Catalog
settings are not used by the built-in execution engine.

Data Source Displays the name of the ADO data source.

Catalog Displays the name of the ADO catalog.

Provider Displays the currently active provider for the database
component.

Add. Options Displays any additional database options.

Generation Settings

Generation settings apply to all code generation targets as well as the built-in execution engine.

Use transactions Enables transaction processing when using a database as a
target. A dialog box opens when an error is encountered
allowing you to choose how to proceed. Transaction
processing is enabled for all tables of the database
component when you select this option. For more
information, see Using Transaction Rollback.

Strip schema names from table
names

Allows you to strip database schema names from generated
code, only retaining the table names for added flexibility.

Note that this option only works for SQL Select statements
generated by MapForce. User-defined SQL-Statements,
when creating virtual tables, will not be modified.

Timeout for Statement Execution

When a database is used as a target component, execution timeouts can occur due to server
availability, traffic, long-running triggers, and other factors. This setting allows you to define how
long the timeout period can be before the database connection is closed. The setting takes effect
when querying database data as well as in generated C#, Java, and C++ code.

Timeout Defines the time period, in seconds, that the execution
engine must wait for a database response before aborting the
execution of the database statement. The default setting for

428 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

the execution timeout is 60 seconds.

Infinite When enabled, this option instructs the execution engine to
never time out.

Note: Timeout for statement execution is not applicable to SQLite databases.

7.2.3 Mapping Data to Databases

This section provides instructions and examples for transferring data from any mapping source
supported by MapForce (for example, an XML file) to a target database. Use the following
roadmap for a summary of available options.

I want to... Read this topic...

Insert data into a target database table based
on data supplied by the mapping...

Inserting Data into a Table

Control how primary key values are to be
created...

Inserting Data into a Table
Inserting Data into Multiple Linked Tables

Run a "preliminary" SQL statement to be
executed before a table is modified by the
mapping (for example, delete all records in the
table, or a custom SQL statement)...

Inserting Data into Multiple Linked Tables
Database Table Actions Settings

Preserve the hierarchical relationship of
records in tables linked by foreign keys...

Inserting Data into Multiple Linked Tables

Update a table conditionally... Updating a Table

Merge records into a database table (update
some records, and also insert some other
records into the same table), based on a
condition...

"Update if... Insert Rest" Action
MERGE statements

Preserve database integrity when updating
tables that are linked to other tables through
foreign key relationships...

Options for Child Tables When Updating a
Parent Table

Define multiple actions against the same table
(for example, delete a record if a condition is
satisfied, otherwise insert a new record)...

"Delete if..." Action
"Ignore if..." Action

Preserve data integrity in case of failed
mapping execution...

Using Transaction Rollback

Insert multiple records into a database table in
bulk (combine multiple INSERT statements in
one query)...

Bulk Inserts (MapForce Server)

Avoid undesired results when mapping data to
target database tables that contain null

Handling Nulls in Database Table Actions

© 2018 Altova GmbH

Databases and MapForce 429Data Sources and Targets

Altova MapForce 2018 Professional Edition

I want to... Read this topic...

values...

View an example of how to create a mapping
which updates a database.

Example: Mapping Data from XML to SQLite

Inserting Data into a Table7.2.3.1

A mapping can insert data into a database table from any of the source components supported by
MapForce, including other databases. You can flexibly configure how the primary key of newly
inserted records should be created. For example, the primary key can be taken from the mapping,
generated by the database, or calculated based on existing key values in the database table.

This example shows you how to insert new records into an existing database table from an XML
file. You will also configure how the primary key is to be generated. The example uses the
following files:

altova-cmpy.xml — contains the source data to be inserted into the database.
Altova_Hierarchical.xsd — the schema used to validate the instance file above.
altova.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder.
Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to
back up the original database and start with a new copy before following the steps below.
This ensures that the original examples are not overridden and that you get the same results
as below. For more information, see Executing Mappings Which Modify Databases.

The goal of the mapping is to insert companies found in the Altova-cmpy.xml as new records in
the "Altova" table of the altova.mdb database. If you open the source XML file, you will notice
that it contains only one company, called "Microtech OrgChart". Therefore, the mapping must add
a new record to the "Altova" table with the name "Microtech OrgChart". Also, a new primary key
must be generated for it.

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component

On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd.
When prompted to supply an instance file, browse for Altova-cmpy.xml.

Step 2: Insert the target database

On the Insert menu, click Database, and go through the wizard steps to connect to
altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

430 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 3: Draw the connections

Draw the mapping connections as shown below.

Note: If unwanted connections are automatically drawn for descending items, the option "Auto-
connect children" is active. In this case, to undo the last action, select the menu option
Edit | Undo. To disable the auto-connect option, select the menu option Connection |
Auto-connect matching children.

Step 4: Configure the Insert action

1. On the target component, notice the Action: Insert () button. This button appears
for each table that has a connection from the mapping (in this case, the "Altova" table).
Click this button to configure in more detail the database action to be executed (in this
case, the insert action). The Database Table Actions dialog box appears.

© 2018 Altova GmbH

Databases and MapForce 431Data Sources and Targets

Altova MapForce 2018 Professional Edition

2. In the Database Table Actions dialog box, under Insert All, next to PrimaryKey, select
the max() + 1 option.

The options available in this list have the following meaning:

Option Description

mapped value Allows source data to be mapped to the database field
directly, and is the standard setting for all database fields. It is
also possible to use a stored procedure to supply a key value
by defining a relation, see Using stored procedures to
generate primary keys.

max() + 1 Generates the key values based on the existing keys in the
database. For example, if the table has three records, with
primary keys 1, 2, and 3, then max() + 1 is 4.

In this example, the "Altova" table has only one record with
primary key 1, so max() + 1 is 2, which is the expected value

432 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

of the new primary key.

DB-generated The database uses the Identity function to generate key
values.

The option mapped value next to "Name" signifies that this column will get the value
directly from the mapping. For reference to other options available on the Database Table
Actions dialog box, see Database Table Actions Settings.

Step 5: Preview the mapping and update the database

Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be
executed against the database. The script has not modified the database yet; it is only for
preview.

To run the script against the database:

On the Output menu, click Run SQL-Script.

Note: Running the SQL script directly from MapForce is just one of the ways to update the
database, see also Executing Mappings Which Modify Databases.

To see the result, open the altova.mdb database in DatabaseSpy or Access. Notice that a new
"Microtech OrgChart" record has been added to the "Altova" table with the new primary key 2. The
data for this record originated in the input XML instance.

You have now finished creating a mapping which inserts data into a database table. For a
mapping example which inserts data both into the current table and a dependent child table, see
Inserting Data into Multiple Related Tables.

© 2018 Altova GmbH

Databases and MapForce 433Data Sources and Targets

Altova MapForce 2018 Professional Edition

Inserting Data into Multiple Linked Tables7.2.3.2

A database table may be a "parent" table; that is, it might be referred by other tables in the
database through foreign key relationships. In such scenarios, you can configure the mapping to
insert records not only into the parent table, but also into dependent child tables. For example,
when inserting a new "company" record into a database table, you can also insert records for
offices linked to this company, as well as their children departments, people, and so on.

This example shows you how to insert data into several tables while preserving the database
relationships. It is a slightly more elaborate version of the previous example, Inserting Data into a
Table. The example is accompanied by a sample mapping, and it uses the following files:

Altova_Hierarchical.mfd — the actual mapping file.
Altova_Hierarchical.xml — contains the source data to be inserted into the database.
Altova_Hierarchical.xsd — the schema used to validate the instance file above.
AltovaTarget.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder.
Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to
back up the original database and start with a new copy before following the steps below.
This ensures that the original examples are not overridden and that you get the same results
as below. For more information, see Executing Mappings Which Modify Databases.

The goal of the mapping is to replace data in the target database (AltovaTarget.mdb) with data
from a source XML file. The XML file structure roughly corresponds to the hierarchical structure of
tables in the database. It is an organization chart, structured as follows: the top element is a
company which contains two offices. Each office contains departments, and each department
contains people. The same hierarchy exists in the AltovaTarget.mdb, where the "Altova" table
corresponds to the company. This table is linked, through a foreign key relationship, to records in
the "Office" table. Likewise, the "Office" links to "Department", and "Department" links to
"Person". To view a relationship diagram of the AltovaTarget.mdb database, open it in the
"Relationships" view of Access (see also Handling Database Relationships).

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component

On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd.
When prompted to supply an instance file, browse for Altova_Hierarchical.xml.

Step 2: Insert the target database

On the Insert menu, click Database, and go through the wizard steps to connect to
AltovaTarget.mdb. The instructions for connecting to this database are the same as for
altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

434 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 3: Draw the connections

Draw the mapping connections as shown below. Notice that the primary and foreign keys
are not mapped; they will be generated on the fly, as shown below.

Note: If unwanted connections are automatically drawn for descending items, the option "Auto-
connect children" is active. In this case, to undo the last action, select the menu option
Edit | Undo. To disable the auto-connect option, select the menu option Connection |
Auto-connect matching children.

Step 4: Configure the Insert actions

1. On the target component, click the Action: Insert () button next to the "Altova"
table and configure the max() + 1 setting of the primary key as shown below. This setting

© 2018 Altova GmbH

Databases and MapForce 435Data Sources and Targets

Altova MapForce 2018 Professional Edition

was explained in more detail in the previous example, see Inserting Data into a Table.

Also, notice that the DELETE all records option is enabled. This clears all existing
records from the table, before new ones are entered, which is the desired behavior in this
example. If you disable this option, new records (with a new primary key) will be added to
the database in addition to existing ones, every time you run the mapping, which is not
the desired behaviour.

For the scope of this example, the option also delete all records from child tables is
also enabled. This ensures that not only records from the "Altova" table are deleted, but
also all records in tables that are linked to "Altova" table through a foreign key
relationship. If the child tables have their own child tables, those will also be deleted, and
so on, down to the last table in the dependency tree. If you attempted to delete only
records from the root "Altova" table, this would violate the database integrity, and the
mapping execution would fail.

For reference to other options available on the Database Table Actions dialog box, see
Database Table Actions Settings.

2. Click OK to close the dialog box. Notice that, on the mapping area, the appearance of the

button has now changed to . This indicates that a "Delete" statement is
configured to take place before the "Insert" action.

3. Click the button next to the "Office" table and configure the max() + 1 setting of the
primary key.

436 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Perform step 3 for each table descending from "Office", namely: "Address",
"Department", and "Person". Make sure that all these tables are immediate descendants
of the root "Altova" table. For an explanation of what is a "root" table and why it is
necessary, see Handling Database Relationships.

Step 5: Preview the mapping and update the database

Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be
executed against the database. The script has not modified the database yet; it is only for
preview.

To run the script against the database:

On the Output menu, click Run SQL-Script.

Note: Running the SQL script directly from MapForce is just one of the ways to update the
database, see also Executing Mappings Which Modify Databases.

To see the result, open the "Altova" table in Microsoft Access, and observe how relationships from
the XML file have now been propagated to the database, from the "Altova" table down to the
"Person" table.

© 2018 Altova GmbH

Databases and MapForce 437Data Sources and Targets

Altova MapForce 2018 Professional Edition

You have now finished creating a mapping which inserts data into multiple database tables, while
preserving the table integrity relationships.

Updating a Table7.2.3.3

This example shows you how to update data of an existing database table with data coming from
an XML source. The example uses the following files:

altova-cmpy.xml — contains the source data to be inserted into the database.
Altova_Hierarchical.xsd — the schema used to validate the instance file above.
altova.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder.
Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to
back up the original database and start with a new copy before following the steps below.
This ensures that the original examples are not overridden and that you get the same results
as below. For more information, see Executing Mappings Which Modify Databases.

The goal of the mapping is to update all records in "Person" table with instances of "Person" from
the XML document. Each person in the XML file has a PrimaryKey child element. Each person in
the "Person" table has a PrimaryKey column. Only those records where a person's PrimaryKey
in the XML file corresponds to a person's PrimaryKey in the database must be updated.

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component

On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd.

438 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

When prompted to supply an instance file, browse for altova-cmpy.xml.

Step 2: Insert the target database

On the Insert menu, click Database, and go through the wizard steps to connect to
altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

Step 3: Draw the connections

Draw the mapping connections as shown below.

Step 4: Configure the Update action

1. On the target component, click the Action: Insert () button next to the "Person"
table.

2. Next to Action on record, select Update if... . This changes the database table action
to a conditional update action. That is, the current record will only be updated when a
condition is satisfied (see next step).

3. Next to PrimaryKey, select the value equal, as shown below. This defines the update
condition: that is, the database record will be updated only when its PrimaryKey value is
equal to the PrimaryKey value coming from the mapping.

© 2018 Altova GmbH

Databases and MapForce 439Data Sources and Targets

Altova MapForce 2018 Professional Edition

In this example, the equality operator is applied to the PrimaryKey field, which is a likely
scenario when updating databases. Note that conditions can also be defined on other
fields which are not necessarily primary keys. For example, by selecting equal next to
the First and Last fields, you would update only those records where both the first and
last name is equal to that in the source XML.

4. Click OK to close the dialog box. Notice that, back on the mapping, the Action: Insert

 button has now changed to an Action: Update () button. This indicates that
an update action is configured to take place for this table.

Step 5: Preview the mapping and update the database

Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be
executed against the database. The script has not modified the database yet; it is only for
preview.

440 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To run the script against the database:

On the Output menu, click Run SQL-Script.

Note: Running the SQL script directly from MapForce is just one of the ways to update the
database, see also Executing Mappings Which Modify Databases.

"Update if... Insert Rest" Action7.2.3.4

Sometimes, it is necessary not only to update existing records, but also to insert new records
into the same database table. For such cases, MapForce provides an "Update if... Insert Rest"
action. This works as follows:

If the Update if condition is true, then the existing database record is updated with data
from the mapping.
If the Update if condition is false, and an Insert Rest condition exists, then a new record
is inserted.
If records exist in the database with no counterpart in the source file, then these records
remain unchanged.

MySQL ODBC note

If the target database is MySQL through ODBC, the option Return matched rows instead
of affected rows must be enabled in the Cursor/Results tab of MySQL ODBC Connector.
Alternatively, if you enter the connection string manually through the Database Connection
wizard, add Option=2 to the connection string , for example: Dsn=mydsn;Option=2;

To enable this option from MySQL ODBC Connector:

© 2018 Altova GmbH

Databases and MapForce 441Data Sources and Targets

Altova MapForce 2018 Professional Edition

1. Press the Windows key and start typing "ODBC".
2. Run the ODBC Data Sources Administrator (either 32-bit or 64-bit, depending on the

platform of the installed MySQL ODBC Connector).
3. Click the Data Source Name (DSN) used by the MapForce mapping, and then click

Configure.

4. Click Details >> to make the advanced options available.
5. Click the Cursors/Results tab, and then select the check box Return matched rows

instead of affected rows.

Example

The following example shows you how to merge (both update and insert) data from an XML source
into a database table. The example uses the following files:

altova-cmpy-extra.xml — contains the source data to be inserted into the database.
Altova_Hierarchical.xsd — the schema used to validate the instance file above.
altova.mdb — the target database to be updated.

All files are available in the folder <Documents>\Altova\MapForce2018\MapForceExamples\.
Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to
back up the original database and start with a new copy before following the steps below.
This ensures that the original examples are not overridden and that you get the same results
as below. For more information, see Executing Mappings Which Modify Databases.

442 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The goal of the mapping is to merge all records from a source XML document into a target
"Person" table. Namely, for each record in the source XML data, the mapping must do the
following:

If the person's PrimaryKey in the XML file corresponds to a person's PrimaryKey in the
database, then update the record.
Any existing records in the Person table which do not meet the above condition must not
be affected.
If the person's PrimaryKey in the XML file does not have a match in the target database
table, then add a new record to the database table.

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component

On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd.
When prompted to supply an instance file, browse for altova-cmpy-extra.xml.

Step 2: Insert the target database

On the Insert menu, click Database, and go through the wizard steps to connect to
altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

Step 3: Draw the connections

Draw the mapping connections as shown below.

© 2018 Altova GmbH

Databases and MapForce 443Data Sources and Targets

Altova MapForce 2018 Professional Edition

Step 4: Configure the "Update if... Insert Rest" actions

1. On the target component, click the Action: Insert () button next to the "Person"
table.

2. Next to Action on record, select Update if... . This changes the database table action
to a conditional update action. That is, the current record will only be updated when a
condition is satisfied (see next step).

3. Next to PrimaryKey, select the value equal, as shown below. This defines the update
condition: that is, the database record will be updated only when its PrimaryKey value is
equal to the PrimaryKey value coming from the mapping.

444 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Click Append Action. This adds a new action to the right of the existing Update If
action. Configure the new action as Insert Rest:

In the image above, the database table actions have been configured in accordance with
the goals of the mapping. That is, only when the Update If... condition is satisfied will the
record be updated; otherwise, it will be inserted. The option "mapped value" specifies that
values from the mapping will be used to populate all fields of the record.

It is also possible to define more than two actions against the same database table (this
is not necessary in this example, however). At mapping runtime, actions are executed
from left to right. The last Insert action is considered final; any other actions added after it
will be ignored.

Note that the Append Action button on the dialog box adds the new action after the
selected one. Insert Action adds the new action before the selected one. To delete an
existing action, click anywhere inside it, and then click Delete Action.

5. Click OK to close the dialog box. Notice that, back on the mapping, the Action: Insert

 button has now changed to an Action: Update; Insert () button. This
indicates that both an update and an insert action is configured to take place for this
table.

© 2018 Altova GmbH

Databases and MapForce 445Data Sources and Targets

Altova MapForce 2018 Professional Edition

Step 5: Preview the mapping and update the database

Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be
executed against the database. The script has not modified the database yet; it is only for
preview.

SQL script (partial view) before updating the database

You may notice that no INSERT statements are visible in the preview script. This is normal
behavior, because records are inserted conditionally, and the INSERT statements depend on the
result of the Update If action (which is not known before the mapping runs).

Note: For certain database types, MapForce creates MERGE statements instead of UPDATE
statements. For further information, see MERGE statements.

To run the script against the database:

On the Output menu, click Run SQL-Script.

Now that the mapping has been executed and the script applied against the database, notice that
INSERT statements are visible in the Output tab.

446 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

SQL script (partial view) after updating the database

Note: Running the SQL script directly from MapForce is just one of the ways to update the
database, see also Executing Mappings Which Modify Databases.

If you open the "Person" table in the DB query tab of MapForce (see Browsing and Querying
Databases), you can see the result of the mapping as follows:

All database records which had corresponding primary keys in the XML file have been
updated. Examples are records with primary key 1, 2, 3, 4, and 5.
All database records which had no corresponding keys in the XML file remained
unaffected. Examples are records with primary key 6, 7, 8, and 9.
New records have been inserted to the "Person" table (where key did not already exist in
the database). Examples are records with primary key 30 and 31.

© 2018 Altova GmbH

Databases and MapForce 447Data Sources and Targets

Altova MapForce 2018 Professional Edition

The "Person" tab le after updating the database

MERGE Statements7.2.3.5

For certain mappings which both update and insert data into a database table (see also "Update
if... Insert Rest" Action), MapForce generates MERGE statements to be executed against the
database at mapping runtime. The execution engine may not necessarily be MapForce, see
Executing Mappings Which Modify Databases.

MERGE statements are supported for the following database types:

SQL Server 2008 and later
Oracle
DB2
Firebird

MERGE statements reduce the number of database server calls, since they combine the INSERT
and UPDATE statements into one. Also, in case of MERGE statements, the consistency check
is done by the database. Note that MapForce creates MERGE statements automatically when it
detects a supported database type; it is not possible to manually influence whether MapForce
should create a MERGE statement.

448 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To see whether the mapping will execute database MERGE statements at runtime (as opposed to
applying a combination of INSERT and UPDATE statements):

1. Create a mapping which uses an Update if... as well as an Insert Rest action. For an
example, see "Update if... Insert Rest" Action.

2. Preview the mapping, by clicking the Output tab.

If MERGE is supported by the database type, the generated SQL script includes MERGE
statements, for example:

If MERGE is not supported by the database type, the generated SQL script includes UPDATE
statements only. No INSERT statements are visible for preview, since those are to be executed
only if the Update If... condition is not satisfied (and this is not known before the mapping
execution).

Limitations:

With MERGE statements, the "Bulk Transfer" option (see Bulk Inserts (MapForce Server)
is supported only for ODBC and JDBC database connections.

Options for Child Tables When Updating a Parent Table7.2.3.6

When the mapping updates a table which is a "parent" table (that is, it has foreign key
relationships to other tables), you can configure how the dependent records should be treated
both in the source data and in the target table. For example, let's assume that you want to update
the "Department" table in the altova.mdb database. Because every person is linked to a
department by means of a foreign key, you will likely want to take action against the "Person"
table as well (which could be an insert, update, or delete). Doing so would help you maintain the
database integrity and avoid mapping errors.

This topic discusses the options available for the "Person" table when you update the parent
"Department" table. It makes use of the following example files:

altova-cmpy-extra.xml — contains the source data to be inserted into the database.
Altova_Hierarchical.xsd — the schema used to validate the instance file above.
altova.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder.

© 2018 Altova GmbH

Databases and MapForce 449Data Sources and Targets

Altova MapForce 2018 Professional Edition

Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to
back up the original database and start with a new copy before following the steps below.
This ensures that the original examples are not overridden and that you get the same results
as below. For more information, see Executing Mappings Which Modify Databases.

First, add the source XML schema and instance as well as the target database to the mapping
(see Example: Adding the "altova.mdb" Database to the Mapping). Follow the same steps as in
"Update if... Insert Rest" Action. Secondly, draw the mapping connections as shown below:

As illustrated above, the mapping updates the "Department" table in the target database. The
"Department" table is chosen as "root" table. For more information about what a root table is and
why it is necessary, see Handling Database Relationships. The action to be taken against the
child "Person" table is the subject of this topic.

The following tables illustrate various configuration options and the corresponding mapping result.
These options can be selected from the Database Table Actions dialog box of the parent
"Department" table and the child "Person" table.

450 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Configuration A

Settings Mapping result

"Department" tab le

"Person" tab le

Updates Department records where
PrimaryKey in the source XML corresponds
to the PrimaryKey in the database table.
Does not update existing Department
records which do not have a counterpart in
the input XML file (no such key exists in the
source).
Inserts, from the input XML instance, all
Person records that do not already exist in
the database.
Deletes child data (Person records) of those
Department records which satisfy the
Update if... condition.

© 2018 Altova GmbH

Databases and MapForce 451Data Sources and Targets

Altova MapForce 2018 Professional Edition

Configuration B

Settings Mapping result

"Department" tab le

"Person" tab le

The mapping fails with an SQL execution
error. The reason is that the mapping attempts
to insert new Person records with the same
primary key as the existing Person records. If
you want to insert records from the input XML
in addition to those already in the database,
see the next option.

452 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Configuration C

Settings Mapping result

"Department" tab le

"Person" tab le

Updates Department records where
PrimaryKey in the source XML corresponds
to the PrimaryKey in the database table.
Does not update existing Department
records which do not have a counterpart in
the input XML file (no such key exists in the
source).
New Person records (with generated primary
keys) are inserted into the Person table in
addition to existing ones.

© 2018 Altova GmbH

Databases and MapForce 453Data Sources and Targets

Altova MapForce 2018 Professional Edition

Configuration D

Settings Mapping result

"Department" tab le

"Person" tab le

Updates Department records where
PrimaryKey in the source XML corresponds
to the PrimaryKey in the database table.
Does not update existing Department
records which do not have a counterpart in
the input XML file (no such key exists in the
source).
No records are inserted in the Person table
because the option Ignore input child
data is enabled for the parent Departments
table.

454 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Configuration E

Settings Mapping result

"Department" tab le

"Person" tab le

Updates Department records where
PrimaryKey in the source XML corresponds
to the PrimaryKey in the database table.
Does not update existing Department
records which do not have a counterpart in
the input XML file (no such key exists in the
source).
Deletes all Person records linked to a
Department which has a corresponding
PrimaryKey in the source XML. The reason
is that the Delete data in child tables
option is enabled for the parent Department
table.
Person records linked to a department that
did not meet the Update if... condition
remain in the database.
No records in the Person table are updated.

© 2018 Altova GmbH

Databases and MapForce 455Data Sources and Targets

Altova MapForce 2018 Professional Edition

Configuration F

Settings Mapping result

"Department" tab le

"Person" tab le

Updates Department records where
PrimaryKey in the source XML corresponds
to the PrimaryKey in the database table.
Does not update existing Department
records which do not have a counterpart in
the input XML file (no such key exists in the
source).
Deletes all Person records linked to a
Department which has a corresponding
PrimaryKey in the source XML. The reason
is that the Delete data in child tables
option is enabled for the parent Department
table.
Person records linked to a department that
did not meet the Update if... condition
remain in the database.

456 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Configuration G

Settings Mapping result

"Department" tab le

"Person" tab le

Updates Department records where
PrimaryKey in the source XML corresponds
to the PrimaryKey in the database table.
Does not update existing Department
records which do not have a counterpart in
the input XML file (no such key exists in the
source).
Deletes all Person records which satisfy
both of the following conditions:

a. The Person record is linked to a
Department which has a corresponding
PrimaryKey in the source XML, and

b. The Person record has a corresponding
PrimaryKey in the source XML.

"Delete if..." Action7.2.3.7

The table action Delete if... is used to delete data from a database table conditionally. You can
define this action from the Database Table Actions dialog box (see Database Table Actions
Settings). For example, when mapping data from a source XML to a target database, you can
configure a Delete if... condition to check whether a certain field in the source XML is equal to a
field in the target database record (typically, a primary key value). If the Delete if... condition is
true (that is, the two fields are equal), the database record will be deleted when the mapping runs.

Note: The Delete if... table action should not be confused with the Delete data in child
tables option available in the Database Table Actions dialog box. The Delete if... table
action only affects the table for which the action is defined; no other tables are affected.

This example shows you how to delete data from a database table conditionally, and also insert
records into the same database table based on the outcome of the delete condition.

This example uses the following files:

altova-cmpy-extra.xml — contains the source data to be inserted into the database.
Altova_Hierarchical.xsd — the schema used to validate the instance file above.
altova.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder.

© 2018 Altova GmbH

Databases and MapForce 457Data Sources and Targets

Altova MapForce 2018 Professional Edition

Below, the complete path to them will be omitted, for simplicity.

The mapping in this example modifies a sample database file. It is strongly recommended to
back up the original database and start with a new copy before following the steps below.
This ensures that the original examples are not overridden and that you get the same results
as below. For more information, see Executing Mappings Which Modify Databases.

The goal of the mapping is as follows:

If any person records with the same PrimaryKey exist both in the source XML and the
target Person table, they must be deleted from the Person table.
All other records from the source XML must be inserted into the Person table.

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component

On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd.
When prompted to supply an instance file, browse for altova-cmpy-extra.xml.

Step 2: Insert the target database

On the Insert menu, click Database, and go through the wizard steps to connect to
altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

Step 3: Draw the connections

Draw the mapping connections as shown below.

458 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 4: Configure the "Delete if... Insert Rest" actions

1. On the target component, click the Action: Insert () button next to the "Person"
table.

2. Next to Action on record, select Delete if... . This changes the database table action to
a conditional delete action. That is, the current record will only be deleted when a
condition is satisfied (see next step).

3. Next to PrimaryKey, select the value equal, as shown below. This defines the update
condition: that is, the database record will be deleted only when its PrimaryKey value is
equal to the PrimaryKey value coming from the mapping.

© 2018 Altova GmbH

Databases and MapForce 459Data Sources and Targets

Altova MapForce 2018 Professional Edition

4. Click Append Action. This adds a new action to the right of the existing Delete If
action. Configure the new action as Insert Rest:

In the image above, the database table actions have been configured in accordance with
the goals of the mapping. That is, only when the Delete If... condition is satisfied will the
record be deleted; otherwise, it will be inserted. The option "mapped value" specifies that
values from the mapping will be used to populate all fields of the record.

5. Click OK to close the dialog box. Notice that, back on the mapping, the Action: Insert

 button has now changed to an Action: Delete; Insert () button. This
indicates that both a delete and an insert action is configured for this table.

Step 5: Preview the mapping and update the database

Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be
executed against the database. The script has not modified the database yet; it is only for
preview. To run the script against the database:

On the Output menu, click Run SQL-Script.

Note: Running the SQL script directly from MapForce is just one of the ways to update the

460 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

database, see also Executing Mappings Which Modify Databases.

If you open the "Person" table in the DB query tab of MapForce (see Browsing and Querying
Databases), you can see the result of the mapping as follows:

All database records which had corresponding primary keys in the XML file have been
deleted. Examples are records with primary key 1, 2, 3, 4, and 5.
All database records which had no corresponding keys in the XML file remained
unaffected. Examples are records with primary key 6, 7, 8, 9, 10, 11, 12, and 13.
New records have been inserted to the "Person" table (where key did not already exist in
the database). Examples are records with primary key 30 and 31.

The "Person" tab le after updating the database

"Ignore if..." Action7.2.3.8

The table action Ignore if... is used to prevent certain records in a database table from being
updated, based on a defined condition. The Ignore if... action is only meaningful when used in
combination with another database table action (such as the Insert Rest action). For example,
when mapping data from a source XML to a target database, you can configure an Ignore if...
condition to check whether a certain field in the source XML is equal to a field in the target
database record (typically, a primary key value). If the Ignore if... condition is true (that is, the
two fields are equal), the database record will be ignored when the mapping runs, and the next
defined action (Insert Rest, for example) will be executed.

This example shows you how insert records into a database table based on the outcome of the
Ignore if... condition. It uses the following files:

altova-cmpy-extra.xml — contains the source data to be inserted into the database.
Altova_Hierarchical.xsd — the schema used to validate the instance file above.
altova.mdb — the target database to be updated.

All files are available in the <Documents>\Altova\MapForce2018\MapForceExamples\ folder.
Below, the complete path to them will be omitted, for simplicity.

© 2018 Altova GmbH

Databases and MapForce 461Data Sources and Targets

Altova MapForce 2018 Professional Edition

The mapping in this example modifies a sample database file. It is strongly recommended to
back up the original database and start with a new copy before following the steps below.
This ensures that the original examples are not overridden and that you get the same results
as below. For more information, see Executing Mappings Which Modify Databases.

The goal of the mapping is as follows:

If any person records with the same PrimaryKey exist both in the source XML and the
target Person table, no action must be taken against them (that is, they must be
ignored).
If any person records which do not meet the above condition exist in the Person table, no
action must be taken against them either.
Records from the source XML which do not have a counterpart (no primary key) in the
Person table must be treated as new and inserted into the Person table with a new
primary key.

To achieve the mapping goal, we will take the steps below.

Step 1: Insert the source XML component

On the Insert menu, click XML Schema/File, and browse for Altova_Hierarchical.xsd.
When prompted to supply an instance file, browse for altova-cmpy-extra.xml.

Step 2: Insert the target database

On the Insert menu, click Database, and go through the wizard steps to connect to
altova.mdb (see Example: Adding the "altova.mdb" Database to the Mapping).

Step 3: Draw the connections

Draw the mapping connections as shown below.

462 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 4: Configure the "Ignore if... Insert Rest" actions

1. On the target component, click the Action: Insert () button next to the "Person"
table.

2. Next to Action on record, select Ignore if... . This changes the database table action to
a conditional ignore action. That is, the current record will only be ignored when a
condition is satisfied (see next step).

3. Next to PrimaryKey, select the value equal, as shown below. This defines the ignore
condition: that is, the database record will be ignored only when its PrimaryKey value is
equal to the PrimaryKey value coming from the mapping.

© 2018 Altova GmbH

Databases and MapForce 463Data Sources and Targets

Altova MapForce 2018 Professional Edition

4. Click Append Action. This adds a new action to the right of the existing Ignore If
action. Configure the new action as Insert Rest, with the primary key set to max() + 1,
as shown below:

In the image above, the database table actions have been configured in accordance with
the goals of the mapping. That is, only when the Ignore If... condition is satisfied will the
record be skipped; otherwise, it will be inserted. The option "mapped value" specifies that
values from the mapping will be used to populate all fields of the record. The option max()
+ 1 generates a unique, new primary key value for the record.

5. Click OK to close the dialog box. Notice that, back on the mapping, the Action: Insert

 button has now changed to an Action: Ignore; Insert () button. This indicates that
both the ignore and insert actions are configured for this table.

Step 5: Preview the mapping and update the database

Click the Output tab to preview the mapping. A SQL script is generated, containing actions to be
executed against the database. The script has not modified the database yet; it is only for
preview. To run the script against the database:

On the Output menu, click Run SQL-Script.

464 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: Running the SQL script directly from MapForce is just one of the ways to update the
database, see also Executing Mappings Which Modify Databases.

If you open the "Person" table in the DB query tab of MapForce (see Browsing and Querying
Databases), you can see the result of the mapping as follows:

All database records which had corresponding primary keys in the XML file satisfied the
Ignore if... and remained unaffected. Examples are records with primary key 1, 2, 3, 4,
and 5.
All database records which had no corresponding keys in the XML file did not satisfy the
Ignore if... condition but nevertheless remained unaffected. Examples are records with
primary key 6, 7, 8, 9, 10, 11, 12, and 13.
New records have been inserted to the "Person" table (where key did not already exist in
the database). Examples are records with primary key 30 and 31 in the source XML file.
These were inserted into the database with the new primary key 22 and 23, respectively.

The "Person" tab le after updating the database

Using Transaction Rollback7.2.3.9

Transaction rollback is a feature that enables you to decide what should happen when a database
exception occurs for whatever reason. Namely, when you attempt to run a SQL script from
MapForce, and an error occurs, a dialog box such as the one below opens, prompting you to

© 2018 Altova GmbH

Databases and MapForce 465Data Sources and Targets

Altova MapForce 2018 Professional Edition

choose how to continue. Because there might be SQL statements (transactions) that were
already executed successfully before the exception occurred, you can choose to roll back (undo)
all previously executed transactions, or only the current one.

Database Transaction Exception dialog box

To be able to roll back unsuccessful database actions, you must enable transactions first. You
can enable database transactions as follows:

At database level. To enable transactions at database level, select the Use transactions
check box from the Database Component Settings dialog box (see also Database
Component Settings).
For each individual table. To enable transactions for each individual table, select the Use
transactions check box from the Database Table Actions dialog box (see also Database
Table Actions Settings).

You can enable transactions at database level without enabling them at table level, and vice versa.
Be aware that, when a database exception occurs, the available rollback options depend on how
transactions were enabled:

If transactions were not enabled at all, and an error occurs, execution stops at the point
the error occurs. All previously successful SQL statements are executed and the results
are stored in the database. It is not possible to roll back any transactions.
If transactions were enabled at table level but not at database level, execution stops at
the point the error occurs. In this case, the option Rollback all and stop is disabled.
You can roll back only the current transaction for that specific table, and either continue

466 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

with the mapping execution or stop running the mapping completely.
If transactions were enabled at the database level only, execution stops at the point the
error occurs. All previously successful SQL statements are rolled back. No changes are
made to the database.
If transactions were enabled at both the database level and table level, execution stops at
the point the error occurs. In this case, select Rollback all and stop to roll back all
previously successful SQL statements for the entire database. To roll back only the last
transaction, and continue executing the mapping, select Rollback this transaction and
continue.

Note that the Database Transaction Exception dialog box is displayed only when you run the
mapping directly from MapForce, using the SQL | Run SQL-Script menu command. When the
mapping is executed in another environment (either by the generated code, or by MapForce
Server), and an error is encountered, an automatic rollback of the erroneous transaction occurs. In
this case, any successful SQL statements that were previously executed are rolled back only if
you enabled transactions at the database level, as explained above.

If you click Cancel on the dialog box, the execution rolls back the current SQL statement and
stops.

Bulk Inserts (MapForce Server)7.2.3.10

The Use Bulk Transfer option allows you to insert data at very high speed from a MapForce
component (TXT, CSV, DAT, etc.) into a database table. Using this option dramatically speeds up
the Insert process, as only one statement needs to be executed instead of many.

The Use Bulk Transfer option can be enabled in MapForce, at mapping design time, as shown
below. A mapping where this option is enabled can be executed in MapForce, but no bulk insert
applies at this stage. The actual bulk transfer of data occurs when the mapping is run by
MapForce Server.

Bulk transfer is supported when the following conditions are true:

The mapping transformation language is set to BUILT-IN. For further information, see
Selecting a Transformation Language.
The mapping is run by MapForce Server (either standalone or under FlowForce Server
management). This means that the mapping must be either compiled to .mfx format or
deployed to FlowForce Server. For further information, see Compiling Mappings to
MapForce Server Execution Files and Deploying Mappings to FlowForce Server.
The MapForce Server license is not limited to "single thread execution" on a multi-core
machine. That is, the Limit to single thread execution check box in the "Server
Management" tab of Altova LicenseServer must be inactive.
The database action is "Insert all", see also Database Table Actions Settings.
The table into which the data is to be bulk loaded must be a "leaf" table, that is, on the
lowest hierarchy of the database. There should not be any related tables, views, or stored
procedures referencing the table in the mapping.
The database driver supports bulk insert on WHERE conditions.

The following table summarizes support for bulk inserts depending on the database kind and the
driver used.

https://manual.altova.com/AltovaLicenseServer/index.html?alsconfig_servermgmt.htm

© 2018 Altova GmbH

Databases and MapForce 467Data Sources and Targets

Altova MapForce 2018 Professional Edition

ADO ODBC JDBC ADO.NET Native

Access No No n/a n/a n/a

DB2 No Yes Yes Yes n/a

Firebird n/a Yes Yes No n/a

Informix No Yes Yes Yes n/a

iSeries No Yes Yes Yes n/a

MariaDB No Yes Yes Yes n/a

MySQL n/a Yes* Yes Yes n/a

Oracle No Yes Yes Yes n/a

PostgreSQL n/a Yes Yes n/a Yes

Progress n/a Yes Yes n/a n/a

SQL Server Yes Yes Yes Yes n/a

SQLite n/a n/a n/a n/a No

Sybase No Yes Yes n/a n/a

Teradata n/a Yes Yes n/a n/a

* MySQL version 5 or later is required.

This example shows you how create a mapping which bulk loads data from a sample source.txt
file into a target database. The example uses SQL Server 2014 and the AdventureWorks 2014
database. The latter can be downloaded from the CodePlex website (https://
msftdbprodsamples.codeplex.com/).

Location A,15.3,39
Location B,46,34
Location C,56.33,0
Location D,0,399
Location E,0,97.43

source.txt

To define a bulk insert:

1. Set the transformation language to BUILT-IN ().
2. Connect to the AdventureWorks 2014 database and add the "Production.Location" table

to the mapping. For more information, see Adding Databases to the Mapping.

https://msftdbprodsamples.codeplex.com/
https://msftdbprodsamples.codeplex.com/

468 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. On the Insert menu, click Text, and add a source text file (such as the source.txt
sample above) to the mapping. For more information, see CSV and Text Files. Make sure
that the data types of both the source and the target components are compatible. Data

types are visible on component when the Show Data Types () toolbar button must
be enabled.

4. Draw the mapping connections as shown below. Note that the Database Actions button

 is now visible to the right of the table name.

5. Click the Database Actions button (), select the Use Bulk Transfer check box,
and click OK to confirm.

© 2018 Altova GmbH

Databases and MapForce 469Data Sources and Targets

Altova MapForce 2018 Professional Edition

In the dialog box above, notice that the "Action on record" is "Insert All". The Batch size field
defines the number of records to be inserted per action.

Note: When the Use Bulk Transfer option is enabled, the Use Transactions option becomes
disabled, and vice versa. If you want to enable transaction processing, click to clear the
Use Bulk Transfer check box.

Now that bulk insert is enabled, the next step is to execute the mapping in MapForce Server
(either standalone or under FlowForce Server management). For further information, see Compiling
Mappings to MapForce Server Execution Files and Deploying Mappings to FlowForce Server.

Handling Nulls in Database Table Actions7.2.3.11

When a mapping updates a target database by means of table actions such as "Ignore If",
"Update If", "Delete If", MapForce compares the source data against the target data and
generates internal database update queries as a result. (These internal queries are available for
preview in the Output pane of MapForce, see Executing Mappings Which Modify Databases). The
generated queries reflect the comparison conditions that were defined from the "Database Table
Actions" dialog box (see also Database Table Actions Settings).

Null comparisons are a complex subject in the context of SQL and databases, in the sense that
there is no commonly accepted way to compare null values across various database types. From

470 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

a MapForce perspective, it is possible to configure a database mapping so that data comparison
is done in a NULL-aware manner, according to rules applicable to the database kind involved in
the mapping. "NULL-awareness" means that any NULL values will be treated as such for the
scope of data comparison (otherwise, you may get undesired results from the mapping). NULL-
awareness should be enabled if:

1. The "Database Table Actions" dialog box contains "Ignore if", "Update if", "Delete if"
actions, and

2. These actions are taken against records that may contain NULL values, and
3. NULL values in the source table must be treated as equal with NULL values in the target

table.

By default, NULL-awareness is disabled. If the conditions above are true and NULL-awareness is
disabled, there may be instances where the target database table is not updated as expected (for
example, more rows are inserted or updated than necessary). This happens because NULL values
affect the data comparison and could produce undesired results. To prevent this from happening,
select the check box next to each nullable field (email, in the image below) from the "Database
Table Actions" dialog box. Be aware that the check box can be selected only for fields which are
nullable, and when at least one table action has an "equal" or "equal (ignore case)" condition.

Database Table Actions dialog box

© 2018 Altova GmbH

Databases and MapForce 471Data Sources and Targets

Altova MapForce 2018 Professional Edition

Example

To better understand NULL awareness in mappings, let's analyze an example where comparison
of null data occurs. This example uses a Microsoft SQL Server database; however, it is also
applicable for any other supported database type. Optionally, if you have Microsoft SQL Server,
you can create the tables and data used in this example by running the following database script:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\CreateNullableFields.sql.

For convenience, the database tables are illustrated below. Both tables store people data and
have the same columns. Also, the column email can contain null data in both tables.

+----+-----------+-----------+--------------------------+
| id | firstname | lastname | email |
+----+-----------+-----------+--------------------------+
1	Toby	Hughey	t.hughey@nanonull.com
2	Mia	Dahill	NULL
3	Fred	Weinstein	f.weinstein@nanonull.com
+----+-----------+-----------+--------------------------+

The SOURCE tab le

+----+-----------+-----------+--------------------------+
| id | firstname | lastname | email |
+----+-----------+-----------+--------------------------+
| 1 | Mia | Dahill | NULL |
| 2 | Fred | Weinstein | f.weinstein@nanonull.com |
+----+-----------+-----------+--------------------------+

The TARGET tab le

Let's suppose your task is to merge data from the SOURCE table into the TARGET table. Only the
new records must be inserted into the TARGET table (in this example, "Tobie Hughey"). The
records which exist in both tables ("Mia Dahill" and "Fred Weinstein") must be ignored.

The task can be accomplished as follows.

1. On the Insert menu, select Database. Follow the wizard steps to connect to the
database (see also Connecting to a Database). When prompted to add database objects,
select the table SOURCE.

2. On the Insert menu, select Database. Connect to the database again and add the table
TARGET to the mapping.

3. Draw the mapping connections between the source and target components.

472 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Click the Action:Insert button and configure the database table actions as follows:

As illustrated above, a combination of "Ignore if.. Insert Rest" actions are defined. This
configuration means that, for each record, the mapping checks if:

firstname in the source is equal to firstname in the target, AND
lastname in the source is equal to lastname in the target, AND
email in the source is equal to email in the target.

If all the conditions above are true, the record is ignored (according to the requirement).
Otherwise, a new record is inserted into the target table. The id of the new record is generated by
the database, while the other fields (firstname, lastname, email) are populated with values
mapped from the source.

Importantly, the check box next to email enables or disables NULL-aware comparison for this
field. This check box must be selected, because email can contain NULL values (namely, "Mia
Dahill" has a NULL email address). To see the role played by this check box, try updating the
database two times: first time, with the check box selected, and a second time with the cleared
check box.

To update the database, click the Output tab and run the menu command Output | Run SQL-
Script.

If the check box is selected, MapForce has explicit indication that you want to treat the NULL
fields as equal. Therefore, the record "Mia Dahill" is not inserted in the target table, which is the
intended result.

If the check box is not selected, the record "Mia Dahill" is inserted in the target table (despite that
fact that it exists already), which is not the intended result. The reason is that no explicit
indication was given to MapForce that you want to treat NULL values as equal. A similar situation
would occur if you ran the following query against the database (this query retrieves no records

© 2018 Altova GmbH

Databases and MapForce 473Data Sources and Targets

Altova MapForce 2018 Professional Edition

because the NULL value is compared with the "=" operator so it is not NULL aware):

SELECT firstname, lastname, email FROM TARGET WHERE firstname = 'Mia' AND

lastname = 'Dahill' AND email = NULL;

In order to be NULL aware, the query above would have to be rewritten as follows:

SELECT firstname, lastname, email FROM TARGET WHERE firstname = 'Mia' AND

lastname = 'Dahill' AND email IS NULL;

Note: The queries above are only for illustrative purposes and do not reflect the actual syntax of
internal queries generated by MapForce. When NULL awareness is enabled, MapForce
adapts the syntax of generated queries according to the database type (since various
database vendors have different approaches to handling null comparisons).

Database Table Actions Settings7.2.3.12

Whenever you create a mapping connection to a database table, a Database Actions button
appears next to the affected table. Clicking this button opens Database Table Actions dialog box,
from where you can configure the database insert, update, and delete actions, as well as other
options.

474 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Database Table Actions dialog box

Below is a description of the settings available on the Database Table Actions dialog box.

SQL statement to execute before first record

In this group box, you can define SQL statements that are executed before any actions defined
under Actions to execute for each record. Select the desired radio button:

None — No action is carried through. This is the default setting.
DELETE all records — All records from the selected table are deleted before any
specific table action defined in the Actions to execute for each record group box is
performed. Activate the also delete all records in all child tables check box if you
also want to get rid of the data stored in child tables of the selected table. For an
example, see Inserting Data into Multiple Linked Tables.
Custom SQL — Write a custom SQL statement to affect the complete table. Note that
support for multiple SQL statements in one query depends on the database, connection
method, and the driver used.

Actions to execute for each record

This group of settings specify the database actions that are to take place against this table when

© 2018 Altova GmbH

Databases and MapForce 475Data Sources and Targets

Altova MapForce 2018 Professional Edition

the mapping runs. To manage table actions, click the Append Action, Insert Action, or Delete
Action buttons. Multiple actions can be defined if necessary (for example, an "Update if..." action
followed by an "Insert Rest" action.

The defined table actions are processed from left to right. In the example above, the "Update if..."
action is processed first. If the update condition is not satisfied then the following action is
processed (in this example, the "Insert Rest" action). Note the following:

All the defined conditions of one action must be satisfied for the table action to be
executed. When this is the case, all those fields are updated where a connection exists
between the source and target items on the mapping. Any subsequent table actions (to
the right of an action whose condition matched) are ignored for that record.
If the defined condition is not satisfied, then the table action is skipped, and the next
action (to the right) is processed.
If none of the conditions are satisfied, no table action takes place.

Any table actions defined after "Insert All" or "Insert Rest" actions will never be executed,
because no column conditions exist for insert actions. A dialog box appears if this is the
case, stating that the subsequent table action columns will be deleted.

In the "NULL Equal" column, the check box next to each record, where applicable, enables you to
explicitly instruct MapForce that the column may contain NULL values and should be treated as
such (see also Handling Nulls in Database Table Actions).

When the mapping updates a table which has foreign key relationships to other tables, the
following options can be used:

Delete data in child tables This option is meaningful when you select the "Update if..."
action for a parent table. It might be necessary if the number of
records in the source file is different from the number of records
in the target database, and you want to keep the database
synchronized (no orphaned data in child tables). See also
Options for Child Tables When Updating a Parent Table.

Ignore input child data Use this option when you want to update a target parent table,
without affecting any of the child tables/records of that table.
See also Options for Child Tables When Updating a Parent
Table.

For examples which illustrate various combinations of actions, see:

Inserting Data into a Table
Inserting Data into Multiple Linked Tables
Updating a Table
Options for Child Tables When Updating a Parent Table
"Update if... Insert Rest" Action
"Delete if..." Action
"Ignore if..." Action

476 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Use Transactions

Enables database transactions for this particular table action. For more information, see Using
Transaction Rollback.

Use Bulk Transfer

Enables bulk transfer (multiple INSERT statements as one query). Bulk transfer is supported if the
mapping is executed by MapForce Server and the database action is "Insert All". For more
information, see Bulk Inserts (MapForce Server).

Example: Mapping Data from XML to SQLite7.2.3.13

This example walks you through the steps required to create a MapForce mapping which reads
data from an XML file and writes it to a SQLite database. The example is accompanied by a
sample mapping design (.mfd) file. If you want to look at the sample file before starting this
example, you can open it from the following path: <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\XMLtoSQLite.mfd.

The goal of the example is to insert data from an XML file into a SQLite database. To accomplish
the goal of the example, you will need an empty SQLite database to which data will be written. As
illustrated below, you can create and explore the SQLite database either with Altova
DatabaseSpy, or with the command-line shell available from the official SQLite website.

To create the SQLite database:

If DatabaseSpy is installed on your computer (either standalone or as part of Altova MissionKit),
you can create the new SQLite database as follows:

1. Run DatabaseSpy.
2. On the File menu, click Create a Database Connection.
3. Click Connection Wizard, and then click SQLite.
4. Click Create a new SQLite database, enter c:\sqlite\articles.sqlite as path, and then

click Connect.
5. When prompted to set a data source name, leave the default name as is.
6. Open a new SQL editor (Ctrl+N) and run the following query against the database:

create table articles (number smallint, name varchar(10), singleprice
real);

Otherwise, follow the steps below to create the database:

1. Download the SQLite command-line shell for Windows from the SQLite download page
(http://www.sqlite.org/download.html) and unpack the .zip archive to a directory on your
local machine (for the scope of this example, use c:\sqlite).

2. Run c:\sqlite\sqlite3.exe and enter the following statement:

http://www.sqlite.org/download.html

© 2018 Altova GmbH

Databases and MapForce 477Data Sources and Targets

Altova MapForce 2018 Professional Edition

create table articles (number smallint, name varchar(10), singleprice
real);

This creates the table articles in the in-memory database. The table articles consists
of three columns: number, name, and singleprice. The purpose of these columns is to
store data from the elements with the same name defined in the source XML schema.
Each column is declared with a data type suitable for the data expected to be stored in
that column.

3. Run the command:

.save articles.sqlite

This saves the in-memory database to the current working path: c:\sqlite\articles.sqlite.
Note that you will need to refer to this path in subsequent steps.

You have now finished creating the sample SQLite database required for this example.

To create the XML to SQLite mapping design:

1. Run MapForce and make sure that the transformation language is set to BUILT-IN (use
the menu command Output | Built-in Execution Engine).

2. Add to the mapping area the file Articles.xml located in the <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial folder (use the menu command File |
Insert XML Schema/File).

3. Add to the mapping area the database articles.sqlite created in previous steps (use the
menu command File | Insert Database), and then select SQLite.

4. Click Connect. When prompted to choose the database objects, select the articles
table.

478 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Draw the connections as shown below:

6. Click the A:In button on the database component and select the Delete All records
option. This ensures that, every time the mapping is executed, all existing database rows
are first deleted, in order to prevent duplication.

© 2018 Altova GmbH

Databases and MapForce 479Data Sources and Targets

Altova MapForce 2018 Professional Edition

7. Click the Output tab of the main mapping window. MapForce executes the mapping
using the built-in execution engine and displays the create SQL query in the Output
window.

8. Run the SQL script to populate the database (use the menu command Output | Run
SQL-Script). If MapForce does not encounter any runtime errors, the records are inserted
into the SQLite database.

480 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To check whether data was correctly inserted into the SQLite database:

1. Click the DB Query tab of MapForce.
2. Select the articles entry from the drop-down list at the top of the DB Query pane.
3. Enter the following query in the SQL Editor:

select * from articles;

Alternatively, follows the steps below:

1. Run the file c:\sqlite\sqlite3.exe and open the database with the command:

.open articles.sqlite

2. Run the following select statement:

select * from articles;

Regardless of the approach you choose to select the table data (MapForce or SQLite shell), the
query should returns four rows now. This corresponds to the number of records in the source XML
file, which was the intended goal of this example.

7.2.4 Joining Database Data

In mappings that read data from databases, you can join database objects such as tables or
views by adding a Join component to the mapping. For example, you could combine data from

© 2018 Altova GmbH

Databases and MapForce 481Data Sources and Targets

Altova MapForce 2018 Professional Edition

two or more tables bound by foreign key relationships, which is the typical way data is stored in
relational databases. The result would be the same as if you ran against the database an SQL
query where two or more tables are joined by means of an INNER JOIN operation.

Depending on the kind of data connected to the join component, the join operation can happen
either in standard (non-SQL) mode, or in SQL mode. Joins in non-SQL mode are undertaken by
MapForce, while joins in SQL mode are undertaken by the database from which the mapping
reads data.

Joins in non-SQL mode are more flexible because they support more component types as input
(for example, the join can be between tables from different databases, or between XML structures
and database tables). For an example of a non-SQL join, see Example: Join XML Structures. On
the other hand, a non-SQL join causes the mapping engine to perform memory-costly
comparisons (because the total number of comparisons represents the cross-join, or Cartesian
product, of all joined structures). Usually this process takes place very fast and is negligible in
mappings which are not data-intensive; however, if the joined data sources consist of a huge
number of records, then the mapping will require significant time to execute. If your mappings
must process a very large number of records, consider licensing MapForce Server Advanced
Edition, which includes dedicated join optimization to speed up the mapping execution.

A join in SQL mode accepts only eligible database objects as input (such as tables or views), so
it is not as flexible as a non-SQL join. However, it offers better mapping performance because it is
executed natively by the database. For further information, see About Joins in SQL Mode.

Note: Using a Join component is not the only way to join database tables or views. Joins
applicable to databases can also be performed by using SQL SELECT statements, see
SQL SELECT Statements as Virtual Tables. A major difference between SQL SELECT
statements and Join components is that the former are written by hand so they might
provide more flexibility. Join components are a simpler alternative if you do not feel
comfortable writing SQL statements by hand.

To add a Join component:

1. Set the mapping transformation language to BUILT-IN (to do this, either click the
toolbar button, or use the Output | Built-In Execution Engine menu command).

2. On the Insert menu, click Join. Alternatively, click the Join () toolbar button. The
Join component appears on the mapping. By default, it accepts data from two structures,
so it has two nodes/rows inputs. If necessary, you can add new inputs to the join by
clicking the Add Input () button, see Joining Three or More Structures.

3. Connect the structures that are to be joined to the nodes/rows items of the join
component.

4. Add the condition for the join (or multiple conditions). To do this, right-click the Join

482 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

component and select Properties. Join conditions can also be added directly from the
mapping, by connecting the Boolean result of some function to the condition item of the
Join component. In certain cases when database tables are joined, the join condition (or
conditions) can be created automatically by MapForce. For further information, see
Adding Join Conditions.

Notes:

Join components are supported when the target language of the mapping is set to BUILT-
IN. Code generation in C#, C++, or Java is not supported.
When a structure is not a valid or supported input source for the join, MapForce displays
hints either immediately directly on the mapping, or in the Messages window, when you
validate the mapping (see Validating Mappings).
Join components should not be connected to input parameters or results of inline user-
defined functions. If such connections exist, validation errors will occur during mapping
validation.
When you connect eligible database components (such as tables or views) directly to a

Join component, an SQL mode () button automatically appears at the top-right
corner of the Join component. When enabled, this button provides special SQL features
applicable to the join operation (see About Joins in SQL Mode).
It is not possible to connect the output of the joined item to another Join component. If
necessary, however, you can connect a partial result of one join to another one.

About Joins in SQL Mode7.2.4.1

When you connect eligible database components (such as tables or views) directly to a join

component, an SQL mode () button automatically appears at the top-right corner of the join
component. When SQL mode is enabled, the join operation is undertaken by the database from
where the mapping reads data. In other words, MapForce will internally send to the database a
query with the appropriate SQL syntax to select and combine data from all tables that take part in
the join. Importantly, you do not need to write any SQL; the required query is produced based on
how you visually designed the Join component on the mapping, as you will see in subsequent
examples.

Note: From a database and SQL perspective, MapForce-generated joins are always INNER
joins. That is, only records which satisfy the condition in both input sets are returned by
the Join component.

For SQL mode to be possible, the following conditions must be met:

1. Both objects (tables or views) that are to be joined must be from the same database.
2. Both objects that are to be joined must originate from the same MapForce component.

(Note that you can quickly add/remove database objects in a component as follows: right-
click the database component, and select Add/Remove/Edit Database Objects from
the context menu.)

3. The Join condition (or conditions) must defined only from the component properties (by
right-clicking the header of the join component, and selecting Properties), and not on the
mapping (see also Adding Join Conditions).

Note: When database tables are joined in SQL mode, MapForce will create the join condition
(or conditions) automatically, based on foreign key relationships detected between tables.
For automatic join conditions to happen, the database tables must be in a child-parent

© 2018 Altova GmbH

Databases and MapForce 483Data Sources and Targets

Altova MapForce 2018 Professional Edition

relationship on the MapForce component (that is, one table must be "parent" or "child" of
another one on the component), see Example: Join Tables in SQL Mode.

4. All database tables must not yet be in the current target context. For example, if the
mapping is designed in such a way that tables are queried by the mapping before the join
operation, this could make the join impossible. For more information about how a
mapping is executed, see Mapping Rules and Strategies.

You can view or control the SQL mode through the SQL () button at the top-right corner of
the join component, as follows:

SQL mode is disabled (join will be executed by MapForce (or, if applicable, by
MapForce Server).

SQL mode is enabled (join will be executed by the database).

If the button is missing, this means that SQL mode is not meaningful or not supported for the
data that is being joined.

In certain cases, the SQL mode must be explicitly disabled (), for example:

When your mapping requires join conditions outside of the join component properties
(that is, conditions defined on the mapping and connected to the condition item of the
join component).
When you want to join tables from different databases. Use a standard (non-SQL) join if
you need to join tables from different databases.

It is often the case that joined database tables or views contain identical field names in both
joined structures. When SQL mode is enabled, such items appear on the component prefixed by
the keyword "AS". For example, if two joined tables contain an "id" field, this field appears as "id"
on the first joined table and as "id AS id2" on the second joined table. Joined tables can also
produce alias names, for example, if the same table is joined to itself.

The alias field or table names are important if you need to refer to them subsequently on a
mapping. For example, imagine a case when you want to filter or sort the result of the join. To
achieve this, the output of the join component can be connected to a SQL WHERE/ORDER
component, where you would enter the SQL WHERE and ORDER BY clauses.

To refer to a field from the WHERE clause, write the table name, followed by a dot (.) character,
followed by the field name. To refer to a table alias, use the alias name as it appears on the Join
component. In the ORDER BY clause, you can either use the same technique (table.field), or
write just the alias field name (the name that appears after "AS").

For an example mapping which uses SQL WHERE/ORDER clauses, see Example: Join Tables in
SQL Mode.

Note: SQL WHERE/ORDER components are not allowed between a database table and the
join component; they can be added only after (but not before) a join component. For more
information about SQL WHERE/ORDER components, see Filtering and Sorting Database
Data (SQL WHERE/ORDER).

484 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Example: Join Tables in SQL Mode7.2.4.2

This example illustrates how to join data from two database tables, using a MapForce join
component. The join operation is performed in SQL mode, as described in About Joins in SQL
Mode. Note that joining three or more tables works in a very similar way, see also Example:
Create CSV Report from Multiple Tables.

The example is accompanied by a mapping sample which is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\JoinDatabaseTables.mfd.

JoinDatabaseTables.mfd

The purpose of the mapping above is to combine data from two source database tables into a
single target CSV file. As illustrated in the database diagram below, the first table (users) stores
people's addresses and the second table (addresses) stores people names and email addresses.
The two tables are linked by a common field (id in users corresponds to user_id in addresses).
In database terminology, this kind of relation is also known as a "foreign key relationship".

© 2018 Altova GmbH

Databases and MapForce 485Data Sources and Targets

Altova MapForce 2018 Professional Edition

For convenience, the image below illustrates the actual data in both tables.

Each user record in the users table can have zero or more addresses in the addresses table. For

486 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

example, a user may have one address of type "home", or two addresses (one of type "home"
and another of type "work"), or no address at all.

The goal of the mapping is to retrieve full data (name, surname, email, city, street, number) of all
users that have at least one address in the addresses table. It should also be possible to easily
retrieve only addresses of a specific kind (for example, only home addresses, or only work
addresses). The kind of addresses to retrieve ("home" or "work") should be supplied as a
parameter to the mapping. The retrieved people records must be sorted alphabetically by last
name.

The mapping requirement will be accomplished with the help of a Join component, as illustrated in
the steps below.

Note: Using a Join component is not the only way to join database tables or views. Joins
applicable to databases can also be performed by using SQL SELECT statements, see
SQL SELECT Statements as Virtual Tables. A major difference between SQL SELECT
statements and Join components is that the former are written by hand so they might
provide more flexibility. Join components are a simpler alternative if you do not feel
comfortable writing SQL statements by hand.

Step 1: Add the source database

1. On the Insert menu, click Database. (Alternatively, click the Insert Database toolbar
button).

2. Select "SQLite" as database kind, and click Next.
3. Browse for the Nanonull.sqlite file available in the folder: <Documents>\Altova

\MapForce2018\MapForceExamples\Tutorial\, and click Connect.
4. When prompted, select the addresses and users tables.

© 2018 Altova GmbH

Databases and MapForce 487Data Sources and Targets

Altova MapForce 2018 Professional Edition

Step 2: Add the join component

1. On the Insert menu, click Join. (Alternatively, click the Join toolbar button).
2. Draw a connection from the users table to the first input of the join component.
3. Expand the users table and draw a connection from the addresses table (child of users)

to the second input of join component. The button enables you to add more tables if
necessary; however, in this example, only two tables are being joined.

488 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: It is also possible to add the connection directly from the addresses table (the one which
is not child of users); however, in this case, the join conditions would have to be defined
manually, as described in Adding Join Conditions. For the purpose of this example, make
sure to create the connections as shown above. This ensures the required join condition
is created automatically.

4. Click the Define Join Condition button available on the join component. Notice that
the join condition has been created automatically (users.id = addresses.user_id).

© 2018 Altova GmbH

Databases and MapForce 489Data Sources and Targets

Altova MapForce 2018 Professional Edition

Step 3: Add the target CSV component

1. On the Insert menu, click Text File. (Alternatively, click the Insert Text File toolbar
button).

2. When prompted to choose a text processing mode, select Use simple processing for
standard CSV... .

3. Click Append Field several times to create seven CSV fields. Leave all other settings as
is.

4. Double-click the title cell of each field to give it a descriptive name (this will make your
mapping easier to read).

5. Draw the mapping connections between the Join component and the CSV component as
shown below. The connection between the joined item of the join component and the
Rows item of the target component means "create as many records (rows) in the target as
there are records that meet the join condition".

490 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 4: Add the SQL WHERE/ORDER condition and input parameter

1. Right-click the connection between the joined item of the Join component and the Rows
item of the target CSV component, and select Insert SQL-WHERE/ORDER.

2. Enter the WHERE and ORDER BY clauses as shown below.

3. On the mapping, add an input component (using the Insert | Insert Input menu
command) and connect its output to the address_type parameter created in the previous
step.

4. Double-click the input component and configure it as shown below. A design-time value is
required (in this case, "home") to preview the mapping output in MapForce. If you want
the preview to retrieve work addresses, replace this value with "work".

© 2018 Altova GmbH

Databases and MapForce 491Data Sources and Targets

Altova MapForce 2018 Professional Edition

The mapping explained

The join condition automatically created in step 2 ensures that only records which satisfy the join
condition users.id = addresses.user_id are copied to the target. The join condition was added
automatically because the two tables are bound by a foreign key relationship and the mapping
connections were drawn accordingly (for more information about table relationships, see Handling
Database Relationships). Although not applicable to this example, it is also possible to define join
conditions manually, see Example: Create CSV Report from Multiple Tables.

The two source tables are from the same database and from the same component, so this join

benefits from the SQL () mode. Since SQL mode is enabled, the join operation is undertaken
by the database, not by MapForce. In other words, an INNER JOIN statement is generated
internally by MapForce and sent to the database for execution.

The SQL WHERE/ORDER component added in step 4 enables filtering (to retrieve either home or
work addresses) and sorting the recordset. Notice that the WHERE clause created a parameter
:address_type of type string. This parameter makes it possible to supply the address kind

(home or work) from the mapping. For more information about SQL WHERE/ORDER, see Filtering
and Sorting Database Data (SQL WHERE/ORDER).

Finally, the input component makes it possible to supply the actual parameter value when the
mapping runs. Note that, when the mapping runs outside MapForce (for example, when it is
executed by MapForce Server on a different machine), the input must be supplied at mapping
runtime as a command-line parameter, so the design-time value mentioned above is ignored. For
more information, see Supplying Parameters to the Mapping.

Example: Create CSV Report from Multiple Tables7.2.4.3

This example illustrates how to join multiple database tables for the purpose of extracting data
into a single report in CSV format. The database used in this example is called Nanonull.sqlite
and is available at the following path: <Documents>\Altova\MapForce2018

492 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

\MapForceExamples\Tutorial\. This database stores information about a fictitious business
(which includes orders, products, users and their addresses). As is typically the case with
relational databases, the information is normalized and spread across multiple tables. For
example, the users table stores user personal data (which includes first name, last name, and
email). The database also stores information about products ordered by users, in two different
tables: orders (which includes the unique ID of the order, and the time when it took place) and
orderedproducts (which includes a list of products ordered, and their quantity). Furthermore, the
names of the products themselves is stored in a separate table called products.

The goal of the example is to produce a report based on data extracted from various tables, so as
to make it clear who ordered certain products, when, and in which quantity. To achieve the
mapping goal, follow the steps below:

1. On the Insert menu, click Database.
2. When prompted to select a database kind, click SQLite, and then click Next.
3. Browse for the Nanonull.sqlite database mentioned above, and click Connect.
4. When prompted, select the tables orderedproducts, orders, products, and users, and

click OK.

5. Add a Join component to the mapping and create four nodes/rows items by clicking the
Add input () button.

6. Connect the four tables from the database component to the corresponding input items of
the Join component.

© 2018 Altova GmbH

Databases and MapForce 493Data Sources and Targets

Altova MapForce 2018 Professional Edition

Note: In an alternative scenario, you could connect to the Join component the table
orderedproducts, then the table orders (the one which is nested under it, not the one
at the same level), and so on, so that all joined tables are nested under the same "root"
table, see also Handling Database Relationships. The mapping result would be the same
if you joined tables this way. The difference is that in this example the join conditions
must be created manually, as shown below, whereas in the alternative scenario the join
conditions would be created automatically by MapForce. For an example of joining tables
without having to define join conditions manually, see Example: Join Tables in SQL
Mode. Another mapping where all joined tables are under the same "root" table is
available at the following path: <Documents>\Altova\MapForce2018
\MapForceExamples\DB_Denormalize.mfd.

In this example, the tables connected to the Join component have the following order:

1. orderedproducts
2. orders
3. products
4. users

This order affects how the respective structures are displayed on the "Define Join Condition"

dialog box, when you click the Define Join Condition () button. Namely, the first table
(orderedproducts) appears by default under Structure 1, and the table immediately after it
(orders) appears under Structure 2.

494 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To define the first join condition, click the order_id item in the left pane and the id item in the
right pane. Now the fields orderedproducts.order_id and orders.id. are paired:

So far, only two tables have been joined. To define join conditions which involve a third table,
select the desired table from the drop-down list available above the right pane. The left pane
displays in this case all tables that occur before it on the Join component. For example, if you
select products on the right side, then the left side displays orderedproducts and orders
(since these tables occur before products on the Join component). You can now pair fields of
table products with fields of tables preceding it (in this case, orderedproducts.product_id and
products.id).

To join a fourth table (users), select the users table from the drop-down list. You can now pair the
fields orders.user_id and users.id.

© 2018 Altova GmbH

Databases and MapForce 495Data Sources and Targets

Altova MapForce 2018 Professional Edition

Now that all required join conditions have been defined, items of the Join component can be
further mapped to a target component. To finish the mapping, add a CSV component (see CSV
and Text Files), and connect items from the Join component to the target CSV component as
illustrated below:

496 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The mapping illustrated above produces a report (in CSV format) compiled from all four tables
involved in the join, as follows:

ID of the order (taken from the orderedproducts table)
Quantity of ordered items (taken from the orderedproducts table)
Time when the order took place (taken from the orders table)
Name of the product ordered (taken from the products table)
First name and last name of the user who ordered the product (taken from the users
table).

7.2.5 Filtering and Sorting Database Data (SQL WHERE/ORDER)

When you need to filter and sort database data, use an SQL WHERE/ORDER component. This
enables you to manually enter, from the MapForce graphical user interface, a SQL WHERE
clause that filters data. Optionally, you can also specify an ORDER BY clause if you want to sort
the recordset by a particular database field, in ascending or descending order.

The SQL WHERE/ORDER component must be connected to a table or field of a database
mapping component. It is also possible to connect the SQL WHERE/ORDER to a Join
component, if you need to filter the joined set or records (see Joining Database Data).

© 2018 Altova GmbH

Databases and MapForce 497Data Sources and Targets

Altova MapForce 2018 Professional Edition

Adding a SQL WHERE/ORDER component to the mapping

1. On the Insert menu, click SQL WHERE/ORDER. By default, the SQL WHERE/ORDER
component has the following structure:

2. Connect a source database table or field to the table/field item of the SQL WHERE/
ORDER. For an example, open the mapping DB_PhoneList.mfd from the folder
<Documents>\Altova\MapForce2018\MapForceExamples\. In this mapping, the SQL
WHERE/ORDER is used to filter from the source table "Person" all records where the
last name begins with letter "B".

3. Double-click the header of the SQL WHERE/ORDER component (or right-click it and
select Properties from the context menu). This opens the "SQL WHERE/ORDER
Properties" dialog box.

498 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Type the SQL WHERE clause in the text box at the top. Optionally, type the ORDER BY
clause. The image above illustrates the WHERE and ORDER BY clauses defined in the
DB_PhoneList.mfd mapping (these settings are further explained below). For more
examples, see Creating WHERE and ORDER BY Clauses.

Supplying parameters to a SQL WHERE/ORDER

The SQL WHERE/ORDER component used in the mapping DB_PhoneList.mfd defines a
WHERE clause as follows:

Last LIKE :Name

"Last" refers to the name of a database field in the connected table. "LIKE" is an SQL operator.
":Name" creates a parameter called "Name" on the mapping.

Parameters in SQL WHERE/ORDER components are optional; they are useful if you want to
pass a value to the WHERE clause from the mapping. Without parameters, the WHERE clause
above could have been written as follows:

Last LIKE "B%"

© 2018 Altova GmbH

Databases and MapForce 499Data Sources and Targets

Altova MapForce 2018 Professional Edition

This would retrieve all persons whose last name begins with letter "B". In order to make this query
even more flexible, we added a parameter instead of "B%". This makes it possible to supply any
other letter from the mapping (for example, "C", and thus retrieve people whose last name begins
with "C" simply by changing a constant, or a mapping input parameter).

Appearance of SQL WHERE/ORDER components

An important thing about SQL WHERE/ORDER components is that they change appearance
depending on the settings defined in them. This way you can quickly view directly from the
mapping what the SQL WHERE/ORDER component does, for example:

A WHERE clause has been defined.

A WHERE clause with a parameter has been defined. The parameter
"Name" is visible under the "table/field" item.

A WHERE clause with a parameter has been defined. Additionally, an
ORDER BY clause has been defined. The sorting is indicated by the A-Z
sort icon.

Placing the mouse cursor over the SQL WHERE/ORDER header opens a tooltip displaying the
various clauses that have been defined.

Creating WHERE and ORDER BY Clauses7.2.5.1

After an SQL WHERE/ORDER component is added to the mapping, it needs a WHERE condition
(clause) through which you specify how exactly you want to filter the data connected to the
component. The WHERE condition must be entered in the "SQL WHERE/ORDER Properties"
dialog box of MapForce, as shown in the previous section.

Writing a WHERE condition from MapForce is similar to writing the same SQL clause outside
MapForce. Use the syntax applicable to the SQL dialect of the corresponding database. For
example, you can use operators, wildcards, as well as sub-selects or aggregate functions. To
create parameters that you can pass from the mapping, enter a semi-colon character (:) followed
by the parameter name.

Note: When you finish writing the WHERE clause and click OK, MapForce validates the
integrity of the final SQL statement. A dialog box prompts you if there are syntax errors.

The table below lists some typical operators that can be used in the WHERE clause:

Operator Description

= Equal

500 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Operator Description

<> Not equal

< Less than

> Greater than

>= Greater than/equal

<= Less than/equal

IN Retrieves a known value of a column

LIKE Searches for a specific pattern

BETWEEN Searches between a range

Use the % (percentage) wildcard to represent any number of characters in a pattern. For example,
to retrieve all records ending in "r" from a field called lastname, use the following expression:

lastname = "%r"

When querying databases that support storing and querying of XML database data (for example,
IBM DB2, Oracle, SQL Server), you can use XML functions and keywords applicable to that
particular database, for example:

xmlexists('$c/Client/Address[zip>"55116"]' passing
USER.CLIENTS.CONTACTINFO AS "c")

See also Example: Extracting Data from IBM DB2 XML Type Columns.

Optionally, if you want to sort the retrieved recordset by a particular field, add an ORDER BY clause
in the corresponding text box of the "SQL WHERE/ORDER Properties" dialog box. To sort by
multiple fields, separate the field names by commas. To change the sort order, use the ASC and
DESC keywords. For example, the following ORDER BY clause retrieves records ordered by
lastname, and then by firstname, in descending order:

lastname, firstname DESC

Example 1

The following WHERE condition is attached to the Person table of the altova.mdb database
component. It retrieves those records where First and Last are greater than the letter "C". In
other words, it retrieves all names from "Callaby" onwards.

First > "C" AND Last > "C"

Note how the connections are placed:

© 2018 Altova GmbH

Databases and MapForce 501Data Sources and Targets

Altova MapForce 2018 Professional Edition

The connection to table/field originates in the table that you want to query, "Person" in
this case.
The result output is connected to a "parent" item of the fields that are queried/filtered, in
this case the Person item.

Example 2

The following WHERE condition creates a parameter Name which then appears in the SQL
WHERE/ORDER component on the mapping.

Last LIKE :Name

The constant component %S supplies the value of the Name parameter. The wildcard % denotes
any number of characters. This causes the mapping to search for a pattern in the column
"Last" (all last names ending in "S").

502 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Example 3

The following WHERE condition creates two parameters, PhoneUpper and PhoneLower, to which
the current values of PhoneExt are compared. The upper and lower values are supplied by two
constant components shown in the diagram below.

PhoneExt < :PhoneUpper and PhoneExt > :PhoneLower

The WHERE condition in this example could also be written using the BETWEEN operator:

PhoneExt BETWEEN :PhoneUpper and :PhoneLower

7.2.6 SQL SELECT Statements as Virtual Tables

MapForce supports the creation of SQL SELECT statements with parameters in database
components. These are table-like structures that contain the fields of the result set generated by
the SELECT statement. These structures can then be used as a mapping data source, like any
table or view defined in the database.

When using Inner/Outer joins in the SELECT statement, fields of all tables are included
in the component.
Expressions with correlation names (using the SQL "AS" keyword) also appear as a
mappable items in the component.
Database views can also be used in the FROM clause.
SELECT statements can contain parameters which use the same syntax as the SQL
WHERE/ORDER component.

Once the SELECT statement has been added to a database component, the fields returned by it
are available for mapping, for example:

© 2018 Altova GmbH

Databases and MapForce 503Data Sources and Targets

Altova MapForce 2018 Professional Edition

The number of visible lines of the SELECT statement is configurable. To define the number of lines
you want to see on the component, select the menu command Tools | Options, click the
General tab and enter the number of lines in the Mapping View group.

Creating SELECT Statements7.2.6.1

You can create SELECT statements on any mapping which contains a database component. If
your mapping does not contain a database yet, add a database first (see Connecting to a
Database). For the scope of this example, select the menu command Insert | Insert Database
and follow the wizard steps to connect to the altova-products.mdb file available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder.

To create a SELECT statement:

1. Right-click the title of the database component, and select Add/Remove/Edit Database
Objects. (As an alternative, select the database component, and then select the menu
command Component | Add/Remove/Edit Database Objects).

504 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2. Do one of the following:
o To generate the SELECT statement from an existing table, right-click any table and

select Generate and add an SQL statement from the context menu. You will be
able to edit the generated statement afterwards.

o To write a custom SELECT statement, click the Add/Edit SELECT Statement

button.
3. Edit or create the statement as required. For example, the SELECT statement below is

valid for the altova-products.mdb file available in the <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\ folder. The Price field is the product of
the two fields, Quantity and UnitPrice, and is declared as a correlation name (AS
Price).

SELECT *, (Quantity*UnitPrice) AS Price

From Orders

INNER JOIN Products

ON Orders.ProductID = Products.ProductID

Where Orders.Quantity > 2

4. Click Add SELECT Statement. Notice that the SELECT statement is now visible as a
database object, similar to how tables, views, and procedures are visible.

© 2018 Altova GmbH

Databases and MapForce 505Data Sources and Targets

Altova MapForce 2018 Professional Edition

5. Click OK. The SELECT statement is also displayed on the database component, and you
can map data from any of the fields returned by the SELECT query.

Important notes:

All calculated expressions in the SELECT statement must have a unique correlation
name (like "AS Price" in this example) to be available as a mappable item.
If you connect to an Oracle or IBM DB2 database using JDBC, the SELECT statement
must have no final semicolon.

506 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To remove a previously added SELECT statement:

1. Right-click the title of the database component, and select Add/Remove/Edit Database
Objects.

2. Right-click the SELECT statement you want to delete, and select Remove Select
Statement.

Example: SELECT with Parameters7.2.6.2

This example shows you how to create a MapForce mapping which reads data from a Microsoft
Access database and writes it to a CSV file. In particular, the mapping described in this example
uses a custom database SELECT query with a parameter. The SELECT statement combines
data from multiple tables. Then, the results are supplied to the mapping for further processing.

The example is accompanied by a mapping design (.mfd) file available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\select-component.mfd.
You might want to open this sample file and analyze it first, or follow the steps below to create it
from scratch.

Although this example uses a Microsoft Access database, the process works in the same way for
other database types. For information about connecting to other databases, see Connecting to a
Database.

The goals are as follows:

1. We must select from the database only those orders where the number of ordered items
exceeds a custom value. This custom value should be supplied as a parameter to the
mapping. To achieve this goal, we will create a custom database SELECT statement that
takes an input parameter.

2. In the Access database, the date format is YYYY-MM-DD HH-MI-SS. In the CSV file, the
time part must be stripped, so the format should be YYYY-MM-DD. To achieve this goal, we
use the date-from-datetime function available in MapForce.

3. The resulting CSV file must have the name OrdersReport.csv.

Step 1: Add the SELECT structure

1. On the Insert menu, click Database.
2. Select Microsoft Access (ADO), and follow the wizard steps to connect to the altova-

products.mdb file available in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder.

© 2018 Altova GmbH

Databases and MapForce 507Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. On the Insert Database Objects dialog box, click Add/Edit SELECT Statement, and
enter the following query:

SELECT *, (Quantity * UnitPrice) AS Price

FROM Orders

INNER JOIN Products

ON Orders.ProductID = Products.ProductID

WHERE Orders.Quantity > :Quantity

This query uses a join between the Orders and Products tables, and retrieves all fields
(*), and a computed value (AS Price). The query also specifies the :Quantity parameter
in the WHERE clause.

508 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Click Add SELECT statement.

5. Click OK. The altova-products component has now been added to the mapping area.

6. On the altova-products component, click and select Insert Call with Parameters.

© 2018 Altova GmbH

Databases and MapForce 509Data Sources and Targets

Altova MapForce 2018 Professional Edition

A new structure (SELECT_Statement) is now available on the mapping. It is split into two
parts: the left part supplies input connectors and the right part supplies output
connectors. Notice that the left part also includes the Quantity parameter defined
previously.

Step 2: Add the input parameter

1. On the Insert menu, click Insert Input.
2. Type "Quantity" as name.
3. Under Design-time Execution, enter a parameter value to be used for executing the

mapping during the design phase (in this example, "2"). For more information, see
Supplying Parameters to the Mapping.

510 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

You can now connect the input parameter to the database call structure, as shown below.

Step 3: Add the target CSV component

1. On the Insert menu, click Text File.
2. Select Use simple processing for standard CSV..., and then click Continue.
3. On the Component Settings dialog box, click Append Field and add nine new fields. It is

recommended that you give to the CSV fields the same name as the name of the
database fields, as shown below. This will help you save time later when drawing mapping
connections. For more information about these settings, see Setting the CSV Options.

4. Create a connection between the result node of the SELECT structure and the Rows

© 2018 Altova GmbH

Databases and MapForce 511Data Sources and Targets

Altova MapForce 2018 Professional Edition

node of the CSV component.

Because most of the fields in the CSV component have the same name as their database
equivalent, mapping connections will likely be drawn automatically when you connect
result to Rows. If this does happen, select the Connection menu and make sure that
the Auto Connect Matching Children option is enabled. The only mapping item that
you have to connect manually is ProductID, since there is no field with this name in the
SELECT structure.

Step 4: Convert the date

In the Libraries window, search for the date-from-datetime function and drag it to the mapping

area. Then connect its input and output as shown below.

Step 5: Set the name of the output file

To set the name of the output file to OrdersReport.csv, double-click the CSV component, and
enter the value in the Output File box.

512 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

7.2.7 Mapping XML Data to / from Database Fields

MapForce enables you to map data to or from database fields (columns) that store XML content.
This means that XML data stored by the database field (column) can be extracted and written to
any other structure supported by MapForce, and the other way round. You can map data as
follows:

1. To or from fields of a dedicated XML type (for example, Xml in SQL Server, XMLType in
Oracle). Reading or writing XML to/from dedicated XML fields is applicable to databases
that have native support for XML (such as IBM DB2, Oracle, and SQL Server).

2. To or from text fields storing XML content (for example, Text, Varchar). This applies to
any database where the text field has sufficient length to store an XML document.

In either of the cases, a valid XML schema must exist for each database column to/from which
you want to map data. When a database column stores XML, MapForce provides you with the
choice to assign an XML schema directly from the database (if supported by the database), or
select a schema from an external file. You can assign one XML schema per database column. If
the schema has multiple root elements, you can select a single root element of that schema.

When XML is stored as a string field in a database, the character encoding of the XML document
is that of the underlying string field. If the database field does not store text as Unicode, some
characters cannot be represented.

Some databases support XML encoding for XML fields (which may not necessarily be the same
as that of the database character set). If supported by the database, the XML document encoding
declaration is assumed to be the one declared in the XML field. For information about the XML
encoding support provided by various databases, refer to their documentation.

Assigning an XML Schema to a Database Field7.2.7.1

This topic illustrates how to assign a schema to a field that is natively defined as XML type in the
database. The instructions below use SQL Server 2014 and the Adventure Works 2014 database.
The latter can be downloaded from the CodePlex website (https://
msftdbprodsamples.codeplex.com/). Note that mapping of data to or from XML fields works in the
same way with other database types that support XML fields.

https://msftdbprodsamples.codeplex.com/
https://msftdbprodsamples.codeplex.com/

© 2018 Altova GmbH

Databases and MapForce 513Data Sources and Targets

Altova MapForce 2018 Professional Edition

To add the Adventure Works 2014 database as a mapping component:

1. On the Insert menu, click Database, and follow the wizard to connect to the database
using your preferred method (ADO or ODBC). For more information, see Connecting to
Microsoft SQL Server (ADO) and Connecting to Microsoft SQL Server (ODBC). NOTE: If
you use the SQL Server Native Client driver, you might need to set the Integrated
Security property to a space character (see Setting up the SQL Server Data Link
Properties).

2. On the Insert Database Object dialog box, expand the Production schema, and then
select the ProductModel table.

3. Click OK.

The database table has now been added to the mapping area. Notice that this table has two fields
of XML type: CatalogDescription and Instructions:

For the structure of the XML fields to appear on the mapping, the XML schema of the field content
is required. Right-click the Instructions field and select Assign XML Schema to Field from the
context menu.

514 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

In this particular example, you will assign a schema to the Instructions field directly from the
database. To do this, select the Production.ManuInstructionsSchemaCollection item next to
the Database option, and then click OK.

The structure of the XML field now appears on the component. You can now draw connections

© 2018 Altova GmbH

Databases and MapForce 515Data Sources and Targets

Altova MapForce 2018 Professional Edition

(and map data) to or from this field.

Example: Writing XML Data to a SQLite Field7.2.7.2

This example walks you through the steps required to create a MapForce mapping which reads
data from multiple XML files and writes it to a SQLite database. The goal of the mapping is to
create, for each source XML file, a new database record in the SQLite database. Each record will
store the XML document as a TEXT field.

All the files used in this example are available at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\. The file names are as follows:

The mapping design file XmlToSqliteField.mfd

The source XML files bookentry1.xml
bookentry2.xml
bookentry3.xml

The XML schema used for
validation

books.xsd

The target SQLite
database

Library.sqlite

516 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To achieve the goal of the mapping, the following steps will be taken:

1. Add the XML component and configure it to read from multiple files.
2. Add the SQLite database component and assign an XML schema to the target TEXT field.
3. Create the mapping connections and configure the database INSERT action.

Step 1: Add the XML component

1. On the Insert menu, click XML Schema/File and browse for the books.xsd schema
located in the <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\
directory. When prompted to supply a sample XML file, click Skip. When prompted to
select a root element, select Books.

2. Double-click the component header and type bookentry*.xml in the Input XML File
box. This instructs MapForce to read all XML files whose name begins with "bookentry-"
in the source directory. For more information about this technique, see Processing
Multiple Input or Output Files Dynamically.

Step 2: Add the SQLite component

On the Insert menu, click Database, and follow the wizard to connect to the Library.sqlite
database file from the <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\
directory (see also Connecting to an Existing SQLite Database). When prompted to select the
database objects, select the BOOKS table.

The database field where XML content will be written is called metadata. To assign an XML
schema to this field, right-click it and select Assign XML Schema to Field from the context
menu.

© 2018 Altova GmbH

Databases and MapForce 517Data Sources and Targets

Altova MapForce 2018 Professional Edition

In this tutorial, the schema assigned to the metadata field is the same one used to validate the
source XML files. Click Browse and select the books.xsd schema from the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ directory:

The books.xsd schema has two elements with global declaration: book and books. In this
example, we will set book as the root element of the XML written to the database field. Click
Choose, and select book as root element:

Step 3: Create the mapping connections and configure the database INSERT
action

Create the mapping connections as follows:

518 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

As shown above, the connection from book to book is a "Copy-All" connection, since both the
source and target use the same schema and the names of child elements are the same. For
more information about such connections, see Copy-all connections.

The topmost connection (books to BOOKS) iterates through each book element in the source and
writes a new record in the BOOKS table. Click the A:In button on the database component and
set the database update settings as shown below:

The DELETE all records option instructs MapForce to delete the contents of the BOOKS table
before inserting any records.

The Insert All actions specify that a database INSERT query will take place. The field id is
generated from the database itself, while the field metadata will be populated with the value
provided by the mapping.

Make sure to save the mapping before running it.

To run the mapping and view the generated output, click the Output tab. Note that this action
does not update the database immediately. When you are ready to run the generated database

© 2018 Altova GmbH

Databases and MapForce 519Data Sources and Targets

Altova MapForce 2018 Professional Edition

script, select the menu command Output | Run SQL Script (or click the toolbar button).

Example: Extracting Data from IBM DB2 XML Type Columns7.2.7.3

This example illustrates how to extract data from IBM DB2 database columns of XML type and
write it to a target CSV file. It also illustrates how to use XQuery statements embedded into SQL
in order to retrieve XML content conditionally. The example requires access to an IBM DB2
database where you have permission to create and populate tables.

First, let's prepare the database so that it actually contains XML data. This can be done either in
a database administration tool specific to your database, or directly in MapForce. To do this
directly in MapForce, follow the steps below:

1. Create a new mapping and click the DBQuery tab.

2. Click Quick Connect () and follow the wizard steps to create a new database
connection (see also Database Connection Examples).

3. Paste the following text into the SQL Editor. This SQL query creates a database table
called ARTICLES and populates it with data.

-- Create the table

CREATE TABLE

 ARTICLES (
 id INTEGER NOT NULL,

 article XML) ;
-- Populate the table

INSERT INTO ARTICLES VALUES

 (1, '<Article>
 <Number>1</Number>
 <Name>T-Shirt</Name>
 <SinglePrice>25</SinglePrice>
 </Article>'),
(2, '<Article>
 <Number>2</Number>
 <Name>Socks</Name>
 <SinglePrice>230</SinglePrice>
 </Article>'),
(3, '<Article>
 <Number>3</Number>
 <Name>Pants</Name>
 <SinglePrice>34</SinglePrice>
 </Article>'),
 (4, '<Article>
 <Number>4</Number>
 <Name>Jacket</Name>
 <SinglePrice>5750</SinglePrice>
 </Article>');

4. Click the Execute () button. The query execution result is displayed in the Query
Results window. If the query is executed successfully, four rows are added to the newly
created table.

Next, we will create a mapping which retrieves XML data from the ARTICLES table created above

520 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

conditionally. The goal is to retrieve from the ARTICLES column only articles with a price greater
than 100.

Step 1: Add the database

1. Click the Mapping tab to switch back to the mapping pane.
2. On the Insert menu, click Database, and follow the wizard steps to connect to the

database.
3. When prompted to select the database objects, select the ARTICLES table created

previously.

Step 2: Assign the schema to the XML type field

1. Right-click the ARTICLE item of the component, and select Assign XML Schema to
field from the context menu.

2. Select File, and browse for the following schema: <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\DB2xsd.xsd.

© 2018 Altova GmbH

Databases and MapForce 521Data Sources and Targets

Altova MapForce 2018 Professional Edition

Step 3: Add the SQL WHERE/ORDER component

1. On the Insert menu, click SQL WHERE/ORDER.
2. Connect the ARTICLE XML type column to the input of the SQL WHERE/ORDER.

3. In the SQL-WHERE/ORDER Properties dialog box, enter the following text:

XMLEXISTS('$a/Article[SinglePrice>100]' PASSING ARTICLE as "a")

The text above represents the "WHERE" part of the SQL query. At mapping runtime, it
will be combined with the "SELECT" part displayed on the dialog box. This statement
uses the XMLEXISTS function and syntax specific to IBM DB2 databases.

Step 4: Add the target CSV file

1. On the Insert menu, click Text File.
2. When prompted, select Use simple processing for standard CSV... , and click

Continue.
3. Click Append Field three times to add three fields which will store the article number,

name, and price, respectively. Leave all other settings as is.
4. Draw the mapping connections as shown below.

522 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

You can now preview the mapping result, by clicking the Output tab. As expected, only articles
with price greater than 100 are shown in the output.

7.2.8 Browsing and Querying Databases

MapForce has a dedicated Database Query pane (also called DB Query) that allows you to query
a database independently of the mapping process. Such direct queries are not saved together
with the mapping *.mfd file but provide a convenient way to browse or modify the contents of a
database directly from MapForce.

A separate DB Query pane exists for each currently active mapping. You can create multiple
active connections, to different databases, within each DB Query pane. Note that the connections
created from the DB Query pane are not part of the mapping and thus are not preserved after you
close MapForce, unless you define them as Global Resources (see Global Resources).

© 2018 Altova GmbH

Databases and MapForce 523Data Sources and Targets

Altova MapForce 2018 Professional Edition

The Database Query pane consists of the following parts:

Database Browser, which displays connection info and database tables
SQL Editor, in which you write your SQL queries
Results tab, which displays the query results in tabular form
Messages tab, which displays warnings or error messages.

The upper area of the Database Query pane contains the connection controls allowing you to
define the working databases, as well as the connection and database schemas.

Selecting or Connecting to a Database7.2.8.1

For each database that you want to query, a database connection must be created. If your
mapping already includes a database component, you can select the existing database
connection from the upper area of the DB Query pane (by default, the connection is "Offline") and
start exploring the database objects and run queries.

If your mapping does not include any database component, or if you want to connect to a new

database, click Quick Connect () and follow the wizard steps to create a new database
connection (see Examples). You can also select an existing database connection from Global
Resources, if one has been defined as such (see Global Resources).

Once you are connected to the database, you can create database queries using one of the
following methods:

524 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Import the SQL query into the SQL Editor pane from an existing SQL file.
Write the query in the SQL Editor pane.
Right-click an object in the Database Browser pane and generate a query (typically,
SELECT).

When you are ready to run the query displayed in the SQL Editor pane, click the Execute
button. The database data is retrieved and displayed in the Results tab in tabular form. Note that

the status bar displays the "Finished Retrieval" message (), and other
pertinent information about the query results.

Once the "Finished Retrieval" message is displayed, you can search, sort, or copy to clipboard
the search results (see Database Query - Results & Messages tab).

Creating and Editing SQL Statements7.2.8.2

The SQL Editor is used to write and execute SQL statements. It displays any SQL statements
that you may have generated automatically, loaded from existing SQL scripts, or written
manually. The SQL Editor supports autocompletion (see Auto-Completion), regions, and line or
block comments.

The SQL Editor toolbar provides the following buttons:

Toggle Browser: Toggles the Browser pane on and off.

Toggle Result: Toggles the Result pane on and off.

Execute (F5): Clicking this button executes the SQL statements that are currently
selected. If multiple statements exist and none are selected, then all are executed.

Undo: Allows you to undo an unlimited number of edits in the SQL window.

Redo: Allows you to redo previously undone commands. You can step backward and
forward through the undo history using both these commands.

Import SQL file: Opens an SQL file in the SQL Editor, which can then be executed.

Export SQL file: Saves SQL queries for later use.

Open SQL script in DatabaseSpy: Starts DatabaseSpy and opens the script in the

© 2018 Altova GmbH

Databases and MapForce 525Data Sources and Targets

Altova MapForce 2018 Professional Edition

SQL Editor.

Options: Opens the Options dialog box allowing you to define general database query
settings as well as SQL Editor settings.

Generating SQL Statements

SQL statements can be generated automatically from the Database Browser, loaded from scripts,
or entered manually.

To generate SQL SELECT statements from the Database Browser, do one of the
following:

Click a database object (such as a table or view), or a folder, in the Database Browser
and drag it into the SQL Editor.

Right-click a database object in the Database Browser and select Show in SQL Editor |
Select.

To create SQL statements manually:

1. Start entering the SQL statement in the SQL Editor. If autocompletion is set to occur
automatically, a drop-down list with suggestions appears while you enter statement.

2. Use the cursor Up and Down keys to select a suggestion, and then press Enter to insert
the highlighted option (see also SQL Auto-Completion Suggestions).

526 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Executing SQL Statements

The SQL statements that appear in the SQL Editor can be executed against the database, with
immediate effect. The result of the SQL query and the number of affected rows is displayed in the
Messages pane of the DB Query pane.

When multiple SQL statements appear in the SQL Editor, only the selected statements will be
executed. You can select individual SQL statements as follows:

Holding the left mouse button clicked, drag the cursor over a specific statement.
Click a line number in the SQL Editor.
Triple-click a specific statement.

To execute a SQL statement:

1. Enter or select the SQL statement in the SQL Editor (see Generating SQL Statements).

2. Click the Execute () button.

Importing and Exporting SQL Scripts

You can save any SQL that appears in an SQL Editor window to a file and re-use the script file
later on.

To export the contents of the SQL Editor pane to a file:

Click Export SQL file (), and enter a name for the SQL script.

To import a previously saved SQL file:

Click Import SQL file (), and select the SQL file you want to open.

Adding and Removing SQL Comments

The SQL Editor allows you to comment out statements, parts of statements, or groups of
statements. These statements, or the respective parts of them, are skipped when the SQL script
is being executed.

To comment out a section of text:

1. Select a statement or part of a statement.
2. Right-click the selected statement and select Insert / Remove Block Comment.

© 2018 Altova GmbH

Databases and MapForce 527Data Sources and Targets

Altova MapForce 2018 Professional Edition

To comment out text line by line:

Right-click at the position you want to comment out the text and select Insert / Remove
Line Comment. The statement is commented out from the current position of the cursor
to the end of the statement.

To remove a block comment or a line comment:

1. Select the part of the statement that is commented out. If you want to remove a line
comment, it is sufficient to select only the comment marks -- before the comment.

2. Right-click and select Insert / Remove Block (or Line) Comment.

Using Bookmarks

Bookmarks are used to mark items of interest in long scripts.

To add a bookmark:

Right-click the line you want to have bookmarked and select Insert/Remove Bookmark
from the context menu.

528 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

A bookmark icon is displayed in the margin at the beginning of the bookmarked line.

To remove a bookmark:

Right-click the line from where you want to remove the bookmark and select Insert/
Remove Bookmark from the context menu.

To navigate between bookmarks:

To move the cursor to the next bookmark, right-click and select Go to Next Bookmark.
To move the cursor to the previous bookmark, right-click and select Go to Previous
Bookmark.

To remove all Bookmarks:

Right-click and select Remove all Bookmarks.

Inserting Regions

Regions are sections of text that you mark and declare as a unit to structure your SQL scripts.
Regions can be collapsed and expanded to display or hide parts of SQL scripts. It is also
possible to nest regions within other regions.

When you insert a region, an expand/collapse icon and a --region comment are inserted above

the selected text.

Note: You can change the name of a region by appending descriptive text to the --region
comment. The word "region" must not be deleted, e.g. --region DB2query.

To create a region:

1. In the SQL Editor, select the statements you want to make into a region.
2. Right-click and select Add Region from the context menu. The selected statements

become a region which can be expanded or collapsed.

© 2018 Altova GmbH

Databases and MapForce 529Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. Click the + or - box to expand or collapse the region.

To remove a region:

Delete the -- region and -- endregion comments.

Browsing Database Objects7.2.8.3

When you are connected to one or several databases, the Database Browser pane gives a full
overview of the objects in each database, including tables, views, procedures, and so on, up to the
most detailed level. For databases with XML support, the Database Browser additionally shows
registered XML schemas in a separate folder.

For custom navigation through database objects, the Database Browser pane includes several
predefined database display layouts. The predefined layouts are available in the top area of the
Database Browser.

To select a layout, click the Folders Layout () drop-down button and select an entry from
the list. Note that the button changes with the selected layout.

The Folders layout organizes database objects into folders based on object type in a
hierarchical tree, this is the default setting.
The No Schemas layout is similar to the Folders layout, except that there are no
database schema folders; tables are therefore not categorized by database schema.
The No Folders layout displays database objects in a hierarchy without using folders.
The Flat layout divides database objects by type in the first hierarchical level. For
example, instead of columns being contained in the corresponding table, all columns are
displayed in a separate Columns folder.
The Table Dependencies layout categorizes tables according to their relationships with
other tables. There are categories for tables with foreign keys, tables referenced by
foreign keys and tables that have no relationships to other tables.

In addition to layout navigation, you can use the Database Browser for the following tasks:

Generate SQL statements (see Generating SQL Statements).
Filter and search the displayed database objects (see Filtering and Searching Database
Objects).

530 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Sort the tables into "System" and "User" tables.
Refresh the root object of the active data source.

To sort tables into User and System tables:

In the Database Browser, right-click the "Tables" folder, and then select Sort into User
and System Tables.

Note: This function is available when one of the following layouts is selected: Folders,
No Schemas or Flat.

To refresh the root object of the active data source:

At the top of the Database Browser, click Refresh ().

Filtering and Searching Database Objects

You can filter any database objects (schemas, tables, views, etc) displayed in the Database
Browser by name or part of a name. Objects are filtered as you type in the characters. Filtering
is case-insensitive by default. Filtering is not supported if you have selected the "No Folders"
layout.

Filtering database objects

1. At the top of the Database Browser, click Filter Folder contents (). Filter icons
appear next to all folders in the currently selected layout.

2. Click the filter icon next to the folder you want to filter, and select the filtering option from
the context menu (for example, Contains).

© 2018 Altova GmbH

Databases and MapForce 531Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. In the empty field which appears next to the filter icon, enter the search text (for example,
"G"). The results are adjusted as you type.

Searching database objects

To find a specific database item by its name, you can either use filtering functions or the Object
Locator. To find database elements using the Object Locator:

1. At the top of the Database Browser, click Object Locator () .
2. In the drop-down list that appears, enter the search text (for example, "Off").

532 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. Click an object in the list to select it in the Database Browser.

Context Options in Database Browser

The context menu options available in the Database Browser depend on the object you have
selected, for example:

Right-clicking the "root" object allows you to Refresh the database.
Right-clicking a folder always presents the same choices: Expand | Siblings | Children
and Collapse | Siblings | Children.
Right-clicking a database object reveals the Show in SQL Editor command and the
submenu items discussed below.

To select multiple database objects, press either Shift + Click or Ctrl + Click.

Note: The syntax of the SQL statements may vary depending on the database you are using.
The syntax below applies to Microsoft SQL Server 2014.

The following options are available under the Show in SQL Editor context menu for the root
object:

CREATE: Creates a CREATE statement for the selected database root object, for
example:
CREATE DATABASE [MYDB]

DROP: Creates a DROP statement for the selected database root object, for example:
DROP DATABASE [MYDB]

The following options are available under the Show in SQL Editor context menu for tables and
views:

SELECT: Creates a SELECT statement that retrieves data from all columns of the source
table, for example:
SELECT [DepartmentID], [Name], [GroupName], [ModifiedDate] FROM
[MYDB].[HumanResources].[Department]

Name: Returns the name of the table.
Path: Returns the full path of the tables, in the format
DataSourceName.DatabaseName.SchemaName.TableName.

If you selected multiple tables, the names or paths are printed on separate lines, separated
by commas.

The following options are available under the Show in SQL Editor context menu for columns:

SELECT: Creates a SELECT statement that retrieves data from the selected column(s)
of the parent table, for example:
SELECT [DepartmentID] FROM [MYDB].[HumanResources].[Department]

Name: Returns the name of the selected column.
Path: Returns the full path of the column, in the format
DataSourceName.DatabaseName.SchemaName.TableName.ColumnName.

If you selected multiple columns, the names or paths are printed on separate lines, separated
by commas.

© 2018 Altova GmbH

Databases and MapForce 533Data Sources and Targets

Altova MapForce 2018 Professional Edition

The following options are available under the Show in SQL Editor context menu for constraints:

Name: Returns the name of the selected constraint.
Path: Returns the full path of the constraint, in the format
DataSourceName.DatabaseName.SchemaName.TableName.ConstraintName.

If you selected multiple constraints, the names or paths are printed on separate lines,
separated by commas.

The following options are available under the Show in SQL Editor context menu for indexes:

Name: Returns the name of the selected index.
Path: Returns the full path of the index, in the format
DataSourceName.DatabaseName.SchemaName.TableName.IndexName.

If you selected multiple indexes, the names or paths are printed on separate lines, separated
by commas.

If the database has support for XML Schemas, the following options are available for every schema
displayed under the "XML Schemas" folder:

View in XMLSpy: Opens the database schema in XMLSpy, provided that the latter is
installed.
Manage XML Schemas: Opens a dialog box where you can add new or drop existing
database XML schemas.

Copying, Sorting, and Searching the Query Results7.2.8.4

The Results tab of the DB Query pane shows the recordset retrieved as a result of a database
query.

The toolbar buttons enable navigation between results and SQL statements and facilitate
searching within the query results.

Find: Searches a specific text within the displayed results. Press F3 to go to the next
occurrence of the search term.

Go to statement: Jumps to the SQL Editor and highlights the SQL statement that
produced the current result. This might be particularly useful when the SQL Editor
contains multiple statements.

534 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To select cells from the query results:

Click a column header to select the entire column
Click a row number to select the entire row
Click individual cells. Holding down the Ctrl key while clicking allows you to make
multiple selections. If a column or cell contains XML data then this data can also be
copied.

Note: The context menu can also be used to select data, Selection | Row | Column |
All.

To copy the selected cells to clipboard:

Right-click and select Copy selected cells from the context menu.

To sort data:

Right-click anywhere in the column to be sorted and select Sorting | Ascending or
Descending
Click the sort icon in the column header

The data is sorted according to the contents of the sorted column.

To restore the default sort order:

Right-click anywhere in the table and choose Sorting | Restore default from the context
menu.

Viewing the Status of Executed Queries7.2.8.5

The Messages tab of the DB Query pane provides specific information about the last executed
SQL statement and reports errors or warning messages.

© 2018 Altova GmbH

Databases and MapForce 535Data Sources and Targets

Altova MapForce 2018 Professional Edition

You can use different filters to customize the view of the Messages tab or use the Next and
Previous buttons to browse data row by row. The buttons at the top are used to navigate the
messages, copy text to clipboard, and hide certain parts of the message. These options are also
available in the context menu, when you right-click anywhere inside the Messages tab.

Filter: Opens a pop-up menu from where you can filter out the individual message types
(Summary, Success, Warning, Error, Autoinsertion, Progress). "Autoinsertion"
refers to those messages that may be triggered when SQL statements or SQL
constructs are inserted automatically in SQL Editor. "Progress" messages report the
database connection result, as well as the outcome of SQL parsing and data structure
loading.

You can check all or none of these options with a single mouse click by selecting
either Check All or Uncheck All from the pop-up menu.

Next: Jumps to and highlights the next message.

Previous: Jumps to and highlights the previous message.

Copy selected message to the clipboard

Copy selected message including its children to the clipboard

Copy all messages to the clipboard

Find: Opens the Find dialog box.

Find previous: Jumps to the previous occurrence of the string specified in the Find
dialog box.

Find next: Jumps to the next occurrence of the string specified in the Find dialog box.

Clear: Removes all messages from the Message tab of the SQL Editor window.

Database Query Settings7.2.8.6

This section includes information about configuring miscellaneous settings applicable to SQL
statements entered or loaded in SQL Editor, as well as the query results displayed after a query

536 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

is executed.

SQL File Encoding Settings

You can specify the encoding options for SQL files created or opened with SQL Editor as follows:

1. Click the DB Query tab.

2. At the top of the pane, click Options , and then click General | Encoding.

Default encoding for new SQL files

Define the default encoding for new files so that each new document includes the
encoding specification that you specify here. If a two- or four-byte encoding is selected as
the default encoding (for example, UTF-16, UCS-2, or UCS-4), you can also choose
between little-endian and big-endian byte ordering for the SQL files.

The encoding of existing files is not affected by this setting.

Open SQL files with unknown encoding as

You can select the encoding with which to open an SQL file with no encoding
specification or where the encoding cannot be detected.

Note: SQL files which have no encoding specification are saved with a UTF-8 encoding.

SQL Editor General Settings

You can change the general settings applicable to the SQL Editor as follows:

1. Click the DB Query tab.

2. At the top of the pane, click Options , and then click SQL Editor.

© 2018 Altova GmbH

Databases and MapForce 537Data Sources and Targets

Altova MapForce 2018 Professional Edition

General

Syntax coloring emphasizes different elements of SQL syntax using different colors.

Activate the Connect datasource on execute check box to connect to the
corresponding data source automatically whenever a SQL statement is executed and its
data source is not connected.

Retrieval

Specify the maximum amount of time permissible for SQL execution (Execution timeout)
in seconds.

Activating the Show timeout dialog check box allows you to change the time-out
settings when the permissible execution period is exceeded.

Entry Helper Buffer

To enable auto-completion suggestions as you start typing SQL statements, select the
Automatically open check box (see also Auto-Completion).

The entry helper buffer for auto-completion can be filled either when you connect to a data
source or when it is used for the first time. Note that filling the buffer may take some time.
Use the Clear Buffer button to reset the buffer.

538 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Text View Settings

Allows you to define the specific Text view settings: Margins, Tabs, Visual aids, as well
as showing you the Text view navigation hotkeys.

SQL Statement Generation Settings

You can specify the SQL statement generation syntax for various database kinds as follows:

1. Click the DB Query tab.

2. At the top of the pane, click Options , and then click SQL Editor.

To define the syntax preferences for a specific database, select it from the list, and then enable or
disable the three check boxes to the right.

To define a unique syntax for all databases, select Apply to all databases, and then enable or
disable the three check boxes to the right. Note that using common settings for all databases
may cause inability to edit data in Oracle and IBM DB2 and iSeries databases via a JDBC
connection.

Query Result View Settings

You can configure the appearance of the Results tab of the DB Query pane as follows:

1. Click the DB Query tab.

2. At the top of the pane, click Options , and then click SQL Editor | Result View.

© 2018 Altova GmbH

Databases and MapForce 539Data Sources and Targets

Altova MapForce 2018 Professional Edition

Select the Show grid with alternating colors check box to display rows in Result tabs as
simple grid or with alternating white and colored rows. The alternating color is configurable.

The Display Options group lets you define how horizontal and vertical grid lines, as well as line
numbers and the Result toolbar, are displayed. You can switch any of these options off by
deactivating the respective check box.

The Data Editing group lets you define the transaction settings, if the cells are to be filled with
default values and if a hint is to be displayed when data editing is limited.

SQL Editor Font Settings

You can configure color and font settings of SQL statements that appear in SQL Editor as follows:

1. Click the DB Query tab.

2. At the top of the pane, click Options , and then click SQL Editor | Fonts.

540 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The font settings listed in the Font Settings list box are elements of SQL statements. You can
choose the common font face, style, and size of all text that appears in SQL Editor. Note that the
same font and size is used for all text types.

Only the style can be changed for individual text types. This enables the syntax coloring feature.
Click the Reset to default button to restore the original settings.

7.2.9 Stored Procedures

Stored procedures are programs that are hosted and run on a database server. Stored procedures
can be called by client applications and they are often written in some extended dialect of SQL.
Some databases support also implementations in Java, .NET CLR, or other programming
languages.

Typical uses of stored procedures include querying a database and returning data to the calling
client, or performing modifications to the database after additional validation of input parameters.
Stored procedures can also perform other actions outside the database, e.g. send e-mails.

Stored procedures in MapForce:
Can be present (and called) in both source and target database components.
Can have data be mapped to them by input parameters, as well as mapped from them, by
output parameters.
Can be inserted as a function-like call. This allows you to provide input data, execute the
stored procedure, and read/map the output data to other components.
Are visible with their unique name and a clickable button, inside the database component
once the database has been inserted into the mapping area.
Cannot be edited from within MapForce
Can only be used in the BUILT-IN execution engine. Code generation in C++, C#, or Java
is not supported.

© 2018 Altova GmbH

Databases and MapForce 541Data Sources and Targets

Altova MapForce 2018 Professional Edition

Note: To illustrate how MapForce implements stored procedures, this chapter uses Microsoft
SQL Server 2008 and the "AdventureWorks" database. The latter can be downloaded from
the CodePlex website (http://sqlserversamples.codeplex.com).

Support notes

User-defined types, cursor types, variant types and many "exotic" database-specific data
types (such as arrays, geometry, CLR types) are generally not supported as input or
output parameter types.
Procedure and function overloading (multiple definitions of routines with the same name
and different parameters) is not supported.
Some databases support default values on input parameters, this is currently not
supported. You cannot omit input parameters in the mapping to use the default value.
Stored procedures returning multiple recordsets are supported depending on the
combination of driver and database API (ODBC/ADO/ADO.NET/JDBC). Only procedures
that return the same number of recordsets with a fixed column structure are supported.
Whenever possible, use the latest version of the database native driver maintained by the
database vendor. Avoid using bridge drivers, such as ODBC to ADO Bridge, or ODBC to
JDBC Bridge.

The following table lists the database-specific support notes.

Database Support notes

Access Stored procedures in Microsoft Access databases have very limited
functionality and are not supported in MapForce.

DB2 Supported in MapForce: stored procedures, scalar functions, table-
valued functions.
Row-valued functions (RETURNS ROW) are not supported.
It is recommended to install at minimum "IBM_DB2 9.7 Fix Pack
3a" to avoid a confirmed JDBC driver issue when reading errors/
warnings after execution. This also fixes an issue with the ADO
provider that causes one missing result set row.

Firebird Supported in MapForce: stored procedures, table-valued functions

Informix Supported in MapForce: stored procedures, table-valued functions.

MariaDB Supported in MapForce: stored procedures, scalar functions

MySQL Supported in MapForce: stored procedures, scalar functions
MySQL includes complete support for stored procedures and
functions starting with version 5.5. If you are using an earlier version,
functionality in MapForce is limited.

Oracle Supported in MapForce: stored procedures, scalar functions, table-
valued functions.
It is recommended to use a native Oracle driver instead of the
Microsoft OLE DB Provider for Oracle.
Oracle has a special way to return result sets to the client by using
output parameters of type REF CURSOR. This is supported by
MapForce for stored procedures, but not for functions. The names

http://sqlserversamples.codeplex.com

542 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Database Support notes

and number of recordsets is therefore always fixed for Oracle stored
procedures.

PostgreSQL Supported in MapForce: scalar functions, row-valued functions,
table-valued functions.
In PostgreSQL, any output parameters defined in a function
describe the columns of the result set. This information is
automatically used by MapForce - no detection by execution or
manual input of recordsets is needed. Parameters of type refcursor
are not supported.

Progress Supported in MapForce: stored procedures.

SQL Server Supported in MapForce: stored procedures, scalar functions, table-
valued functions.
It is recommended to use the latest SQL Server Native Client
driver instead of the Microsoft OLE DB Provider for SQL Server.
The ADO API has limited support for some data types introduced
with SQL Server 2008 (datetime2, datetimeoffset). If you
encounter data truncation issues with these temporal types when
using ADO with the SQL Server Native Client, you can set the
connection string argument DataTypeCompatibility=80 or use
ODBC.

SQLite SQLite does not use stored procedures.

Teradata Supported in MapForce: stored procedures, macros.
Scalar functions, aggregate functions and table functions are not
supported
Known issue: The Teradata ODBC driver refuses to populate output
parameter values after a procedure call.

Inserting stored procedures in database components7.2.9.1

Stored procedures can be incorporated into a database component when inserting it into the
mapping area. This follows the usual sequence of inserting a database component into MapForce.

To insert a database component containing stored procedures:

1. Click the Insert Database icon, or select the menu option File | Insert Database.
2. Use the Connection Wizard to connect to the database.
3. Having filled in the Connection tab of the Data Link Properties dialog box, click the OK

button.

© 2018 Altova GmbH

Databases and MapForce 543Data Sources and Targets

Altova MapForce 2018 Professional Edition

4. Click the expand button to select the database tables you want to insert, and select the
specific tables.

5. Click the expand button of the Procedures folder to select the stored procedures that you
want to insert along with the tables, then click OK.

The database component is inserted and shows the selected tables followed by the stored
procedures that you selected.

Tables, views and procedures are sorted alphabetically in the database component.
Each stored procedure is shown as an item in the database component containing the
procedure name and a clickable button. The button allows you to select if the procedure
is to be used as a source or target, as well as other procedure settings.

544 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

At this point, MapForce has no specific information if the parameters of the stored
procedure are to be used as source or target parameters. This is achieved by clicking the
stored procedure button and selecting the specific option.

Use cases7.2.9.2

The following uses cases should cover most common types of stored procedures and how to
define them in MapForce.

I want to: Read this section

I want to call a stored procedure to retrieve
data from a database and map it to another
component.

E.g. I want to use a stored procedure as a
data source to write the resulting data into
another file (XML, TXT, EDI, etc.).

Stored procedures in Source components

I want to call a stored procedure to modify the
database or perform another specific action.

Stored procedures in Target components

I want to use stored procedures to generate
one or more values/keys for an Insert
statement in the same database.

Using stored procedures to generate primary
keys

Stored procedures and local relations7.2.9.3

By using local relations (see Defining Local Relationships), you can define a hierarchical order in
which to call stored procedures or perform actions (insert, update, ...) on database tables. They
can be used in source and target components.

A local relation always has a parent object (containing a primary/unique key) and a child object
(containing a foreign key).

Possible parent objects and their fields used in a relation are:
Database table or view (column)
Stored procedure (output parameter or return value)

© 2018 Altova GmbH

Databases and MapForce 545Data Sources and Targets

Altova MapForce 2018 Professional Edition

Recordset of a stored procedure (column) - only for source and procedure call
components
User-defined SELECT statement (column)

Possible child objects and their fields are:
Database table or view (column, produces a WHERE condition)
Stored procedure (input parameter)
User-defined SELECT statement (input parameter)

In source components, this makes it easy to read data from related objects, e.g. read IDs from a
database table and call a stored procedure with each of these IDs to retrieve related information. It
is also possible to call a stored procedure with data retrieved from another procedure.

In target components, local relations allow defining a clear order in which multiple related
procedures are to be called, e.g. one that creates an ID value, and another that inserts related
information into another table. It is also possible to mix stored procedures and tables in local
relations, e.g. perform the insert directly on the related table instead of calling another procedure.

Stored procedures as a data source7.2.9.4

The output of a stored procedure can be zero or more output or return parameters, and zero or
more recordsets from SELECT statements embedded inside the stored procedure. A recordset or
result set is the output of such a SELECT statement, similar to a table or view. Output
parameters and recordsets can be mapped to target components.

The column structures of these recordsets cannot be directly read from the database catalog,
they must therefore be detected by executing the stored procedure at design time or by being
defined manually - see Defining recordsets for details.

Depending on whether the stored procedure has input parameters or not, the handling in
MapForce is different:

The stored procedure has no input parameters Stored procedures
without input
parameters

I want to supply the values for the procedure's input parameters by
mapping from an XML, Text, or other type of file, or from mapping input
parameters or constants

Call with
parameters - input
and output

I want to supply the values for the procedure's input parameters from a
table or view in the same database, or from the output of another stored
procedure

Source
components and
Local Relations

Stored procedures without input parameters

Use this option (for example) if you want to use the stored procedure in a source component
without having any input parameters.

E.g. this could be a stored procedure that is a pure SELECT-type query without any input

546 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

parameters, where you want to map the result of the SELECT statement to a target component.

E.g. HumanResources.uspGetAllEmployees of the AdventureWorks database.

Stored procedure:
PROCEDURE HumanResources.uspGetAllEmployees
AS
 SELECT LastName, FirstName, JobTitle, Department
 FROM HumanResources.vEmployeeDepartment;

The columns of the recordset cannot be directly read from the database catalog by MapForce,
they must therefore be detected by executing the stored procedure once or by being defined
manually.

Defining the output recordset of a source component:
Having inserted the AdventureWorks database component and selected the HumanResources
tables and included stored procedures:

1. Click the "stored procedure" button and select the option "Show nodes as Source".

The Return value node is inserted below the stored procedure name. Since we want to
read the recordset and not the return value, click the stored procedure button again and
select Edit RecordSet structures.

2. Click the "Define input parameters and call procedure" button.

© 2018 Altova GmbH

Databases and MapForce 547Data Sources and Targets

Altova MapForce 2018 Professional Edition

This opens the "Evaluate Stored Procedure" dialog box.

3. Click the "Execute" button, then click OK.
The recordset fields are now visible in the Recordsets section of the dialog box.

548 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Click the OK button again to complete the recordset definition.
The columns, LastName etc., are shown as nodes below the recordset node RS1. (Click
the "+" button to expand the recordset if not visible).

Completing the mapping:
1. Insert a Text file component and map the output icons to the text file.

2. Click the Output button to see the result.

© 2018 Altova GmbH

Databases and MapForce 549Data Sources and Targets

Altova MapForce 2018 Professional Edition

Note:
If executing the stored procedure has side effects (depending on the procedure implementation)
that you want to avoid at design time, recordsets can be also be defined manually in the
Recordset Structures dialog box, by adding recordsets and their associated columns. Click the
Add recordset, or Add column buttons in the Recordset Structures dialog box.

Call with parameters - input and output

Stored procedures can also be used as a function-like call. This allows you to:

provide input data to the procedure
execute the procedure
map the procedure output data to other components

To use a stored procedure as a function-like call:
Having inserted the AdventureWorks database component and selected the Production tables and
included stored procedures:

1. Click the "stored procedure" button of Production.uspGetList, to open the menu.

2. Select the option "Insert Call with Parameters".

This inserts the procedure component into the mapping. The component looks and works
similar to a web service, or user-defined, component. The procedure name is
automatically connected to the "procedure" item of the component.

550 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The procedure input parameters are shown on the left, while the output parameters are
shown at right. This particular stored procedure returns output parameters and also a
recordset, however we must define its structure before we can see and use it in
MapForce:

To define the recordset structure:
1. Click the "stored procedure" button, of uspGetList, and select "Edit recordset structures".
2. Click the "Define input parameters and call procedure" button, then click Execute in the

dialog box that opens.

This writes the returned output parameter values into the table below and displays that
one recordset was retrieved.

3. Click the OK button to confirm, then click OK to close the Recordset dialog box.

The recordset has been added to the output section of the stored procedure component.

© 2018 Altova GmbH

Databases and MapForce 551Data Sources and Targets

Altova MapForce 2018 Professional Edition

Using the call parameter component:
1. Define the components you want to use to supply the input parameters, e.g. two constant

components as shown in the screen shot, and connect them to the input parameters.

2. Define and insert the target component which will be used to contain the stored procedure
output, e.g. an XML document as shown below.

3. Click the Output button to see the result of the mapping.

The various road frame products are listed.

552 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Source components and Local Relations

Use this option if you want to combine data supplied by a stored procedure recordset with data
from another table, to which there is no direct relationship in the database.

PROCEDURE HumanResources.uspGetAllEmployees
AS
 SELECT LastName, FirstName, JobTitle, Department
 FROM HumanResources.vEmployeeDepartment;

The columns of the recordset cannot be directly read from the database catalog by MapForce,
they must therefore be detected by executing the stored procedure once or by being defined
manually.

Defining the output recordset of a source component:
Having inserted the AdventureWorks database component and selected the HumanResources
tables and included stored procedures:

1. Click the "stored procedure" button and select the option "Show nodes as Source".

The Return value node is inserted below the stored procedure name. Since we want to
read the recordset and not the return value, click the stored procedure button again and
select Edit RecordSet structures.

2. Click the "Define input parameters and call procedure" button.

This opens the "Evaluate Stored Procedure" dialog box.

© 2018 Altova GmbH

Databases and MapForce 553Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. Click the "Execute" button, then click OK.
The recordset fields are now visible in the Recordsets section of the dialog box.

4. Click the OK button again to complete the recordset definition.
The columns, LastName etc., are shown as nodes below the recordset node RS1. (Click
the "+" button to expand the recordset if not visible).

554 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Defining a Local relation to a different table:
1. Right click the Component header, and select Add/Remove/Edit Database Objects.
2. Click the Add/Edit Relations button to open the Add/Edit Relations dialog box, then click

the "Add Relation" button.
3. Define the Primary/Unique Key Object as the stored procedure

uspGetAllEmployees.RS1 and the column as the @Department parameter.
4. Define the Foreign Key Object as Department and the column as Name.

5. Click the OK button in the various dialog boxes.

© 2018 Altova GmbH

Databases and MapForce 555Data Sources and Targets

Altova MapForce 2018 Professional Edition

The Department table is now displayed as a child of the stored procedure.

Completing the mapping
1. Insert the target schema to which you want to map the source database data, and add

the connections as shown below.

2. Click the Output button to see the result.

556 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Stored procedures in Target components7.2.9.5

Choose this option when the stored procedure makes changes to the database, e.g. add/update/
delete etc., and you are not interested in any stored procedure output.

To use stored procedures in a target component:
This option adds the child nodes of the input parameters (as well as in/out parameters) under the
stored procedure item in the target database component.

 E.g.: You want to add a new product model to the database, using the uspAddProductModel
stored procedure of the AdventureWorks database.

Stored procedure:
PROCEDURE Production.uspAddProductModel
@ModelName nvarchar(50),
@Inst xml

as
INSERT INTO [AdventureWorks].[Production].[ProductModel]
 ([Name]
 --,[CatalogDescription]
 ,[Instructions]
 ,[rowguid]
 ,[ModifiedDate])
 VALUES
 (@ModelName
 --,<CatalogDescription, ProductDescriptionSchemaCollection,>
 ,@Inst

© 2018 Altova GmbH

Databases and MapForce 557Data Sources and Targets

Altova MapForce 2018 Professional Edition

 ,NEWID()
 ,GETDATE());

At runtime, MapForce executes the stored procedure using all the mapped input parameters
while ignoring the stored procedure data output.

To create the input parameter items in a target component:
Having inserted the AdventureWorks database component and selected the Production tables and
included stored procedures:

1. Click the "stored procedure" button and select the option "Show nodes as Target".

This inserts the @ModelName and @Inst input parameters below the stored procedure
name. Only the input icons of the input parameters are available in the target
component.

2. Insert a source component, e.g. text file, XML file, etc., and map the items that are to
supply the input parameter data, to the input icons of the stored procedure.

To define transactions for a stored procedure:
1. Click the "stored procedure" button and select the option "Procedure settings".

This opens the Database Procedure Settings dialog box.

558 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2. Click the "Use Transactions" check box and click OK to confirm.
The transaction setting makes sure that the procedure commands can be rolled back if
an error occurs during execution.

3. Click the Output button to see the commands that will be sent to the database.

This dialog box also allows you to define SQL statements to be executed before the
stored procedure is called.

Notes:
The "Add Duplicate input..." context menu options are disabled for the stored procedure
parameters, as each parameter is an atomic value (and could also be "nullable").

The "Add duplicate input..." context menu options are however available for a stored procedure
item. This would call the stored procedure for each duplicated item/node.

Using stored procedures to generate primary keys

Choose this option when the stored procedure makes changes to a database table, and you also
want to use the procedure output parameter to generate a primary key in a different table.

The uspAddProductModelEx procedure is a variation of the uspAddProductModel stored
procedure in the AdventureWorks database.

procedure Production.uspAddProductModelEx

@ModelName nvarchar(50),
@Inst xml,
@ProductModelID int OUTPUT
as begin

INSERT INTO [AdventureWorks].[Production].[ProductModel]

 ([Name]
 ,[Instructions]
 ,[rowguid]
 ,[ModifiedDate])
 VALUES
 (@ModelName
 ,@Inst
 ,NEWID()
 ,GETDATE());
 SELECT @ProductModelID = SCOPE_IDENTITY()

end;

Having inserted the AdventureWorks database component, selected the Production tables and
included stored procedures:

1. Click the "stored procedure" button and select the option "Show nodes as Target".

© 2018 Altova GmbH

Databases and MapForce 559Data Sources and Targets

Altova MapForce 2018 Professional Edition

This inserts the ModelName and Inst parameters below the procedure name. Only the
input parameters of the stored procedure are visible in the component.

As the Inst parameter is of type XML, we need to assign it a relevant XML Schema to
supply the XML data.

2. Right click the Inst parameter and select "Assign XML Schema to field...".
3. Select the provided "Production.ManuInstructionsSchemaCollection in the "Database"

combo box, and click OK.

This adds the XML Schema elements and attributes to the component. The ModelName
parameter and all the Inst parameters are now available in the component.

We now want to define a Local relation to a table that has no direct connection to the
table referenced by the stored procedure parameters (production.product).

Defining a Local relation to a table in which you want to generate a primary
key:

1. Right click the Component header, and select Add/Remove/Edit Database Objects.
2. Click the Add/Edit Relations button to open the Add/Edit Relations dialog box, then click

the "Add Relation" button.
3. Define the Primary/Unique Key Object as the stored procedure uspAddProductModelEx

and the column as the @ProductModelID parameter.
4. Define the Foreign Key Object as ProductModelIllustration and the column as

ProductModelID.

560 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Click the OK button in the various dialog boxes.

The stored procedure output parameter (ProductModelID) has been added to the stored
procedure as an indicator that it will be used in the local relation, but does not have any
input or output icons.

The table ProductModelIllustration has also been added as a child item to the stored
procedure.

Expanding the table shows the keys and columns of the table. Note that ProductModelID
key shows the stored procedure and parameter name it is related to.

Local relations that use the (output) recordset of the stored procedure, cannot be used
here.

Clicking the stored procedure button and selecting "Procedure Settings" allows you to
define an SQL Statement to be run before the procedure is called, as well as activate
transaction settings.

© 2018 Altova GmbH

Databases and MapForce 561Data Sources and Targets

Altova MapForce 2018 Professional Edition

Defining a transaction for a stored procedure:
1. Click the stored procedure icon and select "Procedure Settings".
2. Click the Use Transactions check box, then click OK to confirm.

Defining the transaction for the stored procedure ensures that both retrieving the key and
inserting the record both occur during the same transaction.

Completing the mapping:
The screenshot below shows only a subset of the data you would normally map.

1. Map the data source items to the target database; in this case constants.

562 Data Sources and Targets Databases and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2. Click the Output button to see the pseudo SQL that will be sent to the database.

MapForce automatically calls the stored procedure for each record before the Insert
action.

© 2018 Altova GmbH

CSV and Text Files 563Data Sources and Targets

Altova MapForce 2018 Professional Edition

7.3 CSV and Text Files

MapForce includes support for mapping data to or from text-based file formats such as CSV
(comma-separated values) and FLF (Fixed-Length Field) text files. For example, you can create
data transformations such as:

 XML schema to/from flat file formats
Database to/from flat file formats

Note that, in case of CSV, your files can have as delimiter not only commas, but also tabs,
semicolons, spaces, or any other custom values.

In addition to CSV and FLF files, mapping to or from text files with more complex or custom
structures is possible using MapForce FlexText (this module is available in MapForce Enterprise
Edition). FlexText essentially enables you to define the structure of your custom text data (using
a so-called "FlexText template"), for the purpose of mapping it to other formats.

Mapping data to or from text files is supported in any one of the following languages: Java, C#, C+
+, or BUILT-IN.

There are two ways that mapped flat file data can be generated:

By clicking the Output tab which generates a preview using the Built-in execution engine.
You can also save the mapping result by selecting the menu option Output | Save

output file, or clicking the icon.
By selecting File | Generate code in | Java, C#, or C++ , and then compiling and
executing the generated code.

7.3.1 Example: Mapping CSV Files to XML

The goal of this example is to create a mapping which reads data from a simple CSV file and
writes it to an XML file. The files used in the example are available in the <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\ folder.

1. Select one of the following as transformation language: Java, C#, C++, or BUILT-IN.
2. Add a Text file component to the mapping area (on the Insert menu, click Text File, or

click the Insert Text file toolbar button ().
3. On the Component Settings dialog box, click Input file and browse for the

Altova_csv.csv file. The file contents are now visible in the lower part of the dialog box.
Note that only the first 20 rows of the text file are displayed when in preview mode.

564 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Click inside the Field1 header and change the text to First-name. Do the same for all the
other fields, as follows: Field 2 => Last-name, Field 3 =>Tel-extension, Field 4 => Email,
Field 5 => Position. TIP: Press the Tab key to cycle through all the fields: header1,
header2 etc.

5. Click OK.
6. When prompted to change the component name, click "Change component name". The

CSV component is now visible in the mapping.
7. Add MFCompany.xsd as the target XML component of the mapping (on the Insert

menu, click XML/Schema file).
8. Click Skip when prompted to supply a sample XML file, and select Company as the root

element.
9. Map the corresponding items of both components, making sure to map the Rows item to

the Person item in the schema target.

© 2018 Altova GmbH

CSV and Text Files 565Data Sources and Targets

Altova MapForce 2018 Professional Edition

The connector from the Rows item in the CSV component to the Person item in the
schema is essential, as it defines which elements will be iterated through. That is, for
each row in the CSV file, a new Person element will be created in the XML output
file.

10. Click the Output tab to see the result.

The data from the CSV file is now successfully mapped to an XML file.

7.3.2 Example: Iterating Through Items

This example illustrates how to create iterations (multiple rows) in a target CSV file. The mapping
design file accompanying this example is available at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\Tut-xml2csv.mfd.

566 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Tut-xml2csv.mfd

This mapping has been intentionally created as incomplete. If you attempt to validate the example
file using the menu command File | Validate Mapping, you will notice that validation warnings
occur. Also, if you preview the mapping output, a single row is produced, which may or may not
be your intended goal.

Let's assume that your goal is to create multiple rows in the CSV file from a sequence of items in
the XML file. You can achieve this by drawing a connection to the Rows item of the target CSV file.

For example, to iterate through all offices and have the output appear in the CSV file, it is
necessary to connect Office to Rows. By doing this, you are instructing MapForce: for each
Office item of the source XML, create a row in the target CSV file.

© 2018 Altova GmbH

CSV and Text Files 567Data Sources and Targets

Altova MapForce 2018 Professional Edition

The Rows item in the CSV component acts as an iterator for the sequence of items connected to
it. Therefore, if you connect the Office item, the output creates a row for each office found in the
source XML.

In a similar fashion, if you connect Department to the Rows item, a row will be produced for each
department found in the source XML.

568 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The output would then look as follows:

Finally, mapping Person to the Rows item results in all the Persons being output. In this case,
MapForce will iterate through the records as follows: each Person within each Department, within
each Office.

7.3.3 Example: Creating Hierarchies from CSV and Fixed-Length Text Files

This example is available at the following path: <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\Tut-headerDetail.mfd. The example uses a CSV file
(Orders.csv) which has the following format:

Field 1: H defines a header record and D a detail record.
Field 2: A common key for both header and detail records.
Each Header or Detail record is on a separate line.

The contents of the Orders.csv file are shown below.

© 2018 Altova GmbH

CSV and Text Files 569Data Sources and Targets

Altova MapForce 2018 Professional Edition

The aim of the mapping is as follows:

Map the flat file CSV to an hierarchical XML file
Filter the Header records, designated with an H
Associate the respective detail records, designated with a D, with each of the header
records.

tut-headerDetail.mfd

For this to be achieved, the header and detail records must have one common field. In this case
the common field, or key, is the second field of the CSV file, i.e. OrderNo. In the CSV file, both
the first header record and the following two detail records contain the common value 111.

The Orders.csv file has been inserted twice to make the mapping more intuitive.

The Tut-headerDetail.xsd schema file has a hierarchical structure: Order is the root element,
with Header as its child element, and Detail being a child element of Header.

The first Orders.csv file supplies the Header records (and all mapped fields) to the Header item in

570 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

the schema target file. The filter component is used to filter out all records other than those
starting with H. The Rows item supplies these filtered records to the Header item in the schema
file.

The second Orders.csv file supplies the Detail records (and all mapped fields) by filtering out the
Detail records that match the OrderNo key of the Header record. This is achieved by:

Comparing the OrderNo field of the Header record with the same field of the Detail
records, using the equal function (the priority context is set on the a parameter for
enhanced performance).
Using the Logical-and function to only supply those Detail records containing the same
OrderNo field, as the Header record.

The Rows item supplies these filtered records to the Header and Detail items in the schema file,
through the on-true parameter of the filter component.

Clicking the Output tab produces the XML file displayed below. Each Header record contains its
data, and all associated Detail records that have the same Order No.

Let's now have a look at another example, which uses a slightly different CSV file and is available
in the <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder as Head-
detail-inline.mfd. The difference is that:

 No record designator (H, or D) is available
A common key field, the first field of the CSV file, still exists for both header and detail
records (Head-key, Detail-key...). The field is mapped to OrderNo in the schema target
Header and all respective Detail fields are all on the same line.

© 2018 Altova GmbH

CSV and Text Files 571Data Sources and Targets

Altova MapForce 2018 Professional Edition

The mapping has been designed as follows:

The key fields are mapped to the respective OrderNo items in the schema target.
The Detail item in the schema target file has been duplicated, and is displayed as Detail
(2). This allows you to map the second set of detail records to the correct item.
The result of this mapping is basically the same XML file that was produced in the first
example.

Head-detail-inline.mfd

7.3.4 Setting the CSV Options

After you add a text component to the mapping area, you can configure the settings applicable to
it from the Component Settings dialog box. You can open the Component settings dialog box in
one of the following ways:

572 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Select the component and, on the Component menu, click Properties.
Double-click the component header.
Right-click the component header, and then click Properties.

Text Component Settings dialog box (in CSV mode)

The available settings are as follows.

Component name The component name is automatically generated when you
create the component. You can however change the name at
any time.

If the component name was automatically generated and you
select an instance file after that, MapForce will prompt you to
optionally update the component name as well.

The component name can contain spaces and full stop
characters. The component name may not contain slashes,
backslashes, colons, double quotes, leading or trailing
spaces. In general, be aware of the following implications

© 2018 Altova GmbH

CSV and Text Files 573Data Sources and Targets

Altova MapForce 2018 Professional Edition

when changing the name of the component:

If you intend to deploy the mapping to FlowForce
Server, the component name must be unique.
It is recommended to use only characters that can
be entered at the command line. National characters
may have different encodings in Windows and at the
command line.

Input file Specifies the file from which MapForce will read data. This
field is meaningful for a source component and is filled when
you first create the component and assign to it a text file. The
field can remain empty if you are using the text file
component as a target for your mapping.

In a source component, MapForce uses the value of this field
to read column names and preview the contents of the
instance text file.

To select a new file, click Input File.

Output file Specifies the file to which MapForce will write data. This field
is meaningful for a target component.

To select a new file, click Output File.

Save all file paths relative to
MFD file

When this option is enabled, MapForce saves the file paths
displayed on the Component Settings dialog box relative to
the location of the MapForce Design (.mfd) file. This setting
affects the input and output files used by the text component.
See also Using Relative Paths on a Component.

Input / Output Encoding Allows you specify the following settings of the output
instance file:

Encoding name
Byte order
Whether the byte order mark (BOM) character
should be included.

By default, any new components have the encoding defined
in the Default encoding for new components option. You
can access this option from Tools | Options, General tab.

Field delimiter CSV files are comma delimited "," by default. This option
enables you to select the Tab, Semicolon, or Space
characters as delimiters. You can also enter a custom
delimiter in the Custom field.

First row contains field names Select this option to instruct MapForce to treat the values in
the first record of the text file as column headers. The column
headers then appear as item names on the mapping.

Treat empty fields as absent When this option is enabled, empty fields in the source file

574 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

will not produce a corresponding empty item (element or
attribute) in the target file.

For example, the CSV record "General outgassing
pollutants,,,," consists of four fields, the last three of
which are empty.

Assuming that the output is an XML file, when this option is
disabled, the empty fields will be created in the output with
an empty value (in this example, the elements Last, Title,
and Email):

When this option is enabled, the empty fields will not be
created in the output:

Quote character If your input file contains quotes around field values, select
the quote character that exists in the source file. The same
setting will also be used for output files.

For output files, you can specify additional settings:

Add when needed Adds the selected quote character to only those
fields where the text contains the field delimiter, or
line breaks.

Add always Adds the selected quote character to all fields of
the generated CSV file.

CSV / Fixed Changes the component type to either CSV or FLF (fixed-
length field).

Preview area The lower part of the dialog box displays a preview of up to 20
rows of the file selected as input or output.

© 2018 Altova GmbH

CSV and Text Files 575Data Sources and Targets

Altova MapForce 2018 Professional Edition

If necessary, you can create the structure of the file (or
change the structure of the existing one), as follows.

Append field Creates a new field after the last CSV record.

Insert field Creates a new field immediately before the
currently selected CSV record.

Remove field Deletes the currently selected field.

<< Moves the currently selected field one position to
the left.

>> Moves the currently selected field one position to
the right.

To change the name of a field, click the header (for example,
Field1), and type the new value. Note that the field names
are not editable when the First row contains field names
option is enabled.

To change the data type of a field, select the required value
from the drop-down list. MapForce checks the data type, so if
the input data and the field format to do not agree, then the
data is highlighted in red.

The field types are based on the default XML schema data
types. For example, the Date type is in the form YYYY-MM-
DD.

7.3.5 Example: Mapping Fixed-Length Text Files to Databases

This example illustrates a data mapping operation between a fixed-length text file (FLF) text file
and a Microsoft Access database. The files used in the example are available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. Both the source
text file and the target database store a list of employees. In the source file, the records are
implicitly delimited by their size, as follows:

Field position and name Size (in characters)

Field 1 (First name) 8

576 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Field position and name Size (in characters)

Field 2 (Last name) 10

Field 3 (Phone extension) 3

Field 4 (Email) 25

Field 5 (Position) 25

The goals of the mapping is to update the phone extension of each employee in the database to
the one existing in the source file, while adding the prefix "100" to each extension. To achieve the
goal, take the following steps:

Step 1: Insert and configure the text component
Step 2: Insert the database component
Step 3: Design the mapping
Step 4: Run the mapping

Step 1: Insert and configure the text component

1. Select the menu option Insert | Text file, or click the insert Text file icon .
2. Click the Input file button and select the file <Documents>\Altova\MapForce2018

\MapForceExamples\Tutorial\Altova-FLF.txt file. You will notice that the file is made
up of a single string, and contains fill characters of type #.

© 2018 Altova GmbH

CSV and Text Files 577Data Sources and Targets

Altova MapForce 2018 Professional Edition

3. Select Fixed.

578 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Uncheck the Assume record delimiters present check box.

5. The three rows highlighted in yellow are editable, and enable you to specify i) the field
name ii) the data type and iii) the field size. Type 8 as the new field size, and press
Enter. More data is now visible in the first column, which is now defined as 8 characters
wide.

© 2018 Altova GmbH

CSV and Text Files 579Data Sources and Targets

Altova MapForce 2018 Professional Edition

6. Click Append Field to add a new field, and set the length of the second field to 10
characters.

7. Use the same method to create three more fields of the following lengths: 3, 25, and 25
characters, and change the field headers to make them easier to map: First, Last, Tel.-
Ext, Email, Title. The preview will then look like this:

8. In the Fixed Length Field Settings group, select Custom, and type the hash (#) character.
This instructs MapForce to treat the # character as fill character.

9. Click OK.

580 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10. Click Change component name. The Text file component appears in the Mapping
window. Data can now be mapped to and from this component.

Step 2: Insert the database component

1. Select the menu command Insert | Database, select Microsoft Access, and then click
Next.

2. Select the altova.mdb database available in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder, and click Connect.

3. Select the Person table and click OK.

© 2018 Altova GmbH

CSV and Text Files 581Data Sources and Targets

Altova MapForce 2018 Professional Edition

Step 3: Design the mapping

1. Drag the core | concat function from the Libraries window into the mapping.

2. Select the menu command Insert | Constant, select Number as type, and enter 100 as
value. This constant stores the new telephone extension prefix.

3. Create the mapping as shown below.

4. On the database component, click the Table Action button next to Person.
5. Next to Action on input data, select Update If, and ensure that the action for First and

Last fields is set to equal. This instructs MapForce to update the Person table only if
the first and last name in the source file is equal to the corresponding database field.
When this condition is true, the action taken is defined by the mapping. In this case, the
telephone extension is prefixed by 100, and copied to the PhoneExt field of the Person
table.

582 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 4: Run the mapping

To generate the SQL statement (for preview in MapForce), click the Output tab. To run the

SQL statements against the database, click the Run SQL-script button .

7.3.6 Setting the FLF Options

After you add a text component to the mapping area, you can configure the settings applicable to
it from the Component Settings dialog box. You can open the Component settings dialog box in
one of the following ways:

Select the component and, on the Component menu, click Properties.
Double-click the component header.
Right-click the component header, and then click Properties.

© 2018 Altova GmbH

CSV and Text Files 583Data Sources and Targets

Altova MapForce 2018 Professional Edition

Text Component Settings dialog box (in fixed-length field mode)

The available settings are as follows.

Component name The component name is automatically generated when you
create the component. You can however change the name at
any time.

If the component name was automatically generated and you
select an instance file after that, MapForce will prompt you to
optionally update the component name as well.

The component name can contain spaces and full stop
characters. The component name may not contain slashes,
backslashes, colons, double quotes, leading or trailing
spaces. In general, be aware of the following implications

584 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

when changing the name of the component:

If you intend to deploy the mapping to FlowForce
Server, the component name must be unique.
It is recommended to use only characters that can
be entered at the command line. National characters
may have different encodings in Windows and at the
command line.

Input file Specifies the file from which MapForce will read data. This
field is meaningful for a source component and is filled when
you first create the component and assign to it a text file. The
field can remain empty if you are using the text file
component as a target for your mapping.

In a source component, MapForce uses the value of this field
to read column names and preview the contents of the
instance text file.

To select a new file, click Input File.

Output file Specifies the file to which MapForce will write data. This field
is meaningful for a target component.

To select a new file, click Output File.

Save all file paths relative to
MFD file

When this option is enabled, MapForce saves the file paths
displayed on the Component Settings dialog box relative to
the location of the MapForce Design (.mfd) file. This setting
affects the input and output files used by the text component.
See also Using Relative Paths on a Component.

Input / Output Encoding Allows you specify the following settings of the output
instance file:

Encoding name
Byte order
Whether the byte order mark (BOM) character
should be included.

By default, any new components have the encoding defined
in the Default encoding for new components option. You
can access this option from Tools | Options, General tab.

Fill Character This option allows you to define the characters that are to be
used to complete, or fill in, the rest of the (fixed) field when
the incoming data is shorter than the respective field
definitions. The custom field allows you to define your own fill
character in the Custom field.

If the incoming data already contains specific fill characters,
and you enter the same fill character in the Custom field,
then the incoming data will be stripped of those fill

© 2018 Altova GmbH

CSV and Text Files 585Data Sources and Targets

Altova MapForce 2018 Professional Edition

characters!

Assume record delimiters
present

This option is useful when you want to read data from a
source flat file that does not contain record delimiters such
as CR/LF, or when you want to produce a target flat FLF file
without record delimiters.

See the Understanding the "Assume record delimiters
present" option section below.

Treat empty fields as absent When this option is enabled, empty fields in the source file
will not produce a corresponding empty item (element or
attribute) in the target file.

Assuming that the output is an XML file, when this option is
disabled, the empty fields will be created in the output with
an empty value (in this example, the elements Last, Title,
and Email):

When this option is enabled, the empty fields will not be
created in the output:

CSV / Fixed Changes the component type to either CSV or FLF (fixed-
length field).

Preview area The lower part of the dialog box displays a preview of up to 20
rows of the file selected as input or output.

If necessary, you can create the structure of the file (or
change the structure of the existing one), as follows.

Append field Creates a new field after the last record.

Insert field Creates a new field immediately before the
currently selected record.

Remove field Deletes the currently selected field.

<< Moves the currently selected field one position to
the left.

>> Moves the currently selected field one position to
the right.

586 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To change the name of a field, click the header (in this
example, Field1), and type the new value.

To change the data type of a field, select the required value
from the drop-down list. MapForce checks the data type, so if
the input data and the field format to do not agree, then the
data is highlighted in red.

To set the size of the field in characters, enter the field size
in the third row from the top.

Understanding the "Assume record delimiters present" option
To better understand this option, open the Altova-FLF.txt file available in the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. Notice that the file consists of 71-
character long records, without any delimiters such as CR/LF. If you would need to read data from
this particular file, first you would need to split this file into records. That is, create several fields
whose total size sums up to 71 characters (as shown below), and then disable Assume record
delimiters present. For a step-by-step example, see Example: Mapping Fixed-Length Text Files
to Databases.

© 2018 Altova GmbH

CSV and Text Files 587Data Sources and Targets

Altova MapForce 2018 Professional Edition

If you would need to write data from this file to a destination file which uses the same structure,
then enabling Assume record delimiters present creates a new record after every 71
characters.

The mapping result when "Assume record delimiters present "is enabled

If Assume record delimiters present is disabled, the mapping result appears as one long
string.

588 Data Sources and Targets CSV and Text Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The mapping result when "Assume record delimiters present "is disabled

© 2018 Altova GmbH

HL7 Version 3 589Data Sources and Targets

Altova MapForce 2018 Professional Edition

7.4 HL7 Version 3

Support for HL7 version 3.x is automatically included in MapForce 2018 as it is XML based.

A separate installer for the HL7 V2.2 - V2.5.1 XML Schemas and configuration files is available on
the Libraries page of the Altova website (https://www.altova.com/mapforce/download/libraries)
Select the Custom Setup in the installer, to only install the HL7 V3 components and XML
Schemas.

Location of HL7 XML Schemas after installation:

32-bit MapForce on 32-bit
operating system,
or
64-bit MapForce on 64-bit
operating system

C:\Program Files\Altova\Common2018\Schemas\hl7v3

32-bit MapForce on 64-bit
operating system

C:\Program Files(x86)\Altova\Common2018\Schemas
\hl7v3

HL7 documents can be used as source and target components in MapForce. This data can also
be mapped to any number of XML schema, database or other components.

https://www.altova.com/mapforce/download/libraries

Chapter 8

Functions

592 Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8 Functions

Functions represent a powerful way to transform data according to your specific needs. This
section provides instructions on working with functions (regardless if they are built-in to MapForce,
defined by you, or reused from external sources). Use the following roadmap for quick access to
specific tasks related to functions:

I want to... Read this topic...

Add MapForce built-in functions or
constants to the mapping

Add a Built-in Function to the Mapping
Add a Constant to the Mapping
Search for a Function
View a Function's Type and Description
Add or Delete Function Arguments

Create my own functions in MapForce User-Defined Functions

Add custom XSLT functions to MapForce Importing Custom XSLT 1.0 or 2.0 Functions

Add custom .NET DLL and Java .class
libraries to MapForce

Importing Custom Java and .NET Libraries
Referencing Java, C# and C++ Libraries
Manually

Write my own Java library for use with
MapForce

Create a Java library

Write my own C# library for use with
MapForce

Create a C# library

Write my own C++ library for use with
MapForce

Create a C++ library

View all built-in MapForce functions, or look
up the description of a specific function.

Function Library Reference

© 2018 Altova GmbH

How To... 593Functions

Altova MapForce 2018 Professional Edition

8.1 How To...

8.1.1 Add a Built-in Function to the Mapping

To use a function in a mapping:

1. Select the transformation language (see Selecting a transformation language). Note that
the list of available functions depends on the selected transformation language.

2. Click the required function in the Libraries window and drag it to the mapping area. To
filter functions by name, start typing the function name in the text box located in the lower
part of the window:

Alternatively, you can also quickly add a function to the mapping as follows:

594 Functions How To...

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1. Double-click anywhere on the empty area of the mapping and start typing the function
name. A combo box appears with the same functions as in the Libraries window, filtered
by the text you entered. To see a tooltip with more details about each function, select
any function in the list.

2. Select the required function, and press Enter to add it to the mapping. To close the
combo box without selecting a function, press Escape, or click anywhere outside the
box.

Note: Using the "double-click" alternative way described above, you can also add user-defined
functions to the mapping.

8.1.2 Add a Constant to the Mapping

Constants enable you to supply custom text or numbers to the mapping. A constant's value, as
the name implies, will remain the same for the duration of the mapping lifetime.

To add a constant to the mapping:

1. Do one of the following:
a. On the Insert menu, click Constant.
b. Right-click the mapping, and select Insert Constant from the context menu.

2. Enter the value of the constant, select the data type ("String", "Number", "All other"), and
click OK.

Alternatively, you can also quickly add a constant as follows:

1. Double-click anywhere on an empty mapping area.

© 2018 Altova GmbH

How To... 595Functions

Altova MapForce 2018 Professional Edition

2. Do one of the following:
a. To add a string constant, start typing a double quote followed by the constant value.

The closing double quote is optional.

b. To add a numeric constant, just type the number.
3. Press Enter.

8.1.3 Search for a Function

To search for a function in the Libraries window:

1. Start typing the function name in the text box located in the lower part of the Libraries
window.

By default, MapForce searches by function name and description text. If you want to
exclude the function description from the search, click the down-arrow and disable the
Include function descriptions option.

596 Functions How To...

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To cancel the search, press the Esc key or click .

The functions available in the Libraries window depend on the transformation language
currently selected, see Selecting a Transformation Language.

To find all occurrences of a function within the currently active mapping:

Right-click the function name in the Libraries window, and select Find All Calls from the
context menu. The search results are displayed in the Messages window.

8.1.4 View a Function's Type and Description

To view the data type of a function input or output argument:

1. Make sure that the Show tips toolbar button is enabled.
2. Move your mouse over the argument part of a function.

To view the description of a function:

1. Make sure that the Show tips toolbar button is enabled.
2. Move your mouse of the function (this works both in the Libraries pane and on the

mapping area)

© 2018 Altova GmbH

How To... 597Functions

Altova MapForce 2018 Professional Edition

8.1.5 Add or Delete Function Arguments

To add or delete function arguments (for functions where that is applicable):

Click Add parameter () or Delete parameter () next to the parameter you want to
add or delete, respectively.

Dropping a connection on the symbol automatically adds the parameter and connects
it.

598 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8.2 Defaults and Node Functions

When MapForce reads or writes data, it is often the case that either the source or destination file
or database has empty or null fields. To handle such cases, MapForce provides various built-in
functions, if-else conditions, and other mechanisms that let you replace missing or null data with
something else, or perhaps throw an exception when missing fields are encountered.

Furthermore, you may want to set a default value for multiple items simultaneously (for example,
all children of an XML element). Alternatively, you may want to create a simple function that
substitutes an empty value with some text (for example, "n/a"), and then apply this function to
multiple items. Under normal circumstances, in order to do this, you would need to copy-paste
the same function multiple times on the mapping. However, this would also add clutter to the
mapping and make it more difficult to understand. As a simpler alternative, you could use defaults
and node functions, which are the subject of this chapter.

Note: Defaults and node functions are supported when the target language of the mapping is
BUILT-IN. Running such mappings from generated C#, C++, Java program code, or with
generated XSLT/XQuery transformations is not supported. On the server side, you can
execute such mappings with MapForce Server Advanced Edition.

The term "node function" means that the function applies at node level, be it an XML node or CSV,
JSON, EDI, or database field. The node function may apply either to a single item or to multiple
items at once. Likewise, the term "default" refers to a default value that you want to apply at node
level, for either a single item or multiple items. Note that, at mapping runtime, a node function or
default is called once for each item in a sequence.

Defaults and node functions are particularly useful when you want to apply the same processing
logic to multiple descendant items in a structure, for example:

Every time when an empty or null value is encountered, replace it with some other value,
and do this recursively for all descendant items
Every time when a specific value is encountered (for example, "N/A"), replace it with
some other value (or with an empty string), and do this recursively for all descendant
items
Replace all database null values with empty string or custom text (or with 0, in case of
numeric fields) when reading from a database table
Trim all trailing spaces for all values that are coming from some source database
Append a custom prefix or suffix to all values that are written to a target file or database
Produce a null value each time when a specific value is encountered

Note: It is important to distinguish between "null" and "empty" values, since they are not the
same. A null value means "nothing" (the absence of a value), whereas an empty value is
typically an empty string (''). MapForce provides various ways to handle both, including
(but not limited to) node functions and defaults.

8.2.1 How to Create Defaults and Node Functions

In order to create a default or node function, first determine the item (node, or field) where you
want to define the default or node function. This can be either a "leaf" item (with no descendants)
or an item that has descendants. In the latter case, it will be possible to apply the function or

© 2018 Altova GmbH

Defaults and Node Functions 599Functions

Altova MapForce 2018 Professional Edition

default to all descendant items as well.

Prerequisites:

You can create defaults or node functions either on an input side of a target component,
or on the output side of a source component. To establish which side is right for your
needs, see Choosing the Input or Output Side.
Defaults and node functions require that the connection type between source and target
is either "Source Driven" or Target Driven". "Copy-All" connections are not supported.
Specifically, node functions and defaults are not applied to descendants of "Copy-All"
connections. The node that has the "Copy-all" connection itself will apply node functions
and defaults, but only if it has a simple value, for example, an XML element with simple-
type content and attributes. Therefore, if you want to define a function or set a default on
a node with descendants, the connection type between source and target must not be
"Copy-All". To view or change the connection type, right-click the connection and select
Target Driven (Standard) from the context menu. For more information, see Connection
Types.
Note that creating defaults or node functions is not supported for the "File" node. This
node lets you create or read file names dynamically, see Processing Multiple Input or
Output Files Dynamically.

To create a default or a node function:

1. Right-click the item (node) of interest, and select Node Functions and Defaults | Input
Node Functions and Defaults from the context menu (or Output Node Functions and
Defaults, depending on the case). Alternatively, right-click a connector—in this case,
MapForce will show the node function command for that side only. The Mapping pane
displays a grid at the top, for example:

If the item where you define the rule has a parent, the parent may also have rules (node
functions or defaults) defined against it. To inherit such rules, select the Inherit rules
from ancestors check box. For more information about inheritance, see How Defaults
and Node Functions Work.

2. Do one of the following:

a. To add a default, click Add Default ().

b. To add a function, click Add Function ().

This creates a new rule (a row in the grid at the top of the Mapping pane where you can
choose the criteria for this rule). Configure the rule as follows:

Apply To Select whether the rule should apply to the current item, or to all
descendant items regardless of their depth, or to direct child items
only.

600 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

If the item you selected in step 1 has no descendants, then "Current
item" is the only choice.

Data Type Click the Ellipsis button and select a data type from the dialog
box. The rule (default or node function) will apply only to items that
have this data type (or a derived data type).

If the item you selected in step 1 is one without descendants, then
the item's data type is the only choice.

Default
Value /
Function
Description

If you are defining a default (), type here the default value that you
wish to set for the selected item (and all descendants, if applicable).
To set an empty string as default, leave this field empty.

If you are defining a function (), this field is for information
purpose only. It displays a summary of the function. You can define
the function's body in the next step.

3. If you are defining a function, the mapping area changes to display the function's input
(illustrated below as "raw_value") and output ("result"). This mapping area is a mini-
mapping, and the same general rules apply here as when you define a standard mapping.
For example, the body of a function could look as follows:

The node function illustrated above replaces any empty value with the value "n/a". For more
information about this example, see Example: Replace Empty CSV Fields.

Note the following:

Inside a node function, only certain MapForce components meaningful in this context are
supported, such as built-in functions, variables, if-else conditions, and others. Complex
structures such as XML, JSON, EDI, or databases are not supported. Adding inline user-
defined functions or join components to a node function is also not supported.
Never delete the function's input component ("raw_value"), even if you don't need an input
for your function; otherwise, validation errors will appear when you run the mapping. The
same applies for the function's output. Should you need to restore an accidentally deleted
input component, run the menu command Function | Insert Input.
In some cases, you might find it more convenient to create a node function as follows:

drag a function from the Libraries window to an input or output connector . This
makes sense only for simple functions like right-trim or uppercase.

© 2018 Altova GmbH

Defaults and Node Functions 601Functions

Altova MapForce 2018 Professional Edition

To exit a node function:

Click the Go back button in the upper-left corner of the Mapping pane, or press
Escape.

To view or modify a previously defined node function:

1. In the main mapping, click the icon (black or red color) next to the node of interest.
This icon is present on any node where you previously defined a node function. For more
information about the meaning of node function icons, see How Defaults and Node
Functions Work.

2. Select the function from the grid at the top of the Mapping pane, and click . If the

 button is not present, then the function is most likely defined on some ancestor, not
on the current item (see previous step).

8.2.2 Choosing the Input or Output Side

Because any MapForce component always has an input and an output side, you can define a
node function or a default value on either side, depending on your needs. To understand this
better, let's recall how a mapping works: it first reads data from a source component (for example,
a database or a file), then optionally processes it in some way (for example, using functions or
filters), and finally writes data to some target component (for example, a database or a file).
Considering this, you can apply node functions and set defaults at various stages:

Immediately after data is read from the source file or database (but before it is further
processed by your mapping). For example, in the mapping below the function or default is

defined on the output side of the source component (notice the icon, which denotes
that node functions or defaults are present):

Immediately before data is written to the target file or database (and after it finished all
intermediary processing). For example, in the mapping below, the function or default is
defined on the input side of the target component:

602 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

At an intermediary stage in the mapping process. For example, if the mapping contains
an intermediary variable of complex type (say, an XML structure), you could trim all
values before they are supplied to the XML structure, or immediately after they are
returned by the XML structure).

To summarize the above, you can define node functions either on the "input" or the "output" side
of a component. Functions (or defaults) defined on the input side will process data before it enters
the corresponding item on the component. Conversely, when defined on the output side, they will
process data immediately after it is returned by the corresponding item. If the item where you
defined the function has child items, then you can optionally propagate the default function to
apply to all children as well.

8.2.3 How Defaults and Node Functions Work

As explained in How to Create Defaults and Node Functions, you can create node functions or
defaults for nearly any item (node) on the mapping. Let's call this process defining a rule. Rules
have the following important characteristics that make them extremely flexible:

Inheritance. When you define a rule on an item that has descendants, the rule will be
inherited by descendants by default, unless you choose to disable this option. If the item
where you define the function has multiple levels of child items nested under it, you can
choose to apply the rule only to direct child items, or to all descendant items.
Data type filtering. MapForce applies rules conditionally, based on the data type of each
item. This makes it possible, for example, to apply a certain default value (or a function)
for all items of string type, and a different default (or a function) for all items of numeric
type.

The behavior described above has implications. Namely, it is important to make a difference
between defining a rule and actually applying one. When you define a rule on some item, it does
not necessarily mean that the rule will affect that item. The rule will apply to the item or its
descendants only if the rule criteria (data type and inheritance) allow it.

© 2018 Altova GmbH

Defaults and Node Functions 603Functions

Altova MapForce 2018 Professional Edition

To help you understand which rules are defined and which ones apply, MapForce provides the
following visual clues on the mapping:

Icon Description

This icon (black color) indicates that a rule is defined for this item, and may affect all
its descendants. Click the icon to modify or delete the rule.

This icon (red brick color) indicates that the item qualifies (is eligible) for a rule
defined at some ancestor level. In other words, there exists a rule that applies to (and
may affect) this item.

This icon (bold, red brick color) indicates that a rule is defined for this item, and at
the same time a rule applies to this item. This icon usually appears when a default is
defined for a single node.

This icon indicates that, even though a rule applies to this item, it is deliberately
blocked. You can do this for certain items where you do not want the rule to apply.

Note: This icon is displayed only if inheritance is blocked and no other rules are

defined at this node. If a rule from an ancestor does apply, the icon has priority.

This icon (grayed out) indicates that, even though a rule applies to this item, it is
inactive. For example, this icon may appear for items that are not connected yet on
the mapping.

In general, when multiple node functions or defaults exist for one and the same item, keep in mind
the following rule of thumb:

For any single item on the mapping, MapForce always applies only one node function and
only one default, regardless of how many node functions or defaults qualify to apply for that
item.

In practice, this translates as follows:

When multiple rules exist for one and the same item, MapForce will apply to an item the
rule that is closer to that item. For example, let's assume that you have defined a node
function three times: on a root XML node called Company, on its child node called
Department, and on the grandchild Employee. In this case, MapForce will apply to the
Employee item the function defined on the Employee item, since it is closer. Had there
been no function there, it would look up to find the function of the immediate ancestor,
Department. If there is no function for Department, then it looks further up to the root
node, which in this case is Company. Inheritance is optional; to disable it, clear the
Inherit rules from ancestors check box. When this check box is cleared, the item gets

the "blocked rule" icon.
When one and the same item has multiple rules, then MapForce applies the first
matching rule from the grid at the top of the Mapping pane. To change the order of rules in
this grid, click a rule and then drag and drop to a new position within the grid. Note that
you can drag a rule in the grid only if it is defined for the current item. You cannot change
the position of inherited rules; you can only enabler or disable inheritance.

604 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To better illustrate how this works, we will use a mapping available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\MissingFields.mfd.

MissingFields.mfd

As shown above, this mapping reads data from a source XML file into a target text file (fixed-
length fields). In the source XML file, the element Article has child elements of different type:
"integer", "string", and "decimal". Note that each child element is optional (minOccurs="0").
Therefore, if any of these elements does not exist in the source XML, you will want to provide a
default value; otherwise, you will see empty fields in the target CSV file, for example:

 T-Shirt 25 Available in all sizes
2 2.3
3 Pants Limited stock
4 Jacket 57.5

Below we illustrate various ways to handle missing data by means of rules, along with
explanations of how rules affect the mapping result. They will also help you understand or control
which rule should prevail when multiple rules exist for a given item.

Example 1: Provide defaults for all string items
Given the mapping MissingFields.mfd, let's assume that you have the following requirement: If
any child of Article is of type "string" and is missing, use "n/a" as default value.

To satisfy this requirement, take the steps below:

1. Right-click the Article item, and select Node Functions and Defaults | Output Node
Functions and Defaults from the context menu.

2. Click Add default ().
3. Under Default value, type "n/a" and press Enter.

© 2018 Altova GmbH

Defaults and Node Functions 605Functions

Altova MapForce 2018 Professional Edition

In the mapping above, the rule criteria are set as follows: For all descendant items of Article, if
the data type is "string", and if the source XML element is missing, use the default value "n/a". In
this example, there are two items of type "string", Name and Description, so the rule will apply
to both.

As stated before, the item where a rule is defined has the icon next to it. Items where the rule

will apply have the icon. If you preview the mapping at this stage, you can see that all missing
strings have now been replaced with "n/a" in the output:

 T-Shirt 25 Available in all sizes
2 n/a 2.3 n/a
3 Pants Limited stock
4 Jacket 57.5 n/a

Example 2: Provide defaults conditionally based on data type
Let's now assume that, in addition to defaults for string items, you must also supply a default
value 0 for any item of numeric type. To satisfy this requirement, take the steps below:

1. Click the Article item.

2. Click Add default () and add a second rule with the following criteria:

606 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

In the mapping above, the rule criteria are set as follows:

For all descendant items of Article, if the data type is "string", and if the source XML
element is missing, use the default value "n/a"
For all descendant items of Article, if the data type is numeric, and if the source XML
element is missing, use the default value "0".

Consequently, the output looks as follows:

0 T-Shirt 25 Available in all sizes
2 n/a 2.3 n/a
3 Pants 0 Limited stock
4 Jacket 57.5 n/a

Note: The data type "numeric" is actually a type category, because it includes both the
"integer" and "decimal" data types. It also includes the types "float" and "double",
although such types are not present here. In this example, the rule will apply to both
Number and SinglePrice elements. If you select "decimal" as data type, the rule will
still apply to both Number and SinglePrice, because type "integer" derives from type
"decimal", in the XML schema type hierarchy (see §3 in "XML Schema Part 2: Datatypes
Second Edition", https://www.w3.org/TR/xmlschema-2). If you select "integer" as data
type, however, the rule will apply only to Number.

Example 3: Block rule for a specific item
Let's now assume that you still want to apply defaults for all string and numeric items, like in the
previous example. However, you do not want to set any default to the SinglePrice item.

To satisfy this requirement, click the item SinglePrice, and then clear the check box Inherit
rules from ancestors.

https://www.w3.org/TR/xmlschema-2

© 2018 Altova GmbH

Defaults and Node Functions 607Functions

Altova MapForce 2018 Professional Edition

In the mapping above, the item SinglePrice no longer inherits rules from its parent, Article.

Therefore, a "blocked rule" icon appears next to it.

Consequently, the corresponding field still appears empty in the output:

0 T-Shirt 25 Available in all sizes
2 n/a 2.3 n/a
3 Pants Limited stock
4 Jacket 57.5 n/a

Example 4: Override inherited rule for a specific item
Let's assume that you still want to supply defaults for all string and numeric values; however, for
item SinglePrice exclusively, you want to set a default value of 9999.

To satisfy this requirement, take the steps below:

1. Click the item SinglePrice.

2. Click Add default () and type a default value of 9999.
3. Optionally, select the Inherit rules from ancestors check box. This step is merely to

illustrate that, in this case, the inherited rules will be overridden anyway.

608 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: Inherited rules have yellow background.

In the mapping above, there are three rules that may apply for item SinglePrice: two inherited
ones, and a direct one. In this case, the rule defined directly on the item wins. The inherited rules
will be disregarded. Therefore, the output looks as follows:

0 T-Shirt 25 Available in all sizes
2 n/a 2.3 n/a
3 Pants 9999 Limited stock
4 Jacket 57.5 n/a

Example 5: Set the priority of rules
Let's expand the previous example further and assume that you define one more rule for item
SinglePrice, a default of 8888. As stated before, the rule defined directly on the current item
wins. However, since two rules now exist on the current item (in addition to the inherited ones),
the legitimate question is, which of the two defaults will apply, 8888 or 9999?

© 2018 Altova GmbH

Defaults and Node Functions 609Functions

Altova MapForce 2018 Professional Edition

When multiple rules exist for the same item like in the mapping above, you can choose the
winning rule manually, by dragging it up to the top of the grid. The topmost rule always wins.
Therefore, the default value for SinglePrice will be 8888 if this rule is at the top of the grid:

0 T-Shirt 25 Available in all sizes
2 n/a 2.3 n/a
3 Pants 8888 Limited stock
4 Jacket 57.5 n/a

8.2.4 Example: Replace Empty CSV Fields

This example shows you how to create a MapForce mapping that reads data from a CSV file and
writes data to another CSV file. The goal is to replace all empty fields from the source CSV file
with a custom value ("n/a"). In other words, assuming that the source CSV file looks as follows:

H,111,332.1,22537.7,,Container ship,,,
D,111,A-1579-227,10,3,400,Microtome,,
D,111,B-152-427,7,6,1200,Miscellaneous,,
H,222,978.4,7563.1,,Air freight,,,
D,222,ZZ-AW56-1,10,5,10000,Gas Chromatograph,,

then the desired mapping output should look as follows:

H,111,332.1,22537.7,n/a,Container ship,n/a,n/a,n/a
D,111,A-1579-227,10,3,400,Microtome,n/a,n/a
D,111,B-152-427,7,6,1200,Miscellaneous,n/a,n/a
H,222,978.4,7563.1,n/a,Air freight,n/a,n/a,n/a
D,222,ZZ-AW56-1,10,5,10000,Gas Chromatograph,n/a,n/a

610 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

You can find the mapping created in this example at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\ReplaceEmptyFields.mfd. The source CSV file
for this mapping is called Orders.csv and is in the same folder. The target CSV file will be
generated by MapForce.

To achieve the mapping goal, we will create a single node function that replaces each
encountered empty value with "n/a". As shown below, this function is defined only once but it
applies to multiple descendant CSV fields.

Step 1: Add the source CSV file to the mapping
You can add the source CSV file to the mapping as follows:

1. On the Insert menu, click Text File.
2. (MapForce Enterprise Edition only) Select the option Use simple processing for

standard CSV (delimited) and/or FLF (fixed-length) fields, and click Continue.
3. Click Input File and browse for the following file: <Documents>\Altova\MapForce2018

\MapForceExamples\Tutorial\Orders.csv.

If the check box Treat empty fields as absent is selected, clear it. When selected,
this check box suppresses the empty values and thus will prevent the node function
from working. For more information, see Setting the CSV Options.

4. Click OK.
5. If prompted to change the component name to "Orders", click the option you prefer (for

example, Leave component name unchanged).

For more information about CSV components in MapForce, see CSV and Text Files.

Step 2: Add the target CSV file to the mapping
You can add the target CSV file to the mapping as follows:

1. On the Insert menu, click Text File.
2. (MapForce Enterprise Edition only) Select the option Use simple processing for

standard CSV (delimited) and/or FLF (fixed-length) fields, and click Continue.
3. The target file must have the same number of fields as the source one. Therefore, click

the Append Field button multiple times to add nine fields.
4. Click OK.

Step 3: Draw the mapping connections
At this stage, the mapping contains two components: the source CSV file and the target one.

Click the output connector next to the Rows item on the source component and drag the

cursor to the input connector of the Rows item in the target component. When you do this,
MapForce may automatically connect all descendant items and create a so-called "Copy-All"
connection, depending on your settings. This happens only if the Auto-connect matching

children toolbar option is active. As mentioned previously, node functions are not applied to

© 2018 Altova GmbH

Defaults and Node Functions 611Functions

Altova MapForce 2018 Professional Edition

descendants of "Copy-All" connections. Therefore, the "Copy-All" connection must first be
changed to a standard one. To do this, connect Field1 from source to Field1 from target. When
prompted, click Replace Connection, and then click Resolve copy-all connection.

If the Auto-connect matching children option is not active, you can create connections
between the source and target as follows:

1. Connect the Rows item in the source to the Rows item in the target.
2. Right-click the connection, and select Connect Matching Children from the context

menu.
3. Clear the Create copy-all connections check box.
4. Click OK.

Your mapping should now look as follows:

Step 4: Create the node function
You can create a node function either immediately after data leaves the source, or immediately
before it is written to the target. For the purpose of this example, let's create the node function on
the input side of the target component; this essentially means "immediately before data is written
to the target". For more information, see Choosing When the Function or Default Should Apply.

Right-click the Rows item on the target component, and select Node Functions and Defaults |
Input Node Functions and Defaults from the context menu. An empty grid appears at the top of
the Mapping pane.

612 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Next, click the Add function button to the right of the grid. The mapping now displays the
function's input ("raw_value") and output ("result").

As mention before, the function's goal is to convert any empty value into the string "n/a". To
achieve this, let's add the following additional components to the mapping:

The MapForce built-in function empty. This function returns true if the value supplied as

argument is empty; false otherwise. You can drag the function into the mapping from the
Libraries window, or just double-click the mapping and type "empty", see also Add a
Built-in Function to the Mapping.
A text value "n/a". To add this value, double-click an empty area on the mapping and
enter "n/a" surrounded by double quotes, see also Add a Constant to the Mapping.

An If-Else Condition. To add it to the mapping, click the If-Else Condition () toolbar
button. For more information about such components, see Example: Returning a Value
Conditionally.

With the help of these components, design the function as follows:

© 2018 Altova GmbH

Defaults and Node Functions 613Functions

Altova MapForce 2018 Professional Edition

The design illustrated above works as follows: first, any input value from the outer mapping enters
the function through the raw_value input. The raw value is then supplied as input to the empty

function. Then, the If-Else Component evaluates the Boolean result (true or false) returned by
the empty function. When the result is true, the constant "n/a" becomes the function's result.

When the result is false, the function's raw input value becomes the function's result. The
function's result (which is either "n/a" or raw_value) is then returned to the outer mapping.

Click Exit (or press Escape) to exit the function's editing area.

In the mapping illustrated above, note the following:

The text at the top of the window clearly indicates where the function is defined. This is
particularly useful in situations where multiple node functions are defined for the same
component.
The Apply to option in the grid is set to All descendant items. In this example, this is
the intended behavior. That is, all descendant items of Rows must be affected if they
qualify. As you can see on the mapping, the left (input) side of the target component

displays multiple icons, even though the function was defined only once, for the parent
item.
The Data Type option is set to "string". In this example, since we are dealing with text
data, this is the intended behavior. It is also the default behavior.
The Edit button lets you go back to the function's definition and change it if necessary. If

you don't see this button, click the icon first.

614 Functions Defaults and Node Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 5: Run the mapping
To preview the mapping result directly in MapForce, click the Output tab. If any validation errors
are encountered, these are displayed in the Messages window, see Validating Mappings. Upon
success, the resulting CSV is displayed in the Output pane.

You can also execute such mappings on a server machine, with MapForce Server Advanced
Edition, in one of the following ways:

If you have MapForce Server Advanced Edition standalone license, compile the mapping
to an execution file and then copy it to the target machine, see Compiling Mappings to
MapForce Server Execution Files.
If you have licensed both FlowForce Server and MapForce Server Advanced Edition, you
can deploy the mapping directly to FlowForce Server and configure it to run as a
scheduled or on-demand job, see Deploying Mappings to FlowForce Server.

© 2018 Altova GmbH

User-Defined Functions 615Functions

Altova MapForce 2018 Professional Edition

8.3 User-Defined Functions

MapForce allows you to create user-defined functions visually, in the same way as in the main
mapping window.

These functions are then available as function entries in the Libraries window (for example,
"First_Last" in the image below), and are used in the same way as the currently existing
functions. This allows you to organize your mapping into separate building blocks which are
reusable across different mappings.

User-defined functions are stored in the *.mfd file, along with the main mapping.

A user-defined function uses input and output components to pass information from the main
mapping (or another user-defined function) to the user-defined function and back.

User-defined functions can contain "local" source components (i.e that are within the user-defined
function itself) such as XML schemas or databases, which are useful when implementing lookup
functions.

User-defined functions can contain any number of input and outputs where any of these can be in
the form of: simple values, XML nodes, or databases.

User-defined functions are useful when:
combining multiple processing functions into a single component, e.g. for formatting a
specific field or looking up a value
reusing these components any number of times
importing user-defined functions into other mappings (by loading the mapping file as a
library)
using inline functions to break down a complex mapping into smaller parts that can be
edited individually
mapping recursive schemas by creating recursive user-defined functions

User-defined functions can be either built from scratch, or from functions already available in the
mapping tab.

This example uses the Tut-ExpReport.mfd file available in the ...\MapForceExamples\Tutorial\
folder.

616 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Creating user-defined function from existing components

1. Drag to select both the "concat" and the constant components (you can also hold down
the CTRL key and click the functions individually).

2. Select the menu option Function | Create User-Defined Function from Selection.
3. Enter the name of the new user-defined function (First_Last).

Note: valid characters are: alphanumeric, a-z, A-Z, 0-9 as well as underscore "_", hyphen/
dash "-" and colon ":".

4. Use the Syntax and Detail fields to add extra information on the new function, and click
OK to confirm. The text you enter will appear as a tooltip when the cursor is placed over
the function.
The library name "user" is supplied as a default, you can of course define your own library
name in this field.

 The individual elements that make up the function group appear in a tab with the function

© 2018 Altova GmbH

User-Defined Functions 617Functions

Altova MapForce 2018 Professional Edition

name. The new library "user" appears in the Libraries pane with the function name
"First_Last" below it.

Click the Home button to return to the main mapping window. The components have
now been combined into a single function component called First_Last. The input and
output parameters have been automatically connected.

Note that inline user-defined functions are displayed with a dashed outline. See Inline
user-defined functions for more information.

Dragging the function name from the Libraries pane and dropping it in the mapping
window, allows you to use it anywhere in the current mapping. To use it in a different
mapping, please see Reusing user-defined functions

Opening user-defined functions

To open a user-defined function, do one of the following:

Double-click the title bar of a user-defined function component
Double-click the specific user-defined function in the Libraries window.

This displays the individual components inside the function in a tab of that name. Click the Home

618 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

button to return to the main mapping. Double-clicking a user-defined function of a different
*.mfd file (in the main mapping window) opens that .mfd file in a new tab.

Navigating user-defined functions

When navigating the various tabs (or user-defined function tabs) in MapForce, a history is
automatically generated which allows you to travel forward or backward through the various tabs,
by clicking the back/forward icons. The history is session-wide, allowing you to traverse multiple
MFD files.

The Home button returns you to the main mapping tab from within the user-defined
function.

The Back button takes you back through your history

The Forward button moves you forward through your history

Deleting user-defined functions from a library

1. Double-click the specific user-defined function in the Libraries window.
2. Click the Erase button in the top right of the title bar.

Reusing (importing) user-defined functions

User-defined functions defined in one mapping can be imported into any other mapping as follows:

1. Click the Add/Remove Libraries button at the base of the Libraries window.
2. Click Add and select the *.mfd file that contains the user-defined function(s) you want to

import. The user-defined function now appears in the Libraries window. The library name
is "user" if you created the user-defined function with the default library name. Otherwise,
look for the library name that you specified when creating the user-defined function.

2. Drag the imported function from the Libraries window into the mapping.

If the same library name is specified across multiple *.mfd files or custom libraries

© 2018 Altova GmbH

User-Defined Functions 619Functions

Altova MapForce 2018 Professional Edition

(see Importing Custom Java and .NET Libraries), functions from all available sources
appear under the same library name in the Libraries window. However, only the
functions in the currently active document can be edited by double-clicking.

Consider the following example:

The function "hello" in the "helloworld" library was imported from a custom library
The function "Join" in the "helloworld" library is a user-defined function defined in the
current *.mfd file
The function "MyUDF" in the "user" library is also a user-defined function defined in the
current *.mfd file

Note that possible changes in imported functions are applied to importing mappings when saving
the library *.mfd file.

Parameter order in user-defined functions

The parameter order within user-defined functions can be directly influenced:

Input and output parameters are sorted by their position from top to bottom (from the top
left corner of the parameter component).
If two parameters have the same vertical position, the leftmost takes precedence.
In the unusual case that two parameters have exactly the same position, the internal
component ID is automatically used.

620 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Notes:

The Component positioning and resizing actions are undoable.
Newly added input or output components are created below the last input or output
component.
Complex and simple parameters can be mixed. The parameter order is derived from the
component positions.

8.3.1 Function parameters

Function parameters are represented inside a user-defined function by input and output
components.

Input components/parameters: a, b, and

Output component/parameter: result

Input parameters are used to pass data from the main mapping into the user-defined function,
while output parameters are used to return data back to the main mapping. Note that user-defined
functions can also be called from other user-defined functions.

Simple and complex parameters
The input and output parameters of user-defined functions can be of various types:

Simple values, e.g. string or integer
Complex node trees, e.g. an XML element with attributes and child nodes

© 2018 Altova GmbH

User-Defined Functions 621Functions

Altova MapForce 2018 Professional Edition

Input parameter POArtNr is a simple value of datatype "string"

Input parameter Articles is a complex XML document node tree

Output parameter Name is a simple value of type string

Note:
The user-defined functions shown above are all available in the
PersonListByBranchOffice.mfd file available in the ...\MapForceExamples folder.

Sequences
Sequences are data consisting of a range, or sequence, of values. Simple and complex user-
defined parameters (input/output) can be defined as sequences in the component properties
dialog box.

Aggregate functions, e.g. min, max, avg, etc., can use this type of input to supply a single
specific value from the input sequence.

When the "Input is a Sequence" check box is active, the component handles the input as a
sequence. When inactive, input is handled as a single value.

622 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

This type of input data, sequence or non-sequence, determines how often the function is called.

When connected to a sequence parameter the user-defined function is called only once
and the complete sequence is passed into the user-defined function.

The screenshot shows the user-defined function "Calculate" of the
"InputIsSequence.mfd" mapping in the ...\MapForceExamples folder. The
Temperatures input component (shown below) is defined as a sequence.

When connected to a non-sequence parameter, the user-defined function is called once
for each single item in the sequence.

Please note:
The sequence setting of input/output parameters is ignored when the user-defined
function is of type inline.

Connecting an empty sequence to a non-sequence parameter has the result that the function
is not called at all.

This can happen if the source structure has optional items, or when a filter condition returns no
matching items. To avoid this, either use the substitute-missing function before the function input
to ensure that the sequence is never empty, or set the parameter to sequence, and add handling

© 2018 Altova GmbH

User-Defined Functions 623Functions

Altova MapForce 2018 Professional Edition

for the empty sequence inside the function.

When a function passes a sequence of multiple values to its output component, and the output
component is not set to sequence, only the first result is used when the function is called.

8.3.2 Inline and regular user-defined functions

Inline functions differ fundamentally from regular functions, in the way that they are implemented
when code is generated.

The code for inline type functions is inserted at all locations where the user-defined
functions are called/used

The code of a regular function is implemented as a function call.

Inline functions thus behave as if they had been replaced by their implementation. That
makes them ideal for breaking down a complex mapping into smaller encapsulated
parts.

Please note:
using inline functions can significantly increase the amount of generated program code!
The user-defined function code is actually inserted at all locations where the function is
called/used, and thus increases the code size substantially - as opposed to using a
regular function.

INLINE user-defined functions are shown with a dashed outline:

Inline user-defined functions support:
Multiple output components within a function

do not support:
The setting of a priority context on a parameter
Recursive calls to an inline user-defined function

REGULAR user-defined functions i.e. non-inline functions are shown with a solid outline:

Regular (non-inline) user-defined functions support:
Only a single output component within a function

624 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Recursive calls (where the exit condition must be supplied, e.g. use an If-Else condition
where one branch, or value, exits the recursion)
Setting a priority context on a parameter

Please note:
Although regular functions do not support multiple output components, they can be
created in this type of function. However, an error message appears when you try to
generate code, or preview the result of the mapping.

If you are not using recursion in your function, you can change the type of the function to
"inline".

do not support:
Direct connection of filters to simple non-sequence input components
Sequence or aggregate functions on simple input components (like exists, substitute-
missing, sum, group-by, ...)

Code generation
The implementation of a regular user-defined function is generated only once as a callable
XSLT template or function. Each user-defined function component generates code for a
function call, where inputs are passed as parameters, and the output is the function
(component) return value.

At runtime, all the input parameter values are evaluated first, then the function is called for
each occurrence of the input data. See Function parameters for details about this
process.

To change the user-defined function "type":
1. Double click the user-defined function to see its constituent components.
2. Select the menu option Function | Function settings and click the "Inlined use" check

box.

User-defined functions and Copy-all connections
When creating Copy-all connections between a schema and a complex user-defined function
parameter, the two components must be based on the same schema! It is not necessary that
they both have the same root elements however. Please see "Complex output components -
defining" for an example.

8.3.3 Creating a simple look-up function

This example is provided as the lookup-standard.mfd file available in the ...
\MapForceExamples folder.

Aim:
To create a generic look-up function that:

supplies Articles/Number data from the Articles XML file, to be compared to Article
numbers of a different XML file, ShortPO in this case.

© 2018 Altova GmbH

User-Defined Functions 625Functions

Altova MapForce 2018 Professional Edition

Insert the ShortPO.xsd and assign ShortPO.xml as the source XML file.
Insert the CompletePO.xsd schema file, and select CompletePO as the root element.
Insert a new user-defined function using the method described below.

To create a user-defined function:

1. Select the menu option Function | Create User-defined function.
2. Enter the name of the function e.g. LookupArticle.

3. Uncheck the "Inlined use" check box and click OK to confirm

A tab only containing only one item, an output function currently called "result", is
displayed.

626 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

This is the working area used to define the user-defined function.

A new library has been created in the Libraries pane with the name "user" and the
function name "LookupArticle".

3. Click the Insert Schema/XML file icon to insert the Articles schema and select the
XML file of the same name to act as the data source.

4. Click the Insert input component icon to insert an input component.
5. Enter the name of the input parameter, ArticleNr in this case, and click OK.

This component acts as a data input to the user-defined function and supplies the input
icon of the user-defined function.

6. Insert an "equal" component by dragging it from the core library/logical functions group.

7. Insert a filter component by clicking the Insert Filter icon in the toolbar.

© 2018 Altova GmbH

User-Defined Functions 627Functions

Altova MapForce 2018 Professional Edition

Use the diagram below as an aid to creating the mappings in the user-defined function,
please take note of the following:

8 Right click the a parameter and select Priority context from the pop up menu.
9. Double click the output function and enter the name of the output parameter, in this

case "Name".

This ends the definition of the user-defined function.

Please note:
Double clicking the input and output functions opens a dialog box in which you can
change the name and datatype of the input parameter, as well as define if the function is
to have an input icon (Input is required) and additionally if it should be defined as a
sequence.

This user-defined function:
has one input function, ArticleNr, which will receive data from the ShortPO XML file.
compares the ShortPO ArticleNr, with the Article/Number from the Articles XML
instance file, inserted into the user-defined function for this purpose.
uses a filter component to forward the Article/Name records to the output component, if
the comparison returns true.
has one output function, Name, which will forward the Article Name records to the
CompletePO XML file.

10. Click the Home icon to return to the main mapping.
The LookupArticle user-defined function, is now available under the user library.

628 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

11. Drag the LookupArticle function into the Mapping window.

The user-defined function is displayed:
with its name "LookupArticle" in the title/function bar,
with named input and output icons.

10. Create the connections displayed in the graphic below and click the Output tab to see the

result of the mapping.

8.3.4 User-defined function - example

The PersonListByBranchOffice.mfd file available in the <Documents>\Altova\MapForce2018
\MapForceExamples\ folder illustrates the following features:

© 2018 Altova GmbH

User-Defined Functions 629Functions

Altova MapForce 2018 Professional Edition

Nested User-defined functions e.g. LookupPerson
Look-up functions that generate a string output e.g. LookupPerson
Optional input-parameters which can also supply a default value e.g. the EqualAnd
component (contained in the LookupPerson component)
Configurable input parameters, which can also double as a command line parameter(s)
when executing the generated mapping code!

Configurable input parameters

The input component (OfficeName) receives data supplied when a mapping is executed. This is
possible in two ways:

as a command line parameter when executing the generated code, e.g. Mapping.exe /
OfficeName "Nanonull Partners, Inc."
as a preview value when using the Built-in execution engine to preview the data in the
Output window.

630 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 To define the Input value:

1. Double click the input component and enter a different value in the "Value" text box of the
Preview Mode group e.g. "Nanonull Partners, Inc.", and click OK to confirm.

2. Click the Output tab to see the effect.
A different set of persons are now displayed.

Please note that the data entered in this dialog box is only used in "preview" mode i.e.
when clicking the Output tab. If a value is not entered, or the check box is deactivated,
then the data mapped to the input icon "default" is used.

Please see Input Components for more information.

LookupPerson component

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

Compares the Office, First, and Last names of BranchOffices.xml, with the same fields of the
Altova_Hierarchical.xml file, using the input components and the EqualAnd user-defined
components.
Combines the Email, PhoneExt and Title items using the Person2Details user-defined
function
Passes on the combined person data to the output component if the previous EqualAnd
comparisons are all true (i.e. supplied "true" to the filter component).

A user-defined function always outputs a value, which may even be an empty string! This would be
the case if the filter component bool value is false. Only an empty string would be output instead

© 2018 Altova GmbH

User-Defined Functions 631Functions

Altova MapForce 2018 Professional Edition

of data supplied by the Person2Details component.

The three input components, Office_Name, First_Name, Last_Name, receive their data
from the BranchOffices.xml file.
The EqualAnd component compares two values and provides an optional comparison
value, as well as a default value.
Person2Details combines three person fields and passes on the result to the filter
component.

EqualAnd component

 Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

Compare two input parameters a and b, and pass the result on to the logical-and component.
Note that the b parameter has been defined as the priority context (right click the icon to do
so). This ensures that the person data of the specific office, supplied by the input parameter
a, is processed first.
Logical-and the result of the first comparison, with an optional input parameter, "and".
Pass on the boolean value of this comparison to the output parameter.

632 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Optional parameters
Double clicking the "and" parameter, of the EqualAnd user-defined function shown above, allows
you to make parameters optional, by unchecking the "Input is required" check box.

If "Input is required" is unchecked, then:

A mapping connector is not required for the input icon of this user-defined function, e.g. the
and parameter of the first EqualAnd function, does not have an input connector. The input
icon has a dashed outline to show this visually.
A default value can be supplied by connecting a component, within the user-defined function
e.g. using a constant component containing the value "true".

A mapping from another item, mapped to the optional Input, takes precedence over the default
value. E.g. the "and" parameter of second EqualAnd function, receives input data from the
"result" parameter of the first EqualAnd user-defined function.

Person2Details component

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

Concatenate three inputs and pass on the result string to the output parameter.
Double clicking an output parameter allows you to change the parameter name (Details), and
select the datatype (String).

© 2018 Altova GmbH

User-Defined Functions 633Functions

Altova MapForce 2018 Professional Edition

8.3.5 Complex user-defined function - XML node as input

This example is provided as the lookup-udf-in.mfd file available in the ...\MapForceExamples
folder. This section illustrates how to define an inline user-defined function that contains a
complex input component.

Note that the user-defined function "FindArticle" consists of two halves.

The left half contains the input parameters:

a simple input parameter POArtNr
a complex input component Articles, with mappings directly to its XML child nodes

The right half contains a simple output parameter called "Name".

The screenshot below shows the constituent components of the user-defined function, the two
input components to the left and the output component to the right.

634 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Defining Complex Input Components8.3.5.1

Follow these steps to create a function that takes an XML structure as input parameter:

1. Create a user-defined function in the usual manner, i.e. Function | Create User-Defined
function and click OK to confirm. Note that the Inlined use check box is automatically
selected.

2. Click the Insert input component icon in the icon bar.
3. Enter the name of the input component into the Name field.

© 2018 Altova GmbH

User-Defined Functions 635Functions

Altova MapForce 2018 Professional Edition

4. Click the Complex type (tree structure) radio button, then click the "Choose" button
next to the Structure field. This opens another dialog box.

The top list box displays the existing components in the mapping (three schemas if you
opened the example mapping). Note that this list contains all of the components that
have been inserted into the active mapping: e.g. XML schema, database file.

The lower list box allows you to select a new complex data structure i.e. XML Schema,
Database file, file.

636 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Click "Insert a new structure... " radio button, select the XML Schema Structure entry,
and click OK to continue.

6. Select Articles.xsd from the "Open" dialog box.
7. Click the element that you would like to become the root element in the component, e.g.

Articles, and click OK, then OK again to close both dialog boxes.

The Articles component is inserted into the user-defined function. Please note the input
icon to the left of the component name. This shows that the component is used as a
complex input component.

© 2018 Altova GmbH

User-Defined Functions 637Functions

Altova MapForce 2018 Professional Edition

8. Insert the rest of the components as shown in the screenshot below, namely: a second
"simple" input component (called POArtNr), filter, equal and output component (called
Name), and connect them as shown.

The Articles input component receives its data from outside of the user-defined function.
Input icons that allow mapping to this component, are available there.
An XML instance file to provide data from within the user-defined function, cannot be
assigned to a complex input component.
The other input component POArtNr, supplies the ShortPO article number data to which
the Article | Number is compared.
The filter component filters the records where both numbers are identical, and passes
them on to the output component.

10. Click the Home icon to return to the mapping.
11. Drag the newly created user-defined component from the Libraries pane into the mapping.

12. Create the connections as shown in the screenshot below.

638 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The left half contains the input parameters to which items from two schema/xml files are mapped:

ShortPO supplies the data for the input component POArtNr.
Articles supplies the data for the complex input component. The Articles.xml instance
file was assigned to the Articles schema file when the component was inserted.
The complex input component Articles with its XML child nodes, to which data has been
mapped from the Articles component.

The right half contains a simple output parameter called "Name", which passes the filtered line
items which have the same Article number to the "Name" item of CompletePO.

Note: When creating Copy-all connections between a schema and a user-defined function
parameter, the two components must be based on the same schema. It is not necessary
that they both have the same root elements however.

© 2018 Altova GmbH

User-Defined Functions 639Functions

Altova MapForce 2018 Professional Edition

8.3.6 Complex user-defined function - XML node as output

This example is provided as the lookup-udf-out.mfd file available in the ...\MapForceExamples
 folder. What this section will show is how to define an inline user-defined function that allows a
complex output component.

Note that the user-defined function FindArticle consists of two halves.

A left half which contains the input parameter:
a simple input parameter POArtNr

A right half which contains:
a complex output component Article (CompletePO) with its XML child nodes mapped to
CompletePO.

The screenshot below shows the constituent components of the user-defined function, the input
components at left and the complex output component at right.

Defining Complex Output Components8.3.6.1

Follow these steps to create a function that returns an XML structure as output parameter:

1. Create a user-defined function in the usual manner, i.e. Function | Create User-Defined
function name it FindArticle, and click OK to confirm. Note that the Inline... option is
automatically selected.

640 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2. Click the Insert Output icon in the icon bar, and enter a name e.g. CompletePO.

3. Click the Complex type... radio button, then click the "Choose" button.
This opens another dialog box.

The top list box displays the existing components in the mapping, (three schemas if you
opened the example file). Note that this list contains all of the components that have been
inserted into the active mapping: e.g. XML Schema , database file.

The lower list box allows you to select a new complex data structure i.e. XML Schema,
Database file, file.

© 2018 Altova GmbH

User-Defined Functions 641Functions

Altova MapForce 2018 Professional Edition

4. Click "Insert new structure... " radio button, select the XML Schema Structure entry,
and click OK to continue.

5. Select the CompletePO.xsd from the "Open" dialog box.
6. Click the element that you would like to become the root element in the component, e.g.

Article, and click OK, then OK again to close the dialog boxes.

The CompletePO component is inserted into the user-defined function. Please note the

642 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

output icon to the left of the component name. This shows that the component is used
as a complex output component.

7. Insert the Articles schema/XML file into the user-defined function and assign the
Articles.xml as the XML instance.

8. Insert the rest of the components as shown in the screenshot below, namely: the
"simple" input components (POArtNr), filter, equal and multiply components, and connect
them as shown.

The Articles component receives its data from the Articles.xml instance file, within the
user-defined function.
The input components supply the POArtNr (article number) and Amount data to which the
Articles | Number & Price are compared.
The filter component filters the records where both numbers are identical, and passes
them on to the CompletePO output component.

9. Click the Home icon to return to the mapping.
10. Drag the newly created user-defined component from the Libraries pane into the mapping.

11. Create the connections as shown in the screenshot below.
Having created the Article (CompletePO) connector to the target, right click it and select

© 2018 Altova GmbH

User-Defined Functions 643Functions

Altova MapForce 2018 Professional Edition

"Copy-all" from the context menu. The rest of the connectors are automatically
generated, and are highlighted in the screenshot below.

Please note:
When creating Copy-all connections between a schema and a user-defined function of type
"Inline", the two components must be based on the same schema. It is not necessary that they
both have the same root elements however.

The left half contains the input parameter to which a single item is mapped; ShortPO supplies the
article number to the POArtNr input component.

The right half contains a complex output component called "Article (CompletePO)" with its XML
child nodes, which maps the filtered items, of the same Article number, to CompletePO.

8.3.7 Recursive user-defined mapping

This section will describe how the mapping RecursiveDirectoryFilter.mfd, available in the ...
\MapForceExamples folder, was created and how recursive mappings are designed. The
MapForceExamples project folder contains further examples of recursive mappings.

The screenshot below shows the finished mapping containing the recursive user-defined function

644 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

FilterDirectory, the aim being to filter a list of the .xml files in the source file.

The source file that contains the file and directory data for this mapping is Directory.xml. This
XML file supplies the directory and file data in the hierarchical form you see below.

The XML schema file referenced by Directory.xml has a recursive element called "directory"
which allows for any number of subdirectories and files below the directory element.

© 2018 Altova GmbH

User-Defined Functions 645Functions

Altova MapForce 2018 Professional Edition

Defining a recursive user-defined function8.3.7.1

Follow these steps to create a recursive user-defined function:

1. Select Function | Create User defined Function to start designing the function and
enter a name e.g. FilterDirectory.

2. Make sure that you deselect the Inlined Use check box in the Implementation group, to
make the function recursive, then click OK.

You are now in the FilterDirectory window where you create the user-defined function.
3. Select Function | Insert Input to insert an input component.
4. Give the component a name e.g. "directory" and click on the Complex Type (tree

structure) radio button.

646 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Click the Choose button, click the "XML Schema Structure" entry in the lower pane, then
click OK.

6. Select the Directory.xsd file in the ...\MapForceExamples folder and click the Open
button.

7. Click OK again when asked to select the root item, which should be "directory" as shown
below.

© 2018 Altova GmbH

User-Defined Functions 647Functions

Altova MapForce 2018 Professional Edition

8. Click OK again to insert the complex input parameter.
The user-defined function is shown below.

9. Delete the simple result output component, as we need to insert a complex output
component here.

10. Select Function | Insert Output... to insert an output component and use the same
method as outlined above, to make the output component, "directory", a complex type.
You now have two complex components, one input and the other output.

11. Select Function | Insert Input... and insert a component of type Simple type, and enter
a name e.g. SearchFor. Deselect the "Input is required" check box.

648 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Inserting the recursive user-defined function

At this point, all the necessary input and output components have been defined for the user-
defined function. What we need to do now is insert the "unfinished" function into the current user-
defined function window. (You could do this at almost any point however.)

1. Find the FilterDirectory function in the user section of the Libraries window.
2. Click FilterDirectory then drag and drop it into the FilterDirectory window you have just

been working in.

The user-defined function now appears in the user-defined function window as a recursive
component.

© 2018 Altova GmbH

User-Defined Functions 649Functions

Altova MapForce 2018 Professional Edition

3. Connect the directory, name and file items of the input component to the same items
in the output component.

4. Right click the connector between the file items and select "Insert Filter" to insert a filter
component.

5. Right click the on-true connector and select Copy-All from the context menu.
The connectors change appearance to Copy-All connectors.

6. Insert a Contains function from the Core | String functions library.
7. Connect name to value and the SearchFor parameter to substring, then result to the

bool item of the filter.

650 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8. Connect the SearchFor item of the input component to the SearchFor item of the user-
defined function.

Defining the recursion

At this point, the mapping of a single directory recursion level is complete. Now we just need to
define how to process a subdirectory.

Making sure that the Toggle Autoconnect icon is active in the icon bar:
1. Connect the lower directory item of the input component to the top directory item of the

recursive user-defined function.

2. Connect the top output directory item of the user-defined function to the lower directory
item of the output component.

3. Right click the top connector, select Copy-All from the context menu and click OK when
prompted if you want to create Copy-All connection.

© 2018 Altova GmbH

User-Defined Functions 651Functions

Altova MapForce 2018 Professional Edition

This completes the definition of the user-defined function in this window.

Click the Return to main mapping window icon, to continue defining the mapping
there.

Main Mapping window

1. Drag the FilterDirectory function from the user section of the Libraries window, into the
main mapping area.

2. Use Insert | XML Schema file to insert Directory.xsd and select Directory.xml as the
instance file.

3. Use the same method to insert Directory.xsd and select Skip, to create the output
component.

4. Insert a constant component, then a Input component e.g. SearchFor.
5. Create the connections as shown in the screenshot below.
6. When connecting the top-level connectors, directory to directory, on both sides of the

user-defined component, right click the connector and select Copy-All from the context
menu.

7. Click the Output tab to see the result of the mapping.

652 Functions User-Defined Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Notes:
Double clicking the lowest "directory" item in the Directory component, opens a new level of
recursion, i.e. you will see a new directory | file | directory sublevel. Using the Copy-all
connector automatically uses all existing levels of recursion in the XML instance, you do not need
expand the recursion levels manually.

© 2018 Altova GmbH

Importing Custom XSLT 1.0 or 2.0 Functions 653Functions

Altova MapForce 2018 Professional Edition

8.4 Importing Custom XSLT 1.0 or 2.0 Functions

You can extend the XSLT 1.0 and 2.0 function libraries available in MapForce with your own
custom functions, provided that your custom functions return simple types.

Only custom functions that return simple data types (for example, strings) are supported.

To import functions from an XSLT file:

1. On the Tools menu, click Options. (Alternatively, click Add/Remove Libraries in the
lower area of the Libraries window.)

2. Next to Libraries, click Add and browse for the .xsl or .xslt file.

Imported XSLT files appear as libraries in the Libraries window, and display all named templates
as functions below the library name. If you do not see the imported library, ensure you selected
XSLT as transformation language (see Selecting a Transformation Language).

Note the following:

To be eligible for import into MapForce, functions must be declared as named templates
conforming to the XSLT specification in the XSLT file. You can also import functions that
occur in an XSLT 2.0 document in the form <xsl:function name="MyFunction">. If the
imported XSLT file imports or includes other XSLT files, then these XSLT files and
functions will be imported as well.
The mappable input connectors of imported custom functions depends on the number of
parameters used in the template call; optional parameters are also supported.
Namespaces are supported.
If you make updates to XSLT files that you have already imported into MapForce,
changes are detected automatically and MapForce prompts you to reload the files.
When writing named templates, make sure that the XPath statements used in the
template are bound to the correct namespace(s). To see the namespace bindings of the
mapping, preview the generated XSLT code.

Datatypes in XPath 2.0

If your XML document references an XML Schema and is valid according to it, you must explicitly
construct or cast datatypes that are not implicitly converted to the required datatype by an
operation.

In the XPath 2.0 Data Model used by the Altova XSLT 2.0 Engine, all atomized node values from
the XML document are assigned the xs:untypedAtomic datatype. The xs:untypedAtomic

type works well with implicit type conversions.

For example,

the expression xs:untypedAtomic("1") + 1 results in a value of 2 because the
xdt:untypedAtomic value is implicitly promoted to xs:double by the addition

operator.
Arithmetic operators implicitly promote operands to xs:double.

654 Functions Importing Custom XSLT 1.0 or 2.0 Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Value comparison operators promote operands to xs:string before comparing.

See also:

Example: Adding Custom XSLT 1.0 Functions
Example: Summing Node Values
XSLT 1.0 engine implementation
XSLT 2.0 engine implementation

8.4.1 Example: Adding Custom XSLT Functions

This example illustrates how to import custom XSLT 1.0 functions into MapForce. The files
needed for this example are available in the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory.

Name-splitter.xslt. This XSLT file defines a named template called "tokenize" with a
single parameter "string". The template works through an input string and separates
capitalized characters with a space for each occurrence.

Name-splitter.xml (the source XML instance file to be processed)
Customers.xsd (the source XML schema)
CompletePO.xsd (the target XML schema)

To add a custom XSLT function:

1. Select XSLT as transformation language (see Selecting a Transformation Language).
2. Click the Add/Remove Libraries button, in the lower area of the Libraries window.

Alternatively, on the Tools menu, click Options, and then select Libraries.
3. Click Add, and browse for the XSL, or XSLT file, that contains the named template you

want to act as a function, in this case Name-splitter.xslt.

© 2018 Altova GmbH

Importing Custom XSLT 1.0 or 2.0 Functions 655Functions

Altova MapForce 2018 Professional Edition

4. Click OK. The XSLT file name appears in the Libraries window, along with the functions
defined as named templates (in this example, Name-splitter with the tokenize function).

To use the XSLT function in your mapping:

1. Drag the tokenize function into the Mapping window and map the items as show below.

2. Click the XSLT tab to see the generated XSLT code.

656 Functions Importing Custom XSLT 1.0 or 2.0 Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: As soon as a named template is used in a mapping, the XSLT file containing the named
template is included in the generated XSLT code (xsl:include href...), and is called
using the command xsl:call-template.

3. Click the Output tab to see the result of the mapping.

To remove custom XSLT libraries from MapForce:

1. Click the Add/Remove Libraries button, in the lower area of the Libraries window.
2. Click the XSLT library to be deleted, and then click Delete.

© 2018 Altova GmbH

Importing Custom XSLT 1.0 or 2.0 Functions 657Functions

Altova MapForce 2018 Professional Edition

8.4.2 Example: Summing Node Values

This example shows you how to process multiple nodes of an XML document and have the result
mapped as a single value to a target XML document. Specifically, the goal of the mapping is to
calculate the price of all products in a source XML file and write it as a single value to an output
XML file. The files used in this example are available in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder:

Summing-nodes.mfd — the mapping file
input.xml — the source XML file
input.xsd — the source XML schema
output.xsd — the target XML schema
Summing-nodes.xslt — A custom XSLT stylesheet containing a named template to
sum the individual nodes.

 There are two different ways to achieve the goal of the mapping:

By using the sum aggregate function of the core library. This function is available in the

Libraries window (see also Working with Functions).
By importing a custom XSLT stylesheet into MapForce.

Solution 1: Using the "sum" aggregate function

To use the sum aggregate function in the mapping, drag it from the Libraries window into the

mapping. Note that the functions available in the Libraries window depend on the XSLT language
version you selected (XSLT 1 or XSLT 2). Next, create the mapping connections as shown below.

For more information about aggregate functions of the core library, see also core | aggregate

functions.

Solution 2: Using a custom XSLT Stylesheet

As mentioned above, the aim of the example is to sum the Price fields of products in the source
XML file, in this case products A and B.

<?xml version="1.0" encoding="UTF-8"?>

658 Functions Importing Custom XSLT 1.0 or 2.0 Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

<Input xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="input.xsd">

 <Products>

 <Product>

 <Name>ProductA</Name>

 <Amount>10</Amount>

 <Price>5</Price>

 </Product>

 <Product>

 <Name>ProductB</Name>

 <Amount>5</Amount>

 <Price>20</Price>

 </Product>

 </Products>

</Input>

The image below shows a custom XSLT stylesheet which uses the named template "Total" and a
single parameter string. The template works through the XML input file and sums all the values
obtained by the XPath expression /Product/Price.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/

Transform">

 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

 <xsl:template match="*">

 <xsl:for-each select=".">

 <xsl:call-template name="Total">

 <xsl:with-param name="string" select="."/>

 </xsl:call-template>

 </xsl:for-each>

 </xsl:template>

 <xsl:template name="Total">

 <xsl:param name="string"/>

 <xsl:value-of select="sum($string/Product/Price)"/>

 </xsl:template>

</xsl:stylesheet>

Note: To sum the nodes in XSLT 2.0, change the stylesheet declaration to version="2.0".

To import the XSLT stylesheet into MapForce:

1. Select XSLT as transformation language. For more information, see Selecting a
Transformation Language.

2. In the Libraries window, click Add/Remove Libraries.
3. On the Options dialog box, click the Libraries tab.
4. Click Add and browse for <Documents>\Altova\MapForce2018\MapForceExamples

\Tutorial\Summing-nodes.xslt.
5. Drag the Total function from the newly created "Summing-nodes" library into the mapping,

and create the mapping connections as shown below.

© 2018 Altova GmbH

Importing Custom XSLT 1.0 or 2.0 Functions 659Functions

Altova MapForce 2018 Professional Edition

To preview the mapping result, click the Output tab. The sum of the two Price fields is now
displayed in the Total field.

<?xml version="1.0" encoding="UTF-8"?>
<Output xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="output.xsd">

 <Total>25</Total>

 <Product>

 <Name>ProductA</Name>

 <Amount>10</Amount>

 <Price>5</Price>

 </Product>

 <Product>

 <Name>ProductB</Name>

 <Amount>5</Amount>

 <Price>20</Price>

 </Product>

</Output>

660 Functions Importing Custom XQuery 1.0 Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8.5 Importing Custom XQuery 1.0 Functions

When XQuery is selected as mapping transformation language, MapForce displays the function
libraries available for XQuery in the Libraries window. If necessary, you can extend this list with
custom XQuery functions, by importing custom XQuery 1.0 library modules into MapForce.

To be eligible for import into MapForce, an XQuery file must satisfy the following requirements:

It must be a valid library module according to XQuery specification. In other words, it must
start with a module declaration such as module namespace <prefix>="<namespace
name"

All functions declared in the imported library module must return atomic data types (for
example, xs:string, xs:boolean, xs:integer, etc). Function parameters must also
have atomic types.

To import an XQuery library module:

1. On the Tools menu, click Options. (Alternatively, click Add/Remove Libraries in the
lower area of the Libraries window.)

2. Next to Libraries, click Add and browse for the .xq or .xquery library file.

If the imported library module is not supported, a message box prompts you. Otherwise, the
imported library modules appear in the Libraries window, and then you can drag specific functions
into the mapping area and use them like any other MapForce function component.

If you do not see the imported XQuery library module, make sure that XQuery is selected as
transformation language (see Selecting a Transformation Language).

See also:

XQuery engine implementation

© 2018 Altova GmbH

Importing Custom Java and .NET Libraries 661Functions

Altova MapForce 2018 Professional Edition

8.6 Importing Custom Java and .NET Libraries

Compiled Java class files as well as .NET DLL assemblies (including .NET 4.0 assemblies) can
be imported into MapForce. If the imported libraries contain functions that use basic data types as
parameters and return simple types, such functions appear in the Libraries window, and can be
used in mappings as any other function available in MapForce. The mapping output of imported
Java and .NET functions can be previewed in the Output pane and the functions are available in
generated code.

Notes:

To import custom Java or .NET functions, you need compiled Java classes (.class) or the
.NET.dll assembly files. Importing Java .jar files or .dll files that are not a .NET assembly
is not supported.
Compiled Java class (.class) files are supported when the mapping language is set to
Java. Java Runtime Environment 7 or later must be installed on your computer. Only
specific types and members are supported (see Java function support).
.NET assembly files are supported when the mapping language is set to C#. The .NET
assemblies may be written in .NET languages other than C# (for example, C++.NET or
VB.NET), provided they use only the basic data types from the System Assembly as
parameters and return types (see also .NET Function Support).
Setting the mapping language to C++ is not supported if the mapping uses imported Java
.class or .NET DLL assemblies.
Importing functions from native C++ DLLs is limited and requires a special approach. For
more information, see Referencing Java, C# and C++ Libraries Manually.
Setting the mapping language to XSLT is not supported if the mapping uses imported
Java .class or .NET DLL assemblies (a custom XSLT function that acts as an adapter
would have to be written).
All functions called from a MapForce mapping should be “idempotent” (this means that
they should return the same value each time the function is called with the same input
parameters). The exact order and the number of times a function is called by MapForce is
undefined.
In case of Java, the imported class files and their packages do not need to be added to
the CLASSPATH variable, since the Built-in execution engine, as well as generated Java
code, will automatically add imported packages to the Java engine’s classpath or to Ant,
respectively. However, any dependencies of the imported class files and packages will
not be handled automatically. Therefore, if imported Java class files or packages depend
on other class files, be sure to add the parent directories of all dependent packages to
the CLASSPATH environment variable.

Java function support

Top-level classes, static member classes and non-static member classes are supported:

new <classname>(<arg1>, <arg2>, ...)
<object>.new <member-class>(<arg1>, <arg2>, ...)

Member functions and static functions are supported:

<function>(<arg1>, <arg2>, ...)
<object>.<method>(<arg1>, ...)

662 Functions Importing Custom Java and .NET Libraries

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Supported connections between XML Schema and Java types:

 Schema type Java type

 xs:string String

 xs:byte byte

 xs:short short

 xs:int int

 xs:long long

 xs:boolean boolean

 xs:float float

 xs:double double

 xs:decimal java.math.BigDecimal

 xs:integer java.math.BigInteger

Connections in both directions are possible. Other Java types (including array types) are not
supported. Methods using such parameters or return values, will be ignored.

Object types are supported by calling their constructor, or as a return value of a method. They can
be mapped to other Java methods. Manipulating the object using MapForce means is not
possible.

.NET function support

Top-level classes and member classes are supported:

new <classname>(<arg1>, <arg2>, ...)

Member functions and static functions are supported:

<function>(<arg1>, <arg2>, ...)

<object>.<method>(<arg1>, ...)

Supported connections between XML Schema and .NET/C# types:

 Schema type .NET type C# type

 xs:string System.String string

 xs:byte System.SByte sbyte

 xs:short System.Int16 short

 xs:int System.Int32 int

 xs:long System.Int64 long

 xs:unsignedByte System.Byte byte

© 2018 Altova GmbH

Importing Custom Java and .NET Libraries 663Functions

Altova MapForce 2018 Professional Edition

 Schema type .NET type C# type

 xs:unsignedShort System.UInt16 ushort

 xs:unsignedInt System.UInt32 uint

 xs:unsignedLong System.UInt64 ulong

 xs:boolean System.Boolean bool

 xs:float System.Single float

 xs:double System.Double double

 xs:decimal System.Decimal decimal

Connections in both directions are possible. Other .NET/C# types (including array types) are not
supported. Methods using such parameters or return values will be ignored.

Object types are supported by calling their constructor, or as a return value of a method. They can
be mapped to other .NET methods. Manipulating the object using MapForce means is not
possible.

8.6.1 Example: Import Custom Java Class

This example illustrates how to import a custom Java .class file into MapForce.

Note: Java SE 7 Runtime Environment or later is required to complete this example.

To add the Java .class file as MapForce library:

1. Set the transformation language to Java (see Selecting a Transformation Language).
2. Click the Add/Remove Libraries button in the lower area of the Libraries window.
3. Next to Libraries, click Add, and select the Format.class file from the ...

\MapForceExamples\Java\Format\ directory. A message appears telling you that a
new library has been added. The imported library is now visible in the Libraries window.

To preview the mapping output in MapForce:

1. Open the FormatNumber.mfd file available in the ...\MapForceExamples\Java folder.
2. Click the Output button to see the result of the mapping.

664 Functions Importing Custom Java and .NET Libraries

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

To run the mapping in Java:

1. On the File menu, click Generate Code In | Java.
2. Select a target directory where the code should be generated, and click OK.
3. Import the generated libraries into your Java project and build the Java application (for an

example, see Example: Build a Java application with Eclipse and Ant).

8.6.2 Example: Import Custom .NET DLL Assembly

This example illustrates how to import into MapForce a custom .NET DLL assembly created in
C#.

To add the .NET assembly file:

1. Set the transformation language to C# (see Selecting a Transformation Language).
2. Click the Add/Remove Libraries button in the lower area of the Libraries window.
3. Next to Libraries, click Add, and select the Format.dll file from the ...

\MapForceExamples\C#\Format\bin\Debug\ directory. A message appears telling you
that a new library has been added. The imported library is now visible in the Libraries
window.

To preview the mapping output:

1. Open the FormatNumber.mfd file available in the ...\MapForceExamples\C# folder.
2. Click the Output button to see the result of the mapping.

© 2018 Altova GmbH

Importing Custom Java and .NET Libraries 665Functions

Altova MapForce 2018 Professional Edition

To run the mapping from a custom C# application:

1. On the File menu, click Generate Code In | C#.
2. Select a target directory where the code should be generated, and click OK.
3. Build the application with Visual Studio, and run the generated console application (see

also Generating C# code).

666 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8.7 Referencing Java, C# and C++ Libraries Manually

As an alternative approach to importing custom libraries into MapForce directly, you can create
references to them using a custom .mff file (MapForce Function File) recognized by MapForce.
The .mff library file is essentially an XML file where you manually define the linking between class
definitions in your custom code and MapForce. Once you create the custom .mff file, you can
import it into MapForce, similar to how you would import a .NET DLL or Java class file.

Notes:

For an imported function to appear in the Libraries window, its return type and parameters
must be of a simple type. For a list of data types available for each language, see Data
Type Mapping.
When you import function libraries from custom .mff files, the preview of the mapping
directly in MapForce (by clicking the Output button) is limited. For libraries written in C+
+, preview of the mapping in MapForce is not supported. In case of Java and C#, preview
is available when your library uses native language types, but it is not available if your
library imports the Altova generated classes. Note, however, that you can generate code
in the specific language targeted by your library. The custom functions will be available in
the generated code, enabling you to run the mapping from the generated code.
The exact order in which functions are called by the generated mapping code is
undefined. MapForce may cache calculated results for reuse, or evaluate expressions in
any order. It is therefore strongly recommended to use only custom functions that have
no side effects.
It is important to distinguish between user-defined functions and custom function libraries.
User-defined functions are created graphically in a mapping, and they cannot and need
not be saved to an *.mff file, because they are saved together with the mapping .mfd file
where they have been created. For more information, see Reusing (importing) User-
Defined Functions.
If you are upgrading from a MapForce version earlier than 2010, you may need to update
the data types used in your custom functions (see Data Type Mapping).

For instructions on how to create and configure a custom .mff file, see Configuring the .mff File.
For examples, see:

Example: Create a Custom C# Library
Example: Create a Custom C++ Library
Example: Create a Custom Java Library

8.7.1 Configuring the .mff File

The MapForce Function File (.mff) is a configuration file in XML format that makes it possible to
adapt functions from custom Java, C#, or C++ libraries into MapForce, so that they appear in the
Libraries window. An .mff file essentially intermediates between your custom libraries and
MapForce, and it must be configured to specify a) the interfaces to the custom functions and b)
where the implementation can be found in generated code. This topic provides instructions on how
to do this.

Note: The *.mff library files must be valid against the mff.xsd schema file found in the Altova
\MapForce2018\MapForceExamples folder, relative to your (My) Documents folder.

© 2018 Altova GmbH

Referencing Java, C# and C++ Libraries Manually 667Functions

Altova MapForce 2018 Professional Edition

The mff.xsd schema defines the custom library configuration and is for internal use only.
Altova GmbH retains the right to change this file format with new releases.

The following code listing illustrates a sample .mff file for C#:

<?xml version="1.0" encoding="UTF-8"?>
<mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:noNamespaceSchemaLocation="mff.xsd" version="8" library="helloworld">

 <implementations>

 <implementation language="cs">

 <setting name="namespace" value="HelloWorldLibrary"/>

 <setting name="class" value="Greetings"/>

 <setting name="reference" value="C:\HelloWorldLibrary

\HelloWorldLibrary.dll"/>

 </implementation>

 </implementations>

 <group name="string functions">

 <component name="hello">

 <sources>

 <datapoint name="greeting_type" type="xs:boolean"/>

 </sources>

 <targets>

 <datapoint name="result" type="xs:string"/>

 </targets>

 <implementations>

 <implementation language="cs">

 <function name="HelloFunction"/>

 </implementation>

 </implementations>

 <description>

 <short>result = hello(greeting_type)</short>

 <long>Returns a greeting sentence according to the given

greeting_type.</long>

 </description>

 </component>

 </group>

</mapping>

The image below shows a custom .mff file may look after import into MapForce. Notice that the
custom library "helloworld" appears as a library entry (sorted alphabetically), containing the "hello"
string function.

668 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The steps needed to adapt the mff file to suit your needs are described below.

Configuring the library name

The library name is found in the .mff file line shown below. By convention, the library name is
written in lowercase letters.

<mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:noNamespaceSchemaLocation="mff.xsd" version="8" library="helloworld">

In the sample above, the entry that will appear in the Libraries window will be called "helloworld".

Configuring the language implementations

The <implementations> element is mandatory element which specifies which languages your
library should support, and it must be added as child of <mapping>, for example:

...

<mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:noNamespaceSchemaLocation="mff.xsd" version="8" library="helloworld">

 <implementations>

 <implementation language="cs">

 <setting name="namespace" value="HelloWorldLibrary"/>

 <setting name="class" value="Greetings"/>

 <setting name="reference" value="C:\HelloWorldLibrary

\HelloWorldLibrary.dll"/>

 </implementation>

 </implementations>

...

The settings within each <implementation> allow the generated code to call the specific

© 2018 Altova GmbH

Referencing Java, C# and C++ Libraries Manually 669Functions

Altova MapForce 2018 Professional Edition

functions defined in Java, C++ or C#.

An .mff file can be written so that it targets more than one programming language. In this case,
every additional language must contain an additional <implementation> element. The specific
settings for each programming language are discussed below.

Java

...

<implementation language="java">

 <setting name="package" value="com.hello.functions"/>

 <setting name="class" value="Hello"/>

</implementation>

...

It is important for the generated code to be able to find your Hello.class file. Therefore, make sure
that your class is in the Java classpath. The default Java classpath is found in the system
environment variables.

Note that it is only possible to have one class per *.mff file when working with custom Java
libraries.

C#

...

 <implementation language="cs">

 <setting name="namespace" value="HelloWorldLibrary"/>

 <setting name="class" value="Hello"/>

 <setting name="reference" value=" C:\HelloWorldLibrary

\HelloWorldLibrary.dll"/>

 </implementation>

...

For C#, it is important that the namespace in the code corresponds to the namespace defined in
the .mff file (in the code listing above, the namespace is HelloWorldLIbrary). The same is true
for the class name (in the code listing above, the class name is Hello). The third setting,
reference, provides the path of the dll that is to be linked to the generated code.

C++

...

 <implementation language="cpp">

 <setting name="namespace" value="helloworld"/>

 <setting name="class" value="Greetings"/>

 <setting name="path" value="C:\HelloWorldLibrary"/>

 <setting name="include" value="Greetings.h"/>

 <setting name="source" value="Greetings.cpp"/>

 </implementation>

...

For the C++ sample listing above, note the following:

670 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

namespace is the namespace in which your Greetings class will be defined. It must be
equal to the library name.
path is the path in which the include and the source files are to be found.
When code for a mapping is generated, the include and source files will be copied to the
directory targetdir/libraryname (defined when selecting the menu option File |
Generate xxx code, and selecting the directory) and included in the project file.

All the include files you supply will be included in the generated algorithm.

Adding a component

In the Libraries window of the MapForce graphics user interface, each function appears nested
under a function group, for example "string functions". In the .mff file, a function corresponds to a
<component> element. Conversely, each <component> must be nested under a <group> element,
for example:

...

<group name="string functions">

 <component name="hello">

 …

 </component>

</group>

...

The code shown below defines a sample function (component) called hello.

...

<component name="hello">

 <sources>

 <datapoint name="greeting_type" type="xs:boolean"/>

 </sources>

 <targets>

 <datapoint name="result" type="xs:string"/>

 </targets>

 <implementations>

 …

 </implementations>

 <description>

 <short>result = hello(greeting_type)</short>

 <long>Returns a greeting sentence according to the given

greeting_type.</long>

 </description>

</component>

...

Here is how the component above would look in MapForce:

© 2018 Altova GmbH

Referencing Java, C# and C++ Libraries Manually 671Functions

Altova MapForce 2018 Professional Edition

In the code listing above, a <datapoint> can be loosely defined as the input or output parameter
of a function (also known as input or output connector). The type argument of the <datapoint>
specifies the data type of the parameter (or the data type of the return value).

Only one target datapoint is allowed for each function. There is no limitation as to how many
source datapoints you can define.

The data type of each datapoint must be one of the XML Schema types (for example, xs:string,
xs:integer, etc.) These data types have to correspond to the data types of the function's
parameters you defined in your Java, C++ or C# library. For the mapping of XML Schema
datatypes to language types, see Data Type Mapping.

Functions are accompanied by short and long descriptions in the library window. The short
description is always shown to the right of the function name, while the long description is
displayed as a ToolTip when you place the mouse cursor over the short description.

Short description:

Long description:

Defining language implementations

We are now at the point where we need to make a connection between the function in the
Libraries window, and the function in the custom Java, C# or C++ classes. This is achieved
through the <implementation> element.

As previously stated, one function may have multiple implementation elements – one for each
supported programming language. A function may be called "helloFunction" in Java, or
"HelloFunctionResponse" in C++. This is why you need to specify a separate function name for
each programming language. A function for each of the three programming languages might look
like the following:

...

<component name="hello">

...

 <implementations>

 <implementation language="cs">

 <function name="HelloFunction"/>

 </implementation>

672 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <implementation language="java">

 <function name="helloFunction"/>

 </implementation>

 <implementation language="cpp">

 <function name="HelloFunctionResponse"/>

 </implementation>

 </implementations>

...

</component>

...

The value you supply as function name must exactly match the name of the method in the Java,
C# or C++ class.

8.7.2 Importing the .mff File Into MapForce

After you have created a custom .mff file (see Configuring the .mff File), you can import it into
MapForce as follows:

1. On the Tools menu, click Options. (Alternatively, click Add/Remove Libraries in the
lower area of the Libraries window.)

2. Next to Libraries, click Add, and select the custom .mff file.

The imported library becomes visible in the Libraries window after you set the mapping language
to a language targeted by the custom library.

If you save the *.mff file in the ...\Altova\MapForce2018\MapForceLibraries folder relative to the
Program Files (or Program Files (x86) folder), then the library is automatically loaded into
Libraries window when you start MapForce. Libraries and their functions can be toggled on or off,
by deleting or adding the respective library file (*.mff).

8.7.3 Data Type Mapping

The following table lists the data types supported as function return types and parameter types
when you create custom .mff files that adapt your Java, C#, and C++ libraries to MapForce. The
table lists both native and non-native data types. Note that, if you need support for non-native data
types such as Altova date, time and duration types, your custom Java and C# libraries must
include a reference to Altova libraries. In case of C++, Altova libraries must always be imported.
For information about how to generate the Altova libraries, see Code Generator.

XML Schema
Type

Java Type C# Type C++ Type

anyAtomicType String string string_type

anySimpleType String string string_type

anyURI String string string_type

© 2018 Altova GmbH

Referencing Java, C# and C++ Libraries Manually 673Functions

Altova MapForce 2018 Professional Edition

XML Schema
Type

Java Type C# Type C++ Type

base64Binary byte[] byte[] altova::mapforce::

blob

boolean boolean bool bool

byte int int int

date com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

dateTime com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

dayTimeDuration com.altova.types.D

uration

Altova.Types.Durat

ion

altova::Duration

decimal java.math.BigDecim

al

decimal double

double double double double

duration com.altova.types.D

uration

Altova.Types.Durat

ion

altova::Duration

ENTITIES String string string_type

ENTITY String string string_type

float double double double

gDay com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

gMonth com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

gMonthDay com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

gYear com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

gYearMonth com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

hexBinary byte[] byte[] altova::mapforce::

blob

ID String string string_type

IDREF String string string_type

IDREFS String string string_type

int int int int

integer java.math.BigInteg

er

decimal __int64

674 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

XML Schema
Type

Java Type C# Type C++ Type

language String string string_type

long long long __int64

Name String string string_type

NCName String string string_type

negativeInteger java.math.BigInteg

er

decimal __int64

NMTOKEN String string string_type

NMTOKENS String string string_type

nonNegativeInteg

er

java.math.BigInteg

er

decimal unsigned __int64

nonPositiveInteg

er

java.math.BigInteg

er

decimal __int64

normalizedString String string string_type

NOTATION String string string_type

positiveInteger java.math.BigInteg

er

decimal unsigned __int64

QName javax.xml.namespac

e.QName

Altova.Types.QName altova::QName

short int int int

string String string string_type

time com.altova.types.D

ateTime

Altova.Types.DateT

ime

altova::DateTime

token String string string_type

unsignedByte long ulong unsigned __int64

unsignedInt long ulong unsigned __int64

unsignedLong java.math.BigInteg

er

ulong unsigned __int64

unsignedShort long ulong unsigned __int64

untypedAtomic String string string_type

yearMonthDuratio

n

com.altova.types.D

uration

Altova.Types.Durat

ion

altova::Duration

© 2018 Altova GmbH

Referencing Java, C# and C++ Libraries Manually 675Functions

Altova MapForce 2018 Professional Edition

8.7.4 Example: Create a Custom C# Library

This topic describes how to create a sample C# library and configure the .mff file so that it
appears in the Libraries window of MapForce.

1. Create a new class library project in Visual Studio. Notice that the function has been
defined as public static.

using System;

namespace HelloWorldLibrary

{
 public class Greetings

 {
 public static string HelloFunction(bool GreetingType)

 {
 if (GreetingType)

 return "Hello World!";

 return "Hello User!";

 }
 }
}

2. If you need special XML Schema types (such as date and duration), you will need add a
reference from your Visual Studio project to the Altova.dll library. To obtain this library,
generate C# code from a mapping without custom functions. The Altova.dll file will be
located in the ..\Altova\bin\debug directory relative to the directory where the code was
generated. To add the reference to Altova.dll in Visual Studio, on the Project menu,
click Add Reference and browse for the Altova.dll file. Also, add to your code the
following line: using Altova.Types; . For information about how XML Schema types

map to C# types, see Data Type Mapping.
3. Build your Visual Studio project. The HelloWorldLibrary.dll is generated in your project

output directory.
4. Using an XML editor, create a new .mff file and validate it against the ..\Program Files

\MapForceLibraries\mff.xsd folder. Make sure that the text highlighted below points to
the HelloWorldLibrary.dll file. For more information, see Configuring the .mff File.

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="helloworld" xmlns:xs="http://

www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="mff.xsd">

 <implementations>

 <implementation language="cs">

 <setting name="namespace" value="HelloWorldLibrary"/>

 <setting name="class" value="Greetings"/>

 <setting name="reference" value="C:\Projects

\HelloWorldLibrary.dll"/>

 </implementation>

 </implementations>

 <group name="Greetings">

676 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <component name="HelloFunction">

 <sources>

 <datapoint name="greeting_type" type="xs:boolean"/>

 </sources>

 <targets>

 <datapoint name="result" type="xs:string" />

 </targets>

 <implementations>

 <implementation language="cs">

 <function name="HelloFunction"/>

 </implementation>

 </implementations>

 <description>

 <short>result = hello(greeting_type)</short>

 <long>Returns a greeting according to the given greeting

type.</long>

 </description>

 </component>

 </group>

</mapping>

You have now finished creating a custom library and the .mff file which adapts it to MapForce. The
custom .mff file can now be used in MapForce (see Importing the .mff File Into MapForce).

8.7.5 Example: Create a Custom C++ Library

This topic describes how to create a sample C++ library and configure a .mff file for it so that the
library appears in the Libraries window of MapForce.

1. Create a header (.h) file for your class library. The following code listing illustrates a
sample header file called Greetings.h.

 #ifndef HELLOWORLDLIBRARY_GREETINGS_H_INCLUDED
 #define HELLOWORLDLIBRARY_GREETINGS_H_INCLUDED

 #if _MSC_VER > 1000
 #pragma once
 #endif // _MSC_VER > 1000

 using namespace altova;

 namespace helloworld {

 class ALTOVA_DECLSPECIFIER Greetings

 {
 public:

 static string_type HelloFunctionResponse(bool greetingType);

 };

 } // namespace HelloWorldLibrary

© 2018 Altova GmbH

Referencing Java, C# and C++ Libraries Manually 677Functions

Altova MapForce 2018 Professional Edition

 #endif // HELLOWORLDLIBRARY_GREETINGS_H_INCLUDED

Notice that the function has been declared as static, and that the namespace altova is
imported. Remember to write ALTOVA_DECLSPECIFIER in front of the class name, this
ensures that your classes will compile correctly—whether you use dynamic or static
linkage in subsequently generated code.

2. Create a .cpp file with the same name as the header file. The .cpp file must be in the
same directory as the .h file. The following code listing illustrates a sample .cpp file
called Greetings.cpp that includes the Greetings.h file created previously:

 #include "StdAfx.h"
 #include "../Altova/Altova.h"
 #include "../Altova/AltovaException.h"
 #include "../Altova/SchemaTypes.h"

 #include "Greetings.h"

 namespace helloworld {

 string_type Greetings::HelloFunctionResponse(bool greetingType)

 {
 if(greetingType)

 return _T("Hello World!");

 return _T("Hello User!");

 }

 }

Notice the lines that import the StdAfx.h and several Altova libraries. These lines must
be left unchanged. The paths to the Altova libraries is correct; in the generated code,
these paths will point to the respective files.

In contrast to Java or C#, you do not need to compile your source C++ files. They will
be copied to the generated code, and are compiled with the rest of the generated
mapping code.

3. Using an XML editor, create a new .mff file and validate it against the ..\Program Files
\MapForceLibraries\mff.xsd folder. Make sure that the text highlighted below points to
the directory of the header and cpp files created previously. Remember that the
namespace and function names and data types defined here must correspond to those in
the C++ code, as described in Configuring the .mff File. For information about data type
support, see Data Type Mapping.

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="helloworld" xmlns:xs="http://

www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="mff.xsd">

 <implementations>

 <implementation language="cpp">

678 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <setting name="namespace" value="helloworld"/>

 <setting name="class" value="Greetings"/>

 <setting name="path" value="C:\Projects\HelloWorld"/>

 <setting name="include" value="Greetings.h"/>

 <setting name="source" value="Greetings.cpp"/>

 </implementation>

 </implementations>

 <group name="Greetings">

 <component name="HelloFunctionResponse">

 <sources>

 <datapoint name="greeting_type" type="xs:boolean"/>

 </sources>

 <targets>

 <datapoint name="result" type="xs:string"/>

 </targets>

 <implementations>

 <implementation language="cpp">

 <function name="HelloFunctionResponse"/>

 </implementation>

 </implementations>

 <description>

 <short>result = hello(greeting_type)</short>

 <long>Returns a greeting according to the given greeting

type.</long>

 </description>

 </component>

 </group>

</mapping>

You have now finished creating a custom library and the .mff file which adapts it to MapForce. The
custom .mff file can now be used in MapForce (see Importing the .mff File Into MapForce).
Remember that, in order to execute mappings that use native C++ libraries, you will need to
generate C++ code and run the mapping from your C++ code or application.

Resolving C++ compile errors

If you get a compiler error at the line shown below, modify the project properties to include a
reference to the msado15.dll file.

#import "msado15.dll" rename("EOF", "EndOfFile")

In Visual Studio 2008:

1. On the Tools menu, click Options.
2. Expand Projects and Solutions > VC++ Directories.
3. Under "Show directories for", select Include files, and add a new entry that points to the

directory where msado15.dll file is located (usually, C:\Program Files\Common Files
\System\ADO).

4. Build the project.

© 2018 Altova GmbH

Referencing Java, C# and C++ Libraries Manually 679Functions

Altova MapForce 2018 Professional Edition

8.7.6 Example: Create a Custom Java Library

This topic describes how to create a sample Java library and configure a .mff file for it so that the
library appears in the Libraries window of MapForce.

1. Create a new Java project in your preferred development environment (for example,
Eclipse).

2. Add to the project a new package called com.hello.functions which consists of a
class called Hello. In the code listing below, notice that the HelloFunction function
has been defined as public static.

 package com.hello.functions;

 public class Hello {

 public static String HelloFunction (boolean greetingType) {

 if(greetingType)

 return "Hello World!";

 return "Hello User!";

 }
 }

3. Optionally, if your project needs support for special schema types such as date, time,
and duration, import the com.altova.types package. To obtain this package, generate
Java code from a mapping without custom functions.

import com.altova.types.*;

4. Compile your custom library to a class file, and add it to the Java classpath.
5. Using an XML editor, create a new .mff file and validate it against the ..\Program Files

\MapForceLibraries\mff.xsd folder. Make sure that the text highlighted below points to
the namespace and class defined previously in the Java code. For more information, see
Configuring the .mff File.

<?xml version="1.0" encoding="UTF-8"?>
<mapping version="9" library="helloworld" xmlns:xs="http://

www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="mff.xsd">

 <implementations>

 <implementation language="java">

 <setting name="namespace" value="com.hello.functions"/>

 <setting name="class" value="Hello"/>

 </implementation>

 </implementations>

 <group name="Greetings">

 <component name="HelloFunction">

 <sources>

 <datapoint name="greeting_type" type="xs:boolean"/>

 </sources>

 <targets>

680 Functions Referencing Java, C# and C++ Libraries Manually

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <datapoint name="result" type="xs:string"/>

 </targets>

 <implementations>

 <implementation language="java">

 <function name="HelloFunction"/>

 </implementation>

 </implementations>

 <description>

 <short>result = hello(greeting_type)</short>

 <long>Returns a greeting according to the given greeting

type.</long>

 </description>

 </component>

 </group>

</mapping>

You have now finished creating a custom library and the .mff file which adapts it to MapForce. The
custom .mff file can now be used in MapForce (see Importing the .mff File Into MapForce).

© 2018 Altova GmbH

Regular Expressions 681Functions

Altova MapForce 2018 Professional Edition

8.8 Regular Expressions

MapForce can use regular expressions in the pattern parameter of the match-pattern and
tokenize-regexp functions, to find specific strings.

The regular expression syntax and semantics for XSLT and XQuery are identical to those defined
in https://www.w3.org/TR/xmlschema-2/. Please note that there are slight differences in regular
expression syntax between the various programming languages.

Terminology

input the string that the regex works on
pattern the regular expression
flags optional parameter to define how the regular expression is to be

interpreted
result the result of the function

Tokenize-regexp returns a sequence of strings. The connection to the Rows item creates one row
per item in the sequence.

regex syntax

Literals e.g. a single character:
e.g. The letter "a" is the most basic regex. It matches the first occurrence of the character "a" in
the string.

Character classes []
This is a set of characters enclosed in square brackets.

One, and only one, of the characters in the square brackets are matched.

pattern [aeiou]
Matches a lowercase vowel.

pattern [mj]ust
Matches must or just

Please note that "pattern" is case sensitive, a lower case a does not match the uppercase A.

Character ranges [a-z]
Creates a range between the two characters. Only one of the characters will be matched at one
time.

https://www.w3.org/TR/xmlschema-2/

682 Functions Regular Expressions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

pattern [a-z]
Matches any lowercase characters between a and z.

negated classes [^]
using the caret as the first character after the opening bracket, negates the character class.

pattern [^a-z]
Matches any character not in the character class, including newlines.

Meta characters "."
Dot meta character
matches any single character (except for newline)

pattern .
Matches any single character.

Quantifiers ? + * {}
Quantifiers define how often a regex component must repeat within the input string, for a match to
occur.

?
zero or one preceding string/chunk is optional

+
one or more preceding string/chunks may match one or more times

*
zero or more preceding string/chunks may match zero or more times

{}
min / max
repetitions

no. of repetitions a string/chunks has to match

e.g. mo{1,3} matches mo, moo, mooo.

()
subpatterns
parentheses are used to group parts of a regex together.

|
Alternation/or allows the testing of subexpressions form left to right.
(horse|make) sense - will match "horse sense" or "make sense"

Flags
These are optional parameters that define how the regular expression is to be interpreted.
Individual letters are used to set the options, i.e. the character is present. Letters may be in any
order and can be repeated.

s

© 2018 Altova GmbH

Regular Expressions 683Functions

Altova MapForce 2018 Professional Edition

If present, the matching process will operate in the "dot-all" mode.

The meta character "." matches any character whatsoever. If the input string contains "hello" and
"world" on two different lines, the regular expression "hello*world" will only match if the s flag/
character is set.

m
If present, the matching process operates in multi-line mode.

In multi-line mode the caret ^ matches the start of any line, i.e. the start of the entire string and
the first character after a newline character.

The dollar character $ matches the end of any line, i.e. the end of the entire string and the
character immediately before a newline character.

Newline is the character #x0A.

i
If present, the matching process operates in case-insensitive mode.
The regular expression [a-z] plus the i flag would then match all letters a-z and A-Z.

x
If present, whitespace characters are removed from the regular expression prior to the matching
process. Whitespace chars. are #x09, #x0A, #x0D and #x20.

Exception:
Whitespace characters within character class expressions are not removed e.g. [#x20].

Please note:
When generating code, the advanced features of the regex syntax might differ slightly between the
various languages, please see the specific regex documentation for your language.

684 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8.9 Function Library Reference

This reference chapter describes the MapForce built-in functions available in the Libraries pane,
organized by library.

The availability of function libraries in the Libraries pane depends on the transformation language
you have selected (see Selecting a transformation language). The core library is a collection of
functions available in C++, C#, Java languages and in at least one of the following: XQuery, XPath,
or XSLT. The lang library is dedicated to functions available in C++, C#, and Java languages.
Other libraries contain functions associated with each separate type of output.

XPath 2.0 restrictions: Several XPath 2.0 functions dealing with sequences are currently not
available.

8.9.1 core | aggregate functions

Aggregate functions perform operations on a set, or sequence, of input values. The input data for
min, max, sum and avg is converted to the decimal data type for processing.

The input values must be connected to the values parameter of the function.
A context node (item) can be connected to the parent-context parameter to override the
default context from which the input sequence is taken. The parent-context parameter is
optional.
The result of the function is connected to the specific target item.

The mapping shown below is available as Aggregates.mfd in the ...\Tutorial folder and shows
how these functions are used.

Aggregate functions have two input items.
values (nodes/rows) is connected to the source item that provides the data, in this case
Number.
parent-context is connected to the item you want to iterate over, i.e. the context, in this
case over all Customers. The parameter is, however, optional.

© 2018 Altova GmbH

Function Library Reference 685Functions

Altova MapForce 2018 Professional Edition

The input instance in this case is an XML file containing the following data:

The source data supplied to the values item is the number sequence 2,4,6,8.
The output component in this case is a simple text file.
Clicking the Output tab for the above mapping delivers the following result:

min=2, max=8, count=4, sum=20 and avg=5.

avg8.9.1.1

Returns the average value of all values within the input sequence. The average of an empty set is
an empty set. Not available in XSLT1.

686 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Argument Description

parent-context Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric.

For an example of usage, see the mapping GroupTemperaturesByYear.mfd in the
<Documents>\Altova\MapForce2018\MapForceExamples\ directory.

count8.9.1.2

Returns the number of individual items making up the input sequence. The count of an empty set
is zero. Limited functionality in XSLT1.

Argument Description

parent-context Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

nodes/rows This argument must be connected to the source item to be counted.

max8.9.1.3

Returns the maximum value of all numeric values in the input sequence. Note that this function
returns an empty set if the strings argument is an empty set. Not available in XSLT1.

Argument Description

parent-context Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

© 2018 Altova GmbH

Function Library Reference 687Functions

Altova MapForce 2018 Professional Edition

Argument Description

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric. To get
the maximum from a sequence of strings, use the max-string function.

For an example of usage, see the mapping GroupTemperaturesByYear.mfd in the
<Documents>\Altova\MapForce2018\MapForceExamples\ directory.

max-string8.9.1.4

Returns the maximum value of all string values in the input sequence. For example, max-
string("a", "b", "c") returns "c". This function is not available in XSLT1.

Argument Description

parent-context Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

strings This argument must be connected to a source item which supplies the
actual data. The supplied argument value must be a sequence (zero or
many) of xs:string.

Note that the function returns an empty set if the strings argument is an empty set.

min8.9.1.5

Returns the minimum value of all numeric values in the input sequence. The minimum of an empty
set is an empty set. Not available in XSLT1.

Argument Description

parent-context Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric. To get
the minimum from a sequence of strings, use the min-string function.

688 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

For an example of usage, see the mapping GroupTemperaturesByYear.mfd in the
<Documents>\Altova\MapForce2018\MapForceExamples\ directory.

min-string8.9.1.6

Returns the minimum value of all string values in the input sequence. For example, min-
string("a", "b", "c") returns "a". This function is not available in XSLT1.

Argument Description

parent-context Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

strings This argument must be connected to a source item which supplies the
actual data. The supplied argument value must be a sequence (zero or
many) of xs:string.

Note that the function returns an empty set if the strings argument is an empty set.

string-join8.9.1.7

Concatenates all the values of the input sequence into one string delimited by whatever string you
choose to use as the delimiter. The string-join of an empty set is the empty string. Not available in
XSLT1.

The example below contains four separate customer numbers 2 4 6 and 8. The constant character
supplies a hash character "#" as the delimiter.

Result = 2#4#6#8

© 2018 Altova GmbH

Function Library Reference 689Functions

Altova MapForce 2018 Professional Edition

If you do not supply a delimiter, then the default is an empty string, i.e. no delimiter of any sort.
Result = 2468.

sum8.9.1.8

Returns the arithmetic sum of all values in the input sequence. The sum of an empty set is zero.

Argument Description

parent-context Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric.

See also Example: Summing Node Values.

8.9.2 core | conversion functions

To support explicit data type conversion, several type conversion functions are available in the
conversion library. Note that, in most cases, MapForce creates necessary conversions
automatically and these functions need to be used only in special cases.

If the input nodes are of differing types, e. g. integer and string, you can use the conversion
functions to force a string or numeric comparison.

In the example above the first constant is of type string and contains the string "4".
The second constant contains the numeric constant 12. To be able to compare the two values
explicitly the types must agree.

Adding a number function to the first constant converts the string constant to the numeric value
of 4. The result of the comparisons is then "true".

Note that if the number function were not be used, i.e 4 would be connected directly to the a
parameter, a string compare would occur, with the result being false.

690 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

boolean8.9.2.1

Converts an input numeric value into a boolean (as well as a string to numeric - true to 1). E.g. 0
to "false", or 1 to "true", for further use with logical functions (equal, greater etc.) filters, or if-else
functions.

format-date8.9.2.2

Converts an xs:date input value into a string and formats it according to specified options.

Argument Description

value The date to be formatted.

format A format string identifying the way in which the date is to be formatted. This
argument is used in the same way as the format argument in the format-

dateTime function.

language Optional argument. When supplied, the name of the month and the day of the
week are returned in a specific language. Valid values:

en (default) English

es Spanish

de German

ja Japanese

In the following example, the output result is: "21 August 2014, Thursday". To translate this value
to Spanish, set the value of the language argument to es.

© 2018 Altova GmbH

Function Library Reference 691Functions

Altova MapForce 2018 Professional Edition

format-dateTime8.9.2.3

Converts a date and time value (xs:dateTime) into a string. The string representation of date and
time is formatted according to the value of the format argument.

Argument Description

value The xs:dateTime value to be formatted.

format A format string identifying the way in which value is to be formatted.

language Optional argument. When supplied, the name of the month and the day of the
week are returned in a specific language. Valid values:

en (default) English

es Spanish

de German

ja Japanese

Note: If the function’s output (result) is connected to a node of type other than string, the
formatting may be lost as the value is cast to the target type. This automatic cast can be
disabled by unchecking the Cast target values to target types check box in the
Component Settings of the target component (see Changing the Component Settings).

The format argument consists of a string containing so-called variable markers enclosed in

square brackets. Characters outside the square brackets are literal characters to be copied into
the result. If square brackets are needed as literal characters in the result, then they should be
doubled.

Each variable marker consists of a component specifier identifying which component of the date
or time is to be displayed, an optional formatting modifier, another optional presentation modifier
and an optional width modifier, preceded by a comma if it is present.

692 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

format := (literal | argument)*
argument := [component(format)?(presentation)?(width)?]
width := , min-width ("-" max-width)?

The components are as follows:

Specifier Description Default Presentation

Y year (absolute value) four digits (2010)

M month of the year 1-12

D day of month 1-31

d day of year 1-366

F day of week name of the day (language dependent)

W week of the year 1-53

w week of month 1-5

H hour (24 hours) 0-23

h hour (12 hour) 1-12

P A.M. or P.M. alphabetic (language dependent)

m minutes in hour 00-59

s seconds in minute 00-59

f fractional seconds numeric, one decimal place

Z timezone as a time offset from UTC +08:00

z timezone as a time offset using GMT GMT+n

The formatting modifier can be one of the following:

Character Description Example

1 decimal numeric format with no leading zeros: 1, 2,
3, ...

1, 2, 3

01 decimal format, two digits: 01, 02, 03, ... 01, 02, 03

N name of component, upper case MONDAY, TUESDAY 1)

n name of component, lower case monday, tuesday 1)

Nn name of component, title case Monday, Tuesday 1)

Note: N, n, and Nn modifiers only support the following components: M, d, D.

© 2018 Altova GmbH

Function Library Reference 693Functions

Altova MapForce 2018 Professional Edition

The width modifier, if present, is introduced by a comma. It takes the form:

, min-width ("-" max-width)?

The table below illustrates some examples of formatting xs:dateTime values with the help of the
format-dateTime function. The "Value" column specifies the value supplied to the value

argument. The "Format" column specifies the value of the format argument. The "Result" column

illustrates what is returned by the function.

Value Format Result

2003-11-
03T00:00:00

[D]/[M]/[Y] 3/11/2003

2003-11-
03T00:00:00

[Y]-[M,2]-[D,2] 2003-11-03

2003-11-
03T00:00:00

[Y]-[M,2]-[D,2] [H,2]:[m]:[s] 2003-11-03 00:00:00

2010-06-
02T08:02

[Y] [MNn] [D01] [F,3-3] [d] [H]:[m]:
[s].[f]

2010 June 02 Wed 153
8:02:12.054

2010-06-
02T08:02

[Y] [MNn] [D01] [F,3-3] [d] [H]:[m]:
[s].[f] [z]

2010 June 02 Wed 153
8:02:12.054 GMT+02:00

2010-06-
02T08:02

[Y] [MNn] [D1] [F] [H]:[m]:[s].[f] [Z] 2010 June 2 Wednesday
8:02:12.054 +02:00

2010-06-
02T08:02

[Y] [MNn] [D] [F,3-3] [H01]:[m]:[s] 2010 June 2 Wed
08:02:12

format-number8.9.2.4

Converts a number into a string. The function is available for XSLT 1.0, XSLT 2.0, Java, C#, C++
and Built-in execution engine.

Argument Description

value Mandatory argument. Supplies the number to be formatted.

format Mandatory argument. Supplies a format string that identifies the
way in which the number is to be formatted. This argument is
used in the same way as the format argument in the format-

694 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Argument Description

dateTime function.

decimal-point-format Optional argument. Supplies the character to be used as the
decimal point character. The default value is the full stop (.)
character.

grouping-separator Optional argument. Supplies the character used to separate
groups of numbers. The default value is the comma (,)
character.

Note: If the function’s output (i.e. result) is connected to a node of type other than string, the
formatting may be lost as the value is cast to the target type. This automatic cast can be
disabled by unchecking the Cast target values to target types check box in the
component settings of the target component.

Format:

format := subformat (;subformat)?
 subformat := (prefix)? integer (.fraction)? (suffix)?
 prefix := any characters except special characters
 suffix := any characters except special characters
 integer := (#)* (0)* (allowing ',' to appear)
 fraction := (0)* (#)* (allowing ',' to appear)

The first subformat is used for formatting positive numbers, and the second subformat for negative
numbers. If only one subformat is specified, then the same subformat will be used for negative
numbers, but with a minus sign added before the prefix.

Special Character default Description

zero-digit 0 A digit will always appear at this point in the
result

digit # A digit will appear at this point in the result
string unless it is a redundant leading or trailing
zero

decimal-point . Separates the integer and the fraction part of the
number.

grouping-separator , Separates groups of digits.

percent-sign % Multiplies the number by 100 and shows it as a
percentage.

per-mille ‰ Multiplies the number by 1000 and shows it as
per-mille.

The characters used for decimal-point-character and grouping-separator are always "." and ","
respectively. They can, however, be changed in the formatted output, by mapping constants to
these nodes.

© 2018 Altova GmbH

Function Library Reference 695Functions

Altova MapForce 2018 Professional Edition

The result of the format number function shown above.
The decimal-point character was changed to a "+".
The grouping separator was changed to a "-"

Rounding
The rounding method used for this function is "half up", e.g. the value gets rounded up if the
fraction is greater than or equal to 0.5. The value gets rounded down if the fraction is less than
0.5. This method of rounding only applies to generated code and the built-in execution engine.

In XSLT 1.0, the rounding mode is undefined. In XSLT 2.0, the rounding mode is "round-half-to-
even".

Number Format String Result

1234.5 #,##0.00 1,234.50

123.456 #,##0.00 123.46

1000000 #,##0.00 1,000,000.00

-59 #,##0.00 -59.00

1234 ###0.0### 1234.0

1234.5 ###0.0### 1234.5

.00025 ###0.0### 0.0003

.00035 ###0.0### 0.0004

0.25 #00% 25%

0.736 #00% 74%

1 #00% 100%

-42 #00% -4200%

-3.12 #.00;(#.00) (3.12)

-3.12 #.00;#.00CR 3.12CR

696 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

format-time8.9.2.5

Converts an xs:time input value into a string. The format argument is used in the same way as
the format argument in the format-dateTime function.

E.g

Result: 33-15-12

number8.9.2.6

Converts an input string into a number. Also converts a boolean input to a number.

parse-date8.9.2.7

Available for Java, C#, C++, and the Built-in execution engine.

Converts a string into a date, while ignoring the time component. This function uses the parse-
dateTime function as a basis, while ignoring the time component. The result is of type xs:date.

© 2018 Altova GmbH

Function Library Reference 697Functions

Altova MapForce 2018 Professional Edition

parse-dateTime8.9.2.8

Available for Java, C#, C++, and the Built-in execution engine.

Converts a date/time value expressed as a string into a value of type dateTime. This function
takes the following arguments:

Argument Description

value The string value to be converted.

format Specifies the format mask to apply to value.

For example, in the mapping below, the string value 315 2004 +01:00 specifies the 315th day of

year 2004, in the time zone GMT+01:00. This value is converted into its dateTime equivalent, by
applying the format mask [d] [Y] [Z].

The result is as follows:

A format mask can consist of the following components:

Componen
t

Description Default Presentation

Y year (absolute value) four digits (2010)

M month of the year 1-12

D day of month 1-31

698 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Componen
t

Description Default Presentation

d day of year 1-366

H hour (24 hours) 0-23

h hour (12 hour) 1-12

P A.M. or P.M. alphabetic (language dependent)

m minutes in hour 00-59

s seconds in minute 00-59

f fractional seconds numeric, one decimal place

Z timezone as a time offset from UTC +08:00

z timezone as a time offset using GMT GMT+n

Some of the components above take modifiers (for example, they can be used to interpret a date
either as a single digit or as two digits):

Modifier Description Example

1 decimal numeric format with no leading zeros: 1, 2, 3,
...

1, 2, 3

01 decimal format, two digits: 01, 02, 03, ... 01, 02, 03

N name of component, upper case FEBRUARY, MARCH

n name of component, lower case february, march

Nn name of component, title case February, March

Note: N, n, and Nn modifiers support only the component M (month).

The table below lists a few more examples:

Value Format Result

21-03-2002
16:21:12.492 GMT
+02:00

[D]-[M]-[Y] [H]:[m]:[s].[f]
[z]

2002-03-21T16:21:12.492
+02:00

315 2004 +01:00 [d] [Y] [Z] 2004-11-10T00:00:00
+01:00

1.December.10 03:2:39
p.m. +01:00

[D].[MNn].[Y,2-2] [h]:[m]:[s]
[P] [Z]

2010-12-01T15:02:39
+01:00

20110620 [Y,4-4][M,2-2][D,2-2] 2011-06-20T00:00:00

© 2018 Altova GmbH

Function Library Reference 699Functions

Altova MapForce 2018 Professional Edition

parse-number8.9.2.9

Available for Java, C#, C++, and the Built-in execution engine.

Converts an input string into a decimal number.

Argument Description

value The string to be parsed/converted to a number

format A format string that identifies the way in which the number is
currently formatted (optional). Default is "#,##0.#"

decimal-point-character The character to be used as the decimal point character. Default
is the '.' character (optional)

grouping-separator The separator/delimiter used to separate groups of numbers.
Default is the "," character (optional)

The format string used in parse-number is the same as that used in format-number.

Example in MapForce:

Result:

parse-time8.9.2.10

Available for Java, C#, C++, and the Built-in execution engine.

700 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Converts a string into a time, while ignoring the date component. This function uses the parse-
dateTime function as a basis, while ignoring the date component. The result is of type xs:time.

string8.9.2.11

Converts an input value into a string. The function can also be used to retrieve the text content of
a node.

If the input node is a XML complex type, then all descendents are also output as a single string.

8.9.3 core | file path functions

The file path functions allow you to directly access and manipulate file path data, i.e. folders, file
names, and extensions for further processing in your mappings. They can be used in all
languages supported by MapForce.

get-fileext8.9.3.1

Returns the extension of the file path including the dot "." character.

E.g. 'c:\data\Sample.mfd' returns '.mfd'

get-folder8.9.3.2

Returns the folder name of the file path including the trailing slash, or backslash character.

E.g. 'c:/data/Sample.mfd' returns 'c:/data/'

© 2018 Altova GmbH

Function Library Reference 701Functions

Altova MapForce 2018 Professional Edition

main-mfd-filepath8.9.3.3

Returns the full path of the mfd file containing the main mapping. An empty string is returned if the
mfd is currently unsaved.

mfd-filepath8.9.3.4

If the function is called in the main mapping, it returns the same as main-mfd-filepath function, i.e.
the full path of the mfd file containing the main mapping. An empty string is returned if the mfd is
currently unsaved.

If called within an user-defined function which is imported by a mfd-file, it returns the full path
of the imported mfd file which contains the definition of the user-defined function.

remove-fileext8.9.3.5

Removes the extension of the file path including the dot-character.

E.g. 'c:/data/Sample.mfd' returns 'c:/data/Sample'.

remove-folder8.9.3.6

Removes the directory of the file path including the trailing slash, or backslash character.

E.g. 'c:/data/Sample.mfd' returns 'Sample.mfd'.

replace-fileext8.9.3.7

Replaces the extension of the file path supplied by the filepath parameter, with the one supplied
by the connection to the extension parameter.

702 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

E.g. c:/data/Sample.mfd' as the input filepath, and '.mfp' as the extension, returns 'c:/data/
Sample.mfp'

resolve-filepath8.9.3.8

Resolves a relative file path to a relative, or absolute, base folder. The function supports '.' (current
directory) and '..' (parent directory).

For an example, see the mapping MergeMultipleFiles_List.mfd available in the ...
\MapForceExamples folder.

8.9.4 core | generator functions

The core / generator functions library includes functions which generate values.

© 2018 Altova GmbH

Function Library Reference 703Functions

Altova MapForce 2018 Professional Edition

auto-number8.9.4.1

The auto-number function generates integers in target nodes of a component, depending on the
various parameters you define. The function result is a value starting at start_with and increased
by increment. Default values are: start-with=1 and increase=1. Both parameters can be negative.

Make sure that the result connector (of the auto-number function) is directly connected to a
target node. The exact order in which functions are called by the generated mapping code is
undefined. MapForce may choose to cache calculated results for reuse, or evaluate expressions
in any order. It is therefore strongly recommended to take care when using the auto-number
function.

global-id
This parameter allows you to synchronize the number sequence output of two separate auto-
number functions connected to a single target component.

If the two auto-number functions do not have the same global-id, then each increments the target
items separately. In the example below, each function has a different global-id i.e. a and b.

The output of the mapping is 1,1,2,2. The top function supplies the first 1 and the lower one the
second 1.

If both functions have identical global-ids, a in this case, then each function "knows" about the
current auto-number state (or actual value) of the other, and both numbers are then synchronised/
in sequence.

The output of the mapping is therefore 1, 2, 3, 4.The top function supplies the first 1 and the lower
one now supplies a 2.

704 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

start-with
The initial value used to start the auto numbering sequence. Default is 1.

increment
The increment you want auto-number sequence to increase by. Default is 1.

restart on change
Resets the auto-number counter to "start-with", when the content of the connected item
changes.

In the example below, start-with and increment are both using the default 1. As soon as the
content of Department changes, i.e. the department name changes, the counter is reset and
starts at 1 for each new department.

© 2018 Altova GmbH

Function Library Reference 705Functions

Altova MapForce 2018 Professional Edition

8.9.5 core | logical functions

Logical functions are (generally) used to compare input data with the result being a boolean "true"
or " false". They are generally used to test data before passing on a subset to the target
component using a filter.

input parameters = a | b, or value1 | value2
output parameter = result

The evaluation result of two input nodes depends on the input values as well as the data types
used for the comparison.

For example, the 'less than' comparison of the integer values 4 and 12 yields the boolean value
"true", since 4 is less than 12. If the two input strings contain '4' and '12', the lexical analysis
results in the output value "false", since '4' is alphabetically greater than the first character '1' of
the second operand (12).

If all input data types are of the same type, e.g. all input nodes are numerical types, or strings,
then the comparison is done for the common type.

If the input nodes are of differing types (for example, integer and string, or string and date), then
the data type used for the comparison is the most general (least restrictive) input data type of
the two input types.

Before comparing two values, all input values are converted to a common datatype. Using the
previous example; the datatype "string" is less restrictive than "integer". Comparing integer value
4 with the string '12', converts integer value 4 to the string '4', which is then compared with the
string '12'.

Note: Logical functions cannot be used to test the existence of null values. If you supply a null
value as argument to a logical function, it returns a null value. For more information about
handling null values, see Nil Values / Nillable.

equal8.9.5.1

Result is true if a=b, else false.

equal-or-greater8.9.5.2

Result is true if a is equal/greater than b, else false.

706 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

equal-or-less8.9.5.3

Result is true if a is equal/less than b, else false.

greater8.9.5.4

Result is true if a is greater than b, else false.

less8.9.5.5

Result is true if a is less than b, else false.

logical-and8.9.5.6

If both value1 and value2 of the logical-and function are true, then result is true; if different then
false.

© 2018 Altova GmbH

Function Library Reference 707Functions

Altova MapForce 2018 Professional Edition

logical-not8.9.5.7

Inverts or flips the logical state/result; if input is true, result of logical-not function is false. If input
is false then result is true.

The logical-not function shown below, inverts the result of the equal function. The logical-and
function now only returns true if boolean values of value1 and value2 are different, i.e. true-false, or
false-true.

logical-or8.9.5.8

Requires both input values to be boolean. If either value1 or value2 of the logical-or function are
true, then the result is true. If both values are false, then result is false.

not-equal8.9.5.9

Result is true if a is not equal to b.

708 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8.9.6 core | math functions

Math functions are used to perform basic mathematical functions on data. Note that they cannot
be used to perform computations on durations, or datetimes.

input parameters = value1 | value2
output parameter = result

input values are automatically converted to decimal for further processing.

The example shown above, adds 20% sales tax to each of the articles mapped to the target
component.

add8.9.6.1

Result is the decimal value of adding value1 to value2.

ceiling8.9.6.2

Result is the smallest integer that is greater than or equal to value, i.e. the next highest integer
value of the decimal input value.

E.g. if the result of a division function is 11.2, then applying the ceiling function to it makes the
result 12, i.e. the next highest whole number.

© 2018 Altova GmbH

Function Library Reference 709Functions

Altova MapForce 2018 Professional Edition

divide8.9.6.3

Result is the decimal value of dividing value1 by value2. The result precision depends on the
target language. Use the round-precision function to define the precision of result.

floor8.9.6.4

Result is the largest integer that is less than or equal to value, i.e. the next lowest integer value
of the decimal input value.

E.g. if the result of a division function is 11.2, then applying the floor function to it makes the
result 11, i.e. the next lowest whole number.

modulus8.9.6.5

Result is the remainder of dividing value1 by value2.

In the mapping below, the numbers have been multiplied by 3 and passed on to value1 of the
modulus function. Input values are now 3, 6, 9, and 12.

When applying/using modulus 8 as value2, the remainders are 3, 6, 1, and 4.

710 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

multiply8.9.6.6

Result is the decimal value of multiplying value1 by value2.

round8.9.6.7

Returns the value rounded to the nearest integer. When the value is exactly in between two
integers, the "Round Half Towards Positive Infinity" algorithm is used. For example, the value
"10.5" gets rounded to "11", and the value "-10.5" gets rounded to "-10".

round-precision8.9.6.8

Result is the decimal value of the number rounded to the decimal places defined by "decimals".

In the mapping above, the result is 0.429. For the result to appear correctly in an XML file, make
sure to map it to an element of xs:decimal type.

subtract8.9.6.9

Result is the decimal value of subtracting value2 from value1.

© 2018 Altova GmbH

Function Library Reference 711Functions

Altova MapForce 2018 Professional Edition

8.9.7 core | node functions

The node functions allow you to access nodes, or process nodes in a particular way.

is-xsi-nil8.9.7.1

Returns true (<OrderID>true</OrderID>) if the element node, of the source component, has the
xsi:nil attribute set to "true".

node-name8.9.7.2

Returns the qualified name (QName) of the connected node. If the node is an XML text() node, an
empty QName is returned. This function only works on those nodes that have a name. If XSLT is
the target language (which calls fn:node-name), the function returns an empty sequence for nodes
which have no names.

Getting a name from database tables/fields is not supported.
XBRL and Excel are not supported.
Getting a name of File input node is not supported.

WebService nodes behave like XML nodes except that:
node-name from "part" is not supported.
node-name from root node ("Output" or "Input") is not supported.

712 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The MapPerson user-defined function uses node-name to return the name of the input node, and
place it in the role attribute. The root node of the Employees.xsd, in the user-defined function, has
been defined as "Manager".

Manager gets its data from outside the user-defined function, where it can be either: Manager,
Programmer, or Support. This is the data that is then passed on to the role attribute in
PersonList.

set-xsi-nil8.9.7.3

Sets the target node to xsi:nil.

static-node-annotation8.9.7.4

Returns the string with annotation of the connected node. The input must be: (i) a source
component node, or (ii) an inline function that is directly connected to a parameter, which in turn
is directly connected to a node in the calling mapping.

© 2018 Altova GmbH

Function Library Reference 713Functions

Altova MapForce 2018 Professional Edition

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined
function. This is a pseudo-function, which is replaced at generation time with the text acquired
from the connected node, and is therefore available for all languages.

static-node-name8.9.7.5

Returns the string with the name of the connected node. The input must be: (i) a source
component node, or (ii) an inline function that is directly connected to a parameter, which in turn
is directly connected to a node in the calling mapping.

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined
function. This is a pseudo-function, which is replaced at generation time with the text acquired
from the connected node, and is therefore available for all languages.

substitute-missing-with-xsi-nil8.9.7.6

For nodes with simple content, this function substitutes any missing (or null values) of the source
component, with the xsi:nil attribute in the target node.

8.9.8 core | QName functions

QName functions provide ways to manipulate the Qualified Names (QName) in XML documents.

QName8.9.8.1

Constructs a QName from a namespace URI and a local part. Use this function to create a
QName in a target component. The uri and localname parameters can be supplied by a constant
function.

714 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

local-name-from-QName8.9.8.2

Returns the local name part of the QName.

namespace-uri-from-QName8.9.8.3

Returns the namespace URI part of the QName.

8.9.9 core | sequence functions

Sequence functions allow processing of input sequences and grouping of their content. The value/
content of the key input parameter, mapped to nodes/rows, is used to group the sequence.

Input parameter key is of an arbitrary data type that can be converted to string for group-
adjacent and group-by
Input parameter bool is of type Boolean for group-starting-with and group-ending-with
The output key is the key of the current group.

distinct-values8.9.9.1

Allows you to remove duplicate values from a sequence and map the unique items to the target
component.

In the example below, the content of the source component "Title" items, are scanned and each
unique title is mapped to the Department / Name item in the target component.

© 2018 Altova GmbH

Function Library Reference 715Functions

Altova MapForce 2018 Professional Edition

Note that the sequence of the individual Title items in the source component are retained when
mapped to the target component.

exists8.9.9.2

Returns true if the node exists, else returns false.

The "HasMarketingExpenses.mfd" file in the ...\MapForceExamples folder contains the small
example shown below.

If an expense-item exists in the source XML, then the "hasExpenses" attribute is set to "true" in

716 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

the target XML/Schema file.

first-items8.9.9.3

Returns the first "X" items of the input sequence, where X is the number supplied by the "count"
parameter. E.g. if the value 3 is mapped to the count parameter and a parent node to the nodes/
row parameter, then the first three items will be listed in the output.

generate-sequence8.9.9.4

Creates a sequence of integers using the "from" and "to" parameters as the boundaries.

group-adjacent8.9.9.5

Groups the input sequence nodes/rows into groups of adjacent items sharing the same key.
Note that group-adjacent uses the content of the node/item as the grouping key.

© 2018 Altova GmbH

Function Library Reference 717Functions

Altova MapForce 2018 Professional Edition

Given the CSV file shown below, what we want to happen is to have all the Header and Detail
records in their own groups.

A new group is started with the first element, in this case H.
As the next element (or key) in the sequence is different, i.e. D, this starts a second
group called D.
The next two D elements are now added to the same group D, as they are of the
same type.
A new H group is started with a single H element.
Followed by a new D group containing two D elements.

718 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

group-by8.9.9.6

Groups the input sequence nodes/rows into groups of not necessarily adjacent items sharing the
same key. Groups are output in the order the key occurs in the input sequence. The example
below shows how this works:

The key that defines the specific groups of the source component is the Title item. This is
used to group the persons of the company.
The group name is placed in the Department/Name item of the target component, while
the concatenated person's first and last names are placed in the Person/First child item.

© 2018 Altova GmbH

Function Library Reference 719Functions

Altova MapForce 2018 Professional Edition

Note that group-by uses the content of the node/item as the grouping key. The content of the
Title field is used to group the persons and is mapped to the Department/Name item in the target.

Note also: there is an implied filter of the rows from the source document to the target
document, which can be seen in the included example. In the target document, each Department
item only has those Person items that match the grouping key, as the group-by component
creates the necessary hierarchy on the fly.

If you have a flat hierarchy (CSV, FLF, etc) with a dynamic output file name, built in part from the
key value, the implied filter still exists. This means that you may not need to connect the 'groups'
output to any item in the target component.

Clicking the Output button shows the result of the grouping process.

720 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

group-ending-with8.9.9.7

This function groups the input sequence nodes/rows into groups, ending a new group whenever
bool is true. This example shows the result when using "DTL" as the group-ending-with item.

In this case the value of the item/nodes do not need to be identical or even exist. The node
"pattern" i.e. the node/item names need to be identical for the grouping to occur.

The result above shows that a new group was started wherever "DTL" can be the last element.

group-into-blocks8.9.9.8

Groups the input sequence nodes/rows into blocks of the same size defined by the number
supplied by the block-size parameter.

© 2018 Altova GmbH

Function Library Reference 721Functions

Altova MapForce 2018 Professional Edition

group-starting-with8.9.9.9

This function groups the input sequence nodes/rows into groups, starting a new group when bool
is true.

The following example illustrates a sequence of nodes where bool returns true whenever the
node "header" is encountered. Applying the group-starting-with function on this sequence of

nodes results in two groups, as shown below.

Note that the first node in the sequence starts a new group regardless of the value of bool. In
other words, a sequence such as the one below would create three groups.

item-at8.9.9.10

Returns the nodes/rows at the position supplied by the position parameter. The first item is at
position "1".

722 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

items-from-till8.9.9.11

Returns a sequence of nodes/rows using the "from" and "till" parameters as the boundaries. The
first item is at position "1".

last-items8.9.9.12

Returns the last "X" nodes/rows of the sequence where X is the number supplied by the "count"
parameter. The first item is at position "1".

not-exists8.9.9.13

Returns false if the node exists, else returns true.

The example below shows how you can use the not-exists function to map nodes that do not
exist in one of a pair of source files.

What this mapping does:

Compare the nodes of two source XML files
Filter out the nodes of the first source XML file, that do not exist in the second source
XML file
Map only the missing nodes, and their content, to the target file.

© 2018 Altova GmbH

Function Library Reference 723Functions

Altova MapForce 2018 Professional Edition

The two XML instance files are shown below, the differences between them are:

a.xml (left) contains the node <b kind="3">, which is missing from b.xml.
b.xml (right) contains the node <b kind="4"> which is missing from a.xml.

The equal function compares the kind attribute of both XML files and passes the result
to the filter.
A not-exists function is placed after the initial filter, to select the missing nodes of each
of the source files.
The second filter is used to pass on the missing node and other data only from the
a.xml file to the target.

The mapping result is that the node missing from b.xml, <b kind="3">, is passed on to the target
component.

724 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

position8.9.9.14

Returns the position of a node inside its containing sequence.

The position function allows you to determine the position of a specific node in a sequence, or use
a specific position to filter out items based on that position.

The context item is defined by the item connected to the "node" parameter of the position
function, Person, in the example below.

The simple mapping below adds a position number to each Person of each Department.

The position number is reset for each Department in the Office.

© 2018 Altova GmbH

Function Library Reference 725Functions

Altova MapForce 2018 Professional Edition

Using the position function to filter out specific nodes

Using the position function in conjunction with a filter allows you to map only those specific nodes
that have a certain position in the source component.

The filter "node/row" parameter and the position "node" must be connected to the same item of
the source component, to filter out a specific position of that sequence.

What this mapping does is to output:
The second Person in each Department
of each Office in Altova.

726 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Finding the position of items in a filtered sequence:

As the filter component is not a sequence function, it cannot be used directly in conjunction with
the position function to find the position of filtered items. To do this you have to use the "Variable"
component.

The results of a Variable component are always sequences, i.e. a delimited list of values, which
can also be used to create sequences.

The variable component is used to collect the filtered contacts where the last name
starts with a letter higher than "M".
The contacts are then passed on (from the variable) to the target component
The position function then numbers these contacts sequentially

© 2018 Altova GmbH

Function Library Reference 727Functions

Altova MapForce 2018 Professional Edition

replicate-item8.9.9.15

Repeats every item in the input sequence the number of times specified in the count argument. If
you connect a single item to the node/row argument, the function returns N items, where N is the
value of the count argument. If you connect a sequence of items to the node/row argument, the
function repeats each individual item in the sequence count times, processing one item at a time.
For example, if count is 2, then the sequence (1,2,3) produces (1,1,2,2,3,3).

Note that you can supply a different count value for each item. For example, let's assume that
you have a source XML file with the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<SourceList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="source.xsd">

 <person>

 <name>Michelle</name>

 <count>2</count>

 </person>

 <person>

 <name>Ted</name>

 <count>4</count>

 </person>

 <person>

 <name>Ann</name>

 <count>3</count>

 </person>

</SourceList>

With the help of the replicate-item function, you can repeat each person name a different

number of times in a target component. To achieve this, connect the <count> node of each
person to the count input of the replicate-item function:

The output is as follows:

728 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

<?xml version="1.0" encoding="UTF-8"?>
<TargetLists xsi:noNamespaceSchemaLocation="target.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <TargetList>

 <TargetString>Michelle</TargetString>

 <TargetString>Michelle</TargetString>

 </TargetList>

 <TargetList>

 <TargetString>Ted</TargetString>

 <TargetString>Ted</TargetString>

 <TargetString>Ted</TargetString>

 <TargetString>Ted</TargetString>

 </TargetList>

 <TargetList>

 <TargetString>Ann</TargetString>

 <TargetString>Ann</TargetString>

 <TargetString>Ann</TargetString>

 </TargetList>

</TargetLists>

replicate-sequence8.9.9.16

Repeats all items in the input sequence the number of times specified in the count argument. For
example, if count is 2, then the sequence (1,2,3) produces (1,2,3,1,2,3).

set-empty8.9.9.17

Returns an empty sequence.

skip-first-items8.9.9.18

Skips the first "X" items/nodes of the input sequence, where X is the number supplied by the
"count" parameter, and returns the rest of the sequence.

© 2018 Altova GmbH

Function Library Reference 729Functions

Altova MapForce 2018 Professional Edition

substitute-missing8.9.9.19

This function is a convenient combination of exists and a suitable if-else condition. Used to map
the current field content if the node exists in the XML source file, otherwise use the item mapped
to the "replace-with" parameter.

8.9.10 core | string functions

The string functions allow you to use the most common string functions to manipulate many
types of source data to: extract portions, test for substrings, or retrieve information on strings.

char-from-code8.9.10.1

Result is the character representation of the decimal Unicode value of value.

For an example, see Replacing Special Characters.

code-from-char8.9.10.2

Result is the decimal Unicode value of the first character of value.

concat8.9.10.3

Concatenates (appends) two or more values into a single result string. All input values are
automatically converted to type string.

730 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

contains8.9.10.4

Result is true if data supplied to the value parameter contains the string supplied by the substring
parameter.

normalize-space8.9.10.5

Result is the normalized input string, i.e. leading and trailing spaces are removed, then each
sequence of multiple consecutive whitespace characters are replaced by a single whitespace
character. The Unicode character for "space" is (U+0020).

starts-with8.9.10.6

Result is true if the input string "string" starts with substr, else false.

string-length8.9.10.7

Result is the number of characters supplied by the string parameter.

© 2018 Altova GmbH

Function Library Reference 731Functions

Altova MapForce 2018 Professional Edition

substring8.9.10.8

Result is the substring (string fragment) of the "string" parameter where "start" defines the
position of the start character, and "length" the length of the substring.

If the length parameter is not specified, the result is a fragment starting at the start position and
ending at the end position of the string. Indices start counting at 1.

E.g. substring("56789",2,3) results in 678.

substring-after8.9.10.9

Result is the remainder of the "string" parameter, where the first occurrence of the substr
parameter defines the start characters; the remainder of the string is the result of the function. An
empty string is the result, if substr does not occur in string.

E.g. substring-after("2009/01/04","/") results in the substring 01/04. substr in this case is the first
"/"character.

substring-before8.9.10.10

Result is the string fragment of the "string" parameter, up to the first occurrence of the substr
characters. An empty string is the result, if substr does not occur in string.

E.g. substring-before ("2009/01/04","/") results in the substring 2009. substr in this case is the
first "/" character.

tokenize8.9.10.11

Result is the input string split into a sequence of chunks/sections defined by the delimiter
parameter. The result can then be passed on for further processing.

732 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

E.g. Input string is A,B,C and delimiter is "," - then result is A B C.

Example

The tokenizeString1.mfd file available in the ...\MapForceExamples folder shows how the
tokenize function is used.

The XML source file is shown below. The Tool element has two attributes: Name and Code, with
the Tool element data consisting of comma delimited text.

What the mapping does:
The tokenize function receives data from the Tool element/item and uses the comma ","
delimiter to split that data into separate chunks. I.e. the first chunk "XML editor".
As the result parameter is mapped to the Rows item in the target component, one row is
generated for each chunk.
The result parameter is also mapped to the left-trim function which removes the leading
white space of each chunk.
The result of the left-trim parameter (each chunk) is mapped to the Feature item of the

© 2018 Altova GmbH

Function Library Reference 733Functions

Altova MapForce 2018 Professional Edition

target component.
The target component output file has been defined as a CSV file (AltovaToolFeatures.csv)
with the field delimiter being a semicolon (double click component to see settings).

Result of the mapping:
For each Tool element of the source file
The (Tool) Name is mapped to the Tool item in the target component
Each chunk of the tokenized Tool content is appended to the (Tool Name) Feature item
E.g. The first tool, XMLSpy, gets the first Feature chunk "XML editor"
This is repeated for all chunks of the current Tool and then for all Tools.
Clicking the Output tab delivers the result shown below.

tokenize-by-length8.9.10.12

Result is the input string split into a sequence of chunks/sections defined by the length
parameter. The result can then be passed on for further processing.

E.g. Input string is ABCDEF and length is "2" - then result is AB CD EF.

Example

The tokenizeString2.mfd file available in the ...\MapForceExamples folder shows how the
tokenize-by-length function is used.

734 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The XML source file is shown below, and is the same as the one used in the previous example.
The MissionKit element also has two attributes: Edition and ToolCodes, but no MissionKit
element content.

Aim of the mapping:
To generate a list showing which Altova tools are part of the respective MissionKit editions.

How the mapping works:
The SelectMissionKit Input component receives its default input from a constant
component, in this case "Enterprise XML Developers".
The equal function compares the input value with the "Edition" value and passes on the
result to the bool parameter of the ToolCodes filter.
The node/row input of the ToolCodes filter is supplied by the ToolCodes item of the
source file. The value for the Enterprise XML Developers edition is: XSMFSVDDSASW.
The XSMFSVDDSASW value is passed to the on-true parameter, and further to the
input parameter of the tokenize-by-length function.

© 2018 Altova GmbH

Function Library Reference 735Functions

Altova MapForce 2018 Professional Edition

What the tokenize-by-length function does:
The ToolCodes input value XSMFSVDDSASW, is split into multiple chunks of two
characters each, defined by length parameter, which is 2, thus giving 6 chunks.
Each chunk (placed in the b parameter) of the equal function, is compared to the 2
character Code value of the source file (of which there are 9 entries/items in total).
The result of the comparison (true/false) is passed on to the bool parameter of the filter.
Note that all chunks, of the tokenize-by-length function, are passed on to the node/row
parameter of the filter.

The exists functions now checks for existing/non-existing nodes passed on to it by the
on-true parameter of the filter component.

Existing nodes are those where there is a match between the ToolCodes chunk and the
Code value.

Non-existing nodes are where there was no ToolCodes chunk to match a Code value.

The bool results of the exists function are passed on to the if-else function which passes
on a Y to the target if the node exists, or a N, if the node does not exist.

Result of the mapping:

tokenize-regexp8.9.10.13

Result is the input string split into a sequence of strings, where the supplied regular expression
pattern match defines the separator. The separator strings are not output by the result
parameter. Optional flags may also be used.

736 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

In the example shown above:
input string is a succession of characters separated by spaces and/or commas, i.e. a , b c,d

The regex pattern defines a character class ["space""comma"] - of which one and only one
character will be matched in a character class, i.e. either space or comma.

The + quantifier specifies "one or more" occurrences of the character class/string.

result string is:

Please note that there are slight differences in regular expression syntax between the various
languages. Tokenize-regexp in C++ is only available in Visual Studio 2008 SP1 and later.

For more information on regular expressions, see Regular expressions.

translate8.9.10.14

The characters of string1 (search string) are replaced by the characters at the same position in
string2 (replace string), in the input string "value".

When there are no corresponding characters in string2, the character is removed.

E.g.
input string is 123145

(search) string1 is 15
(replace) string2 is xy

So:

© 2018 Altova GmbH

Function Library Reference 737Functions

Altova MapForce 2018 Professional Edition

each 1 is replaced by x in the input string value
each 5 is replaced by y in the input sting value

Result string is x23x4y

If string2 is empty (fewer characters than string1) then the character is removed.

E.g.2
input string aabaacbca

string1 is "a"
string2 is "" (empty string)

result string is "bcbc"

E.g.3
input string aabaacbca

string1 is "ac"
string2 is "ca"

result string is "ccbccabac"

8.9.11 db

The db library contains functions that allow you to define the mapping results when encountering
null fields in databases.

is-not-null8.9.11.1

Returns false if the field is null, otherwise returns true.

is-null8.9.11.2

Returns true if the field is null, otherwise returns false.

set-null8.9.11.3

Used to set a database column to null. This function will also overwrite a default value with null. If
connected to something else i.e. not a database field, it will behave like an empty sequence.

738 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Please note:

Connecting set-null to a different function will usually result in the other function not being
called at all. Connecting set-null to a sequence function, e.g. count, will call the function
with an empty sequence.
Connecting to special functions, Filters and IF-Else conditions works as expected, fields
are set to null. For filters this means the "node/row" input.
Using set-null as an input for a simpleType element will not create that element in the
target component.

substitute-null8.9.11.4

Used to map the current field content if it exists, otherwise use the item mapped to the replace-
with parameter.

The image below shows an example of the substitute-null function in use, and is available as "DB-
ApplicationList" in the ...\MapForceExamples folder.

The first function checks if a Category entry exists in the Applications table. As one does not
exist for the Notepad application, "Misc" is mapped to the Category item of the Text file.

© 2018 Altova GmbH

Function Library Reference 739Functions

Altova MapForce 2018 Professional Edition

The second function checks if a Description entry exist, and maps the string "No description" if
one does not exist, which is also the case with the Notepad application.

8.9.12 lang | QName functions

The lang library contains functions that are available when selecting either Java, C#, or C++
languages.

QName-as-string8.9.12.1

Result is the unique string representation of the QName.

string-as-QName8.9.12.2

Converts the string representation of a QName back to a QName.

8.9.13 lang | datetime functions

The lang library contains functions that are available when selecting either Java, C#, or C++
languages.

age8.9.13.1

age
Result is the age of the person in full years. The now argument is optional and the default is the
current system date. The result is then the full amount of years between the birthdate and now. If
a value is mapped to the now argument, the result is the difference between the two dates in full
years.

740 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

convert-to-utc8.9.13.2

 Converts the local "time" input parameter into Coordinated Universal Time, or GMT/Zulu time.
(The function takes the timezone component, e.g. +5:00, into account).

E.g. Instance document datetime:
departuredatetime="2001-12-17T09:30:02+05:00"

Result:
departuredatetime="2001-12-17T04:30:02"

Please note:
If the source dateTime is in the form departuredatetime="2001-12-17T09:30:02Z" then no

conversion will take place because the trailing "Z" defines this time to be Zulu time, i.e. UTC. The
result will be departuredatetime="2001-12-17T09:30:02".

date-from-datetime8.9.13.3

Result is the date part of a datetime input argument. The time part of the dateTime, starting with T
in the instance document, is set to zero. Note that the timezone increment is not changed.

E.g. Instance document datetime:
departuredatetime="2001-12-17T09:30:02+05:00"

Result:
departuredatetime="2001-12-17T00:00:00+05:00"

© 2018 Altova GmbH

Function Library Reference 741Functions

Altova MapForce 2018 Professional Edition

datetime-add8.9.13.4

Result is the datetime obtained by adding a duration (second argument) to a datetime (first
argument).

Durations must be entered in the form: P1Y2M3DT04H05M. Periods can be made negative by
adding the minus character before the P designator, e.g. -P1D.

P is the period designator, and is mandatory; the rest of above period is therefore:
1 Year, 2 Months, 3 Days T(ime designator), 04 Hours, 05 Minutes.

The example shown below, adds 10 days to the departuredatetime, i.e. P10D.

E.g. Instance document datetime:
departuredatetime="2001-12-17T09:30:02+05:00"

Result:
departuredatetime="2001-12-27T09:30:02+05:00"

To extract yesterdays date from dateTime input:
Use the "now" function to input the current date/time including timezone. A period can be made
negative by using the minus character before the P designator, e.g. -P1D (minus 1 day).

742 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

E.g. datetime now is 28th Feb 2012, 17:19:54.748(millisec)+01timezone.
now="2012-02-28T17:19:54.748+01:00"

Result:
departuredatetime="2012-02-27T17:19:54.748+01:00"

i.e. 27th Feb 2012, 17:19:54.748(millisec)+01timezone

datetime-diff8.9.13.5

Result is the duration obtained by subtracting datetime2 (second argument) from datetime1 (first
argument). The result can be mapped to a string, or duration, datatype.

Note that the arrivaldatetime has been connected to datetime1 and departuredatetime to
datetime2.

E.g. We want to find the difference, as a duration, between the departure and arrival times.

© 2018 Altova GmbH

Function Library Reference 743Functions

Altova MapForce 2018 Professional Edition

datetime1 arrivaldatetime="2001-12-17T19:30:02+05:00"

datetime2 departuredatetime="2001-12-17T09:30:02+05:00"

Result: the difference between the two is 10 hours:
result= PT10H

datetime-from-date-and-time8.9.13.6

Result is a datetime built from a datevalue (first argument) and a timevalue (second argument).
The first argument must be of type xs:date and the second xs:time. The result can be mapped to
a sting or dateTime datatype.

E.g.
date="2012-06-29"
time="11:59:55"

Result:
dateTime="2012-06-29T11:59:55"

datetime-from-parts8.9.13.7

Result is a datetime built from any combination of the following parts as arguments: year, month,
day, hour, minute, second, millisecond, and timezone. This function automatically normalizes the
supplied parameters e.g. 32nd of January will automatically be changed to 1st February.

744 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

All of the arguments are of type xs:int except for millisecond, which is of type xs:decimal. The
datetime result parameter is of type xs:dateTime.

The date and time fields are supplied by the IDOC instance file:

IDOC:Date 19990621
ICOC:Time 0930
Result 1999-06-21T09:30:00

day-from-datetime8.9.13.8

Result is the day from the datetime argument.

© 2018 Altova GmbH

Function Library Reference 745Functions

Altova MapForce 2018 Professional Edition

E.g.
datetime="2001-12-17T10:30:03+01:00"

Result: 17

day-from-duration8.9.13.9

Result is the day from the duration argument.

E.g.
duration="P1Y2M3DT10H30M"

Result: 3

duration-add8.9.13.10

Result is the duration obtained by adding two durations.

E.g.
duration1="P0Y0M3DT03H0M" (3days 3 hours)
duration2="P0Y0M3DT01H0M" (3days 1 hour)
Result: P6DT4H (6days 4 hours)

duration-from-parts8.9.13.11

Result is a duration calculated by combining the following parts supplied as arguments: year,
month, day, hour, minute, second, millisecond, negative.

746 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Durations are in the form P1Y2M3DT04H05M06.07S i.e. P(eriod) 1 Year, 2 Months, 3 Days, T(ime
designator), 04 Hours, 05 Minutes, 06.07 seconds.milliseconds.

All of the arguments are of type xs:int except for millisecond, which is of type xs:decimal, and
negative, which is of type xs:boolean (i.e. 1 for true, 0 for false). The duration parameter is of type
xs:duration.

Parts: 1971 year, 11 month, 19 day, 11 hour, 05 minutes, 15.06 seconds, negative period "false".

Result:
duration="P1971Y11M19DT11H5M15.00006S"

duration-subtract8.9.13.12

Result is the duration obtained by subtracting duration2 from duration1.

Durations must be entered in the form: P1Y2M3DT04H05M. Periods can be made negative by
using the minus character before the P designator, e.g. -P1D.

P is the period designator, and is mandatory; the rest of period is therefore:
1 Year, 2 Months, 3 Days T(ime designator), 04 Hours, 05 Minutes.

The example shown below, subtracts 1 hour from flighttime, i.e. PT1H.

© 2018 Altova GmbH

Function Library Reference 747Functions

Altova MapForce 2018 Professional Edition

E.g.
duration1="P0Y0M0DT05H07M"

duration2="PT1H"

Result: PT4H7M

hour-from-datetime8.9.13.13

Result is the hour part of the datetime argument.

E.g.
datetime="2001-12-17T09:30:02+05:00"

hour= 9

hour-from-duration8.9.13.14

Result is the hour component of the duration argument.

E.g.
duration="P0Y0M0DT05H07M"

hour= 5

748 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

leapyear8.9.13.15

Result is true or false depending on whether the year of the supplied dateTime is in a leap year.

E.g.
arrivaldatetime="2001-12-17T19:30:02+05:00"
result="false"

millisecond-from-datetime8.9.13.16

Result is the millisecond part of the datetime argument.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"

millisecond= 544

millisecond-from-duration8.9.13.17

Result is the millisecond component of the duration argument.

E.g.
duration="P0Y0M0DT05H07M02.227S"

millisecond= 227

© 2018 Altova GmbH

Function Library Reference 749Functions

Altova MapForce 2018 Professional Edition

minute-from-datetime8.9.13.18

Result is the minute part of the datetime argument.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"

minute= 30

minute-from-duration8.9.13.19

Result is the minute component of the duration argument.

E.g.
duration="P0Y0M0DT05H07M02.227S"

minute= 7

month-from-datetime8.9.13.20

Result is the month part of the dateTime argument.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"

month= 12

month-from-duration8.9.13.21

Result is the month component of the duration argument.

E.g.
duration="P0Y04M0DT05H07M02.227S"

month= 4

750 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

now8.9.13.22

Result is the current dateTime (including timezone).

E.g.
result= 2012-03-06T14:44:57.567+01:00

For an example on how to extract yesterday's date, see the core | lang | datetime-add function.

remove-timezone8.9.13.23

Removes the timezone component, e.g. +5:00, from the time input parameter.

E.g.
departuredatetime="2001-12-17T09:30:02+05:00"

time: 2001-12-17T09:30:02

second-from-datetime8.9.13.24

Result is the seconds part of the dateTime argument.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"

second= 2

second-from-duration8.9.13.25

Result is the seconds component of the duration argument.

E.g.
duration="P0Y04M0DT05H07M02.227S"

second= 2

© 2018 Altova GmbH

Function Library Reference 751Functions

Altova MapForce 2018 Professional Edition

time-from-datetime8.9.13.26

Result is the time part of the dateTime argument.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"
time= 09:31:02+05:00

timezone8.9.13.27

Returns the timezone (i.e. +05:00 here) relative to UTC of the dateTime value. NB timezone unit
is minutes.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"

timezone= 300

weekday8.9.13.28

Returns the weekday of the dateTime value, starting with Monday=1 to Sunday=7.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"
weekday= 1

weeknumber8.9.13.29

Returns the week number within the year specified by the dateTime value.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"
weeknumber= 51

752 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

year-from-datetime8.9.13.30

Result is the year part of the dateTime argument.

E.g.
datetime="2001-12-17T09:30:02.544+05:00"

year= 2001

year-from-duration8.9.13.31

Result is the year component of the duration argument.

E.g.
duration="P01Y04M0DT05H07M02.227S"

year= 1

8.9.14 lang | generator functions

The lang library contains functions that are available when selecting either Java, C#, or C++
languages. The generator functions generate values for database fields, which do not have any
input data from the Schema, database or EDI source component.

create-guid8.9.14.1

Result is a globally-unique identifier (as a hex-encoded string) for the specific field.

8.9.15 lang | logical functions

The lang library contains functions that are available when selecting either Java, C#, or C++
languages.

© 2018 Altova GmbH

Function Library Reference 753Functions

Altova MapForce 2018 Professional Edition

logical-xor8.9.15.1

Result is true if value1 is different than value2, otherwise false.

negative8.9.15.2

Result is true if value is negative, i.e. less than zero, otherwise false.

numeric8.9.15.3

Result is true if value is a number, otherwise false. The input will usually be a string.

positive8.9.15.4

Result is true if value is positive, i.e. equal to or greater than zero, otherwise false.

8.9.16 lang | math functions

The lang library contains functions that are available when selecting either Java, C#, or C++
languages.

abs8.9.16.1

Result is the absolute value of the input value.

754 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

acos8.9.16.2

Result is the arc cosine of value.

asin8.9.16.3

Result is the arc sine of value.

atan8.9.16.4

Result is the arc tangent of value.

cos8.9.16.5

Result is the cosine of value.

degrees8.9.16.6

Result is the conversion of value in radians into degrees.

divide-integer8.9.16.7

Result is the integer result of dividing value1 by value2. E.g. 15 divide-integer 2, integer result is
7.

© 2018 Altova GmbH

Function Library Reference 755Functions

Altova MapForce 2018 Professional Edition

exp8.9.16.8

Result is e (base natural logarithm) raised to the value th power.

log8.9.16.9

Result is the natural logarithm of value.

log108.9.16.10

Result is logarithm (base 10) of value.

max8.9.16.11

Result is the numerically larger value of value1 compared to value2.

756 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

min8.9.16.12

Result is the numerically smaller value of value1 compared to value2.

pi8.9.16.13

Result is the value of pi.

pow8.9.16.14

Result is the value of a raised to the power bth power.

radians8.9.16.15

Result is the conversion of value in degrees to radians.

random8.9.16.16

Result is a pseudorandom value between 0.0 and 1.0

© 2018 Altova GmbH

Function Library Reference 757Functions

Altova MapForce 2018 Professional Edition

sin8.9.16.17

Result is the sine of value.

sqrt8.9.16.18

Result is the square root of value.

tan8.9.16.19

Result is the tangent of value.

unary-minus8.9.16.20

Result is the negation of the signed input value. E.g. +3 result is -3, while -3 result is 3.

8.9.17 lang | string functions

The lang library contains functions that are available when selecting either Java, C#, or C++
languages.

capitalize8.9.17.1

Result is the input string value, where the first letter of each word is capitalized (initial caps).

758 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

count-substring8.9.17.2

Result is the number of times that substr occurs in string.

empty8.9.17.3

Result is true if the input string value is empty, otherwise false.

find-substring8.9.17.4

Returns the position of the first occurrence of substr. within string, starting at position startindex.
The first character has position 1. If the substring could not be found, then the result is 0.

format-guid-string8.9.17.5

Result is a correctly formatted GUID string formatted_guid, using unformatted_guid as the
input string, for use in database fields. See also the create-guid function in the lang | generator
functions library.

left8.9.17.6

Result is a string containing the first number characters of string.

© 2018 Altova GmbH

Function Library Reference 759Functions

Altova MapForce 2018 Professional Edition

E.g. string="This is a sentence" and number=4, result is "This".

left-trim8.9.17.7

Result is the input string with all leading whitespace characters removed.

lowercase8.9.17.8

Result is the lowercase version of the input string. For Unicode characters the corresponding
lower-case characters (defined by the Unicode consortium) are used.

match-pattern8.9.17.9

Result is true if the input string matches the regular expression defined by pattern, else false.
The specific regular expression syntax depends on the target language (see also Regular
expressions).

pad-string-left8.9.17.10

Returns a string which is padded to the left by a single specific character, up to a required length.
The desired string length and the padding character are supplied as arguments.

string Specifies the input string.

desired-length Defines the desired length of the string after padding.

padding-char Defines the character to use as padding character.

760 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

pad-string-right8.9.17.11

Returns a string which is padded to the right by a single specific character, up to a required
length. The desired string length and the padding character are supplied as arguments.

string Specifies the input string.

desired-length Defines the desired length of the string after padding.

padding-char Defines the character to use as padding character.

repeat-string8.9.17.12

Repeats the string supplied as argument n times. The count argument specifies the number of
times to repeat the string.

replace8.9.17.13

Result is a new string where each instance of oldstring, in the input string value, is replaced by
newstring.

For an example, see Replacing Special Characters.

reversefind-substring8.9.17.14

Returns the position of the first occurrence of substr. within string, starting at position endindex,
i.e. from right to left. The first character has position 1. If the substring could not be found, then
the result is 0.

© 2018 Altova GmbH

Function Library Reference 761Functions

Altova MapForce 2018 Professional Edition

right8.9.17.15

Result is a string containing the last number characters of string.

E.g. string="This is a sentence" and number=5, result is "tence".

right-trim8.9.17.16

Result is the input string with all trailing whitespace characters removed.

string-compare8.9.17.17

Returns the result of a string comparison of string1 with string2 taking case into account. If
string1=string2 then result is 0.

If string1 is smaller than string2 then result is < 0.

If string1 is larger than string2 then result is > 0

string-compare-ignore-case8.9.17.18

Returns the result of a string comparison of string1 with string2 ignoring case. If string1=string2
then result is 0.

762 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

If string1 is smaller than string2 then result is < 0.

If string1 is larger than string2 then result is > 0.

uppercase8.9.17.19

Result is the string input converted into uppercase. For Unicode characters the corresponding
upper-case characters (defined by the Unicode consortium) are used.

8.9.18 xpath2 | accessors

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

base-uri8.9.18.1

The base-uri function takes a node argument as input, and returns the URI of the XML resource
containing the node. The output is of type xs:string. MapForce returns an error if no input node
is supplied.

node-name8.9.18.2

The node-name function takes a node as its input argument and returns its QName. When the
QName is represented as a string, it takes the form of prefix:localname if the node has a
prefix, or localname if the node has no prefix. To obtain the namespace URI of a node, use the
namespace-URI-from-QName function (in the library of QName-related functions).

string8.9.18.3

The string function works like the xs:string constructor: it converts its argument to xs:string.

When the input argument is a value of an atomic type (for example xs:decimal), this atomic
value is converted to a value of xs:string type. If the input argument is a node, the string value of
the node is extracted. (The string value of a node is a concatenation of the values of the node's
descendant nodes.)

8.9.19 xpath2 | anyURI functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

© 2018 Altova GmbH

Function Library Reference 763Functions

Altova MapForce 2018 Professional Edition

resolve-uri8.9.19.1

The resolve-uri function takes a URI as its first argument (datatype xs:string) and resolves it
against the URI in the second argument (datatype xs:string).

The result (datatype xs:string) is a combined URI. In this way a relative URI (the first argument)
can be converted to an absolute URI by resolving it against a base URI.

In the screenshot above, the first argument provides the relative URI, the second argument the
base URI. The resolved URI will be a concatenation of base URI and relative URI, so C:
\PathtoMyFile\MyFile.xml.

Note: Both arguments are of datatype xs:string and the process of combining is done by
treating both inputs as strings. So there is no way of checking whether the resources
identified by these URIs actually exist. MapForce returns an error if the second argument
is not supplied.

8.9.20 xpath2 | boolean functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.
The Boolean functions true and false take no argument and return the boolean constant values,
true and false, respectively. They can be used where a constant boolean value is required.

false8.9.20.1

Returns the Boolean value "false".

true8.9.20.2

Returns the Boolean value "true".

8.9.21 xpath2 | constructors

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

764 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The functions in the Constructors part of the XPath 2.0 functions library construct specific
datatypes from the input text. Typically, the lexical format of the input text must be that expected
of the datatype to be constructed. Otherwise, the transformation will not be successful.

For example, if you wish to construct an xs:date datatype, use the xs:date constructor function.
The input text must have the lexical format of the xs:date datatype, which is: YYYY-MM-DD
(screenshot below).

In the screenshot above, a string constant (2009-08-22) has been used to provide the input
argument of the function. The input could also have been obtained from a node in the source
document.

The xs:date function returns the input text (2009-08-22), which is of xs:string datatype
(specified in the Constant component), as output of xs:date datatype.

When you mouseover the input argument in a function box, the expected datatype of the
argument is displayed in a popup.

8.9.22 xpath2 | context functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

The Context functions library contains functions that provide the current date and time, the default
collation used by the processor, and the size of the current sequence and the position of the
current node.

current-date8.9.22.1

Returns the current date (xs:date) from the system clock.

current-dateTime8.9.22.2

Returns the current date and time (xs:dateTime) from the system clock.

© 2018 Altova GmbH

Function Library Reference 765Functions

Altova MapForce 2018 Professional Edition

current-time8.9.22.3

Returns the current time (xs:time) from the system clock.

default-collation8.9.22.4

The default-collation function takes no argument and returns the default collation, that is, the
collation that is used when no collation is specified for a function where one can be specified.

The Altova XSLT 2.0 Engine supports the Unicode codepoint collation only. Comparisons,
including for the fn:max and fn:min functions, are based on this collation.

implicit-timezone8.9.22.5

Returns the value of the "implicit timezone" property from the evaluation context.

last8.9.22.6

The last and position functions take no argument. The last function returns the position of the
last node in the context nodeset. The position function returns the position of the current node in
the nodeset being processed.

The context nodeset at the nodes where the functions are directed, is the nodeset to which the
functions will apply. In the screenshot below, the nodeset of Language elements is the context
nodeset for the last and position functions.

In the example above, the last function returns the position of the last node of the context
nodeset (the nodeset of Language elements) as the value of the number attribute. This value is
also the size of the nodeset since it indicates the number of nodes in the nodeset.

The position function returns the position of the Language node being currently processed. For
each Language element node, its position within the nodeset of Langauge elements is output to
the language/@position attribute node.

766 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

We would advise you to use the position and count functions from the core library.

8.9.23 xpath2 | durations, date and time functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

The XPath 2 duration and date and time functions enable you to adjust dates and times for the
timezone, extract particular components from date-time data, and subtract one date-time unit
from another.

The 'Adjust-to-Timezone' functions
Each of these related functions takes a date, time, or dateTime as the first argument and adjusts
the input by adding, removing, or modifying the timezone component depending on the value of
the second argument.

The following situations are possible when the first argument contains no timezone (for example,
the date 2009-01 or the time 14:00:00).

Timezone argument (the second argument of the function) is present: The result will
contain the timezone specified in the second argument. The timezone in the second
argument is added.
Timezone argument (the second argument of the function) is absent: The result will
contain the implicit timezone, which is the system's timezone. The system's timezone is
added.
Timezone argument (the second argument of the function) is empty: The result will
contain no timezone.

The following situations are possible when the first argument contains a timezone (for example,
the date 2009-01-01+01:00 or the time 14:00:00+01:00).

Timezone argument (the second argument of the function) is present: The result will
contain the timezone specified in the second argument. The original timezone is replaced
by the timezone in the second argument.
Timezone argument (the second argument of the function) is absent: The result will
contain the implicit timezone, which is the system's timezone. The original timezone is
replaced by the system's timezone.
Timezone argument (the second argument of the function) is empty: The result will
contain no timezone.

The 'From' functions
Each of the 'From' functions extracts a particular component from: (i) date or time data, and (ii)
duration data. The results are of the xs:decimal datatype.

As an example of extracting a component from date or time data, consider the day-from-date
function (screenshot below).

© 2018 Altova GmbH

Function Library Reference 767Functions

Altova MapForce 2018 Professional Edition

The input argument is a date (2009-01-01) of type xs:date. The day-from-date function
extracts the day component of the date (1) as an xs:decimal datatype.

Extraction of time components from durations requires that the duration be specified either as
xs:yearMonthDuration (for extracting years and months) or xs:dayTimeDuration (for extracting
days, hours, minutes, and seconds). The result will be of type xs:decimal. The screenshot below
shows a dayTimeDuration of P2DT0H being input to the days-from-duration function. The result
is the xs:decimal 2.

The 'Subtract' functions
Each of the three subtraction functions enables you to subtract one time value from another and
return a duration value. The three subtraction functions are: subtract-dates, subtract-times,
subtract-dateTimes.

The screenshot below shows how the subtract-dates function is used to subtract two dates
(2009-10-22 minus 2009-09-22). The result is the dayTimeDuration P30D.

768 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

8.9.24 xpath2 | node functions

The following XPath 2 node functions are available:

lang
The lang function takes a string argument that identifies a language code (such as en). The
function returns true or false depending on whether the context node has an xml:lang attribute
with a value that matches the argument of the function.

In the screenshot above notice the following:

1. In the source schema, the Language element has an xml:lang attribute.
2. Language nodes are filtered so that only those Language nodes having an xml:lang value

of en are processed (the filter test is specified in the equal function).
3. The Language node is the context node at the point where the en element is created in

the output document.
4. The output of the lang function (true or false) is sent to the en/@exists attribute node

of the output. The argument of the function is provided by the string constant en. The
lang function then checks whether the context node at this point (the Language element)
has an xml:lang attribute with a value of en (the argument of the function). If yes, then
true is returned, otherwise false.

local-name, name, namespace-uri
The local-name, name, and namespace-uri functions, return, respectively, the local-name, name,
and namespace URI of the input node. For example, for the node altova:Products, the local-
name is Products, the name is altova:Products, and the namespace URI is the URI of the
namespace to which the altova: prefix is bound (say, http://www.altova.com/mapforce).

Each of these three functions has two variants:

With no argument: the function is then applied to the context node (for an example of a
context node, see the example given for the lang function above).
An argument that must be a node: the function is applied to the submitted node.

The output of each of these six variants is a string.

© 2018 Altova GmbH

Function Library Reference 769Functions

Altova MapForce 2018 Professional Edition

number
Converts an input string into a number. Also converts a boolean input to a number.

The number function takes a node as input, atomizes the node (that is, extracts its contents), and
converts the value to a decimal and returns the converted value. The only types that can be
converted to numbers are booleans, strings, and other numeric types. Non-numeric input values
(such as a non-numeric string) result in NaN (Not a Number).

There are two variants of the number function:

With no argument: the function is then applied to the context node (for an example of a
context node, see the example given for the lang function above).
An argument that must be a node: the function is applied to the submitted node.

8.9.25 xpath2 | numeric functions

The following XPath 2 numeric functions are available:

abs
The abs function takes a numeric value as input and returns its absolute value as a decimal. For
example, if the input argument is -2 or +2, the function returns 2.

round-half-to-even
The round-half-to-even function rounds the supplied number (first argument) to the degree of
precision (number of decimal places) supplied in the optional second argument. For example, if
the first argument is 2.141567 and the second argument is 3, then the first argument (the
number) is rounded to three decimal places, so the result will be 2.141. If no precision (second
argument) is supplied, the number is rounded to zero decimal places, that is, to an integer.

The 'even' in the name of the function refers to the rounding to an even number when a digit in the
supplied number is midway between two values. For example, round-half-to-even(3.475, 2)
would return 3.48.

8.9.26 xpath2 | string functions

The following XPath 2 string functions are available:

compare
The compare function takes two strings as arguments and compares them for equality and
alphabetically. If String-1 is alphabetically less than String-2 (for example the two string are: A
and B), then the function returns -1. If the two strings are equal (for example, A and A), the
function returns 0. If String-1 is greater than String-2 (for example, B and A), then the function
returns +1.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

770 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

ends-with
The ends-with function tests whether String-1 ends with String-2. If yes, the function returns
true, otherwise false.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

escape-uri
The escape-uri function takes a URI as input for the first string argument and applies the URI
escaping conventions of RFC 2396 to the string. The second boolean argument (escape-
reserved) should be set to true() if characters with a reserved meaning in URIs are to be
escaped (for example "+" or "/").

For example:

escape-uri("My A+B.doc", true()) would give My%20A%2B.doc
escape-uri("My A+B.doc", false()) would give My%20A+B.doc

lower-case
The lower-case function takes a string as its argument and converts every upper-case character
in the string to its corresponding lower-case character.

matches
The matches function tests whether a supplied string (the first argument) matches a regular
expression (the second argument). The syntax of regular expressions must be that defined for
the pattern facet of XML Schema. The function returns true if the string matches the regular
expression, false otherwise.

The function takes an optional flags argument. Four flags are defined (i, m, s, x). Multiple flags
can be used: for example, imx. If no flag is used, the default values of all four flags are used.

The meaning of the four flags are as follows:

i Use case-insensitive mode. The default is case-sensitive.

m Use multiline mode, in which the input string is considered to have multiple lines, each
separated by a newline character (x0a). The meta characters ^ and $ indicate the
beginning and end of each line. The default is string mode, in which the string starts and
ends with the meta characters ^ and $.

s Use dot-all mode. The default is not-dot-all mode, in which the meta character "."
matches all characters except the newline character (x0a). In dot-all mode, the dot also
matches the newline character.

x Ignore whitespace. By default whitespace characters are not ignored.

normalize-unicode
The normalize-unicode function normalizes the input string (the first argument) according to the
rules of the normalization form specified (the second argument). The normalization forms NFC,

© 2018 Altova GmbH

Function Library Reference 771Functions

Altova MapForce 2018 Professional Edition

NFD, NFKC, and NFKD are supported.

replace
The replace function takes the string supplied in the first argument as input, looks for matches
as specified in a regular expression (the second argument), and replaces the matches with the
string in the third argument.

The rules for matching are as specified for the matches attribute above. The function also takes an
optional flags argument. The flags are as described in the matches function above.

starts-with
The starts-with function tests whether String-1 starts with String-2. If yes, the function returns
true, otherwise false.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

substring-after
The substring-after function returns that part of String-1 (the first argument) that occurs after the
test string, String-2 (the second argument). An optional third argument specifies the collation to
use for the string comparison. When no collation is used, the default collation, which is the
Unicode codepoint collation, is used. The Altova Engines support the Unicode codepoint collation
only.

substring-before
The substring-before function returns that part of String-1 (the first argument) that occurs before
the test string, String-2 (the second argument). An optional third argument specifies the collation
to use for the string comparison. When no collation is used, the default collation, which is the
Unicode codepoint collation, is used. The Altova Engines support the Unicode codepoint collation
only.

upper-case
The upper-case function takes a string as its argument and converts every lower-case character
in the string to its corresponding upper-case character.

8.9.27 xslt | xpath functions

The functions in the XPath Functions library are XPath 1.0 nodeset functions. Each of these
functions takes a node or nodeset as its context and returns information about that node or
nodeset. These function typically have:

a context node (in the screenshot below, the context node for the lang function is the
Language element of the source schema).
an input argument (in the screenshot below, the input argument for the lang function is
the string constant en). The last and position functions take no argument.

772 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

lang
The lang function takes a string argument that identifies a language code (such as en). The
function returns true or false depending on whether the context node has an xml:lang attribute
with a value that matches the argument of the function. In the screenshot above notice the
following:

1. In the source schema, the Language element has an xml:lang attribute.
2. Language nodes are filtered so that only those Language nodes having an xml:lang value

of en are processed (the filter test is specified in the equal function).
3. The Language node is the context node at the point where the en element is created in

the output document.
4. The output of the lang function (true or false) is sent to the en/@exists attribute node

of the output. The argument of the function is provided by the string constant en. The
lang function then checks whether the context node at this point (the Language element)
has an xml:lang attribute with a value of en (the argument of the function). If yes, then
true is returned, otherwise false.

last, position
The last and position functions take no argument. The last function returns the position of the
last node in the context nodeset. The position function returns the position of the current node in
the nodeset being processed.

The context nodeset at the nodes where the functions are directed is the nodeset to which the
functions will apply. In the screenshot below, the nodeset of Language elements is the context
nodeset for the last and position functions.

© 2018 Altova GmbH

Function Library Reference 773Functions

Altova MapForce 2018 Professional Edition

In the example above, the last function returns the position of the last node of the context
nodeset (the nodeset of Language elements) as the value of the number attribute. This value is
also the size of the nodeset since it indicates the number of nodes in the nodeset.

The position function returns the position of the Language node being currently processed. For
each Language element node, its position within the nodeset of Language elements is output to
the language/@position attribute node.

name, local-name, namespace-uri
These functions are all used the same way and return, respectively, the name, local-name, and
namespace URI of the input node. The screenshot below shows how these functions are used.
Notice that no context node is specified.

The name function returns the name of the Language node and outputs it to the language/
@elementname attribute. If the argument of any of these functions is a nodeset instead of a single
node, the name (or local-name or namespace URI) of the first node in the nodeset is returned.

The name function returns the QName of the node; the local-name function returns the local-
name part of the node's QName. For example, if a node's QName is altova:MyNode, then MyNode
is the local name.

The namespace URI is the URI of the namespace to which the node belongs. For example, the
altova: prefix can be declared to map to a namespace URI in this way:
xmlns:altova="http://www.altova.com/namespaces".

774 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: Additional XPath 1.0 functions can be found in the Core function library.

8.9.28 xslt | xslt functions

The functions in the XSLT Functions library are XSLT 1.0 functions.

currrent8.9.28.1

The current function takes no argument and returns the current node.

document8.9.28.2

The document function addresses an external XML document (with the uri argument; see

screenshot below). The optional nodeset argument specifies a node, the base URI of which is
used to resolve the URI supplied as the first argument if this URI is relative. The result is output to
a node in the output document.

Note that the uri argument is a string that must be an absolute file path.

element-available8.9.28.3

The element-available function tests whether an element, entered as the only string argument

of the function, is supported by the XSLT processor.

The argument string is evaluated as a QName. Therefore, XSLT elements must have an xsl:
prefix and XML Schema elements must have an xs: prefix—since these are the prefixes declared
for these namespaces in the underlying XSLT that will be generated for the mapping.

© 2018 Altova GmbH

Function Library Reference 775Functions

Altova MapForce 2018 Professional Edition

The function returns a boolean.

function-available8.9.28.4

The function-available function is similar to the element-available function and tests

whether the function name supplied as the function's argument is supported by the XSLT
processor.

The input string is evaluated as a QName. The function returns a boolean.

generate-id8.9.28.5

The generate-id function generates a unique string that identifies the first node in the nodeset

identified by the optional input argument.

If no argument is supplied, the ID is generated on the context node. The result can be directed to
any node in the output document.

system-property8.9.28.6

The system-property function returns properties of the XSLT processor (the system). Three

system properties, all in the XSLT namespace, are mandatory for XSLT processors. These are
xsl:version, xsl:vendor, and xsl:vendor-url.

The input string is evaluated as a QName and so must have the xsl:prefix, since this is the
prefix associated with the XSLT namespace in the underlying XSLT stylesheet.

776 Functions Function Library Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

unparsed-enity-uri8.9.28.7

If you are using a DTD, you can declare an unparsed entity in it. This unparsed entity (for example
an image) will have a URI that locates the unparsed entity.

The input string of the function must match the name of the unparsed entity that has been
declared in the DTD. The function then returns the URI of the unparsed entity, which can then be
directed to a node in the output document, for example, to an href node.

Chapter 9

Automating Mappings and MapForce

778 Automating Mappings and MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

9 Automating Mappings and MapForce

Mappings designed with MapForce can be executed in a server environment (including Linux and
macOS servers), and with server-level performance, by the following Altova transformation engines
(licensed separately):

RaptorXML Server. Running a mapping with this engine is suitable if the transformation
language of the mapping is XSLT 1.0, XSLT 2.0, or XQuery. See Automation with
RaptorXML Server.
MapForce Server (or MapForce Server Advanced Edition). This engine is suitable for any
mapping where the transformation language is BUILT-IN*. The BUILT-IN language
supports the most mapping features in MapForce, while MapForce Server (and, in
particular, MapForce Server Advanced Edition) provides best performance for running a
mapping. See Automation with MapForce Server.

* The BUILT-IN transformation language requires MapForce Professional or Enterprise Edition.

In addition to this, MapForce provides the ability to automate generation of XSLT, XQuery, C#, C+
+, and Java code from the command line interface. This includes the ability to compile server
execution files (.mfx) intended for MapForce Server execution. For more information, see
MapForce Command Line Interface.

© 2018 Altova GmbH

Automation with RaptorXML Server 779Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

9.1 Automation with RaptorXML Server

RaptorXML Server (hereafter also called RaptorXML for short) is Altova's third-generation, super-
fast XML and XBRL processor. It has been built to be optimized for the latest standards and
parallel computing environments. Designed to be highly cross-platform capable, the engine takes
advantage of today's ubiquitous multi-core computers to deliver lightning fast processing of XML
and XBRL data.

RaptorXML is available in two editions which can be downloaded from the Altova download page
(https://www.altova.com/download-trial-server.html):

RaptorXML Server is a very fast XML processing engine with support for XML, XML
Schema, XSLT, XPath, XQuery, and more. This edition is part of the FlowForce Server
installation package.
RaptorXML+XBRL Server supports all the features of RaptorXML Server with the additional
capability of processing and validating the XBRL family of standards.

If you generate code in XSLT 1.0 or 2.0, or in XQuery, MapForce creates a batch file called
DoTransform.bat which is placed in the output folder that you choose upon generation.
Executing the batch file calls RaptorXML Server and executes the XSLT (or XQuery)
transformation on the server.

If you intend to execute or automate MapForce mappings for other outputs on a server, see
Automation with MapForce Server.

Note: You can also preview the XSLT and XQuery code using the built-in engine.

https://www.altova.com/download-trial-server.html

780 Automating Mappings and MapForce Automation with MapForce Server

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

9.2 Automation with MapForce Server

MapForce Server is an enterprise server software solution for Windows, Linux and Mac OS X
operating systems. The role of MapForce Server is to execute mappings in a server environment
(including on non-Windows platforms) and with server-level performance. Any MapForce mapping
where the target execution language is BUILT-IN qualifies for server execution (see also Selecting
a Transformation Language). MapForce Server can operate either standalone (invoked from
command line or API), or under the management of FlowForce Server.

If MapForce Server is used as a standalone product then the MapForce mapping has to be
compiled and copied to the machine where MapForce Server runs. The mapping is then run using
the MapForce Server command line command run. You can also run the mapping by invoking
the run method of the MapForce Server API. For further information, see Compiling Mappings to
MapForce Server Execution Files.

If MapForce Server runs under FlowForce Server management, the mapping can be deployed to a
target machine through an HTTP (or SSL/HTTPS) connection directly from MapForce. On the
server, the mapping can then be executed as a triggered or scheduled job, or through a Web
service call defined from the the FlowForce Server administration interface. For further information,
see Deploying Mappings to FlowForce Server.

There are two editions of MapForce Server:

MapForce Server
MapForce Server Advanced Edition (this edition is part of the FlowForce Server
installation package)

MapForce Server Advanced Edition provides the same features as MapForce Server, and
additionally includes optimization features for mappings which qualify for optimization. This is the
case of mappings which join or filter large amounts of data, and where it is possible to apply join
optimization so as to increase the execution speed. Unlike MapForce Server, MapForce Server
Advanced Edition can execute mappings where node functions are present, see Defaults and
Node Functions.

Limitations:

XML digital signatures are not supported
ADO, ADO.NET, and ODBC database connections are supported only on Windows (for
other operating systems, see Database Connections on Linux and Mac).

© 2018 Altova GmbH

Preparing Mappings for Server Execution 781Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

9.3 Preparing Mappings for Server Execution

A mapping designed and previewed with MapForce may refer to resources which are outside of
the current machine and operating system (such as databases). In addition to this, in MapForce,
all mapping paths follow Windows-style conventions by default. Thirdly, the machine where
MapForce Server runs might not support the same database connections as the machine where
the mapping was designed. For this reason, running mappings in a server environment typically
requires some preparation, especially if the target machine is not the same as the source
machine.

Note: The term "source machine" refers to the computer where the MapForce is installed and
the term "target machine" refers to the computer where MapForce Server or FlowForce
Server is installed. In the most simple scenario, this is the same computer. In a more
advanced scenario, MapForce runs on a Windows machine whereas MapForce Server or
FlowForce Server runs on a Linux or OS X / macOS machine.

As best practice, always make sure that the mapping validates successfully in MapForce before
deploying it to FlowForce Server or compiling it to a MapForce Server execution file (see
Validating Mappings).

If MapForce Server runs standalone (without FlowForce Server), the required licenses are as
follows:

On the source machine, MapForce Enterprise or Professional edition is required to design
the mapping and compile it to a server execution file (.mfx), see Compiling Mappings to
MapForce Server Execution Files.
On the target machine, MapForce Server or MapForce Server Advanced Edition is
required to run the mapping.

If MapForce Server runs under FlowForce Server management, the following requirements apply:

On the source machine, MapForce Enterprise or Professional edition is required to design
the mapping and deploy it to a target machine, see Deploying Mappings to FlowForce
Server.
Both MapForce Server and FlowForce Server must be licensed on the target machine.
The role of MapForce Server is to run the mapping; the role of FlowForce is to make the
mapping available as a job which benefits from features such as scheduled or on demand
execution, execution as a Web service, error handling, conditional processing, email
notifications, and others.
FlowForce Server must be up and running at the configured network address and port.
Namely, the "FlowForce Web Server" service must be started and configured to accept
connections from HTTP clients (or HTTPS if configured) and must not be blocked by the
firewall. The "FlowForce Server" service must also be started and running at the
designated address and port.
You have a FlowForce Server user account with permissions to one of the containers (by
default, the /public container is accessible to any authenticated user).

General considerations

782 Automating Mappings and MapForce Preparing Mappings for Server Execution

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

If you intend to run the mapping on a target machine with standalone MapForce Server,
all input and output files and schemas referenced by the mapping must be copied to the
target machine as well. If MapForce Server runs under FlowForce Server management,
there is no need to copy files manually. In this case, the instance and schema files are
included in the package deployed to the target machine, see Deploying Mappings to
FlowForce Server.
If the mapping includes database components which require specific database drivers,
such drivers must be installed on the target machine as well. For example, if your
mapping reads data from a Microsoft Access database, then Microsoft Access or
Microsoft Access Runtime (https://www.microsoft.com/en-us/download/details.aspx?
id=50040) must be installed on the target machine as well.
When you deploy a mapping to non-Windows platforms, ADO, ADO.NET and ODBC
database connections are automatically changed to JDBC, see "Linux and OS X /
macOS considerations" below.
If the mapping contains custom function calls (for example, to .dll or .class files), such
dependencies are not deployed together with the mapping, since they are not known
before runtime. In this case, you can copy them manually to the target machine.
Some mappings read multiple input files using a wildcard path (see Processing Multiple
Input or Output Files Dynamically). In this case, the input file names are not known before
runtime and so they are not deployed. For the mapping to execute successfully, the input
files must exist on the target machine.
If the mapping output path includes directories, those directories must exist on the target
machine. Otherwise, an error will be generated when you execute the mapping. This
behavior is unlike MapForce, where non-existing directories are generated automatically if
the option Generate output to temporary files is enabled (see Changing the MapForce
Options).
If the mapping calls a Web service that requires HTTPS authentication with a client
certificate, the certificate must be transferred to the target machine as well, see .
If the mapping connects to file-based databases such as Microsoft Access and SQLite,
the database file must be manually transferred to the target machine or saved to a shared
directory which is accessible to both the source and the target machine and referenced
from there, see "File-based databases" below.

Linux and OS X / macOS considerations
If you intend to run the mapping on a Linux or OS X / macOS server, ensure that the mapping
follows the applicable path conventions and uses a supported database connection.

To make paths portable to non-Windows operating systems, use relative instead of absolute
paths when designing the mapping in MapForce, see Using Relative and Absolute Paths. For
example, you can copy all input or output files required by the mapping into the same directory as
the mapping, and then reference them just by file name. Importantly, both MapForce Server and
FlowForce Server support a so-called "working directory" against which all relative paths will be
resolved, see also Paths in Various Execution Environments. The working directory is specified at
mapping runtime, as follows:

In FlowForce Server, by editing the "Working-directory" parameter of any job.
In MapForce Server API, through the WorkingDirectory property of the COM and .NET
API, or through the setWorkingDirectory method of the Java API.
In MapForce Server command line, the working directory is the current directory of the
command shell.

https://www.microsoft.com/en-us/download/details.aspx?id=50040
https://www.microsoft.com/en-us/download/details.aspx?id=50040

© 2018 Altova GmbH

Preparing Mappings for Server Execution 783Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

As for database connections, be aware that ADO, ADO.NET, and ODBC connections are not
supported on Linux and OS X / macOS machines. Therefore, if the target machine is Linux or OS
X / macOS, such connections are converted to JDBC when you deploy the mapping to FlowForce
or when you compile the mapping to a MapForce Server execution file. In this case, you have the
following options before deploying the mapping or compiling it to a server execution file:

In MapForce, create a JDBC connection to the database (see Setting up a JDBC
Connection)
In Mapforce, fill the JDBC database connection details in the "JDBC-specific Settings"
section of the database component (see Database Component Settings).

If the mapping uses a native connection to a PostgreSQL or SQLite database, the native
connection is preserved and no JDBC conversion takes place, see Database mappings in various
execution environments. If the mapping connects to a file-based database, such as Microsoft
Access and SQLite, additional configuration is required, see "File-based databases" below.

File-based databases
File-based databases such as Microsoft Access and SQLite are not included in the package
deployed to FlowForce Server or in the compiled MapForce Server execution file. Therefore, if the
source and target machine are not the same, take the following steps:

1. In MapForce, right-click the mapping and clear the check box Make paths absolute in
generated code (see Changing the Mapping Settings).

2. Right-click the database component on the mapping and add a connection to the
database file using a relative path, see Setting the Path to File-Based Databases. A
simple way to avoid path-related issues is to save the mapping design (.mfd file) in the
same directory as the database file and to refer to the latter from the mapping just by file
name (thus using a relative path).

3. Copy the database file to a directory on the target machine (let's call it "working
directory"). Keep this directory in mind since it will be required to run the mapping on the
server, as shown below.

To run such mappings on the server, do one of the following:

If the mapping will be run by MapForce Server under FlowForce Server control, configure
the FlowForce Server job to point to the working directory created previously. The
database file must reside in the working directory. For an example, see "Exposing a Job
as a Web Service" (https://manual.altova.com/FlowForceServer/
FlowForceServerAdvanced/index.html?fs_example_web_service.htm).
If the mapping will be run by standalone MapForce Server at the command line, change
the current directory to the working directory (for example, cd path\to\working
\directory) before calling the run command of MapForce Server.
If the mapping will be run by the MapForce Server API, set the working directory
programmatically before running the mapping. To facilitate this, the property
WorkingDirectory is available for the MapForce Server object in the COM and .NET API.
In the Java API, the method setWorkingDirectory is available.

If both the source and the target machines are Windows machines running on the local network,
an alternative approach is to configure the mapping to read the database file from a common
shared directory, as follows:

https://manual.altova.com/FlowForceServer/FlowForceServerAdvanced/index.html?fs_example_web_service.htm
https://manual.altova.com/FlowForceServer/FlowForceServerAdvanced/index.html?fs_example_web_service.htm

784 Automating Mappings and MapForce Preparing Mappings for Server Execution

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1. Store the database file in a common shared directory which is accessible by both the
source and the target machine.

2. Right-click the database component on the mapping and add a connection to the
database file using an absolute path (see Setting the Path to File-Based Databases).

Global Resources
If a mapping includes references to Global Resources instead of direct paths or database
connections, such references are preserved when you compile the mapping to a server execution
file (.mfx), or when you deploy the mapping to FlowForce Server, see Global Resources in Various
Execution Environments.

Note: FlowForce Server does not currently support Global Resources. Do not use Global
Resources if you intend to execute the mapping with MapForce Server running under
FlowForce Server management.

© 2018 Altova GmbH

Compiling Mappings to MapForce Server Execution Files 785Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

9.4 Compiling Mappings to MapForce Server Execution Files

When the target language of a mapping created in MapForce is set to BUILT-IN, it can be
executed not only by MapForce, but also by MapForce Server (see About MapForce Server).
There are two ways to execute a mapping with MapForce Server:

If MapForce Server runs in standalone mode (that is, no FlowForce Server is installed),
the mapping must be compiled to a server execution file (.mfx), as shown below. You can
then run the .mfx file at the command line, using the command run. You can also run the
mapping by invoking the run method of the MapForce Server API. For further information,
see the MapForce Server documentation (https://www.altova.com/documentation).
Alternatively, if MapForce Server runs under FlowForce Server management, the mapping
can be deployed to a machine where both MapForce Server and FlowForce Server run
(see Deploying Mappings to FlowForce Server).

Prerequisites

See Preparing Mappings for Server Execution.

To compile a mapping to a MapForce Server Execution (.mfx) file:

1. Open a mapping in MapForce (for example, myMapping.mfd).
2. On the File menu, click Compile to MapForce Server Execution File.
3. Select the folder you want to place the .mfx file in and change the file name if necessary.
4. Click Save. The MapForce Server Execution file myMapping.mfx is generated in the

selected folder.

To compile a mapping to a MapForce Server Execution (.mfx) file, using the command
line:

Run MapForce at the command line, and specify the mapping file and the /COMPILE

command line option.

For example, the following command compiles the mapping C:\Users\altova\Documents\Altova
\MapForce2018\MapForceExamples\SimpleTotal.mfd to a MapForce Server execution file
that will be created in the target output directory C:\Users\altova\Desktop.

"C:\Program Files (x86)\Altova\MapForce2018\MapForce.exe" "C:\Users\altova
\Documents\Altova\MapForce2018\MapForceExamples\SimpleTotal.mfd" /COMPILE "C:
\Users\altova\Desktop"

See also the MapForce Command Line Interface.

Compiling mappings for a specific MapForce Server version

If your MapForce Server has an older version than MapForce, the former might not be able to
execute .mfx files created with a newer version of MapForce, since new features will likely have

https://manual.altova.com/MapForceServer/servercli_run.htm
https://www.altova.com/documentation

786 Automating Mappings and MapForce Compiling Mappings to MapForce Server Execution Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

been added in the meanwhile. In such cases, you can compile the .mfx file for a specific version
of MapForce Server, as follows:

1. On the Tools menu, click Options, and then click Generation.
2. Under Server Execution File, next to Generate for MapForce Server version, select

the required MapForce Server version from the drop-down list.

Once you have a newer MapForce Server version, remember to change this option accordingly. If
you have no particular reason to compile for a specific version of MapForce Server, select the
"most current" option (this is the default option). When this option is selected, the .mfx file is
compiled for the most recent version of MapForce Server and could benefit from latest features
and improvements which might otherwise not be available in previous versions.

To specify a target MapForce Server version at the command line, run the /COMPILE command
with the /MFXVERSION switch, for example:

"C:\Program Files (x86)\Altova\MapForce2018\MapForce.exe" /COMPILE /
MFXVERSION:2018

See also the MapForce Command Line Interface.

Other options

Compilation of MapForce Server Execution Files is also affected by the following options:

Convert all ADO and
ODBC Database
Connections to JDBC

If the option is enabled, ADO, ADO.NET, and ODBC database
connections are transformed to JDBC using the JDBC driver and the
database URL defined in the Database Component Settings dialog
box (see Database Component Settings).

The JDBC connection will be used implicitly if the target machine is
a Linux or macOS server (see Database Connections on Linux and
Mac).

Ignore Digital Signatures
(unsupported by
MapForce Server)

This option is applicable only to MapForce Enterprise. It is enabled
by default. If the mapping uses XML digital signatures, it skips the
digital signature information, since MapForce Server does not
support XML digital signatures.

To view or change these options:

© 2018 Altova GmbH

Compiling Mappings to MapForce Server Execution Files 787Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

On the Tools menu, click Options, and then click Generation.

These options are also available from the command line interface. See also the MapForce
Command Line Interface.

788 Automating Mappings and MapForce Deploying Mappings to FlowForce Server

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

9.5 Deploying Mappings to FlowForce Server

Deploying a mapping to FlowForce Server means that MapForce organizes the resources used by
the specific mapping into an object and passes it through HTTP (or HTTPS if configured) to the
machine where FlowForce Server runs. MapForce mappings are typically deployed to FlowForce
Server in order to automate their execution by means of FlowForce Server jobs. Once a mapping
is deployed, you can create a full-featured FlowForce Server job from it, and benefit from all job-
specific functionality (for example, define custom triggering conditions for the job, expose it as a
Web service, and so on).

Note: The term "source machine" refers to the computer where the MapForce is installed and
the term "target machine" refers to the computer where FlowForce Server is installed. In
the most simple scenario, this is the same computer. In a more advanced scenario,
MapForce runs on a Windows machine whereas FlowForce Server runs on a Linux or OS
X / macOS machine.

The package deployed to FlowForce includes the following:

The mapping itself. After deployment, the mapping becomes available in the FlowForce
Server administration interface as a mapping function (.mapping), at the path you specify.
Any source components become input arguments, and any target components become
output arguments of this function.

All kinds of input instance files (XML, CSV, Text) that are used by the mapping.

Prerequisites

See Preparing Mappings for Server Execution.

Deploying the mapping to FlowForce Server

1. Ensure that the transformation language is set to BUILT-IN (see Selecting a
Transformation Language).

2. On the File menu, click Deploy to FlowForce Server. The Deploy Mapping dialog box
opens.

© 2018 Altova GmbH

Deploying Mappings to FlowForce Server 789Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

3. Enter your deployment settings (as described below), and click OK. If you selected the
Open web browser to create new job check box, the FlowForce Server administration
interface opens in the browser, and you can start creating a FlowForce Server job
immediately.

The following table lists the mapping deployment settings available on the Deploy Mapping dialog
box.

Setting Description

Server and Port Enter the server host name (or IP address) and port of FlowForce
Server. These could be localhost and 8082 if FlowForce Server
is running on the same machine at the default port. When in
doubt, log on to FlowForce Server Web administration interface
and check the I.P. address and port displayed in the Web
browser's address bar.

If you encounter connectivity errors, ensure that the machine on
which FlowForce Server runs is configured to allow incoming
connections on the designated address and port.

To deploy the mapping through a SSL-encrypted connection,
select the Use SSL check box. This assumes that FlowForce
Server is already configured to accept SSL connections. For
more information, refer to FlowForce Server documentation.

User and Password The user name and password to be entered depends on the value
of the Login drop-down list (see next option). If the Login drop-

790 Automating Mappings and MapForce Deploying Mappings to FlowForce Server

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

down list is set to <Default> or Directly, enter your FlowForce
Server user name and password. Otherwise, enter your Windows
user name and password, and select the Windows domain name
from the Login drop-down list.

Login If Windows Active Directory integration is enabled in FlowForce
Server, select the Windows domain name from this drop-down
list, and enter your Windows credentials in the User and
Password fields (see previous option).

Path Click Browse, and select the path where the mapping function
should be saved in FlowForce Server container hierarchy. By
default, the path is set to the /public container of FlowForce
Server.

From the Choose Deployment Name dialog box, you can also
create new containers or delete existing containers and
mappings, provided that you have the required FlowForce Server
permissions and privileges.

Choose Deployment Name dialog box

Save mapping before
deploying

This option is available if you are deploying an unsaved mapping.
Select this check box to save the mapping before deployment.

Open browser to create new
job

If you select this check box, the FlowForce Server Web
administration interface opens in the browser after deployment,
and you can start creating a FlowForce Server job immediately.

If the server where you deploy the mapping has multiple versions of MapForce Server running

© 2018 Altova GmbH

Deploying Mappings to FlowForce Server 791Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

under FlowForce Server management (applicable to Windows servers only), then you are
additionally prompted to specify the version of MapForce Server with which you want this mapping
to be executed.

Note: The dialog box appears when the FlowForce Server installation directory contains .tool
files for each MapForce Server version which runs under FlowForce Server management.
By default, a MapForce Server .tool file is added automatically to this directory when you
install MapForce Server as part of FlowForce Server installation. The path where the .tool
files are stored in FlowForce is: C:\Program Files\Altova\FlowForceServer2018\tools.
If you have additional versions of MapForce Server which you want to run under FlowForce
Server management, their .tool files may need to be copied manually to the directory
above. The .tool file of MapForce Server can be found at: C:\Program Files\Altova
\MapForceServer2018\etc.

792 Automating Mappings and MapForce MapForce Command Line Interface

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

9.6 MapForce Command Line Interface

The general syntax of a MapForce command at the command line is:

MapForce.exe <filename> [/{target} [[<outputdir>] [/options]]]

Legend

The following notation is used to indicate command line syntax:

Notation Description

Text without brackets or braces Items you must type as shown

<Text inside angle brackets> Placeholder for which you must supply a value

[Text inside square brackets] Optional items

{Text inside braces} Set of required items; choose one

Vertical bar (|) Separator for mutually exclusive items; choose one

Ellipsis (...) Items that can be repeated

<filename>

The mapping design (.mfd) or mapping project (.mfp) file from which code is to be generated. To
generate code for the whole project, set the target /GENERATE (see description below) and enter
the project path as <filename>, for example, MapForceExamples.mfp.

/{target}

Specifies the target language or environment for which code is to be generated. The following code
generation targets are supported.

Target Description

/COMPILE[:compileoptions] Compiles a mapping to a MapForce Server execution file
(.mfx). Optionally, the following options can be supplied,
delimited by a comma:

JDBC Transforms all database connections
to JDBC using the JDBC driver and
the database URL defined in the
Database Component Settings dialog
box, see also Database Component
Settings.

© 2018 Altova GmbH

MapForce Command Line Interface 793Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

Target Description

NOXMLSIGNATURES Suppresses the generation of digital
signatures in the MapForce Server
Execution file (note that digital
signatures are not supported by
MapForce Server).

/GENERATE Generates project code for all mappings in the project file
using the current folder settings, see Managing Project
Folders. If you select this target, make sure to supply a
MapForce project (.mfp file) as <filename>.

/XSLT Generates XSLT 1.0 code.

/XSLT2 Generates XSLT 2.0 code.

/XQuery Generates XQuery code.

/JAVA Generates Java code.

/CS Generates C# code. This command also optionally allows
setting specific options for code generation, namely:

/CS[:{VS2008|VS2010|VS2013|VS2015|VS2017}]

VS2008 Visual Studio 2008

VS2010 Visual Studio 2010

VS2013 Visual Studio 2013

VS2015 Visual Studio 2015

VS2017 Visual Studio 2017

If no Visual Studio version is specified, code will be
generated using the Visual Studio version defined in the code
generation options, see Code Generator Options.

/CPP Generates C++ code. This command also optionally allows
setting specific code generation options, namely:

/CPP[:{VS2008|VS2010|VS2013|VS2015|VS2017},{MSXML|
XERCES3},{LIB|DLL},{MFC|NoMFC}]

The first option group set the target Visual Studio version.
Valid values:

VS2008 Visual Studio 2008

VS2010 Visual Studio 2010

794 Automating Mappings and MapForce MapForce Command Line Interface

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Target Description

VS2013 Visual Studio 2013

VS2015 Visual Studio 2015

VS2017 Visual Studio 2017

The second option group specifies the XML library targeted
by the generated code. Valid values:

MSXML Generate code for MSXML 6.0

XERCES3 Generate code for Xerces 3

The third option group specifies whether static as opposed to
dynamic libraries should be generated. Valid values:

LIB Generate static LIB libraries

DLL Generate DLL libraries

The fourth option group specifies whether code should be
generated with or without MFC support. Valid values:

MFC Enable MFC support

NoMFC Disable MFC support

If the options above are not specified, code will be generated
using the Visual Studio version defined in the code
generation options, see Code Generator Options.

<outputdir>

Optional parameter which specifies the output directory. If an output path is not supplied, the
current working directory will be used. Note that any relative file paths are relative to the current
working directory.

When target is /GENERATE and the <outputdir> parameter is not set, the code generation
language, as well as the output path of each mapping, are supplied by the settings defined for
each folder inside the project, see Managing Project Folders.

When target is /GENERATE and the <outputdir> parameter is set, the <outputdir> value
supplied at the command line takes precedence over the output directory defined at the root
project level. It does not take precedence, however, over the code generation settings defined at
each folder inside the project.

© 2018 Altova GmbH

MapForce Command Line Interface 795Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

/options

The /options are not mutually exclusive. One or more of the following options can be set.

Option Description

[/MFXVERSION[:<version>] This option is applicable if the target is /COMPILE. It compiles
the MapForce Server Execution (.mfx) file for a particular
version of MapForce Server. You can supply as value any
version of MapForce Server, starting with 2013r2 onwards, up
to the current MapForce version. See also Compiling
mappings for a specific MapForce Server version.

/GLOBALRESOURCEFILE
<filename>

This option is applicable if the mapping uses Global
Resources to resolve input or output file or folder paths, or
databases. For more information, see Altova Global
Resources.

The option /GLOBALRESOURCEFILE specifies the path to a
Global Resource .xml file. Note that, if /GLOBALRESOURCEFILE
is set, then /GLOBALRESOURCECONFIG must also be set.

/GLOBALRESOURCECONFIG
<config>

This option specifies the name of the Global Resource
configuration (see also the previous option). Note that, if /
GLOBALRESOURCEFILE is set, then /GLOBALRESOURCECONFIG
must also be set.

/LIBRARY <libname> (...) Use together with a code generation target language to
specify additional function libraries. This option can be
specified more than once to load multiple libraries. These
libraries are temporarily (for this one run) added to the libraries
from Tools | Options | Libraries.

/LOG <logfilename> Generates a log file at the specified path. <logfilename> can
be a full path name, for example, it can include both a
directory and a file name. However, if a full path is supplied,
the directory must exist for the log file to be generated. If you
only specify the file name, then the file will be placed in the
<outputdir> directory.

Remarks

Relative paths are relative to the working directory, which is the current directory of the
application calling MapForce. This applies to the path of the .mfd filename, .mfp filename,
output directory, log filename, and global resource filename.
Do not use the end backslash and closing quote at the command line (for example, "C:
\My directory\"). These two characters are interpreted by the command line parser as a
literal double quotation mark. Use the double backslash \\ if spaces occur in the
command line and you need the quotes ("c:\My Directory\\"), or try to avoid using spaces
and therefore quotes at all.

796 Automating Mappings and MapForce MapForce Command Line Interface

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Examples

1) To start MapForce and open the mapping <filename>.mfd, use:

MapForce.exe <filename>.mfd

2) To generate XSLT 2.0 code and also create a log file with the name <logfilename>, use:

MapForce.exe <filename>.mfd /XSLT2 <outputdir> /LOG <logfilename>

3) To generate XSLT 2.0 code taking into account the global resource configuration
<grconfigname> from the global resource file <grfilename>, use:

Mapforce.exe <filename>.mfd /XSLT2 <outputdir> /GLOBALRESOURCEFILE
<grfilename> /GLOBALRESOURCECONFIG <grconfigname>

4) To generate a C# application for Visual Studio 2015 and output a log file, use:

MapForce.exe <filename>.mfd /CS:VS2015 <outputdir> /LOG <logfilename>

5) To generate a C++ application using the code generation settings defined in Tools | Options,
and output a log file, use:

MapForce.exe <filename>.mfd /CPP <outputdir> /LOG <logfilename>

6) To generate a C++ application for Visual Studio 2015, MSXML, with static libraries, MFC
support, and no log file, use:

MapForce.exe <filename>.mfd /CPP:VS2015,MSXML,LIB,MFC

7) To generate a C++ application for Visual Studio 2015, Xerces, with dynamic libraries, no MFC
support, and a log file, use:

MapForce.exe <filename>.mfd /CPP:VS2015,XERCES,DLL,NoMFC <outputdir> /LOG
<logfilename>

8) To generate a Java application and also output a log file, use:

MapForce.exe <filename>.mfd /JAVA <outputdir> /LOG <logfilename>

9) To generate code for all mappings in the project, using the language and output directory
defined in the folder settings (of each folder inside the project), use:

MapForce.exe <filename>.mfp /GENERATE /LOG <logfilename>

10) To generate Java code for all mappings in the project file, use:

© 2018 Altova GmbH

MapForce Command Line Interface 797Automating Mappings and MapForce

Altova MapForce 2018 Professional Edition

MapForce.exe <filename>.mfp /JAVA /LOG <logfilename>

Note that the code generation language defined in the folder settings are ignored, and Java is used
for all mappings.

11) To supply input and output files at the command line for a previously compiled Java mapping,
use:

java -jar <mappingfile>.jar /InputFileName <inputfilename> /OutputFileName
<outputfilename>

The /InputFileName and /OutputFileName parameters are the names of special input
components in the MapForce mapping that allow you to use parameters in command line
execution (see Supplying Parameters to the Mapping).

12) To compile a mapping to a MapForce Server execution file, for MapForce Server version 2018,
and suppress XML signatures:

MapForce.exe <filename>.mfd /COMPILE:NOXMLSIGNATURES <outputdir> /
MFXVERSION:2018 /LOG <logfilename>

Chapter 10

Customizing MapForce

800 Customizing MapForce

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10 Customizing MapForce

This section provides information about working with Altova Global Resources, customizing the
mapping output, generating and customizing mapping documentation, and working with catalog
files.

© 2018 Altova GmbH

Changing the MapForce Options 801Customizing MapForce

Altova MapForce 2018 Professional Edition

10.1 Changing the MapForce Options

You can change the general and other preferences in MapForce as follows:

On the Tools menu, click Options.

The available options are grouped as shown below.

Libraries
From this page, you can add or delete custom function libraries to MapForce. For more
information, see Importing Custom XSLT 1.0 or 2.0 Functions, Importing Custom XQuery 1.0
Functions, Importing Custom Java and .NET Libraries).

General
The settings available in this page are as follows:

Show logo | Show on
start

Shows or hides an image (splash screen) while MapForce starts.

Show gradient
background

Enables or disables the gradient background in the Mapping pane.

Limit annotation
display to N lines

This option applies to components which support annotations (for
example, XML schema, EDI). If the annotation text contains multiple
lines, then enabling this option shows only the first N lines on the
component, where N is the value you specify. This setting also
applies to SELECT statements visible in a component.

Encoding name Sets the default character encoding for new components. This
setting can also be changed individually for each component, see
Changing the Component Settings.

Use execution timeout Sets an execution timeout when previewing the mapping result in
the Output pane.

Generate output to
temporary files

When this option is set, the output generated when you preview the
mapping result will be written to temporary files (this is the default
option). If the output file path contains folders that do not exist yet,
MapForce will create these folders.

Warning: If you intend to deploy the mapping to a server
for execution, any directories in the path must exist on the
server; otherwise, an execution error will occur. See also
Preparing Mappings for Server Execution.

Write directly to final
output files

When this option is set, the output generated when you preview the
mapping result will be written to actual files. If the output file path
contains folders that do not exist yet, then a mapping error occurs.

Warning: This option overwrites any existing output files

802 Customizing MapForce Changing the MapForce Options

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Show logo | Show on
start

Shows or hides an image (splash screen) while MapForce starts.

without requesting further confirmation.

Display text in steps of
N million characters

Specifies the maximum size of the text displayed in the Output
pane when you preview mappings that generate large XML and text
files. If the output text exceeds this value, you will need click a
Load more button to load the next chunk. For more information,
see Previewing the Output.

Editing
The settings available in this page are as follows:

Align components on
mouse dragging

Specify whether components or functions should be aligned with
other components, while you drag them with the mouse, see
Aligning Components.

Smart component
deletion

When enabled, this option "remembers" connections of deleted
components, see Keeping Connections After Deleting Components.

Messages
From this page, you can re-enable message notifications that were previously disabled using the
"Do not show this message again" option.

Generation
From this page, you can define settings applicable when you generate program code and
MapForce Server Execution files. For more information, see Code Generator Options and
Compiling Mappings to MapForce Server Execution Files, respectively.

Database
From this page, you can define settings applicable when querying databases in the DB Query tab
(see Database Query Settings).

Network proxy
See Network Proxy Settings.

© 2018 Altova GmbH

Altova Global Resources 803Customizing MapForce

Altova MapForce 2018 Professional Edition

10.2 Altova Global Resources

Altova Global Resources represent a way to refer to files, folders, or databases so as to make
these resources reusable, configurable and available across multiple Altova applications. For
example, let's assume that several MapForce mappings routinely read data from the same XML
file which is critical for your business workflow. If this file has been renamed on the disk for
whatever reason, this would cause "file not found" errors in multiple contexts, and break the
workflow. To prevent such issues, it is possible to create a so-called "file alias" (in other words, a
Global Resource), and change all mappings to refer to this Global Resource instead of the actual
file on disk. This way, if the file name ever changes, you would only need to change the file alias,
in one place.

Global Resources can be defined and shared between the following Altova desktop applications:
Authentic, MobileTogether Designer, MapForce, DatabaseSpy, and XMLSpy. On the server side,
Global Resources can be consumed by the following Altova server applications: MapForce Server,
MapForce Server Advanced Edition, RaptorXML Server, RaptorXML+XBRL Server.

Global Resources (be they file, folder, or database references) can be used in MapForce for
various scenarios, for example:

To supply a configurable file path as mapping input, see Example: Run Mappings with
Variable Input Files.
To redirect the mapping output to a configurable path. For more information, see
Example: Generate Mapping Output to Variable Folders.
To supply a configurable path to a StyleVision Power Stylesheet (.sps) file, if one is used
by the mapping. For example, instead of referencing a plain StyleVision .sps file from the
MapForce component settings, you could refer to an .sps file previously defined as a
Global Resource, which has two possible configurations (let's say, "Website.sps" and
"Print.sps"). See also Styling Mapping Output with StyleVision.
To reuse a database connection. If a database has already been defined as a Global
Resource (in any Altova application), you can connect to it without going through all the
set-up steps again, see Using a Connection from Global Resources.
To easily switch the database from which the mapping reads data, or the one to which
the mapping writes data (provided that two or more databases have the same structure
but different data, see Example: Switch Databases).

Note:
FlowForce Server does not support Global Resources. MapForce Server can
consume Global Resources either at the command line or at API level.
MapForce Basic Edition does not support consuming database connections defined
as Global Resources.

10.2.1 Creating Global Resources

A Global Resource alias is a reusable reference which represents a file or folder path, or a
database connection. Aliases are defined only once and can be reused as many times as
necessary in contexts which support them, including across multiple Altova applications. Taking
databases as example, if you frequently work with a specific database in more than one Altova
application, then it is a good idea to add the database connection as a Global Resource. This

804 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

way, you wouldn't need to go through all the Database Connection Wizard steps each time when
you need to connect to the same database from another Altova application.

File, folder, and database aliases are configurable in their turn, by means of so-called
"configurations". Configurations make it possible to easily switch between files, folders and
databases that are consumed or produced by Altova applications, which is particularly useful for
testing scenarios. For example, you could create a database alias that consists of three separate
connections to the same database, each with a different driver kind: (a) ODBC, the default
connection kind, (b) JDBC, and (c) ADO.NET. This way, to connect to the database with a
specific driver, you would just select the corresponding configuration from the Global Resources
drop-down list before running the mapping.

Global Resources drop-down list

Configurations can also help you generate mapping output to variable folders, with a click of a
button. For example, you could create a folder alias with two configurations: (a) "Testing", which
points to directory C:\Testing and (b) "Production", which points to directory C:\Production. It is
then possible to configure a mapping to generate output to either C:\Testing or C:\Production
folders, just by selecting the required configuration from the Global Resources drop-down list
before running the mapping. This example is discussed in more detail in Example: Generate
Output to Variable Folders.

How to create a Global Resource alias

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource

 toolbar button.)
2. Click Add and select the resource type you wish to create (file, folder, database).
3. Enter a descriptive name for this alias in the Resource alias text box (for example,

"MappingInputFile", "MappingOutputFolder", "DatabaseConnection").
4. Set up the "Default" configuration:

a) If it's a file or folder, browse for the file or folder to which this resource should point by
default.

b) If it's a database connection, click Choose Database and follow the Database
Connection Wizard to connect to the database (see Connecting to a Database). This
database connection will be used by default when the mapping runs (unless a different
configuration is explicitly selected from the Global Resources drop-down list or
supplied as a command line parameter in server execution).

5. Optionally, if the resource should have an additional configuration (for example, a driver
kind in case of databases, or an alternative path in case of files or folders), click the Add

configuration button, enter a descriptive name (for example "ProductionFolder" or
"JDBC_Alternative"), and set it up as follows:
a) If it's a file or folder, browse for the file or folder to which this resource should point as

an alternative to the default configuration defined in previous step.
b) If it's a database connection, follow the Database Connection Wizard to connect to the

database. This database connection will be used as an alternative to the default one.

© 2018 Altova GmbH

Altova Global Resources 805Customizing MapForce

Altova MapForce 2018 Professional Edition

In some cases, it might be more convenient to create a configuration as a copy of the
default configuration, and then edit it. In this case, click the Add configuration as a

copy of the currently selected configuration button.
6. Repeat the previous step for each additional configuration required.

10.2.2 Databases as Global Resources

When you add a database connection as a Global Resource, the database connection
parameters are automatically populated on the Global Resource dialog box.

Global Resource dialog box

On the Global Resource dialog box, it is possible to edit some of the database connection
parameters. As illustrated above, the parameters are grouped into two categories:

Database These parameters are shared between Altova
applications. In MapForce, they are used at design time,
that is, when the mapping is loaded, or when you click
the Output tab in MapForce to preview the mapping.

MapForce-specific execution
parameters

These parameters are applicable when you generate
program code or compile a mapping to MapForce Server

806 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

execution file (.mfx). They are used at mapping runtime,
as follows:

In generated C++, C#, or Java program code.
If you compiled the mapping to a MapForce
Server execution file, and automatic JDBC
conversion took place. For more information
about automatic JDBC conversion, see
Database mappings in various execution
environments.

If a mapping uses a Global Resource to connect to a database, then the database connection
details visible in the Global Resource dialog box take precedence over those defined on the
mapping. In the Component Settings dialog box, illustrated below, notice that the database
connection settings become grayed out. The dialog box also informs you that the connectivity
parameters are defined as a Global Resource.

© 2018 Altova GmbH

Altova Global Resources 807Customizing MapForce

Altova MapForce 2018 Professional Edition

Component Settings dialog box

To change the database component to connect to the database directly (without using Global
Resources), click Change, and follow the wizard steps to reconnect to the database.

808 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10.2.3 MapForce and StyleVision Transformation Result as Global Resource

It is also possible to create Global Resources which, instead of pointing to a static file, read a
specific file produced by either a MapForce mapping or StyleVision transformation. In this case,
the Altova application which consumes the Global Resource will first call either MapForce or
StyleVision, run the corresponding mapping or transformation, and finally fetch the resulting file.
This makes it possible to define data workflows between Altova applications (for example, pass
the result of a MapForce mapping or StyleVision transformation as input to another mapping or
transformation). For an example which illustrates how XMLSpy consumes the result (output) of a
MapForce mapping using Global Resources, see Example: Create Application Workflow.

Note:
In order to make a mapping result (output) available as a Global Resource, either the
transformation language of the mapping must be set to BUILT-IN, or the mapping
must contain only components which are supported by the BUILT-IN language (for
example, some XSLT functions are not supported by the BUILT-IN language.)
MapForce Basic Edition does not support providing mapping transformation results
as Global Resources.

10.2.4 The Global Resources XML File

By default, all Global Resources, regardless of the Altova application where they were created,
are stored at the following path: C:\Users\Documents\Altova\GlobalResources.xml. This
makes them transparent, easy to backup, as well as portable to other workstations where Altova
products are installed. It is also possible to rename or duplicate the GlobalResources.xml file
and thus create multiple Global Resource files. However, only one Global Resource file can be
active at a time in an Altova application.

To set up the active Global Resource file:

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource

 toolbar button.)
2. Click Browse and select the required Global Resource XML file.

If you are using multiple Global Resource files, make sure that the currently active Global
Resource file contains all Global Resources required to run the mapping. For example, if a
mapping was configured to read data from a path using a Global Resource, then the currently
active Global Resource file must contain that specific Global Resource. Otherwise, error
messages like "Errors resolving global resource" will occur in the Messages window.

10.2.5 Global Resources in Various Execution Environments

A mapping using Global Resources will behave differently in each environment where it is run, as
shown below.

© 2018 Altova GmbH

Altova Global Resources 809Customizing MapForce

Altova MapForce 2018 Professional Edition

Global Resources in XSLT, XSLT2, XQuery

When you generate XSLT or XSLT2 code and the mapping uses Global Resources, this does not
affect the generated XSLT stylesheet in any way. With or without Global Resources, the input and
output files are not a permanent assignment and can be specified flexibly anyway when you run
the XSLT stylesheet in your XSLT processor. The same applies for generated XQuery code.

An exception to this is the DoTransform.bat file generated for RaptorXML execution. Any Global
Resources used by the mapping will be resolved to actual paths in DoTransform.bat, taking into
account the value (configuration) which is currently selected from the Global Resource drop-down
list.

For information about supplying Global Resources to RaptorXML, refer to the RaptorXML
documentation (see https://www.altova.com/documentation.html).

Global Resources in C#, C++, Java

When you generate C#, C++, or Java program code, any Global Resources used by the mapping
will be resolved. For example, a file or folder alias defined as Global Resource will be converted to
the actual file or folder path. If a particular Global Resource configuration is selected from the
Global Resources drop-down list, then the code will be generated for the selected configuration.
The Messages window provides information as to how exactly a Global Resource was resolved,
for example:

To generate code for a particular Global Resource configuration, select it from the Global
Resource drop-down list before generating code. Alternatively, if you generate code from the
command line, supply the GLOBALRESOURCEFILE and GLOBALRESOURCECONFIG
parameters at the command line (see also MapForce Command Line Interface).

It is not possible to switch or refer to Global Resources from generated code (instead, you can
modify the code to change the input or output file path).

Note: In C# or Java, you can change not only the path but also the data type of input or output,
see Changing the data type of the mapping input/output (C#, Java).

Global Resources in MapForce Server

When you compile a mapping to a MapForce Server execution file (.mfx), any Global Resources
references used by the mapping are preserved as such. In MapForce Server, the following is

https://www.altova.com/documentation.html

810 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

required to run an .mfx file compiled from a mapping which uses Global Resources:

1. The path to the Global Resource XML file (that is, the file where Global Resources are
defined, see The Global Resources XML File).

2. The Global Resource configuration name. The name of the default configuration is
"Default". If you created additional configurations, as explained in Creating Global
Resources, then the desired configuration must be called by its corresponding name.

The Global Resource file path and the name of the configuration can be specified as follows:

If you run the mapping through the command line interface, set the options --
globalresourceconfig and --globalresourcefile after the run command, for
example:

C:\Program Files (x86)\Altova\MapForceServer2018\bin\MapForceServer.exe
run SomeMapping.mfx --globalresourcefile="C:\Users\me\Documents\Altova
\GlobalResources.xml" --globalresourceconfig="Default"

If you run the mapping through the MapForce Server API, call the method SetOptions

two times before calling the Run method. The first call is required to supply the Global

Resource XML file path as option, and the second one is required to supply the Global
Resource configuration name.

For more information, refer to the MapForce Server documentation (see https://www.altova.com/
documentation.html).

10.2.6 Example: Run Mapping with Variable Input Files

Let's assume that, as part of your job duties, you frequently run a mapping that takes as input an
XML file. Under normal circumstances, whenever you want to change the input XML of the
mapping, you can open the properties of the source XML component and browse for the new input
file, see Changing the Component Settings. This is easy to accomplish if it's a one time task.
However, what if you need to change the input XML file of the mapping multiple times per day, or
even per hour? For example, every morning you need to run the mapping and generate a report by
using one XML file as mapping input, and every evening the same report must be generated from
another XML file. This is where Global Resources can help you: instead of editing the mapping
multiple times per day (or keeping multiple copies of it), you could configure the mapping to read
from a file defined as a global resource (a so-called "file alias"). To address the requirement laid
out in this example, the file alias could be configured to have two configurations:

1. "Default" - This configuration would supply a "morning" XML file as mapping input
2. "EveningReports" - This configuration would supply an "evening" XML file as mapping

input.

Having these configurations in place would make it possible to run the mapping with either input
file. Once the file alias is set up as shown below, you will be able to select the desired
configuration from a drop-down list, before running the mapping.

https://www.altova.com/documentation.html
https://www.altova.com/documentation.html

© 2018 Altova GmbH

Altova Global Resources 811Customizing MapForce

Altova MapForce 2018 Professional Edition

Step 1: Create the Global Resource

The file alias can be created as follows:

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource

 toolbar button.)
2. Click Add | File.
3. Enter a name in the Resource alias text box (in this example, "DailyReports" would be

an appropriate name).
4. Click Browse and select the following file: <Documents>\Altova\MapForce2018

\MapForceExamples\Tutorial\mf-ExpReport.xml.

5. Click Add Configuration and name it "EveningReports".
6. Click Browse and this time select the following file: <Documents>\Altova

\MapForce2018\MapForceExamples\Tutorial\mf-ExpReport2.xml.

Step 2: Use the Global Resource in the mapping

The required Global Resource has now been created; however, the mapping is not using it yet. To
change the mapping so that it reads from the previously defined file alias (Global Resource), do
the following:

1. Open the following mapping <Documents>\Altova\MapForce2018\MapForceExamples
\Tutorial\Tut-ExpReport.mfd.

2. Right-click the header of the source component on the mapping, and select Properties
from the context menu.

3. Next to Input XML file, click Browse.
4. Click Switch to Global Resources and select the file alias "DailyReports" defined

previously.
5. Click Open. The input XML file path has now become altova://file_resource/

DailyReports, which indicates that the path uses a Global Resource.

Step 3: Run the mapping with the desired configuration

You can now easily switch the input XML file before running the mapping, as follows:

812 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

On the Tools menu, click Active Configuration | Default, to use the file mf-
ExpReport.xml as input.
On the Tools menu, click Active Configuration | EveningReports, to use the file mf-
ExpReport2.xml as input.

Alternatively, select the required configuration from the Global Resources drop-down list.

To preview the mapping result with either configuration, click the Output tab and observe
differences in the generated output.

10.2.7 Example: Generate Output to Variable Folders

This example illustrates how mapping output can be redirected to different folders by means of
Global Resources.

Let's suppose that sometimes you need to generate the mapping output to one directory (for
example, C:\Testing), while in certain cases output must be generated to another directory (for
example, C:\Production). With Global Resources, this is possible by creating a folder alias with
two configurations:

1. "Default" configuration - Generates output to C:\Testing
2. "Production" configuration - Generates output to C:\Production.

The steps below illustrate how to achieve this goal.

Step 1: Create the Global Resource

The folder alias can be created as follows:

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource

 toolbar button.)
2. Click Add | Folder.
3. Enter a name in the Resource alias text box (in this example, "OutputDirectory" could

be an appropriate name).
4. Click Browse and select the following folder: C:\Testing. (Make sure that this folder

already exists on your operating system.)

5. Click Add Configuration and enter a name for the new configuration (in this example,
"ProductionDirectory").

6. Click Browse and this time select the following folder: C:\Production. (Make sure that
this folder already exists on your operating system.)

Step 2: Use the Global Resource in the mapping

The required Global Resource has now been created; however, the mapping is not using it yet. To
change the mapping so that it uses from the previously defined folder alias (Global Resource), do
the following:

© 2018 Altova GmbH

Altova Global Resources 813Customizing MapForce

Altova MapForce 2018 Professional Edition

1. Open the following mapping <Documents>\Altova\MapForce2018\MapForceExamples
\Tutorial\Tut-ExpReport.mfd.

2. Right-click the target component on the mapping, and select Properties from the context
menu.

3. Next to Output XML file, click Browse.
4. Click Switch to Global Resources, and then click Save.
5. When prompted to save the output XML file, enter output.xml (or another descriptive file

name that you wish to give to the output file). The output XML file path has now become
altova://folder_resource/OutputDirectory/output.xml, which indicates that the path is
defined as a Global Resource.

Step 3: Run the mapping with the desired configuration

You can now easily switch to the desired mapping output folder file before running the mapping,
as follows:

On the Tools menu, click Active Configuration | Default, and then click the Output tab
to preview the mapping result. The mapping output (either a temporary or a permanent
file, as explained below) will be generated in the C:\Testing directory.
On the Tools menu, click Active Configuration | ProductionDirectory, and then click
the Output tab. The mapping output (either a temporary or a permanent file, as explained
below) will be generated in the C:\Production directory.

Note: The mapping output is written by default as a temporary file, unless you explicitly
configured MapForce to write output to permanent files.

To configure MapForce to generate permanent files instead of temporary, do the following:

1. On the Tools menu, click Options.
2. In the General section, select the option Write directly to final output files.

10.2.8 Example: Switch Databases

When a mapping reads or writes data from a database, it is possible to switch the database
connection immediately before mapping runtime (for example, from a release to a production
database, and vice versa). This example illustrates how to accomplish this by means of Global
Resources. Switching databases this way implies that both databases have the same structure
but different data. For the purpose of this example, we will be working with the following Microsoft
Access databases:

altova.mdb, from the directory: <Documents>\Altova\MapForce2018
\MapForceExamples\. This database plays the role of the default development
database.
altova.mdb, from the directory: <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\. This database plays the role of the production
database.

The requirement is to easily supply to the mapping either of the two databases immediately before
runtime, without editing the mapping. To achieve this requirement, we will create a database
Global Resource (database alias) with two configurations:

814 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1. Default. This configuration will point to the default development database.
2. Release. This configuration will point to the release database.

Step 1: Create the Global Resource (database alias)

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource

 toolbar button.)
2. Click Add | Database.
3. Enter a descriptive name in the Resource alias text box (for example,

"SourceDatabase").
4. Click Choose Database, select Microsoft Access (ADO), and browse for the

development database (<Documents>\Altova\MapForce2018\MapForceExamples
\altova.mdb).

5. Click Add Configuration and name it "ReleaseDatabase".
6. Click Choose Database, select Microsoft Access (ADO), and this time browse for the

production database (<Documents>\Altova\MapForce2018\MapForceExamples
\Tutorial\altova.mdb).

Step 2: Use the Global Resource in the mapping

Now that the database alias has been created, the mapping must be modified to use it.

1. Open the following mapping: <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\PersonDB.mfd.

2. Right-click the database component, and select Properties from the context menu.
3. Click Change, and select the "SourceDatabase" alias created previously.

© 2018 Altova GmbH

Altova Global Resources 815Customizing MapForce

Altova MapForce 2018 Professional Edition

4. Click Connect.
5. When prompted to select the database objects, leave the default selection as is, and

click OK.

Note: When a database connection is defined as a Global Resource, the settings on the
Component Settings dialog are grayed out, as illustrated below. As mentioned by the text
on the dialog box, the connectivity parameters can be changed from the Global

Resources dialog box (which can be opened by clicking the Global Resource
 toolbar button). See also Databases as Global Resources.

816 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 3: Run the mapping with the desired configuration

You can now easily switch to the desired database before running the mapping, as follows:

On the Tools menu, click Active Configuration | Default, to read data from the
development database.
On the Tools menu, click Active Configuration | ReleaseDatabase, to read data from

© 2018 Altova GmbH

Altova Global Resources 817Customizing MapForce

Altova MapForce 2018 Professional Edition

the production database.

Alternatively, select the required configuration from the Global Resources drop-down list.

When you switch configurations, a dialog box prompts you that the source database is about to
be reloaded:

Note: Both databases used in this example contain similar data, so there are no differences in
the generated output after you run the mapping.

10.2.9 Example: Create an Application Workflow

This example illustrates how to create a simple workflow between Altova MapForce and Altova
XMLSpy, using Global Resources. Specifically, it shows you how to trigger the execution of a
MapForce mapping directly from XMLSpy, and open in XMLSpy the mapping output generated by
MapForce. To make this possible, we will create a Global Resource of type "Result of MapForce
Transformation", as illustrated below.

Step 1: Create the Global Resource

This step can be performed from both MapForce and XMLSpy.

1. On the Tools menu, click Global Resources. (Alternatively, click the Global Resource

 toolbar button.)
2. Click Add | File.
3. Enter a descriptive name in the Resource alias text box (in this example,

"MappingResult").
4. Select the option Result of MapForce Transformation.
5. Click Browse and select the mapping <Documents>\Altova\MapForce2018

\MapForceExamples\Tutorial\Tut-ExpReport-multi.mfd. Be patient while the "Inputs"
and "Outputs" sections on the dialog box are populated. As shown below, this mapping

818 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

has one input and two outputs.

For the scope of this example, we would like to generate each of the two output files to the folder
C:\temp, and change the default file name. To achieve this, we will create a configuration for each
desired output, as follows:

1. Under "Outputs", click Browse next to the first output and enter C:\temp\file1.xml as
destination file name. This is the default configuration which will produce the first output
file when triggered.

© 2018 Altova GmbH

Altova Global Resources 819Customizing MapForce

Altova MapForce 2018 Professional Edition

2. Click Add Configuration as a copy... and enter a name for the new configuration (in
this example, "Output2").

3. Under "Outputs", click Browse next to the second output and enter C:\temp\file2.xml
as destination file name. This is the alternative configuration which produces the second
output file.

820 Customizing MapForce Altova Global Resources

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 2: Trigger the workflow

The Global Resource created in the previous step can now be consumed from XMLSpy, as
follows.

1. Run XMLSpy.
2. On the Tools menu, click Global Resources.
3. In the "Files" group, click the "MappingResult" Global Resource created previously, and

then click View.

© 2018 Altova GmbH

Altova Global Resources 821Customizing MapForce

Altova MapForce 2018 Professional Edition

This executes the mapping, produces the default output (file1.xml) and loads it into the main
pane of XMLSpy. The file is also saved as C:\temp\file1.xml.

To trigger the mapping execution with the alternative configuration, do the following:

1. On the Tools menu, click Active Configuration | Output2.

2. Click Reload when prompted.

As a result, the alternative output file is loaded into the main pane of XMLSpy. The file is also
saved as: C:\temp\file2.xml.

822 Customizing MapForce Styling Mapping Output with StyleVision

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10.3 Styling Mapping Output with StyleVision

In mappings where the target component is XML , it is possible to preview and save the mapping
output as HTML, RTF, PDF and Word 2007+ documents, provided that Altova StyleVision is
installed on your computer. If you are using the Enterprise edition of StyleVision, then charts will
also be rendered in these previews.

When a mapping supports preview in any of these formats, additional tabs become available next
to the Output tab, for example:

StyleVision preview tabs (MapForce Enterprise Edition)

Note the following:

When StyleVision Professional is installed, it is possible to preview HTML and RTF
output. With StyleVision Enterprise, it is possible to preview HTML, RTF, PDF, and
Word 2007+ output.
Previewing mapping output as PDF requires Java, Acrobat Reader, and FOP (Formatting
Objects Processor) version 0.93 or 1.0. FOP is installed together with StyleVision, unless
you opted not to install it when installing StyleVision.
In the 64-bit edition of MapForce, the Word 2007+ and RTF previews are opened as a
non-embedded application.
If your mapping contains components that act both as source and target (pass-through
components), the StyleVision preview will only be possible for those components where

the Preview button of the component has been set as active. For more information
about such mappings, see Chained Mappings.

In order to preview data from a mapping in this way, the following is required:

Altova StyleVision must be installed on your computer, either as a standalone
installation, or as part of Altova MissionKit.
The target component must have a StyleVision Power Stylesheet (SPS) file associated to
it. The stylesheet file can be created or edited with StyleVision. You cannot edit or
change the stylesheet in MapForce directly, but you can open it via MapForce in
StyleVision. Once the stylesheet is ready, you can assign it to a target MapForce
component, as shown below.

Assigning a StyleVision Power Stylesheet to a target component

1. In StyleVision, create the required stylesheet file. Make sure to use as source the same
XML schema as that of the MapForce component.

2. In MapForce, right-click the target XML component, and select Properties.
3. On the Component Settings dialog box, next to StyleVision Power Stylesheet file,

browse for the stylesheet file created previously.

© 2018 Altova GmbH

Styling Mapping Output with StyleVision 823Customizing MapForce

Altova MapForce 2018 Professional Edition

Note: The path to the StyleVision Power Stylesheet file can be absolute or relative, see Using
Relative and Absolute Paths.

Saving the StyleVision-generated output

You can save the StyleVision-generated HTML, PDF, RTF, or Word 2007+ output to a file in a
similar way as saving the result of any other mapping. Namely, after previewing the mapping, do
one of the following:

Click the Save generated output () toolbar button.
On the Output menu, click Save Output File.

Automating generation of HTML, PDF, RTF, Word 2007+ files with Altova
product suite

If your mapping should generate HTML, PDF, RTF, and Word 2007+ files automatically (either on
the same or on a different computer or even platform), this is possible with MapForce Server and
StyleVision Server (these are separately licensed server products that extend the functionality of
MapForce and StyleVision, respectively). In this scenario, each application plays the following
distinct role:

MapForce - enables you to design the mapping (.mfd file) which defines the data
transformation inputs and outputs (for example, database to XML)
MapForceServer - runs the executable mapping (.mfx file) at the command-line or from an
API (either on the same or a different operating system)
StyleVision - enables you to design the stylesheet (.sps file) required to transform
mapping output to HTML, PDF, RTF, Word 2007+
StyleVision Server - runs the .sps stylesheet which transforms the mapping output to a
target desired format. This happens at the command line or from an API (either on the
same or a different operating system).
Both StyleVision Server and MapForce Server can optionally run under the management
of FlowForce Server (licensed separately). In this scenario, MapForce mappings and
StyleVision transformations can run as scheduled, triggered, or on-demand jobs, and
thus be fully automated.

10.3.1 Examples of Mappings with StyleVision Stylesheets

Many of the mappings included in the MapForce examples folder (<Documents>\Altova
\MapForce2018\MapForceExamples\) have StyleVision Power Stylesheets (.sps files) assigned
to their target components. When that is the case, the mapping contains the additional
StyleVision preview tabs.

824 Customizing MapForce Styling Mapping Output with StyleVision

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

StyleVision preview tabs (MapForce Enterprise Edition)

One such example is CompletePO.mfd available at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\CompletePO.mfd. This mapping produces a purchase
order in XML format. Right-click the target component, select Properties, and notice that it has
an .sps file assigned to it.

Click the Output tab to view the output data in HTML format.

© 2018 Altova GmbH

Styling Mapping Output with StyleVision 825Customizing MapForce

Altova MapForce 2018 Professional Edition

HTML preview of CompletePO.mfd (MapForce Enterprise edition)

826 Customizing MapForce Generating and Customizing Mapping Documentation

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10.4 Generating and Customizing Mapping Documentation

The Generate Documentation command generates detailed documentation about your mapping
in HTML, MS Word, RTF or PDF. The documentation generated by this command can be freely
altered and used; permission from Altova to do so is not required.

Documentation is generated for components you select in the Generate Documentation dialog
box. You can either use the fixed design, or use a StyleVision Power Stylesheet (SPS) for the
design. Using a StyleVision SPS enables you to customize the design of the generated
documentation (see User-Defined Design).

Note: To use an SPS to generate mapping documentation, you must have StyleVision installed
on your machine. Related elements are typically hyperlinked in the onscreen output,
enabling you to navigate from component to component.

To generate documentation in MS Word format, you must have MS Word (version 2000 or
later) installed.

The screenshot below shows a portion of the Lookup-standard.mfd file available in the ...
\MapForceExamples folder.

Having opened a mapping file e.g. Lookup-standard.mfd:
Select the menu option File | Generate Documentation.
This opens the "Generate documentation" dialog box. The screenshot below shows the
default dialog box settings.

© 2018 Altova GmbH

Generating and Customizing Mapping Documentation 827Customizing MapForce

Altova MapForce 2018 Professional Edition

Documentation Design
Select "Use fixed design..." to use the built-in documentation template.

Select "Use user-defined..." to use a predefined StyleVision Power Stylesheet created in
StyleVision. The SPS files are available in the ...\Documents\Altova\MapForce2018
\Documentation\MapForce\ folder.

Click Browse to browse for a predefined SPS file.

Click Edit to launch StyleVision and open the selected SPS in a StyleVision window.

The following predefined SPS stylesheets are available in the ...MapForce2018
\Documentation\MapForce folder:

FunctionCallGraph.sps - shows the call graph of the main mapping and any user-
defined functions.

FunctionsUsedBy.sps - shows which functions are used directly, or indirectly, in the
mapping.

ImpactAnalysis.sps - lists every source and target node, and the route taken via various
functions, to the target node.

OverallDocumentation.sps - shows all nodes, connections, functions, and target
nodes. The output using this option outputs the maximum detail and is identical to the
built-in "fixed design..." output.

828 Customizing MapForce Generating and Customizing Mapping Documentation

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Output Format
The output format is specified here: either HTML, Microsoft Word, RTF, or PDF.

Microsoft Word documents are created with the .doc file extension when generated using
a fixed design, and with a .docx file extension when generated using a StyleVision SPS.

The PDF output format is only available if you use a StyleVision SPS to generate the
documentation.

Select "Split output to multiple files" if you would like separate input, output, constant
components, user-defined functions from the Library component documentation. In fixed
designs, links between multiple documents are created automatically.

The "Show Result File..." option is enabled for all output options. When checked, the
result files are displayed in default browser (HTML output), MS Word (MS Word output),
and the default application for .rtf files (RTF output).

Path length limit
Allows you to define the maximum "path" length to be shown for items.

E.g. .../ShortPO/LineItems/LineItem, which would be the maximum length for the default
setting 3.

Include
Allows you to define the specific components to appear in the documentation.

Details
Allows you to set the specific details to appear in the documentation.

selecting "Library Names" would insert the "core" prefix for functions.
You can document both connected, as well as unconnected nodes.

Note:
The Check/Uncheck All buttons allow you to check/uncheck all check boxes of that group.

Having used the default settings shown above, clicking OK, prompts you for the name of
the output file and the location to which it should be saved. A portion of the fixed design
generated documentation is shown below. Note that this shows a single output file.

This table shows the connections from the source component to the target component(s).

© 2018 Altova GmbH

Generating and Customizing Mapping Documentation 829Customizing MapForce

Altova MapForce 2018 Professional Edition

The sequence in which the components are documented is: Input, Output, Constant, User-defined
functions, then Library functions.

E.g. Input component ShortPO:
The first two items ShortPO and ShortPO/CustomerNr are not connected to any item in
the target, thus the Connections column is empty.
ShortPO/LineItems is directly connected to CompletePO/LineItems in the target.
/LineItems/LineItem/ArticleNr has two connections:

directly to LineItem/Article/Number in the target
to the User-defined function LookupArticle, with ArticleNr as the input parameter, and
Name as the output parameter of the user-defined function.

The contents of the user-defined function are shown below.

830 Customizing MapForce Generating and Customizing Mapping Documentation

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Output component CompletePO: This table shows the connections to the target component
from the source component(s).

The first two items CompletePO and CompletePO/Customer are not connected to any
item in the source component, thus the Connections column is empty.
CompletePO/LineItems is directly connected to ShortPO/LineItems in the source
component.

LineItem/Article/Name is connected to the User-defined function LookupArticle, with
LineItems/LineItem/ArticleNr as the source item.

© 2018 Altova GmbH

Generating and Customizing Mapping Documentation 831Customizing MapForce

Altova MapForce 2018 Professional Edition

10.4.1 Predefined StyleVision Power Stylesheets

Function Call Graphs - PersonListByBranchOffice.mfd

832 Customizing MapForce Generating and Customizing Mapping Documentation

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Functions Used By - PersonListByBranchOffice.mfd

© 2018 Altova GmbH

Generating and Customizing Mapping Documentation 833Customizing MapForce

Altova MapForce 2018 Professional Edition

Impact Analysis - PersonListByBranchOffice.mfd

Overall Documentation - PersonListByBranchOffice.mfd

834 Customizing MapForce Generating and Customizing Mapping Documentation

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10.4.2 Custom Design

Instead of the fixed design, you can create a customized design for the MapForce documentation.
The customized design is created in a StyleVision SPS. Note that there are 4 predefined SPS
Stylesheets supplied with MapForce, please see Documenting mapping projects.

Specifying the SPS to use for MapForce documentation
The SPS you wish to use for generating the documentation is specified in the Generate
Documentation dialog (accessed via File | Generate Documentation). Select the "Use User-
Defined Design..." radio button then click the dropdown arrow of the combo box and select the file
you want. The default selection is the OverallDocumentation.sps entry.

© 2018 Altova GmbH

Generating and Customizing Mapping Documentation 835Customizing MapForce

Altova MapForce 2018 Professional Edition

These predefined SPS files are located in the ...MapForce2018\Documentation\MapForce folder.

Please note:
To use an SPS to generate documentation, you must have StyleVision installed on your
machine.

Creating the SPS
A StyleVision Power Stylesheet (or SPS) is created using Altova StyleVision (https://
www.altova.com/stylevision). An SPS for generating MapForce documentation must be based on
the XML Schema that specifies the structure of the XML document that contains the MapForce
documentation.

This schema is called MapForceDocumentation.xsd and is delivered with your MapForce
installation package. It is stored in the ...\Documents\Altova\MapForce2018\Documentation
folder.

When creating the SPS design in StyleVision, nodes from the MapForceDocumentation.xsd
schema are placed in the design and assigned styles and properties. Note that the
MapForceDocumentation.xsd includes the Documentation.xsd file located in the folder above it.

Additional components, such as links and images, can also be added to the SPS design. How to
create an SPS design in StyleVision is described in detail in the StyleVision user manual.

The advantage of using an SPS for generating mapping documentation is that you have complete
control over the design of the documentation. Note also that PDF output of the documentation is
available only if an SPS is used; PDF output is not available if the fixed design is used.

https://www.altova.com/stylevision
https://www.altova.com/stylevision

836 Customizing MapForce Customizing Keyboard Shortcuts

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10.5 Customizing Keyboard Shortcuts

You can define or change the keyboard shortcuts in MapForce as follows:

1. On the Tools menu, click Customize.
2. Click the Keyboard tab.

To assign a new Shortcut to a command:

1. Select the Tools | Customize command and click the Keyboard tab.
2. Click the Category combo box to select the menu name.
3. Select the command you want to assign a new shortcut to, in the Commands list box
4. Click in the Press New Shortcut Key: text box, and press the shortcut keys that are to

activate the command.

The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

5. Click the Assign button to assign the shortcut.
The shortcut now appears in the Current Keys list box.
(To clear the entry in the Press New Shortcut Key text box, press any of the control
keys, CTRL, ALT or SHIFT).

To de-assign or delete a shortcut:

1. Click the shortcut you want to delete in the Current Keys list box.
2. Click the Remove button.
3. Click the Close button to confirm.

Note: The Set accelerator for does not currently have any function.

© 2018 Altova GmbH

Customizing Keyboard Shortcuts 837Customizing MapForce

Altova MapForce 2018 Professional Edition

The currently assigned keyboard shortcuts are as follows:

F1 Help Menu
F2 Next bookmark (in output window)
F3 Find Next
F10 Activate menu bar
Num + Expand current item node
Num - Collapse item node
Num * Expand all from current item node

CTRL + TAB Switches between open mappings
CTRL + F6 Cycle through open windows
CTRL + F4 Closes the active mapping document

Alt + F4 Closes MapForce
Alt + F, F, 1 Opens the last file
Alt + F, T, 1 Opens the last project

CTRL + N File New
CTRL + O File Open
CTRL + S File Save
CTRL + P File Print

CTRL + A Select All
CTRL + X Cut
CTRL + C Copy
CTRL + V Paste
CTRL + Z Undo
CTRL + Y Redo

Del Delete component (with prompt)
Shift + Del Delete component (no prompt)
CTRL + F Find
F3 Find Next
Shift + F3 Find Previous

Arrow keys
(up / down) Select next item of component
Esc Abandon edits/close dialog box
Return Confirms a selection

Output window hotkeys
CTRL + F2 Insert Remove/Bookmark
F2 Next Bookmark
SHIFT + F2 Previous Bookmark
CTRL + SHIFT + F2 Remove All Bookmarks

Zooming hotkeys
CTRL + mouse wheel forward Zoom In
CTRL + mouse wheel back Zoom Out
CTRL + 0 (Zero) Reset Zoom

838 Customizing MapForce Catalog Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

10.6 Catalog Files

MapForce supports a subset of the OASIS XML catalogs mechanism. The catalog mechanism
enables MapForce to retrieve commonly used schemas (as well as stylesheets and other files)
from local user folders. This increases the overall processing speed, enables users to work offline
(that is, not connected to a network), and improves the portability of documents (because URIs
would then need to be changed only in the catalog files.)

The catalog mechanism in MapForce works as outlined below.

RootCatalog.xml
When MapForce starts, it loads a file called RootCatalog.xml (structure shown in listing below),
which contains a list of catalog files that will be looked up. You can modify this file and enter as
many catalog files to look up as you like, each in a nextCatalog element. Each of these catalog
files is looked up and the URIs in them are resolved according to the mappings specified in them.

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"

 xmlns:spy="http://www.altova.com/catalog_ext"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:entity:xmlns:xml:catalog

Catalog.xsd">

 <nextCatalog catalog="%PersonalFolder%/Altova/%AppAndVersionName%/

CustomCatalog.xml"/>

 <nextCatalog catalog="CoreCatalog.xml"/>

 <!-- Include all catalogs under common schemas folder on the first directory

level -->

 <nextCatalog spy:recurseFrom="%AltovaCommonFolder%/Schemas"

catalog="catalog.xml" spy:depth="1"/>

 <!-- Include all catalogs under common XBRL folder on the first directory

level -->

 <nextCatalog spy:recurseFrom="%AltovaCommonFolder%/XBRL"

catalog="catalog.xml" spy:depth="1"/>

</catalog>

In the listing above, notice that in the Schemas and XBRL folders of the folder identified by the
variable %AltovaCommonFolder% are catalog files named catalog.xml. (The value of the %
AltovaCommonFolder% variable is given in the table below.)

The catalog files in the Altova Common Folder map the pre-defined public and system identifiers
of commonly used schemas (such as SVG and WSDL) and XBRL taxonomies to URIs that point
to locally saved copies of the respective schemas. These schemas are installed in the Altova
Common Folder when MapForce is installed.You should take care not to duplicate mappings in
these files, as this could lead to errors.

CoreCatalog.xml, CustomCatalog.xml, and Catalog.xml
In the RootCatalog.xml listing above, notice that CoreCatalog.xml and CustomCatalog.xml are
listed for lookup:

CoreCatalog.xml contains certain Altova-specific mappings for locating schemas in the

© 2018 Altova GmbH

Catalog Files 839Customizing MapForce

Altova MapForce 2018 Professional Edition

Altova Common Folder.
CustomCatalog.xml is a skeleton file in which you can create your own mappings. You
can add mappings to CustomCatalog.xml for any schema you require but that is not
addressed by the catalog files in the Altova Common Folder. Do this using the supported
elements of the OASIS catalog mechanism (see below).
There are a number of Catalog.xml files in the Altova Common Folder. Each is inside the
folder of a specific schema or XBRL taxonomy in the Altova Common Folder, and each
maps public and/or system identifiers to URIs that point to locally saved copies of the
respective schemas.

Location of catalog files and schemas
The files RootCatalog.xml and CoreCatalog.xml are installed in the MapForce application
folder. The file CustomCatalog.xml is located in your MyDocuments/Altova/MapForce folder.
The catalog.xml files are each in a specific schema folder, these schema folders being inside
the folders: %AltovaCommonFolder%\Schemas and %AltovaCommonFolder%\XBRL.

Shell environment variables and Altova variables
Shell environment variables can be used in the nextCatalog element to specify the path to
various system locations (see RootCatalog.xml listing above). The following shell environment
variables are supported:

%
AltovaCommonFolder
%

C:\Program Files\Altova\Common2018

%DesktopFolder% Full path to the Desktop folder for the current user.

%ProgramMenuFolder
%

Full path to the Program Menu folder for the current user.

%StartMenuFolder% Full path to Start Menu folder for the current user.

%StartUpFolder% Full path to Start Up folder for the current user.

%TemplateFolder% Full path to the Template folder for the current user.

%AdminToolsFolder% Full path to the file system directory that stores administrative tools for
the current user.

%AppDataFolder% Full path to the Application Data folder for the current user.

%
CommonAppDataFolde
r%

Full path to the file directory containing application data for all users.

%FavoritesFolder% Full path of the Favorites folder for the current user.

%PersonalFolder% Full path to the Personal folder for the current user.

%SendToFolder% Full path to the SendTo folder for the current user.

840 Customizing MapForce Catalog Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

%FontsFolder% Full path to the System Fonts folder.

%
ProgramFilesFolder
%

Full path to the Program Files folder for the current user.

%CommonFilesFolder
%

Full path to the Common Files folder for the current user.

%WindowsFolder% Full path to the Windows folder for the current user.

%SystemFolder% Full path to the System folder for the current user.

%
CommonAppDataFolde
r%

Full path to the file directory containing application data for all users.

%
LocalAppDataFolder
%

Full path to the file system directory that serves as the data repository
for local (nonroaming) applications.

%MyPicturesFolder% Full path to the MyPictures folder.

How catalogs work
Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by
mapping, in the catalog file, public or system identifiers to the required local URI. So when the
DOCTYPE declaration in an XML file is read, the public or system identifier locates the required
local resource via the catalog file mapping.

For popular schemas, the PUBLIC identifier is usually pre-defined, thus requiring only that the URI

in the catalog file point to the correct local copy. When the XML document is parsed, the PUBLIC

identifier in it is read. If this identifier is found in a catalog file, the corresponding URL in the
catalog file will be looked up and the schema will be read from this location. So, for example, if
the following SVG file is opened in MapForce:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="20" height="20" xml:space="preserve">

 <g style="fill:red; stroke:#000000">

 <rect x="0" y="0" width="15" height="15"/>

 <rect x="5" y="5" width="15" height="15"/>

 </g>

</svg>

This document is read and the catalog is searched for the PUBLIC identifier. Let's say the catalog

file contains the following entry:

© 2018 Altova GmbH

Catalog Files 841Customizing MapForce

Altova MapForce 2018 Professional Edition

<catalog>

 ...

 <public publicId="-//W3C//DTD SVG 1.1//EN" uri="schemas/svg/svg11.dtd"/>

 ...

</catalog>

In this case, there is a match for the PUBLIC identifier, so the lookup for the SVG DTD is

redirected to the URI schemas/svg/svg11.dtd (this path is relative to the catalog file), and this
local file will be used as the DTD. If there is no mapping for the Public ID in the catalog, then the
URL in the XML document will be used (in the example above: http://www.w3.org/Graphics/
SVG/1.1/DTD/svg11.dtd).

The catalog subset supported by MapForce
When creating entries in CustomCatalog.xml (or any other catalog file that is to be read by
MapForce), use only the following elements of the OASIS catalog specification. Each of the
elements below is listed with an explanation of their attribute values. For a more detailed
explanation, see the XML Catalogs specification. Note that each element can take the xml:base
attribute, which is used to specify the base URI of that element.

<public publicId="PublicID of Resource" uri="URL of local file"/>
<system systemId="SystemID of Resource" uri="URL of local file"/>
<uri name="filename" uri="URL of file identified by filename"/>
<rewriteURI uriStartString="StartString of URI to rewrite"
rewritePrefix="String to replace StartString"/>
<rewriteSystem systemIdStartString="StartString of SystemID"
rewritePrefix="Replacement string to locate resource locally"/>

In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the system element. Also, a URI can be mapped to another URI
using the uri element. The rewriteURI and rewritsSystem elements enable the rewriting of the
starting part of a URI or system identifier, respectively. This allows the start of a filepath to be
replaced and consequently enables the targeting of another directory. For more information on
these elements, see the XML Catalogs specification.

File extensions and intelligent editing according to a schema
Via catalog files you can also specify that documents with a particular file extension should have
MapForce's intelligent editing features applied in conformance with the rules in a schema you
specify. For example, if you create a custom file extension .myhtml for (HTML) files that are to be
valid according to the HTML DTD, then you can enable intelligent editing for files with these
extensions by adding the following element of text to CustomCatalog.xml as a child of the

<catalog> element.

 <spy:fileExtHelper ext="myhtml" uri="schemas/xhtml/xhtml1-transitional.dtd"/>

This would enable intelligent editing (auto-completion, entry helpers, etc) of .myhtml files in
MapForce according to the XHTML 1.0 Transitional DTD. Refer to the catalog.xml file in the %
AltovaCommonFolder%\Schemas\xhtml folder, which contains similar entries.

XML Schema and catalogs
XML Schema information is built into MapForce and the validity of XML Schema documents is

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html
http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

842 Customizing MapForce Catalog Files

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

checked against this internal information. In an XML Schema document, therefore, no references
should be made to any schema for XML Schema.

The catalog.xml file in the %AltovaCommonFolder%\Schemas\schema folder contains references
to DTDs that implement older XML Schema specifications. You should not validate your XML
Schema documents against either of these schemas. The referenced files are included solely to
provide MapForce with entry helper info for editing purposes should you wish to create documents
according to these older recommendations.

More information
For more information on catalogs, see the XML Catalogs specification.

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

© 2018 Altova GmbH

Network Proxy Settings 843Customizing MapForce

Altova MapForce 2018 Professional Edition

10.7 Network Proxy Settings

The Network Proxy section enables you to configure custom proxy settings. These settings
affect how the application connects to the Internet (for XML validation purposes, for example). By
default, the application uses the system's proxy settings, so you should not need to change the
proxy settings in most cases. If necessary, however, you can set an alternative network proxy
using the options below.

Note: The network proxy settings are shared between all Altova MissionKit applications.
Consequently, if you change the settings in one application, they will automatically affect
all other applications.

Use system proxy settings
Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries
the settings configured with netsh.exe winhttp.

Automatic proxy configuration
The following options are provided:

Auto-detect settings: Looks up a WPAD script (http://wpad.LOCALDOMAIN/wpad.dat)

via DHCP or DNS, and uses this script for proxy setup.

844 Customizing MapForce Network Proxy Settings

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Script URL: Specify an HTTP URL to a proxy-auto-configuration (.pac) script that is to be

used for proxy setup.
Reload: Resets and reloads the current auto-proxy-configuration. This action requires
Windows 8 or newer, and may need up to 30s to take effect.

Manual proxy configuration
Manually specify the fully qualified host name and port for the proxies of the respective protocols.
A supported scheme may be included in the host name (for example: http://hostname). It is not

required that the scheme is the same as the respective protocol if the proxy supports the
scheme.

The following options are provided:

Use this proxy for all protocols: Uses the host name and port of the HTTP Proxy for all
protocols.
No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names,

or IP addresses for hosts that should be used without a proxy. IP addresses may not be
truncated and IPv6 addresses have to be enclosed by square brackets (for example:
[2606:2800:220:1:248:1893:25c8:1946]). Domain names must start with a leading

dot (for example: .example.com).

Do not use the proxy server for local addresses: If checked, adds <local> to the No

Proxy for list. If this option is selected, then the following will not use the proxy: (i)
127.0.0.1, (ii) [::1], (iii) all host names not containing a dot character (.).

Current proxy settings
Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the
right of the Test URL field (for example, when changing the test URL, or when the proxy settings
have been changed).

Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/
O is done with this URL. This field must not be empty if proxy-auto-configuration is used
(either through Use system proxy settings or Authomatic proxy configuration).

Chapter 11

MapForce Plug-in for Visual Studio

846 MapForce Plug-in for Visual Studio

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

11 MapForce Plug-in for Visual Studio

You can integrate MapForce 2018 into the Microsoft Visual Studio versions
2008/2010/2012/2013/2015/2017. This unifies the best of both worlds, combining the mapping
capabilities of MapForce with the development environment of Visual Studio. When the MapForce
plug-in is enabled, you can create mapping projects and files directly from Visual Studio. You can
also customize the MapForce options, including menus and toolbars, as you would do in the
standalone version of MapForce.

MapForce Enterprise Edition plug-in (Visual Studio 2012)

This section contains the following topics:

Enabling the Plug-in
Working with Mappings and Projects
Accessing Common Menus and Functions

© 2018 Altova GmbH

Enabling the Plug-in 847MapForce Plug-in for Visual Studio

Altova MapForce 2018 Professional Edition

11.1 Enabling the Plug-in

Prerequisites:

Microsoft Visual Studio 2008/2010/2012/2013/2015/2017
MapForce (Enterprise or Professional Edition)
MapForce Integration Package, available for download at https://www.altova.com/
mapforce/download.

Note: To use MapForce as a Visual Studio plug-in, install the 32-bit version of both MapForce
and MapForce integration package, since there is currently no support for 64-bit plug-ins
in Visual Studio.

To enable the MapForce plug-in for Visual Studio, download and run the MapForce Integration
Package and follow the on-screen installation instructions.

During installation, ensure that the Install the Microsoft Visual studio plug-in option is
selected:

When prompted, select the Visual Studio version(s) where the plug-in should be enabled, for
example:

https://www.altova.com/mapforce/download
https://www.altova.com/mapforce/download

848 MapForce Plug-in for Visual Studio Enabling the Plug-in

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: Only the Visual Studio versions installed on your operating system are available for
selection.

Once the integration package has been installed, MapForce functionality becomes available in the
Visual Studio environment.

Enabling the MapForce plug-in manually
It is possible that the plug-in was not automatically enabled during the installation process. To
enable it, do the following:

1. Navigate to the directory where the Visual Studio IDE executable is installed (for
example, c:\Program Files\Microsoft Visual Studio 8\Common7\IDE).

2. Run the command prompt as administrator and enter devenv.exe /setup.
3. Wait for the process to terminate normally before starting to use the application within

Visual Studio.

© 2018 Altova GmbH

Working with Mappings and Projects 849MapForce Plug-in for Visual Studio

Altova MapForce 2018 Professional Edition

11.2 Working with Mappings and Projects

When MapForce plug-in for Visual Studio is enabled, you create and open mappings and mapping
projects in a way that is applicable to the Visual Studio environment, as opposed to the
standalone MapForce graphical user interface. For example, when you create a new file in Visual
Studio (using the File | New menu command), or when you add a new item to a project (using
the Project | Add New Item menu command), you can select MapForce Files as file type.

New File dialog box (Visual Studio 2012 with MapForce Enterprise edition plug-in)

In a similar way, when you create a new Visual Studio project, you can select MapForce
Projects as project template. The following screen shot illustrates a sample New Project dialog
box in Visual Studio 2012 with the MapForce Enterprise Edition plug-in enabled.

850 MapForce Plug-in for Visual Studio Working with Mappings and Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

New Project dialog box (Visual Studio 2012 with MapForce Enterprise edition plug-in)

Opening existing MapForce files and projects is also done through the Visual Studio native
functionality. When you need to open existing mapping files or projects, use the applicable Visual
Studio menus (for example, File | Open | Files, or File | Open | Project/Solutions), and look for
the MapForce-related file types.

© 2018 Altova GmbH

Accessing Common Menus and Functions 851MapForce Plug-in for Visual Studio

Altova MapForce 2018 Professional Edition

11.3 Accessing Common Menus and Functions

When MapForce plug-in for Visual Studio is enabled, you can access common menus and
functions as shown below. This is the default setup; however, you can change, if desired, the
location of menus and toolbars from the Tools | Options menu of Visual Studio.

Global Resources
MapForce Global Resources are available in the MapForce | Global Resources menu of Visual
Studio.

MapForce Options
MapForce Options are available in the Tools | MapForce Options menu of Visual Studio.

Mapping Pane Customization
When there is a MapForce mapping opened in the main pane of Visual Studio, the View |
MapForce menu becomes available. It includes the same options as the standalone version of
MapForce.

Libraries window
The MapForce Libraries window is not enabled by default in Visual Studio after you install the
plug-in. If you work frequently with this window, you can enable it from the View | MapForce |
Library Window menu (this menu becomes available in Visual Studio when there is a mapping
file opened in the main window). Once the Libraries window is enabled, you can doc it to a
particular position in the interface, like any other dockable component of Visual Studio.

The Libraries Window (Visual Studio 2012 with MapForce Enterprise edition plug-in)

Toolbar and Commands Customization
You can customize MapForce menus and toolbars from the Tools | Options menu of Visual
Studio.

852 MapForce Plug-in for Visual Studio Accessing Common Menus and Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Customize dialog box (Visual Studio 2012 with MapForce Enterprise Edition plug-in)

Help and Support
MapForce Help, Support Center, Check for Updates and About menus are available in the Help |
MapForce Help menu of Visual Studio.

Chapter 12

MapForce Plug-in for Eclipse

854 MapForce Plug-in for Eclipse

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

12 MapForce Plug-in for Eclipse

Eclipse is an open source framework that integrates different types of applications delivered in
form of plug-ins. You can integrate MapForce Enterprise and Professional Edition into Eclipse
versions 4.5 / 4.6 / 4.7 and access MapForce functionality directly from Eclipse.

MapForce Enterprise Edition plug-in for Eclipse

The following topics provide help on installing and using the MapForce plug-in for Eclipse.

Installing the MapForce Plug-in for Eclipse
The MapForce Perspective
Accessing Common Menus and Functions
Working with Mapping and Projects
Extending MapForce Plug-in for Eclipse

© 2018 Altova GmbH

Installing the MapForce Plug-in for Eclipse 855MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

12.1 Installing the MapForce Plug-in for Eclipse

Prerequisites:

Java Runtime Environment (JRE) 6.0 or later (see http://www.oracle.com/technetwork/
java/javase/downloads/index.html). Install a 32-bit or 64-bit JRE to match your version of
MapForce (32-bit or 64-bit).
Eclipse Platform 4.5 / 4.6 / 4.7 (see http://www.eclipse.org). Install a 32-bit or 64-bit
Eclipse to match your version of MapForce (32-bit or 64-bit).
MapForce Enterprise or Professional Edition.

If you installed Eclipse 4.5 using the Eclipse installer, it is not possible to run on the
same machine both the 32-bit and 64-bit versions of the MapForce plug-in. This
limitation originates in the Eclipse installer and does not apply if you install manually
both versions of Eclipse (32-bit and 64-bit).

Installing the MapForce Plug-in for Eclipse

1. Download the MapForce Integration package from the Altova download page (https://
www.altova.com/components/download).

2. Ensure that Eclipse is not running, and run the downloaded package.

Eclipse must be closed while you install or uninstall the MapForce Integration
Package.

3. When prompted, select the Install the Eclipse plug-in option, and then click Next.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/
https://www.altova.com/components/download
https://www.altova.com/components/download

856 MapForce Plug-in for Eclipse Installing the MapForce Plug-in for Eclipse

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. When prompted to choose how the MapForce plug-in should be integrated into Eclipse,
do one of the following:
a. To complete the plug-in installation automatically (this is the recommended option),

select Let this wizard integrate Altova MapForce plug-in into Eclipse, and
browse for the directory where the Eclipse executable (eclipse.exe) is located.

b. To complete the plug-in installation separately in Eclipse, click to clear the Let this
wizard... check box (see instructions below).

© 2018 Altova GmbH

Installing the MapForce Plug-in for Eclipse 857MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

2. Click Next, and complete the installation. If you chose the automatic integration, the
MapForce perspective and menus become available in Eclipse next time when you start
Eclipse.

Integrating the MapForce plug-in for Eclipse manually

1. In Eclipse, click the menu command Help | Install New Software.
2. In the Install dialog that pops up (screen shot below), click the Add button.

858 MapForce Plug-in for Eclipse Installing the MapForce Plug-in for Eclipse

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. In the Add Repository dialog that pops up (screen shot below), click the Local button.
4. Browse for the folder c:\Program Files\Altova\Common2018\eclipse\UpdateSite,

and select it. Provide a name for the site (such as 'Altova'), and click OK.

5. Repeat Steps 2 to 4, this time selecting the folder c:\Program Files\Altova
\MapForce2018\eclipse\UpdateSite, and providing a name such as 'Altova MapForce'.

6. In the Work With combo box of the Install dialog, select the option -- Only Local Sites --
(see screen shot below). This causes all available plug-ins to be displayed in the pane

© 2018 Altova GmbH

Installing the MapForce Plug-in for Eclipse 859MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

below. Check the top-level check box of the Altova category folder (see screen shot
below). Then click the Next button.

7. An Install Details screen allows you to review the items to be installed. Click Next to
proceed.

8. In the Review Licenses screen that appears, select I accept the terms of the license
agreement. (No license agreement additional to your MapForce Enterprise or Professional
Edition license is required for the MapForce plug-in.) Then click Finish to complete the
installation.

Note: If there are problems with the plug-in (missing icons, for example), start Eclipse from the
command line with the -clean flag.

860 MapForce Plug-in for Eclipse The MapForce Perspective

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

12.2 The MapForce Perspective

After you install the MapForce plug-in for Eclipse, a new perspective ("MapForce") becomes
available in Eclipse. The layout of this perspective closely resembles the interface of the
standalone edition of MapForce. To switch to the MapForce perspective, click Window | Open
Perspective | Other, and choose MapForce from the list.

Selecting the MapForce perspective in Eclipse

The MapForce perspective is just like any other Eclipse perspective—you can switch to it
whenever required in Eclipse (Window | Navigation | Next Perspective). You can also
customize the views it contains, and various other options, from Eclipse preferences. (To
customize the MapForce perspective in Eclipse 4.4, switch to the MapForce perspective, and
then select the menu command Window | Customize Perspective). For more information about
Eclipse perspectives, refer to Eclipse documentation. The following screen shot illustrates the
Eclipse environment with the MapForce perspective switched on.

© 2018 Altova GmbH

The MapForce Perspective 861MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

MapForce perspective (MapForce Enterprise Edition plug-in for Eclipse)

By default, the MapForce perspective in Eclipse is organized as follows:

The mapping design window is available as an Eclipse editor. It has the same tabs and
functionality as in the standalone edition of MapForce.
The Libraries window is available as an Eclipse view, to the left of the main mapping
editor. If this view is not visible, switch to the MapForce perspective, and then select the
menu command Window | Show View | Libraries. The Libraries view enables you to
work with predefined or custom-defined functions and function libraries.
The Messages pane is available as an Eclipse view, under the main mapping editor. If the
Message view is not visible, switch to the MapForce perspective, and then select the
menu command Window | Show View | Messages. The messages view displays
validation messages, errors, and warnings.
The Overview pane is available as an Eclipse view. If the Overview view is not visible,
switch to the MapForce perspective, and then select the menu command Window |
Show View | Overview. This view enables you to quickly navigate to a particular region
on the mapping design area when it is very big.

You can also configure Eclipse to switch to the MapForce perspective automatically when you
open a MapForce mapping. To do this, select the menu command Window | Preferences.
Select MapForce, and then select the Automatically switch to MapForce perspective at file
open check box.

862 MapForce Plug-in for Eclipse The MapForce Perspective

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Preferences dialog box

© 2018 Altova GmbH

Accessing Common Menus and Functions 863MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

12.3 Accessing Common Menus and Functions

In Eclipse, you can access most MapForce functionality from the same menus as in the
standalone version, except for some Eclipse-specific variations which are listed below. This is the
default setup; however, you can further customize the interface preferences from Eclipse, if
desired (see The MapForce Perspective).

Note: In Eclipse, some MapForce menu groups or commands are disabled (or not available) if
the context is not relevant. For example, the Insert menu becomes available only when a
mapping design file (.mfd) is active in Eclipse.

For information about the MapForce standard menus, see Menu Reference.

General MapForce commands
In the standalone edition of MapForce, the commands applicable to mapping design files (such
as Validate, Deploy to FlowForce Server, Generate Code, and others) are available in the
File menu. In Eclipse, these commands are available in the MapForce menu, or in the MapForce
toolbar. Note that the commands for opening or saving files (including MapForce project files) are
available in the File menu of Eclipse.

The MapForce toolbar in Eclipse

The toolbar button opens the MapForce help file.

The toolbar button displays commands specific to MapForce files. When you expand this
button, the available commands depend on the kind of file currently active in the Eclipse editor.
For example, the commands specific to mapping design (.mfd) files are available when such a file
is active (in focus) in the Eclipse editor.

Global Resources
To access or manage Global Resources, do one of the following:

Click to expand the MapForce toolbar button, and then click Global Resources.
On the MapForce menu, click Global Resources.

MapForce Projects
In the standard edition of MapForce, the Project menu contains various commands applicable to
mapping project (.mfp) files. In Eclipse, these commands exist as follows:

The commands to open or save a project are available from the Eclipse File menu.
Other project-specific commands are available as context commands. To display the
context commands, create or open a MapForce project (.mfp) file in Eclipse, and then
right-click the project.

864 MapForce Plug-in for Eclipse Accessing Common Menus and Functions

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note that, in addition to standard MapForce projects (.mfp), in Eclipse you can also create
projects of type "MapForce/Eclipse". Such projects have a dual nature, and can be configured for
automatic build and generation of MapForce code. See Working with Mappings and Projects.

MapForce Options
MapForce options are available from the Window | Preferences menu. On the Preferences
dialog box, select MapForce, and then click Open MapForce Options Dialog.

© 2018 Altova GmbH

Accessing Common Menus and Functions 865MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

Preferences dialog box

Libraries window
In Eclipse, the MapForce Libraries window is available as a view. This view is by default located to
the left of the main editor window. (All MapForce-related views become visible in Eclipse interface
when the MapForce perspective is switched on, see also The MapForce Perspective).

MapForce plug-in version
To see the currently installed version of the MapForce Plug-in for Eclipse, select the Eclipse
menu option Help | About Eclipse. Then select the MapForce icon.

Help and Support
MapForce Help, Support Center, Check for Updates and About menus are available in the Help |
MapForce Help menu of Eclipse.

866 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

12.4 Working with Mappings and Projects

When MapForce plug-in for Eclipse is installed, you can create from Eclipse the same mappings
and mapping project types as in the standalone edition of MapForce, from within an Eclipse
project. To design, test, compile, and deploy mappings, and to generate mapping code, you can
either create a new Eclipse project or use an existing Eclipse project (for example, a Java project
to which you want to add MapForce mappings).

In addition to this, you can work with all your mappings within a special project type that becomes
available in Eclipse after you install the MapForce plug-in—the MapForce/Eclipse Project.
Unless you choose to customize it, a MapForce/Eclipse project is by default assigned both a
Java Builder and a MapForce Code Generation builder. Additionally, it has two Eclipse natures:
MapForce nature and the JDT (Java Development tools) nature. As a result, a MapForce/Eclipse
project behaves as follows when you save or change any of its resources (such as a mapping
design file):

If the Project > Build automatically menu option is enabled, the mapping code is
generated automatically. When one or more MapForce project files exist in the
MapForce/Eclipse project, the code generation language and output target folders are
determined by the settings in each project file. Otherwise, Eclipse prompts you to choose
a location.
Any errors and output messages are shown in the Messages and Problems views.

This section contains the following topics:

Creating a MapForce/Eclipse Project
Creating New Mappings
Importing Existing Mappings into an Eclipse Project
Configuring Automatic Build and Generation of MapForce Code

12.4.1 Creating a MapForce/Eclipse Project

To create a MapForce/Eclipse project:

1. On the File menu, click New | Other.
2. Select the MapForce/Eclipse Project category.

© 2018 Altova GmbH

Working with Mappings and Projects 867MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

3. Chick Next.

868 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Enter a project name and choose a location where to save the project. Leave the add
MapForce builder to project and use JDT builder options as is.

5. Click Finish.

12.4.2 Creating New Mappings

You can create the following MapForce file types within an Eclipse project:

MapForce mappings
MapForce project files
MapForce Web Service projects (available in MapForce Enterprise Edition)

To create any of these file types within an Eclipse project:

1. Create a new Eclipse project or open an existing one.
2. On the File menu, click New, and then click Other.

© 2018 Altova GmbH

Working with Mappings and Projects 869MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

3. Select the required file type from the wizard dialog box, and then click Next.

870 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Select a parent folder in your existing project, and then click Finish.

12.4.3 Importing Existing Mappings into an Eclipse Project

To import MapForce mappings and their dependent files into an existing Eclipse project:

1. Open the project into which you want to import the files.
2. On the File menu, click Import.

© 2018 Altova GmbH

Working with Mappings and Projects 871MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

3. Select File System, and then click Next.

872 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

4. Next to From directory, browse for the location of the files you want to import, and then
select the required files.

5. Next to Into folder, click Browse, and select the project into which you are adding the
files (in this example, MapForceEclipseProject1).

© 2018 Altova GmbH

Working with Mappings and Projects 873MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

6. Click OK, and then click Finish.

12.4.4 Configuring Automatic Build and Generation of MapForce Code

Automatic MapForce code building and generation is enabled by default in any MapForce/Eclipse
project (see Creating a MapForce/Eclipse Project). If you want to enable automatic build and
generation of MapForce code in an existing project which is not of type MapForce/Eclipse, you
can do this by manually adding to it the MapForce Code Generation builder and the MapForce
nature.

To add the MapForce Code Generation builder to a project:

Add to the Eclipse .project file the lines highlighted below:

 <buildSpec>

 <buildCommand>

 <name>org.eclipse.jdt.core.javabuilder</name>

874 MapForce Plug-in for Eclipse Working with Mappings and Projects

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 <arguments>

 </arguments>

 </buildCommand>

 <buildCommand>

 <name>com.altova.mapforceeclipseplugin.MapForceBuilder</name>
 <arguments>
 </arguments>
 </buildCommand>
 </buildSpec>

To add the MapForce nature to a project:

Add to the Eclipse .project file the lines highlighted below:

 <natures>

 <nature>org.eclipse.jdt.core.javanature</nature>

 <nature>com.altova.mapforceeclipseplugin.MapForceNature</nature>

 </natures>

Tip: You can quickly open the .project file from the Navigator view of Eclipse (To enable this
view, select the menu command Window | Show View | Navigator).

To switch automatic MapForce code generation on/off:

On the Project menu, click Build automatically.

To disable the MapForce Code Generation builder:

1. On the Project menu, click Properties.
2. Click Builders.

© 2018 Altova GmbH

Working with Mappings and Projects 875MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

3. Click to clear the MapForce Code Generation check box.

876 MapForce Plug-in for Eclipse Extending MapForce Plug-in for Eclipse

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

12.5 Extending MapForce Plug-in for Eclipse

The MapForce plug-in for Eclipse provides an Eclipse extension point with the ID
com.altova.mapforceeclipseplugin.MapForceAPI. You can use this extension point to adapt,
or extend the functionality of the MapForce plug-in. The extension point gives you access to the
COM-Interface of the MapForce control and the MapForce API.

The MapForce Eclipse installation package contains a simple example of a plug-in that uses this
extension point. It checks for any file open events of any new MapForce mappings, and sets the
zoom level of the mapping view to 70%.

The JavaDoc documentation of the extension point is available in the MapForce plug-in installation
directory (typically, C:\Program Files\Altova\MapForce2018\eclipse\docs\).

Before you install and run the sample MapForce plug-in, ensure that the following prerequisites
are met:

You are using 32-bit Java, 32-bit Eclipse, 32-bit MapForce and 32-bit MapForce
Integration Package.
The JDT (Java Development Tools) plug-in is installed.
The Eclipse PDE (plug-in development environment) is installed.

To import the sample MapForce plug-in project into your workspace:

1. Start Eclipse.
2. On the File menu, click Import.
3. Select General | Existing projects into Workspace, and click Next.

© 2018 Altova GmbH

Extending MapForce Plug-in for Eclipse 877MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

4. Click the Browse... button next to the "'Select root directory" field and choose the
sample project directory e.g. C:\Program Files\Altova\MapForce2018\eclipse
\workspace\MapForceExtension.

878 MapForce Plug-in for Eclipse Extending MapForce Plug-in for Eclipse

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

5. Select the Copy projects into workspace option, and then click Finish. A new project
named "MapForceExtension" has been created in your workspace.

To run the sample extension plug-in:

1. Switch to the Java perspective.
2. In the Run menu, click Run Configurations.
3. Right click Eclipse Application and select New. (If you cannot see "Eclipse application"

in the list, the Eclipse Plug-In Development Tools are not installed in your Eclipse

© 2018 Altova GmbH

Extending MapForce Plug-in for Eclipse 879MapForce Plug-in for Eclipse

Altova MapForce 2018 Professional Edition

environment. To install Eclipse Plug-in Development Tools, click Install New Software in
the Help menu. and install "Eclipse Plugin Development Tools" from "The Eclipse Project
Updates" download site.)

4. Enter a name for your new configuration (in this example, SampleMapForcePlugin), and
then click Apply.

5. Check that the MapForceClient workspace plug-in is selected in the 'Plug-ins' tab.

880 MapForce Plug-in for Eclipse Extending MapForce Plug-in for Eclipse

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6. Click Run. A new Eclipse Workbench opens.
7. Open any MapForce mapping in the new Workbench. It will now open with a zoom level of

70%.

Chapter 13

Menu Reference

882 Menu Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

13 Menu Reference

This reference section contains a description of the MapForce menu commands.

© 2018 Altova GmbH

File 883Menu Reference

Altova MapForce 2018 Professional Edition

13.1 File

New
Creates a new mapping document, or mapping project (.mfp) .

Open
Opens previously saved mapping design (.mfd) , or mapping project (.mfp) files. Note that it is not
possible to open mapping files which contain features not available in your MapForce edition.

Save
Saves the currently active mapping using the currently active file name.

Save As
Saves the currently active mapping with a different name, or allows you to supply a new name if
this is the first time you save it.

Save All
Saves all currently open mapping files.

Reload
Reloads the currently active mapping file. You are asked if you want to lose your last changes.

Close
Closes the currently active mapping file. You are asked if you want to save the file before it
closes.

Close All
Closes all currently open mapping files. You are asked if you want to save any of the unsaved
mapping files.

Print
Opens the Print dialog box, from where you can print out your mapping as hard copy.

884 Menu Reference File

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Print dialog box

Use current retains the currently defined zoom factor of the mapping. Use optimal scales the
mapping to fit the page size. You can also specify the zoom factor numerically. Component
scrollbars are not printed. You can also specify if you want to allow the graphics to be split over
several pages or not.

Print Preview
Opens the same Print dialog box with the same settings as described above.

Print Setup
Opens the Print Setup dialog box in which you can define the printer you want to use and the
paper settings.

Validate Mapping
Validates that all mappings (connectors) are valid and displays any warnings or errors (see
Validating mappings).

Mapping settings
Opens the Mapping Settings dialog box where you can define the document-specific settings
(see Changing the mapping settings).

Generate code in selected language
Generates code in the currently selected language of your mapping. The currently selected
language is visible as a highlighted programming language icon in the toolbar: XSLT, XSLT 2,
XQuery, Java, C#, or C++.

Generate code in | XSLT (XSLT2)
This command generates the XSLT file(s) needed for the transformation from the source file(s).
Selecting this option opens the Browse for Folder dialog box where you select the location of the
XSLT file. The name of the generated XSLT file(s) is defined in the Mapping Settings dialog box
(see Changing the mapping settings).

Generate code in | XQuery
This command generates the XQuery file(s) needed for the transformation from the source file(s).

© 2018 Altova GmbH

File 885Menu Reference

Altova MapForce 2018 Professional Edition

Selecting this option opens the Browse for Folder dialog box where you select the location of the
XQuery file. The name of the generated XQuery file(s) is defined in the Mapping Settings dialog
box (see Changing the mapping settings).

Generate code in | Java | C# | C++
These commands generate source code for a complete application program needed for the
transformation from the source file(s). Selecting this option opens the Browse for Folder dialog
box, where you select the location of the generated files. The names of the generated application
files (as well as the project files: *.csproj C# project file, *.sln solution file, *.vcproj visual C++
project file) are defined in the Mapping Settings dialog box (see Changing the mapping settings).

The file name created by the executed code appears in the Output XML File box of the
Component settings dialog box if the target is an XML/Schema document.

Compile to MapForce Server Execution File
Generates a file that can be executed by MapForce Server to run the mapping transformation
(see Compiling a MapForce mapping).

Deploy to FlowForce Server
Deploys the currently active mapping to the FlowForce Server (see Deploying a MapForce
mapping).

Generate documentation
Generates documentation of your mapping projects in great detail in various output formats (see
Generating and Customizing Mapping Documentation).

Recent files
Displays a list of the most recently opened files.

Exit
Exits the application. You are asked if you want to save any unsaved files.

886 Menu Reference Edit

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

13.2 Edit

Most of the commands in this menu become active when you view the result of a mapping in the
Output tab, or preview XSLT code in the XSLT tab.

Undo
MapForce has an unlimited number of "Undo" steps that you can use to retrace you mapping
steps.

Redo
The redo command allows you to redo previously undone commands. You can step backward and
forward through the undo history using both these commands.

Find
Allows you to search for specific text in either the XSLT, XSLT2, XQuery or Output tab.

Find Next F3
Searches for the next occurrence of the same search string.

Find Previous Shift F3
Searches for the previous occurrence of the same search string.

Cut/Copy/Paste/Delete
The standard windows Edit commands, allow you to cut, copy etc., any components or functions
visible in the mapping window.

Select all
Selects all components in the Mapping tab, or the text/code in the XSLT, XSLT2, XQuery or
Output tab.

© 2018 Altova GmbH

Insert 887Menu Reference

Altova MapForce 2018 Professional Edition

13.3 Insert

XML Schema / File
Adds to the mapping an XML schema or instance file. If you select an XML file which references a
schema, no additional information is required for the mapping. If you select an XML file without a
schema reference, you are prompted to generate a matching XML schema automatically (see
Generating an XML Schema). If you select an XML schema file, you are prompted to include
optionally an XML instance file which supplies the data for preview.

Database
Adds to the mapping a database as source or target component (see Databases and MapForce).

Text file
Adds to the mapping a flat file document, such as CSV or a fixed-length text file. Both types of file

can be used as source and target components. Insert Input
When the mapping window displays a mapping, this command adds an input component to the
mapping (see Supplying Parameters to the Mapping). When the mapping window displays a
user-defined function, this command adds an input component to the user-defined function (see
Defining Complex Input Components).

Insert Output
When the mapping window displays a mapping, this command adds an output component to the
mapping (see Returning String Values from a Mapping). When the mapping window displays a
user-defined function, this command adds an output component to the user-defined function (see
Defining Complex Output Components).

Constant
Inserts a constant which supplies fixed data to an input connector. The data is entered into a
dialog box when creating the component. You can select the following types of data: String,
Number and All other.

Variable
Inserts an Intermediate Variable which is equivalent to a regular (non-inline) user-defined function.
Variables are structural components, without instance files, and are used to simplify the mapping
process (see Intermediate variables).

Sort: Nodes/Rows
Inserts a component which allows you to sort nodes (see Sort Nodes/Rows).

Filter: Nodes/Rows
Inserts a component that uses two input and output parameters: node/row and bool, and on-
true, on-false. If the Boolean is true, then the value of the node/row parameter is forwarded to the
on-true parameter. If the Boolean is false, then the complement value is passed on to the on-false
parameter. For more information, see Filters and Conditions.

888 Menu Reference Insert

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

SQL-WHERE/ORDER
Inserts a component which allows you to filter database data conditionally (see SQL WHERE /
ORDER Component).

Value-Map
Inserts a component that transforms an input value to an output value using a lookup table. This is
useful when you need to map a set of values to another set of values (for example, month
numbers to month names). For more information, see Using Value-Maps.

IF-Else Condition
Inserts a component of type "If-Else Condition" (see Filters and Conditions).

Exception
The exception component allows you to interrupt a mapping process when a specific condition is
met. Please see Adding Exceptions for more information.

© 2018 Altova GmbH

Project 889Menu Reference

Altova MapForce 2018 Professional Edition

13.4 Project

MapForce supports the Multiple Document Interface and allows you to group your mappings into
mapping projects (see Working with Mapping Projects).

Reload Project
Reloads the currently active project and switches to the Project tab.

Close Project
Closes the currently active project.

Save Project
Saves the currently active project.

Add Files to Project
Allows you to add mappings to the current project through the Open dialog box.

Add Active File to Project
Adds the currently active file to the currently open project.

Create Folder
This option adds a new folder to the current project structure, and only becomes active when this
is possible. See Managing Project Folders.

Generate code for entire project
Generates project code for the entire project currently visible in the Project window. Code is
generated in the currently selected default language for all of the mapping files *.mfd in each of
the folders.

Generate code in...
Generates project code in the language you select from the context menu.

Properties
Opens a dialog box where you can define project-wide settings. See Setting the Code Generation
Settings.

Recent projects - 1. 2. etc.
Displays a list of the most recently opened projects.

890 Menu Reference Component

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

13.5 Component

Change Root Element
Allows you to change the root element of the XML instance document.

Edit Schema Definition in XMLSpy
Selecting this option, having previously clicked an XML-Schema/document, opens the XML
Schema file in the Schema view of XMLSpy where you can edit it.

Add/Remove/Edit Database Objects
Allows you to add, remove, or change the database objects within the database component.

Refresh
Reloads the structure of the currently active database component from the database.

Add Duplicate Input Before
Inserts a copy/clone of the selected item before the currently selected item. Duplicate items do
not have output icons, you cannot use them as data sources. For an example, see Map Multiple
Sources to One Target section in the tutorial. Right clicking a duplicate item also allows you to
reposition it using the menu items Move Up/Move Down, depending on where the item is.

Add Duplicate Input After
Inserts a copy/clone of the selected item after the currently selected item. Duplicate items do not
have output icons, you cannot use them as data sources. For an example, see the Map Multiple
Sources to One Target section in the tutorial. Right clicking a duplicate item also allows you to
reposition it using the menu items Move Up/Move Down, depending on where the item is.

Remove Duplicate
Removes a previously defined duplicate item. For an example, see the Map Multiple Sources to
One Target section in the tutorial.

Database Table Actions
Allows you to define the actions to be performed with the mapped data on the specific target
database table. See Database Table Actions Settings for more information.

Query Database
Creates a Select statement based on the table/field you clicked in the database component.
Clicking a table/field once makes this command active, and the select statement is automatically
placed into the Select window.

Align Tree Left
Aligns all the items along the left hand window border.

Align Tree Right
Aligns all the items along the right hand window border. This display is useful when creating
mappings to the target schema.

Properties
Opens a dialog box which displays the settings of the currently selected component. See
Changing the Component Settings .

© 2018 Altova GmbH

Connection 891Menu Reference

Altova MapForce 2018 Professional Edition

13.6 Connection

Auto Connect Matching Children
Activates or deactivates the "Auto Connect Matching Children" option, as well as the icon in the
icon bar.

Settings for Connect Matching Children
Opens the Connect Matching Children dialog box in which you define the connection settings
(see Connecting matching children).

Connect Matching Children
This command allows you to create multiple connectors for items of the same name, in both the
source and target schemas. The settings you define in this dialog box are retained, and are

applied when connecting two items, if the "Auto connect child items" icon in the title bar is
active. Clicking the icon switches between an active and inactive state. For further information,
see Connecting matching children.

Target Driven (Standard)
Changes the connector type to Standard mapping. For further information, see Target Driven
(Standard) mapping.

Copy-all (Copy Child Items)
Creates connectors for all matching child items, where each of the child connectors are displayed
as a subtree of the parent connector (see Copy-all connections).

Source Driven (Mixed Content)
Changes the connector type to Source Driven (Mixed Content). For further information, see Source
Driven (Mixed Content) mapping.

Properties
Opens a dialog box in which you can define the specific (mixed content) settings of the current
connector. Unavailable options are greyed out. These settings also apply to complexType items
which do not have any text nodes. For further information, see Connection settings.

892 Menu Reference Function

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

13.7 Function

Create User-Defined Function
Creates a new user-defined function (see User-defined functions).

Create User-Defined Function from Selection
Creates a new user-defined function based on the currently selected elements in the mapping
window.

Function Settings
Opens the settings dialog box of the currently active user-defined function allowing you to change
its settings.

Remove Function
Deletes the currently active user-defined function if you are working in a context which allows this.

Insert Input
When the mapping window displays a mapping, this command adds an input component to the
mapping (see Simple Input). When the mapping window displays a user-defined function, this
command adds an input component to the user-defined function (see Defining Complex Input
Components).

Insert Output
When the mapping window displays a mapping, this command adds an output component to the
mapping (see Simple Output). When the mapping window displays a user-defined function, this
command adds an output component to the user-defined function (see Defining Complex Output
Components).

© 2018 Altova GmbH

Output 893Menu Reference

Altova MapForce 2018 Professional Edition

13.8 Output

XSLT 1.0, XSLT 2.0, XQuery, Java, C#, C++, Built-in Execution Engine
Sets the transformation language in which the mapping should be executed (see Selecting a
Transformation Language).

Validate Output File
Validates the output XML file against the referenced schema (see Validating the Mapping Output).

Save Output File
Saves the data visible in the Output pane to a file.

Save All Output Files
Saves all the generated output files of dynamic mappings. See Processing Multiple Input or
Output Files Dynamically for more information.

Regenerate Output
Regenerates the data visible in the Output pane.

Run SQL-Script
If an SQL script is currently visible in the Output pane, the script executes the mapping to the
target database, taking the defined table actions into account.

Insert/Remove Bookmark
Inserts a bookmark at the cursor position in the Output pane.

Next Bookmark
Navigates to the next bookmark in the Output pane.

Previous Bookmark
Navigates to the previous bookmark in the Output pane.

Remove All Bookmarks
Removes all currently defined bookmarks in the Output pane.

Pretty-Print XML Text
Reformats your XML document in the Output pane to give a structured display of the document.
Each child node is offset from its parent by a single tab character. This is where the Tab size
settings (i.e. inserting as tabs or spaces) defined in the Tabs group, take effect.

Text View Settings
Displays the Text View settings dialog box. This dialog box allows you to customize the text view
settings the Output pane, XSLT pane, and XQuery pane, and also shows the currently defined
hotkeys that apply in the window. For more information, see Text View Features.

894 Menu Reference Debug

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

13.9 Debug

Start Debugging (F11)

Starts or continues debugging until a breakpoint is hit or the mapping finishes.

Stop Debugging (Shift + F5)

Stops debugging. This command exits the debug mode and switches MapForce back to standard
mode.

Step into (F11)

Executes the mapping until a single step is finished anywhere in the mapping. In the mapping
debugger, a step is a logical group of dependent computations which normally produce a single
item of a sequence.

Depending on the mapping context, this command roughly translates into "go to the left/go to
target child/go to source parent".

Step over (F10)

Continues execution until the current step finishes (or finishes again for another item of the
sequence), or an unrelated step finishes. This command steps over computations that are inputs
of the current step.

Step out (Shift + F11)

Continues execution until the result of the current step is consumed or a step is executed that is
not an input or child of the consumption. This command steps out of the current computation.

Depending on the mapping context, this command roughly translates into "go to the right/go to
target parent/go to source child".

Minimal step (Ctrl + F11)

Continues execution until a value is produced or consumed. This command subdivides a step and
will typically stop twice for each connection: once when its source produces a value and once
when its target consumes it. MapForce does not necessarily compute values in the order the
mapping would suggest, so production and consumption events do not always follow each other.

© 2018 Altova GmbH

View 895Menu Reference

Altova MapForce 2018 Professional Edition

13.10 View

Show Annotations
Displays XML schema annotations in the component window.
If the Show Types icon is also active, then both sets of info are show in grid form.

Show Types
Displays the schema datatypes for each element or attribute.
If the Show Annotations icon is also active, then both sets of info are show in grid form.

Show library in Function Header
Displays the library name in parenthesis in the function title.

Show Tips
Displays a tooltip containing explanatory text when the mouse pointer is placed over a function.

Show Selected Component Connectors
Switches between showing all mapping connectors, or those connectors relating to the currently
selected components.

Show Connectors from Source to Target
Switches between showing:

connectors that are directly connected to the currently selected component, or
connectors linked to the currently selected component, originating from source and
terminating at the target components.

Zoom
Opens the Zoom dialog box. You can enter the zoom factor numerically, or drag the slider to
change the zoom factor interactively.

Back
Steps back through the currently open mappings of the mapping tab.

Forward
Steps forward through the currently open mappings of the mapping tab.

Status Bar
Switches on/off the Status Bar visible below the Messages window.

Library Window
Switches on/off the Library window.

Messages
Switches on/off the Validation output window. When generating code the Messages output

896 Menu Reference View

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

window is automatically activated to show the validation result.

Overview
Switches on/off the Overview window. Drag the rectangle to navigate your Mapping view.

Project window
Switches on/off the Project window.

© 2018 Altova GmbH

Tools 897Menu Reference

Altova MapForce 2018 Professional Edition

13.11 Tools

Global Resources
Opens the Manage Global Resources dialog box, where you can add, edit or delete settings
applicable across multiple Altova applications (see Altova Global Resources).

Active Configuration
Allows you to select the currently active global resource configuration from a list of configurations
previously defined in the Global Resources.

Create Reversed Mapping
Creates a "reversed" mapping from the currently active mapping in MapForce, which is to be the
basis of a new mapping. Note that the result is not intended to be a complete mapping, only the
direct connections between components are retained in the reversed mapping. It is very likely that
the resulting mapping will not be valid or suitable for preview in the Output pane, without manual
editing.

When you reverse a mapping, the source component becomes the target component, and target
component becomes the source. If an input or output XML instance file have been assigned to a
component, then they will be swapped.

The following data is retained:

Direct connections between components
Direct connections between components in a chained mapping
The type of connection: Standard, Mixed content, Copy-All
Pass-through component settings
Database components

The following data is not retained:

Connections via functions, filters, etc, along with the functions, filters, etc.
User-defined functions
Web service components

Restore Toolbars and Windows
Resets the toolbars, entry helper windows, docked windows etc. to their defaults. MapForce
needs to be restarted for the changes to take effect.

Customize...
Opens a dialog box that lets you to customize the MapForce graphical user interface. This
includes showing or hiding toolbars, as well as editing the context menus and keyboard shortcuts
(see Customizing Keyboard Shortcuts).

Options
Opens a dialog box where you can change the default MapForce settings (see Changing the
MapForce Options).

898 Menu Reference Window

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

13.12 Window

Cascade
This command rearranges all open document windows so that they are all cascaded (i.e.
staggered) on top of each other.

Tile Horizontal
This command rearranges all open document windows as horizontal tiles, making them all
visible at the same time.

Tile Vertical
This command rearranges all open document windows as vertical tiles, making them all visible
at the same time.

1
2
This list shows all currently open windows, and lets you quickly switch between them.
You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open
windows.

© 2018 Altova GmbH

Help Menu 899Menu Reference

Altova MapForce 2018 Professional Edition

13.13 Help Menu

Table of Contents

Description

Opens the onscreen help manual of MapForce with the Table of Contents displayed in
the left-hand-side pane of the Help window. The Table of Contents provides an overview
of the entire Help document. Clicking an entry in the Table of Contents takes you to that
topic.

Index

Description

Opens the onscreen help manual of MapForce with the Keyword Index displayed in the
left-hand-side pane of the Help window. The index lists keywords and lets you navigate
to a topic by double-clicking the keyword. If a keyword is linked to more than one topic,
a list of these topics is displayed.

Search

Description

Opens the onscreen help manual of MapForce with the Search dialog displayed in the
left-hand-side pane of the Help window. To search for a term, enter the term in the input
field, and press Return. The Help system performs a full-text search on the entire Help
documentation and returns a list of hits. Double-click any item to display that item.

Software Activation

Description

After you download your Altova product software, you can license—or activate—it using
either a free evaluation key or a purchased permanent license key.

Free evaluation key. When you first start the software after downloading and
installing it, the Software Activation dialog will pop up. In it is a button to
request a free evaluation key-code. Enter your name, company, and e-mail
address in the dialog that appears, and click Request Now! The evaluation key
is sent to the e-mail address you entered and should reach you in a few
minutes. Now enter the key in the key-code field of the Software Activation
dialog box and click OK to start working with your Altova product. The software
will be unlocked for a period of 30 days.
Permanent license key. The Software Activation dialog contains a button to
purchase a permanent license key. Clicking this button takes you to Altova's
online shop, where you can purchase a permanent license key for your product.
There are two types of permanent license: single-user and multi-user. Both will
be sent to you by e-mail. A single-user license contains your license-data and

900 Menu Reference Help Menu

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

includes your name, company, e-mail, and key-code. A multi-user license
contains your license-data and includes your company name and key-code.
Note that your license agreement does not allow you to install more than the
licensed number of copies of your Altova software on the computers in your
organization (per-seat license). Please make sure that you enter the data
required in the registration dialog exactly as given in your license e-mail.

Note: When you enter your license information in the Software Activation dialog,
ensure that you enter the data exactly as given in your license e-mail. For
multi-user licenses, each user should enter his or her own name in the Name
field.

Your license email and the different ways to license (activate) your
Altova product

The license email that you receive from Altova will contain:

Your license details (name, company, email, key-code)
As an attachment, a license file with a .altova_licenses file

extension

To activate your Altova product, you can do one of the following:

Enter the email-supplied license details in the Altova product's
Software Activation dialog, and click OK.
Save the license file (.altova_licenses) to a suitable location,

double-click the license file, enter any requested details in the
dialog that appears, and finish by clicking Apply Keys.
Save the license file (.altova_licenses) to any suitable location,

and upload it from this location to the license pool of your Altova
LicenseServer. You can then either: (i) acquire the license from
your Altova product via the product's Software Activation dialog, or
(ii) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the
rest of this topic.

The Software Activation dialog (screenshot below) can be accessed at any time by
clicking the Help | Software Activation command.

You can activate the software by either:

Entering the license key information (click Enter a New Key Code), or
Acquiring a license via an Altova LicenseServer on your network (click Use
Altova LicenseServer, located at the bottom of the Software Activation
dialog). The Altova LicenseServer must have a license for your Altova product in
its license pool. If a license is available in the LicenseServer pool, this is
indicated in the Software Activation dialog (screenshot below), and you can
click Save to acquire the license.

© 2018 Altova GmbH

Help Menu 901Menu Reference

Altova MapForce 2018 Professional Edition

After a machine-specific (aka installed) license has been acquired from a
LicenseServer, it cannot be returned to the LicenseServer for a period of seven
days. After that time, you can return the machine license to LicenseServer
(click Return License) so that this license can be acquired from LicenseServer
by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web UI of LicenseServer.)
Note that the returning of licenses applies only to machine-specific licenses,
not to concurrent licenses.

Check out license
You can check out a license from the license pool for a period of up to 30 days
so that the license is stored on the product machine. This enables you to work
offline, which is useful, for example, if you wish to work in an environment where
there is no access to your Altova LicenseServer (such as when your Altova
product is installed on a laptop and you are traveling). While the license is
checked out, LicenseServer displays the license as being in use, and the
license cannot be used by any other machine. The license automatically
reverts to the checked-in state when the check-out period ends. Alternatively, a
checked-out license can be checked in at any time via the Check in button of
the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog,
click Check out License (see screenshot above); (ii) In the License Check-out
dialog that appears, select the check-out period you want and click Check out.
The license will be checked out. The Software Activation dialog will display the
check-out information, including the time when the check-out period ends. The
Check out License button in the dialog changes to a Check In button. You
can check the license in again at any time by clicking Check In. Because the
license automatically reverts to the checked-in status, make sure that the
check-out period you select adequately covers the period during which you will
be working offline.

902 Menu Reference Help Menu

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: For license check-outs to be possible, it must be enabled on the
LicenseServer. If this functionality has not been enabled, you will get an error
message to this effect. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the
data that you will need to provide when requesting support via the online
support form.

Altova LicenseServer provides IT administrators with a real-time overview of all Altova
licenses on a network, together with the details of each license, as well as client
assignments and client usage of licenses. The advantage of using LicenseServer
therefore lies in administrative features it offers for large-volume Altova license
management. Altova LicenseServer is available free of cost from the Altova website. For
more information about Altova LicenseServer and licensing via Altova LicenseServer,
see the Altova LicenseServer documentation.

Order Form

Description

When you are ready to order a licensed version of the software product, you can use
either the Order license key button in the Software Activation dialog (see previous
section) or the Help | Order Form command to proceed to the secure Altova Online
Shop.

Registration

Description

Opens the Altova Product Registration page in a tab of your browser. Registering your
Altova software will help ensure that you are always kept up to date with the latest
product information.

Check for Updates

Description

Checks with the Altova server whether a newer version than yours is currently available
and displays a message accordingly.

Support Center

Description

A link to the Altova Support Center on the Internet. The Support Center provides FAQs,

https://www.altova.com/support
https://www.altova.com/support
https://www.altova.com/
https://manual.altova.com/AltovaLicenseServer/

© 2018 Altova GmbH

Help Menu 903Menu Reference

Altova MapForce 2018 Professional Edition

discussion forums where problems are discussed, and access to Altova's technical
support staff.

FAQ on the Web

Description

A link to Altova's FAQ database on the Internet. The FAQ database is constantly
updated as Altova support staff encounter new issues raised by customers.

Download Components and Free Tools

Description

A link to Altova's Component Download Center on the Internet. From here you can
download a variety of companion software to use with Altova products. Such software
ranges from XSLT and XSL-FO processors to Application Server Platforms. The software
available at the Component Download Center is typically free of charge.

MapForce on the Internet

Description

A link to the Altova website on the Internet. You can learn more about MapForce and
related technologies and products at the Altova website.

MapForce Training

Description

A link to the Online Training page at the Altova website. Here you can select from online
courses conducted by Altova's expert trainers.

About MapForce

Description

Displays the splash window and version number of your product. If you are using the 64-
bit version of MapForce, this is indicated with the suffix (x64) after the application name.
There is no suffix for the 32-bit version.

https://www.altova.com/
https://www.altova.com/
https://www.altova.com/

Chapter 14

Code Generator

906 Code Generator

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14 Code Generator

Code Generator is a MapForce built-in feature which enables you to generate Java, C++ or C#
code from mapping files designed with MapForce. You can generate code not only from simple
mappings with a single data source and target, but also from mappings with multiple sources and
multiple targets. The result is a fully-featured and complete application which performs the
mapping operation for you. Once you generate the code, you can execute the mapping by running
the application directly as generated. You can also import the generated code into your own
application, or extend it with your own functionality.

If your mapping uses XML schemas or DTDs, you can also optionally generate schema wrapper
libraries (see Generating Code from XML Schemas or DTDs). The schema wrapper libraries
enable you to work with XML data in an abstract way, without too much concern for the underlying
XML Application Program Interface (API), such as MSXML, Apache Xerces, Microsoft
System.Xml, or Java Application for XML Processing (JAXP).

© 2018 Altova GmbH

Introduction to code generator 907Code Generator

Altova MapForce 2018 Professional Edition

14.1 Introduction to code generator

The primary goal of the generated code is to execute a MapForce mapping. In addition to this,
you can optionally generate schema wrapper libraries for XML schemas used by the mapping,
which enables you to read or write data to/from XML instances.

The generated code is expressed in C++, Java or C# programming languages.

Target
Language

C++ C# Java

Development
environments

Microsoft Visual Studio
2008, 2010, 2013,
2015, 2017

Microsoft Visual Studio
2008, 2010, 2013,
2015, 2017

Java 1.7 or later
Eclipse 4.4 or later
Apache Ant (build.xml
file)

XML DOM
implementatio
ns

MSXML 6.0
Apache Xerces 3

System.Xml JAXP

Database API ADO ADO.NET JDBC

C++
You can configure whether the C++ generated output should use MSXML 6.0 or Apache Xerces 3.
MapForce generates complete project (.vcproj) and solution (.sln) files for all supported versions of
Visual Studio (see table above). The generated code optionally supports MFC.

Note: When building C++ code for Visual Studio and using a Xerces library precompiled for
Visual C++, a compiler setting has to be changed in all projects of the solution:

1. Select all projects in the Solution Explorer.
2. On the Project menu, click Properties.
3. Click Configuration Properties | C/C++ | Language.
4. In the list of configurations, select All Configurations.
5. Change Treat wchar_t as Built-in Type to No (/Zc:wchar_t-)

C#
The generated C# code uses the .NET XML classes (System.Xml) and can be used from any
.NET capable programming language, such as VB.NET, Managed C++, or J#. Project files can be
generated for all supported versions of Visual Studio (see table above).

Java
The generated Java output is written against the industry-standard Java API for XML Processing
(JAXP) and includes an Ant build file and project files for supported versions of Java and Eclipse
(see table above).

Generated output
The designated destination folder will include all the libraries and files required to execute the
mapping, namely:

908 Code Generator Introduction to code generator

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

A variable number of Altova libraries required by the mapping (for example, Altova function
libraries, database libraries)
A complete mapping application. When compiled and run, the application performs the
mapping transformation.

Code generator templates
Output code is completely customizable via a simple yet powerful template language (SPL, from
Spy Programming Language) which gives full control in mapping XML Schema built-in data-types
to the primitive datatypes of a particular programming language. SPL allows you to easily replace
the underlying parsing and validating engine, customize code according to your company's writing
conventions, or use different base libraries such as the Microsoft Foundation Classes (MFC) and
the Standard Template Library (STL).

© 2018 Altova GmbH

What's new ... 909Code Generator

Altova MapForce 2018 Professional Edition

14.2 What's new ...

Version 2018

Added support for Microsoft Visual Studio 2013, 2015, 2017
End of support for Visual Studio 2005 and Xerces 2.x

Version 2014

Removal of compatibility mode option for code generation

Version 2011

Contains bug fixes and enhancements

Version 2010 R3

Support for Microsoft Visual Studio 2010
Support for MSXML 6.0 in generated C++ code
Support for 64-bit targets for C++ and C# projects

Version 2010

Enumeration facets from XML schemas are now available as symbolic constants in the
generated classes (using 2007r3 templates)

Version 2009 sp1

Apache Xerces version 3.x support added (older versions starting from Xerces 2.6.x are
still supported)

Version 2009

The generated mapping implementation was redesigned to support sequences and
grouping. The API has not changed

Version 2008 R2

Support for generation of Visual Studio 2008 project files for C# and C++ has been added
Generated MapForce mapping code in C# and Java can use readers/writers, streams,
strings or DOM documents as sources and targets

910 Code Generator What's new ...

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Version 2008

The new 2007 R3-style SPL templates have been further enhanced:

It is now possible to remove single elements
Access to schema metadata (e.g. element names, facets, enumerations, occurrence,
etc.) is provided
Complex types derived by extension are now generated as derived classes

Version 2007 R3

Code Generator has been redesigned for version 2007 release 3 to simplify usage of the generated
code, reduce code volume and increase performance.

Handling of XML documents and nodes with explicit ownership, to avoid memory leaks
and to enable multi-threading
New syntax to avoid name collisions
New data types for simpler usage and higher performance (native types where possible,
new null handling, ...)
Attributes are no longer generated as collections
Simple element content is now also treated like a special attribute, for consistency
New internal object model (important for customized SPL templates)
Compatibility mode to generate code in the style of older releases
Type wrapper classes are now only generated on demand for smaller code

© 2018 Altova GmbH

Generating C++ code 911Code Generator

Altova MapForce 2018 Professional Edition

14.3 Generating C++ code

You can generate C++ code for Visual Studio 2008, 2010, 2013, 2015, 2017. The generated code
includes .sln and .vcproj files for Visual Studio. Note the following when generating code:

You can generate code either from a single mapping design (.mfd), or from a mapping
project (.mfp). If you generate code from a single mapping, the resulting application
executes the respective mapping transformation. If you generate code from a MapForce
project (.mfp) which includes multiple mappings, the resulting application executes in
bulk all mappings included in the project.
You can change the general code generation options from the Tools | Options menu,
Generation tab.
You can change the name of the generated mapping application and other settings from
the File | Mapping settings menu. The default application name is Mapping.
If your mapping contains database components, you can view database specific settings
by clicking a database component, and then selecting the menu option Component |
Properties.

A typical C++ solution generated by MapForce includes the following:

Several Altova-signed libraries required by the mapping (all prefixed with Altova).
The main mapping project (in this example, Mapping), which includes the mapping
application and dependent files.

Sample C++ solution generated with MapForce

912 Code Generator Generating C++ code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

This section includes the following topics:

Generating code from a mapping
Generating code from a mapping project
Building the project
Running the application

14.3.1 Generating code from a mapping

To generate C++ code from a mapping design file (.mfd):

1. Review and select the desired code generation options (see Code generator options).
2. On the File menu, click Generate code in | C++.
3. Select a destination directory for the generated files, and then click OK to confirm. The

result of code generation (error or success message) is displayed in the Messages
window.

The default name of the generated application is Mapping. If required, you can change this, and
other settings, from the Mapping Settings dialog box (see Changing the mapping settings).

14.3.2 Generating code from a mapping project

To generate code from a mapping project (.mfp):

1. If you haven't done so already, open the mapping project in MapForce.
2. Right-click the project in the Project window, and then click Properties.

3. Review and change the project settings if required (in particular, ensure that the target
language and the output directory are set correctly), and then click OK.

4. On the Project menu, click Generate code for the Entire Project.

© 2018 Altova GmbH

Generating C++ code 913Code Generator

Altova MapForce 2018 Professional Edition

The progress and result of the code generation process (error or success message) is displayed
in the Messages window.

By default, the name of the generated application is the same as the project name. If the project
name contains spaces, these are converted to underscores in the generated code. By default,
code is generated in the same directory as the MapForce project, in the output sub-directory.

To change the output directory and the name of the project, click the Project in the Project
window, and then select Project | Properties from the menu. If your MapForce project contains
folders, you can change the code generation settings for each individual folder (right click on the
folder, and then select Properties). Otherwise, all project folders inherit the settings from the
MapForce project.

14.3.3 Building the project

Once you generated the C++ code, building it in Visual Studio is the next step. To build the
generated code:

1. Open the generated solution (.sln) file in Visual Studio.

By default, the name of the solution file is Mapping.sln, and it is located in the Mapping
subdirectory relative to the directory where you saved the generated code. If you changed the
application name from the mapping settings, then the name of the .sln file is changed accordingly.
For example, if you changed the application name to MyApplication, then the solution file is
called MyApplication.sln, and it is located in the MyApplication subdirectory.

2. On the Build menu, click Configuration Manager.

3. Select the required build configuration (Debug, Release, Unicode Debug, Unicode
Release). Note that only Unicode builds support the full Unicode character set in XML and

914 Code Generator Generating C++ code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

other files. The non-Unicode builds work with the local codepage of your Windows
installation.

4. On the Build menu, click Build Solution.

14.3.4 Running the application

Once you compile the Visual Studio project, a command-line application is produced, called
Mapping.exe. (Note that if you changed the application name from the mapping settings, then
the executable name is changed accordingly.)

You can locate the mapping application in one of the following subdirectories relative to the .sln
file, depending on the build option you chose:

Debug
Release
Unicode Debug
Unicode Release

To run the application, open a command prompt, change the current directory to the path of the
executable, and run it, for example:

© 2018 Altova GmbH

Generating C# code 915Code Generator

Altova MapForce 2018 Professional Edition

14.4 Generating C# code

You can generate C# code for Visual Studio 2008, 2010, 2013, 2015, 2017. The generated code
includes .sln and .csproj files for Visual Studio. Mono users can use Visual Studio solution files
with Mono's xbuild. Note the following when generating code:

You can generate code either from a single mapping design (.mfd), or from a mapping
project (.mfp). If you generate code from a single mapping, the resulting application
executes the respective mapping transformation. If you generate code from a MapForce
project (.mfp) which includes multiple mappings, the resulting application executes in
bulk all mappings included in the project.
You can change the general code generation options from the Tools | Options menu,
Generation tab.
You can change the name of the generated mapping application and other settings from
the File | Mapping settings menu. The default application name is Mapping.
If your mapping contains database components, you can view database specific settings
by clicking a database component, and then selecting the menu option Component |
Properties.

A typical C# solution generated by MapForce includes the following:

Several Altova-signed libraries required by the mapping (all prefixed with Altova).
The main mapping project (in this example, Mapping), which includes the mapping
application and dependent files.

Sample C# solution generated with MapForce

This section includes the following topics:

Generating code from a mapping

916 Code Generator Generating C# code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Generating code from a mapping project
Building the project
Running the application

14.4.1 Generating code from a mapping

To generate C# code from a mapping design file (.mfd):

1. Review and select the desired code generation options (see Code generator options).
2. On the File menu, click Generate code in | C#.
3. Select a destination directory for the generated files, and then click OK to confirm. The

result of code generation (error or success message) is displayed in the Messages
window.

The default name of the generated application is Mapping. If required, you can change this, and
other settings, from the Mapping Settings dialog box (see Changing the mapping settings).

14.4.2 Generating code from a mapping project

To generate code from a mapping project (.mfp):

1. If you haven't done so already, open the mapping project in MapForce.
2. Right-click the project in the Project window, and then click Properties.

3. Review and change the project settings if required (in particular, ensure that the target
language and the output directory are set correctly), and then click OK.

4. On the Project menu, click Generate code for the Entire Project.

The progress and result of the code generation process (error or success message) is displayed
in the Messages window.

© 2018 Altova GmbH

Generating C# code 917Code Generator

Altova MapForce 2018 Professional Edition

By default, the name of the generated application is the same as the project name. If the project
name contains spaces, these are converted to underscores in the generated code. By default,
code is generated in the same directory as the MapForce project, in the output sub-directory.

To change the output directory and the name of the project, click the Project in the Project
window, and then select Project | Properties from the menu. If your MapForce project contains
folders, you can change the code generation settings for each individual folder (right click on the
folder, and then select Properties). Otherwise, all project folders inherit the settings from the
MapForce project.

14.4.3 Building the project

Once you generated the C# code, building it in Visual Studio is the next step. To build the
generated code:

1. Open the generated solution (.sln) file in Visual Studio.

By default, the name of the solution file is Mapping.sln, and it is located in the Mapping
subdirectory relative to the directory where you saved the generated code. If you changed the
application name from the mapping settings, then the name of the .sln file is changed accordingly.
For example, if you changed the application name to MyApplication, then the solution file is
called MyApplication.sln, and it is located in the MyApplication subdirectory.

2. On the Build menu, click Configuration Manager.
3. Select the required build configuration (Debug, Release).
4. On the Build menu, click Build Solution.

14.4.4 Running the application

Once you compile the Visual Studio project, a command-line application is produced, called
Mapping.exe. (Note that if you changed the application name from the mapping settings, then
the executable name is changed accordingly.)

You can locate the mapping application in one of the following subdirectories relative to the .sln
file, depending on the build option you chose:

bin\Debug
bin\Release

To run the application, open a command prompt, change the current directory to the path of the
executable, and run it, for example:

918 Code Generator Generating Java code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.5 Generating Java code

You can generate program code for Java 1.7 or later. Note the following when generating code:

You can generate code either from a single mapping design (.mfd), or from a mapping
project (.mfp). If you generate code from a single mapping, the resulting application
executes the respective mapping transformation. If you generate code from a MapForce
project (.mfp) which includes multiple mappings, the resulting application executes in
bulk all mappings included in the project.
You can change the general code generation options from the Tools | Options menu,
Generation tab.
You can change the name of the generated mapping application and other settings from
the File | Mapping settings menu. The default application name is Mapping.
If your mapping contains database components, you can view database specific settings
by clicking a database component, and then selecting the menu option Component |
Properties.

A typical Java project generated by MapForce includes the following:

Several Altova-signed Java packages required by the mapping (all prefixed with
com.altova).
The com.mapforce package, which includes the mapping application and dependent
files (as shown below, it is possible to change the name of this package). The two most
important files in this package are as follows:
o The Java mapping application as a dialog application (MappingApplication.java).

o The Java mapping application as a console application (MappingConsole.java).

A build.xml file which you can execute with Apache Ant to compile the project and
generate JAR files.

© 2018 Altova GmbH

Generating Java code 919Code Generator

Altova MapForce 2018 Professional Edition

Sample MapForce-generated Java application (Eclipse IDE)

This section includes the following topics:

Generating code from a mapping
Generating code from a mapping project
Handling JDBC references
Building the project with Ant
Example: Run and compile Java code with Eclipse and Ant

14.5.1 Generating code from a mapping

To generate Java code from a mapping design file (.mfd):

1. Review and select the desired code generation options (see Code generator options).
2. On the File menu, click Generate code in | Java.
3. Select a destination directory for the generated files, and then click OK to confirm. The

result of code generation (error or success message) is displayed in the Messages
window.

The default name of the generated application is Mapping, and the default name of the base
package is com.mapforce. If required, you can change these from the Mapping Settings dialog
box (see Changing the mapping settings).

920 Code Generator Generating Java code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.5.2 Generating code from a mapping project

To generate code from a mapping project (.mfp):

1. If you haven't done so already, open the mapping project in MapForce.
2. Right-click the project in the Project window, and then click Properties.

3. Review and change the project settings if required (in particular, ensure that the target
language and the output directory are set correctly), and then click OK.

4. On the Project menu, click Generate code for the Entire Project.

The progress and result of the code generation process (error or success message) is displayed
in the Messages window.

By default, the name of the generated application is the same as the project name. If the project
name contains spaces, these are converted to underscores in the generated code. By default,
code is generated in the same directory as the MapForce project, in the output sub-directory.

To change the output directory and the name of the project, click the Project in the Project
window, and then select Project | Properties from the menu. If your MapForce project contains
folders, you can change the code generation settings for each individual folder (right click on the
folder, and then select Properties). Otherwise, all project folders inherit the settings from the
MapForce project.

14.5.3 Handling JDBC references

If the mapping connects to a database through JDBC, ensure that the JDBC drivers used by the
mapping are installed on your system (see Creating a JDBC connection). To view the current
JDBC settings of any database component, click it, and then select Component | Properties
from the menu.

© 2018 Altova GmbH

Generating Java code 921Code Generator

Altova MapForce 2018 Professional Edition

Additionally, if you build JAR files from generated Java code, add the "Class-Path" attribute for
your database driver to the build.xml file. This ensures that the reference to the database driver
is available in the manifest (MANIFEST.MF) file after you build the project.

To add the "Class-Path" attribute:

1. Add to the build.xml file a reference to the JAR file of the database driver, as a new
"Class-Path" attribute. For example, for MySQL 5.1.16, the value of the "Class-Path"
attribute looks as follows:

<attribute name="Class-Path" value="mysql-connector-java-5.1.16-
bin.jar"/>

The manifest element of the build.xml file now looks similar to the screen shot below.

2. Copy the JAR file of the JDBC driver to the folder that contains the JAR file of the
generated application.

14.5.4 Building the project with Ant

Apache Ant is a widely used Java library (and command-line tool) which automates building and
compilation of Java projects (see http://ant.apache.org/manual/). Ant works with build files (such
files define the sources and targets from which code must be compiled, as well as any specific
build options). Since any MapForce-generated project includes a build.xml file recognized by
Ant, you can easily build MapForce-generated projects with Ant.

Ant may be available on your system either as a standalone installation, or bundled within Eclipse
(or other Java IDEs). For instructions on how to install Ant on your system, see http://
ant.apache.org/manual/. For instructions on how to use Ant in Eclipse, refer to the Eclipse
tutorial, as well as the Eclipse documentation.

You can quickly check whether the standalone version of Ant (not the one bundled with Eclipse)
is available on your system by opening a command prompt and typing ant at the command line.
When Ant is already available, the resulting message will be similar to: Buildfile: buildxml
does not exist! This message indicates that Ant is installed and it is attempting to build a
build.xml file, but the latter does not exist in the current directory. If you run Ant from a directory
which includes a build.xml file, Ant executes the build.xml file instead, with whatever build
options are defined in it.

To build a MapForce-generated Java project with Ant:

1. Open a command prompt and navigate to the directory where the Java project was
generated (note that the directory must contain the build.xml file).

2. At the command prompt, enter ant. This will compile and execute the Java code

http://ant.apache.org/manual/
http://ant.apache.org/manual/
http://ant.apache.org/manual/

922 Code Generator Generating Java code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

according to the options defined in the build.xml file.

To generate a JAR file with Ant:

At the command prompt, enter ant jar.

If you need help with Ant command syntax and options, enter ant -help at the command line.

14.5.5 Example: Build a Java application with Eclipse and Ant

This example walks you through the steps required to generate a Java application with MapForce,
and compile it outside of MapForce using the Eclipse Integrated Development Environment (IDE)
and Apache Ant. After completing this example, you will have created and compiled a complete
Java application which executes one of the mapping samples available by default in MapForce.

If you can already compile successfully other Java applications with Eclipse and Ant, there are no
special requirements to run this example. Otherwise, note the following prerequisites:

The Java Development Kit (JDK), Eclipse (https://www.eclipse.org/), and Ant (http://
ant.apache.org/) must be installed on your system. Eclipse typically includes support for
building projects with Ant (see also Building the project with Ant).
The Windows PATH environment variable must include the path to the JDK's bin directory
(for example, C:\Java\jdk1.7.0\bin). This is a basic requirement for developing
applications for the Java platform. For instructions, see http://docs.oracle.com/javase/
tutorial/essential/environment/paths.html.

This example uses the following configuration:

JDK 1.7
Eclipse IDE for Java Developers (Luna Service Release 4.4.1)
Ant 1.9.2, which is already integrated into the above-mentioned edition of Eclipse;
therefore, it was not installed and configured separately.

The example is organized into the following sub-tasks:

Step 1: Generate Java Code
Step 2: Import the Project into Eclipse

https://www.eclipse.org/
http://ant.apache.org/
http://ant.apache.org/
http://docs.oracle.com/javase/tutorial/essential/environment/paths.html
http://docs.oracle.com/javase/tutorial/essential/environment/paths.html

© 2018 Altova GmbH

Generating Java code 923Code Generator

Altova MapForce 2018 Professional Edition

Step 3: Run the Project as GUI Application
Step 4: Run the Project as Console Application
Step 5: Build the JAR file with Ant

Step 1: Generate Java code14.5.5.1

To generate the Java code in MapForce:

1. On the File menu, click Open, and browse for the CompletePO.mfd mapping available
in the <Documents>\Altova\MapForce2018\MapForceExamples\ directory.

2. On the Output menu, click Java. This changes the transformation language to Java.
3. On the File menu, click Generate code in | Java. When prompted, browse for the

directory to which the Java project must be saved. For convenience, you may choose to
save the project to C:\workspace\CompletePO\ (where C:\workspace is your default
Eclipse workspace).

Step 2: Import the project into Eclipse14.5.5.2

To import the project into Eclipse:

1. If you haven't done so already, run Eclipse and switch to the default Java perspective
using the menu command Window | Open Perspective.

2. On the File menu, click Import, and then select Existing Projects into Workspace.

924 Code Generator Generating Java code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. Click Next.

© 2018 Altova GmbH

Generating Java code 925Code Generator

Altova MapForce 2018 Professional Edition

4. Browse for the folder where you have previously saved the generated code, and then click
Finish. The Java project created by MapForce is now available in the Package Explorer
view. If you cannot see the Package Explorer view, display it using the menu command
Window | Show View | Package Explorer.

926 Code Generator Generating Java code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 3: Run the project as dialog application14.5.5.3

To run the Java project as a GUI application:

1. In the Package Explorer view of Eclipse, click the MappingApplication.java file
available in the com.mapforce package.

© 2018 Altova GmbH

Generating Java code 927Code Generator

Altova MapForce 2018 Professional Edition

2. On the Run menu, click Run As | Java application.
3. On the MapForce application window, click Start to execute the mapping.

928 Code Generator Generating Java code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

If Eclipse encounters system configuration or run-time errors, you will be prompted. Otherwise,
the Java application executes the mapping transformation and generates the CompletePO.xml
at the output path (in this example: C:\workspace\CompletePO\CompletePO.xml).

Step 4: Run the project as console application14.5.5.4

To run the Java project as a console application:

1. In the Package Explorer view of Eclipse, click the MappingConsole.java file available in
the com.mapforce package.

© 2018 Altova GmbH

Generating Java code 929Code Generator

Altova MapForce 2018 Professional Edition

2. On the Run menu, click Run As | Java application.

If Eclipse detects system configuration or run-time errors, you will be prompted. Otherwise, the
Java application executes the mapping transformation and generates the CompletePO.xml at
the output path (in this example: C:\workspace\CompletePO\CompletePO.xml).

Step 5: Build the JAR file with Ant14.5.5.5

To build the .jar file with Ant:

1. In the Package Explorer view of Eclipse, click the build.xml file available directly in the
project root.

2. On the Run menu, click Run.

930 Code Generator Generating Java code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

3. In the Run As dialog box, two possible options to run the Ant build file are displayed. If
you choose the first option, Eclipse launches the Ant build with the default settings. If you
choose the second option, you can change the settings of the Ant build before launching
it. Select the second option.

4. Click to enable the targets that you wish to include in the Ant build. In this example, the
targets test and jar are selected.

© 2018 Altova GmbH

Generating Java code 931Code Generator

Altova MapForce 2018 Professional Edition

5. Click Run. Eclipse executes the Ant build file and displays the result in the Console
view.

932 Code Generator Integrating MapForce-Generated Code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.6 Integrating MapForce-Generated Code

MapForce-generated code can be integrated, or adapted to your specific application, even though
the result of code generation is a complete and fully-functioning application. Some typical
scenarios where you might want to change the generated code are as follows:

Define custom source or target files for the mapping application
Add custom error handling code
In C# or Java generated code, you can also change the data type of the mapping input
programmatically (for example, from string to stream).

This section provides instructions on how to achieve these goals, based on the
DB_CompletePO.mfd sample mapping available in the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory.

DB_CompletePO.mfd mapping sample in MapForce

As illustrated above, the sample mapping consists of two sources and one target:

ShortPO.xml is a source XML file
CustomersAndArticles.mdb is a source database
CompletePO.xml is the target XML file.

In the generated code, these sources and targets will translate to two input and one output
parameters supplied to the run method which executes the mapping (as described in the

subsequent topics). For now, note the following basic points about code generation:

The number of source and targets in the mapping design corresponds to the number of
mapping parameters to the run method in the generated code.

© 2018 Altova GmbH

Integrating MapForce-Generated Code 933Code Generator

Altova MapForce 2018 Professional Edition

If you change the number of sources or targets of the mapping, then you will need to re-
generate the code accordingly.
If you make changes to the generated code, and then re-generate the code at the same
location, all changes will be overwritten.

If a mapping includes database components, the generated run method includes the database

connection object at the appropriate location. For example, if the mapping uses three sources
(text content, XML content and a database) to map to a single output file, MapForce generates
the following run method:

Java

void run(Input in1, Input in2, java.sql.Connection dbConn, Output out1);

The argument order is important. As you will see in the subsequent examples, you can modify
dbConn parameters, or use the default parameters generated by MapForce when integrating your

code.

14.6.1 Java example

This example uses Eclipse as Java IDE. To begin, generate Java code from the DB_CompletePO
sample mapping available in the <Documents>\Altova\MapForce2018\MapForceExamples\
directory, and then import the project into Eclipse.

934 Code Generator Integrating MapForce-Generated Code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Sample MapForce-generated Java application (Eclipse IDE)

To edit the generated Java console application, locate the main(String[] args) method of your
generated application (see the screen shot above). If you did not change the default base package
name before generating code, this method is in the MappingConsole class of the com.mapforce
package. Otherwise, it is in the MappingConsole class of your custom defined package.

To edit the generated Java dialog application, locate the place in the code where the run method
is invoked from your generated application. If you did not change the default base package name
before generating code, the run method is invoked from the class called MappingFrame.java of

the com.mapforce package.

The following code sample illustrates an extract from the main method in the generated Java
console application. The mapping sources and targets are highlighted in yellow and are defined as
parameters to the run method. Since this mapping uses a database connection, the
corresponding parameter has a special structure. Namely, the connection consists of the
connection string (in this case, jdbc:odbc:;DRIVER=Microsoft Access Driver
(*.mdb);DBQ=CustomersAndArticles.mdb), as well as two empty arguments intended for the
Username and Password (in clear text) for those databases where this data is necessary.

Note that the file paths in the code below have been changed from absolute to relative.

com.altova.io.Input ShortPO2Source =
com.altova.io.StreamInput.createInput("ShortPO.xml");

© 2018 Altova GmbH

Integrating MapForce-Generated Code 935Code Generator

Altova MapForce 2018 Professional Edition

com.altova.io.Output CompletePO2Target = new

com.altova.io.FileOutput("CompletePO.xml");

MappingMapToCompletePOObject.run(
 com.altova.db.Dbs.newConnection(

 "jdbc:odbc:;DRIVER=Microsoft Access Driver
(*.mdb);DBQ=CustomersAndArticles.mdb",
 "",
 ""),
 ShortPO2Source,

 CompletePO2Target);

To define custom mapping source or target files:

Locate the parameters passed to the run method and edit them as required. In the
sample above, com.altova.db.Dbs.newConnection and ShortPO2Source is the

mapping input and CompletePO2Target is the mapping output.

To add extra error handling code:

Edit the code below the catch (Exception e) code (in case of a Java console

application)
Edit the code below the catch (Exception ex) code (in case of a Java dialog

application)

For instructions on how to change the data type of parameters supplied as mapping input/output,
see Changing the data type of the mapping input/output (C#, Java).

14.6.2 C# example

This example uses the Visual Studio 2010 IDE. To begin, generate C# code from the
DB_CompletePO sample mapping available in the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory, and then open the solution in Visual Studio.

By default, the name of the solution file is Mapping.sln, and it is located in the Mapping
subdirectory relative to the directory where you saved the generated code. If you changed the
application name from the mapping settings, then the name of the .sln file is changed accordingly.
For example, if you changed the application name to MyApplication, then the solution file is
called MyApplication.sln, and it is located in the MyApplication subdirectory.

936 Code Generator Integrating MapForce-Generated Code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Sample C# solution generated with MapForce

Open the MappingConsole.cs file, and locate the main(String[] args) method. The following
code sample illustrates an extract from the main method. The mapping sources and targets are
highlighted in yellow and are defined as parameters to the Run method. Since this mapping reads

data from a database, there is also an input parameter which is a database connection string. If
necessary, you can modify the connection string of the database.

Note that the file paths in the code below have been changed from absolute to relative.

Altova.IO.Input ShortPO2Source =
Altova.IO.StreamInput.createInput("ShortPO.xml");
Altova.IO.Output CompletePO2Target = new
Altova.IO.FileOutput("CompletePO.xml");

MappingMapToCompletePOObject.Run(
"Provider=Microsoft.Jet.OLEDB.4.0; Data

Source=CustomersAndArticles.mdb; ",
ShortPO2Source,
CompletePO2Target);

To define custom mapping source or target files:

Locate the parameters passed to the Run method and edit them as required. In the

sample above, the mapping input is a connection string to the
CustomersAndArticles.mdb and ShortPO2Source . The mapping output is

CompletePO2Target .

© 2018 Altova GmbH

Integrating MapForce-Generated Code 937Code Generator

Altova MapForce 2018 Professional Edition

To add extra error handling code:

Edit the code below the catch (Exception e) code

For instructions on how to change the data type of parameters supplied as mapping input/output,
see Changing the data type of the mapping input/output (C#, Java).

14.6.3 C++ example

This example uses the Visual Studio 2010 IDE. To begin, generate C++ code from the
DB_CompletePO sample mapping available in the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory, and then open the solution in Visual Studio.

By default, the name of the solution file is Mapping.sln, and it is located in the Mapping
subdirectory relative to the directory where you saved the generated code. If you changed the
application name from the mapping settings, then the name of the .sln file is changed accordingly.
For example, if you changed the application name to MyApplication, then the solution file is
called MyApplication.sln, and it is located in the MyApplication subdirectory.

Sample C++ solution generated with MapForce

Open the Mapping.cpp file, and locate the _tmain method. The following code sample illustrates
an extract from this method. The mapping sources and targets are defined as parameters to the
Run method. Since this mapping reads data from a database, there is also an input parameter

which is a database connection string. If necessary, you can modify the connection string of the
database.

938 Code Generator Integrating MapForce-Generated Code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note that the file paths in the code below have been changed from absolute to relative.

MappingMapToCompletePO MappingMapToCompletePOObject;
MappingMapToCompletePOObject.Run(

_T("Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=CustomersAndArticles.mdb; "),

_T("ShortPO.xml"),
_T("CompletePO.xml"));

To define custom mapping source or target files:

Locate the parameters passed to the Run method and edit them as required. In the code

sample above, the mapping input is a connection string to the
CustomersAndArticles.mdb database and _T("ShortPO.xml") . The mapping output

is _T("CompletePO.xml") .

To add extra error handling code:

Edit the code below the catch (CAltovaException& e) code.

14.6.4 Changing the data type of the mapping input/output (C#, Java)

This topic provides details on the object types you can use programmatically, if you intend to run
MapForce mappings from a custom Java or C# application.

You can use several input and output objects (such as files, strings, DOM documents, and
others) as parameters to the run method. The run method is the most important function of

generated mapping classes. It has one parameter for each static source or input component in
the mapping, and a final parameter for the output component. Components that process multiple
files do not appear as parameters to the run method, because in this case the file names are

processed dynamically inside the mapping.

The objects that you can provide as parameters to the run method are available in the

com.altova.io package (Java) and Altova.IO namespace (C#). The base classes of the

generated input and output objects are as follows:

C#
Altova.IO.Input
Altova.IO.Output

Java
com.altova.io.Input
com.altova.io.Output

The object types supported as input/output parameters to the run method, including their

applicable input/output file formats, are listed in the following table.

© 2018 Altova GmbH

Integrating MapForce-Generated Code 939Code Generator

Altova MapForce 2018 Professional Edition

Object Type XML Microso
ft
Excel*

EDI* ** FlexTe
xt*

CSV Fixed-
length
files

Files Y Y Y Y Y Y

Binary stream objects Y Y Y Y Y Y

Strings Y – Y Y Y Y

I/O Reader/Writer (character
stream objects)

Y – Y Y Y Y

DOM documents Y – – – – –

* Formats supported only in MapForce Enterprise Edition
** Includes X12 and HL7

Files
File objects (identified in the code file names) have the following definition:

C#
Altova.IO.FileInput(string filename)
Altova.IO.FileOutput(string filename)

Java
com.altova.io.FileInput(String filename)
com.altova.io.FileOutput(String filename)

Binary stream objects
Binary stream objects in the generated code represent an alternative way to working with physical
files; there are no advantages as far as memory use is concerned. Binary stream objects have the
following definition:

C#
Altova.IO.StreamInput(System.IO.Stream stream)
Altova.IO.StreamOutput(System.IO.Stream stream)

Java
com.altova.io.StreamInput(java.io.InputStream stream)
com.altova.io.StreamOutput(java.io.OutputStream stream)

Notes:

Binary stream objects are expected to be opened and ready-to-use before calling the run

method.
By default, the run method closes the stream when finished. To prevent this behaviour,

insert the following code before calling the run method:

940 Code Generator Integrating MapForce-Generated Code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Java

MappingMapToSomething.setCloseObjectsAfterRun(false); // Java

C#

MappingMapToSomething.CloseObjectsAfterRun = false; // C#

Strings
String objects have the following definition:

C#
Altova.IO.StringInput(string content)
Altova.IO.StringOutput(StringBuilder content)

Java
com.altova.io.StringInput(String xmlcontent)
com.altova.io.StringOutput()

In Java, StringOutput does not take an argument. Content can be accessed with:

// mapping from String to (another) String

String MyText = "<here>is some XML text</here>";

Input input = new StringInput(MyText);

Output output = new StringOutput();

MappingMapToMyText.run(input, output);

String myTargetData = output.getString().toString();

The getString() method returns a StringBuffer, hence the need for toString().

In C#, StringOutput takes an argument (StringBuilder) which you need to provide beforehand.

The StringBuilder may already contain data, so the mapping output is appended to it.

Excel sources/targets cannot map to or from strings.

I/O Reader/Writer (character stream objects)
Character stream objects have the following definition:

C#
Altova.IO.ReaderInput(System.IO.TextReader reader)
Altova.IO.WriterOutput(System.IO.TextWriter writer)

© 2018 Altova GmbH

Integrating MapForce-Generated Code 941Code Generator

Altova MapForce 2018 Professional Edition

Java
com.altova.io.ReaderInput(java.io.Reader reader)
com.altova.io.WriterOutput(java.io.Writer writer)

Notes:

Character stream objects are expected to be opened and ready-to-use before calling the
run method.

Excel sources/targets cannot be read from, or written to, character streams.
By default, the run method closes the stream when finished. To prevent this behaviour,

insert the following code before calling the run method:

Java

MappingMapToSomething.setCloseObjectsAfterRun(false); // Java

C#

MappingMapToSomething.CloseObjectsAfterRun = false; // C#

DOM documents
DOM documents have the following definition:

C#
Altova.IO.DocumentInput(System.Xml.XmlDocument document)
Altova.IO.DocumentOutput(System.Xml.XmlDocument document)

Java
com.altova.io.DocumentInput(org.w3c.dom.Document document)
com.altova.io.DocumentOutput(org.w3c.dom.Document document)

Notes:

The document passed to the DocumentOutput constructor as target must be empty.

After calling run, the DOM Document generated by the constructor of DocumentOutput

already contains mapped data so "save to document" is not necessary. After mapping,
you can manipulate the document as necessary.
Only XML content can be mapped to DOM documents.

Example
Let's assume you want to integrate the code generated by MapForce into your Java application.
Your MapForce mapping consists of two source XML files and a target text file. When you
generate the MapForce code, the run function looks as follows:

void run(Input in1, Input in2, Output out1);

Let's also assume that your application requires that you map data from a local file and binary

942 Code Generator Integrating MapForce-Generated Code

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

stream into a character stream. Since data is supplied from other sources, your application must
declare the sources and targets as:

String filename; // Declare the source of the first input

Java.io.InputStream stream; // Declare the source of the second input

Java.io.Writer writer; // Declare the output as character stream

The following wrappers must be constructed for the MapForce-generated run function:

// com.altova.io is considered imported here:

Input input1 = new FileInput(filename);

Input input2 = new StreamInput(stream);

Output output1 = new WriterOutput(writer);

Now you can call the MapForce generated run function:

MappingMapToSomething.run(input1, input2, output1);

The C# behavior is almost identical, except that run is called Run, and the .NET stream and

reader/writer classes are named differently.

Using the same technique, you can also use other input and output types, such as strings or
DOM documents.

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 943Code Generator

Altova MapForce 2018 Professional Edition

14.7 Generating Code from XML Schemas or DTDs

When you generate code from a mapping, MapForce generates a complete application that
executes all steps of the mapping automatically. Optionally, you can generate libraries for all the
XML schemas used in the mapping. These allow your code to easily create or read XML
instances that are used or created by the mapping code.

To generate libraries for all the XML schemas used in the mapping, select the Generate
Wrapper Classes check box in the Options dialog (see Code Generator Options). Next time
when you generate code, MapForce will create not only the mapping application, but also wrapper
classes for all schemas used in the mapping, as follows:

C++ or C# Java Purpose

Altova com.altova Base library containing common runtime support,
identical for every schema.

AltovaXML com.altova.xml Base library containing runtime support for XML,
identical for every schema.

YourSchema com.YourSchema A library containing declarations generated from the
input schema, named as the schema file or DTD.
This library is a DOM (W3C Document Object
Model) wrapper that allows you to read, modify and
create XML documents easily and safely. All data
is held inside the DOM, and there are methods for
extracting data from the DOM, and to update and
create data into the DOM.

The generated C++ code supports either Microsoft
MSXML or Apache Xerces 3. The syntax for using
the generated code is identical for both DOM
implementations.

The generated C# code uses the .NET standard
System.XML library as the underlying DOM
implementation.

The generated Java code uses JAXP (Java API for
XML Processing) as the underlying DOM interface.

While prototyping an application from a frequently changing XML schema, you may need to
frequently generate code to the same directory, so that the schema changes are immediately
reflected in the code. Note that the generated test application and the Altova libraries are
overwritten every time when you generate code into the same target directory. Therefore do
not add code to the generated test application. Instead, integrate the Altova libraries into your
project (see Integrating Schema Wrapper Libraries).

In addition to the base libraries listed above, some supporting libraries are also generated. The
supporting libraries are used by the Altova base libraries and are not meant for custom

944 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

integrations, since they are subject to change.

Name generation and namespaces

MapForce generates classes corresponding to all declared elements or complex types which
redefine any complex type in your XML Schema, preserving the class derivation as defined by
extensions of complex types in your XML Schema. In the case of complex schemas which import
schema components from multiple namespaces, MapForce preserves this information by
generating the appropriate C# or C++ namespaces or Java packages.

Generally, the code generator tries to preserve the names for generated namespaces, classes
and members from the original XML Schema. Characters that are not valid in identifiers in the
target language are replaced by a "_". Names that would collide with other names or reserved
words are made unique by appending a number. Name generation can be influenced by changing
the default settings in the SPL (Spy Programming Language) template.

The namespaces from the XML Schema are converted to packages in Java or namespaces in C#
or C++ code, using the namespace prefix from the schema as code namespace. The complete
library is enclosed in a package or namespace derived from the schema file name, so you can
use multiple generated libraries in one program without name conflicts.

Data Types

XML Schema has a more elaborate data type model than Java, C# or C++. Code Generator
converts the built-in XML Schema types to language-specific primitive types, or to classes
delivered with the Altova library. Complex types and derived types defined in the schema are
converted to classes in the generated library. Enumeration facets from simple types are converted
to symbolic constants.

The mapping of simple types can be configured in the SPL template, see SPL (Spy Programming
Language).

If your XML instance files use schema types related to time and duration, these are converted to
Altova native classes in the generated code. For information about the Altova library classes, see:

Reference to Generated Classes (C++)
Reference to Generated Classes (C#)
Reference to Generated Classes (Java)

For information about type conversion and other details applicable to each language, see:

About Schema Wrapper Libraries (C++)
About Schema Wrapper Libraries (C#)
About Schema Wrapper Libraries (Java)

Memory management

A DOM tree is comprised of nodes, which are always owned by a specific DOM document - even
if the node is not currently part of the document's content. All generated classes are references to
the DOM nodes they represent, not values. This means that assigning an instance of a generated

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 945Code Generator

Altova MapForce 2018 Professional Edition

class does not copy the value, it only creates an additional reference to the same data.

XML Schema support

The following XML Schema constructs are translated into code:

a) XML namespaces

b) Simple types:

Built-in XML schema types
Simple types derived by extension
Simple types derived by restriction
Facets
Enumerations
Patterns

c) Complex types:

Built-in anyType node
User-defined complex types
Derived by extension: Mapped to derived classes
Derived by restriction
Complex content
Simple content
Mixed content

The following advanced XML Schema features are not supported (or not fully supported) in
generated wrapper classes:

Wildcards: xs:any and xs:anyAttribute
Content models (sequence, choice, all). Top-level compositor is available in SPL (Spy
Programming Language), but is not enforced by generated classes.
Default and fixed values for attributes. These are available in SPL (Spy Programming
Language), but are not set or enforced by generated classes.
The attributes xsi:type, abstract types. When you need to write the xsi:type attribute,
use the SetXsiType() method of the generated classes.
Union types: not all combinations are supported.
Substitution groups are partially supported (resolved like "choice").
Attribute nillable="true" and xsi:nil
Uniqueness constraints
Identity constraints (key and keyref)

14.7.1 About Schema Wrapper Libraries (C++)

Character Types

The generated C++ code can be compiled with or without Unicode support. Depending on this
setting, the types string_type and tstring will both be defined as std::string or
std::wstring, consisting of narrow or wide characters. To use Unicode characters in your XML
file that are not representable with the current 8-bit character set, Unicode support must be

946 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

enabled. Pay special attention to the _T() macros. This macro ensures that string constants are
stored correctly, whether you're compiling for Unicode or non-Unicode programs.

Data Types

The default mapping of XML Schema types to C++ data types is:

XML Schema C++ Remarks

xs:string string_type string_type is defined as std::string
or std:wstring

xs:boolean bool

xs:decimal double C++ does not have a decimal type,
so double is used.

xs:float, xs:double double

xs:integer __int64 xs:integer has unlimited range,
mapped to __int64 for efficiency
reasons.

xs:nonNegativeInteger unsigned __int64 see above

xs:int int

xs:unsignedInt unsigned int

xs:dateTime, date, time,
gYearMonth, gYear,
gMonthDay, gDay, gMonth

altova::DateTime

xs:duration altova::Duration

xs:hexBinary and
xs:base64Binary

std::vector<unsigne
d char>

Encoding and decoding of binary
data is done automatically.

xs:anySimpleType string_type

All XML Schema types not contained in this list are derived types, and mapped to the same C++
type as their respective base type.

Generated Classes

For each type in the schema, a class is generated that contains a member for each attribute and
element of the type. The members are named the same as the attributes or elements in the
original schema (in case of possible collisions, a number is appended). For simple types,
assignment and conversion operators are generated. For simple types with enumeration facets,
the methods GetEnumerationValue() and SetEnumerationValue(int) can be used together
with generated constants for each enumeration value. In addition, the method StaticInfo()
allows accessing schema information as one of the following types:

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 947Code Generator

Altova MapForce 2018 Professional Edition

altova::meta::SimpleType

altova::meta::ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to
set the xsi:type attribute of the type. This method is useful when you want to create XML
instance elements of a derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified
with "CDoc" below) is generated. It contains all possible root elements as members, and various
other methods. For more information about the class, see [YourSchema]::[CDoc] .

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more
information about such classes, see:

[YourSchema]::MemberAttribute
[YourSchema]::MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

See also Example: Using the Schema Wrapper Libraries.

Error Handling

Errors are reported by exceptions. The following exception classes are defined in the namespace
altova:

Class Base Class Description

Error std::logic_error Internal program logic error
(independent of input data).

Exception std::runtime_error Base class for runtime errors.

InvalidArgumentsExceptio
n

Exception A method was called with invalid
argument values.

ConversionException Exception Exception thrown when a type
conversion fails.

StringParseException ConversionException A value in the lexical space
cannot be converted to value
space.

ValueNotRepresentableExc
eption

ConversionException A value in the value space
cannot be converted to lexical
space.

OutOfRangeException ConversionException A source value cannot be
represented in target domain.

InvalidOperationExceptio Exception An operation was attempted that

948 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

n is not valid in the given context.

DataSourceUnavailableExc
eption

Exception A problem occurred while
loading an XML instance.

DataTargetUnavailableExc
eption

Exception A problem occurred while saving
an XML instance.

All exception classes contain a message text and a pointer to a possible inner exception.

Method Purpose

string_type message() Returns a textual description of the exception.

std::exception inner() Returns the exception that caused this exception, if
available, or NULL.

Accessing schema information

The generated library allows accessing static schema information via the following classes. All
methods are declared as const. The methods that return one of the metadata classes return a
NULL object if the respective property does not exist.

altova::meta::Attribute
altova::meta::ComplexType
altova::meta::Element
altova::meta::SimpleType

14.7.2 About Schema Wrapper Libraries (C#)

The default mapping of XML Schema types to C# data types is as follows.

XML Schema C# Remarks

xs:string string

xs:boolean bool

xs:decimal decimal xs:decimal has unlimited range
and precision, mapped to
decimal for efficiency reasons.

xs:float, xs:double double

xs:long long

xs:unsignedLong ulong

xs:int int

xs:unsignedInt uint

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 949Code Generator

Altova MapForce 2018 Professional Edition

XML Schema C# Remarks

xs:dateTime, date, time,
gYearMonth, gYear,
gMonthDay, gDay, gMonth

Altova.Types.DateTim
e

xs:duration Altova.Types.Duratio
n

xs:hexBinary and
xs:base64Binary

byte[] Encoding and decoding of binary
data is done automatically.

xs:anySimpleType string

All XML Schema types not contained in this list are derived types, and mapped to the same C#
type as their respective base type.

Generated Classes

For each type in the schema, a class is generated that contains a member for each attribute and
element of the type. The members are named the same as the attributes or elements in the
original schema (in case of possible collisions, a number is appended). For simple types,
assignment and conversion operators are generated. For simple types with enumeration facets,
the methods GetEnumerationValue() and SetEnumerationValue(int) can be used together
with generated constants for each enumeration value. In addition, the method StaticInfo()
allows accessing schema information as one of the following types:

Altova.Xml.Meta.SimpleType
Altova.Xml.Meta.ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to
set the xsi:type attribute of the type. This method is useful when you want to create XML
instance elements of a derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified
with "Doc" below) is generated. It contains all possible root elements as members, and various
other methods. For more information about the class, see [YourSchema].[Doc].

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more
information about such classes, see:

[YourSchemaType].MemberAttribute
[YourSchemaType].MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

Error Handling

Errors are reported by exceptions. The following exception classes are defined in the namespace
Altova:

950 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Class Base Class Description

ConversionException Exception Exception thrown when a type
conversion fails

StringParseException ConversionExcepti
on

A value in the lexical space cannot
be converted to value space.

DataSourceUnavailableExcept
ion

System.Exception A problem occurred while loading an
XML instance.

DataTargetUnavailableExcept
ion

System.Exception A problem occurred while saving an
XML instance.

In addition, the following .NET exceptions are commonly used:

Class Description

System.Exception Base class for runtime errors

System.ArgumentException A method was called with invalid argument values, or
a type conversion failed.

System.FormatException A value in the lexical space cannot be converted to
value space.

System.InvalidCastException A value cannot be converted to another type.

System.OverflowException A source value cannot be represented in target
domain.

Accessing schema information

The generated library allows accessing static schema information via the following classes:

Altova.Xml.Meta.Attribute
Altova.Xml.Meta.ComplexType
Altova.Xml.Meta.Element
Altova.Xml.Meta.SimpleType

The properties that return one of the metadata classes return null if the respective property does
not exist.

14.7.3 About Schema Wrapper Libraries (Java)

The default mapping of XML Schema types to Java data types is as follows:

XML Schema Java Remarks

xs:string String

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 951Code Generator

Altova MapForce 2018 Professional Edition

XML Schema Java Remarks

xs:boolean boolean

xs:decimal java.math.BigDecimal

xs:float, xs:double double

xs:integer java.math.BigInteger

xs:long long

xs:unsignedLong java.math.BigInteger Java does not have unsigned
types.

xs:int int

xs:unsignedInt long Java does not have unsigned
types.

xs:dateTime, date, time,
gYearMonth, gYear,
gMonthDay, gDay, gMonth

com.altova.types.Date
Time

xs:duration com.altova.types.Dura
tion

xs:hexBinary and
xs:base64Binary

byte[] Encoding and decoding of
binary data is done
automatically.

xs:anySimpleType string

All XML Schema types not contained in this list are derived types, and mapped to the same Java
type as their respective base type.

Generated Classes

For each type in the schema, a class is generated that contains a member for each attribute and
element of the type. The members are named the same as the attributes or elements in the
original schema (in case of possible collisions, a number is appended). For simple types,
assignment and conversion operators are generated. For simple types with enumeration facets,
the methods GetEnumerationValue() and SetEnumerationValue(int) can be used together
with generated constants for each enumeration value. In addition, the method StaticInfo()
allows accessing schema information as one of the following types:

com.altova.xml.meta.SimpleType
com.altova.xml.meta.ComplexType

Classes generated from complex types include the method SetXsiType(), which enables you to
set the xsi:type attribute of the type. This method is useful when you want to create XML
instance elements of a derived type.

In addition to the classes for the types declared in the XML Schema, a document class (identified
with "Doc" below) is generated. It contains all possible root elements as members, and various

952 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

other methods. For more information about the class, see com.[YourSchema].[Doc].

Note: The actual class name depends on the name of the .xsd schema.

For each member attribute or element of a schema type, a new class is generated. For more
information about such classes, see:

com.[YourSchema].[YourSchemaType].MemberAttribute
com.[YourSchema].[YourSchemaType].MemberElement

Note: The actual class names depend on the name of the schema attribute or element.

Error Handling

Errors are reported by exceptions. The following exception classes are defined in the namespace
com.altova:

Class Base Class Description

SourceInstanceUnvailableException Exception A problem occurred while
loading an XML instance.

TargetInstanceUnavailableExceptio
n

Exception A problem occurred while
saving an XML instance.

In addition, the following Java exceptions are commonly used:

Class Description

java.lang.Error Internal program logic error (independent of input
data)

java.lang.Exception Base class for runtime errors

java.lang.IllegalArgumentsExcepti
on

A method was called with invalid argument values, or
a type conversion failed.

java.lang.ArithmeticException Exception thrown when a numeric type conversion
fails.

Accessing schema information

The generated library allows accessing static schema information via the following classes:

com.altova.xml.meta.Attribute
com.altova.xml.meta.ComplexType
com.altova.xml.meta.Element
com.altova.xml.meta.SimpleType

The properties that return one of the metadata classes return null if the respective property does
not exist.

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 953Code Generator

Altova MapForce 2018 Professional Edition

14.7.4 Integrating Schema Wrapper Libraries

To use the Altova libraries in your custom project, refer to the libraries from your project (or
include them into your project), as shown below for each language.

C#

To integrate the Altova libraries into an existing C# project:

1. After MapForce generates code from a schema (for example, YourSchema.xsd), build
the generated YourSchema.sln solution in Visual Studio. This solution is in a project
folder with the same name as the schema.

2. Right-click your existing project in Visual Studio, and select Add Reference.
3. On the Browse tab, browse for the following libraries: Altova.dll, AltovaXML.dll, and

YourSchema.dll located in the output directory of the generated projects (for example,
bin\Debug).

C++

The easiest way to integrate the libraries into an existing C++ project is to add the generated
project files to your solution. For example, let's assume that you generated code from a schema
called Library.xsd and selected c:\codegen\cpp\library as target directory. The generated

954 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

libraries in this case are available at:

c:\codegen\cpp\library\Altova.vcxproj
c:\codegen\cpp\library\AltovaXML\AltovaXML.vcxproj
c:\codegen\cpp\library\Library.vcxproj

First, open the generated c:\codegen\cpp\library\Library.sln solution and build it in Visual
Studio.

Next, open your existing Visual Studio solution (in Visual Studio 2010, in this example), right-
click it, select Add | Existing Project, and add the project files listed above, one by one. Be
patient while Visual Studio parses the files. Next, right-click your project and select Properties.
In the Property Pages dialog box, select Common Properties | Framework and References,
and then click Add New Reference. Next, select and add each of the following projects: Altova,
AltovaXML, and Library.

See also the MSDN documentation for using functionality from a custom library, as applicable to
your version of Visual Studio, for example:

If you chose to generate static libraries, see https://msdn.microsoft.com/en-us/library/
ms235627(v=vs.100).aspx
If you chose to generate dynamic libraries, see https://msdn.microsoft.com/en-us/library/
ms235636(v=vs.100).aspx

The option to generate static or dynamic libraries is available in code generation options (see
Code generator options).

https://msdn.microsoft.com/en-us/library/ms235627(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235627(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235636(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/ms235636(v=vs.100).aspx

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 955Code Generator

Altova MapForce 2018 Professional Edition

Java

One of the ways to integrate the Altova packages into your Java project is to copy the com
directory of the generated code to the directory which stores the source packages of your Java
project (for example, C:\Workspace\MyJavaProject\src). For example, let's assume that you
generated code in c:\codegen\java\library. The generated Altova classes in this case are
available at c:\codegen\java\library\com.

After copying the libraries, refresh the project. To refresh the project in Eclipse, select it in the
Package Explorer, and press F5. To refresh the project in NetBeans IDE 8.0, select the menu
command Source | Scan for External Changes.

Once you perform the copy operation, the Altova packages are available in the Package Explorer
(in case of Eclipse), or under "Source Packages" in the Projects pane (in case of NetBeans IDE).

Altova packages in Eclipse 4.4

956 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Altova packages in NetBeans IDE 8.0.2

14.7.5 Example: Using the Schema Wrapper Libraries

This example illustrates how to use the generated schema wrapper libraries in order to write or
read programmatically XML documents conformant to the schema. Before using the sample code,
take some time to understand the structure of the included example schema. You will need this
schema to generate the code libraries used in this example. Understanding the example schema
will help you get started with the code generated from your schema and adapt it to your needs.

Example Schema14.7.5.1

The schema used in this example describes a library of books. The complete definition of the
schema is shown below. Save this code listing as Library.xsd if you want to get the same
results as this example. You will need this schema to generate the code libraries used in this
example.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://www.nanonull.com/LibrarySample" xmlns:xs="http://

www.w3.org/2001/XMLSchema" targetNamespace="http://www.nanonull.com/

LibrarySample" elementFormDefault="qualified"

attributeFormDefault="unqualified">

 <xs:element name="Library">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Book" type="BookType" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="LastUpdated" type="xs:dateTime"/>

 </xs:complexType>

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 957Code Generator

Altova MapForce 2018 Professional Edition

 </xs:element>

 <xs:complexType name="BookType">

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:integer" use="required"/>

 <xs:attribute name="Format" type="BookFormatType" use="required"/>

 </xs:complexType>

 <xs:complexType name="DictionaryType">

 <xs:complexContent>

 <xs:extension base="BookType">

 <xs:sequence>

 <xs:element name="FromLang" type="xs:string"/>

 <xs:element name="ToLang" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:simpleType name="BookFormatType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Hardcover"/>

 <xs:enumeration value="Paperback"/>

 <xs:enumeration value="Audiobook"/>

 <xs:enumeration value="E-book"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Library is a root element of a complexType which can be graphically represented as follows in
the schema view of XMLSpy:

958 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

As shown above, the library has a LastUpdated attribute (defined as xs:dateTime), and stores a
sequence of books. Each book is an xs:complexType and has two attributes: an ID (defined as
xs:integer), and a Format. The format of any book can be hardcover, paperback, audiobook, or
e-book. In the schema, Format is defined as xs:simpleType which uses an enumeration of the
above-mentioned values.

Each book also has a Title element (defined as xs:string), as well as one or several Author
elements (defined as xs:string).

The library may also contain books that are dictionaries. Dictionaries have the type
DictionaryType, which is derived by extension from the BookType. In other words, a dictionary
inherits all attributes and elements of a Book, plus two additional elements: FromLang and
ToLang, as illustrated below.

The FromLang and ToLang elements store the source and destination language of the
dictionary.

An XML instance file valid according to the schema above could therefore look as shown in the
listing below (provided that it is in the same directory as the schema file):

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://

www.nanonull.com/LibrarySample" xsi:schemaLocation="http://www.nanonull.com/

LibrarySample Library.xsd" LastUpdated="2016-02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/

LibrarySample" xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 959Code Generator

Altova MapForce 2018 Professional Edition

The next topics illustrate how to read from such a file programmatically, or write to such a file
programmatically. To begin, generate the schema wrapper code from the schema above, using
the steps described in Generating Code from XML Schemas or DTD.

Reading and Writing XML Documents (C++)14.7.5.2

After you generate code from the Library schema (see Example Schema), a test C++ application
is created, along with several supporting Altova libraries.

About the generated C++ libraries

The following diagram illustrates some of the most important classes of the generated code.

The central class of the generated code is the CLibrary class, which represents the XML
document. Such a class is generated for every schema and its name depends on the schema file
name (Library.xsd, in this example). As shown in the diagram, this class provides methods for
loading documents from files, binary streams, or strings (or saving documents to files, streams,
strings). For a list of all members exposed by this class, see the class reference
([YourSchema]::[CDoc]).

The Library2 field of the CLibrary class represents the actual root of the document. The number
at the end is meant to avoid a naming conflict with the class name. Library is an element in the
XML file, so in the C++ code it has a template class as type (MemberElement). The template
class exposes methods and properties for interacting with the Library element. In general, each
attribute and each element of a type in the schema is typed in the generated code with the

960 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

MemberAttribute and MemberElement template classes, respectively. For more information, see
[YourSchema]::MemberAttribute and [YourSchema]::MemberElement class reference.

The class CLibraryType is generated from the schema complex type with the same name, as
mentioned in About Schema Wrapper Libraries (C++). Notice that the CLibraryType class
contains a field Book, and a field LastUpdated. According to the logic already mentioned above,
these correspond to the Book element and LastUpdated attribute in the schema, and enable you
to manipulate programmatically (append, remove, etc) elements and attributes in the instance
XML document.

Since the DictionaryType is a complex type derived from BookType in the schema, this
relationship is also reflected in the generated classes. As illustrated in the diagram, the class
CDictionaryType inherits the CBookType class.

If your XML schema defines simple types as enumerations, the enumerated values become
available as Enum values in the generated code. In the schema used in this example, a book
format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these
values would be available through an Enum that is a member of the CBookFormatType class.

Writing an XML document

1. Open the LibraryTest.sln solution in Visual Studio generated from the Library schema
mentioned earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to
frequently generate code to the same directory, so that the schema changes are immediately
reflected in the code. Note that the generated test application and the Altova libraries are
overwritten every time when you generate code into the same target directory. Therefore do
not add code to the generated test application. Instead, integrate the Altova libraries into your
project (see Integrating Schema Wrapper Libraries).

2. In Solution Explorer, open the LibraryTest.cpp file, and edit the Example() method as
shown below.

#include <ctime> // required to get current time
using namespace Library; // required to work with Altova libraries

void Example()
{

// Create a new, empty XML document
CLibrary libDoc = CLibrary::CreateDocument();

// Create the root element <Library> and add it to the document
CLibraryType lib = libDoc.Library2.append();

// Get current time and set the "LastUpdated" attribute using Altova
classes

time_t t = time(NULL);
struct tm * now = localtime(& t);
altova::DateTime dt = altova::DateTime(now->tm_year + 1900, now->tm_mon

+ 1, now->tm_mday, now->tm_hour, now->tm_min, now->tm_sec);

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 961Code Generator

Altova MapForce 2018 Professional Edition

lib.LastUpdated = dt;

// Create a new <Book> and add it to the library
CBookType book = lib.Book.append();

// Set the "ID" attribute of the book
book.ID = 1;

// Set the "Format" attribute of the <Book> using an enumeration
constant

book.Format.SetEnumerationValue(CBookFormatType::k_Paperback);

// Add the <Title> and <Author> elements, and set values
book.Title.append() = _T("The XML Spy Handbook");
book.Author.append() = _T("Altova");

// Append a dictionary (book of derived type) and populate its
attributes and elements

CDictionaryType dictionary =
CDictionaryType(lib.Book.append().GetNode());

dictionary.ID = 2;
dictionary.Format.SetEnumerationValue(CBookFormatType::k_E_book);
dictionary.Title.append() = _T("English-German Dictionary");
dictionary.Author.append() = _T("John Doe");
dictionary.FromLang.append() = _T("English");
dictionary.ToLang.append() = _T("German");

// Since dictionary a derived type, set the xsi:type attribute of the
book element

dictionary.SetXsiType();

// Optionally, set the schema location
libDoc.SetSchemaLocation(_T("Library.xsd"));

// Save the XML document to a file with default encoding (UTF-8),
// "true" causes the file to be pretty-printed.
libDoc.SaveToFile(_T("GeneratedLibrary.xml"), true);

// Destroy the document
libDoc.DestroyDocument();

}

3. Press F5 to start debugging. If the code was executed successfully, a
GeneratedLibrary.xml file is created in the solution output directory.

Reading an XML document

1. Open the LibraryTest.sln solution in Visual Studio.
2. Save the code below as Library1.xml to a directory that can be read by the program

code (for example, the same directory as LibraryTest.sln).

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://

962 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

www.nanonull.com/LibrarySample" xsi:schemaLocation="http://www.nanonull.com/

LibrarySample Library.xsd" LastUpdated="2016-02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/

LibrarySample" xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

3. In Solution Explorer, open the LibraryTest.cpp file, and edit the Example() method as
shown below.

using namespace Library;
void Example()
{

// Load XML document
CLibrary libDoc = CLibrary::LoadFromFile(_T("Library1.xml"));

// Get the first (and only) root element <Library>
CLibraryType lib = libDoc.Library2.first();

// Check whether an element exists:
if (!lib.Book.exists())
{

tcout << "This library is empty." << std::endl;
return;

}

// iteration: for each <Book>...
for (Iterator<CBookType> itBook = lib.Book.all(); itBook; ++itBook)
{

// output values of ISBN attribute and (first and only) title
element

tcout << "ID: " << itBook->ID << std::endl;
tcout << "Title: " << tstring(itBook->Title.first()) <<

std::endl;

// read and compare an enumeration value
if (itBook->Format.GetEnumerationValue() ==

CBookFormatType::k_Paperback)
tcout << "This is a paperback book." << std::endl;

// for each <Author>...
for (CBookType::Author::iterator itAuthor = itBook->Author.all();

itAuthor; ++itAuthor)
tcout << "Author: " << tstring(itAuthor) << std::endl;

// alternative: use count and index

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 963Code Generator

Altova MapForce 2018 Professional Edition

for (unsigned int j = 0; j < itBook->Author.count(); ++j)
tcout << "Author: " << tstring(itBook->Author[j]) <<

std::endl;
}

// Destroy the document
libDoc.DestroyDocument();

}

4. Press F5 to start debugging.

Reading and Writing XML Documents (C#)14.7.5.3

After you generate code from the Library schema (see Example Schema), a test C# application is
created, along with several supporting Altova libraries.

About the generated C# libraries

The following diagram illustrates some of the most important classes of the generated code.

964 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The central class of the generated code is the Library2 class, which represents the XML
document. Such a class is generated for every schema and its name depends on the schema file
name (Library.xsd, in this example). Note that this class is called Library2 to avoid a possible
conflict with the namespace name. As shown in the diagram, this class provides methods for
loading documents from files, binary streams, or strings (or saving documents to files, streams,
strings). For a description of this class, see the class reference ([YourSchema].[Doc]).

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 965Code Generator

Altova MapForce 2018 Professional Edition

The Library3 member of the Library2 class represents the actual root of the document. Again,
the number at the end is meant to avoid a naming conflict with the class name.

According to the code generation rules mentioned in About Schema Wrapper Libraries (C#),
member classes are generated for each attribute and for each element of a type. In the generated
code, the name of such member classes is prefixed with MemberAttribute_ and
MemberElement_, respectively. In the diagram above, examples of such classes are
MemberAttribute_ID and MemberElement_Author, generated from the Author element and ID
attribute of a book, respectively. Such classes enable you to manipulate programmatically the
corresponding elements and attributes in the instance XML document (for example, append,
remove, set value, etc). For more information, see [YourSchemaType].MemberAttribute and
[YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this
relationship is also reflected in the generated classes. As illustrated in the diagram, the class
DictionaryType inherits the BookType class.

If your XML schema defines simple types as enumerations, the enumerated values become
available as Enum values in the generated code. In the schema used in this example, a book
format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these
values would be available through an Enum that is a member of the BookFormatType class.

Writing an XML document

1. Open the LibraryTest.sln solution in Visual Studio generated from the Library schema
mentioned earlier in this example.

While prototyping an application from a frequently changing XML schema, you may need to
frequently generate code to the same directory, so that the schema changes are immediately
reflected in the code. Note that the generated test application and the Altova libraries are
overwritten every time when you generate code into the same target directory. Therefore do
not add code to the generated test application. Instead, integrate the Altova libraries into your
project (see Integrating Schema Wrapper Libraries).

2. In Solution Explorer, open the LibraryTest.cs file, and edit the Example() method as
shown below.

 protected static void Example()

 {
 // Create a new XML library
 Library2 doc = Library2.CreateDocument();
 // Append the root element
 LibraryType root = doc.Library3.Append();

 // Create the library generation date using Altova DateTime class
 Altova.Types.DateTime dt = new

Altova.Types.DateTime(System.DateTime.Now);
 // Append the date to the root
 root.LastUpdated.Value = dt;

966 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 // Add a new book
 BookType book = root.Book.Append();
 // Set the value of the ID attribute
 book.ID.Value = 1;
 // Set the format of the book (enumeration)
 book.Format.EnumerationValue =
BookFormatType.EnumValues.eHardcover;
 // Set the Title and Author elements
 book.Title.Append().Value = "The XMLSpy Handbook";
 book.Author.Append().Value = "Altova";

 // Append a dictionary (book of derived type) and populate its
attributes and elements
 DictionaryType dictionary = new

DictionaryType(root.Book.Append().Node);
 dictionary.ID.Value = 2;
 dictionary.Title.Append().Value = "English-German Dictionary";
 dictionary.Format.EnumerationValue =
BookFormatType.EnumValues.eE_book;
 dictionary.Author.Append().Value = "John Doe";
 dictionary.FromLang.Append().Value = "English";
 dictionary.ToLang.Append().Value = "German";
 // Since it's a derived type, make sure to set the xsi:type
attribute of the book element
 dictionary.SetXsiType();

 // Optionally, set the schema location (adjust the path if
 // your schema is not in the same folder as the generated instance
file)
 doc.SetSchemaLocation("Library.xsd");

 // Save the XML document with the "pretty print" option enabled
 doc.SaveToFile("GeneratedLibrary.xml", true);

 }

3. Press F5 to start debugging. If the code was executed successfully, a
GeneratedLibrary.xml file is created in the solution output directory (typically, bin/
Debug).

Reading an XML document

1. Open the LibraryTest.sln solution in Visual Studio.
2. Save the code below as Library.xml to the output directory of the project (by default,

bin/Debug). This is the file that will be read by the program code.

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://

www.nanonull.com/LibrarySample" xsi:schemaLocation="http://www.nanonull.com/

LibrarySample Library.xsd" LastUpdated="2016-02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 967Code Generator

Altova MapForce 2018 Professional Edition

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/

LibrarySample" xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

3. In Solution Explorer, open the LibraryTest.cs file, and edit the Example() method as
shown below.

 protected static void Example()

 {
 // Load the XML file into a new Library instance
 Library2 doc = Library2.LoadFromFile("Library.xml");
 // Get the root element
 LibraryType root = doc.Library3.First;

 // Read the library generation date
 Altova.Types.DateTime dt = root.LastUpdated.Value;
 string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);

 Console.WriteLine("The library generation date is: " +
dt_as_string);

 // Iteration: for each <Book>...
 foreach (BookType book in root.Book)

 {
 // Output values of ID attribute and (first and only) title
element
 Console.WriteLine("ID: " + book.ID.Value);
 Console.WriteLine("Title: " + book.Title.First.Value);

 // Read and compare an enumeration value
 if (book.Format.EnumerationValue ==

BookFormatType.EnumValues.ePaperback)
 Console.WriteLine("This is a paperback book.");

 // Iteration: for each <Author>
 foreach (xs.stringType author in book.Author)

 Console.WriteLine("Author: " + author.Value);

 // Determine if this book is of derived type
 if (book.Node.Attributes.GetNamedItem("xsi:type") != null)

 {
 // Find the value of the xsi:type attribute
 string xsiTypeValue =

book.Node.Attributes.GetNamedItem("xsi:type").Value;
 // Get the namespace URI and the lookup prefix of this
namespace
 string namespaceUri = book.Node.NamespaceURI;

 string prefix =

968 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

book.Node.GetPrefixOfNamespace(namespaceUri);

 // if this book has DictionaryType
 if (namespaceUri == "http://www.nanonull.com/

LibrarySample" && xsiTypeValue.Equals(prefix + ":DictionaryType"))
 {
 // output additional fields
 DictionaryType dictionary = new

DictionaryType(book.Node);
 Console.WriteLine("Language from: " +
dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: " +
dictionary.ToLang.First.Value);
 }
 else

 {
 throw new Exception("Unexpected book type");

 }
 }
 }

 Console.ReadLine();
 }

4. Press F5 to start debugging. If the code was executed successfully, Library.xml will be
read by the program code, and its contents displayed as console output.

Reading and writing elements and attributes

Values of attributes and elements can be accessed using the Value property of the generated
member element or attribute class, for example:

// Output values of ID attribute and (first and only) title element
Console.WriteLine("ID: " + book.ID.Value);
Console.WriteLine("Title: " + book.Title.First.Value);

To get the value of the Title element in this particular example, we also used the First()
method, since this is the first (and only) Title element of a book. For cases when you need to
pick a specific element from a list by index, use the At() method.

The class generated for each member element of a type implements the standard
System.Collections.IEnumerable interface. This makes it possible to loop through multiple
elements of the same type. In this particular example, you can loop through all books of a Library
object as follows:

// Iteration: for each <Book>...
foreach (BookType book in root.Book)
{
 // your code here...
}

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 969Code Generator

Altova MapForce 2018 Professional Edition

To add a new element, use the Append() method. For example, the following code appends the
root element to the document:

// Append the root element to the library
LibraryType root = doc.Library3.Append();

You can set the value of an attribute (like ID in this example) as follows:

// Set the value of the ID attribute
book.ID.Value = 1;

For further information, see [YourSchemaType].MemberAttribute and
[YourSchemaType].MemberElement class reference.

Reading and writing enumeration values

If your XML schema defines simple types as enumerations, the enumerated values become
available as Enum values in the generated code. In the schema used in this example, a book
format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these
values would be available through an Enum:

To assign enumeration values to an object, use code such as the one below:

// Set the format of the book (enumeration)
book.Format.EnumerationValue = BookFormatType.EnumValues.eHardcover;

You can read such enumeration values from XML instance documents as follows:

// Read and compare an enumeration value
if (book.Format.EnumerationValue == BookFormatType.EnumValues.ePaperback)
Console.WriteLine("This is a paperback book.");

When an "if" condition is not enough, create a switch to determine each enumeration value and
process it as required.

970 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Working with xs:dateTime and xs:duration types

If the schema from which you generated code uses time and duration types such as
xs:dateTime, or xs:duration, these are converted to Altova native classes in generated code.
Therefore, to write a date or duration value to the XML document, do the following:

1. Construct an Altova.Types.DateTime or Altova.Types.Duration object (either from
System.DateTime, or by using parts such as hours and minutes, see
Altova.Types.DateTime and Altova.Types.Duration for more information).

2. Set the object as value of the required element or attribute, for example:

// Create the library generation date using Altova DateTime class
Altova.Types.DateTime dt = new Altova.Types.DateTime(System.DateTime.Now);
// Append the date to the root
root.LastUpdated.Value = dt;

To read a date or duration from an XML document, do the following:

1. Declare the element value (or attribute) as Altova.Types.DateTime or
Altova.Types.Duration object.

2. Format the required element or attribute, for example:

// Read the library generation date
Altova.Types.DateTime dt = root.LastUpdated.Value;
string dt_as_string = dt.ToString(DateTimeFormat.W3_dateTime);
Console.WriteLine("The library generation date is: " + dt_as_string);

For more information, see Altova.Types.DateTime and Altova.Types.Duration class
reference.

Working with derived types

If your XML schema defines derived types, you can preserve type derivation in XML documents
that you create or load programmatically. Taking the schema used in this example, the following
code listing illustrates how to create a new book of derived type DictionaryType:

// Append a dictionary (book of derived type) and populate its attributes and
elements
DictionaryType dictionary = new DictionaryType(root.Book.Append().Node);
dictionary.ID.Value = 2;
dictionary.Title.Append().Value = "English-German Dictionary";
dictionary.Author.Append().Value = "John Doe";
dictionary.FromLanguage.Append().Value = "English";
dictionary.ToLanguage.Append().Value = "German";

// Since it's a derived type, make sure to set the xsi:type attribute of the
book element
dictionary.SetXsiType();

Note that it is important to set the xsi:type attribute of the newly created book. This ensures
that the book type will be interpreted correctly by the schema when the XML document is

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 971Code Generator

Altova MapForce 2018 Professional Edition

validated.

When you load data from an XML document, the following code listing shows how to identify a
book of derived type DictionaryType in the loaded XML instance. First, the code finds the value
of the xsi:type attribute of the book node. If the namespace URI of this node is http://
www.nanonull.com/LibrarySample, and if the URI lookup prefix and type matches the value of
the xsi:type attribute, then this is a dictionary:

 // Determine if this book is of derived type
 if (book.Node.Attributes.GetNamedItem("xsi:type") != null)

 {
 // Find the value of the xsi:type attribute
 string xsiTypeValue =

book.Node.Attributes.GetNamedItem("xsi:type").Value;
 // Get the namespace URI and the lookup prefix of this namespace
 string namespaceUri = book.Node.NamespaceURI;

 string prefix = book.Node.GetPrefixOfNamespace(namespaceUri);

 // if this book has DictionaryType
 if (namespaceUri == "http://www.nanonull.com/LibrarySample" &&

xsiTypeValue.Equals(prefix + ":DictionaryType"))
 {
 // output additional fields
 DictionaryType dictionary = new DictionaryType(book.Node);

 Console.WriteLine("Language from: " +
dictionary.FromLang.First.Value);
 Console.WriteLine("Language to: " +
dictionary.ToLang.First.Value);
 }
 else

 {
 throw new Exception("Unexpected book type");

 }
 }

Reading and Writing XML Documents (Java)14.7.5.4

After you generate code from the Library schema (see Example Schema), a test Java project is
created, along with several supporting Altova libraries.

About the generated Java libraries

The following diagram illustrates some of the most important classes of the generated code.

972 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The central class of the generated code is the Library2 class, which represents the XML
document. Such a class is generated for every schema and its name depends on the schema file
name (Library.xsd, in this example). Note that this class is called Library2 to avoid a possible
conflict with the namespace name. As shown in the diagram, this class provides methods for

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 973Code Generator

Altova MapForce 2018 Professional Edition

loading documents from files, binary streams, or strings (or saving documents to files, streams,
strings). For a description of this class, see the class reference (com.[YourSchema].[Doc]).

The Library3 member of the Library2 class represents the actual root of the document. Again,
the number at the end is meant to avoid a naming conflict with the class name.

According to the code generation rules mentioned in About Generated Java Code, member
classes are generated for each attribute and for each element of a type. In the generated code,
the name of such member classes is prefixed with MemberAttribute_ and MemberElement_,
respectively. In the diagram above, examples of such classes are MemberAttribute_ID and
MemberElement_Author, generated from the Author element and ID attribute of a book,
respectively. Such classes enable you to manipulate programmatically the corresponding
elements and attributes in the instance XML document (for example, append, remove, set value,
etc). For more information, see com.[YourSchema].[YourSchemaType].MemberAttribute and
com.[YourSchema].[YourSchemaType].MemberElement class reference.

Since the DictionaryType is a complex type derived from BookType in the schema, this
relationship is also reflected in the generated classes. As illustrated in the diagram, the class
DictionaryType inherits the BookType class.

If your XML schema defines simple types as enumerations, the enumerated values become
available as Enum values in the generated code. In the schema used in this example, a book
format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these
values would be available through an Enum that is a member of the BookFormatType class.

Writing an XML document

1. On the File menu of Eclipse, click Import, select Existing Projects into Workspace,
and click Next.

2. Next to Select root directory, click Browse, select the directory to which you
generated the Java code, and then click Finish.

3. In the Eclipse Package Explorer, expand the com.LibraryTest package and open the
LibraryTest.java file.

While prototyping an application from a frequently changing XML schema, you may need to
frequently generate code to the same directory, so that the schema changes are immediately
reflected in the code. Note that the generated test application and the Altova libraries are
overwritten every time when you generate code into the same target directory. Therefore do
not add code to the generated test application. Instead, integrate the Altova libraries into your
project (see Integrating Schema Wrapper Libraries).

4. Edit the Example() method as shown below.

protected static void example() throws Exception {

 // create a new, empty XML document

 Library2 libDoc = Library2.createDocument();

 // create the root element <Library> and add it to the document

 LibraryType lib = libDoc.Library3.append();

974 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 // set the "LastUpdated" attribute

 com.altova.types.DateTime dt = new

com.altova.types.DateTime(DateTime.now());
 lib.LastUpdated.setValue(dt);

 // create a new <Book> and populate its elements and attributes

 BookType book = lib.Book.append();
 book.ID.setValue(java.math.BigInteger.valueOf(1));
 book.Format.setEnumerationValue(BookFormatType.EPAPERBACK);
 book.Title.append().setValue("The XML Spy Handbook");
 book.Author.append().setValue("Altova");

 // create a dictionary (book of derived type) and populate its elements

and attributes

 DictionaryType dict = new DictionaryType(lib.Book.append().getNode());

 dict.ID.setValue(java.math.BigInteger.valueOf(2));
 dict.Title.append().setValue("English-German Dictionary");
 dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
 dict.Author.append().setValue("John Doe");
 dict.FromLang.append().setValue("English");
 dict.ToLang.append().setValue("German");
 dict.setXsiType();

 // set the schema location (this is optional)

 libDoc.setSchemaLocation("Library.xsd");

 // save the XML document to a file with default encoding (UTF-8). "true"

causes the file to be pretty-printed.

 libDoc.saveToFile("Library1.xml", true);

 }

5. Build the Java project and run it. If the code is executed successfully, a Library1.xml file
is created in the project directory.

Reading an XML document

1. On the File menu of Eclipse, click Import, select Existing Projects into Workspace,
and click Next.

2. Next to Select root directory, click Browse, select the directory to which you
generated the Java code, and then click Finish.

3. Save the code below as Library1.xml to a local directory (you will need to refer to the
path of the Library1.xml file from the sample code below).

<?xml version="1.0" encoding="utf-8"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://

www.nanonull.com/LibrarySample" xsi:schemaLocation="http://www.nanonull.com/

LibrarySample Library.xsd" LastUpdated="2016-02-03T17:10:08.4977404">

 <Book ID="1" Format="E-book">

 <Title>The XMLSpy Handbook</Title>

 <Author>Altova</Author>

 </Book>

 <Book ID="2" Format="Paperback" xmlns:n1="http://www.nanonull.com/

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 975Code Generator

Altova MapForce 2018 Professional Edition

LibrarySample" xsi:type="n1:DictionaryType">

 <Title>English-German Dictionary</Title>

 <Author>John Doe</Author>

 <FromLang>English</FromLang>

 <ToLang>German</ToLang>

 </Book>

</Library>

4. In the Eclipse Package Explorer, expand the com.LibraryTest package and open the
LibraryTest.java file.

5. Edit the Example() method as shown below.

 protected static void example() throws Exception {

 // load XML document from a path, make sure to adjust the path as

necessary

 Library2 libDoc = Library2.loadFromFile("Library1.xml");

 // get the first (and only) root element <Library>

 LibraryType lib = libDoc.Library3.first();

 // check whether an element exists:

 if (!lib.Book.exists()) {

 System.out.println("This library is empty.");
 return;

 }

 // read a DateTime schema type

 com.altova.types.DateTime dt = lib.LastUpdated.getValue();
 System.out.println("The library was last updated on: " +
dt.toDateString());

 // iteration: for each <Book>...

 for (java.util.Iterator itBook = lib.Book.iterator(); itBook.hasNext();)

 {
 BookType book = (BookType) itBook.next();
 // output values of ID attribute and (first and only) title element

 System.out.println("ID: " + book.ID.getValue());
 System.out.println("Title: " + book.Title.first().getValue());

 // read and compare an enumeration value

 if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK)

 System.out.println("This is a paperback book.");

 // for each <Author>...

 for (java.util.Iterator itAuthor = book.Author.iterator(); itAuthor

 .hasNext();)
 System.out.println("Author: " + ((com.Library.xs.stringType)
itAuthor.next()).getValue());

 // find the derived type of this book

 // by looking at the value of the xsi:type attribute, using DOM

 org.w3c.dom.Node bookNode = book.getNode();
 if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {

976 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 // Get the value of the xsi:type attribute

 String xsiTypeValue =
bookNode.getAttributes().getNamedItem("xsi:type").getNodeValue();

 // Get the namespace URI and lookup prefix of this namespace

 String namespaceUri = bookNode.getNamespaceURI();
 String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

 // If xsi:type matches the namespace URI and type of the book

node

 if (namespaceUri == "http://www.nanonull.com/LibrarySample"

 && (xsiTypeValue.equals(lookupPrefix +
":DictionaryType"))) {
 // ...then this is a book of derived type (dictionary)

 DictionaryType dictionary = new

DictionaryType(book.getNode());
 // output the value of the "FromLang" and "ToLang" elements

 System.out.println("From language: " +
dictionary.FromLang.first().getValue());
 System.out.println("To language: " +
dictionary.ToLang.first().getValue());
 }
 else

 {
 // throw an error

 throw new java.lang.Error("This book has an unknown type.");

 }
 }
 }
 }

6. Build the Java project and run it. If the code is executed successfully, Library1.xml will
be read by the program code, and its contents displayed in the Console view.

Reading and writing elements and attributes

Values of attributes and elements can be accessed using the getValue() method of the
generated member element or attribute class, for example:

// output values of ID attribute and (first and only) title element

System.out.println("ID: " + book.ID.getValue());
System.out.println("Title: " + book.Title.first().getValue());

To get the value of the Title element in this particular example, we also used the first()
method, since this is the first (and only) Title element of a book. For cases when you need to
pick a specific element from a list by index, use the at() method.

To iterate through multiple elements, use either index-based iteration or java.util.Iterator.
For example, you can iterate through the books of a library as follows:

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 977Code Generator

Altova MapForce 2018 Professional Edition

// index-based iteration

for (int j = 0; j < lib.Book.count(); ++j) {

 // your code here

}

// alternative iteration using java.util.Iterator

for (java.util.Iterator itBook = lib.Book.iterator(); itBook.hasNext();) {

 // your code here

 }

To add a new element, use the append() method. For example, the following code appends an
empty root Library element to the document:

// create the root element <Library> and add it to the document

LibraryType lib = libDoc.Library3.append();

Once an element is appended, you can set the value of any of its elements or an attributes by
using the setValue() method.

// set the value of the Title element

book.Title.append().setValue("The XML Spy Handbook");
// set the value of the ID attribute

book.ID.setValue(java.math.BigInteger.valueOf(1));

For further information, see com.[YourSchema].[YourSchemaType].MemberAttribute and com.
[YourSchema].[YourSchemaType].MemberElement class reference.

Reading and writing enumeration values

If your XML schema defines simple types as enumerations, the enumerated values become
available as Enum values in the generated code. In the schema used in this example, a book
format can be hardcover, paperback, e-book, and so on. Therefore, in the generated code, these
values would be available through an Enum (see the BookFormatType class diagram above). To
assign enumeration values to an object, use code such as the one below:

// set an enumeration value

book.Format.setEnumerationValue(BookFormatType.EPAPERBACK);

You can read such enumeration values from XML instance documents as follows:

// read an enumeration value

if (book.Format.getEnumerationValue() == BookFormatType.EPAPERBACK)

 System.out.println("This is a paperback book."

When an "if" condition is not enough, create a switch to determine each enumeration value and
process it as required.

978 Code Generator Generating Code from XML Schemas or DTDs

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Working with xs:dateTime and xs:duration types

If the schema from which you generated code uses time and duration types such as
xs:dateTime, or xs:duration, these are converted to Altova native classes in generated code.
Therefore, to write a date or duration value to the XML document, do the following:

1. Construct a com.altova.types.DateTime or com.altova.types.Duration object.
2. Set the object as value of the required element or attribute, for example:

// set the value of an attribute of DateTime type

com.altova.types.DateTime dt = new com.altova.types.DateTime(DateTime.now());

lib.LastUpdated.setValue(dt);

To read a date or duration from an XML document:

1. Declare the element value (or attribute) as com.altova.types.DateTime or
com.altova.types.Duration object.

2. Format the required element or attribute, for example:

// read a DateTime type

com.altova.types.DateTime dt = lib.LastUpdated.getValue();
 System.out.println("The library was last updated on: " +
dt.toDateString());

For more information, see com.altova.types.DateTime and com.altova.types.Duration
class reference.

Working with derived types

If your XML schema defines derived types, you can preserve type derivation in XML documents
that you create or load programmatically. Taking the schema used in this example, the following
code listing illustrates how to create a new book of derived type DictionaryType:

// create a dictionary (book of derived type) and populate its elements and

attributes

DictionaryType dict = new DictionaryType(lib.Book.append().getNode());

dict.ID.setValue(java.math.BigInteger.valueOf(2));
dict.Title.append().setValue("English-German Dictionary");
dict.Format.setEnumerationValue(BookFormatType.EE_BOOK);
dict.Author.append().setValue("John Doe");
dict.FromLang.append().setValue("English");
dict.ToLang.append().setValue("German");
dict.setXsiType();

Note that it is important to set the xsi:type attribute of the newly created book. This ensures
that the book type will be interpreted correctly by the schema when the XML document is
validated.

When you load data from an XML document, the following code listing shows how to identify a

© 2018 Altova GmbH

Generating Code from XML Schemas or DTDs 979Code Generator

Altova MapForce 2018 Professional Edition

book of derived type DictionaryType in the loaded XML instance. First, the code finds the value
of the xsi:type attribute of the book node. If the namespace URI of this node is http://
www.nanonull.com/LibrarySample, and if the URI lookup prefix and type matches the value of
the xsi:type attribute, then this is a dictionary:

 // find the derived type of this book

 // by looking at the value of the xsi:type attribute, using DOM

 org.w3c.dom.Node bookNode = book.getNode();
 if (bookNode.getAttributes().getNamedItem("xsi:type") != null) {

 // Get the value of the xsi:type attribute

 String xsiTypeValue =
bookNode.getAttributes().getNamedItem("xsi:type").getNodeValue();

 // Get the namespace URI and lookup prefix of the book node

 String namespaceUri = bookNode.getNamespaceURI();
 String lookupPrefix = bookNode.lookupPrefix(namespaceUri);

 // If xsi:type matches the namespace URI and type of the book

node

 if (namespaceUri == "http://www.nanonull.com/LibrarySample"

 && (xsiTypeValue.equals(lookupPrefix +
":DictionaryType"))) {
 // ...then this is a book of derived type (dictionary)

 DictionaryType dictionary = new

DictionaryType(book.getNode());
 // output the value of the "FromLang" and "ToLang" elements

 System.out.println("From language: " +
dictionary.FromLang.first().getValue());
 System.out.println("To language: " +
dictionary.ToLang.first().getValue());
 }
 else

 {
 // throw an error

 throw new java.lang.Error("This book has an unknown type.");

 }
 }

980 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.8 Reference to Generated Classes (C++)

This chapter includes a description of C++ classes generated with MapForce from a DTD or XML
schema (see Generating Code from XML Schemas or DTDs). You can integrate these classes
into your code to read, modify, and write XML documents.

Note: The generated code may include other supporting classes, which are not listed here and
are subject to modification.

14.8.1 altova::DateTime

This class enables you to process XML attributes or elements that have date and time types,
such as xs:dateTime.

Constructors

Name Description

DateTime() Initializes a new instance of the DateTime class to
12:00:00 midnight, January 1, 0001.

DateTime(__int64 value,
short timezone)

Initializes a new instance of the DateTime class. The
value parameter represents the number of ticks (100-
nanosecond intervals) that have elapsed since
12:00:00 midnight, January 1, 0001.

DateTime(int year,
unsigned char month,
unsigned char day,
unsigned char hour,
unsigned char minute,
double second)

Initializes a new instance of the DateTime class to the
year, month, day, hour, minute, and second supplied
as argument.

DateTime(int year,
unsigned char month,
unsigned char day,
unsigned char hour,
unsigned char minute,
double second, short
timezone)

Initializes a new instance of the DateTime class to the
year, month, day, hour, minute, second and timezone
supplied as argument. The timezone is expressed in
minutes and can be positive or negative. For example,
the timezone "UTC-01:00" is expressed as "-60".

Methods

Name Description

unsigned char Day()
const

Returns the day of month of the current DateTime
object. The return values range from 1 through 31.

© 2018 Altova GmbH

Reference to Generated Classes (C++) 981Code Generator

Altova MapForce 2018 Professional Edition

Name Description

int DayOfYear() const Returns the day of year of the current DateTime
object. The return values range from 1 through 366.

bool HasTimezone() const Returns Boolean true if the current DateTime object
has a timezone defined; false otherwise.

unsigned char Hour()
const

Returns the hour of the current DateTime object. The
return values range from 0 through 23.

static bool
IsLeapYear(int year)

Returns Boolean true if the year of the DateTime
class is a leap year; false otherwise.

unsigned char Minute()
const

Returns the minute of the current DateTime object.
The return values range from 0 through 59.

unsigned char Month()
const

Returns the month of the current DateTime object. The
return values range from 1 through 12.

__int64
NormalizedValue() const

Returns the value of the DateTime object expressed
as the Coordinated Universal Time (UTC).

double Second() const Returns the second of the current DateTime object.
The return values range from 0 through 59.

void SetTimezone(short
tz)

Sets the timezone of the current DateTime object to
the timezone value supplied as argument. The tz
argument is expressed in minutes and can be positive
or negative.

short Timezone() const Returns the timezone, in minutes, of the current
DateTime object. Before using this method, make sure
that the object actually has a timezone, by calling the
HasTimezone() method.

__int64 Value() const Returns the value of the DateTime object, expressed
in the number of ticks (100-nanosecond intervals) that
have elapsed since 12:00:00 midnight, January 1,
0001.

int Weekday() const Returns the day of week of the current DateTime
object, as an integer. Values range from 0 through 6,
where 0 is Monday (ISO-8601).

int Weeknumber() const Returns the number of week in the year of the current
DateTime object. The return values are according to
ISO-8601.

int WeekOfMonth() const Returns the number of week in the month of the
current DateTime object. The return values are
according to ISO-8601.

int Year() const Returns the year of the current DateTime object.

982 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Example

void Example()
{

// initialize a new DateTime instance to 12:00:00 midnight, January
1st, 0001

altova::DateTime dt1 = altova::DateTime();

// initialize a new DateTime instance using the year, month, day, hour,
minute, and second

altova::DateTime dt2 = altova::DateTime(2015, 11, 10, 9, 8, 7);

// initialize a new DateTime instance using the year, month, day, hour,
minute, second, and UTC +01:00 timezone

 altova::DateTime dt = altova::DateTime(2015, 11, 22, 13, 53, 7, 60);

// Get the value of this DateTime object
std::cout << "The number of ticks of the DateTime object is: " <<

dt.Value() << std::endl;

// Get the year
cout << "The year is: " << dt.Year() << endl;
// Get the month
cout << "The month is: " << (int)dt.Month() << endl;
// Get the day of the month
cout << "The day of the month is: " << (int) dt.Day() << endl;
// Get the day of the year
cout << "The day of the year is: " << dt.DayOfYear() << endl;
// Get the hour
cout << "The hour is: " << (int) dt.Hour() << endl;
// Get the minute
cout << "The minute is: " << (int) dt.Minute() << endl;
// Get the second
cout << "The second is: " << dt.Second() << endl;
// Get the weekday
cout << "The weekday is: " << dt.Weekday() << endl;
// Get the week number
cout << "The week of year is: " << dt.Weeknumber() << endl;
// Get the week in month
cout << "The week of month is: " << dt.WeekOfMonth() << endl;

// Check whether a DateTime instance has a timezone
if (dt.HasTimezone() == TRUE)
{

// output the value of the Timezone
cout << "The timezone is: " << dt.Timezone() << endl;

}
else
{

cout << "No timezone has been defined." << endl;
}

// Construct a DateTime object with a timezone UTC+01:00 (Vienna)
altova::DateTime vienna_dt = DateTime(2015, 11, 23, 14, 30, 59, +60);
// Output the result in readable format
cout << "The Vienna time: "

© 2018 Altova GmbH

Reference to Generated Classes (C++) 983Code Generator

Altova MapForce 2018 Professional Edition

 << (int) vienna_dt.Month()
 << "-" << (int) vienna_dt.Day()
 << " " << (int) vienna_dt.Hour()
 << ":" << (int) vienna_dt.Minute()
 << ":" << (int) vienna_dt.Second()
 << endl;

// Convert the value to UTC time
DateTime utc_dt = DateTime(vienna_dt.NormalizedValue());
// Output the result in readable format
cout << "The UTC time: "

<< (int) utc_dt.Month()
<< "-" << (int) utc_dt.Day()
<< " " << (int) utc_dt.Hour()
<< ":" << (int) utc_dt.Minute()
<< ":" << (int) utc_dt.Second()
<< endl;

// Check if a year is a leap year
int year = 2016;
if(altova::DateTime::IsLeapYear(year))
{ cout << year << " is a leap year" << endl; }
else
{ cout << year << " is not a leap year" << endl; }

}

14.8.2 altova::Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration() Initializes a new instance of the Duration class to an
empty value.

Duration(const
DayTimeDuration& dt)

Initializes a new instance of the Duration class to a
duration defined by the dt argument (see
altova::DayTimeDuration).

Duration(const
YearMonthDuration& ym)

Initializes a new instance of the Duration class to the
duration defined by the ym argument (see
altova::YearMonthDuration).

Duration(const
YearMonthDuration& ym,
const DayTimeDuration&
dt)

Initializes a new instance of the Duration class to the
duration defined by both the dt and the ym arguments
(see altova::YearMonthDuration and
altova::DayTimeDuration).

984 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Methods

Name Description

int Days() const Returns the number of days in the current Duration
instance.

DayTimeDuration
DayTime() const

Returns the day and time duration in the current
Duration instance, expressed as a DayTimeDuration
object (see altova::DayTimeDuration).

int Hours() const Returns the number of hours in the current Duration
instance.

bool IsNegative() const Returns Boolean true if the current Duration instance
is negative.

bool IsPositive() const Returns Boolean true if the current Duration instance
is positive.

int Minutes() const Returns the number of minutes in the current
Duration instance.

int Months() const Returns the number of months in the current Duration
instance.

double Seconds() const Returns the number of seconds in the current
Duration instance.

YearMonthDuration
YearMonth() const

Returns the year and month duration in the current
Duration instance, expressed as a
YearMonthDuration object (see
altova::YearMonthDuration).

int Years() const Returns the number of years in the current Duration
instance.

Example

The following code listing illustrates creating a new Duration object, as well as reading values
from it.

void ExampleDuration()
{

// Create an empty Duration object
altova::Duration empty_duration = altova::Duration();

// Create a Duration object using an existing duration value
altova::Duration duration1 = altova::Duration(empty_duration);

// Create a YearMonth duration of six years and five months
altova::YearMonthDuration yrduration = altova::YearMonthDuration(6,

5);

© 2018 Altova GmbH

Reference to Generated Classes (C++) 985Code Generator

Altova MapForce 2018 Professional Edition

// Create a DayTime duration of four days, three hours, two minutes,
and one second

altova::DayTimeDuration dtduration = altova::DayTimeDuration(4, 3, 2,
1);

// Create a Duration object by combining the two previously created
durations

altova::Duration duration = altova::Duration(yrduration, dtduration);

// Get the number of years in this Duration instance
cout << "Years: " << duration.Years() << endl;

// Get the number of months in this Duration instance
cout << "Months: " << duration.Months() << endl;

// Get the number of days in this Duration instance
cout << "Days: " << duration.Days() << endl;

// Get the number of hours in this Duration instance
cout << "Hours: " << duration.Hours() << endl;

// Get the number of hours in this Duration instance
cout << "Minutes: " << duration.Minutes() << endl;

// Get the number of seconds in this Duration instance
cout << "Seconds: " << duration.Seconds() << endl;

}

14.8.3 altova::DayTimeDuration

This class enables you to process XML schema duration types that consist of a day and time
part.

Constructors

Name Description

DayTimeDuration() Initializes a new instance of the DayTimeDuration
class to an empty value.

DayTimeDuration(int
days, int hours, int
minutes, double seconds)

Initializes a new instance of the DayTimeDuration
class to the number of days, hours, minutes, and
seconds supplied as arguments.

explicit
DayTimeDuration(__int64
value)

Initializes a new instance of the DayTimeDuration
class to a duration that consists of as many ticks
(100-nanosecond intervals) as supplied in the value
argument.

986 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Methods

Name Description

int Days() const Returns the number of days in the current
DayTimeDuration instance.

int Hours() const Returns the number of hours in the current
DayTimeDuration instance.

bool IsNegative() const Returns Boolean true if the current DayTimeDuration
instance is negative.

bool IsPositive() const Returns Boolean true if the current DayTimeDuration
instance is positive.

int Minutes() const Returns the number of minutes in the current
DayTimeDuration instance.

double Seconds() const Returns the number of seconds in the current
DayTimeDuration instance.

__int64 Value() const Returns the value (in ticks) of the current
DayTimeDuration instance.

14.8.4 altova::YearMonthDuration

This class enables you to process XML schema duration types that consist of a year and month
part.

Constructors

Name Description

YearMonthDuration() Initializes a new instance of the YearMonthDuration
class to an empty value.

YearMonthDuration(int
years, int months)

Initializes a new instance of the YearMonthDuration
class to the number of years and months supplied in
the years and months arguments.

explicit
YearMonthDuration(int
value)

Initializes a new instance of the YearMonthDuration
class to a duration that consists of as many ticks
(100-nanosecond intervals) as supplied in the value
argument.

© 2018 Altova GmbH

Reference to Generated Classes (C++) 987Code Generator

Altova MapForce 2018 Professional Edition

Methods

Name Description

bool IsNegative() const Returns Boolean true if the current
YearMonthDuration instance is negative.

bool IsPositive() const Returns Boolean true if the current
YearMonthDuration instance is positive.

int Months() const Returns the number of months in the current
YearMonthDuration instance.

int Value() const Returns the value (in ticks) of the current
YearMonthDuration instance.

int Years() Returns the number of years in the current
YearMonthDuration instance.

14.8.5 altova::meta::Attribute

This class enables you to access schema information about classes generated from attributes.
Note that this class is not meant to provide dynamic information about particular instances of an
attribute in an XML document. Instead, it enables you to obtain programmatically information
about a particular attribute defined in the XML schema.

Methods

Name Description

SimpleType GetDataType() Returns the type of the attribute content.

string_type
GetLocalName()

Returns the local name of the attribute.

string_type
GetNamespaceURI()

Returns the namespace URI of the attribute.

bool IsRequired() Returns true if the attribute is required.

Operators

Name Description

bool operator() Returns true if this is not the NULL Attribute.

bool operator!() Returns true if this is the NULL Attribute.

988 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.8.6 altova::meta::ComplexType

This class enables you to access schema information about classes generated from complex
types. Note that this class is not meant to provide dynamic information about particular instances
of a complex type in an XML document. Instead, it enables you to obtain programmatically
information about a particular complex type defined in the XML schema.

Methods

Name Description

Attribute
FindAttribute(const
char_type* localName,
const char_type*
namespaceURI)

Finds the attribute with the specified local name and
namespace URI.

Element
FindElement(const
char_type* localName,
const char_type*
namespaceURI)

Finds the element with the specified local name and
namespace URI.

std::vector<Attribute>
GetAttributes()

Returns a list of all attributes.

ComplexType
GetBaseType()

Returns the base type of this type.

SimpleType
GetContentType()

Returns the simple type of the content.

std::vector<Element>
GetElements()

Returns a list of all elements.

string_type
GetLocalName()

Returns the local name of the type.

string_type
GetNamespaceURI()

Returns the namespace URI of the type.

Operators

Name Description

bool operator() Returns true if this is not the NULL ComplexType.

bool operator!() Returns true if this is the NULL ComplexType.

© 2018 Altova GmbH

Reference to Generated Classes (C++) 989Code Generator

Altova MapForce 2018 Professional Edition

14.8.7 altova::meta::Element

This class enables you to access information about classes generated from schema elements.
Note that this class is not meant to provide dynamic information about particular instances of an
element in an XML document. Instead, it enables you to obtain programmatically information
about a particular element defined in the XML schema.

Methods

Name Description

ComplexType
GetDataType()

Returns the type of the element. Note that this is
always a complex type even if declared as simple in
the original schema. Use GetContentType() of the
returned object to get the simple content type.

string_type
GetLocalName()

Returns the local name of the element.

unsigned int
GetMaxOccurs()

Returns the maxOccurs value defined in the schema.

unsigned int
GetMinOccurs()

Returns the minOccurs value defined in the schema.

string_type
GetNamespaceURI()

Returns the namespace URI of the element.

Operators

Name Description

bool operator() Returns true if this is not the NULL Element.

bool operator!() Returns true if this is the NULL Element.

14.8.8 altova::meta::SimpleType

This class enables you to access schema information about classes generated from simple
types. Note that this class is not meant to provide dynamic information about particular instances
of simple types in an XML document. Instead, it enables you to obtain programmatically
information about a particular simple type defined in the XML schema.

990 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Methods

Name Description

SimpleType GetBaseType() Returns the base type of this type.

std::vector<string_type>
GetEnumerations()

Returns a list of all enumeration facets.

unsigned int
GetFractionDigits()

Returns the value of this facet.

unsigned int GetLength() Returns the value of this facet.

string_type
GetLocalName()

Returns the local name of the type.

string_type
GetMaxExclusive()

Returns the value of this facet.

string_type
GetMaxInclusive()

Returns the value of this facet.

unsigned int
GetMaxLength()

Returns the value of this facet.

string_type
GetMinExclusive()

Returns the value of this facet.

string_type
GetMinInclusive()

Returns the value of this facet.

unsigned int
GetMinLength()

Returns the value of this facet.

string_type
GetNamespaceURI()

Returns the namespace URI of the type.

std::vector<string_type>
GetPatterns()

Returns a list of all pattern facets.

unsigned int
GetTotalDigits()

Returns the value of this facet.

WhitespaceType
GetWhitespace()

Returns the value of the whitespace facet, which is
one of:

Whitespace_Unknown
Whitespace_Preserve
Whitespace_Replace
Whitespace_Collapse

© 2018 Altova GmbH

Reference to Generated Classes (C++) 991Code Generator

Altova MapForce 2018 Professional Edition

Operators

Name Description

bool operator() Returns true if this is not the NULL SimpleType.

bool operator!() Returns true if this is the NULL SimpleType.

14.8.9 [YourSchema]::[CDoc]

When code is generated from an XML Schema, the generated code provides a document class
with the same name as the schema. This class contains all possible root elements as members,
as well as the following methods. Note that, in the method names below, "CDoc" stands for the
name of the generated document class itself.

Methods

Name Description

static CDoc CreateDocument() Creates a new, empty XML document.
Must be released using
DestroyDocument().

void DestroyDocument() Destroys a document. All references to the
document and its nodes are invalidated.
This must be called when you finished
working with a document.

static CDoc LoadFromBinary(const
std:vector<unsigned char>& xml)

Loads an XML document from a byte array.

static CDoc LoadFromFile(const
string_type& fileName)

Loads an XML document from a file.

static CDoc LoadFromString(const
string_type& xml)

Loads an XML document from a string.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint)

Saves an XML document to a byte array.
When set to true, the prettyPrint
argument re-formats the XML document for
better readability.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint,
const string_type & encoding)

Saves an XML document to a byte array,
with optional "pretty-print" formatting, with
the specified encoding.

std::vector<unsigned char>
SaveToBinary(bool prettyPrint,
const string_type & encoding, bool
bBigEndian, bool bBOM)

Saves an XML document to a byte array,
with optional "pretty-print" formatting, with
the specified encoding. Byte order and
Unicode byte-order mark can be specified

992 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

for Unicode encodings.

void SaveToFile(const string_type
& fileName, bool prettyPrint)

Saves an XML document to a file, with
optional "pretty-print" formatting.

void SaveToFile(const string_type
& fileName, bool omitXmlDecl)

Saves an XML document to a file. If the
omitXmlDecl argument is set to true, the
XML declaration will not be written.

void SaveToFile(const string_type
& fileName, bool omitXmlDecl,
const string_type & encoding)

Saves an XML document to a file with the
specified encoding. If the omitXmlDecl
argument is set to true, the XML
declaration will not be written.

void SaveToFile(const string_type
& fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, bool bBigEndian, bool
bBOM)

Saves an XML document to a file, with
optional "pretty-print" formatting, with the
specified encoding. Byte order and Unicode
byte-order mark can be specified for
Unicode encodings.

void SaveToFile(const string_type
& fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, bool bBigEndian, bool
bBOM, const string_type & lineend)

Saves an XML document to a file, with
optional "pretty-print" formatting, with the
specified encoding and the specified line
end. Byte order and Unicode byte-order
mark can be specified for Unicode
encodings.

This method is only available if you
generated the code for the Xerces3 XML
library (see Code Generator Options).

void SaveToFile(const string_type&
fileName, bool prettyPrint, bool
omitXmlDecl, const string_type &
encoding, const string_type &
lineend)

Saves an XML document to a file, with
optional "pretty-print" formatting, with the
specified encoding and the specified line
end.

This method is only available if you
generated the code for the Xerces3 XML
library (see Code Generator Options).

void SaveToFile(const string_type
& fileName, bool prettyPrint,
const string_type & encoding)

Saves an XML document to a file, with
optional "pretty-print" formatting, with the
specified encoding.

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, bool
bBigEndian, bool bBOM)

Saves an XML document to a file, with
optional "pretty-print" formatting, with the
specified encoding. Byte order and Unicode
byte-order mark can be specified for
Unicode encodings.

void SaveToFile(const string_type& Saves an XML document to a file with the

© 2018 Altova GmbH

Reference to Generated Classes (C++) 993Code Generator

Altova MapForce 2018 Professional Edition

Name Description

fileName, bool prettyPrint, const
string_type & encoding, bool
bBigEndian, bool bBOM, const
string_type & lineend)

specified encoding and the specified line
end. Byte order and Unicode byte-order
mark can be specified for Unicode
encodings.

This method is only available if you
generated the code for the Xerces3 XML
library (see Code Generator Options).

void SaveToFile(const string_type&
fileName, bool prettyPrint, const
string_type & encoding, const
string_type & lineend)

Saves an XML document to a file, with
optional "pretty-print" formatting, with the
specified encoding and the specified line
end.

This method is only available if you
generated the code for the Xerces3 XML
library (see Code Generator Options).

string_type SaveToString(bool
prettyPrint)

Saves an XML document to a string, with
optional "pretty-print" formatting.

string_type SaveToString(bool
prettyPrint, bool omitXmlDecl)

Saves an XML document to a string, with
optional "pretty-print" formatting. If the
omitXmlDecl argument is set to true, the
XML declaration will not be written.

void SetDTDLocation(const
string_type & dtdLocation)

Adds a DOCTYPE declaration with the
specified system ID. A root element must
already exist. This method is not supported
for MSXML, since it is not possible to add a
DOCTYPE declaration to a document in
memory.

void SetSchemaLocation(const
string_type & schemaLocation)

Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute
to the root element. A root element must
already exist.

14.8.10 [YourSchema]::MemberAttribute

When code is generated from an XML schema, a class such as this one is created for each
member attribute of a type.

994 Code Generator Reference to Generated Classes (C++)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Methods

Name Description

bool exists() Returns true if the attribute exists.

int GetEnumerationValue() Generated for enumeration types only.
Returns one of the constants generated for
the possible values, or "Invalid" if the value
does not match any of the enumerated
values in the schema.

altova::meta::Attribute info() Returns an object for querying schema
information (see
altova::meta::Attribute).

void remove() Removes the attribute from its parent
element.

void SetEnumerationValue(int) Generated for enumeration types only.
Pass one of the constants generated for
the possible values to this method to set
the value.

14.8.11 [YourSchema]::MemberElement

When code is generated from an XML schema, a class such as this one is created for each
member element of a type. In the descriptions below, "MemberType" stands for the name of the
member element itself.

Methods

Name Description

Iterator<MemberType> all() Returns an object for iterating instances of
the member element.

MemberType append() Creates a new element and appends it to
its parent.

unsigned int count() Returns the count of elements.

int GetEnumerationValue() Generated for enumeration types only.
Returns one of the constants generated for
the possible values, or Invalid if the value
does not match any of the enumerated
values in the schema.

© 2018 Altova GmbH

Reference to Generated Classes (C++) 995Code Generator

Altova MapForce 2018 Professional Edition

Name Description

bool exists() Returns true if at least one element exists.

MemberType first() Returns the first instance of the member
element.

MemberType operator[](unsigned int
index)

Returns the member element specified by
the index.

altova::meta::Element info() Returns an object for querying schema
information (see altova::meta::Element).

MemberType last() Returns the last instance of the member
element.

void remove() Deletes all occurrences of the element from
its parent.

void remove(unsigned int index) Deletes the occurrence of the element
specified by the index.

void SetEnumerationValue(int) Generated for enumeration types only.
Pass one of the constants generated for
the possible values to this method to set
the value.

996 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.9 Reference to Generated Classes (C#)

This chapter includes a description of C# classes generated with MapForce from a DTD or XML
schema (see Generating Code from XML Schemas or DTDs). You can integrate these classes
into your code to read, modify, and write XML documents.

Note: The generated code may include other supporting classes, which are not listed here and
are subject to modification.

14.9.1 Altova.Types.DateTime

This class enables you to process XML attributes or elements that have date and time types,
such as xs:dateTime.

Constructors

Name Description

DateTime(DateTime obj) Initializes a new instance of the DateTime class to
the DateTime object supplied as argument.

DateTime(System.DateTim
e newvalue)

Initializes a new instance of the DateTime class to
the System.DateTime object supplied as argument.

DateTime(int year, int
month, int day, int
hour, int minute,
double second, int
offsetTZ)

Initializes a new instance of the DateTime class to
the year, month, day, hour, minute, second, and
timezone offset supplied as arguments.

DateTime(int year, int
month, int day, int
hour, int minute,
double second)

Initializes a new instance of the DateTime class to
the year, month, day, hour, minute, and second
supplied as arguments.

DateTime(int year, int
month, int day)

Initializes a new instance of the DateTime class to
the year, month and day supplied as arguments.

Properties

Name Description

bool HasTimezone Gets a Boolean value which indicates if the
DateTime has a timezone.

static DateTime Now Gets a DateTime object that is set to the current
date and time on this computer.

short TimezoneOffset Gets or sets the timezone offset, in minutes, of the

© 2018 Altova GmbH

Reference to Generated Classes (C#) 997Code Generator

Altova MapForce 2018 Professional Edition

Name Description

DateTime object.

System.DateTime Value Gets or sets the value of the DateTime object as a
System.DateTime value.

Methods

Name Description

int CompareTo(object
obj)

The DateTime class implements the IComparable
interface. This method compares the current
instance of DateTime to another object and returns
an integer that indicates whether the current
instance precedes, follows, or occurs in the same
position in the sort order as the other object. See
also https://msdn.microsoft.com/en-us/library/
system.icomparable.compareto(v=vs.110).aspx

override bool
Equals(object obj)

Returns true if the specified object is equal to the
current object; false otherwise.

System.DateTime
GetDateTime(bool
correctTZ)

Returns a System.DateTime object from the
current Altova.Types.DateTime instance. The
correctTZ Boolean argument specifies whether the
time of the returned object must be adjusted
according to the timezone of the current
Altova.Types.DateTime instance.

override int
GetHashCode()

Returns the hash code of the current instance.

int GetWeekOfMonth() Returns the number of the week in month as an
integer.

static DateTime
Parse(string s)

Creates a DateTime object from the string supplied
as argument. For example, the following sample
string values would be converted successfully to a
DateTime object:

2015-01-01T23:23:23
2015-01-01
2015-11
23:23:23

An exception is raised if the string cannot be
converted to a DateTime object.

Note that this method is static and can only be
called on the Altova.Types.DateTime class itself,
not on an instance of the class.

https://msdn.microsoft.com/en-us/library/system.icomparable.compareto(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.icomparable.compareto(v=vs.110).aspx

998 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

static DateTime
Parse(string s,
DateTimeFormat format)

Creates a DateTime object from a string, using the
format supplied as argument. For the list of
possible formats, see
Altova.Types.DateTimeFormat.

An exception is raised if the string cannot be
converted to a DateTime object.

Note that this method is static and can only be
called on the Altova.Types.DateTime class itself,
not on an instance of the class.

override string
ToString()

Converts the DateTime object to a string.

string
ToString(DateTimeFormat
format)

Converts the DateTime object to a string, using the
format supplied as argument. For the list of
possible formats, see
Altova.Types.DateTimeFormat.

Operators

Name Description

!= Determines if DateTime a is not equal to DateTime b.

< Determines if DateTime a is less than DateTime b.

<= Determines if DateTime a is less than or equal to
DateTime b.

== Determines if DateTime a is equal to DateTime b.

> Determines if DateTime a is greater than DateTime b.

>= Determines if DateTime a is greater than or equal to
DateTime b.

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

using Altova.Types;

The following code listing illustrates various ways to create DateTime objects:

protected static void DateTimeExample1()
{

© 2018 Altova GmbH

Reference to Generated Classes (C#) 999Code Generator

Altova MapForce 2018 Professional Edition

// Create a DateTime object from the current system time
Altova.Types.DateTime dt = new

Altova.Types.DateTime(System.DateTime.Now);
Console.WriteLine("The current time is: " + dt.ToString());

// Create an Altova DateTime object from parts (no timezone)
Altova.Types.DateTime dt1 = new Altova.Types.DateTime(2015, 10, 12, 10,

50, 33);
Console.WriteLine("My custom time is : " + dt1.ToString());

// Create an Altova DateTime object from parts (with UTC+60 minutes
timezone)

Altova.Types.DateTime dt2 = new Altova.Types.DateTime(2015, 10, 12, 10,
50, 33, 60);

Console.WriteLine("My custom time with timezone is : " +
dt2.ToString());

// Create an Altova DateTime object by parsing a string
Altova.Types.DateTime dt3 = Altova.Types.DateTime.Parse("2015-01-

01T23:23:23");
Console.WriteLine("Time created from string: " + dt3.ToString());

// Create an Altova DateTime object by parsing a string formatted as
schema date

Altova.Types.DateTime dt4 = Altova.Types.DateTime.Parse("2015-01-01",
DateTimeFormat.W3_date);

Console.WriteLine("Time created from string formatted as schema date: "
+ dt4.ToString());
}

The following code listing illustrates various ways to format DateTime objects:

protected static void DateTimeExample2()
{

// Create a DateTime object from the current system time
Altova.Types.DateTime dt = new

Altova.Types.DateTime(System.DateTime.Now);

// Output the unformatted DateTime
Console.WriteLine("Unformatted time: " + dt.ToString());

// Output this DateTime formatted using various formats
Console.WriteLine("S_DateTime: " +

dt.ToString(DateTimeFormat.S_DateTime));
Console.WriteLine("S_Days: " +

dt.ToString(DateTimeFormat.S_Days));
Console.WriteLine("S_Seconds: " +

dt.ToString(DateTimeFormat.S_Seconds));
Console.WriteLine("W3_date: " +

dt.ToString(DateTimeFormat.W3_date));
Console.WriteLine("W3_dateTime: " +

dt.ToString(DateTimeFormat.W3_dateTime));
Console.WriteLine("W3_gDay: " +

dt.ToString(DateTimeFormat.W3_gDay));
Console.WriteLine("W3_gMonth: " +

1000 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

dt.ToString(DateTimeFormat.W3_gMonth));
Console.WriteLine("W3_gMonthDay: " +

dt.ToString(DateTimeFormat.W3_gMonthDay));
Console.WriteLine("W3_gYear: " +

dt.ToString(DateTimeFormat.W3_gYear));
Console.WriteLine("W3_gYearMonth: " +

dt.ToString(DateTimeFormat.W3_gYearMonth));
Console.WriteLine("W3_time: " +

dt.ToString(DateTimeFormat.W3_time));
}

14.9.2 Altova.Types.DateTimeFormat

The DateTimeFormat enum type has the following constant values:

Value Description Example

S_DateTime Formats the value as standard
dateTime, with a precision of a
ten-millionth of a second,
including timezone.

2015-11-12 12:19:03.9019132
+01:00

S_Days Formats the value as number
of days elapsed since the
UNIX epoch.

735913.63189734510879629629
63

S_Seconds Formats the value as number
of seconds elapsed since the
UNIX epoch, with a precision
of a ten-millionth of a second.

63582937678.0769062

W3_date Formats the value as schema
date.

2015-11-12

W3_dateTime Formats the value as schema
dateTime.

2015-11-12T15:12:14.5194251

W3_gDay Formats the value as schema
gDay.

---12

(assuming that the date is 12th
of the month)

W3_gMonth Formats the value as schema
gMonth.

--11

(assuming that the month is
November)

W3_gMonthDay Formats the value as schema
gMonthDay.

--11-12

(assuming that the date is 12th
of November)

W3_gYear Formats the value as schema
gYear.

2015

(assuming that the year is 2015)

W3_gYearMonth Formats the value as schema 2015-11

© 2018 Altova GmbH

Reference to Generated Classes (C#) 1001Code Generator

Altova MapForce 2018 Professional Edition

Value Description Example

gYearMonth. (assuming that the year is 2015
and the month is November)

W3_time Formats the value as schema
time, with a precision of a ten-
millionth of a second.

15:19:07.5582719

14.9.3 Altova.Types.Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration(Duration
obj)

Initializes a new instance of the Duration class to the
Duration object supplied as argument.

Duration(System.Ti
meSpan newvalue)

Initializes a new instance of the Duration class to the
System.TimeSpan object supplied as argument.

Duration(long
ticks)

Initializes a new instance of the Duration class to the
number of ticks supplied as argument.

Duration(int
newyears, int
newmonths, int
days, int hours,
int minutes, int
seconds, double
partseconds, bool
bnegative)

Initializes a new instance of the Duration class to a
duration built from parts supplied as arguments.

Properties

Name Description

int Months Gets or sets the number of months of the current instance
of Duration.

System.TimeSpan
Value

Gets or sets the value (as System.TimeSpan) of the
current instance of Duration.

int Years Gets or sets the number of years of the current instance
of Duration.

1002 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Methods

Name Description

override bool
Equals(object
other)

Returns true if the specified object is equal to the current
object; false otherwise.

override int
GetHashCode()

Returns the hash code of the current instance.

bool IsNegative() Returns true if the current instance of Duration
represents a negative duration.

static Duration
Parse(string s,
ParseType pt)

Returns an Altova.Types.Duration object parsed from
the string supplied as argument, using the parse type
supplied as argument. Valid parse type values:

DURATI
ON

Parse duration assuming that year, month,
day, as well as time duration parts exist.

YEARMO
NTH

Parse duration assuming that only year and
month parts exist.

DAYTIME Parse duration assuming that only the day
and time parts exist.

Note that this method is static and can only be called on
the class itself, not on an instance of the class.

override string
ToString()

Converts the current Duration instance to string. For
example, a time span of 3 hours, 4 minutes, and 5
seconds would be converted to "PT3H4M5S".

string
ToYearMonthString(
)

Converts the current Duration instance to string, using
the "Year and Month" parse type.

Operators

Name Description

!= Determines if Duration a is not equal to Duration b.

== Determines if Duration a is equal to Duration b.

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

using Altova.Types;

© 2018 Altova GmbH

Reference to Generated Classes (C#) 1003Code Generator

Altova MapForce 2018 Professional Edition

The following code listing illustrates various ways to create Duration objects:

protected static void DurationExample1()
{

// Create a new time span of 3 hours, 4 minutes, and 5 seconds
System.TimeSpan ts = new TimeSpan(3, 4, 5);
// Create a Duration from the time span
Duration dr = new Duration(ts);
// The output is: PT3H4M5S
Console.WriteLine("Duration created from TimeSpan: " + dr.ToString());

// Create a negative Altova.Types.Duration from 6 years, 5 months, 4
days, 3 hours,
 // 2 minutes, 1 second, and .33 of a second

Duration dr1 = new Duration(6, 5, 4, 3, 2, 1, .33, true);
// The output is: -P6Y5M4DT3H2M1.33S
Console.WriteLine("Duration created from parts: " + dr1.ToString());

// Create a Duration from a string using the DAYTIME parse type
Duration dr2 = Altova.Types.Duration.Parse("-P4DT3H2M1S",

Duration.ParseType.DAYTIME);
// The output is -P4DT3H2M1S
Console.WriteLine("Duration created from string: " + dr2.ToString());

// Create a duration from ticks
Duration dr3 = new Duration(System.DateTime.UtcNow.Ticks);
// Output the result
Console.WriteLine("Duration created from ticks: " + dr3.ToString());

}

The following code listing illustrates getting values from Duration objects:

protected static void DurationExample2()
{

// Create a negative Altova.Types.Duration from 6 years, 5 months, 4
days, 3 hours,
 // 2 minutes, 1 second, and .33 of a second

Duration dr = new Duration(6, 5, 4, 3, 2, 1, .33, true);
// The output is: -P6Y5M4DT3H2M1.33S
Console.WriteLine("The complete duration is: " + dr.ToString());

// Get only the year and month part as string
string dr1 = dr.ToYearMonthString();
Console.WriteLine("The YEARMONTH part is: " + dr1);

// Get the number of years in duration
Console.WriteLine("Years: " + dr.Years);

// Get the number of months in duration
Console.WriteLine("Months: " + dr.Months);

}

1004 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.9.4 Altova.Xml.Meta.Attribute

This class enables you to access schema information about classes generated from attributes.
Note that this class is not meant to provide dynamic information about particular instances of an
attribute in an XML document. Instead, it enables you to obtain programmatically information
about a particular attribute defined in the XML schema.

Properties

Name Description

SimpleType DataType Returns the type of the attribute content.

string LocalName Returns the local name of the attribute.

string NamespaceURI Returns the namespace URI of the attribute.

XmlQualifiedName
QualifiedName

Returns the qualified name of the attribute.

bool Required() Returns true if the attribute is required.

14.9.5 Altova.Xml.Meta.ComplexType

This class enables you to access schema information about classes generated from complex
types. Note that this class is not meant to provide dynamic information about particular instances
of a complex type in an XML document. Instead, it enables you to obtain programmatically
information about a particular complex type defined in the XML schema.

Properties

Name Description

Attribute[] Attributes Returns a list of all attributes.

ComplexType BaseType Returns the base type of this type or null if no base
type exists.

SimpleType ContentType Returns the simple type of the content.

Element[] Elements Returns a list of all elements.

string LocalName Returns the local name of the type.

string NamespaceURI Returns the namespace URI of the type.

XmlQualifiedName
QualifiedName

Returns the qualified name of this type.

© 2018 Altova GmbH

Reference to Generated Classes (C#) 1005Code Generator

Altova MapForce 2018 Professional Edition

Methods

Name Description

ComplexType BaseType Returns the base type of this type.

bool Equals(obj) Checks if two info objects refer to the same type,
based on qualified name comparison. Returns true
if the type has the same qualified name.

Attribute
FindAttribute(string
localName, string
namespaceURI)

Finds the attribute with the specified local name
and namespace URI.

Element
FindElement(string
localName, string
namespaceURI)

Finds the element with the specified local name
and namespace URI.

14.9.6 Altova.Xml.Meta.Element

This class enables you to access information about classes generated from schema elements.
Note that this class is not meant to provide dynamic information about particular instances of an
element in an XML document. Instead, it enables you to obtain programmatically information
about a particular element defined in the XML schema.

Properties

Name Description

ComplexType DataType Returns the type of the element. Note that this is
always a complex type even if declared as simple
in the original schema. Use the ContentType
property of the returned object to get the simple
content type.

string LocalName Returns the local name of the element.

int MaxOccurs Returns the maxOccurs value defined in the
schema.

int MinOccurs Returns the minOccurs value defined in the
schema.

string NamespaceURI Returns the namespace URI of the element.

XmlQualifiedName
QualifiedName

Returns the qualified name of the element.

1006 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.9.7 Altova.Xml.Meta.SimpleType

This class enables you to access schema information about classes generated from simple
types. Note that this class is not meant to provide dynamic information about particular instances
of simple types in an XML document. Instead, it enables you to obtain programmatically
information about a particular simple type defined in the XML schema.

Properties

Name Description

SimpleType BaseType Returns the base type of this type.

string[] Enumerations Returns a list of all enumeration facets.

int FractionDigits Returns the value of this facet.

int Length Returns the value of this facet.

string LocalName Returns the local name of the type.

string MaxExclusive Returns the value of this facet.

string MaxInclusive Returns the value of this facet.

int MaxLength Returns the value of this facet.

string MinExclusive Returns the value of this facet.

string MinInclusive Returns the value of this facet.

int MinLength Returns the value of this facet.

string NamespaceURI Returns the namespace URI of the type.

string[] Patterns Returns the pattern facets, or null if no patterns are
specified.

XmlQualifiedName
QualifiedName

Returns the qualified name of this type.

int TotalDigits Returns the value of this facet.

WhitespaceType
Whitespace

Returns the whitespace normalization facet.

14.9.8 [YourSchema].[Doc]

When code is generated from an XML Schema, the generated code provides a document class
with the same name as the schema. This class contains all possible root elements as members,
as well as the members listed below. Note that, in the method names below, "Doc" stands for the
name of the generated document class itself.

© 2018 Altova GmbH

Reference to Generated Classes (C#) 1007Code Generator

Altova MapForce 2018 Professional Edition

Methods

Name Description

static Doc

CreateDocument()
Creates a new, empty XML document.

static Doc

CreateDocument(string

encoding)

Creates a new, empty XML document, with
encoding of type "encoding".

static Doc

LoadFromBinary(byte[]

binary)

Loads an XML document from a byte array.

static Doc

LoadFromFile(string

filename)

Loads an XML document from a file.

static Doc

LoadFromString(string

xmlstring)

Loads an XML document from a string.

byte[]

SaveToBinary(bool

prettyPrint)

Saves an XML document to a byte array, with
optional "pretty-print" formatting.

byte[]

SaveToBinary(bool

prettyPrint, string

encoding)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with the specified
encoding.

byte[]

SaveToBinary(bool

prettyPrint, string

encoding, bool

bBigEndian, bool bBOM)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with the specified
encoding, byte order, and BOM (Byte Order Mark).

void SaveToFile(string

fileName, bool

prettyPrint)

Saves an XML document to a file, with optional
"pretty-print" formatting.

void SaveToFile(string

fileName, bool

prettyPrint, bool

omitXmlDecl)

Saves an XML document to a file, with optional
"pretty-print" formatting. When omitXmlDecl is
true, the XML declaration will not be written.

void SaveToFile(string

fileName, bool

prettyPrint, bool

omitXmlDecl, string

encoding)

Saves an XML document to a file, with optional
"pretty-print" formatting, with the specified
encoding. When omitXmlDecl is true, the XML
declaration will not be written.

void SaveToFile(string Saves an XML document to a file, with optional

1008 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

fileName, bool

prettyPrint, string

encoding, string

lineend)

"pretty-print" formatting, with the specified
encoding, and line ending character(s).

void SaveToFile(string

fileName, bool

prettyPrint, bool

omitXmlDecl, string

encoding, string

lineend)

Saves an XML document to a file, with optional
"pretty-print" formatting, with the specified
encoding, and line ending character(s). When
omitXmlDecl is true, the XML declaration will not
be written.

void SaveToFile(string

fileName, bool

prettyPrint, bool

omitXmlDecl, string

encoding, bool

bBigEndian, bool bBOM,

string lineend)

Saves an XML document to a file, with optional
"pretty-print" formatting, with the specified
encoding, byte order, BOM (Byte Order Mark), and
line ending character(s). When omitXmlDecl is
true, the XML declaration will not be written.

void

SaveToFileWithLineEnd(s

tring fileName, bool

prettyPrint, bool

omitXmlDecl, string

lineend)

Saves an XML document to a file, with optional
"pretty-print" formatting, and line ending
character(s). When omitXmlDecl is true, the XML
declaration will not be written.

string

SaveToString(bool

prettyPrint)

Saves an XML document to a file, with optional
"pretty-print" formatting.

string

SaveToString(bool

prettyPrint, bool

omitXmlDecl)

Saves an XML document to a file, with optional
"pretty-print" formatting. When omitXmlDecl is
true, the XML declaration will not be written.

void

SetDTDLocation(string

dtdLocation)

Adds a DOCTYPE declaration with the specified
system ID. A root element must already exist.

void

SetSchemaLocation(strin

g schemaLocation)

Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the
root element. A root element must already exist.

14.9.9 [YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a
type. In the descriptions below, "AttributeType" stands for the type of the member attribute itself.

© 2018 Altova GmbH

Reference to Generated Classes (C#) 1009Code Generator

Altova MapForce 2018 Professional Edition

Methods

Name Description

bool Exists() Returns true if the attribute exists.

void Remove() Removes the attribute from its parent
element.

Properties

Name Description

int EnumerationValue Generated for enumeration types
only. Sets or gets the attribute value
using one of the constants generated
for the possible values. Returns
Invalid if the value does not match
any of the enumerated values in the
schema.

Altova.Xml.Meta.Attribute Info Returns an object for querying
schema information (see
Altova.Xml.Meta.Attribute).

AttributeType Value Sets or gets the attribute value.

14.9.10 [YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for
each member element of a type. The class implements the standard
System.Collections.IEnumerable interface, so it can be used with the foreach statement.

In the descriptions below, "MemberType" stands for the type of the member element itself.

Methods

Name Description

MemberType Append() Creates a new element and appends
it to its parent.

MemberType At(int index) Returns the member element
specified by the index.

1010 Code Generator Reference to Generated Classes (C#)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

System.Collections.IEnumerator
GetEnumerator()

Returns an object for iterating
instances of the member element.

void Remove() Deletes all occurrences of the
element from its parent.

void RemoveAt(int index) Deletes the occurrence of the
element specified by the index.

Properties

Name Description

int Count Returns the count of elements.

int EnumerationValue Generated for enumeration types
only. Sets or gets the element value
using one of the constants generated
for the possible values. Returns
Invalid if the value does not match
any of the enumerated values in the
schema.

bool Exists Returns true if at least one element
exists.

MemberType First Returns the first instance of the
member element.

Altova.Xml.Meta.Element Info Returns an object for querying
schema information (see
Altova.Xml.Meta.Element).

MemberType Last Returns the last instance of the
member element.

MemberType this[int index] Returns the member element
specified by the index.

MemberType Value Sets or gets the element content
(only generated if element can have
mixed or simple content).

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1011Code Generator

Altova MapForce 2018 Professional Edition

14.10 Reference to Generated Classes (Java)

This chapter includes a description of Java classes generated with MapForce from a DTD or XML
schema (see Generating Code from XML Schemas or DTDs). You can integrate these classes
into your code to read, modify, and write XML documents.

Note: The generated code may include other supporting classes, which are not listed here and
are subject to modification.

14.10.1 com.altova.types.DateTime

This class enables you to process XML attributes or elements that have date and time types,
such as xs:dateTime.

Constructors

Name Description

public DateTime() Initializes a new instance of the DateTime class to
an empty value.

public

DateTime(DateTime
newvalue)

Initializes a new instance of the DateTime class to
the DateTime value supplied as argument.

public DateTime(int

newyear, int newmonth,

int newday, int

newhour, int newminute,

 int newsecond, double

newpartsecond, int

newoffsetTZ)

Initializes a new instance of the DateTime class to
the year, month, day, hour, minute, second, the
fractional part of the second, and timezone supplied
as arguments. The fractional part of the second
newpartsecond must be between 0 and 1. The
timezone offset newoffsetTZ can be either positive
or negative and is expressed in minutes.

public DateTime(int

newyear, int newmonth,

int newday, int

newhour, int newminute,

 int newsecond, double

newpartsecond)

Initializes a new instance of the DateTime class to
the year, month, day, hour, minute, second, and
the fractional part of a second supplied as
arguments.

public DateTime(int

newyear, int newmonth,

int newday)

Initializes a new instance of the DateTime class to
the year, month, and day supplied as arguments.

public

DateTime(Calendar
newvalue)

Initializes a new instance of the DateTime class to
the java.util.Calendar value supplied as
argument.

1012 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Methods

Name Description

static DateTime now() Returns the current time as a DateTime object.

static DateTime

parse(String s)
Returns a DateTime object parsed from the string
value supplied as argument. For example, the
following sample string values would be converted
successfully to a DateTime object:

2015-11-24T12:54:47.969+01:00
2015-11-24T12:54:47
2015-11-24

int getDay() Returns the day of the current DateTime instance.

int getHour() Returns the hour of the current DateTime instance.

int getMillisecond() Returns the millisecond of the current DateTime
instance, as an integer value.

int getMinute() Returns the minute of the current DateTime
instance.

int getMonth() Returns the month of the current DateTime
instance.

double getPartSecond() Returns the fractional part of the second of the
current DateTime instance, as a double value. The

return value is greater than zero and smaller than
one, for example:

0.313

int getSecond() Returns the second of the current DateTime
instance.

int getTimezoneOffset() Returns the timezone offset, in minutes, of the
current DateTime instance. For example, the
timezone "UTC-01:00" would be returned as:

-60

Calendar getValue() Returns the current DateTime instance as a
java.util.Calendar value.

int getWeekday() Returns the day in week of the current DateTime
instance. Values range from 0 through 6, where 0 is
Monday (ISO-8601).

int getYear() Returns the year of the current DateTime instance.

int hasTimezone() Returns information about the timezone of the
current DateTime instance. Possible return values
are:

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1013Code Generator

Altova MapForce 2018 Professional Edition

Name Description

CalendarBase.TZ_MI
SSING

A timezone offset is not
defined.

CalendarBase.TZ_UT
C

The timezone is UTC.

CalendarBase.TZ_OF
FSET

A timezone offset has
been defined.

void setDay(int nDay) Sets the day of the current DateTime instance to
the value supplied as argument.

void

setHasTimezone(int

nHasTZ)

Sets the timezone information of the current
DateTime instance to the value supplied as
argument. This method can be used to strip the
timezone information or set the timezone to UTC
(Coordinated Universal Time). Valid values for the
nHasTZ argument:

CalendarBase.TZ_M
ISSING

Set the timezone offset to
undefined.

CalendarBase.TZ_U
TC

Set the timezone to UTC.

CalendarBase.TZ_O
FFSET

If the current object has a
timezone offset, leave it
unchanged.

void setHour(int

nHour)
Sets the hour of the current DateTime instance to
the value supplied as argument.

void setMinute(int

nMinute)
Sets the minute of the current DateTime instance
to the value supplied as argument.

void setMonth(int

nMonth)
Sets the month of the current DateTime instance to
the value supplied as argument.

void

setPartSecond(double

nPartSecond)

Sets the fractional part of the second of the current
DateTime instance to the value supplied as
argument.

void setSecond(int

nSecond)
Sets the second of the current DateTime instance
to the value supplied as argument.

void

setTimezoneOffset(int

nOffsetTZ)

Sets the timezone offset of the current DateTime
instance to the value supplied as argument. The
value nOffsetTZ must be an integer (positive or
negative) and must be expressed in minutes.

void setYear(int

nYear)
Sets the year of the current DateTime instance to
the value supplied as argument.

String toString() Returns the string representation of the current

1014 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

DateTime instance, for example:

2015-11-24T15:50:56.968+01:00

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

import com.altova.types.*;

The following code listing illustrates various ways to create DateTime objects:

protected static void DateTimeExample1()

{
// Initialize a new instance of the DateTime class to the current time
DateTime dt = new DateTime(DateTime.now());

System.out.println("DateTime created from current date and time: " +

dt.toString());

// Initialize a new instance of the DateTime class by supplying the
parts

DateTime dt1 = new DateTime(2015, 11, 23, 14, 30, 24, .459);

System.out.println("DateTime from parts (no timezone): " +

dt1.toString());

// Initialize a new instance of the DateTime class by supplying the
parts

DateTime dt2 = new DateTime(2015, 11, 24, 14, 30, 24, .459, -60);

System.out.println("DateTime from parts (with negative timezone): " +

dt2.toString());

// Initialize a new instance of the DateTime class by parsing a string
value DateTime dt3 = DateTime.parse("2015-11-24T12:54:47.969

+01:00");
System.out.println("DateTime parsed from string: " + dt3.toString());

}

The following code listing illustrates getting values from DateTime objects:

protected static void DateTimeExample2()

 {
 // Initialize a new instance of the DateTime class to the current time

 DateTime dt = new DateTime(DateTime.now());

 // Output the formatted year, month, and day of this DateTime instance

 String str1 = String.format("Year: %d; Month: %d; Day: %d;",
dt.getYear(), dt.getMonth(), dt.getDay());

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1015Code Generator

Altova MapForce 2018 Professional Edition

 System.out.println(str1);

 // Output the formatted hour, minute, and second of this DateTime

instance

 String str2 = String.format("Hour: %d; Minute: %d; Second: %d;",
dt.getHour(), dt.getMinute(), dt.getSecond());
 System.out.println(str2);

 // Return the timezone (in minutes) of this DateTime instance

 System.out.println("Timezone: " + dt.getTimezoneOffset());

 // Get the DateTime as a java.util.Calendar value

 java.util.Calendar dt_java = dt.getValue();
 System.out.println("" + dt_java.toString());

 // Return the day of week of this DateTime instance

 System.out.println("Weekday: " + dt.getWeekday());

 // Check whether the DateTime instance has a timezone defined

 switch(dt.hasTimezone())

 {
 case CalendarBase.TZ_MISSING:

 System.out.println("No timezone.");
 break;

 case CalendarBase.TZ_UTC:

 System.out.println("The timezone is UTC.");
 break;

 case CalendarBase.TZ_OFFSET:

 System.out.println("This object has a timezone.");
 break;

 default:

 System.out.println("Unable to determine whether a timezone is
defined.");
 break;

 }
 }

The following code listing illustrates changing the timezone offset of a DateTime object:

protected static void DateTimeExample3()

{
// Create a new DateTime object with timezone -0100 UTC
DateTime dt = new DateTime(2015, 11, 24, 14, 30, 24, .459, -60);

// Output the value before the change
System.out.println("Before: " + dt.toString());

// Change the offset to +0100 UTC
dt.setTimezoneOffset(60);
// Output the value after the change
System.out.println("After: " + dt.toString());

}

1016 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.10.2 com.altova.types.Duration

This class enables you to process XML attributes or elements of type xs:duration.

Constructors

Name Description

Duration(Duration
newvalue)

Initializes a new instance of the Duration class to
the Duration object supplied as argument.

Duration(int newyear,

int newmonth, int

newday, int newhour,

int newminute, int

newsecond, double

newpartsecond, boolean

newisnegative)

Initializes a new instance of the Duration class to
a duration built from parts supplied as arguments.

Methods

Name Description

static Duration

getFromDayTime(int

newday, int newhour,

int newminute, int

newsecond, double

newpartsecond)

Returns a Duration object created from the
number of days, hours, minutes, seconds, and
fractional second parts supplied as argument.

static Duration

getFromYearMonth(int

newyear, int newmonth)

Returns a Duration object created from the
number of years and months supplied as argument.

static Duration

parse(String s)
Returns a Duration object created from the string
supplied as argument. For example, the string -
P1Y1M1DT1H1M1.333S can be used to create a
negative duration of one year, one month, one day,
one hour, one minute, one second, and 0.333
fractional parts of a second. To create a negative
duration, append the minus sign (-) to the string.

static Duration

parse(String s,
ParseType pt)

Returns a Duration object created from the string
supplied as argument, using a specific parse
format. The parse format can be any of the
following:

ParseType.DAYTI
ME

Must be used when the
string s consists of any of

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1017Code Generator

Altova MapForce 2018 Professional Edition

Name Description

the following: days, hours,
minutes, seconds, fractional
second parts, for example -
P4DT4H4M4.774S.

ParseType.DURA
TION

Must be used when the
string s consists of any of
the following: years,
months, days, hours,
minutes, seconds, fractional
second parts, for example
P1Y1M1DT1H1M1.333S.

ParseType.YEAR
MONTH

Must be used when the
string s consists of any of
the following: years,
months. For example:
P3Y2M.

int getDay() Returns the number of days in the current
Duration instance.

long getDayTimeValue() Returns the day and time value (in milliseconds) of
the current Duration instance. Years and months
are ignored.

int getHour() Returns the number of hours in the current
Duration instance.

int getMillisecond() Returns the number of milliseconds in the current
Duration instance.

int getMinute() Returns the number of minutes in the current
Duration instance.

int getMonth() Returns the number of months in the current
Duration instance.

double getPartSecond() Returns the number of fractional second parts in
the current Duration instance.

int getSecond() Returns the number of seconds in the current
Duration instance.

int getYear() Returns the number of years in the current
Duration instance.

int getYearMonthValue() Returns the year and month value (in months) of
the current Duration instance. Days, hours,
seconds, and milliseconds are ignored.

boolean isNegative() Returns Boolean true if the current Duration
instance is positive.

1018 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

void

setDayTimeValue(long l)
Sets the duration to the number of milliseconds
supplied as argument, affecting only the day and
time part of the duration.

void

setNegative(boolean

isnegative)

Converts the current Duration instance to a
negative duration.

void

setYearMonthValue(int

l)

Sets the duration to the number of months supplied
as argument. Only the years and months part of
the duration is affected.

String toString() Returns the string representation of the current
Duration instance, for example:

-P4DT4H4M4.774S

String
toYearMonthString()

Returns the string representation of the YearMonth
part of the current Duration instance, for example:

P1Y2M

Examples

Before using the following code listings in your program, ensure the Altova types are imported:

import com.altova.types.*;

import com.altova.types.Duration.ParseType;

The following code listing illustrates various ways to create Duration objects:

protected static void ExampleDuration()

{
// Create a negative duration of 1 year, 1 month, 1 day, 1 hour, 1

minute, 1 second,
// and 0.333 fractional second parts
Duration dr = new Duration(1, 1, 1, 1, 1, 1, .333, true);

// Create a duration from an existing Duration object
Duration dr1 = new Duration(dr);

// Create a duration of 4 days, 4 hours, 4 minutes, 4 seconds, .774
fractional second parts

Duration dr2 = Duration.getFromDayTime(4, 4, 4, 4, .774);

// Create a duration of 3 years and 2 months
Duration dr3 = Duration.getFromYearMonth(3, 2);

// Create a duration from a string
Duration dr4 = Duration.parse("-P4DT4H4M4.774S");

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1019Code Generator

Altova MapForce 2018 Professional Edition

// Create a duration from a string, using specific parse formats
Duration dr5 = Duration.parse("-P1Y1M1DT1H1M1.333S",

ParseType.DURATION);

Duration dr6 = Duration.parse("P3Y2M", ParseType.YEARMONTH);

Duration dr7 = Duration.parse("-P4DT4H4M4.774S", ParseType.DAYTIME);

}

The following code listing illustrates getting and setting the value of Duration objects:

protected static void DurationExample2()

{
// Create a duration of 1 year, 2 month, 3 days, 4 hours, 5 minutes, 6

seconds,
 // and 333 milliseconds

Duration dr = new Duration(1, 2, 3, 4, 5, 6, .333, false);

// Output the number of days in this duration
System.out.println(dr.getDay());

// Create a positive duration of one year and 333 milliseconds
Duration dr1 = new Duration(1, 0, 0, 0, 0, 0, .333, false);

// Output the day and time value in milliseconds
System.out.println(dr1.getDayTimeValue());

// Create a positive duration of 1 year, 1 month, 1 day, 1 hour, 1
minute, 1 second,
 // and 333 milliseconds

Duration dr2 = new Duration(1, 1, 1, 1, 1, 1, .333, false);

// Output the year and month value in months
System.out.println(dr2.getYearMonthValue());

// Create a positive duration of 1 year and 1 month
Duration dr3 = new Duration(1, 1, 0, 0, 0, 0, 0, false);

// Output the value
System.out.println("The duration is now: " + dr3.toString());

// Set the DayTime part of duration to 1000 milliseconds
dr3.setDayTimeValue(1000);
// Output the value
System.out.println("The duration is now: " + dr3.toString());

// Set the YearMonth part of duration to 1 month
dr3.setYearMonthValue(1);
// Output the value
System.out.println("The duration is now: " + dr3.toString());

// Output the year and month part of the duration
System.out.println("The YearMonth part of the duration is: " +

dr3.toYearMonthString());
}

14.10.3 com.altova.xml.meta.Attribute

This class enables you to access schema information about classes generated from attributes.
Note that this class is not meant to provide dynamic information about particular instances of an

1020 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

attribute in an XML document. Instead, it enables you to obtain programmatically information
about a particular attribute defined in the XML schema.

Methods

Name Description

SimpleType
getDataType()

Returns the type of the attribute content.

String getLocalName() Returns the local name of the attribute.

String
getNamespaceURI()

Returns the namespace URI of the attribute.

boolean isRequired() Returns true if the attribute is required.

14.10.4 com.altova.xml.meta.ComplexType

This class enables you to access schema information about classes generated from complex
types. Note that this class is not meant to provide dynamic information about particular instances
of a complex type in an XML document. Instead, it enables you to obtain programmatically
information about a particular complex type defined in the XML schema.

Methods

Name Description

Attribute
findAttribute(String
localName, String
namespaceURI)

Finds the attribute with the specified local name
and namespace URI.

Element
findElement(String
localName, String
namespaceURI)

Finds the element with the specified local name
and namespace URI.

Attribute[]
GetAttributes()

Returns a list of all attributes.

ComplexType
getBaseType()

Returns the base type of this type.

SimpleType
getContentType()

Returns the simple type of the content.

Element[] GetElements() Returns a list of all elements.

String getLocalName() Returns the local name of the type.

String Returns the namespace URI of the type.

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1021Code Generator

Altova MapForce 2018 Professional Edition

Name Description

getNamespaceURI()

14.10.5 com.altova.xml.meta.Element

This class enables you to access information about classes generated from schema elements.
Note that this class is not meant to provide dynamic information about particular instances of an
element in an XML document. Instead, it enables you to obtain programmatically information
about a particular element defined in the XML schema.

Methods

Name Description

ComplexType
getDataType()

Returns the type of the element. Note that this is
always a complex type even if declared as simple
in the original schema. Use getContentType() of
the returned object to get the simple content type.

String getLocalName() Returns the local name of the element.

int getMaxOccurs() Returns the maxOccurs value defined in the
schema.

int getMinOccurs() Returns the minOccurs value defined in the
schema.

String
getNamespaceURI()

Returns the namespace URI of the element.

14.10.6 com.altova.xml.meta.SimpleType

This class enables you to access schema information about classes generated from simple
types. Note that this class is not meant to provide dynamic information about particular instances
of simple types in an XML document. Instead, it enables you to obtain programmatically
information about a particular simple type defined in the XML schema.

Methods

Name Description

SimpleType
getBaseType()

Returns the base type of this type.

String[]
getEnumerations()

Returns an array of all enumeration facets.

1022 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

int getFractionDigits() Returns the value of this facet.

int getLength() Returns the value of this facet.

String getLocalName() Returns the local name of the type.

String
getMaxExclusive()

Returns the value of this facet.

String
getMaxInclusive()

Returns the value of this facet.

int getMaxLength() Returns the value of this facet.

String
getMinExclusive()

Returns the value of this facet.

String
getMinInclusive()

Returns the value of this facet.

int getMinLength() Returns the value of this facet.

String
getNamespaceURI()

Returns the namespace URI of the type.

String[] getPatterns() Returns an array of all pattern facets.

int getTotalDigits() Returns the value of this facet.

int getWhitespace() Returns the value of the whitespace facet, which is
one of:
com.altova.typeinfo.WhitespaceType.Whitesp
ace_Unknown
com.altova.typeinfo.WhitespaceType.Whitesp
ace_Preserve
com.altova.typeinfo.WhitespaceType.Whitesp
ace_Replace
com.altova.typeinfo.WhitespaceType.Whitesp
ace_Collapse

14.10.7 com.[YourSchema].[Doc]

When code is generated from an XML Schema, the generated code provides a document class
with the same name as the schema. This class contains all possible root elements as members,
as well as the members listed below. Note that, in the method names below, "Doc" stands for the
name of the generated document class itself.

Methods

Name Description

static Doc Creates a new, empty XML document.

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1023Code Generator

Altova MapForce 2018 Professional Edition

Name Description

createDocument()

static Doc

loadFromBinary(byte[]

xml)

Loads an XML document from a byte array.

static Doc

loadFromFile(String
fileName)

Loads an XML document from a file.

static Doc

loadFromString(String
xml)

Loads an XML document from a string.

byte[]

saveToBinary(boolean

prettyPrint)

Saves an XML document to a byte array, with
optional "pretty-print" formatting.

byte[]

saveToBinary(boolean

prettyPrint, String
encoding)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with the specified
encoding.

byte[]

saveToBinary(boolean

prettyPrint, String
encoding, boolean

bigEndian, boolean

writeBOM)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with the specified
encoding. Byte order and Unicode byte-order mark
can be specified for Unicode encodings.

void saveToFile(String

fileName, boolean

prettyPrint)

Saves an XML document to a file, with optional
"pretty-print" formatting.

void saveToFile(String

fileName, boolean

prettyPrint, boolean

omitXmlDecl)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with UTF-8
encoding. When omitXmlDecl is true, the XML
declaration will not be written.

void saveToFile(String

fileName, boolean

prettyPrint, boolean

omitXmlDecl, String
encoding)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with the specified
encoding. When omitXmlDecl is true, the XML
declaration will not be written.

void saveToFile(String

fileName, boolean

prettyPrint, boolean

omitXmlDecl, String
encoding, boolean

bBigEndian, boolean

bBOM)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with the specified
encoding. When omitXmlDecl is true, the XML
declaration will not be written. Byte order and
Unicode byte-order mark can be specified for
Unicode encodings.

void saveToFile(String Saves an XML document to a file, with optional

1024 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

fileName, boolean

prettyPrint, String
encoding)

"pretty-print" formatting, with the specified
encoding.

void saveToFile(String

fileName, boolean

prettyPrint, String
encoding, boolean

bBigEndian, boolean

bBOM)

Saves an XML document to a byte array, with
optional "pretty-print" formatting, with the specified
encoding. Byte order and Unicode byte-order mark
can be specified for Unicode encodings.

String
saveToString(boolean

prettyPrint)

Saves an XML document to a string, with optional
"pretty-print" formatting.

String
saveToString(boolean

prettyPrint, boolean

omitXmlDecl)

Saves an XML document to a string, with optional
"pretty-print" formatting. When omitXmlDecl is
true, the XML declaration will not be written.

void

setSchemaLocation(Strin
g schemaLocation)

Adds an xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute to the
root element. A root element must already exist.

14.10.8 com.[YourSchema].[YourSchemaType].MemberAttribute

When code is generated from an XML schema, a class is created for each member attribute of a
type. In the descriptions below, "AttributeType" stands for the type of the member attribute itself.

Methods

Name Description

boolean exists() Returns true if the attribute exists.

int getEnumerationValue() Generated for enumeration types
only. Returns one of the constants
generated for the possible values, or
Invalid if the value does not match
any of the enumerated values in the
schema.

com.altova.xml.meta.Attribute
getInfo()

Returns an object for querying
schema information (see
com.altova.xml.meta.Attribute).

AttributeType getValue() Gets the attribute value.

void remove() Removes the attribute from its parent

© 2018 Altova GmbH

Reference to Generated Classes (Java) 1025Code Generator

Altova MapForce 2018 Professional Edition

Name Description

element.

void setEnumerationValue(int) Generated for enumeration types
only. Pass one of the constants
generated for the possible values to
this method to set the value.

void setValue(AttributeType value) Sets the attribute value.

14.10.9 com.[YourSchema].[YourSchemaType].MemberElement

When code is generated from an XML schema, a class with the following members is created for
each member element of a type. In the descriptions below, "MemberType" stands for the type of
the member element itself.

Methods

Name Description

MemberType append() Creates a new element and appends
it to its parent.

MemberType at(int index) Returns the instance of the member
element at the specified index.

int count() Returns the count of elements.

boolean exists() Returns true if at least one element
exists.

MemberType first() Returns the first instance of the
member element.

int getEnumerationValue() Generated for enumeration types
only. Returns one of the constants
generated for the possible values, or
Invalid if the value does not match
any of the enumerated values in the
schema.

com.altova.xml.meta.Element
getInfo()

Returns an object for querying
schema information (see
com.altova.xml.meta.Element).

MemberType getValue() Gets the element content (only
generated if element can have simple
or mixed content).

1026 Code Generator Reference to Generated Classes (Java)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Name Description

java.util.Iterator iterator() Returns an object for iterating
instances of the member element.

MemberType last() Returns the last instance of the
member element.

void remove() Deletes all occurrences of the
element from its parent.

void removeAt(int index) Deletes the occurrence of the
element specified by the index.

void setEnumerationValue(int

index)
Generated for enumeration types
only. Pass one of the constants
generated for the possible values to
this method to set the value.

void setValue(MemberType value) Sets the element content (only
generated if element can have simple
or mixed content).

© 2018 Altova GmbH

Code Generation Tips 1027Code Generator

Altova MapForce 2018 Professional Edition

14.11 Code Generation Tips

Resolving "Out of memory" exceptions during Java compilation

Complex mappings with large schemas can produce a large amount of code, which might cause
a java.lang.OutofMemory exception during compilation using Ant. To rectify this:

Add the environment variable ANT_OPTS, which sets specific Ant options such as the
memory to be allocated to the compiler, and set its value as shown below.

To make sure that the compiler and the generated code run in the same process as Ant,
change the fork attribute, in build.xml, to false.

You may need to customize the values depending on the amount of memory in your machine and
the size of the project you are working with. For more details, see your Java VM documentation.

When running the ant jar command, you may get an error message similar to "[...]
archive contains more than 65535 entities". To prevent this, it is recommended that
you use Ant 1.9 or later, and, in the build.xml file, add zip64mode="as-needed" to the
<jar> element.

Reserving method names

When customizing code generation using the supplied SPL files, it might be necessary to reserve
names to avoid collisions with other symbols. To do this:

1. Navigate to subdirectory corresponding to the programming language of the spl
subdirectory of the program installation directory e.g. C:\Program Files\Altova
\MapForce2018\spl\java\.

2. Open the settings.spl file and insert a new line into the reserve section e.g. reserve
"myReservedWord".

3. Regenerate the program code.

1028 Code Generator Code Generator Options

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.12 Code Generator Options

To view or change the MapForce settings applicable to code generation:

On the Tools menu, click Options, and then click Generation.

The available settings are as follows.

C++ Settings Defines the specific compiler settings for the C++ environment,
namely:

The Visual Studio version (2008, 2010, 2013, 2015, 2017)
The XML library (MSXML, Xerces 3.x)
Whether static or dynamic libraries must be generated
Whether code must be generated with or without MFC
support

C# Settings Defines the specific compiler settings for the C# environment,
namely, the Visual Studio version (2008, 2010, 2013, 2015, 2017).

Wrapper Classes Allows you to generate wrapper classes for XML schemas, see
Generating Code from XML Schemas or DTDs. These wrapper
classes can be used by custom code that includes the code
generated by MapForce.

© 2018 Altova GmbH

Code Generator Options 1029Code Generator

Altova MapForce 2018 Professional Edition

Server Execution File These options are applicable when you compile mappings to
MapForce Server execution files. They do not affect generation of
C#, C++, or Java code. For more information, see Compiling
Mappings to MapForce Server Execution Files.

1030 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

14.13 SPL (Spy Programming Language)

This section gives an overview of SPL (Spy Programming Language), the code generator's
template language.

It is assumed that you have prior programming experience, and are familiar with operators,
functions, variables and classes, as well as the basics of object-oriented programming - which is
used heavily in SPL.

The templates used by MapForce are supplied in the ...\MapForce\spl folder. You can use these
files as an aid to help you in developing your own templates.

How code generator works
Inputs to the code generator are the template files (.spl) and the object model provided by
MapForce. The template files contain SPL instructions for creating files, reading information from
the object model and performing calculations, interspersed with literal code fragments in the target
programming language.

The template file is interpreted by the code generator and outputs .cpp, .java, .cs source code
files, project files, or any other type of file depending on the template. The source code can then
be compiled into an executable file that accesses XML data described by the schema file.

SPL files have access to a wide variety of information that is collated from the source schemas.
Please note that an SPL file is not tied to a specific schema, but allows access to all schemas!
Make sure you write your SPL files generically, avoid structures etc. which apply to specific
schemas!

Example: Creating a new file in SPL:
[create "test.cpp"]
#include "stdafx.h"
[close]

This is a very basic SPL file. It creates a file named test.cpp, and places the include statement
within it. The close command completes the template.

14.13.1 Basic SPL structure

An SPL file contains literal text to output, interspersed with code generator instructions.

Code generator instructions are enclosed in square brackets '[' and ']'.
Multiple statements can be included in a bracket pair. Additional statements have to be separated
by a new line or a colon ':'.

Valid examples are:

[$x = 42
$x = $x + 1]

or

[$x = 42: $x = $x + 1]

© 2018 Altova GmbH

SPL (Spy Programming Language) 1031Code Generator

Altova MapForce 2018 Professional Edition

Adding text to files
Text not enclosed by [and], is written directly to the current output file. If there is no current
output file, the text is ignored (see Using files how to create an output file).
To output literal square brackets, escape them with a backslash: \[and \]; to output a backslash
use \\.

Comments
Comments inside an instruction block always begin with a ' character, and terminate on the next
line, or at a block close character].

14.13.2 Declarations

The following statements are evaluated while parsing the SPL template file. They are not affected
by flow control statements like conditions, loops or subroutines, and are always evaluated exactly
once.

These keywords, like all keywords in SPL, are not case sensitive.

Remember that all of these declarations must be inside a block delimited by square brackets.

map mapname key to value [, key to value]...

This statement adds information to a map. See below for specific uses.

map schemanativetype schematype to typespec

The specified built-in XML Schema type will be mapped to the specified native type or class, using
the specified formatter. This setting applies only to code generation for version 2007r3 and higher.
Typespec is a native type or class name, followed by a comma, followed by the formatter class
instance.

Example:
map schemanativetype "double" to "double,Altova::DoubleFormatter"

map type schematype to classname

The specified built-in XML Schema type will be mapped to the specified class. This setting applies
only to code generation for version 2007 or lower.

Example:
map type "float" to "CSchemaFloat"

default setting is value

This statement allows you to affect how class and member names are derived from the XML
Schema.
Note that the setting names are case sensitive.

Example:
default "InvalidCharReplacement" is "_"

1032 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Setting name Explanation

ValidFirstCharSet Allowed characters for starting an identifier

ValidCharSet Allowed characters for other characters in an identifier

InvalidCharReplacement The character that will replace all characters in names that are not
in the ValidCharSet

AnonTypePrefix Prefix for names of anonymous types*

AnonTypeSuffix Suffix for names of anonymous types*

ClassNamePrefix Prefix for generated class names

ClassNameSuffix Suffix for generated class names

EnumerationPrefix Prefix for symbolic constants declared for enumeration values

EnumerationUpperCase "on" to convert the enumeration constant names to upper case

FallbackName If a name consists only of characters that are not in ValidCharSet,
use this one

* Names of anonymous types are built from AnonTypePrefix + element name + AnonTypeSuffix

reserve word

Adds the specified word to the list of reserved words. This ensures that it will never be generated
as a class or member name.

Example:
reserve "while"

include filename

Example:
include "Module.cpp"

includes the specified file as SPL source. This allows you to split your template into multiple files
for easier editing and handling.

14.13.3 Variables

Any non-trivial SPL file will require variables. Some variables are predefined by the code generator,
and new variables may be created simply by assigning values to them.

The $ character is used when declaring or using a variable, a variable name is always prefixed
by $.
Variable names are case sensitive.

© 2018 Altova GmbH

SPL (Spy Programming Language) 1033Code Generator

Altova MapForce 2018 Professional Edition

Variables types:
integer - also used as boolean, where 0 is false and everything else is true
string
object - provided by MapForce
iterator - see foreach statement

Variable types are declared by first assignment:

[$x = 0]

x is now an integer.

[$x = "teststring"]

x is now treated as a string.

Strings
String constants are always enclosed in double quotes, like in the example above. \n and \t inside
double quotes are interpreted as newline and tab, \" is a literal double quote, and \\ is a
backslash. String constants can also span multiple lines.

String concatenation uses the & character:

[$BasePath = $outputpath & "/" & $JavaPackageDir]

Objects
Objects represent the information contained in the XML schemas, database structures, text files
and mappings. Objects have properties, which can be accessed using the . operator. It is not
possible to create new objects in SPL (they are predefined by the code generator, derived from
the input mapping), but it is possible to assign objects to variables.

Example:

class [=$class.Name]

This example outputs the word "class", followed by a space and the value of the Name property
of the $class object.

14.13.4 Predefined variables

After a Schema file is analyzed by the code generator, the objects in the table below exist in the
Template Engine.

Name Type Description

$schematype integer 1 for DTD, 2 for XML Schema

$TheLibrary Library The library derived from the XML Schema or DTD

$module string Name of the source Schema without extension

$outputpath string The output path specified by the user, or the default
output path

1034 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

For C++ generation only:

Name Type Description

$domtype integer 1 for MSXML, 2 for Xerces

$libtype integer 1 for static LIB, 2 for DLL

$mfc boolean True if MFC support is enabled

$VSVersion integer Specifies the Visual Studio version. Valid values:

0 No Visual Studio project

2008 Visual Studio 2008

2010 Visual Studio 2010

2013 Visual Studio 2013

2015 Visual Studio 2015

2017 Visual Studio 2017

For C# generation only:

Name Type Description

$VSVersion integer Specifies the Visual Studio version. Valid values:

0 No Visual Studio project

2008 Visual Studio 2008

2010 Visual Studio 2010

2013 Visual Studio 2013

2015 Visual Studio 2015

2017 Visual Studio 2017

14.13.5 Creating output files

These statements are used to create output files from the code generation.

Remember that all of these statements must be inside a block delimited by square brackets.

create filename

creates a new file. The file has to be closed with the close statement. All following output is
written to the specified file.

© 2018 Altova GmbH

SPL (Spy Programming Language) 1035Code Generator

Altova MapForce 2018 Professional Edition

Example:
[create $outputpath & "/" & $JavaPackageDir & "/" & $application.Name & ".java"]

package [=$JavaPackageName];

public class [=$application.Name]Application {
...
}
[close]

close

closes the current output file.

=$variable

writes the value of the specified variable to the current output file.

Example:
[$x = 20+3]
The result of your calculation is [=$x] - so have a nice day!

- The file output will be:

The result of your calculation is 23 - so have a nice day!

write string

writes the string to the current output file.

Example:
[write "C" & $name]

This can also be written as:
C[=$name]

filecopy source to target

copies the source file to the target file, without any interpretation.

Example:
filecopy "java/mapforce/mapforce.png" to $outputpath & "/" & $JavaPackageDir &
"/mapforce.png"

14.13.6 Operators

Operators in SPL work like in most other programming languages.

List of SPL operators in descending precedence order:

. Access object property
() Expression grouping
true boolean constant "true"
false boolean constant "false"

1036 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

& String concatenation

- Sign for negative number
not Logical negation

* Multiply
/ Divide
% Modulo

+ Add
- Subtract

<= Less than or equal
< Less than
>= Greater than or equal
> Greater than

= Equal
<> Not equal

and Logical conjunction (with short circuit evaluation)
or Logical disjunction (with short circuit evaluation)

= Assignment

14.13.7 Conditions

SPL allows you to use standard "if" statements. The syntax is as follows:

if condition

statements

else

statements

endif

or, without else:

if condition

statements

endif

Please note that there are no round brackets enclosing the condition!
As in any other programming language, conditions are constructed with logical and comparison
operators.

Example:
[if $namespace.ContainsPublicClasses and $namespace.Prefix <> ""]

whatever you want ['inserts whatever you want, in the resulting file]
[endif]

Switch
SPL also contains a multiple choice statement.

© 2018 Altova GmbH

SPL (Spy Programming Language) 1037Code Generator

Altova MapForce 2018 Professional Edition

Syntax:
switch $variable

case X:

statements

case Y:

case Z:

statements

default:

statements

endswitch

The case labels must be constants or variables.

The switch statement in SPL does not fall through the cases (as in C), so there is no need for a
"break" statement.

14.13.8 Collections and foreach

Collections and iterators

A collection contains multiple objects - like a ordinary array. Iterators solve the problem of storing
and incrementing array indexes when accessing objects.

Syntax:
foreach iterator in collection

statements

next

Example:
[foreach $class in $classes

if not $class.IsInternal

] class [=$class.Name];
[endif

next]

Example 2:
[foreach $i in 1 To 3

 Write "// Step " & $i & "\n"

 ‘ Do some work
next]

The first line:
$classes is the global object of all generated types. It is a collection of single class objects.

Foreach steps through all the items in $classes, and executes the code following the instruction,
up to the next statement, for each of them.

In each iteration, $class is assigned to the next class object. You simply work with the class
object instead of using, classes[i]->Name(), as you would in C++.

All collection iterators have the following additional properties:

1038 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Index The current index, starting with 0

IsFirst true if the current object is the first of the collection (index is 0)

IsLast true if the current object is the last of the collection

Current The current object (this is implicit if not specified and can be left out)

Example:
[foreach $enum in $facet.Enumeration

if not $enum.IsFirst

], [
endif

]"[=$enum.Value]"[
next]

14.13.9 Subroutines

Code generator supports subroutines in the form of procedures or functions.

Features:
By-value and by-reference passing of values
Local/global parameters (local within subroutines)
Local variables
Recursive invocation (subroutines may call themselves)

Subroutine declaration14.13.9.1

Subroutines

Syntax example:

Sub SimpleSub()

... lines of code

EndSub

Sub is the keyword that denotes the procedure.
SimpleSub is the name assigned to the subroutine.
Round parenthesis can contain a parameter list.
The code block of a subroutine starts immediately after the closing parameter
parenthesis.
EndSub denotes the end of the code block.

Please note:
Recursive or cascaded subroutine declaration is not permitted, i.e. a subroutine may not
contain another subroutine.

Parameters
Parameters can also be passed by procedures using the following syntax:

All parameters must be variables
Variables must be prefixed by the $ character

© 2018 Altova GmbH

SPL (Spy Programming Language) 1039Code Generator

Altova MapForce 2018 Professional Edition

Local variables are defined in a subroutine
Global variables are declared explicitly, outside of subroutines
Multiple parameters are separated by the comma character "," within round parentheses
Parameters can pass values

Parameters - passing values
Parameters can be passed in two ways, by value and by reference, using the keywords ByVal
and ByRef respectively.

Syntax:
' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
] ...

ByVal specifies that the parameter is passed by value. Note that most objects can only
be passed by reference.
ByRef specifies that the parameter is passed by reference. This is the default if neither
ByVal nor ByRef is specified.

Function return values
To return a value from a subroutine, use the return statement. Such a function can be called from
within an expression.

Example:
' define a function
[Sub MakeQualifiedName(ByVal $namespacePrefix, ByVal $localName)
if $namespacePrefix = ""
 return $localName
else
 return $namespacePrefix & ":" & $localName
endif
EndSub
]

Subroutine invocation14.13.9.2

Use call to invoke a subroutine, followed by the procedure name and parameters, if any.

Call SimpleSub()

or,
Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)

Function invocation
To invoke a function (any subroutine that contains a return statement), simply use its name
inside an expression. Do not use the call statement to call functions.
Example:

$QName = MakeQualifiedName($namespace, "entry")

1040 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Subroutine example14.13.9.3

The following example shows subroutine declaration and invocation.

[create $outputpath & $module & "output.txt"

' define sub SimpleSub()
Sub SimpleSub()
]SimpleSub() called
[endsub

' execute sub SimpleSub()
Call SimpleSub()

$ParamByValue = "Original Value"
]ParamByValue = [=$ParamByValue]
[$ParamByRef = "Original Value"
]ParamByRef = [=$ParamByRef]

' define sub CompleteSub()
[Sub CompleteSub($param, ByVal $paramByValue, ByRef $paramByRef)
]CompleteSub called.

param = [=$param]

paramByValue = [=$paramByValue]

paramByRef = [=$paramByRef]
[$ParamByRef = "Local Variable"
$paramByValue = "new value"
$paramByRef = "new value"
] Set values inside Sub
[$ParamByRef = "Local Variable"
$paramByValue = "new value"
$paramByRef = "new value"
]CompleteSub finished.
[endsub

' run sub CompleteSub()
Call CompleteSub("FirstParameter", $ParamByValue, $ParamByRef)
]
ParamByValue=[=$ParamByValue]
ParamByRef=[=$ParamByRef]
[
Close
]

14.13.10 Built in Types

The section describes the properties of the built-in types used in the predefined variables which
describe the parsed schema.

© 2018 Altova GmbH

SPL (Spy Programming Language) 1041Code Generator

Altova MapForce 2018 Professional Edition

Library14.13.10.1

This object represents the whole library generated from the XML Schema or DTD.

Property Type Description

SchemaNamespaces Namespace
collection

Namespaces in this library

SchemaFilename string Name of the XSD or DTD file this library is derived
from

SchemaType integer 1 for DTD, 2 for XML Schema

Guid string A globally unique ID

CodeName string Generated library name (derived from schema file
name)

Namespace14.13.10.2

One namespace object per XML Schema namespace is generated. Schema components that are
not in any namespace are contained in a special namespace object with an empty
NamespaceURI.
Note that for DTD, namespaces are also derived from attributes whose names begin with "xmlns".

Property Type Description

CodeName string Name for generated code (derived from prefix)

LocalName string Namespace prefix

NamespaceURI string Namespace URI

Types Type collection All types contained in this namespace

Library Library Library containing this namespace

Type14.13.10.3

This object represents a complex or simple type. It is used to generate a class in the target
language.
There is one additional type per library that represents the document, which has all possible root
elements as members.
Anonymous types have an empty LocalName.

Property Type Description

CodeName string Name for generated code (derived from local

1042 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Property Type Description

name or parent declaration)

LocalName string Original name in the schema

Namespace Namespace Namespace containing this type

Attributes Member
collection

Attributes contained in this type*

Elements Member
collection

Child elements contained in this type

IsSimpleType boolean True for simple types, false for complex types

IsDerived boolean True if this type is derived from another type,
which is also represented by a Type object

IsDerivedByExtension boolean True if this type is derived by extension

IsDerivedByRestriction boolean True if this type is derived by restriction

IsDerivedByUnion boolean True if this type is derived by union

IsDerivedByList boolean True if this type is derived by list

BaseType Type The base type of this type (if IsDerived is true)

IsDocumentRootType boolean True if this type represents the document
itself

Library Library Library containing this type

IsFinal boolean True if declared as final in the schema

IsMixed boolean True if this type can have mixed content

IsAbstract boolean True if this type is declared as abstract

IsGlobal boolean True if this type is declared globally in the
schema

IsAnonymous boolean True if this type is declared locally in an
element

For simple types only:

Property Type Description

IsNativeBound boolean True if native type binding exists

NativeBinding NativeBinding Native binding for this type

Facets Facets Facets of this type

Whitespace string Shortcut to the Whitespace facet

© 2018 Altova GmbH

SPL (Spy Programming Language) 1043Code Generator

Altova MapForce 2018 Professional Edition

* Complex types with text content (these are types with mixed content and complexType with
simpleContent) have an additional unnamed attribute member that represents the text content.

Member14.13.10.4

This object represents an attribute or element in the XML Schema. It is used to create class
members of types.

Property Type Description

CodeName string Name for generated code (derived from local
name or parent declaration)

LocalName string Original name in the schema. Empty for the
special member representing text content of
complex types.

NamespaceURI string The namespace URI of this Element/Attribute
within XML instance documents/streams.

DeclaringType Type Type originally declaring the member (equal to
ContainingType for non-inherited members)

ContainingType Type Type where this is a member of

DataType Type Data type of this member's content

Library Library Library containing this member's DataType

IsAttribute boolean True for attributes, false for elements

IsOptional boolean True if minOccurs = 0 or optional attribute

IsRequired boolean True if minOccurs > 0 or required attribute

IsFixed boolean True for fixed attributes, value is in Default
property

IsDefault boolean True for attributes with default value, value is
in Default property

IsNillable boolean True for nillable elements

IsUseQualified boolean True if NamespaceURI is not empty

MinOccurs integer minOccurs, as in schema. 1 for required
attributes

MaxOccurs integer maxOccurs, as in schema. 0 for prohibited
attributes, -1 for unbounded

Default string Default value

1044 Code Generator SPL (Spy Programming Language)

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

NativeBinding14.13.10.5

This object represents the binding of a simple type to a native type in the target programming
language, as specified by the "schemanativetype" map.

Property Type Description

ValueType string Native type

ValueHandler string Formatter class instance

Facets14.13.10.6

This object represents all facets of a simple type.
Inherited facets are merged with the explicitly declared facets. If a Length facet is in effect,
MinLength and MaxLength are set to the same value.

Property Type Description

DeclaringType Type Type facets are declared on

Whitespace string "preserve", "collapse" or "replace"

MinLength integer Facet value

MaxLength integer Facet value

MinInclusive integer Facet value

MinExclusive integer Facet value

MaxInclusive integer Facet value

MaxExclusive integer Facet value

TotalDigits integer Facet value

FractionDigits integer Facet value

List Facet collection All facets as list

Facet

This object represents a single facet with its computed value effective for a specific type.

Property Type Description

LocalName string Facet name

© 2018 Altova GmbH

SPL (Spy Programming Language) 1045Code Generator

Altova MapForce 2018 Professional Edition

Property Type Description

NamespaceURI string Facet namespace

FacetType string one of "normalization", "lexicalspace",
"valuespace-length", "valuespace-enum" or
"valuespace-range"

DeclaringType Type Type this facet is declared on

FacetCheckerName string Name of facet checker (from schemafacet
map)

FacetValue string or integer Actual value of this facet

Chapter 15

The MapForce API

1048 The MapForce API

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

15 The MapForce API

The COM-based API of MapForce enables clients to access the functionality of MapForce from a
custom code or application, and automate a wide range of tasks.

The MapForce COM API follows the common specifications for automation servers as set out by
Microsoft. MapForce is automatically registered as a COM server object during installation. Once
the COM server object is registered, you can invoke it from within applications and scripting
languages that have programming support for COM calls. This makes it possible to access the
MapForce API not only from development environments using .NET, C++ and Visual Basic, but
also from scripting languages like JScript and VBScript.

Note: If you use the MapForce API to create an application that you intend to distribute to other
clients, MapForce must be installed on each client computer. Also, your custom
integration code must be deployed to (or your application installed on) each client
computer.

© 2018 Altova GmbH

Overview 1049The MapForce API

Altova MapForce 2018 Professional Edition

15.1 Overview

This overview of the MapForce API provides you with the object model for the API and a
description of the most important API concepts. The following topics are covered:

Accessing the API
The Object Model
Error Handling
Examples

15.1.1 Accessing the API

To access the MapForce COM API, a new instance of the Application object must be created
in your application (or script). Once this object is created, you can interact with MapForce by
invoking its methods and properties as required (for example, create a new document, open an
existing document, generate mapping code, etc).

Prerequisites
To make the MapForce COM object available in your Visual Studio project, add a reference to the
MapForce type library (.tlb) file. The following instructions are applicable to Visual Studio 2013,
but are similar in other Visual Studio versions:

1. On the Project menu, click Add Reference.
2. Click Browse and select the MapForce.tlb file located in the MapForce installation

folder.

A sample MapForce API client in C# is available at: (My) Documents\Altova\MapForce2018
\MapForceExamples\API\C#.

In Java, the MapForce API is available through Java-COM bridge libraries. These libraries are
available in the MapForce installation folder: C:\Program Files (x86)\Altova\MapForce2018
\JavaAPI (note this path is valid when 32-bit MapForce runs on 64-bit Windows, otherwise adjust
the path accordingly).

AltovaAutomation.dll: a JNI wrapper for Altova automation servers
AltovaAutomation.jar: Java classes to access Altova automation servers
MapForceAPI.jar: Java classes that wrap the MapForce automation interface
MapForceAPI_JavaDoc.zip: a Javadoc file containing help documentation for the Java
API

To allow access to the MapForce automation server directly from Java code, the libraries above
must be in the Java classpath.

A sample MapForce API client in Java is available at: (My) Documents\Altova\MapForce2018
\MapForceExamples\API\Java.

In scripting languages such as JScript or VBScript, the MapForce COM object is accessible
through the Microsoft Windows Script Host (see https://msdn.microsoft.com/en-us/
library/9bbdkx3k.aspx). Such scripts can be written with a text editor, and do not need

https://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx
https://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx

1050 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

compilation, since they are executed by the Windows Script Host packaged with Windows. (To
check that the Windows Script Host is running, type wscript.exe /? at the command prompt).
A sample MapForce API client in JScript is available at: (My) Documents\Altova\MapForce2018
\MapForceExamples\API\JScript.

Note: For 32-bit MapForce, the registered name, or programmatic identifier (ProgId) of the COM
object is MapForce.Application. For 64-bit MapForce, the name is
MapForce_x64.Application.

Guidelines
The following guidelines should be considered in your client code:

Do not hold references to objects in memory longer than you need them. If a user
interacts between two calls of your client, then there is no guarantee that these
references are still valid.
Be aware that if your client code crashes, instances of MapForce may still remain in the
system. For details on how to avoid error messages, see Error handling.
Free references explicitly, if using languages such as C++.

Creating the Application object
The syntax to create the starting Application object depends on the programming language, as
shown in the examples below:

Visual Basic

Dim objMapForce As MapForceLib.Application = New MapForceLib.Application

VBA

' Create a new instance of MapForce.
Dim objMapForce As Application

Set objMapForce = CreateObject("MapForce.Application")

VBScript

' Access a running instance, or create a new instance of MapForce.
Set objMapForce = GetObject("MapForce.Application");

C#

// Create a new instance of MapForce via its automation interface.
MapForceLib.Application objMapForce = new MapForceLib.Application();

© 2018 Altova GmbH

Overview 1051The MapForce API

Altova MapForce 2018 Professional Edition

Java

// Start MapForce as COM server.

com.altova.automation.MapForce.Application objMapForce = new Application();

// COM servers start up invisible so we make it visible

objMapForce.setVisible(true);

JScript

// Access a running instance, or create a new instance of MapForce.

try

{

objMapForce = WScript.GetObject ("", "MapForce.Application");

// unhide application if it is a new instance

objMapForce.Visible = true;

}
catch(err) { WScript.Echo ("Can't access or create MapForce.Application"); }

15.1.2 The Object Model

The starting point for every application which uses the MapForce API is the Application object.
All other interfaces are accessed through the Application object as the starting point.

The object model of the MapForce API can be represented as follows (each indentation level indicates a
child–parent relationship with the level directly above):

Application
Options
Project

ProjectItem
Documents

Document
MapForceView
Mapping

Component
Datapoint

Components
Connection

Mappings
ErrorMarkers

ErrorMarker
AppOutputLines

AppOutputLine
AppOutputLines

...
AppOutputLineSymbol

Enumerations

1052 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

For information about creating an instance the Application object, see Accessing the API. For
reference to the objects exposed by the API, see Object Reference.

15.1.3 Error Handling

The MapForce API returns errors in two different ways. Every API method returns an HRESULT.
This return value informs the caller about any malfunctions during the execution of the method. If
the call was successful, the return value is equal to S_OK. C/C++ programmers generally use
HRESULT to detect errors.

Visual Basic, scripting languages, and other high-level development environments do not give the
programmer access to the returning HRESULT of a COM call. They use the second error-raising
mechanism supported by the MapForce API, the IErrorInfo interface. If an error occurs, the API
creates a new object that implements the IErrorInfo interface. The development environment
takes this interface and fills its own error-handling mechanism with the provided information.

The following text describes how to deal with errors raised from the MapForce API in different
development environments.

Visual Basic
A common way to handle errors in Visual Basic is to define an error handler. This error handler
can be set with the On Error statement. Usually the handler displays an error message and

does some cleanup to avoid spare references and any kind of resource leaks. Visual Basic fills its
own Err object with the information from the IErrorInfo interface.

Sub Validate()

 'place variable declarations here

 'set error handler
 On Error GoTo ErrorHandler

 'if generation fails, program execution continues at ErrorHandler:
 objMapForce.ActiveDocument.GenerateXSLT()

 'additional code comes here

 'exit
 Exit Sub

 ErrorHandler:
 MsgBox("Error: " & (Err.Number - vbObjectError) & Chr(13) &

 "Description: " & Err.Description)

End Sub

JavaScript
The Microsoft implementation of JavaScript (JScript) provides a try-catch mechanism to deal with
errors raised from COM calls. It is very similar to the VisualBasic approach, in that you also
declare an error object containing the necessary information.

© 2018 Altova GmbH

Overview 1053The MapForce API

Altova MapForce 2018 Professional Edition

 function Generate()

 {
 // please insert variable declarations here

 try

 {
 objMapForce.ActiveDocument.GenerateXSLT();
 }
 catch(Error)

 {
 sError = Error.description;
 nErrorCode = Error.number & 0xffff;
 return false;

 }

 return true;

 }

C/C++
C/C++ gives you easy access to the HRESULT of the COM call and to the IErrorInterface.

 HRESULT hr;

 // Call GenerateXSLT() from the MapForce API

 if(FAILED(hr = ipDocument->GenerateXSLT()))

 {
 IErrorInfo *ipErrorInfo = Null;

 if(SUCCEEDED(::GetErrorInfo(0, &ipErrorInfo)))

 {
 BSTR bstrDescr;
 ipErrorInfo->GetDescription(&bstrDescr);

 // handle Error information

 wprintf(L"Error message:\t%s\n",bstrDescr);
 ::SysFreeString(bstrDescr);

 // release Error info

 ipErrorInfo->Release();
 }
 }

15.1.4 Examples

Programming languages differ in the way they support COM access. The following examples for
C#, Java, and JScript will help you get started. The code listings in this section are available at C:/
Users/<username>/Documents/Altova/MapForce2018/MapForceExamples/API.

1054 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Example C# Project15.1.4.1

After you install MapForce, an example MapForce API client project for C# is available in the
directory C:/Users/<username>/Documents/
Altova/MapForce2018/MapForceExamples/API.

You can compile and run the project with Visual Studio 2008 or later. To compile and run the
example, open the solution .sln file in Visual Studio and run Debug | Start Debugging or Debug
| Start Without Debugging.

Note: If you have a 64-bit operating system and are using a 32-bit installation of MapForce, add
the x86 platform in the solution's Configuration Manager and build the sample using this
configuration. A new x86 platform (for the active solution in Visual Studio) can be created
in the New Solution Platform dialog (Build | Configuration Manager | Active solution
platform | <New…>).

When you run the example, a Windows form is displayed, containing buttons that invoke basic
MapForce operations:

Start MapForce
Create a new mapping design
Open the CompletePO.mfd file from the ...\MapForceExamples folder (note that you
may need to adjust the path to point to the \MapForceExamples folder on your
machine)
Generate C# code in a temp directory
Shut down MapForce

Code listing
The listing is commented for ease of understanding. The code essentially consists of a series of
handlers for the buttons in the user interface shown above.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

© 2018 Altova GmbH

Overview 1055The MapForce API

Altova MapForce 2018 Professional Edition

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace WindowsFormsApplication2

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 // An instance of MapForce accessed via its automation interface.

 MapForceLib.Application MapForce;

 // Location of examples installed with MapForce

 String strExamplesFolder;

 private void Form1_Load(object sender, EventArgs e)

 {

 }

 // handler for the "Start MapForce" button

 private void StartMapForce_Click(object sender, EventArgs e)

 {

 if (MapForce == null)

 {

 Cursor.Current = Cursors.WaitCursor;

 // if we have no MapForce instance, we create one a nd make it

visible.

 MapForce = new MapForceLib.Application();

 MapForce.Visible = true;

 // locate examples installed with MapForce.

 int majorVersionYear = MapForce.MajorVersion + 1998;

 strExamplesFolder =

Environment.GetEnvironmentVariable("USERPROFILE") + "\\My Documents\\Altova\

\MapForce" + Convert.ToString(majorVersionYear) + "\\MapForceExamples\\";

 Cursor.Current = Cursors.Default;

 }

 else

 {

 // if we have already an MapForce instance running we toggle

its visibility flag.

 MapForce.Visible = !MapForce.Visible;

 }

 }

 // handler for the "Open CompletePO.mfd" button

 private void openCompletePO_Click(object sender, EventArgs e)

 {

 if (MapForce == null)

 StartMapForce_Click(null, null);

 // Open one of the sample files installed with the product.

 MapForce.OpenDocument(strExamplesFolder + "CompletePO.mfd");

 }

1056 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 // handler for the "Create new mapping" button

 private void newMapping_Click(object sender, EventArgs e)

 {

 if (MapForce == null)

 StartMapForce_Click(null, null);

 // Create a new mapping

 MapForce.NewMapping();

 }

 // handler for the "Shutdown MapForce" button

 // shut-down application instance by explicitly releasing the COM

object.

 private void shutdownMapForce_Click(object sender, EventArgs e)

 {

 if (MapForce != null)

 {

 // allow shut-down of MapForce by releasing UI

 MapForce.Visible = false;

 // explicitly release COM object

 try

 {

 while

(System.Runtime.InteropServices.Marshal.ReleaseComObject(MapForce) > 0) ;

 }

 finally

 {

 // avoid later access to this object.

 MapForce = null;

 }

 }

 }

 // handler for button "Generate C# Code"

 private void generateCppCode_Click(object sender, EventArgs e)

 {

 if (MapForce == null)

 listBoxMessages.Items.Add("start MapForce first.");

 // COM errors get returned to C# as exceptions. We use a try/catch

block to handle them.

 try

 {

 MapForceLib.Document doc = MapForce.ActiveDocument;

 listBoxMessages.Items.Add("Active document " + doc.Name);

 doc.GenerateCHashCode();

 }

 catch (Exception ex)

 {

 // The COM call was not successful.

 // Probably no application instance has been started or no

document is open.

 MessageBox.Show("COM error: " + ex.Message);

 }

 }

 delegate void addListBoxItem_delegate(string sText);

© 2018 Altova GmbH

Overview 1057The MapForce API

Altova MapForce 2018 Professional Edition

 // called from the UI thread

 private void addListBoxItem(string sText)

 {

 listBoxMessages.Items.Add(sText);

 }

 // wrapper method to allow to call UI controls methods from a worker

thread

 void syncWithUIthread(Control ctrl, addListBoxItem_delegate

methodToInvoke, String sText)

 {

 // Control.Invoke: Executes on the UI thread, but calling thread

waits for completion before continuing.

 // Control.BeginInvoke: Executes on the UI thread, and calling

thread doesn't wait for completion.

 if (ctrl.InvokeRequired)

 ctrl.BeginInvoke(methodToInvoke, new Object[] { sText });

 }

 // event handler for OnDocumentOpened event

 private void handleOnDocumentOpened(MapForceLib.Document i_ipDocument)

 {

 String sText = "";

 if (i_ipDocument.Name.Length > 0)

 sText = "Document " + i_ipDocument.Name + " was opened!";

 else

 sText = "A new mapping was created.";

 // we need to synchronize the calling thread with the UI thread

because

 // the COM events are triggered from a working thread

 addListBoxItem_delegate methodToInvoke = new

addListBoxItem_delegate(addListBoxItem);

 // call syncWithUIthread with the following arguments:

 // 1 - listBoxMessages - list box control to display messages from

COM events

 // 2 - methodToInvoke - a C# delegate which points to the method

which will be called from the UI thread

 // 3 - sText - the text to be displayed in the list box

 syncWithUIthread(listBoxMessages, methodToInvoke, sText);

 }

 private void checkBoxEventOnOff_CheckedChanged(object sender,

EventArgs e)

 {

 if (MapForce != null)

 {

 if (checkBoxEventOnOff.Checked)

 MapForce.OnDocumentOpened += new

MapForceLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentO

pened);

 else

 MapForce.OnDocumentOpened -= new

MapForceLib._IApplicationEvents_OnDocumentOpenedEventHandler(handleOnDocumentO

pened);

 }

 }

 }

}

1058 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Example Java Project15.1.4.2

After you install MapForce, an example MapForce API client project for Java is available in the
directory C:/Users/<username>/Documents/
Altova/MapForce2018/MapForceExamples/API.

You can test the Java example directly from the command line, using the batch file
BuildAndRun.bat, or you can compile and run the example project from within Eclipse. See
below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are
listed below:

AltovaAutomation.dll Java-COM bridge: DLL part

AltovaAutomation.jar Java-COM bridge: Java library part

MapForceAPI.jar Java classes of the MapForce API

RunMapForce.java Java example source code

BuildAndRun.bat Batch file to compile and run example code from the command line
prompt. Expects folder where Java Virtual Machine resides as
parameter.

.classpath Eclipse project helper file

.project Eclipse project file

MapForceAPI_JavaDoc.zip Javadoc file containing help documentation for the Java API

What the example does
The example starts up MapForce and performs a few operations, including opening and closing
documents. When done, MapForce stays open. You must close it manually.

Running the example from the command line
To run the example from the command line, open a command prompt window, go to the Java
folder of the API Examples folder (see above for location), and then type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

The Java binary folder must be that of a Java Development Kit (JDK) 7 or later installation on your
computer.

Press the Return key. The Java source in RunMapForce.java will be compiled and then
executed.

Loading the example in Eclipse
Open Eclipse and use the File | Import... | General | Existing Projects into Workspace
command to add the Eclipse project file (.project) located in the Java folder of the API
Examples folder (see above for location). The project RunMapForce will then appear in your
Package Explorer or Navigator.

© 2018 Altova GmbH

Overview 1059The MapForce API

Altova MapForce 2018 Professional Edition

Select the project and then the command Run as | Java Application to execute the example.

Note: You can select a class name or method of the Java API and press F1 to get help for that
class or method.

Java source code listing
The Java source code in the example file RunMapForce.java is listed below with comments.

// access general JAVA-COM bridge classes
import java.util.Iterator;

import com.altova.automation.libs.*;

// access XMLSpy Java-COM bridge
import com.altova.automation.MapForce.*;

import com.altova.automation.MapForce.Enums.ENUMProgrammingLanguage;

/**

 * A simple example that starts XMLSpy COM server and performs a few

operations on it.

 * Feel free to extend.

 */

public class RunMapForce

{
 public static void main(String[] args)

 {
 // an instance of the application.
 Application mapforce = null;

 // instead of COM error handling use Java exception mechanism.
 try

 {
 // Start MapForce as COM server.
 mapforce = new Application();

 // COM servers start up invisible so we make it visible
 mapforce.setVisible(true);

 // The following lines attach to the application events using a
default implementation
 // for the events and override one of its methods.
 // If you want to override all document events it is better to derive
your listener class
 // from DocumentEvents and implement all methods of this interface.
 mapforce.addListener(new ApplicationEventsDefaultHandler()

 {
 @Override
 public void onDocumentOpened(Document i_ipDoc) throws

AutomationException
 {
 String name = i_ipDoc.getName();

 if (name.length() > 0)

1060 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 System.out.println("Document " + name + " was opened.");
 else

 System.out.println("A new mapping was created.");
 }
 });

 // Locate samples installed with the product.
 int majorVersionYear = mapforce.getMajorVersion() + 1998;

 String strExamplesFolder = System.getenv("USERPROFILE") + "\
\Documents\\Altova\\MapForce" + Integer.toString(majorVersionYear) + "\
\MapForceExamples\\";
 // create a new MapForce mapping and generate c++ code
 Document newDoc = mapforce.newMapping();
 ErrorMarkers err1 =
newDoc.generateCodeEx(ENUMProgrammingLanguage.eCpp);
 display(err1);
 // open CompletePO.mfd and generate c++ code
 Document doc = mapforce.openDocument(strExamplesFolder +
"CompletePO.mfd");
 ErrorMarkers err2 = doc.generateCodeEx(ENUMProgrammingLanguage.eCpp);
 display(err2);

 doc.close();
 doc = null;

 System.out.println("Watch MapForce!");
 }
 catch (AutomationException e)

 {
 // e.printStackTrace();
 }
 finally

 {
 // Make sure that MapForce can shut down properly.
 if (mapforce != null)

 mapforce.dispose();

 // Since the COM server was made visible and still is visible, it
will keep running
 // and needs to be closed manually.
 System.out.println("Now close MapForce!");
 }
 }

 public static void display(ErrorMarkers err) throws AutomationException

 {
 Iterator<ErrorMarker> itr = err.iterator();

 if (err.getCount() == 0)

 System.out.print("Code generation completed successfully.\n");

 while (itr.hasNext())

 {
 String sError = "";
 Object element = itr.next();

© 2018 Altova GmbH

Overview 1061The MapForce API

Altova MapForce 2018 Professional Edition

 if (element instanceof ErrorMarker)

 sError = ((ErrorMarker)element).getText();
 System.out.print("Error text: " + sError + "\n");
 }
 }
}

JScript Examples15.1.4.3

After you install MapForce, an example MapForce API client project for JScript is available in the
directory C:/Users/<username>/Documents/
Altova/MapForce2018/MapForceExamples/API.

The example files can be run in one of two ways:

From the command line:
Open a command prompt window and type the name of one of the example scripts (for
example, Start.js). The Windows Scripting Host that is packaged with Windows will
execute the script.

From Windows Explorer:
In Windows Explorer, browse for the JScript file and double-click it. The Windows
Scripting Host that is packaged with Windows will execute the script. After the script is
executed, the command console gets closed automatically.

The following example files are included:

Start.js Start Mapforce registered as an automation server or connect to a running
instance (see Start Application).

DocumentAcce
ss.js

Shows how to open, iterate and close documents (see Simple Document
Access).

GenerateCode
.js

Shows how to invoke code generation using JScript (see Generate Code).

Readme.txt Provides basic help to run the scripts.

This documentation additionally includes a few extra JScript code listings:

Example: Code Generation
Example: Mapping Execution
Example: Project Support

Start Application

The JScript code listing below starts the application and shuts it down. If an instance of the
application is already running, the running instance will be returned.

Note: For 32-bit MapForce, the registered name, or programmatic identifier (ProgId) of the COM

1062 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

object is MapForce.Application. For 64-bit MapForce, the name is
MapForce_x64.Application.

// Initialize application's COM object. This will start a new instance of the
application and
// return its main COM object. Depending on COM settings, a the main COM
object of an already
// running application might be returned.

try { objMapForce = WScript.GetObject("", "MapForce.Application"); }

catch(err) {}

if(typeof(objMapForce) == "undefined")

{
 try { objMapForce = WScript.GetObject("",

"MapForce_x64.Application") }
 catch(err)

 {
 WScript.Echo("Can't access or create MapForce.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it
to visible.
objMapForce.Visible = true;

WScript.Echo(objMapForce.Edition + " has successfully started. ");

objMapForce.Visible = false; // will shutdown application if it has no more

COM connections
//objMapForce.Visible = true; // will keep application running with UI
visible

The code listed above is available as a sample file (see JScript Examples). To run the script, start
it from a command prompt window or from Windows Explorer.

Simple Document Access

The JScript listing below shows how to open documents, set a document as the active document,
iterate through the open documents, and close documents.

// Initialize application's COM object. This will start a new instance of the
application and
// return its main COM object. Depending on COM settings, a the main COM
object of an already
// running application might be returned.
try { objMapForce = WScript.GetObject("", "MapForce.Application"); }

catch(err) {}

© 2018 Altova GmbH

Overview 1063The MapForce API

Altova MapForce 2018 Professional Edition

if(typeof(objMapForce) == "undefined")

{
 try { objMapForce = WScript.GetObject("",

"MapForce_x64.Application") }
 catch(err)

 {
 WScript.Echo("Can't access or create MapForce.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it
to visible.
objMapForce.Visible = true;

// **************************** code snippet for "Simple Document Access"

// Locate examples via USERPROFILE shell variable. The path needs to be
adapted to major release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objMapForce.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\
\Documents\\Altova\\MapForce" + majorVersionYear + "\\MapForceExamples\\";

objMapForce.Documents.OpenDocument(strExampleFolder + "CompletePO.mfd");
objMapForce.Documents.OpenDocument(strExampleFolder +
"Altova_Hierarchical_DB.mfd");

// **************************** code snippet for "Simple Document Access"

// **************************** code snippet for "Iteration"

// go through all open documents using a JScript Enumerator
for (var iterDocs = new Enumerator(objMapForce.Documents); !iterDocs.atEnd();

iterDocs.moveNext())
{
 objName = iterDocs.item().Name;
 WScript.Echo("Document name: " + objName);
}

// go through all open documents using index-based access to the document
collection
for (i = objMapForce.Documents.Count; i > 0; i--)

 objMapForce.Documents.Item(i).Close();

// **************************** code snippet for "Iteration"

//objMapForce.Visible = false; // will shutdown application if it has no
more COM connections

1064 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

objMapForce.Visible = true; // will keep application running with UI visible

The code listed above is available as a sample file (see JScript Examples). To run the script, start
it from a command prompt window or from Windows Explorer.

Generate Code

The JScript listing below shows how to open documents, set a document as the active document,
iterate through the open documents, and generate C++ code.

// Initialize application's COM object. This will start a new instance of the
application and
// return its main COM object. Depending on COM settings, a the main COM
object of an already
// running application might be returned.
try { objMapForce = WScript.GetObject("", "MapForce.Application"); }

catch(err) {}

if(typeof(objMapForce) == "undefined")

{
 try { objMapForce = WScript.GetObject("",

"MapForce_x64.Application") }
 catch(err)

 {
 WScript.Echo("Can't access or create MapForce.Application");
 WScript.Quit();
 }
}

// if newly started, the application will start without its UI visible. Set it
to visible.
objMapForce.Visible = true;

// **************************** code snippet for "Simple Document Access"

// Locate examples via USERPROFILE shell variable. The path needs to be
adapted to major release versions.
objWshShell = WScript.CreateObject("WScript.Shell");
majorVersionYear = objMapForce.MajorVersion + 1998
strExampleFolder = objWshShell.ExpandEnvironmentStrings("%USERPROFILE%") + "\
\Documents\\Altova\\MapForce" + majorVersionYear + "\\MapForceExamples\\";

objMapForce.Documents.OpenDocument(strExampleFolder + "CompletePO.mfd");
//objMapForce.Documents.OpenDocument(strExampleFolder +
"Altova_Hierarchical_DB.mfd");
objMapForce.Documents.NewDocument();

// **************************** code snippet for "Simple Document Access"

// **************************** code snippet for "Iteration"

© 2018 Altova GmbH

Overview 1065The MapForce API

Altova MapForce 2018 Professional Edition

objText = "";
// go through all open documents using a JScript Enumerator and generate c++
code
for (var iterDocs = new Enumerator(objMapForce.Documents); !iterDocs.atEnd();

iterDocs.moveNext())
{
 objText += "Generated c++ code result for document " + iterDocs.item().Name
+ " :\n";
 objErrorMarkers = iterDocs.item().generateCodeEx(1); //
ENUMProgrammingLanguage.eCpp = 1

 bSuccess = true;

 for (var iterErrorMarkers = new

Enumerator(objErrorMarkers); !iterErrorMarkers.atEnd();
iterErrorMarkers.moveNext())
 {
 bSuccess = false;

 objText += "\t" + iterErrorMarkers.item().Text + "\n";
 }

 if (bSuccess)

 objText += "\tCode generation completed successfully.\n";

 objText += "\n";
}

WScript.Echo(objText);

// go through all open documents using index-based access to the document
collection
for (i = objMapForce.Documents.Count; i > 0; i--)

 objMapForce.Documents.Item(i).Close();

// **************************** code snippet for "Iteration"

//objMapForce.Visible = false; // will shutdown application if it has no
more COM connections
objMapForce.Visible = true; // will keep application running with UI visible

The code listed above is available as a sample file (see JScript Examples). To run the script, start
it from a command prompt window or from Windows Explorer.

Example: Code Generation

The following JScript example shows how to load an existing document and generate different
kinds of mapping code for it.

// ------------------- begin JScript example ---------------------
// Generate Code for existing mapping.

1066 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

// works with Windows scripting host.

// ----------------- helper function ------------------
function Exit(strErrorText)

{
 WScript.Echo(strErrorText);
 WScript.Quit(-1);
}

function ERROR(strText, objErr)

{
 if (objErr != null)

 Exit ("ERROR: (" + (objErr.number & 0xffff) + ")" + objErr.description
+ " - " + strText);
 else

 Exit ("ERROR: " + strText);
}
// ---

// ----------------- MAIN ------------------

// ----- create the Shell and FileSystemObject of the windows scripting
try

{
 objWshShell = WScript.CreateObject("WScript.Shell");
 objFSO = WScript.CreateObject("Scripting.FileSystemObject");
}
catch(err)

 { Exit("Can't create WScript.Shell object"); }

// ----- open MapForce or access running instance and make it visible
try

{
 objMapForce = WScript.GetObject ("", "MapForce.Application");
 objMapForce.Visible = true; // remove this line to perform background

processing
}
catch(err) { WScript.Echo ("Can't access or create MapForce.Application"); }

// ----- open an existing mapping. adapt this to your needs!
objMapForce.OpenDocument(objFSO.GetAbsolutePathName ("Test.mfd"));

// ----- access the mapping to have access to the code generation methods
var objDoc = objMapForce.ActiveDocument;

// ----- set the code generation output properties and call the code
generation methods.
// ----- adapt the output directories to your needs
try

{
 // ----- code generation uses some of these options
 var objOptions = objMapForce.Options;

 // ----- generate XSLT -----
 objOptions.XSLTDefaultOutputDirectory = "C:\\test\\TestCOMServer\\XSLT";

© 2018 Altova GmbH

Overview 1067The MapForce API

Altova MapForce 2018 Professional Edition

 objDoc.GenerateXSLT();

 // ----- generate Java Code -----
 objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\Java";
 objDoc.GenerateJavaCode();

 // ----- generate CPP Code, use same cpp code options as the last time

 objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\CPP";
 objDoc.GenerateCppCode();

 // ----- generate C# Code, use options C# code options as the last time

 objOptions.CodeDefaultOutputDirectory = "C:\\test\\TestCOMServer\\CHash";
 objDoc.GenerateCHashCode();
}
catch (err)

 { ERROR ("while generating XSL or program code", err); }

// hide MapForce to allow it to shut down
objMapForce.Visible = false;

// -------------------- end example ---------------------

Example: Mapping Execution

The following JScript example shows how to load an existing document with a simple mapping,
access its components, set input- and output-instance file names and execute the mapping.

/*
 This sample file performs the following operations:

 Load existing MapForce mapping document.
 Find source and target component.
 Set input and output instance filenames.
 Execute the transformation.

 Works with Windows scripting host.
*/

// ---- general helpers ------------------------------

function Exit(message)

{
 WScript.Echo(message);
 WScript.Quit(-1);
}

function ERROR(message, err)

{
 if(err != null)

 Exit("ERROR: (" + (err.number & 0xffff) + ") " + err.description + " -

1068 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

" + message);
 else

 Exit("ERROR: " + message);
}

// ---- MapForce constants -----------------------

var eComponentUsageKind_Unknown = 0;

var eComponentUsageKind_Instance = 1;

var eComponentUsageKind_Input = 2;

var eComponentUsageKind_Output = 3;

// ---- MapForce helpers -----------------------

// Searches in the specified mapping for a component by name and returns it.
// If not found, throws an error.
function FindComponent(mapping, component_name)

{
 var components = mapping.Components;

 for(var i = 0 ; i < components.Count ; ++i)

 {
 var component = components.Item(i + 1);

 if(component.Name == component_name)

 return component;

 }
 throw new Error("Cannot find component with name " + component_name);

}

// Browses components in a mapping and returns the first one found acting as
// source component (i.e. having connections on its right side).
function GetFirstSourceComponent(mapping)

{
 var components = mapping.Components;

 for(var i = 0 ; i < components.Count ; ++i)

 {
 var component = components.Item(i + 1);

 if(component.UsageKind == eComponentUsageKind_Instance &&

 component.HasOutgoingConnections)
 {
 return component;

 }
 }
 throw new Error("Cannot find a source component");

}

// Browses components in a mapping and returns the first one found acting as
// target component (i.e. having connections on its left side).
function GetFirstTargetComponent(mapping)

© 2018 Altova GmbH

Overview 1069The MapForce API

Altova MapForce 2018 Professional Edition

{
 var components = mapping.Components;

 for(var i = 0 ; i < components.Count ; ++i)

 {
 var component = components.Item(i + 1);

 if(component.UsageKind == eComponentUsageKind_Instance &&

 component.HasIncomingConnections)
 {
 return component;

 }
 }
 throw new Error("Cannot find a target component");

}

function IndentTextLines(s)

{
 return "\t" + s.replace(/\n/g, "\n\t");

}

function GetAppoutputLineFullText(oAppoutputLine)

{
 var s = oAppoutputLine.GetLineText();

 var oAppoutputChildLines = oAppoutputLine.ChildLines;

 var i;

 for(i = 0 ; i < oAppoutputChildLines.Count ; ++i)

 {
 oAppoutputChildLine = oAppoutputChildLines.Item(i + 1);
 sChilds = GetAppoutputLineFullText(oAppoutputChildLine);
 s += "\n" + IndentTextLines(sChilds);
 }

 return s;

}

// Create a nicely formatted string from AppOutputLines
function GetResultMessagesString(oAppoutputLines)

{
 var s1 = "Transformation result messages:\n";

 var oAppoutputLine;

 var i;

 for(i = 0 ; i < oAppoutputLines.Count ; ++i)

 {
 oAppoutputLine = oAppoutputLines.Item(i + 1);
 s1 += GetAppoutputLineFullText(oAppoutputLine);
 s1 += "\n";
 }

 return s1;

}

1070 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

// ---- MAIN -------------------------------------

var wshShell;

var fso;

var mapforce;

// create the Shell and FileSystemObject of the windows scripting system
try

{
 wshShell = WScript.CreateObject("WScript.Shell");
 fso = WScript.CreateObject("Scripting.FileSystemObject");
}
catch(err)

 { ERROR("Can't create windows scripting objects", err); }

// open MapForce or access currently running instance
try

{
 mapforce = WScript.GetObject("", "MapForce.Application");
}
catch(err)

 { ERROR("Can't access or create MapForce.Application", err); }

try

{
 // Make MapForce UI visible. This is an API requirement for output
generation.
 mapforce.Visible = true;

 // open an existing mapping.
 // **** adjust the examples path to your needs ! **************
 var sMapForceExamplesPath = fso.BuildPath(

 wshShell.SpecialFolders("MyDocuments"),
 "Altova\\MapForce2018\\MapForceExamples");
 var sDocFilename = fso.BuildPath(sMapForceExamplesPath,

"PersonList.mfd");
 var doc = mapforce.OpenDocument(sDocFilename);

 // Find existing components by name in the main mapping.
 // Note, the names of components may not be unique as a schema component's
name
 // is derived from its schema file name.
 var source_component = FindComponent(doc.MainMapping, "Employees");

 var target_component = FindComponent(doc.MainMapping, "PersonList");

 // If you do not know the names of the components for some reason, you
could
 // use the following functions instead of FindComponent.
 //var source_component = GetFirstSourceComponent(doc.MainMapping);
 //var target_component = GetFirstTargetComponent(doc.MainMapping);

 // specify the desired input and output files.
 source_component.InputInstanceFile = fso.BuildPath(sMapForceExamplesPath,
"Employees.xml");

© 2018 Altova GmbH

Overview 1071The MapForce API

Altova MapForce 2018 Professional Edition

 target_component.OutputInstanceFile =
fso.BuildPath(sMapForceExamplesPath, "test_transformation_results.xml");

 // Perform the transformation.
 // You can use doc.GenerateOutput() if you do not need result messages.
 // If you have a mapping with more than one target component and you want
 // to execute the transformation only for one specific target component,
 // call target_component.GenerateOutput() instead.
 var result_messages = doc.GenerateOutputEx();

 var summary_info =

 "Transformation performed from " + source_component.InputInstanceFile
+ "\n" +
 "to " + target_component.OutputInstanceFile + "\n\n" +
 GetResultMessagesString(result_messages);
 WScript.Echo(summary_info);
}
catch(err)

{
 ERROR("Failure", err);
}

Example: Project Support

The following JScript example shows how to use the MapForce API to automate tasks pertaining
to MapForce projects. Before running the example, make sure to edit the variable strSamplePath
so that it points to the MapForceExamples folder of your MapForce installation.

To successfully run all operations in this example below, you will need the Enterprise version of
MapForce. If you have the Professional version running, comment out the lines that insert the
WebService project.

// //////////// global variables /////////////////
var objMapForce = null;

var objWshShell = null;

var objFSO = null;

// !!! adapt the following path to your needs. !!!
var strSamplePath = "C:\\Users\\<username>\\Documents\\Altova\\MapForce2018\

\MapForceExamples\\Tutorial\\";

// /////////////////////// Helpers //////////////////////////////

function Exit(strErrorText)

{
 WScript.Echo(strErrorText);
 WScript.Quit(-1);
}

function ERROR(strText, objErr)

{
 if (objErr != null)

1072 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 Exit ("ERROR: (" + (objErr.number & 0xffff) + ")" + objErr.description
+ " - " + strText);
 else

 Exit ("ERROR: " + strText);
}

function CreateGlobalObjects ()

{
 // the Shell and FileSystemObject of the windows scripting host often
always useful
 try

 {
 objWshShell = WScript.CreateObject("WScript.Shell");
 objFSO = WScript.CreateObject("Scripting.FileSystemObject");
 }
 catch(err)

 { Exit("Can't create WScript.Shell object"); }

 // create the MapForce connection
 // if there is a running instance of MapForce (that never had a connection)
- use it
 // otherwise, we automatically create a new instance
 try

 {
 objMapForce = WScript.GetObject("", "MapForce.Application");
 }
 catch(err)

 {
 { Exit("Can't access or create MapForce.Application"); }
 }
}

// --
// print project tree items and their properties recursively.
// --
function PrintProjectTree(objProjectItemIter, strTab)

{
 while (! objProjectItemIter.atEnd())

 {
 // get current project item
 objItem = objProjectItemIter.item();

 try

 {
 // ----- print common properties
 strGlobalText += strTab + "[" + objItem.Kind + "]" + objItem.Name +
"\n";

 // ----- print code generation properties, if available
 try

 {
 if (objItem.CodeGenSettings_UseDefault)

 strGlobalText += strTab + " Use default code generation
settings\n";
 else

© 2018 Altova GmbH

Overview 1073The MapForce API

Altova MapForce 2018 Professional Edition

 strGlobalText += strTab + " code generation language is " +
 objItem.CodeGenSettings_Lan
guage +
 " output folder is " +
objItem.CodeGenSettings_OutputFolder + "\n";
 }
 catch(err) {}

 // ----- print WSDL settings, if available
 try

 {
 strGlobalText += strTab + " WSDL File is " + objItem.WSDLFile +
 " Qualified Name is " + objItem.QualifiedName +
"\n";
 }
 catch(err) {}

 }
 catch(ex)

 { strGlobalText += strTab + "[" + objItem.Kind + "]\n" }

 // ---- recurse
 PrintProjectTree(new Enumerator(objItem), strTab + ' ');

 objProjectItemIter.moveNext();
 }
}

// --
// Load example project installed with MapForce.
// --
function LoadSampleProject()

{
 // close open project
 objProject = objMapForce.ActiveProject;
 if (objProject != null)

 objProject.Close();

 // open sample project and iterate through it.
 // sump properties of all project items

 objProject = objMapForce.OpenProject(strSamplePath +
"MapForceExamples.mfp");
 strGlobalText = '';
 PrintProjectTree(new Enumerator (objProject), ' ')

 WScript.Echo(strGlobalText);

 objProject.Close();
}

// --
// Create a new project with some folders, mappings and a
// Web service project.
// --
function CreateNewProject()

{

1074 The MapForce API Overview

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 try

 {
 // create new project and specify file to store it.
 objProject = objMapForce.NewProject(strSamplePath + "Sample.mfp");

 // create a simple folder structure
 objProject.CreateFolder("New Folder 1");
 objFolder1 = objProject.Item(0);
 objFolder1.CreateFolder("New Folder 2");
 objFolder2 = (new Enumerator(objFolder1)).item(); // an

alternative to Item(0)

 // add two different mappings to folder structure
 objFolder1.AddFile(strSamplePath + "DB_Altova_SQLXML.mfd");
 objMapForce.Documents.OpenDocument(strSamplePath +
"InspectionReport.mfd");
 objFolder2.AddActiveFile();

 // override code generation settings for this folder
 objFolder2.CodeGenSettings_UseDefault = false;

 objFolder2.CodeGenSettings_OutputFolder = strSamplePath + "SampleOutput"
 objFolder2.CodeGenSettings_Language = 1; //C++

 // insert Web service project based on a wsdl file from the installed
examples
 objProject.InsertWebService(strSamplePath + "TimeService/
TimeService.wsdl",
 "{http://www.Nanonull.com/TimeService/}
TimeService",
 "TimeServiceSoap",
 true);

 objProject.Save();
 if (! objProject.Saved)

 WScript.Echo("problem occurred when saving project");

 // dump project tree
 strGlobalText = '';
 PrintProjectTree(new Enumerator (objProject), ' ')

 WScript.Echo(strGlobalText);
 }
 catch (err)

 { ERROR("while creating new project", err); }
}

// --
// Generate code for a project's sub-tree. Mix default code
// generation parameters and overloaded parameters.
// --
function GenerateCodeForNewProject()

{
 // since the Web service project contains only initial mappings,
 // we generate code only for our custom folder.
 // code generation parameters from project are used for Folder1,
 // whereas Folder2 provides overwritten values.
 objFolder = objProject.Item(0);

© 2018 Altova GmbH

Overview 1075The MapForce API

Altova MapForce 2018 Professional Edition

 objFolder1.GenerateCode();
}

// /////////////////////// MAIN //////////////////////////////

CreateGlobalObjects();
objMapForce.Visible = true;

LoadSampleProject();
CreateNewProject();
GenerateCodeForNewProject();

// uncomment to shut down application when script ends
// objMapForce.Visible = false;

1076 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

15.2 Object Reference

This section provides reference to the objects of the MapForce COM API. The objects are
described in a generic manner, since the API may be used with virtually any language that
supports calling a COM object. For language-specific examples, see Examples.

In Java, some syntax variations to the object names exist, as follows:

Classes and class names
For every interface of the MapForce automation interface, a Java class exists with the
name of the interface.

Method names
Method names on the Java interface are the same as used on the COM interfaces, but
start with a small letter to conform to Java naming conventions. To access COM
properties, Java methods that prefix the property name with get and set can be used. If a
property does not support write-access, no setter method is available. Example: For the
Name property of the Document interface, the Java methods getName and setName are
available.

Enumerations
For every enumeration defined in the automation interface, a Java enumeration is defined
with the same name and values.

Events and event handlers
For every interface in the automation interface that supports events, a Java interface with
the same name plus 'Event' is available. To simplify the overloading of single events, a
Java class with default implementations for all events is provided. The name of this Java
class is the name of the event interface plus 'DefaultHandler'. For example:
Application: Java class to access the application
ApplicationEvents: Events interface for the Application
ApplicationEventsDefaultHandler: Default handler for ApplicationEvents

15.2.1 Application

The Application interface is the interface to a MapForce application object. It represents the
main access point for the MapForce application itself. This interface is the starting point to do any
further operations with MapForce or to retrieve or create other MapForce related automation
objects. For information about creating an instance the Application object, see Accessing the
API.

Events
Events

Properties and Methods
Properties to navigate the object model:
Application
Parent
Options
Project

© 2018 Altova GmbH

Object Reference 1077The MapForce API

Altova MapForce 2018 Professional Edition

Documents

Application status:
Visible
Name
Quit
Status
WindowHandle

MapForce designs:
NewDocument
OpenDocument
OpenURL
ActiveDocument

MapForce projects:
NewProject
OpenProject
ActiveProject

MapForce code generation:
HighlightSerializedMarker

Global resources:
GlobalResourceConfig
GlobalResourceFile

Version information:
Edition
IsAPISupported
MajorVersion
MinorVersion

Events15.2.1.1

This object supports the following events:

OnDocumentOpened
OnProjectOpened
OnShutdown

OnDocumentOpened

Event: OnDocumentOpened (i_objDocument as Document)

Description
This event is triggered when an existing or new document is opened. The corresponding close
event is Document.OnDocumentClosed.

1078 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

OnProjectOpened

Event: OnProjectOpened (i_objProject as Project)

Description
This event is triggered when an existing or new project is loaded into the application. The
corresponding close event is Project.OnProjectClosed.

OnShutdown

Event: OnShutdown ()

Description
This event is triggered when the application is shutting down.

ActiveDocument15.2.1.2

Property: ActiveDocument as Document (read-only)

Description
Returns the automation object of the currently active document. This property returns the same
as Documents.ActiveDocument.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

ActiveProject15.2.1.3

Property: ActiveProject as Project (read-only)

Description
Returns the automation object of the currently active project.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

Application15.2.1.4

Property: Application as Application (read-only)

Description

© 2018 Altova GmbH

Object Reference 1079The MapForce API

Altova MapForce 2018 Professional Edition

Retrieves the application's top-level object.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

Documents15.2.1.5

Property: Documents as Documents (read-only)

Description
Returns a collection of all currently open documents.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

Edition15.2.1.6

Property: Edition as String (read-only)

Description
Returns the edition of the application, e.g. "Altova MapForce Enterprise Edition" for the enterprise
edition.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

GlobalResourceConfig15.2.1.7

Property: GlobalResourceConfig as String

Description
Gets or sets the name of the active global resource configuration file. Per default, the file is called
GlobalResources.xml.

The configuration file can be renamed and saved to any location. You can therefore have multiple
Global Resources XML files. However, only one of these Global Resources XML File can be
active, per application, at one time, and only the definitions contained in this file will be available
to the application.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

1080 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

GlobalResourceFile15.2.1.8

Property: GlobalResourceFile as String

Description
Gets or sets the global resource definition file. Per default the file is called GlobalResources.xml.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

HighlightSerializedMarker15.2.1.9

Method: HighlightSerializedMarker (i_strSerializedMarker as String)

Description
Use this method to highlight a location in a mapping file that has been previously serialized. If the
corresponding document has not already been loaded, it will be loaded first. See
Document.GenerateCodeEx for a method to retrieve a serialized marker.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.
1007 The string passed in i_strSerializedMarker is not recognized as a

serialized MapForce marker.
1008 The marker points to a location that is no longer valid.

IsAPISupported15.2.1.10

Property: IsAPISupported as Boolean (read-only)

Description
Returns true if the API is supported in this version of MapForce.

Errors
1001 Invalid address for the return parameter was specified.

MajorVersion15.2.1.11

Property: MajorVersion as Long (read-only)

Description
Gets the major version number of of MapForce. The version is calculated starting from 1998, and
is incremented by one every year. For example, the major version is "18" for the release 2016.

© 2018 Altova GmbH

Object Reference 1081The MapForce API

Altova MapForce 2018 Professional Edition

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

MinorVersion15.2.1.12

Property: MinorVersion as Long (read-only)

Description
The minor version number of the product, e.g. 2 for 2006 R2 SP1.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

Name15.2.1.13

Property: Name as String (read-only)

Description
The name of the application.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

NewDocument15.2.1.14

Method: NewDocument () as Document

Description
Creates a new empty document. The newly opened document becomes the ActiveDocument.

This method is a shortened form of Documents.NewDocument.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

NewProject15.2.1.15

Method: NewProject () as Project

Description

1082 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Creates a new empty project. The current project is closed. The new project is accessible under
ActiveProject.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

OpenDocument15.2.1.16

Method: OpenDocument (i_strFileName as String) as Document

Description
Loads a previously saved document file and continues working on it. The newly opened document
becomes the ActiveDocument. This method is a shorter form of

Documents.OpenDocument.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

OpenProject15.2.1.17

Method: NewProject () as Project

Description
Opens an existing Mapforce project (*.mfp). The current project is closed. The newly opened

project is accessible under ActiveProject.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

OpenURL15.2.1.18

Method: OpenURL (i_strURL as String, i_strUser as String, i_strPassword as

String)

Description
Loads a previously saved document file from an URL location. Allows user name and password to
be supplied.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1083The MapForce API

Altova MapForce 2018 Professional Edition

Options15.2.1.19

Property: Options as Options (read-only)

Description
This property gives access to options that configure the generation of code.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

Parent15.2.1.20

Property: Parent as Application (read-only)

Description
The parent object according to the object model.

Errors
1000 The object is no longer valid.
1001 Invalid address for the return parameter was specified.

Quit15.2.1.21

Method: Quit ()

Description
Disconnects from MapForce to allow the application to shutdown. Calling this method is optional
since MapForce keeps track of all external COM connections and automatically recognizes a
disconnection. For more information on automatic shutdown see the Visible property.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

ServicePackVersion15.2.1.22

Property: ServicePackVersion as Long (read-only)

Description
The service pack version number of the product, e.g. 1 for 2010 R2 SP1.

Errors

1084 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

Status15.2.1.23

Property: Status as Long (read-only)

Description
The status of the application. It is one of the values of the ENUMApplicationStatus

enumeration.

Errors
1001 Invalid address for the return parameter was specified.

Visible15.2.1.24

Property: Visible as Boolean

Description
True if MapForce is displayed on the screen (though it might be covered by other applications or

be iconized).

Fal se if MapForce is hidden. The default value for MapForce when automatically started due to a

request from the automation server MapForce.Application is false. In all other cases, the

property is initialized to true.

An application instance that is visible is said to be controlled by the user (and possibly by clients
connected via the automation interface). It will only shut down due to an explicit user request. To
shut down an application instance, set its visibility to false and clear all references to this
instance within your program. The application instance will shut down automatically when no
further COM clients are holding references to it.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

WindowHandle15.2.1.25

Property: WindowHandle () as long (read-only)

Description
Retrieve the application's Window Handle.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1085The MapForce API

Altova MapForce 2018 Professional Edition

15.2.2 AppOutputLine

Represents a message line. In contrast to ErrorMarker, its structure is more detailed and can
contain a collection of child lines, therefore forming a tree of message lines.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Line access:
GetLineSeverity
GetLineSymbol
GetLineText
GetLineTextEx
GetLineTextWithChildren
GetLineTextWithChildrenEx

A single AppOutputLine consists of one or more sub-lines.
Sub-line access:
GetLineCount

A sub-line consists of one or more cells.
Cell access:
GetCellCountInLine
GetCellIcon
GetCellSymbol
GetCellText
GetCellTextDecoration
GetIsCellText

Below an AppOutputLine there can be zero, one, or more child lines which themselves are of type
AppOutputLine, which thus form a tree structure.

Child lines access:
ChildLines

Application15.2.2.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

1086 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

ChildLines15.2.2.2

Property: ChildLines as AppOutputLines (read-only)

Description
Returns a collection of the current line's direct child lines.

Errors
4100 The application object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetCellCountInLine15.2.2.3

Method: GetCellCountInLine (nLine as Long) as Long

Description
Gets the number of cells in the sub-line indicated by nLine in the current AppOutputLine.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetCellIcon15.2.2.4

Method: GetCellIcon (nLine as Long, nCell as Long) as Long

Description
Gets the icon of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by
nLine.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetCellSymbol15.2.2.5

Method: GetCellSymbol (nLine as Long, nCell as Long) as AppOutputLineSymbol

Description
Gets the symbol of the cell indicated by nCell in the current AppOutputLine's sub-line indicated
by nLine.

Errors
4100 The object is no longer valid.

© 2018 Altova GmbH

Object Reference 1087The MapForce API

Altova MapForce 2018 Professional Edition

4101 Invalid address for the return parameter was specified.

GetCellText15.2.2.6

Method: GetCellText (nLine as Long, nCell as Long) as String

Description
Gets the text of the cell indicated by nCell in the current AppOutputLine's sub-line indicated by
nLine.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetCellTextDecoration15.2.2.7

Method: GetCellTextDecoration (nLine as Long, nCell as Long) as Long

Description
Gets the decoration of the text cell indicated by nCell in the current AppOutputLine's sub-line
indicated by nLine.
It can be one of the ENUMAppOutputLine_TextDecoration values.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetIsCellText15.2.2.8

Method: GetIsCellText (nLine as Long, nCell as Long) as Boolean

Description
Returns true, if the cell indicated by nCell in the current AppOutputLine's sub-line indicated by
nLine is a text cell.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetLineCount15.2.2.9

Method: GetLineCount () as Long

Description

1088 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Gets the number of sub-lines the current line consists of.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetLineSeverity15.2.2.10

Method: GetLineSeverity () as Long

Description
Gets the severity of the line. It can be one of the ENUMAppOutputLine_Severity values:

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetLineSymbol15.2.2.11

Method: GetLineSymbol () as AppOutputLineSymbol

Description
Gets the symbol assigned to the whole line.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetLineText15.2.2.12

Method: GetLineText () as String

Description
Gets the contents of the line as text.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetLineTextEx15.2.2.13

Method: GetLineTextEx (psTextPartSeperator as String, psLineSeperator as

String) as String

© 2018 Altova GmbH

Object Reference 1089The MapForce API

Altova MapForce 2018 Professional Edition

Description
Gets the contents of the line as text using the specified part and line separators.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetLineTextWithChildren15.2.2.14

Method: GetLineTextWithChildren () as String

Description
Gets the contents of the line including all child and descendant lines as text.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

GetLineTextWithChildrenEx15.2.2.15

Method: GetLineTextWithChildrenEx (psPartSep as String, psLineSep as String,

psTabSep as String, psItemSep as String) as String

Description
Gets the contents of the line including all child and descendant lines as text using the specified
part, line, tab and item separators.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

Parent15.2.2.16

Property: Parent as AppOutputLines (read-only)

Description
The parent object according to the object model.

Errors
4100 The object is no longer valid.
4101 Invalid address for the return parameter was specified.

1090 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

15.2.3 AppOutputLines

Represents a collection of AppOutputLine message lines.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Iterating through the collection:
Count
Item

Application15.2.3.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
4000 The object is no longer valid.
4001 Invalid address for the return parameter was specified.

Count15.2.3.2

Property: Count as Integer (read-only)

Description
Retrieves the number of lines in the collection.

Errors
4000 The object is no longer valid.
4001 Invalid address for the return parameter was specified.

Item15.2.3.3

Property: Item (nIndex as Integer) as AppOutputLine (read-only)

Description
Retrieves the line at nIndex from the collection. Indices start with 1.

Errors
4000 The object is no longer valid.

© 2018 Altova GmbH

Object Reference 1091The MapForce API

Altova MapForce 2018 Professional Edition

4001 Invalid address for the return parameter was specified.

Parent15.2.3.4

Property: Parent as AppOutputLine (read-only)

Description
The parent object according to the object model.

Errors
4000 The object is no longer valid.
4001 Invalid address for the return parameter was specified.

15.2.4 AppOutputLineSymbol

An AppOutputLineSymbol represents a link in an AppOutputLine message line which can be
clicked in the MapForce Messages window.
It is applied to a cell of an AppOutputLine or to the whole line itself.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Access to AppOutputLineSymbol methods:
GetSymbolHREF
GetSymbolID
IsSymbolHREF

Application15.2.4.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
4200 The object is no longer valid.
4201 Invalid address for the return parameter was specified.

GetSymbolHREF15.2.4.2

Method: GetSymbolHREF () as String

1092 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Description
If the symbol is of type URL, returns the URL as a string.

Errors
4200 The object is no longer valid.
4201 Invalid address for the return parameter was specified.

GetSymbolID15.2.4.3

Method: GetSymbolHREF () as Long

Description
Gets the ID of the symbol.

Errors
4200 The object is no longer valid.
4201 Invalid address for the return parameter was specified.

IsSymbolHREF15.2.4.4

Method: IsSymbolHREF () as Boolean

Description
Indicates if the symbol is of kind URL.

Errors
4200 The object is no longer valid.
4201 Invalid address for the return parameter was specified.

Parent15.2.4.5

Property: Parent as Application (read-only)

Description
The parent object according to the object model.

Errors
4200 The object is no longer valid.
4201 Invalid address for the return parameter was specified.

15.2.5 Component

A Component represents a MapForce component.

© 2018 Altova GmbH

Object Reference 1093The MapForce API

Altova MapForce 2018 Professional Edition

Properties and Methods
Properties to navigate the object model:
Application
Parent

Component properties:
HasIncomingConnections
HasOutgoingConnections
CanChangeInputInstanceFile
CanChangeOutputInstanceFile
ComponentName

ID
IsParameterInputRequired
IsParameterSequence
Name
Preview
Schema
SubType
Type

Instance related properties:
InputInstanceFile
OutputInstanceFile

Datapoints:
GetRootDatapoint

Execution:
GenerateOutput

Application15.2.5.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

CanChangeInputInstanceFile15.2.5.2

Property: CanChangeInputInstanceFile as Boolean (read-only)

Description
Indicates if the input instance file name can be changed.

1094 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Returns false if the component has a filename node and this node has a connection on its left
(input) side, otherwise returns true.
If the component does not have a filename node, false is returned.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

CanChangeOutputInstanceFile15.2.5.3

Property: CanChangeOutputInstanceFile as Boolean (read-only)

Description
Indicates if the output instance file name can be changed.

Returns false if the component has a filename node and this node has a connection on its left
(input) side, otherwise returns true.
If the component does not have a filename node, false is returned.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

ComponentName15.2.5.4

Property: ComponentName as String

Description
Gets or sets the component's name.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.
1246 The component does not support setting its name.
1247 Invalid component name.

GenerateOutput15.2.5.5

Method: GenerateOutput ([out] pbError as Boolean) as AppOutputLines

Description
Generates the output file(s) defined in the mapping for the current component only, using a
MapForce internal mapping language. The name(s) of the output file(s) are defined as property of
the current component which is the output item in the mapping for this generation process.

Remarks
pbError is an output-only parameter. You will receive a value only if the calling language supports

© 2018 Altova GmbH

Object Reference 1095The MapForce API

Altova MapForce 2018 Professional Edition

output parameters. If not, the value you pass here will remain unchanged when the function has
finished.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.
1248 Generating output is only supported when the graphical user interface is

visible.

GetRootDatapoint15.2.5.6

Method: GetRootDatapoint(side as ENUMComponentDatapointSide, strNamespace as String,
strLocalName as String, strParameterName as String) as Datapoint

Description
Gets a root datapoint on the left (input) or right (output) side of a component. To access children
and descendants, the Datapoint object provides further methods.

The side parameter indicates if an input, or output, datapoint of a component is to be retrieved.

The specified namespace and local name, indicate the specific name of the node whose datapoint
is to be retrieved. For components with structural information such as schema components, you
will have to provide the namespace together with the local name, or you can just pass an empty
string for the namespace.

File-based components like the schema component contain a special node on their root, the
filename node. There, GetRootDatapoint can only find the filename node. You will have to pass
namespace "http://www.altova.com/mapforce" and local name "FileInstance" to

retrieve a datapoint of this node.

The specified parameter name should be an empty string unless the component in question is a
function call component . Since a user-defined function might contain input or output parameters
of the same structure, the function call component calling this user-defined function can have
more than one root node with an identical namespace and local name.

They will then differ only by their parameter names, which are in fact the names of the according
parameter components in the user-defined function mapping itself.

It is not mandatory to specify the parameter name, though. In that case, the method will return the
first root datapoint matching the specified namespace and local name.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.
1231 Datapoint not found.

1096 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

HasIncomingConnections15.2.5.7

Property: HasIncomingConnections as Boolean (read-only)

Description
Indicates if the component has any incoming connections (on its left side) not including the
filename node. An incoming connection on the filename node does not have any effect on the
returned value.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

HasOutgoingConnections15.2.5.8

Property: HasOutgoingConnections as Boolean (read-only)

Description
Indicates if the component has any outgoing connections (on its right side).

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

ID15.2.5.9

Property: ID as Unsigned Long (read-only)

Description
Retrieves the component ID.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

InputInstanceFile15.2.5.10

Property: InputInstanceFile as String

Description
Gets or sets the component's input instance file.

Errors
1200 The object is no longer valid.

© 2018 Altova GmbH

Object Reference 1097The MapForce API

Altova MapForce 2018 Professional Edition

1201 Invalid address for the return parameter was specified.

IsParameterInputRequired15.2.5.11

Property: IsParameterInputRequired as Boolean

Description
Gets or sets, if the input parameter component requires an ingoing connection on the function call
component of the user-defined function this input parameter component is in.
This property works only for components, which are input parameter components.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.
1232 This operation works only for an input parameter component.
1240 Changing the document not allowed. It is read-only.

IsParameterSequence15.2.5.12

Property: IsParameterSequence as Boolean

Description
Gets or sets, if the input or output parameter component supports sequences.
This property works only for components, which are input or output parameter components.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.
1233 This operation works only for an input or output parameter component.
1240 Changing the document not allowed. It is read-only.

Name15.2.5.13

Property: Name as String (read only)

Description
Gets the component's name.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

1098 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

OutputInstanceFile15.2.5.14

Property: OutputInstanceFile as String

Description
Gets or sets the component's output instance file.

Trying to access the OutputInstanceFile of a component via the API does not return any data if
the "File" connector of the component has been connected to another item in the mapping.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Parent15.2.5.15

Property: Parent as Mapping (read-only)

Description
The parent object according to the object model.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Preview15.2.5.16

Property: Preview as Boolean

Description
Gets or sets, if the component is the current preview component.

This property works only for components, which are target components in the document's main
mapping. Only one target component in the main mapping can be the preview component at any
time.

When setting this property, it is only possible to set it to true. This then will also implicitly set the
Preview property of all other components to false.

If there is just a single target component in the main mapping, it is also the preview component.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.
1234 Only a target component in the main mapping can be set as preview

component.
1235 A component cannot be set as non-preview component. Set another

© 2018 Altova GmbH

Object Reference 1099The MapForce API

Altova MapForce 2018 Professional Edition

component as preview component instead.

Schema15.2.5.17

Property: Schema as String (read-only)

Description
Retrieves the component's schema file name.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

SubType15.2.5.18

Property: SubType as ENUMComponentSubType (read-only)

Description
Retrieves the component's sub type.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Type15.2.5.19

Property: Type as ENUMComponentType (read-only)

Description
Retrieves the component's type.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

UsageKind15.2.5.20

Property: UsageKind as ENUMUsageKind (read-only)

Description
Retrieves the component's usage kind.

Errors
1200 The object is no longer valid.

1100 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1201 Invalid address for the return parameter was specified.

15.2.6 Components

Represents a collection of Component objects.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Iterating through the collection:
Count
Item

Application15.2.6.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Count15.2.6.2

Property: Count as Integer (read-only)

Description
Retrieves the number of components in the collection.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Item15.2.6.3

Property: Item (nIndex as Integer) as Component (read-only)

Description
Retrieves the component at nIndex from the collection. Indices start with 1.

© 2018 Altova GmbH

Object Reference 1101The MapForce API

Altova MapForce 2018 Professional Edition

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Parent15.2.6.4

Property: Parent as Mapping (read-only)

Description
The parent object according to the object model.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

15.2.7 Connection

A Connection object represents a connector between two components.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Properties
ConnectionType

Application15.2.7.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
2100 The object is no longer valid.
2101 Invalid address for the return parameter was specified.

ConnectionType15.2.7.2

Property: ConnectionType as ENUMConnectionType

Description
Gets or sets the connection's type.

1102 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Errors
2100 The application object is no longer valid.
2101 Invalid address for the return parameter was specified.
2102 Changing the document not allowed. It is read-only.
2103 Failed changing connection type.

Parent15.2.7.3

Property: Parent as Mapping (read-only)

Description
The parent object according to the object model.

Errors
2100 The object is no longer valid.
2101 Invalid address for the return parameter was specified.

15.2.8 Datapoint

A Datapoint object represents an input or output icon of a component.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Methods
GetChild

Application15.2.8.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
2000 The object is no longer valid.
2001 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1103The MapForce API

Altova MapForce 2018 Professional Edition

GetChild15.2.8.2

Method: GetChild(strNamespace as String, strLocalName as String, searchFlags as
ENUMSearchDatapointFlags) as Datapoint

Description
Scans for a direct child datapoint of the current datapoint, by namespace and local name.

Search flags can be passed as combination of values (combined using binary OR) of the
ENUMSearchDatapointFlags enumeration.

A schema component with elements that contain mixed content, each display an additional child
node, the so-called text() node. To retrieve a datapoint of a text() node, you will have to pass an
empty string in strNamespace as well as "#text" in strLocalName and

eSearchDatapointElement in searchFlags.

Errors
2000 The application object is no longer valid.
2001 Invalid address for the return parameter was specified.
2002 Datapoint not found.

Parent15.2.8.3

Property: Parent as Component (read-only)

Description
The parent object according to the object model.

Errors
2000 The object is no longer valid.
2001 Invalid address for the return parameter was specified.

15.2.9 Document

A Document object represents a MapForce document (a loaded MFD file).
A document contains a main mapping and zero or more local user-defined-function mappings.

Events
Events

Properties and Methods
Properties to navigate the object model:
Application
Parent

File handling:
Activate

1104 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Close
FullName
Name
Path
Saved
Save
SaveAs

Mapping handling:
MainMapping
Mappings

CreateUserDefinedFunction

Component handling:
FindComponentByID

Code generation:
OutputSettings_ApplicationName
JavaSettings_BasePackageName

GenerateCHashCode
GenerateCodeEx
GenerateCppCode
GenerateJavaCode
GenerateXQuery
GenerateXSLT
GenerateXSLT2
HighlightSerializedMarker

Mapping execution:
GenerateOutput
GenerateOutputEx

View access:
MapForceView

Obsolete:
OutputSettings_Encoding

Events15.2.9.1

This object supports the following events:

OnDocumentClosed
OnModifiedFlagChanged

OnDocumentClosed

Event: OnDocumentClosed (i_objDocument as Document)

© 2018 Altova GmbH

Object Reference 1105The MapForce API

Altova MapForce 2018 Professional Edition

Description
This event is triggered when a document is closed. The document object passed into the event
handler should not be accessed. The corresponding open event is
Application.OnDocumentOpened.

OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as Boolean)

Description
This event is triggered when a document's modification status changes.

Activate15.2.9.2

Method: Activate ()

Description
Makes this document the active document.

Errors
1200 The application object is no longer valid.

Application15.2.9.3

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

Close15.2.9.4

Method: Close ()

Description
Closes the document without saving.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

1106 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

CreateUserDefinedFunction15.2.9.5

Method: CreateUserDefinedFunction(strFunctionName as String, strLibraryName as String,
strSyntax as String, strDetails as String, bInlinedUse as Boolean) as Mapping

Description
Creates a user defined function in the current document.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1208 Failed creating user-defined function.
1209 Changing the document not allowed. It is read-only.

FindComponentByID15.2.9.6

Method: FindComponentByID (nID as Unsigned Long) as Component

Description
Searches in the whole document, so all its mappings, for the component with the specified id.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

FullName15.2.9.7

Property: FullName as St r i ng

Description
Path and name of the document file.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

GenerateCHashCode15.2.9.8

Method: GenerateCHashCode ()

Description
Generate C# code that will perform the mapping. Uses the properties defined in
Application.Options to configure code generation.

© 2018 Altova GmbH

Object Reference 1107The MapForce API

Altova MapForce 2018 Professional Edition

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1205 Error during code generation.

GenerateCodeEx15.2.9.9

Method: GenerateCodeEx (i_nLanguage as ENUMProgrammingLanguage) as
ErrorMarkers

Description
Generates code that will perform the mapping. The parameter i_nLanguage specifies the target
language. The method returns an object that can be used to enumerate all messages created by
the code generator. These are the same messages that get displayed in the Messages window of
MapForce.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1205 Error during code generation.

GenerateCppCode15.2.9.10

Method: GenerateCppCode ()

Description
Generates C++ code that will perform the mapping. Uses the properties defined in
Application.Options to configure code generation.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1205 Error during code generation.

GenerateJavaCode15.2.9.11

Method: GenerateJavaCode ()

Description
Generates Java code that will perform the mapping. Uses the properties defined in
Application.Options to configure code generation.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1205 Error during code generation.

1108 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

GenerateOutput15.2.9.12

Method: GenerateOutput ()

Description
Generates all output files defined in the mapping using a MapForce internal mapping language.
The names of the output files are defined as properties of the output items in the mapping.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1206 Error during execution of mapping algorithm.
1210 Generating output is only supported when the graphical user interface is

visible.

This method can only be used when the MapForce (running as a COM server) main window is
visible, or is embedded with a graphical user interface. If the method is called while MapForce is
not visible, then an error will occur.

GenerateOutputEx15.2.9.13

Method: GenerateOutputEx () as AppOutputLines

Description
Generates all output files defined in the mapping using a MapForce internal mapping language.
The names of the output files are defined as properties of the output items in the mapping.
This method is identical to GenerateOutput except for its return value containing the resulting

messages, warnings and errors arranged as trees of AppOutputLines.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1206 Error during execution of mapping algorithm.
1210 Generating output is only supported when the graphical user interface is

visible.

This method can only be used when the MapForce (running as a COM server) main window is
visible, or is embedded with a graphical user interface. If the method is called while MapForce is
not visible, then an error will occur.

GenerateXQuery15.2.9.14

Method: GenerateXQuery ()

Description
Generates mapping code as XQuery. Uses the properties defined in Application.Options to

configure code generation.

Errors

© 2018 Altova GmbH

Object Reference 1109The MapForce API

Altova MapForce 2018 Professional Edition

1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1204 Error during XSLT/XSLT2/XQuery code generation.

GenerateXSLT15.2.9.15

Method: GenerateXSLT ()

Description
Generates mapping code as XSLT. Uses the properties defined in Application.Options to

configure code generation.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1204 Error during XSLT/XSLT2/XQuery code generation.

GenerateXSLT215.2.9.16

Method: GenerateXSLT2 ()

Description
Generates mapping code as XSLT2. Uses the properties defined in Application.Options to

configure code generation.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1204 Error during XSLT/XSLT2/XQuery code generation.

HighlightSerializedMarker15.2.9.17

Method: HighlightSerializedMarker (i_strSerializedMarker as String)

Description
Use this method to highlight a location in a mapping file that has been previously serialized. If the
corresponding document is not already loaded, it will be loaded first. See GenerateCodeEx for a

method to retrieve a serialized marker.

Errors
1000 The application object is no longer valid.
1001 Invalid address for the return parameter was specified.
1007 The string passed in i_strSerializedMarker is not recognized a serialized

MapForce marker.
1008 The marker points to a location that is no longer valid.

1110 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

JavaSettings_BasePackageName15.2.9.18

Property: JavaSettings_BasePackageName as String

Description
Sets or retrieves the base package name used when generating Java code. This property is
available in UI-dialog for the Document Settings.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

MainMapping15.2.9.19

Property: MainMapping as Mapping (read-only)

Description
Retrieves the main mapping of the document.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

MapForceView15.2.9.20

Property: MapForceView as MapForceView (read-only)

Description
This property gives access to functionality specific to the MapForce view.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

Mappings15.2.9.21

Property: Mappings as Mappings (read-only)

Description
Returns a collection of the mappings contained in the document.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1111The MapForce API

Altova MapForce 2018 Professional Edition

Name15.2.9.22

Property: Name as String

Description
Name of the document file without file path.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

OutputSettings_ApplicationName15.2.9.23

Property: OutputSettings_ApplicationName as String

Description
Sets or retrieves the application name available in the Document Settings dialog.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

OutputSettings_Encoding (obsolete)15.2.9.24

Property: OutputSettings_Encoding as String

Description
obsolete
This property is not supported anymore. Mapping output encoding settings do not exist anymore.
Components have individual output encoding settings.

Parent15.2.9.25

Property: Parent as Documents (read-only)

Description
The parent object according to the object model.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

1112 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Path15.2.9.26

Property: Path as String

Description
Path of the document file without name.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

Save15.2.9.27

Method: Save ()

Description
Save the document to the file defined by Document.FullName.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

SaveAs15.2.9.28

Method: SaveAs (i_strFileName as String)

Description
Save document to specified file name, and set Document.FullName to this value if save

operation was successful.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

Saved15.2.9.29

Property: Saved as Boolean (read-only)

Description
Tr ue if the document was not modified since the last save operation, f al se otherwise.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1113The MapForce API

Altova MapForce 2018 Professional Edition

15.2.10 Documents

Represents a collection of Document objects.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Open and create mappings:
OpenDocument
NewDocument

Iterating through the collection:
Count
Item
ActiveDocument

ActiveDocument15.2.10.1

Property: ActiveDocument as Document (read-only)

Description
Retrieves the active document. If no document is open, null is returned.

Errors
1600 The object is no longer valid.
1601 Invalid address for the return parameter was specified.

Application15.2.10.2

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1600 The object is no longer valid.
1601 Invalid address for the return parameter was specified.

1114 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Count15.2.10.3

Property: Count as Integer (read-only)

Description
Retrieves the number of documents in the collection.

Errors
1600 The object is no longer valid.
1601 Invalid address for the return parameter was specified.

Item15.2.10.4

Property: Item (nIndex as Integer) as Document (read-only)

Description
Retrieves the document at nIndex from the collection. Indices start with 1.

Errors
1600 The object is no longer valid.
1601 Invalid address for the return parameter was specified.

NewDocument15.2.10.5

Method: NewDocument () as Document

Description
Creates a new document, adds it to the end of the collection, and makes it the active document.

Errors
1600 The object is no longer valid.
1601 Invalid address for the return parameter was specified.

OpenDocument15.2.10.6

Method: OpenDocument (strFilePath as String) as Document

Description
Opens an existing mapping document (*.mfd). Adds the newly opened document to the end of

the collection and makes it the active document.

Errors
1600 The object is no longer valid.
1601 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1115The MapForce API

Altova MapForce 2018 Professional Edition

Parent15.2.10.7

Property: Parent as Application (read-only)

Description
The parent object according to the object model.

Errors
1600 The object is no longer valid.
1601 Invalid address for the return parameter was specified.

15.2.11 ErrorMarker

Represents a simple message line. In difference to AppOutputLine, error markers do not have a
hierarchical structure.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Access to message information:
DocumentFileName
ErrorLevel
Highlight
Serialization
Text

Application15.2.11.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1900 The object is no longer valid.
1901 Invalid address for the return parameter was specified.

1116 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

DocumentFileName15.2.11.2

Property: DocumentFileName as String (read-only)

Description
Retrieves the name of the mapping file that the error marker is associated with.

Errors
1900 The object is no longer valid.
1901 Invalid address for the return parameter was specified.

ErrorLevel15.2.11.3

Property: ErrorLevel as ENUMCodeGenErrorLevel (read-only)

Description
Retrieves the severity of the error.

Errors
1900 The object is no longer valid.
1901 Invalid address for the return parameter was specified.

Highlight15.2.11.4

Method: Highlight ()

Description
Highlights the item that the error marker is associated with. If the corresponding document is not
open, it will be opened.

Errors
1900 The object is no longer valid.
1901 Invalid address for the return parameter was specified.
1008 The marker points to a location that is no longer valid.

Serialization15.2.11.5

Property: Serialization as String (read-only)

Description
Serialize error marker into a string. Use this string in calls to
Application.HighlightSerializedMarker or Document.HighlightSerializedMarker to highlight the
marked item in the mapping. The string can be persisted and used in other instantiations of
MapForce or its Control.

Errors
1900 The object is no longer valid.

© 2018 Altova GmbH

Object Reference 1117The MapForce API

Altova MapForce 2018 Professional Edition

1901 Invalid address for the return parameter was specified.

Text15.2.11.6

Property: Text as String (read-only)

Description
Retrieves the message text.

Errors
1900 The object is no longer valid.
1901 Invalid address for the return parameter was specified.

Parent15.2.11.7

Property: Parent as ErrorMarkers (read-only)

Description
The parent object according to the object model.

Errors
1900 The object is no longer valid.
1901 Invalid address for the return parameter was specified.

15.2.12 ErrorMarkers

Represents a collection of ErrorMarker objects.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Iterating through the collection:
Count
Item

Application15.2.12.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1800 The object is no longer valid.

1118 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1801 Invalid address for the return parameter was specified.

Count15.2.12.2

Property: Count as Integer (read-only)

Description
Retrieves the number of error markers in the collection.

Errors
1800 The object is no longer valid.
1801 Invalid address for the return parameter was specified.

Item15.2.12.3

Property: Item (nIndex as Integer) as ErrorMarker (read-only)

Description
Retrieves the error marker at nIndex from the collection. Indices start with 1.

Errors
1800 The object is no longer valid.
1801 Invalid address for the return parameter was specified.

Parent15.2.12.4

Property: Parent as Application (read-only)

Description
The parent object according to the object model.

Errors
1800 The object is no longer valid.
1801 Invalid address for the return parameter was specified.

15.2.13 MapForceView

Represents the current view in the MapForce Mapping tab for a document.
A document has exactly one MapForceView which displays the currently active mapping.

Properties and Methods
Properties to navigate the object model:
Application
Parent

© 2018 Altova GmbH

Object Reference 1119The MapForce API

Altova MapForce 2018 Professional Edition

View activation and view properties:
Active
ShowItemTypes
ShowLibraryInFunctionHeader
HighlightMyConnections
HighlightMyConnectionsRecursivly

Mapping related properties:
ActiveMapping
ActiveMappingName

Adding items:
InsertWSDLCall
InsertXMLFile
InsertXMLSchema
InsertXMLSchemaWithSample

Active15.2.13.1

Property: Active as Boolean

Description
Use this property to query if the mapping view is the active view, or set this view to be the active
one.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

ActiveMapping15.2.13.2

Property: ActiveMapping as Mapping

Description
Gets or sets the currently active mapping in the document this MapForceView belongs to.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

ActiveMappingName15.2.13.3

Property: ActiveMappingName as String

Description

1120 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Gets or sets the currently active mapping by name in the document this MapForceView belongs
to.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

Application15.2.13.4

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

HighlightMyConnections15.2.13.5

Property: HighlightMyConnections as Boolean

Description
This property defines whether connections from the selected item only should be highlighed.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

HighlightMyConnectionsRecursivey15.2.13.6

Property: HighlightMyConnectionsRecursively as Boolean

Description
This property defines if only the connections coming directly or indirectly from the selected item
should be highlighed.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1121The MapForce API

Altova MapForce 2018 Professional Edition

InsertWSDLCall15.2.13.7

Method: InsertWSDLCall (i_strWSDLFileName as String)

Description
Adds a new WSDL call component to the mapping.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

InsertXMLFile (obsolete)15.2.13.8

Method: InsertXMLFile (i_strXMLFileName as String, i_strRootElement as

String)

Description
obsolete
MapForceView.InsertXMLFile is obsolete. Use Mapping.InsertXMLFile instead.

Adds a new component to the mapping.

The component's internal structure is determined by the schema referenced in the specified XML
file.

The second parameter defines the root element of this schema, if there is more than one
candidate.
When passing an empty string as root element, the root element of the xml file will be used.
Otherwise if more candidates are available, a Select Root Element dialog will pop up regardless if
MapForce is visible or not.

The specified XML file is used as the input sample to evaluate the mapping.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

InsertXMLSchema (obsolete)15.2.13.9

Method: InsertXMLSchema (i_strSchemaFileName as String, i_strRootElement

as String)

Description
obsolete
MapForceView.InsertXMLSchema is obsolete. Use Mapping.InsertXMLSchema instead.

Adds a new component to the mapping.

1122 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The component's internal structure is determined by the specified schema file.

The second parameter defines the root element of this schema if there is more than one
candidate.
If the passed root element is an empty string and more candidates are available, a Select Root
Element dialog will pop up regardless if MapForce is visible or not.

No XML input sample is assigned to this component.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

InsertXMLSchemaWithSample (obsolete)15.2.13.10

Method: InsertXMLSchemaWithSample (i_strSchemaFileName as String,

i_strXMLSampleName as String, i_strRootElement as String)

Description
obsolete
MapForceView.InsertXMLSchemaWithSample is obsolete. Use Mapping.InsertXMLFile instead.
Notice, Mapping.InsertXMLFile does not require a parameter for passing the root element. The
root element is automatically set as the xml file's root element name.

Adds a new component to the mapping.

The component's internal structure is determined by the specified schema file.

The second parameter is stored as the XML input sample for mapping evaluation.

The third parameter defines the root element of this schema if there is more than one candidate.
When passing an empty string as root element, the root element of the xml sample file will be
used.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

Parent15.2.13.11

Property: Parent as Document (read-only)

Description
The parent object according to the object model.

Errors
1300 The object is no longer valid.
1301 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1123The MapForce API

Altova MapForce 2018 Professional Edition

ShowItemTypes15.2.13.12

Property: ShowItemTypes as Boolean

Description
This property defines if types of items should be shown in the mapping diagram.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

ShowLibraryInFunctionHeader15.2.13.13

Property: ShowLibraryInFunctionHeader as Boolean

Description
This property defines whether the name of the function library should be part of function names.

Errors
1300 The application object is no longer valid.
1301 Invalid address for the return parameter was specified.

15.2.14 Mapping

A Mapping object represents a mapping in a document, so the main mapping, or a local user-
defined-function mapping.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Mapping properties:
IsMainMapping
Name

Components in the mapping:
Components

Adding items:
CreateConnection
InsertFunctionCall
InsertXMLFile
InsertXMLSchema
InsertXMLSchemaInputParameter
InsertXMLSchemaOutputParameter

1124 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Application15.2.14.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Components15.2.14.2

Property: Components as Components (read-only)

Description
Returns a collection of all components in the current mapping.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

CreateConnection15.2.14.3

Method: CreateConnection(DatapointFrom as Datapoint, DatapointTo as Datapoint) as
Connection

Description
Creates a connection between the two supplied datapoints (DatapointFrom & DatapointTo).

It will fail to do so if the DatapointFrom is not an output-side datapoint, the DatapointTo is not an
input-side datapoint, or a connection between these two datapoints already exists.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1240 Changing the document not allowed. It is read-only.
1241 Failed creating the connection.

InsertFunctionCall15.2.14.4

Method: InsertFunctionCall(strFunctionName as String, strLibraryName as String) as
Component

Description

© 2018 Altova GmbH

Object Reference 1125The MapForce API

Altova MapForce 2018 Professional Edition

Inserts a function call component into the current mapping.

The specified library and function names indicate the function or user-defined function to be called.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1240 Changing the document not allowed. It is read-only.
1242 Failed creating function call component.

InsertXMLFile15.2.14.5

Method: InsertXMLFile(i_strFileName as String, i_strSchemaFileName as String) as Component

Description
Adds a new XML schema component to the mapping.

The component's internal structure is determined by the schema referenced in the specified XML
file (i_strFileName) or, if the XML file does not reference a schema file, by the separately specified
schema file (i_strSchemaFileName).

If the XML file has a schema file reference, then the parameter i_strSchemaFileName is ignored.

The root element of the XML file will be used in the component.

The specified XML file is used as the input sample to evaluate the mapping.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1240 Changing the document not allowed. It is read-only.
1244 Failed creating component.

InsertXMLSchema15.2.14.6

Method: InsertXMLSchema(i_strSchemaFileName as String, i_strXMLRootName as String) as
Component

Description
Adds a new XML schema component to the mapping.

The component's internal structure is determined the specified schema file.

The second parameter defines the root element of this schema if there is more than one
candidate.

If the passed root element is an empty string and more candidates are available, a Select Root
Element dialog will pop up if MapForce is visible. If MapForce is invisible, no dialog will pop up and
only an error is returned.

No XML input sample is assigned to this component.

1126 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1240 Changing the document not allowed. It is read-only.
1244 Failed creating component.

InsertXMLSchemaInputParameter15.2.14.7

Method: InsertXMLSchemaInputParameter(strParamName as String, strSchemaFileName as
String, strXMLRootElementName as String) as Component

Description
Inserts an XML schema input parameter component into the current mapping.

The current mapping has to be a user-defined function. Trying to insert it (the schema input
parameter) into the main mapping will fail.

strParamName is the name of the input parameter component to create and
strSchemaFileName and strXMLRootElementName indicate the respective schema file and
the root element of the schema file to be used.

If the passed root element is an empty string and more candidates are available, a Select Root
Element dialog will pop up if MapForce is visible. If MapForce is invisible, no dialog will pop up and
only an error is returned.

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1240 Changing the document not allowed. It is read-only.
1243 Failed creating parameter component.
1245 This operation is not supported for the main mapping.

InsertXMLSchemaOutputParameter15.2.14.8

Method: InsertXMLSchemaOutputParameter(strParamName as String, strSchemaFileName as
String, strXMLRootElementName as String) as Component

Description
Inserts an XML schema output parameter component into the current mapping.

The current mapping has to be a user-defined function. Trying to insert it (the schema output
paramter) into the main mapping will fail.

strParamName is the name of the output parameter component to create and
strSchemaFileName and strXMLRootElementName indicate the schema file and the root
element of the schema file to be used respectively.

If the passed root element is an empty string and more candidates are available, a Select Root
Element dialog will pop up if MapForce is visible. If MapForce is invisible, no dialog will pop up and
only an error is returned.

© 2018 Altova GmbH

Object Reference 1127The MapForce API

Altova MapForce 2018 Professional Edition

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.
1240 Changing the document not allowed. It is read-only.
1243 Failed creating parameter component.
1245 This operation is not supported for the main mapping.

IsMainMapping15.2.14.9

Property: IsMainMapping as Boolean (read-only)

Description
Indicates if the current mapping is the main mapping of the document the mapping is in.

True means it is the main mapping.
False means it is a user defined function (UDF).

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

Name15.2.14.10

Property: Name as String (read-only)

Description
The name of the mapping / user defined function (UDF).

Errors
1200 The application object is no longer valid.
1201 Invalid address for the return parameter was specified.

Parent15.2.14.11

Property: Parent as Document (read-only)

Description
The parent object according to the object model.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

1128 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

15.2.15 Mappings

Represents a collection of Mapping objects.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Iterating through the collection:
Count
Item

Application15.2.15.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Count15.2.15.2

Property: Count as Integer (read-only)

Description
Retrieves the number of mappings in the collection.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

Item15.2.15.3

Property: Item (nIndex as Integer) as Mapping (read-only)

Description
Retrieves the mapping at nIndex from the collection. Indices start with 1.

Errors
1200 The object is no longer valid.

© 2018 Altova GmbH

Object Reference 1129The MapForce API

Altova MapForce 2018 Professional Edition

1201 Invalid address for the return parameter was specified.

Parent15.2.15.4

Property: Parent as Document (read-only)

Description
The parent object according to the object model.

Errors
1200 The object is no longer valid.
1201 Invalid address for the return parameter was specified.

15.2.16 Options

This object gives access to all MapForce options available in the Tools | Options dialog.

Properties and Methods
Properties to navigate the object model:
Application
Parent

General options:
ShowLogoOnPrint
ShowLogoOnStartup
UseGradientBackground

Options for code generation:
DefaultOutputEncoding
DefaultOutputByteOrder
DefaultOutputByteOrderMark
XSLTDefaultOutputDirectory
CodeDefaultOutputDirectory
CPPSettings_DOMType
CPPSettings_GenerateVC6ProjectFile
CppSettings_GenerateVSProjectFile
CPPSettings_LibraryType
CPPSettings_UseMFC
CSharpSettings_ProjectType

Application15.2.16.1

Property: Application as Application (read-only)

Description
Retrieves the application's top-level object.

1130 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

CodeDefaultOutputDirectory15.2.16.2

Property: CodeDefaultOutputDirectory as String

Description
Specifies the target directory where files generated by Document.GenerateCppCode,

Document.GenerateJavaCode and Document.GenerateCHashCode, are placed.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

CPPSettings_DOMType15.2.16.3

Property: CPPSettings_DOMType as ENUMDOMType

Description
Specifies the DOM type used by Document.GenerateCppCode.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.
1402 The parameter value is out of range
1403 The parameter value is not available anymore

CPPSettings_GenerateVC6ProjectFile15.2.16.4

Property: CPPSettings_GenerateVC6ProjectFile as Boolean

Description
Specifies if VisualC++ 6.0 project files should be generated by Document.GenerateCppCode.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

CppSettings_GenerateVSProjectFile15.2.16.5

Property: CppSettings_GenerateVSProjectFile as ENUMProjectType

Description

© 2018 Altova GmbH

Object Reference 1131The MapForce API

Altova MapForce 2018 Professional Edition

Specifies the version of Visual Studio in which project files should be generated by
Document.GenerateCppCode.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.
1402 The parameter value is out of range
1403 The paramater value is not available anymore

CPPSettings_LibraryType15.2.16.6

Property: CPPSettings_LibraryType as ENUMLibType

Description
Specifies the library type used by Document.GenerateCppCode.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

CPPSettings_UseMFC15.2.16.7

Property: CPPSettings_UseMFC as Boolean

Description
Specifies if MFC support should be used by C++ code generated by
Document.GenerateCppCode.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

CSharpSettings_ProjectType15.2.16.8

Property: CSharpSettings_ProjectType as ENUMProjectType

Description
Specifies the type of C# project used by Document.GenerateCHashCode.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.
1402 The parameter value is out of range
1403 The paramater value is not available anymore

1132 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

DefaultOutputByteOrder15.2.16.9

Property: DefaultOutputByteOrder as String

Description
Byte order for the file encoding used for output files.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

DefaultOutputByteOrderMark15.2.16.10

Property: DefaultOutputByteOrderMark as Boolean

Description
Indicates if a byte order mark (BOM), is to be included in the file encoding of output files.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

DefaultOutputEncoding15.2.16.11

Property: DefaultOutputEncoding as String

Description
File encoding used for output files.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

GenerateWrapperClasses15.2.16.12

Property: GenerateWrapperClasses as Boolean

Description
Indicates if wrapper classes are also to be generated when generating code.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

© 2018 Altova GmbH

Object Reference 1133The MapForce API

Altova MapForce 2018 Professional Edition

JavaSettings_ApacheAxisVersion (obsolete)15.2.16.13

Property: JavaSettings_ApacheAxisVersion as ENUMApacheAxisVersion

Description
Specifies the Apache Axis version to use when generating Java code for web service
implementations with SOAP 1.1.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

Parent15.2.16.14

Property: Parent as Appl i cat i on (read-only)

Description
The parent object according to the object model.

Errors
1400 The object is no longer valid.
1401 Invalid address for the return parameter was specified.

ShowLogoOnPrint15.2.16.15

Property: ShowLogoOnPrint as Boolean

Description
Show or hide the MapForce logo on printed outputs.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

ShowLogoOnStartup15.2.16.16

Property: ShowLogoOnStartup as Boolean

Description
Show or hide the MapForce logo on application startup.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

1134 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

UseGradientBackground15.2.16.17

Property: UseGradientBackground as Boolean

Description
Set or retrieve the background color mode for a mapping window.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

XSLTDefaultOutputDirectory15.2.16.18

Property: XSLTDefaultOutputDirectory as String

Description
Specifies the target directory where files generated by Document.GenerateXSLT are placed.

Errors
1400 The application object is no longer valid.
1401 Invalid address for the return parameter was specified.

15.2.17 Project

A Project object represents a project and its tree of project items in MapForce.

Events
Events

Properties and Methods
Properties to navigate the object model:
Application
Parent

File handling:
FullName
Name
Path
Saved
Save
Close

Project tree navigation:
Count
Item
_NewEnum

© 2018 Altova GmbH

Object Reference 1135The MapForce API

Altova MapForce 2018 Professional Edition

Project tree manipulation:
AddActiveFile
AddFile

InsertWebService (Enterprise edition only)
CreateFolder

Code-generation:
Output_Folder
Output_Language
Output_TextEncoding
Java_BasePackageName
GenerateCode
GenerateCodeEx
GenerateCodeIn
GenerateCodeInEx

For examples of how to use the properties and methods listed above, see Example: Project
Support. For operations with Web services, the MapForce Enterprise edition is required.

Events15.2.17.1

This object supports the following events:

OnProjectClosed

OnProjectClosed

Event: OnProjectClosed (i_objProject as Project)

Description
This event is triggered when the project is closed. The project object passed into the event handler
should not be accessed. The corresponding open event is Application.OnProjectOpened.

_NewEnum15.2.17.2

Property: _NewEnum () as IUnknown (read-only)

Description
This property supports language-specific standard enumeration.

Errors
1500 The object is no longer valid.

Examples

// --

1136 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

// JScript sample - enumeration of a project's project items.

function AllChildrenOfProjectRoot()
{
 objProject = objMapForce.ActiveProject;
 if (objProject != null)

 {
 for (objProjectIter = new Enumerator(objProject); !

objProjectIter.atEnd(); objProjectIter.moveNext())
 {
 objProjectItem = objProjectIter.item();

 // do something with project item here

 }
 }
}

// --

// JScript sample - iterate all project items, depth first.

function IterateProjectItemsRec(objProjectItemIter)
{
 while (! objProjectItemIter.atEnd())

 {
 objProjectItem = objProjectItemIter.item();
 // do something with project item here

 IterateProjectItemsRec(new Enumerator(objProjectItem));

 objProjectItemIter.moveNext();
 }
}
function IterateAllProjectItems()
{
 objProject = objMapForce.ActiveProject;
 if (objProject != null)

 {
 IterateProjectItemsRec(new Enumerator(objProject));

 }
}

AddActiveFile15.2.17.3

Method: AddActiveFile () as ProjectItem

Description
Adds the currently open document to the mapping folder of the project's root.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.
1503 No active document is available.
1504 Active documents needs to be given a path name before it can be added

to the project.

© 2018 Altova GmbH

Object Reference 1137The MapForce API

Altova MapForce 2018 Professional Edition

1705 Mapping could not be assigned to project. Maybe it is already contained in
the target folder.

AddFile15.2.17.4

Method: AddFile (i_strFileName as String) as ProjectItem

Description
Adds the specified document to the mapping folder of the project's root.

Errors
1500 The object is no longer valid.
1501 The file name is empty.

Invalid address for the return parameter was specified.
1705 Mapping could not be assigned to project.

The file does not exist or is not a MapForce mapping.
Maybe the file is already assigned to the target folder.

Application15.2.17.5

Property: Application as Application (read-only)

Description
Retrieves the top-level application object.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.

Close15.2.17.6

Method: Close ()

Description
Closes the project without saving.

Errors
1500 The object is no longer valid.

Count15.2.17.7

Property: Count as Integer (read-only)

Description

1138 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Retrieves number of children of the project's root item.

Errors
1500 The object is no longer valid.

Examples
See Item or _NewEnum.

CreateFolder15.2.17.8

Method: CreateFolder (i_strFolderName as String) as ProjectItem

Description
Creates a new folder as a child of the project's root item.

Errors
1500 The object is no longer valid.
1501 Invalid folder name or invalid address for the return parameter was specified.

FullName15.2.17.9

Property: FullName as St r i ng (read-only)

Description
Path and name of the project file.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.

GenerateCode15.2.17.10

Method: GenerateCode ()

Description
Generates code for all project items of the project. The code language and output location is
determined by properties of the project and project items.

Errors
1500 The object is no longer valid.
1706 Error during code generation

© 2018 Altova GmbH

Object Reference 1139The MapForce API

Altova MapForce 2018 Professional Edition

GenerateCodeEx15.2.17.11

Method: GenerateCode () as ErrorMarkers

Description
Generates code for all project items of the project. The code language and output location are
determined by properties of the project and project items. An object that can be used to iterate
through all messages issued by the code generation process is returned. These messages are
the same as those shown in the Messages window of MapForce.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.
1706 Error during code generation

GenerateCodeIn15.2.17.12

Method: GenerateCodeIn (i_nLanguage as ENUMProgrammingLanguage)

Description
Generates code for all project items of the project in the specified language. The output location is
determined by properties of the project and project items.

Errors
1500 The object is no longer valid.
1706 Error during code generation

GenerateCodeInEx15.2.17.13

Method: GenerateCodeIn (i_nLanguage as ENUMProgrammingLanguage) as
ErrorMarkers

Description
Generates code for all project items of the project in the specified language. The output location is
determined by properties of the project and project items. An object that can be used to iterate
through all messages issued by the code generation process is returned. These messages are
the same as those shown in the Messages window of MapForce.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.
1706 Error during code generation

1140 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

InsertWebService15.2.17.14

Method: InsertWebService (i_strWSDLFile as String, i_strService as String,

i_strPort as String, i_bGenerateMappings as Boolean) as ProjectItem

Description
Inserts a new Web service project into the project's Web service folder. If
i_bGenerateMappings is true, initial mapping documents for all ports get generated

automatically.

Errors
1500 The object is no longer valid.
1501 WSDL file can not be found or is invalid.

Service or port names are invalid.
Invalid address for the return parameter was specified.

1503 Operation not supported by current edition.

Item15.2.17.15

Property: Item(i_nItemIndex as Integer) as ProjectItem (read-only)

Description
Returns the child at i_nItemIndex position of the project's root. The index is zero-based. The

largest valid index is Count-1. For an alternative to visit all children see _NewEnum.

Errors
1500 The object is no longer valid.

Examples

// ---

// JScript code snippet - enumerate children using Count and Item.

for(nItemIndex = 0; nItemIndex < objProject.Count; nItemIndex++)

{
 objProjectItem = objProject.Item(nItemIndex);
 // do something with project item here

}

Java_BasePackageName15.2.17.16

Property: Java_BasePackageName as String

Description
Sets or gets the base package name of the Java packages that will be generated. This property is
used only when generating Java code.

Errors

© 2018 Altova GmbH

Object Reference 1141The MapForce API

Altova MapForce 2018 Professional Edition

1500 The object is no longer valid.
1501 Invalid package name specified.

Invalid address for the return parameter was specified.

Name15.2.17.17

Property: Name as St r i ng (read-only)

Description
Name of the project file without file path.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.

Output_Folder15.2.17.18

Property: Output_Folder as String

Description
Sets or gets the default output folder used with GenerateCode and GenerateCodeIn. Project

items can overwrite this value in their CodeGenSettings_OutputFolder property, when

CodeGenSettings_UseDefault is set to false.

Errors
1500 The object is no longer valid.
1501 Invalid folder name specified.

Invalid address for the return parameter was specified.

Output_Language15.2.17.19

Property: Output_Language as ENUMProgrammingLanguage

Description
Sets or gets the default language for code generation when using GenerateCode. Project items

can overwrite this value in their CodeGenSettings_OutputLanguage property, when

CodeGenSettings_UseDefault is set to false.

Errors
1500 The object is no longer valid.
1501 Invalid language specified.

Invalid address for the return parameter was specified.

1142 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Output_TextEncoding15.2.17.20

Property: Output_TextEncoding as String

Description
Sets or gets the text encoding used when generating XML-based code.

Errors
1500 The object is no longer valid.
1501 Invalid text encoding specified.

Invalid address for the return parameter was specified.

Parent15.2.17.21

Property: Parent as Application (read-only)

Description
The parent object according to the object model.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.

Path15.2.17.22

Property: Path as St r i ng (read-only)

Description
Path of the project file without name.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.

Save15.2.17.23

Method: Save ()

Description
Saves the project to the file defined by FullName.

Errors
1500 The object is no longer valid.
1502 Can't save to file.

© 2018 Altova GmbH

Object Reference 1143The MapForce API

Altova MapForce 2018 Professional Edition

Saved15.2.17.24

Property: Saved as Boolean (read-only)

Description
Tr ue if the project was not modified since the last Save operation, f al se otherwise.

Errors
1500 The object is no longer valid.
1501 Invalid address for the return parameter was specified.

15.2.18 ProjectItem

A ProjectItem object represents one item in a project tree.

Properties and Methods
Properties to navigate the object model:
Application
Parent

Project tree navigation:
Count
Item
_NewEnum

Project item properties:
Kind
Name

WSDLFile (only available to Web service project items)

QualifiedName (only available to Web service project items)

Project tree manipulation:
AddActiveFile (only available to folder items)

AddFile (only available to folder items)

CreateFolder (only available to folder items)

CreateMappingForProject (only available to Web service operations)
Remove

Document access:
Open (only available to mapping items and Web service operations)

Code-generation:
CodeGenSettings_UseDefault
CodeGenSettings_OutputFolder
CodeGenSettings_Language
GenerateCode
GenerateCodeEx

1144 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

GenerateCodeIn
GenerateCodeInEx

For examples of how to use the properties and methods listed above, see Example: Project
Support. For operations with Web services, the MapForce Enterprise edition is required.

_NewEnum15.2.18.1

Property: _NewEnum () as IUnknown (read-only)

Description
This property supports language specific standard enumeration.

Errors
1700 The object is no longer valid.

Examples
See Project.Item or Project._NewEnum.

AddActiveFile15.2.18.2

Method: AddActiveFile () as ProjectItem

Description
Adds the currently active document to this project item if it is a valid child. Otherwise, the
document is added to the Mapping Folder of the project's root.

Errors
1700 The object is no longer valid.
1701 The file name is empty.

Invalid address for the return parameter was specified.
1703 No active document is available.
1704 Active documents needs to be given a path name before it can be added

to the project.
1705 Mapping could not be assigned to project.

The file does not exist or is not a MapForce mapping.
Maybe the file is already assigned to the target folder.

AddFile15.2.18.3

Method: AddFile (i_strFileName as String) as ProjectItem

Description
Adds the specified document to this project item if it is a valid child. Otherwise, the document is
added to the Mapping Folder of the project's root.

Errors

© 2018 Altova GmbH

Object Reference 1145The MapForce API

Altova MapForce 2018 Professional Edition

1700 The object is no longer valid.
1701 The file name is empty.

Invalid address for the return parameter was specified.
1705 Mapping could not be assigned to project.

The file does not exist or is not a MapForce mapping.
Maybe the file is already assigned to the target folder.

Application15.2.18.4

Property: Application as Application (read-only)

Description
Retrieves the top-level application object.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.

CodeGenSettings_Language15.2.18.5

Property: CodeGenSettings_Language as ENUMProgrammingLanguage

Description
Gets or sets the language to be used with GenerateCode or Project.GenerateCode. This

property is consulted only if CodeGenSettings_UseDefault is set to false.

Errors
1700 The object is no longer valid.
1701 Invalid language or invalid address for the return parameter was specified.

CodeGenSettings_OutputFolder15.2.18.6

Property: CodeGenSettings_OutputFolder as String

Description
Gets or sets the output directory to be used with GenerateCode, GenerateCodeIn,

Project.GenerateCode or Project.GenerateCodeIn. This property is consulted only if

CodeGenSettings_UseDefault is set to false.

Errors
1700 The object is no longer valid.
1701 An invalid output folder or an invalid address for the return parameter was

specified.

1146 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

CodeGenSettings_UseDefault15.2.18.7

Property: CodeGenSettings_UseDefault as Boolean

Description
Gets or sets whether output directory and code language are used as defined by either (a) the
parent folders, or (b) the project root. This property is used with calls to GenerateCode,

GenerateCodeIn, Project.GenerateCode and Project.GenerateCodeIn. If this property is

set to false, the values of CodeGenSettings_OutputFolder and

CodeGenSettings_Language are used to generate code for this project item..

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.

Count15.2.18.8

Property: Count as Integer (read-only)

Description
Retrieves number of children of this project item. Also see Item.

Errors
1700 The object is no longer valid.

Examples
See Project.Item or Project._NewEnum.

CreateFolder15.2.18.9

Method: CreateFolder (i_strFolderName as String) as ProjectItem

Description
Creates a new folder as a child of this project item.

Errors
1700 The object is no longer valid.
1701 Invalid folder name or invalid address for the return parameter was specified.
1702 The project item does not support children.

CreateMappingForProject15.2.18.10

Method: CreateMappingForProject (i_strFileName as String) as ProjectItem

© 2018 Altova GmbH

Object Reference 1147The MapForce API

Altova MapForce 2018 Professional Edition

Description
Creates an initial mapping document for a Web service operation and saves it to
i_strFileName. When using Project.InsertWebService you can use the

i_bGenerateMappings flag to let MapForce automatically generate initial mappings for all

ports.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.
1707 Cannot create new mapping.

The project item does not support auto-creation of initial mappings or a
mapping already exists.

1708 Operation not supported in current edition.

GenerateCode15.2.18.11

Method: GenerateCode ()

Description
Generates code for this project item and its children. The code language and output location is
determined by CodeGenSettings_UseDefault, CodeGenSettings_Language and

CodeGenSettings_OutputFolder. Children of this project item can have their own property

settings related to code-generation.

Errors
1700 The object is no longer valid.
1706 Error during code generation.

GenerateCodeEx15.2.18.12

Method: GenerateCode () as ErrorMarkers

Description
Generates code for this project item and its children. The code language and output location are
determined by CodeGenSettings_UseDefault, CodeGenSettings_Language and

CodeGenSettings_OutputFolder. Children of this project item can have their own property

settings related to code-generation.

An object that can be used to iterate through all messages issued by the code generation
process is returned. These messages are the same as those shown in the Messages window of
MapForce.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.
1706 Error during code generation.

1148 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

GenerateCodeIn15.2.18.13

Method: GenerateCodeIn (i_nLanguage as ENUMProgrammingLanguage)

Description
Generates code for the project item and its children in the specified language. The output location
is determined by CodeGenSettings_UseDefault and CodeGenSettings_OutputFolder.

Children of this project item can have their own property settings related to code-generation.

Errors
1700 The object is no longer valid.
1701 Invalid language specified.
1706 Error during code generation.

GenerateCodeInEx15.2.18.14

Method: GenerateCodeIn (i_nLanguage as ENUMProgrammingLanguage) as
ErrorMarkers

Description
Generates code for the project item and its children in the specified language. The output location
is determined by CodeGenSettings_UseDefault and CodeGenSettings_OutputFolder.

Children of this project item can have their own property settings related to code-generation.

An object that can be used to iterate through all messages issued by the code generation
process is returned. These messages are the same as those shown in the Messages window of
MapForce.

Errors
1700 The object is no longer valid.
1701 Invalid language specified or invalid address for the return parameter was

specified.
1706 Error during code generation.

Item15.2.18.15

Property: Item(i_nItemIndex as Integer) as ProjectItem (read-only)

Description
Returns the child at i_nItemIndex position of this project item. The index is zero-based. The

largest valid index is Count - 1.

For an alternative to visit all children see _NewEnum.

Errors
1700 The object is no longer valid.

© 2018 Altova GmbH

Object Reference 1149The MapForce API

Altova MapForce 2018 Professional Edition

Examples
See Project.Item or Project._NewEnum.

Kind15.2.18.16

Property: Kind as ENUMProjectItemType (read-only)

Description
Retrieves the kind of the project item. Availability of some properties and the applicability of
certain methods is restricted to specific kinds of project items. The description of all methods and
properties contains information about these restrictions.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.

Name15.2.18.17

Property: Name as String

Description
Retrieves or sets the name of a project item. The name of most items is read-only. Exceptions
are user-created folders, the names of which can be altered after creation.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.
1702 Project item does not allow to alter its name.

Open15.2.18.18

Method: Open () as Document

Description
Opens the project item as a document or makes the corresponding document the active one, if it
is already open. The project item must be a MapForce mapping or, for Enterprise edition only,
Web service operation.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.
1702 The project item does not refer to a MapForce mapping file.
1708 Operation not supported in current edition.

1150 The MapForce API Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Parent15.2.18.19

Property: Parent as Project (read-only)

Description
Retrieves the project that this item is a child of. Has the same effect as
Application.ActiveProject.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.

QualifiedName15.2.18.20

Property: QualifiedName as String (read-only)

Description
Retrieves the qualified name of a Web service item.

Errors
1700 The object is no longer valid.
1701 Invalid address for the return parameter was specified.
1702 The project item is not a part of a Web service.

Remove15.2.18.21

Method: Remove ()

Description
Remove this project item and all its children from the project tree.

Errors
1700 The object is no longer valid.

WSDLFile15.2.18.22

Property: WSDLFile as String (read-only)

Description
Retrieves the file name of the WSDL file defining the Web service that hosts the current project
item.

Errors
1700 The object is no longer valid.

© 2018 Altova GmbH

Object Reference 1151The MapForce API

Altova MapForce 2018 Professional Edition

1701 Invalid address for the return parameter was specified.
1702 The project item is not a part of a Web service.

1152 The MapForce API Enumerations

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

15.3 Enumerations

This is a list of all enumerations used by the MapForce API. If your scripting environment does not
support enumerations, use the number-values instead.

15.3.1 ENUMApacheAxisVersion (obsolete)

Description
Enumeration values to select the Apache Axis version.

Possible values:
eApacheAxisVersion_Axis = 1
eApacheAxisVersion_Axis2 = 2

15.3.2 ENUMApplicationStatus

Description
Enumeration values to indicate the status of the application.

Possible values:
eApplicationRunning = 0
eApplicationAfterLicenseCheck = 1
eApplicationBeforeLicenseCheck = 2
eApplicationConcurrentLicenseCheckFailed = 3

15.3.3 ENUMAppOutputLine_Severity

Description
Enumeration values to identify the severity of an AppOutputLine.

Possible values:
eSeverity_Undefined = -1
eSeverity_Info = 0
eSeverity_Warning = 1
eSeverity_Error = 2
eSeverity_CriticalError = 3
eSeverity_Success = 4
eSeverity_Summary = 5
eSeverity_Progress = 6
eSeverity_DataEdit = 7
eSeverity_ParserInfo = 8
eSeverity_PossibleInconsistencyWarning = 9
eSeverity_Message = 10
eSeverity_Document = 11
eSeverity_Rest = 12
eSeverity_NoSelect = 13
eSeverity_Select = 14

© 2018 Altova GmbH

Enumerations 1153The MapForce API

Altova MapForce 2018 Professional Edition

eSeverity_Autoinsertion = 15
eSeverity_GlobalResources_DefaultWarning = 16

15.3.4 ENUMAppOutputLine_TextDecoration

Description
Enumeration values for the different kinds of text decoration of an AppOutputLine.

Possible values:
eTextDecorationDefault = 0
eTextDecorationBold = 1
eTextDecorationDebugValues = 2
eTextDecorationDB_ObjectName = 3
eTextDecorationDB_ObjectLink = 4
eTextDecorationDB_ObjectKind = 5
eTextDecorationDB_TimeoutValue = 6
eTextDecorationFind_MatchingString = 7
eTextDecorationValidation_Speclink = 8
eTextDecorationValidation_ErrorPosition = 9
eTextDecorationValidation_UnkownParam = 10

15.3.5 ENUMCodeGenErrorLevel

Description
Enumeration values to identify severity of code generation messages.

Possible values:
eCodeGenErrorLevel_Information = 0
eCodeGenErrorLevel_Warning = 1
eCodeGenErrorLevel_Error = 2
eCodeGenErrorLevel_Undefined = 3

15.3.6 ENUMComponentDatapointSide

Description
Enumeration values to indicate the side of a datapoint on its component.

Possible values:
eDatapointSideInput = 0
eDatapointSideOutput = 1

See also
GetRootDatapoint

1154 The MapForce API Enumerations

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

15.3.7 ENUMComponentSubType

Description
Enumeration values to indicate component sub types.

Possible values:
eComponentSubType_None = 0
eComponentSubType_Text_EDI = 1
eComponentSubType_Text_Flex = 2
eComponentSubType_Text_CSVFLF = 3

15.3.8 ENUMComponentType

Description
Enumeration values to indicate component types.

Possible values:
eComponentType_Unknown = 0
eComponentType_XML = 1
eComponentType_DB = 2
eComponentType_Text = 3
eComponentType_Excel = 4
eComponentType_WSDL = 5
eComponentType_XBRL = 6

15.3.9 ENUMComponentUsageKind

Description
Enumeration values to indicate component usage kind.

Possible values:
eComponentUsageKind_Unknown = 0
eComponentUsageKind_Instance = 1
eComponentUsageKind_Input = 2
eComponentUsageKind_Output = 3
eComponentUsageKind_Variable = 4

15.3.10 ENUMConnectionType

Description
Enumeration values to indicate the type of a connection.

Possible values:
eConnectionTypeTargetDriven = 0
eConnectionTypeSourceDriven = 1

© 2018 Altova GmbH

Enumerations 1155The MapForce API

Altova MapForce 2018 Professional Edition

eConnectionTypeCopyAll = 2

See also
ConnectionType

15.3.11 ENUMDOMType

Description
Enumeration values to specify the DOM type used by generated C++ mapping code.

Possible values:
eDOMType_xerces3 = 2
eDOMType_msxml6 = 3

Obsolete values
eDOMType_msxml4 = 0
eDOMType_xerces = 1

Obsolete in this context means that this value is not supported and should not be used.

eDOMType_xerces3 indicates Xerces 3.x usage.

15.3.12 ENUMLibType

Description
Enumeration values to specify the library type used by the generated C++ mapping code.

Possible values:
eLibType_static = 0
eLibType_dll = 1

15.3.13 ENUMProgrammingLanguage

Description
Enumeration values to select a programming language.

Possible values:
eUndefinedLanguage = -1
eJava = 0
eCpp = 1
eCSharp = 2
eXSLT = 3
eXSLT2 = 4
eXQuery = 5

1156 The MapForce API Enumerations

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

15.3.14 ENUMProjectItemType

WDescription
Enumeration to identify the different kinds of project items that can be children of Project or folder-
like ProjectItems.

Possible values:
eProjectItemType_Invalid = -1
eProjectItemType_MappingFolder = 0
eProjectItemType_Mapping = 1
eProjectItemType_WebServiceFolder = 2
eProjectItemType_WebServiceRoot = 3
eProjectItemType_WebServiceService = 4
eProjectItemType_WebServicePort = 5
eProjectItemType_WebServiceOperation = 6
eProjectItemType_ExternalFolder = 7
eProjectItemType_LibrarzFolder = 8
eProjectItemType_ResourceFolder = 9
eProjectItemType_VirtualFolder = 10

See also
 ProjectItem.Kind

15.3.15 ENUMProjectType

Description
Enumeration values to select a project type for generated C# and C++ mapping code.

Possible values: eVisualStudio2008Project = 5
eVisualStudio2010Project = 6
eVisualStudio2013Project = 7
eVisualStudio2015Project = 8
eVisualStudio2017Project = 9

Obsolete values eVisualStudioProject = 0
eVisualStudio2003Project = 1
eBorlandProject = 2
eVisualStudio2005Project = 4

Obsolete in this context means that this value is not supported and should not be used.

15.3.16 ENUMSearchDatapointFlags

Description
Enumeration values used as bit-flags; to be used as combination of flags when searching for a
datapoint.

Possible values:

© 2018 Altova GmbH

Enumerations 1157The MapForce API

Altova MapForce 2018 Professional Edition

eSearchDatapointElement = 1
eSearchDatapointAttribute = 2

See also
GetChild

15.3.17 ENUMViewMode

Description
Enumeration values to select a MapForce view.

Possible values:
eMapForceView = 0
eXSLView = 1
eOutputView = 2

Chapter 16

ActiveX Integration

1160 ActiveX Integration

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

16 ActiveX Integration

The MapForce user interface and the functionality described in this section can be integrated into
custom applications that can consume ActiveX controls. ActiveX technology enables a wide
variety of languages to be used for integration, such as C++, C#, VB.NET, HTML. (Note that
ActiveX components integrated in HTML must be run with Microsoft Internet Explorer versions and
platforms that support ActiveX). All components are full OLE Controls. Integration into Java is
provided through wrapper classes.

To integrate the ActiveX controls into your custom code, the MapForce Integration Package
must be installed (see https://www.altova.com/components/download). Ensure that you
install MapForce first, and then the MapForce Integration Package. Other prerequisites apply,
depending on language and platform (see Prerequisites).

You can flexibly choose between two different levels of integration: application level and document
level.

Integration at application level means embedding the complete interface of MapForce (including its
menus, toolbars, panes, etc) as an ActiveX control into your custom application. For example, in
the most simple scenario, your custom application could consist of only one form that embeds
the MapForce graphical user interface. This approach is easier to implement than integration at
document level but may not be suitable if you need flexibility to configure the MapForce graphical
user interface according to your custom requirements.

Integration at document level means embedding MapForce into your own application piece-by-
piece. This includes implementing not only the main MapForce control but also the main
document editor window, and, optionally, any additional windows. This approach provides greater
flexibility to configure the GUI, but requires advanced interaction with ActiveX controls in your
language of choice.

The sections Integration at the Application Level and Integration at Document Level describe the
key steps at these respective levels. The ActiveX Integration Examples section provides examples
in C#, HTML, and Java. Looking through these examples will help you to make the right decisions
quickly. The Object Reference section describes all COM objects that can be used for integration,
together with their properties and methods.

For information about using MapForce as a Visual Studio plug-in, see MapForce in Visual Studio.

https://www.altova.com/components/download

© 2018 Altova GmbH

Prerequisites 1161ActiveX Integration

Altova MapForce 2018 Professional Edition

16.1 Prerequisites

To integrate the MapForce ActiveX control into a custom application, the following must be
installed on your computer:

MapForce
The MapForce Integration Package, available for download at https://www.altova.com/
components/download

To integrate the 64-bit ActiveX control, install the 64-bit versions of MapForce and MapForce
Integration Package. For applications developed under Microsoft .NET platform with Visual Studio,
both the 32-bit and 64-bit versions of MapForce and MapForce Integration Package must be
installed, as explained below.

Microsoft .NET (C#, VB.NET) with Visual Studio

To integrate the MapForce ActiveX control into a 32-bit application developed under Microsoft
.NET, the following must be installed on your computer:

Microsoft .NET Framework 4.0 or later
Visual Studio 2008/2010/2012/2013/2015/2017
MapForce 32-bit and MapForce Integration Package 32-bit
The ActiveX controls must be added to the Visual Studio toolbox (see Adding the ActiveX
Controls to the Toolbox).

If you want to integrate the 64-bit ActiveX control, the following prerequisites apply in addition to
the ones above:

MapForce 32-bit and MapForce Integration Package 32-bit must still be installed (this is
required to provide the 32-bit ActiveX control to the Visual Studio designer, since Visual
Studio runs on 32-bit)
MapForce 64-bit and MapForce Integration Package 64-bit must be installed (provides the
actual 64-bit ActiveX control to your custom application at runtime)
In Visual Studio, create a 64-bit build configuration and build your application using this
configuration. For an example, see Running the Sample C# Solution.

Java

To integrate the MapForce ActiveX control into Java application using the Eclipse development
environment, the following must be installed on your computer:

Java Runtime Environment (JRE) or Java Development Kit (JDK) 7 or later
Eclipse
MapForce and MapForce Integration Package

Note: To run the 64-bit version of the MapForce ActiveX control, use a 64-bit version of Eclipse,
as well as the 64-bit version of MapForce and the MapForce Integration Package.

https://www.altova.com/components/download
https://www.altova.com/components/download

1162 ActiveX Integration Prerequisites

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

MapForce integration and deployment on client computers

If you create a .NET application and intend to distribute it to other clients, you will need to install
the following on the client computer(s):

MapForce
The MapForce Integration Package
The custom integration code or application.

© 2018 Altova GmbH

Adding the ActiveX Controls to the Toolbox 1163ActiveX Integration

Altova MapForce 2018 Professional Edition

16.2 Adding the ActiveX Controls to the Toolbox

To use the MapForce ActiveX controls in an application developed with Visual Studio, the controls
must first be added to the Visual Studio Toolbox, as follows:

1. On the Tools menu of Visual Studio, click Choose Toolbox Items.
2. On the COM Components tab, select the check boxes next to the MapForceControl,

MapForceControl Document, and MapForceControl Placeholder.

In case the controls above are not available, follow the steps below:

1. On the COM Components tab, click Browse, and select the MapForceControl.ocx file
from the MapForce installation folder. Remember that the MapForce Integration Package
must be installed; otherwise, this file is not available, see Prerequisites.

2. If prompted to restart Visual Studio with elevated permissions, click Restart under
different credentials.

If the steps above were successful, the MapForce ActiveX controls become available in the Visual
Studio Toolbox.

1164 ActiveX Integration Adding the ActiveX Controls to the Toolbox

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: For an application-level integration, only the MapForceControl ActiveX control is used
(see Integration at Application Level). The MapForceControl Document and
MapForceControl Placeholder controls are used for document-level integration (see
Integration at Document Level).

© 2018 Altova GmbH

Integration at Application Level 1165ActiveX Integration

Altova MapForce 2018 Professional Edition

16.3 Integration at Application Level

Integration at application level allows you to embed the complete interface of MapForce into a
window of your application. With this type of integration, you get the whole user interface of
MapForce, including all menus, toolbars, the status bar, document windows, and helper windows.
Customization of the application's user interface is restricted to what MapForce provides. This
includes rearrangement and resizing of helper windows and customization of menus and toolbars.

The only ActiveX control you need to integrate is MapForceControl. Do not instantiate or access
MapForceControlDocument or MapForceControlPlaceHolder ActiveX controls when integrating
at application-level.

If you have any initialization to do or if you want to automate some behaviour of MapForce, use
the properties, methods, and events described for MapForceControl. Consider using
MapForceControl.Application for more complex access to MapForce functionality.

For an example that shows how the MapForce application can be embedded in an HTML page,
see HTML Integration at Application Level.

In C# or VB.NET with Visual Studio, the steps to create a basic, one-form application which
integrates the MapForce ActiveX controls at application level are as follows:

1. Check that all prerequisites are met (see Prerequisites).
2. Create a new Visual Studio Windows Forms project with a new empty form.
3. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the

ActiveX Controls to the Toolbox).
4. Drag the MapForceControl from the toolbox onto your new form.
5. Select the MapForceControl on the form, and, in the Properties window, set the

IntegrationLevel property to ICActiveXIntegrationOnApplicationLevel.

1166 ActiveX Integration Integration at Application Level

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

6. Create a build platform configuration that matches the platform under which you want to
build (x86, x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64

configuration (in this example, x86).

You are now ready to build and run the solution in Visual Studio. Remember to build using the

© 2018 Altova GmbH

Integration at Application Level 1167ActiveX Integration

Altova MapForce 2018 Professional Edition

configuration that matches your target platform (x86, x64).

1168 ActiveX Integration Integration at Document Level

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

16.4 Integration at Document Level

Compared to integration at application level, integration at document level is a more complex, yet
more flexible way to embed MapForce functionality into your application by means of ActiveX
controls. With this approach, your code can access selectively the following parts of the
MapForce user interface:

Document editing window
Project window
Libraries window
Overview window
Messages window

As mentioned in Integration at Application Level, for an ActiveX integration at application level,
only one control is required, namely the MapForceControl. However, for an ActiveX integration at
document level, functionality MapForce is provided by the following ActiveX controls:

1. MapForceControl
2. MapForceControl Document
3. MapForceControl Placeholder

These controls are supplied by the MapForceControl.ocx file available in the application
installation folder of MapForce. When you develop the ActiveX integration with Visual Studio, you
will need to add these controls to the Visual Studio toolbox (see Adding the ActiveX Controls to
the Toolbox).

The basic steps to integrate the ActiveX controls at document level into your application are as
follows:

1. First, instantiate MapForceControl in your application. Instantiating this control is
mandatory; it enables support for the MapForceControl Document and
MapForceControl Placeholder controls mentioned above. It is important to set the
IntegrationLevel property to ICActiveXIntegrationOnDocumentLevel (or "1"). To
hide the control from the user, set its Visible property to False.

Note: When integrating at document level, do not use the Open method of the
MapForceControl; this might lead to unexpected results. Use the corresponding open
methods of MapForceControl Document and MapForceControl PlaceHolder instead.

2. Create at least one instance of MapForceControl Document in your application. This
control supplies the document editing window of MapForce to your application and can be
instantiated multiple times if necessary.

Use the method Open to load any existing file. To access document-related functionality,
use the Path and Save or methods and properties accessible via the property
Document.

Note: The control does not support a read-only mode. The value of the property ReadOnly is
ignored.

3. Optionally, add to your application the MapForceControl Placeholder control for each

© 2018 Altova GmbH

Integration at Document Level 1169ActiveX Integration

Altova MapForce 2018 Professional Edition

additional window (other than the document window) that must be available to your
application.

Instances of MapForceControl PlaceHolder allow you to selectively embed additional
windows of MapForce into your application. The window kind (for example, Project
window) is defined by the property PlaceholderWindowID. Therefore, to set the window
kind, set the property PlaceholderWindowID. For valid window identifiers, see
MapForceControlPlaceholderWindow.

Note: Use only one MapForceControl PlaceHolder for each window identifier.

For placeholder controls that select the MapForce project window, additional methods are
available. Use OpenProject to load a MapForce project. Use the property Project and
the methods and properties from the MapForce automation interface to perform any other
project related operations.

For example, in C# or VB.NET with Visual Studio, the steps to create a basic, one-form
application which integrates the MapForce ActiveX controls at document level could be similar to
those listed below. Note that your application may be more complex if necessary; however, the
instructions below are important to understand the minimum requirements for an ActiveX
integration at document level.

1. Create a new Visual Studio Windows Forms project with a new empty form.
2. If you have not done that already, add the ActiveX controls to the toolbox (see Adding the

ActiveX Controls to the Toolbox).
3. Drag the MapForceControl from the toolbox onto your new form.
4. Set the IntegrationLevel property of the MapForceControl to

ICActiveXIntegrationOnDocumentLevel, and the Visible property to False. You can
do this either from code or from the Properties window.

5. Drag the MapForceControl Document from the toolbox onto the form. This control
provides the main document window of MapForce to your application, so you may need to
resize it to a reasonable size for a document.

6. Optionally, add one or more MapForceControl Placeholder controls to the form (one for
each additional window type that your application needs, for example, the Project
window). You will typically want to place such additional placeholder controls either below
or to the right or left of the main document control, for example:

1170 ActiveX Integration Integration at Document Level

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

7. Set the PlaceholderWindowID property of each MapForceControl Placeholder
control to a valid window identifier. For the list of valid values, see
MapForceControlPlaceholderWindow.

8. Add commands to your application (at minimum, you will need to open, save and close
documents), as shown below.

Querying MapForce Commands

When you integrate at document level, no MapForce menu or toolbar is available to your
application. Instead, you can retrieve the required commands, view their status, and execute them
programmatically, as follows:

To retrieve all available commands, use the CommandsList property of the
MapForceControl.
To retrieve commands organized according to their menu structure, use the MainMenu
property.
To retrieve commands organized by the toolbar in which they appear, use the Toolbars
property.
To send commands to MapForce, use the Exec method.
To query if a command is currently enabled or disabled, use the QueryStatus method.

This enables you to flexibly integrate MapForce commands into your application's menus and
toolbars.

Your installation of MapForce also provides you with command label images used within
MapForce. See the folder <ApplicationFolder>\Examples\ActiveX\Images of your MapForce
installation for icons in GIF format. The file names correspond to the command names as they are

© 2018 Altova GmbH

Integration at Document Level 1171ActiveX Integration

Altova MapForce 2018 Professional Edition

listed in the Command Reference section.

General considerations

To automate the behaviour of MapForce, use the properties, methods, and events described for
the MapForceControl, MapForceControl Document, and MapForceControl Placeholder.

For more complex access to MapForce functionality, consider using the following properties:

MapForceControl.Application
MapForceControlDocument.Document
MapForceControlPlaceHolder.Project

These properties give you access to the MapForce automation interface (MapForceAPI)

Note: To open a document, always use MapForceControlDocument.Open or
MapForceControlDocument.New on the appropriate document control. To open a project,
always use MapForceControlPlaceHolder.OpenProject on a placeholder control
embedding a MapForce project window.

For examples that show how to instantiate and access the necessary controls in different
programming environments, see ActiveX Integration Examples.

1172 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

16.5 ActiveX Integration Examples

This section contains examples of MapForce document-level integration using different container
environments and programming languages. (The HTML section additionally contains examples of
integration at application level.) Source code for all examples is available in the folder
<ApplicationFolder>\Examples\ActiveX of your MapForce installation.

16.5.1 C#

A basic ActiveX integration example solution for C# and Visual Studio is available in the folder
<ApplicationFolder>\Examples\ActiveX\C#. Before you compile the source code and run the
sample, make sure that all prerequisites are met (see Running the Sample C# Solution).

Running the Sample C# Solution16.5.1.1

The sample Visual Studio solution available in the folder <ApplicationFolder>\Examples
\ActiveX\C# illustrates how to consume the MapForce ActiveX controls. Before attempting to
build and run this solution, note the following steps:

Step 1: Check the prerequisites

Visual Studio 2010 or later is required to open the sample solution. For the complete list of
prerequisites, see Prerequisites.

Step 2: Copy the sample to a directory where you have write permissions

To avoid running Visual Studio as an Administrator, copy the source code to a directory where
you have write permissions, instead of running it from the default location.

Step 3: Check and set all required control properties

The sample application contains one instance of MapForceControlDocument and several
instances of MapForceControlPlaceHolder controls. Double-check that the following properties of
these controls are set as shown in the table below:

Control name Property Property value

axMapForceControl IntegrationLevel ICActiveXIntegrationOnDocu
mentLevel

axMapForceControlLibrary PlaceholderWindo
wID

0

axMapForceControlOutput PlaceholderWindo 2

© 2018 Altova GmbH

ActiveX Integration Examples 1173ActiveX Integration

Altova MapForce 2018 Professional Edition

Control name Property Property value

wID

axMapForceControlPreview PlaceholderWindo
wID

1

Here is how you can view or set the properties of an ActiveX control:

1. Open the MDIMain.cs form in the designer window.

Note: On 64-bit Windows, it may be necessary to change the build configuration of the Visual
Studio solution to "x86" before opening the designer window. If you need to build the
sample as a 64-bit application, see Prerequisites.

2. Open the Document Outline window of Visual Studio (On the View menu, click Other
Windows | Document Outline).

3. Click an ActiveX control in the Document Outline window, and edit its required property
in the Properties window, for example:

1174 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Step 4: Set the build platform

Create a build platform configuration that matches the platform under which you want to
build (x86, x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64

configuration (in this example, x86).

You are now ready to build and run the solution in Visual Studio. Remember to build using the

© 2018 Altova GmbH

ActiveX Integration Examples 1175ActiveX Integration

Altova MapForce 2018 Professional Edition

configuration that matches your target platform (x86, x64); otherwise, runtime errors might occur.

On running the sample, the main MDI Frame window is displayed. Use File | Open to open a
mapping file (for example, MarketingExpenses.mfd, which is in the MapForce examples

folder). The file is loaded and displayed in a new document child window:

After you load the document, you can execute commands against the active document using the
menu. Context menus are also available. You can also load additional documents. Save any
modifications using the File | Save command.

Retrieving Command Information16.5.1.2

The MapForceControl gives access to all commands of MapForce through its CommandsList ,
MainMenu, and Toolbars properties. The example project available in the folder
<ApplicationFolder>\Examples\ActiveX\C# uses the MainMenu property to create the
MapForce menu structure dynamically.

The code that gets the menu commands can be found in the MDIMain method in MDIMain.cs file:

public MDIMain()

{
 // ...

1176 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 // Get the MainMenu property of the control and create the menu structure
from it.
 MFLib.MapForceCommand objCommand = this.axMapForceControl.MainMenu;

 InsertMenuStructure(mainMenu, objCommand);
}

In the code listing above, mainMenu is the existing static menu of the main MDI Frame window. If
you open the MDIMain.cs form in the Visual Studio Designer, you will notice that this menu
contains two menu items: File and Window.

MDIMain.cs

The method InsertMenuStructure takes as parameters the mainMenu and the objCommand
objects (the former is the existing static menu, while the latter contains the full menu structure
retrieved from the MapForce ActiveX control). The retrieved MapForce menu structure is then
merged into the existing static menu. Note that the menus File, Project, and Window are not
added dynamically. This is intentional, because these menus deal with actively open documents,
and they would require code which is beyond the scope of this example. The basic file
management commands (create, open, save, bring into focus) are handled by the existing static
menus File and Window. All other menus are inserted dynamically based on the information
taken from the MainMenu property of the ActiveX control. The new menus are inserted after "File"
but before "Window", i.e. starting at menu index 1.

The method InsertMenuStructure iterates through all top-level menus found in
MapForceCommand object and adds a new menu item for each. Since each top-level menu has its
own child menu items, a call to the method InsertMenuCommand takes place for each
encountered child menu item. Furthermore, since each child menu item can have its own children
menu items, and so on, the InsertMenuCommand method recurses into itself until no more child
menu items exist.

The commands added dynamically are instances of the class CustomMenuItem, which is defined
in CustomMenuItem.cs. This class is derived from System.Windows.Forms.MenuItem class and
has an additional member to store the MapForce command ID.

public class CustomMenuItem : System.Windows.Forms.MenuItem
{

public int m_MapForceCmdID;
}

All dynamically added commands (except those that are containers for other commands) get the
same event handler AltovaMenuItem_Click which does the processing of the command:

© 2018 Altova GmbH

ActiveX Integration Examples 1177ActiveX Integration

Altova MapForce 2018 Professional Edition

private void AltovaMenuItem_Click(object sender, EventArgs e)

{
 if(sender.GetType() ==

System.Type.GetType("MapForceApplication.CustomMenuItem"))
 {
 CustomMenuItem customItem = (CustomMenuItem)sender;
 ProcessCommand(customItem.m_MapForceCmdID);
 }
}

If the command is a container for other commands (that is, if it has child commands), it gets the
event handler AltovaSubMenu_Popup. This handler queries the status of each child command and
enables or disables it as required. This ensures that each command is enabled only when that is
meaningful (for example, the File | Save menu item should be disabled if there is no active
document open).

The method ProcessCommand delegates the execution either to the MapForceControl itself or to
any active MapForce document loaded in a MapForceControlDocument control. This is
necessary because the MapForceControl has no way to know which document is currently active
in the hosting application.

private void ProcessCommand(int nID)

{
 MapForceDoc docMapForce = GetCurrentMapForceDoc();

 if(docMapForce != null)

 docMapForce.axMapForceControlDoc.Exec(nID);
 else

 axMapForceControl.Exec(nID);
}

Handling Events16.5.1.3

Because all events in the MapForce library are based on connection points, you can use the C#
delegate mechanism to provide the custom event handlers. You will always find a complete list of
events on the property page of each control of the MapForce library. The image below shows the
events of the main MapForceControl:

1178 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

As you can see, the example project only overrides the OnFileExternalChange event. The
creation of the C# delegate is done for you by the C# Framework. All you need to do is fill in the
empty event handler.

For example, the handler implementation shown below turns off any file reloading and displays a
message box to inform the user that a file loaded by the MapForceControl has been changed from
outside:

private void axMapForceControl_OnFileExternalChange(object sender,
AxMapForceControlLib._DMapForceControlEvents_OnFileExternalChangeEvent e)
{

MessageBox.Show("Attention: The file " + e.strPath + " has been changed
from outside\nbut reloading is turned off in the sample application!");

// This turns off any file reloading:

e.varRet = false;
}

© 2018 Altova GmbH

ActiveX Integration Examples 1179ActiveX Integration

Altova MapForce 2018 Professional Edition

16.5.2 HTML

The code listings in this section show how to integrate the MapForceControl at application level
and document level. Source code for all examples is available in the folder <ApplicationFolder>
\Examples\ActiveX\HTML of your MapForce installation.

Note: ActiveX controls in an HTML page are supported only by Internet Explorer when it runs as
a 32-bit application. When Internet Explorer 10 or 11 runs in 64-bit mode, it does not load
ActiveX controls. The default browser security settings will normally block ActiveX, so you
will need to explicitly allow blocked content to run on the page when prompted by Internet
Explorer.

HTML Integration at Application Level16.5.2.1

This example shows a simple integration of the MapForce control at application-level into a HTML
page. The integration is described in the following sections:

Instantiate a MapForceControl in HTML code.
Implement buttons to load documents and automate code-generation tasks.
Define actions for some application events.

The code for this example is available at the following location in your MapForce installation:
<ApplicationFolder>\Examples\ActiveX\HTML\MapForceActiveX_ApplicationLevel.htm.

Instantiate the Control

The HTML Object tag is used to create an instance of the MapForceControl. The Classid is that
of MapForceControl. Width and height specify the window size. No additional parameters are
necessary, since application-level is the default.

<OBJECT id="objMapForceControl"

 Classid="clsid:A38637E9-5759-4456-A167-F01160CC22C1"

 width="800"

 height="500"

 VIEWASTEXT>

</OBJECT>

Add Button to Open Default Document

As a simple example of how to automate some tasks, we add a button to the page:

<input type="button" value="Open Marketing Expenses"

onclick="BtnOpenMEFile()">

When clicked, a predefined document will be opened in the MapForceControl. The
MakeAbsolutePath method creates an absolute path using the location of the script as a base

1180 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

path.

function BtnOpenMEFile()

{
 var strPath = MakeAbsolutePath("MarketingExpenses.mfd");

 var objDoc = objMapForceControl.Open(strPath);

 if (objDoc == null)

 alert("Unable to locate MarketingExpenses.mfd at: " +
objMapForceControl.BaseHref);
}

Add Buttons for Code Generation

Although code-generation for the active document is available via menus, we want to have buttons
that will generate code without asking the user for the location of the output. The method is similar
to that used in the previous section.

First come the buttons:

<input type="button" value="Generate XSLT" onclick="BtnGenerate(0)">

<input type="button" value="Generate Java" onclick="BtnGenerate(1)">

<input type="button" value="Generate C++" onclick="BtnGenerate(2)">

<input type="button" value="Generate C#" onclick="BtnGenerate(3)">

Then we provide the script that will generate the code into sub-folders of the currently defined
default output folders.

// --
// generate code for active document into language-specific subfolders of
// the current default output dicrectory. No user intercation necessary.
function BtnGenerate(languageID)

{
 // get top-level object of automation interface
 var objApp = objMapForceControl.Application;

 // get the active document
 var objDocument = objApp.ActiveDocument;

 // retrive object to set the generation output path
 var objOptions = objApp.Options;

 if (objDocument == null)

 alert("no active document found");
 else

 {
 objOptions.XSLTDefaultOutputDirectory =
objOptions.CodeDefaultOutputDirectory = GetDefaultOutputDirectory();

 if (languageID == 0)

 {

© 2018 Altova GmbH

ActiveX Integration Examples 1181ActiveX Integration

Altova MapForce 2018 Professional Edition

 objOptions.XSLTDefaultOutputDirectory =
objOptions.XSLTDefaultOutputDirectory + "\\XSLTGen";
 objDocument .GenerateXSLT();
 }
 else if (languageID == 1)

 {
 objOptions.CodeDefaultOutputDirectory =
objOptions.CodeDefaultOutputDirectory + "/JavaCode";
 objDocument .GenerateJavaCode();
 }
 else if (languageID == 2)

 {
 objOptions.CodeDefaultOutputDirectory =
objOptions.CodeDefaultOutputDirectory + "/CPPCode";
 objDocument .GenerateCppCode();
 }
 else if (languageID == 3)

 {
 objOptions.CodeDefaultOutputDirectory =
objOptions.CodeDefaultOutputDirectory + "/CSharpCode";
 objDocument .GenerateCHashCode();
 }
 }
}

Connect to Custom Events

The example implements two event callbacks for MapForceControl custom events to show the
principle:

<!-- --- -->
<!-- custom event 'OnDocumentOpened" of MapForceControl object -->
<SCRIPT FOR="objMapForceControl" event="OnDocumentOpened(objDocument)"
LANGUAGE="javascript">
 // alert("Document '" + objDocument.Name + "' opend!");
</SCRIPT>

<!-- --- -->
<!-- custom event 'OnDocumentClosed" of MapForceControl object -->
<SCRIPT FOR="objMapForceControl" event="OnDocumentClosed(objDocument)"
LANGUAGE="javascript">
 // alert("Document '" + objDocument.Name + "' closed!");
</SCRIPT>

HTML Integration at Document Level16.5.2.2

This example shows an integration of the MapForce control at document-level into a HTML page.
The following topics are covered:

1182 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Instantiate a MapForceControl ActiveX control object in HTML code
Instantiate a MapForceControlDocument ActiveX control to allow editing a MapForce file
Instantiate one MapForceControlPlaceHolder for a MapForceControl project window
Instantiate one MapForceControlPlaceHolder to alternatively host one of the MapForce
helper windows
Create a simple custom toolbar for some heavy-used MapForce commands
Add some more buttons that use the COM automation interface of MapForce
Use event handlers to update command buttons

This example is available in its entirety in the file MapForceActiveX_ApplicationLevel.htm
 within the <ApplicationFolder>\Examples\ActiveX\HTML\ folder of your MapForce
installation.

Instantiate the MapForceControl

MapForceControlThe HTML OBJECT tag is used to create an instance of the MapForceControl.

The Classid is that of MapForceControl. Width and height are set to 0 since we use this control
as manager control without use for its user interface. The integration level is specified as a
parameter within the OBJECT tag.

<object id="objMapForceX" classid="clsid:A38637E9-5759-4456-A167-F01160CC22C1"

 width="0" height="0" VIEWASTEXT>

 <param name="IntegrationLevel" value="1">

</object>

Create Editor Window

The HTML OBJECT tag is used to embed an editing window. The additional custom parameter

specifies that the control is to be initialized with a new empty document.

<object id="objDoc1" classid="clsid:DFBB0871-DAFE-4502-BB66-08CEB7DF5255"

width="600" height="500" VIEWASTEXT>

 <param name="NewDocument">

</object>

Create Project Window

The HTML OBJECT tag is used to create a MapForceControlPlaceHolder window. The parameter

defines the placeholder to show the MapForce project window.

<!-- --- -->
<!-- create project window placeholder control. -->
<!-- initialize it with a project. -->
<object id="objProjectWindow" classid="clsid:FDEC3B04-05F2-427d-988C-

F03A85DE53C2" width="200" height="200" VIEWASTEXT>

 <param name="PlaceholderWindowID" value="3">

© 2018 Altova GmbH

ActiveX Integration Examples 1183ActiveX Integration

Altova MapForce 2018 Professional Edition

</object>

Create Placeholder for Helper Windows

The MapForceControlPlaceHolder control is required to host an application helper window, see
also Integration at Document Level. In the code listing below, the HTML object tag is used to
instantiate a control that will host the Libraries window by default (PlaceholderWindowID is 0).

<!-- create helper window placeholder control. -->
<!-- the editor with focus will automatically direct its -->
<!-- output to the appropriate helper window. -->
<object id="objPlaceholderWindow" Classid="clsid:FDEC3B04-05F2-427d-988C-

F03A85DE53C2" width="200" height="200" VIEWASTEXT>

 <param name="PlaceholderWindowID" value="0">

 <param name="FileName" value="">

</object>

The example HTML page includes a few buttons which call the BtnHelperWindow method when
clicked. The BtnHelperWindow method reassigns the PlaceholderWindowID of the control, and
thus cause the ActiveX object to display a different helper window.

// specify which of the helper windows shall be shown in the placeholder
control.
function BtnHelperWindow(i_ePlaceholderWindowID)

{
 objPlaceholderWindow.PlaceholderWindowID = i_ePlaceholderWindowID;
}

For the list of possible values of PlaceholderWindowID, see
MapForceControlPlaceholderWindow.

Create a Custom Toolbar

The example HTML page also includes a custom toolbar (intended as a replica of the MapForce
menu). The custom toolbar consists of buttons with images of MapForce commands, for example:

<button id="btnInsertXML" title="Insert XML Schema/File"

onclick="BtnDoCommand(32393)">

</button>

<button id="btnInsertDB" title="Insert Database"

onclick="BtnDoCommand(32389)">

</button>

<button id="btnInsertEDI" title="Insert EDI" onclick="BtnDoCommand(32390)">

</button>

<button id="btnInsertText" title="Insert Text file"

1184 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

onclick="BtnDoCommand(32392)">

</button>

The names of button images correspond to the command ID numbers, see Command Reference.
On clicking the button, the corresponding command ID is sent to the main control and executed:

// perform any command specified by cmdID.
// command routing includes application, active document and view.
function BtnDoCommand(cmdID)

{
 objMapForceX.Exec(cmdID);
 msgtext.innerText = "Command " + cmdID + " performed.";
}

Create More Buttons

In the example, we add some more buttons to show some automation code.

<!-- add some buttons associated with above editor. -->
<!-- generation of code is now implemented using the MapForce automation -->
<!-- interface to select a target folder without prompting the user. -->
<p>

 <input type="button" value="New File" onclick="BtnNewFile(objDoc1)">

 <input type="button" value="Save File" onclick="BtnSaveFile(objDoc1)">

 <input type="text" title="Path" id="strPath" width="150">

 <input type="button" value="Open MarketingExpenses"

onclick="BtnOpenMEFile(objDoc1)">

 <input type="button" value="Open MapForce Sample Project"

onclick="BtnOpenProjectFile(objDoc1)">

</p>

The corresponding JavaScript looks like this:

// ---
// open a new empty document in the specified document control window.
function BtnNewFile(objDocCtrl)

{
 objDocCtrl.OpenDocument("");
 objDocCtrl.setActive();
}

// ---
// Saves the current file in the specified document control window.
function BtnSaveFile(objDocCtrl)

{
 if(objDocCtrl.Path.length > 0)

objDocCtrl.SaveDocument();
 else

 {
if(strPath.value.length > 0)

© 2018 Altova GmbH

ActiveX Integration Examples 1185ActiveX Integration

Altova MapForce 2018 Professional Edition

{
 objDocCtrl.Path = strPath.value;
 objDocCtrl.SaveDocument();
}
else

{
 alert("Please set path for the document first!");
 strPath.focus();
}
 }

 objDocCtrl.setActive();
}

// ---
// open a document in the specified document control window.
function BtnOpenMEFile(objDocCtrl)

{
 // do not use MapForceX.Application.OpenDocument(...) to open a document,
 // since then MapForceControl wouldn't know a control window to show
 // the document in. Instead:

 var strPath = MakeAbsolutePath("MarketingExpenses.mfd");

 var objDoc = objDocCtrl.OpenDocument(strPath);

 if (objDoc != null)

 {
objDocCtrl.setActive();
msgtext.innerText = "Opened mapping: " + strPath;
 }
 else

alert("Unable to open " + strPath);
}

Create Event Handler to Update Button Status

Availability of a command may vary with every mouse click or keystroke. The custom event
OnUpdateCmdUI of MapForceControl gives us an opportunity to update the enabled/disabled

state of buttons associated with MapForce commands. The method
MapForceControl.QueryStatus is used to query whether a command is enabled or not.

<!-- custom event 'OnUpdateCmdUI" of MapForceControl object -->
function objMapForceX::OnUpdateCmdUI()

{
 if (document.readyState == "complete")// 'complete'

 {
 // update status of buttons
 // set activity status of simulated toolbar
 GenerateXSLT.disabled = ! (objDoc1.QueryStatus(32360) & 0x02); // not
enabled
 GenerateJava.disabled = ! (objDoc1.QueryStatus(32358) & 0x02); // not

1186 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

enabled
 GenerateCpp.disabled = ! (objDoc1.QueryStatus(32356) & 0x02); // not
enabled
 GenerateCSharp.disabled = ! (objDoc1.QueryStatus(32357) & 0x02); //
not enabled

 btnInsertXML.disabled = ! (objDoc1.QueryStatus(32393) & 0x02);
 btnInsertDB.disabled = ! (objDoc1.QueryStatus(32389) & 0x02);
 btnInsertEDI.disabled = ! (objDoc1.QueryStatus(32390) & 0x02);
 btnInsertText.disabled = ! (objDoc1.QueryStatus(32392) & 0x02);

 btnInsertConstant.disabled = ! (objDoc1.QueryStatus(32388) & 0x02);
 btnInsertFilter.disabled = ! (objDoc1.QueryStatus(32391) & 0x02);
 btnInsertIFELSE.disabled = ! (objDoc1.QueryStatus(32394) & 0x02);
 btnInsertException.disabled = ! (objDoc1.QueryStatus(32311) & 0x02);

 btnFuncUserDef.disabled = ! (objDoc1.QueryStatus(32380) & 0x02);
 btnFuncUserDefSel.disabled = ! (objDoc1.QueryStatus(32381) & 0x02);
 btnFuncSettings.disabled = ! (objDoc1.QueryStatus(32387) & 0x02);
 btnInsertInput.disabled = ! (objDoc1.QueryStatus(32383) & 0x02);

 btnGenXSLT.disabled = ! (objDoc1.QueryStatus(32360) & 0x02);
 btnGenXSLT2.disabled = ! (objDoc1.QueryStatus(32361) & 0x02);
 btnGenXQuery.disabled = ! (objDoc1.QueryStatus(32359) & 0x02);
 btnGenCPP.disabled = ! (objDoc1.QueryStatus(32356) & 0x02);
 btnGenCSharp.disabled = ! (objDoc1.QueryStatus(32357) & 0x02);
 btnGenJava.disabled = ! (objDoc1.QueryStatus(32358) & 0x02);
 }
}

16.5.3 Java

MapForce ActiveX components can be accessed from Java code. Java integration is provided by
the libraries listed below. These libraries are available in the folder <ApplicationFolder>
\Examples\JavaAPI of your MapForce installation, after you have installed both MapForce and
the MapForce Integration Package (see also Prerequisites).

AltovaAutomation.dll: a JNI wrapper for Altova automation servers (in case of the 32-
bit installation of MapForce)
AltovaAutomation_x64.dll: a JNI wrapper for Altova automation servers (in case of the
64-bit installation of MapForce)
AltovaAutomation.jar: Java classes to access Altova automation servers
MapForceActiveX.jar: Java classes that wrap the MapForce ActiveX interface
MapForceActiveX_JavaDoc.zip: a Javadoc file containing help documentation for the
Java interface

Note: In order to use the Java ActiveX integration, the .dll and .jar files must be included in the
Java class search path.

Example Java project
An example Java project is supplied with your product installation. You can test the Java project
and modify and use it as you like. For more details, see Example Java Project.

© 2018 Altova GmbH

ActiveX Integration Examples 1187ActiveX Integration

Altova MapForce 2018 Professional Edition

Rules for mapping the ActiveX Control names to Java
For the documentation of ActiveX controls, see Object Reference. Note that the object naming
conventions are slightly different in Java compared to other languages. Namely, the rules for
mapping between the ActiveX controls and the Java wrapper are as follows:

Classes and class names
For every component of the MapForce ActiveX interface a Java class exists with the name
of the component.

Method names
Method names on the Java interface are the same as used on the COM interfaces but
start with a small letter to conform to Java naming conventions. To access COM
properties, Java methods that prefix the property name with get and set can be used. If a
property does not support write-access, no setter method is available. Example: For the
IntegrationLevel property of the MapForceControl, the Java methods
getIntegrationLevel and setIntegrationLevel are available.

Enumerations
For every enumeration defined in the ActiveX interface, a Java enumeration is defined with
the same name and values.

Events and event handlers
For every interface in the automation interface that supports events, a Java interface with
the same name plus 'Event' is available. To simplify the overloading of single events, a
Java class with default implementations for all events is provided. The name of this Java
class is the name of the event interface plus 'DefaultHandler'. For example:
MapForceControl: Java class to access the application
MapForceControlEvents: Events interface for the MapForceControl
MapForceControlEventsDefaultHandler: Default handler for MapForceControlEvents

Exceptions to mapping rules
There are some exceptions to the rules listed above. These are listed below:

Interface Changes in Java class

MapForceControlDocument, method New Renamed to newDocument

MapForceControlDocument, method OpenDocument Removed. Use the Open method

MapForceControlDocument, method NewDocument Removed. Use the newDocument
method

MapForceControlDocument, method SaveDocument Removed. Use the Save method

This section
This section shows how some basic MapForce ActiveX functionality can be accessed from Java
code. It is organized into the following sub-sections:

Example Java Project

1188 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Creating the ActiveX Controls
Loading Data in the Controls
Basic Event Handling
Menus
UI Update Event Handling
Creating a MapForce Mapping Table

Example Java Project16.5.3.1

The MapForce installation package contains an example Java project, located in the ActiveX
Examples folder of the application folder: <ApplicationFolder>\Examples\ActiveX\Java\.

The Java example shows how to integrate the MapForceControl in a common desktop application
created with Java. You can test it directly from the command line using the batch file
BuildAndRun.bat, or you can compile and run the example project from within Eclipse. See
below for instructions on how to use these procedures.

File list
The Java examples folder contains all the files required to run the example project. These files are
listed below:

.classpath Eclipse project helper file

.project Eclipse project file

AltovaAutomation.dll Java-COM bridge: DLL part (for the 32-bit installation)

AltovaAutomation_x64.dll Java-COM bridge: DLL part (for the 64-bit installation)

AltovaAutomation.jar Java-COM bridge: Java library part

BuildAndRun.bat Batch file to compile and run example code from the
command line prompt. Expects folder where Java
Virtual Machine resides as parameter.

MapForceActiveX.jar Java classes of the MapForce ActiveX control

MapForceActiveX_JavaDoc.zip Javadoc file containing help documentation for the Java
API

MapForceContainer.java Java example source code

MapForceContainerEventHandler.
java

Java example source code

MapForceTable.java Java example source code

What the example does
The example places one MapForce document editor window, the MapForce project window, the
MapForce library window and the MapForce validation window in an AWT frame window. It reads
out the main menu defined for MapForce and creates an AWT menu with the same structure. You

© 2018 Altova GmbH

ActiveX Integration Examples 1189ActiveX Integration

Altova MapForce 2018 Professional Edition

can use this menu or the project window to open and work with files in the document editor.

You can modify the example in any way you like.

The following specific features are described in code listings:

Creating the ActiveX Controls: Starts MapForce, which is registered as an automation
server, or activates MapForce if it is already running.
Loading Data in the Controls: Locates one of the example documents installed with
MapForce and opens it.
Basic Event Handling: Changes the view of all open documents to Text View. The code
also shows how to iterate through open documents.
Menus: Validates the active document and shows the result in a message box. The code
shows how to use output parameters.
UI Update Event Handling: Shows how to handle MapForce events.
Creating a MapForce Mapping Table: Shows how to create a MapForce mapping table
and prepare it for modal activation.

Updating the path to the Examples folder
Before running the provided sample, you may need to edit the MapForceContainer.java file.
Namely, check that the following path refers to the actual folder where the MapForce example
files are stored on your operating system:

// Locate samples installed with the product.
final String strExamplesFolder = System.getenv("USERPROFILE") + "\\Documents

\\Altova\\MapForce2018\\MapForceExamples\\";

Running the example from the command line
To run the example from the command line:

1. Check that all prerequisites are met (see Prerequisites).
2. Open a command prompt window, change the current directory to the sample Java

project folder, and type:

buildAndRun.bat "<Path-to-the-Java-bin-folder>"

3. Press Enter.

The Java source in MapForceContainer.java will be compiled and then executed.

Compiling and running the example in Eclipse
To import the sample Java project into Eclipse:

1. Check that all prerequisites are met (see Prerequisites).
2. On the File menu, click Import.
3. Select Existing Projects into Workspace, and browse for the Eclipse project file

located at <ApplicationFolder>\Examples\ActiveX\Java\. Since you may not have
write-access in this folder, it is recommended to select the Copy projects into

1190 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

workspace check box on the Import dialog box.

To run the example application, right-click the project in Package Explorer and select the
command Run as | Java Application.

Help for Java API classes is available through comments in code as well as the Javadoc view of
Eclipse. To enable the Javadoc view in Eclipse, select the menu command Window | Show
View | JavaDoc.

Creating the ActiveX Controls16.5.3.2

The code listing below show how ActiveX controls can be created. The constructors will create the
Java wrapper objects. Adding these Canvas-derived objects to a panel or to a frame will trigger the
creation of the wrapped ActiveX object.

01 /**

02 * MapForce manager control - always needed

03 */

04 public static MapForceControl mapForceControl = null;

05

06 /**

07 * MapForceDocument editing control

08 */

09 public static MapForceControlDocument mapForceDocument = null;

10

11 /**

12 * Tool windows - MapForce place-holder controls

13 */

14 private static MapForceControlPlaceHolder mapForceProjectToolWindow =

null;

15 private static MapForceControlPlaceHolder mapForceValidationToolWindow =

null;

16 private static MapForceControlPlaceHolder mapForceLibraryToolWindow =

null;

17

18 // Create the MapForce ActiveX control; the parameter determines that we

want

 // to place document controls and place-holder controls individually.

19 // It gives us full control over the menu, as well.

20 mapForceControl = new MapForceControl(

 ICActiveXIntegrationLevel.ICActiveXIntegrationOnDocumentLevel.getValue()

, false);

21

22 mapForceDocument = new MapForceControlDocument();

23 frame.add(mapForceDocument, BorderLayout.CENTER);

24

25

26 // Create a project window and open the sample project in it

27 mapForceProjectToolWindow = new MapForceControlPlaceHolder(

 MapForceControlPlaceholderWindow.MapForceXProjectWindow.getValue(),

 strExamplesFolder + "MapForceExamples.mfp") ;

28 mapForceProjectToolWindow.setPreferredSize(new Dimension(200, 200));

© 2018 Altova GmbH

ActiveX Integration Examples 1191ActiveX Integration

Altova MapForce 2018 Professional Edition

Loading Data in the Controls16.5.3.3

The code listing below show how data can be loaded in the ActiveX controls.

1 // Locate samples installed with the product.

2 final String strExamplesFolder = System.getenv("USERPROFILE") +

 "\\Documents\\Altova\\MapForce2018\\MapForceExamples\\";

3 mapForceProjectToolWindow = new

MapForceControlPlaceHolder(MapForceControlPlaceholderWindow.MapForceXProjectWin

dow.getValue(), strExamplesFolder + "MapForceExamples.mfp") ;

Basic Event Handling16.5.3.4

The code listing below shows how basic events can be handled. When calling the
MapForceControl’s open method, or when trying to open a file via the menu or Project tree, the
onOpenedOrFocused event is sent to the attached event handler. The basic handling for this event
is opening the file by calling the MapForceDocumentControl’s open method.

01 // Open the Marketing file when button is pressed

02 btnMarkExp.addActionListener(new ActionListener() {

03 public void actionPerformed(ActionEvent e) {

04 try {

05 // Instruct the Document control to open the file - avoid calling

the open method of MapForceControl (see help)

06 mapForceDocument.open(strExamplesFolder +

"MarketingExpenses.mfd");

07 mapForceDocument.requestFocusInWindow();

08 } catch (AutomationException e1) {

09 e1.printStackTrace();

10 }

11 }

12 });

13 public void onOpenedOrFocused(String i_strFileName, boolean

i_bOpenWithThisControl, boolean i_bFileAlreadyOpened) throws

AutomationException

14 {

15 // Handle the New/Open events coming from the Project tree or from the

menus

16 if (!i_bFileAlreadyOpened)

17 {

18 // This is basically an SDI interface, so open the file in the already

existing document control

19 try {

20 MapForceContainer.mapForceDocument.open(i_strFileName);

21 MapForceContainer.mapForceDocument.requestFocusInWindow();

22 } catch (Exception e) {

23 e.printStackTrace();

24 }

25 }

26 }

1192 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Menus16.5.3.5

The code listing below shows how menu items can be created. Each MapForceCommand object
gets a corresponding MenuItem object, with the ActionCommand set to the ID of the command.
The actions generated by all menu items are handled by the same function, which can perform
specific handlings (like reinterpreting the closing mechanism) or can delegate the execution to
the MapForceControl object by calling its exec method. The menuMap object that is filled during
menu creation is used later (see section UI Update Event Handling).

01

02 // Load the file menu when the button is pressed

03 btnMenu.addActionListener(new ActionListener() {

04 public void actionPerformed(ActionEvent e) {

05 try {

06 // Create the menubar that will be attached to the frame

07 MenuBar mb = new MenuBar();

08 // Load the main menu's first item - the File menu

09 MapForceCommand xmlSpyMenu =

mapForceControl.getMainMenu().getSubCommands().getItem(0);

10 // Create Java menu items from the Commands objects

11 Menu fileMenu = new Menu();

12 handlerObject.fillMenu(fileMenu, xmlSpyMenu.getSubCommands());

13 fileMenu.setLabel(xmlSpyMenu.getLabel().replace("&", ""));

14 mb.add(fileMenu);

15 frame.setMenuBar(mb);

16 frame.validate();

17 } catch (AutomationException e1) {

18 e1.printStackTrace();

19 }

20 // Disable the button when the action has been performed

21 ((AbstractButton) e.getSource()).setEnabled(false);

22 }

23 }) ;

24 /**

25 * Populates a menu with the commands and submenus contained in an

MapForceCommands object

26 */

27 public void fillMenu(Menu newMenu, MapForceCommands mapForceMenu) throws

AutomationException

28 {

29 // For each command/submenu in the mapForceMenu

30 for (int i = 0 ; i < mapForceMenu.getCount() ; ++i)

31 {

32 MapForceCommand mapForceCommand = mapForceMenu.getItem(i);

33 if (mapForceCommand.getIsSeparator())

34 newMenu.addSeparator();

35 else

36 {

37 MapForceCommands subCommands = mapForceCommand.getSubCommands();

38 // Is it a command (leaf), or a submenu?

39 if (subCommands.isNull() || subCommands.getCount() == 0)

40 {

41 // Command -> add it to the menu, set its ActionCommand to its ID

and store it in the menuMap

42 MenuItem mi = new

MenuItem(mapForceCommand.getLabel().replace("&", ""));

© 2018 Altova GmbH

ActiveX Integration Examples 1193ActiveX Integration

Altova MapForce 2018 Professional Edition

43 mi.setActionCommand("" + mapForceCommand.getID());

44 mi.addActionListener(this);

45 newMenu.add(mi);

46 menuMap.put(mapForceCommand.getID(), mi);

47 }

48 else

49 {

50 // Submenu -> create submenu and repeat recursively

51 Menu newSubMenu = new Menu();

52 fillMenu(newSubMenu, subCommands);

53 newSubMenu.setLabel(mapForceCommand.getLabel().replace("&",

""));

54 newMenu.add(newSubMenu);

55 }

56 }

57 }

58 }

59 /**

60 * Action handler for the menu items

61 * Called when the user selects a menu item; the item's action command

corresponds to the command table for MapForce

62 */

63 public void actionPerformed(ActionEvent e)

64 {

65 try

66 {

67 int iCmd = Integer.parseInt(e.getActionCommand());

68 // Handle explicitly the Close commands

69 switch (iCmd)

70 {

71 case 57602: // Close

72 case 34050: // Close All

73 MapForceContainer.initMapForceDocument();

74 break;

75 default:

76 MapForceContainer.mapForceControl.exec(iCmd);

77 break;

78 }

79 }

80 catch (Exception ex)

81 {

82 ex.printStackTrace();

83 }

84

85 }

UI Update Event Handling16.5.3.6

The code listing below shows how a UI-Update event handler can be created.

01 /**

02 * Call-back from the MapForceControl.

03 * Called to enable/disable commands

04 */

05 @Override

06 public void onUpdateCmdUI() throws AutomationException

07 {

1194 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

08 // A command should be enabled if the result of queryStatus contains the

Supported (1) and Enabled (2) flags

09 for (java.util.Map.Entry<Integer, MenuItem> pair : menuMap.entrySet())

10

 pair.getValue().setEnabled(MapForceContainer.mapForceControl.queryStatus(

pair.getKey()) > 2);

11 }

12 /**

13 * Call-back from the MapForceControl.

14 * Usually called while enabling/disabling commands due to UI updates

15 */

16 @Override

17 public boolean onIsActiveEditor(String i_strFilePath) throws

AutomationException

18 {

19 try {

20 return

MapForceContainer.mapForceDocument.getDocument().getFullName().equalsIgnoreCase(

i_strFilePath);

21 } catch (Exception e) {

22 return false;

23 }

24 }

Listing the Properties of a MapForce Mapping16.5.3.7

The listing below shows how a Mapping object in MapForce can be loaded as a table and
prepared for modal activation.

01 //access MapForce Java-COM bridge

02 import com.altova.automation.MapForce.*;

03 import com.altova.automation.MapForce.Component;

04 import com.altova.automation.MapForce.Enums.ENUMComponentUsageKind;

05

06 //access AWT and Swing components

07 import java.awt.*;

08 import javax.swing.*;

09 import javax.swing.table.*;

10

11

12 /**

13 * A simple example of a table control loading the structure from a Mapping

object.

14 * The class receives an Mapping object, loads its components in a JTable,

and prepares

15 * for modal activation.

16 *

17 * Feel free to modify and extend this sample.

18 *

19 * @author Altova GmbH

20 */

21 class MapForceTable extends JDialog

22 {

23 /**

24 * The table control

© 2018 Altova GmbH

ActiveX Integration Examples 1195ActiveX Integration

Altova MapForce 2018 Professional Edition

25 */

26 private JTable myTable;

27

28 /**

29 * Constructor that prepares the modal dialog containing the filled table

control

30 * @param mapping The data to be displayed in the table

31 * @param parent Parent frame

32 */

33 public MapForceTable(Mapping mapping, Frame parent)

34 {

35 // Construct the modal dialog

36 super(parent, "MapForce component table", true);

37 // Build up the tree

38 fillTable(mapping);

39 // Arrange controls in the dialog

40 setContentPane(new JScrollPane(myTable));

41 }

42

43 /**

44 * Loads the components of a Mapping object in the table

45 * @param mapping Source data

46 */

47 private void fillTable(Mapping mapping)

48 {

49 try

50 {

51 // count how many Instance components do we have

52 int size = 0;

53 for (Component comp : mapping.getComponents())

54 if (comp.getUsageKind() ==

ENUMComponentUsageKind.eComponentUsageKind_Instance)

55 ++size;

56

57 // Prepare data

58 final String[] columnNames = { "Component", "Has inputs", "Has

outputs", "Input file", "Output file", "Schema" };

59 final Object[][] data = new Object[size][7] ;

60 int index = 0 ;

61 for (Component comp : mapping.getComponents())

62 if (comp.getUsageKind() ==

ENUMComponentUsageKind.eComponentUsageKind_Instance)

63 {

64 int i = 0;

65 data[index][i++] = comp.getName() ;

66 data[index][i++] = new

Boolean(comp.getHasIncomingConnections());

67 data[index][i++] = new

Boolean(comp.getHasOutgoingConnections());

68 data[index][i++] = comp.getInputInstanceFile();

69 data[index][i++] = comp.getOutputInstanceFile();

70 data[index++][i] = comp.getSchema() ;

71 }

72

73 // Set up table

74 myTable = new JTable(new AbstractTableModel() {

75 public String getColumnName(int col) { return columnNames[col]; }

76 public int getRowCount() { return data.length; }

77 public int getColumnCount() { return columnNames.length; }

1196 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

78 public Object getValueAt(int row, int col) { return data[row][col];

}

79 public boolean isCellEditable(int row, int col) { return false; }

80 public Class getColumnClass(int c) { return getValueAt(0,

c).getClass(); }

81 });

82

83 // Set width

84 for(index = 0 ; index < columnNames.length ; ++index)

85 myTable.getColumnModel().getColumn(index).setMinWidth(80);

86 myTable.getColumnModel().getColumn(5).setMinWidth(400);

87 }

88 catch (Exception e)

89 {

90 e.printStackTrace();

91 }

92 }

93

94 }

16.5.4 VB.NET

Source code which illustrates integration of MapForceControl into a VB.NET application can be
found in the folder <ApplicationFolder>\Examples\ActiveX\VB.NET of your MapForce
installation. The solution consists of three windows, as follows:

1. MainWindow.vb - the main document window, which also includes a basic application
menu.

2. LibraryWindow.vb - the Library window. The contents of this window is populated by a
Placeholder control which has the PlaceholderWindowID property set to 0 (this value
instructs the control to display specifically the Library window).

3. OutputWindow.vb - the Messages (Output) window. The contents of this window is

© 2018 Altova GmbH

ActiveX Integration Examples 1197ActiveX Integration

Altova MapForce 2018 Professional Edition

populated by a Placeholder control which has the PlaceholderWindowID property set
to 2 (this value instructs the control to display specifically the Output window).

Before attempting to build and run this solution, note the following steps:

Step 1: Check the prerequisites

For the list of prerequisites, see Prerequisites.

Step 2: Copy the sample to a directory where you have write permissions

To avoid running Visual Studio as an Administrator, copy the source code to a directory where
you have write permissions, instead of running it from the default location.

Step 3: Set the build platform

Create a build platform configuration that matches the platform under which you want to
build (x86, x64). Here is how you can create the build configuration:

a. Right-click the solution in Visual Studio, and select Configuration Manager.
b. Under Active solution platform, select New... and then select the x86 or x64

configuration (in this example, x86).

1198 ActiveX Integration ActiveX Integration Examples

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

You are now ready to build and run the solution in Visual Studio. Remember to build using the
configuration that matches your target platform (x86, x64); otherwise, runtime errors might occur.

© 2018 Altova GmbH

Command Reference 1199ActiveX Integration

Altova MapForce 2018 Professional Edition

16.6 Command Reference

This section lists the names and identifiers of all menu commands that are available within
MapForce. Every sub-section lists the commands from the corresponding top-level menu of
MapForce. The command tables are organized as follows:

The "Menu Item" column shows the command's menu text as it appears in MapForce, to
make it easier for you to identify the functionality behind the command.
The "Command Name" column specifies the string that can be used to get an icon with
the same name from ActiveX\Images folder of the MapForce installation directory.
The "ID" column shows the numeric identifier of the column that must be supplied as
argument to methods which execute or query this command.

To execute a command, use the MapForceControl.Exec or the
MapForceControlDocument.Exec methods. To query the status of a command, use the
MapForceControl.QueryStatus or MapForceControlDocument.QueryStatus methods.

Depending on the edition of MapForce you have installed, some of these commands might not be
supported.

16.6.1 "File" Menu

The "File" menu has the following commands:

Menu item Command name ID

New... ID_FILE_NEW 57600

Open... ID_FILE_OPEN 57601

Save ID_FILE_SAVE 57603

Save As... ID_FILE_SAVE_AS 57604

Save All ID_FILE_SAVEALL 32377

Reload IDC_FILE_RELOAD 32467

Close ID_WINDOW_CLOSE 32453

Close All ID_WINDOW_CLOSEALL 32454

Print... ID_FILE_PRINT 57607

Print Preview ID_FILE_PRINT_PREVIEW 57609

Print Setup... ID_FILE_PRINT_SETUP 57606

Validate Mapping ID_MAPPING_VALIDATE 32347

Mapping Settings ID_MAPPING_SETTINGS 32396

Generate Code in Selected Language ID_FILE_GENERATE_SELECTED_COD 32362

1200 ActiveX Integration Command Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Menu item Command name ID

E

XSLT 1.0 ID_FILE_GENERATEXSLT 32360

XSLT 2.0 ID_FILE_GENERATEXSLT2 32361

XQuery ID_FILE_GENERATEXQUERY 32359

Java ID_FILE_GENERATEJAVACODE 32358

C# (Sharp) ID_FILE_GENERATECSCODE 32357

C++ ID_FILE_GENERATECPPCODE 32356

Compile to MapForce Server Execution
File...

ID_FILE_CREATE_SERVER_EXECUTIO
N_FILE

32517

Deploy to FlowForce Server... ID_FILE_DEPLOY_MAPPING 32506

Generate Documentation... ID_FILE_GENERATE_DOCUMENTATIO
N

32468

Recent File ID_FILE_MRU_FILE1 57616

Exit ID_APP_EXIT 57665

16.6.2 "Edit" Menu

The "Edit" menu has the following commands:

Menu item Command name ID

Undo ID_EDIT_UNDO 57643

Redo ID_EDIT_REDO 57644

Find... ID_EDIT_FIND 57636

Find Next ID_EDIT_FINDNEXT 32349

Find Previous ID_EDIT_FINDPREV 32350

Cut ID_EDIT_CUT 57635

Copy ID_EDIT_COPY 57634

Paste ID_EDIT_PASTE 57637

Delete ID_EDIT_CLEAR 57632

Select All ID_EDIT_SELECT_ALL 57642

© 2018 Altova GmbH

Command Reference 1201ActiveX Integration

Altova MapForce 2018 Professional Edition

16.6.3 "Insert" Menu

The "Insert" menu has the following commands:

Menu item Command name ID

XML Schema/File... ID_INSERT_XSD 32393

Database... ID_INSERT_DATABASE 32389

EDI... ID_INSERT_EDI 32390

Text File... ID_INSERT_TXT 32392

Web Service Function... ID_INSERT_WEBSERVICE_FUNCTION 32319

Excel 2007+ File... ID_INSERT_EXCEL 32376

XBRL Document... ID_INSERT_XBRL 32469

JSON Schema/File... ID_INSERT_JSON 32531

Insert Input... ID_FUNCTION_INSERT_INPUT 32383

Insert Output... ID_FUNCTION_INSERT_OUTPUT 32402

Constant... ID_INSERT_CONSTANT 32388

Variable... ID_INSERT_VARIABLE 32500

Join ID_INSERT_JOIN 32581

Sort: Nodes/Rows ID_INSERT_SORT 32444

Filter: Nodes/Rows ID_INSERT_FILTER 32391

SQL-WHERE/ORDER ID_INSERT_SQLWHERE_CONDITION 32351

Value-Map ID_INSERT_VALUEMAP 32354

IF-Else Condition ID_INSRT_CONDITION 32394

Exception ID_INSERT_EXCEPTION 32311

16.6.4 "Project" Menu

The "Project" menu has the following commands:

Menu item Command name ID

Reload Project ID_PROJECT_RELOAD 32476

1202 ActiveX Integration Command Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Menu item Command name ID

Close Project ID_FILE_CLOSEPROJECT 32355

Save Project ID_FILE_SAVEPROJECT 32378

Add Files to Project... ID_PROJECT_ADDFILESTOPROJECT 32420

Add Active File to Project ID_PROJECT_ADDACTIVEFILETOPROJ
ECT

32419

Create Folder... ID_PROJECT_CREATE_FOLDER 32310

Open Mapping ID_PROJECT_OPEN_MAPPING 32307

Create Mapping for Operation... ID_PROJECT_CREATE_MAPPING_FOR
_OPERATION

32399

Add Mapping File for Operation... ID_PROJECT_ADD_MAPPING 32309

Insert Web Service... ID_PROJECT_INSERT_WEBSERVICE 32306

Open File in XMLSpy ID_PROJECT_OPEN_IN_XMLSPY 32305

Generate Code for Entire Project ID_PROJECT_GENERATE_ALL 32303

XSLT 1.0 ID_PROJECT_GENERATEXSLTCODE_E
NTIRE

32408

XSLT 2.0 ID_PROJECT_GENERATEXSLT2CODE_
ENTIRE

32409

XQuery ID_PROJECT_GENERATEXQUERYCOD
E_ENTIRE

32410

Java ID_PROJECT_GENERATEJAVACODE_
ENTIRE

32411

C# (Sharp) ID_PROJECT_GENERATECSCODE_EN
TIRE

32412

C++ ID_PROJECT_GENERATECPPCODE_E
NTIRE

32413

Properties ID_PROJECT_PROPERTIES 32404

Recent Project ID_FILE_MRU_PROJECT1 32364

16.6.5 "Component" Menu

The "Component" menu has the following commands:

Menu item Command name ID

Change Root Element... ID_COMPONENT_CHANGEROOTELEM 32334

© 2018 Altova GmbH

Command Reference 1203ActiveX Integration

Altova MapForce 2018 Professional Edition

Menu item Command name ID

ENT

Edit Schema Definition in XMLSpy ID_COMPONENT_EDIT_SCHEMA 32337

Edit FlexText Configuration ID_COMPONENT_EDIT_MFT 32301

Add/Remove/Edit Database Objects... ID_COMPONENT_SELECTTABLES 32346

Create Mapping to EDI X12 997 ID_COMPONENT_CREATE_MAPPING_
TO_997

32483

Create Mapping to EDI X12 999 ID_COMPONENT_CREATE_MAPPING_
TO_999

32484

Refresh IDC_COMMAND_REFRESH_COMPONE
NT

32373

Add Duplicate Input Before ID_COMPONENT_CREATE_DUPLICATE
_ICON_BEFORE

32503

Add Duplicate Input After ID_COMPONENT_CREATE_DUPLICATE
_ICON

32335

Remove Duplicate ID_COMPONENT_REMOVE_DUPLICAT
E_ICON

32339

Add Comment Before ID_COMPONENT_ADD_COMMENT_BE
FORE

32518

Add Comment After ID_COMPONENT_ADD_COMMENT_AFT
ER

32519

Add Processing Instruction Before... ID_COMPONENT_ADD_PI_BEFORE 32520

Add Processing Instruction After... ID_COMPONENT_ADD_PI_AFTER 32521

Edit Processing Instruction Name... ID_COMPONENT_EDIT_PI 32524

Delete Comment/Processing Instruction ID_COMPONENT_REMOVE_COMMENT
_PI

32522

Write Content as CDATA Section ID_COMPONENT_TOGGLE_CDATA 32525

Database Table Actions ID_POPUP_DATABASETABLEACTIONS 32400

Query Database... ID_QUERY_DATABASE 32341

Align Tree Left ID_COMPONENT_LEFTALIGNTREE 32338

Align Tree Right ID_COMPONENT_RIGHTALIGNTREE 32340

Properties ID_COMPONENT_PROPERTIES 32336

1204 ActiveX Integration Command Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

16.6.6 "Connection" Menu

The "Connection" menu has the following commands:

Menu item Command name ID

Auto Connect Matching Children ID_CONNECTION_AUTOCONNECTCHIL
DREN

32342

Settings for Connect Matching Children ID_CONNECTION_SETTINGS 32344

Connect Matching Children... ID_CONNECTION_MAPCHILDELEMENT
S

32343

Target Driven (Standard) ID_POPUP_NORMALCONNECTION 32401

Copy-All (Copy Child Items) ID_POPUP_NORMALWITHCHILDREN_C
ONNECTION

32460

Source Driven (Mixed Content) ID_POPUP_ORDERBYSOURCECONNE
CTION

32403

Properties ID_POPUP_CONNECTION_SETTINGS 32398

16.6.7 "Function" Menu

The "Function" menu has the following commands:

Menu item Command name ID

Create User-Defined Function... ID_FUNCTION_CREATE_EMPTY 32380

Create User-Defined Function from
Selection...

ID_FUNCTION_CREATE_FROM_SELEC
TION

32381

Function Settings ID_FUNCTION_SETTINGS 32387

Remove Function ID_FUNCTION_REMOVE 32385

Insert Input... ID_FUNCTION_INSERT_INPUT 32383

Insert Output... ID_FUNCTION_INSERT_OUTPUT 32402

16.6.8 "Output" Menu

The "Output" menu has the following commands:

© 2018 Altova GmbH

Command Reference 1205ActiveX Integration

Altova MapForce 2018 Professional Edition

Menu item Command name ID

XSLT 1.0 ID_SELECT_LANGUAGE_XSLT 32433

XSLT 2.0 ID_SELECT_LANGUAGE_XSLT2 32434

XQuery ID_SELECT_LANGUAGE_XQUERY 32432

Java ID_SELECT_LANGUAGE_JAVA 32431

C# (Sharp) ID_SELECT_LANGUAGE_CSHARP 32430

C++ ID_SELECT_LANGUAGE_CPP 32429

Built-In Execution Engine ID_SELECT_LANGUAGE_BUILTIN 32490

Validate Output File ID_XML_VALIDATE 32458

Save Output File... IDC_FILE_SAVEGENERATEDOUTPUT 32321

Save All Output Files... IDC_FILE_SAVEALLGENERATEDOUTP
UT

32374

Regenerate Output ID_REGENERATE_PREVIEW_OUTPUT 32480

Run SQL-Script ID_TRANSFORM_RUN_SQL 32442

Insert/Remove Bookmark ID_TOGGLE_BOOKMARK 32317

Next Bookmark ID_GOTONEXTBOOKMARK 32315

Previous Bookmark ID_GOTOPREVBOOKMARK 32314

Remove All Bookmarks ID_REMOVEALLBOOKMARKS 32313

Pretty-Print XML Text ID_PRETTY_PRINT_OUTPUT 32363

Text View Settings ID_TEXTVIEWSETTINGSDIALOG 32472

16.6.9 "Debug" Menu

The "Debug" menu has the following commands:

Menu item Command name ID

Start Debugging ID_DEBUG_START 32540

Stop Debugging ID_DEBUG_STOP 32541

Step Into ID_DEBUG_STEP_INTO 32545

Step Over ID_DEBUG_STEP_OVER 32551

Step Out ID_DEBUG_STEP_OUT 32552

Minimal Step ID_DEBUG_STEP_NEXT_TRACE 32554

1206 ActiveX Integration Command Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

16.6.10 "View" Menu

The "View" menu has the following commands:

Menu item Command name ID

Show Annotations ID_SHOW_ANNOTATION 32435

Show Types ID_SHOW_TYPES 32437

Show Library in Function Header ID_VIEW_SHOWLIBRARYINFUNCTIONH
EADER

32448

Show Tips ID_SHOW_TIPS 32436

XBRL Display Options ID_VIEW_XBRL_DISPLAY_OPTIONS 32473

Show Selected Component Connectors ID_VIEW_AUTOHIGHLIGHTCOMPONEN
TCONNECTIONS

32443

Show Connectors from Source to Target ID_VIEW_RECURSIVEAUTOHIGHLIGHT 32447

Zoom... ID_VIEW_ZOOM 32451

Back ID_CMD_BACK 32479

Forward ID_CMD_FORWARD 32478

Status Bar ID_VIEW_STATUS_BAR 59393

Library Window ID_VIEW_LIBRARY_WINDOW 32445

Messages ID_VIEW_VALIDATION_OUTPUT 32450

Overview ID_VIEW_OVERVIEW_WINDOW 32446

Project Window ID_VIEW_PROJECT_WINDOW 32302

Values ID_DEBUG_VIEW_VALUES_WINDOW 32544

Context ID_DEBUG_VIEW_CONTEXT_WINDOW 32546

Breakpoints ID_DEBUG_VIEW_DEBUGPOINTS_WIN
DOW

32547

16.6.11 "Tools" Menu

The "Tools" menu has the following commands:

Menu item Command name ID

Global Resources IDC_GLOBALRESOURCES 37401

© 2018 Altova GmbH

Command Reference 1207ActiveX Integration

Altova MapForce 2018 Professional Edition

Menu item Command name ID

<plugin not loaded> IDC_GLOBALRESOURCES_SUBMENU
ENTRY1

37408

Create Reversed Mapping ID_CREATE_REVERSED_MAPPING 32489

Customize... IDC_APP_TOOLS_CUSTOMIZE 32959

Options... ID_TOOLS_OPTIONS 32441

16.6.12 "Window" Menu

The "Window" menu has the following commands:

Menu item Command name ID

Cascade ID_WINDOW_CASCADE 57650

Tile Horizontal ID_WINDOW_TILE_HORZ 57651

Tile Vertical ID_WINDOW_TILE_VERT 57652

16.6.13 "Help" Menu

The "Help" menu has the following commands:

Menu item Command name ID

Table of Contents... IDC_HELP_CONTENTS 32322

Index... IDC_HELP_INDEX 32323

Search... IDC_HELP_SEARCH 32324

Software Activation... IDC_ACTIVATION 32701

Order Form... IDC_OPEN_ORDER_PAGE 32326

Registration... IDC_REGISTRATION 32330

Check for Updates... IDC_CHECK_FOR_UPDATES 32700

Support Center... IDC_OPEN_SUPPORT_PAGE 32327

FAQ on the Web... IDC_SHOW_FAQ 32331

Download Components and Free Tools... IDC_OPEN_COMPONENTS_PAGE 32325

MapForce on the Internet.. IDC_OPEN_XML_SPY_HOME 32328

MapForce Training... IDC_OPEN_MAPFORCE_TRAINING_PA
GE

32300

1208 ActiveX Integration Command Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Menu item Command name ID

About MapForce... ID_APP_ABOUT 57664

© 2018 Altova GmbH

Object Reference 1209ActiveX Integration

Altova MapForce 2018 Professional Edition

16.7 Object Reference

Objects:
MapForceCommand
MapForceCommands
MapForceControl
MapForceControlDocument
MapForceControlPlaceHolder

To give access to standard MapForce functionality, objects of the MapForce automation
interface can be accessed as well. See MapForceControl.Application,
MapForceControlDocument.Document and MapForceControlPlaceHolder.Project for more
information.

16.7.1 MapForceCommand

Properties:
ID
Label
Name
IsSeparator
ToolTip
StatusText
Accelerator
SubCommands

Description:
A command object can be one of the following: an executable command, a command container
(for example, a menu, submenu, or toolbar), or a menu separator. To determine what kind of
information is stored in the current Command object, query its ID, IsSeparator, and SubCommands
properties, as follows.

The Command object is... When...

An executable command ID is greater than zero
IsSeparator is false
SubCommands is empty

A command container ID is zero
IsSeparator is true
SubCommands contains a collection of
Command objects.

Separator ID is zero
IsSeparator is true

1210 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Accelerator16.7.1.1

Property: Accelerator as string

Description:
Returns the accelerator key defined for the command. If the command has no accelerator key
assigned, this property returns the empty string. The string representation of the accelerator key
has the following format:

[ALT+][CTRL+][SHIFT+]key

Where key is converted using the Windows Platform SDK function GetKeyNameText.

ID16.7.1.2

Property: ID as long

Description:
This property gets the unique identifier of the command. A command's ID is required to execute
the command (using Exec) or query its status (using QueryStatus). If the command is a
container for other commands (for example, a top-level menu), or a separator, the ID is 0.

IsSeparator16.7.1.3

Property: IsSeparator as boolean

Description:
The property returns true if the command object is a menu separator; false otherwise. See also
Command.

Label16.7.1.4

Property: Label as string

Description:
This property gets the text of the command as it is displayed in the graphical user interface of
MapForce. If the command is a separator, "Label" is an empty string. This property may also
return an empty string for some toolbar commands that do not have any GUI text associated with
them.

Name16.7.1.5

Property: Name as string

Description:
This property gets the unique name of the command. This value can be used to get the icon file of
the command, where it is available. The available icon files can be found in the folder

© 2018 Altova GmbH

Object Reference 1211ActiveX Integration

Altova MapForce 2018 Professional Edition

<ApplicationFolder>\Examples\ActiveX\Images of your MapForce installation.

StatusText16.7.1.6

Property: Label as string

Description:
The status text is the text shown in the status bar of MapForce when the command is selected. It
applies only to command objects that are not separators or containers of other commands;
otherwise, the property is an empty string.

SubCommands16.7.1.7

Property: SubCommands as Commands

Description:
The SubCommands property gets the collection of Command objects that are sub-commands of the
current command. The property is applicable only to commands that are containers for other
commands (menus, submenus, or toolbars). Such container commands have the ID set to 0, and
the IsSeparator property set to false.

ToolTip16.7.1.8

Property: ToolTip as string

Description:
This property gets the text that is shown as a tool-tip for each command. If the command does
not have a tooltip text, the property returns an empty string.

16.7.2 MapForceCommands

Properties:
Count
Item

Description:
Collection of Command objects to get access to command labels and IDs of the MapForceControl.

Those commands can be executed with the Exec method and their status can be queried with

QueryStatus.

Count16.7.2.1

Property: Count as long

Description:

1212 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Number of Command objects on this level of the collection.

Item16.7.2.2

Property: Item (n as long) as Command

Description:
Gets the command with the index n in this collection. Index is 1-based.

16.7.3 MapForceControl

Properties:
IntegrationLevel
Appearance
Application
BorderStyle
CommandsList
CommandsStructure (deprecated)
EnableUserPrompts
MainMenu
Toolbars

Methods:
Open
Exec
QueryStatus

Events:
OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnContextChanged
OnDocumentOpened
OnValidationWindowUpdated

This object is a complete ActiveX control and should only be visible if the MapForce library is used
in the Application Level mode.

CLSID: A38637E9-5759-4456-A167-F01160CC22C1
ProgID: Altova.MapForceControl

Properties16.7.3.1

The following properties are defined:

IntegrationLevel

© 2018 Altova GmbH

Object Reference 1213ActiveX Integration

Altova MapForce 2018 Professional Edition

EnableUserPrompts
Appearance
BorderStyle

Command related properties:
CommandsList
MainMenu
Toolbars
CommandsStructure (deprecated)

Access to MapForceAPI:
Application

Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the control. Default value is 0.

Application

Property: Application as Application

Dispatch Id: 1

Description:
The Application property gives access to the Application object of the complete

MapForce automation server API. The property is read-only.

BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

CommandsList

Property: CommandList as Commands (read-only)

1214 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Dispatch Id: 1004

Description:
This property returns a flat list of all commands defined available with MapForceControl. To get
commands organized according to their menu structure, use MainMenu. To get toolbar
commands, use Toolbars.

public void GetAllMapForceCommands()

{
 // Get all commands from the MapForce ActiveX control assigned to the
current form
 MapForceControlLib.MapForceCommands commands =
this.axMapForceControl1.CommandList;

 // Iterate through all commands
 for (int i = 0; i < commands.Count; i++)

 {
 // Get each command by index and output it to the console
 MapForceControlLib.MapForceCommand cmd =
axMapForceControl1.CommandList[i];
 Console.WriteLine("{0} {1} {2}", cmd.ID, cmd.Name,
cmd.Label.Replace("&", ""));
 }
}

C# example

EnableUserPrompts

Property: EnableUserPrompts as boolean

Dispatch Id: 1006

Description:
Setting this property to false, disables user prompts in the control. The default value is true.

IntegrationLevel

Property: IntegrationLevel as ICActiveXIntegrationLevel

Dispatch Id: 1000

Description:
The IntegrationLevel property determines the operation mode of the control. See also

Integration at Application Level and Integration at Document Level for more information.

Note: It is important to set this property immediately after the creation of the MapForceControl

object.

© 2018 Altova GmbH

Object Reference 1215ActiveX Integration

Altova MapForce 2018 Professional Edition

MainMenu

Property: MainMenu as Command (read-only)

Dispatch Id: 1003

Description:
This property provides information about the structure and commands available in the
MapForceControl main menu, as a Command object. The Command object contains all available
submenus of MapForce (for example "File", "Edit", "View" etc.). To access the submenu objects,
use the SubCommands property of the MainMenu property. Each submenu is also a Command
object. For each submenu, you can then further iterate through their SubCommands property in
order to get their corresponding child commands and separators (this technique may be used, for
example, to create the application menu programmatically). Note that some menu commands act
as containers ("parents") for other menu commands, in which case they also have a SubCommands
property. To get the structure of all menu commands programmatically, you will likely need to
create a recursive function.

public void GetMapForceMenus()

{
 // Get the main menu from the MapForce ActiveX control assigned to the
current form
 MapForceControlLib.MapForceCommand mainMenu =
this.axMapForceControl1.MainMenu;

 // Loop through entries of the main menu (e.g. File, Edit, etc.)
 for (int i = 0; i < mainMenu.SubCommands.Count; i++)

 {
 MapForceControlLib.MapForceCommand menu = mainMenu.SubCommands[i];
 Console.WriteLine("{0} menu has {1} children items (including
separators)", menu.Label.Replace("&", ""), menu.SubCommands.Count);
 }
}

C# example

Toolbars

Property: Toolbars as Commands (read-only)

Dispatch Id: 1005

Description:
This property provides information about the structure of MapForceControl toolbars, as a Command
object. The Command object contains all available toolbars of MapForce. To access the toolbars,
use the SubCommands property of the Toolbars property. Each toolbar is also a Command object.
For each toolbar, you can then further iterate through their SubCommands property in order to get
their commands (this technique may be used, for example, to create the application's toolbars
programmatically).

1216 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

public void GetMapForceToolbars()

{
 // Get the application toolbars from the MapForce ActiveX control assigned
to the current form
 MapForceControlLib.MapForceCommands toolbars =
this.axMapForceControl1.Toolbars;

 // Iterate through all toolbars
 for (int i = 0; i < toolbars.Count; i++)

 {
 MapForceControlLib.MapForceCommand toolbar = toolbars[i];
 Console.WriteLine();
 Console.WriteLine("The toolbar \"{0}\" has the following commands:",
toolbar.Label);

 // Iterate through all commands of this toolbar
 for (int j = 0; j < toolbar.SubCommands.Count; j++)

 {
 MapForceControlLib.MapForceCommand cmd = toolbar.SubCommands[j];
 // Output only command objects that are not separators
 if (!cmd.IsSeparator)

 {
 Console.WriteLine("{0}, {1}, {2}", cmd.ID, cmd.Name,
cmd.Label.Replace("&", ""));
 }
 }
 }
}

C# example

Methods16.7.3.2

The following methods are defined:

Open
Exec
QueryStatus

Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 6

Description:
This method calls the MapForce command with the ID nCmdID. If the command can be executed,
the method returns true. To get a list of all available commands, use CommandsList. To retrieve
the status of any command, use QueryStatus.

© 2018 Altova GmbH

Object Reference 1217ActiveX Integration

Altova MapForce 2018 Professional Edition

Open

Method: Open (strFilePath as string) as boolean

Dispatch Id: 5

Description:
The result of the method depends on the extension passed in the argument strFilePath. If the

file extension is .sps, a new document is opened. If the file extension is .svp, the

corresponding project is opened. If a different file extension is passed into the method, the control
tries to load the file as a new component into the active document.

Do not use this method to load documents or projects when using the control in document-level
integration mode. Instead, use MapForceControlDocument.Open and

MapForceControlPlaceHolder.OpenProject.

QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 7

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command

specified by nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.
1 2 Enabled Set if the command is enabled (can be executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid

MapForce command. If QueryStatus returns a value of 1 or 5, the command is disabled.

Events16.7.3.3

The MapForceControl ActiveX control provides the following connection point events:

OnUpdateCmdUI
OnOpenedOrFocused
OnCloseEditingWindow
OnFileChangedAlert
OnContextChanged

OnDocumentOpened
OnValidationWindowUpdated

1218 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

OnCloseEditingWindow

Event: OnCloseEditingWindow (i_strFilePath as String) as boolean

Dispatch Id: 1002

Description:
This event is triggered when MapForce needs to close an already open document. As an answer
to this event, clients should close the editor window associated with i_strFilePath. Returning true
from this event indicates that the client has closed the document. Clients can return false if no
specific handling is required and MapForceControl should try to close the editor and destroy the
associated document control.

OnContextChanged

Event: OnContextChanged (i_strContextName as String, i_bActive as bool) as bool

Dispatch Id: 1004

Description:
This event is not used in MapForce

OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1

Description:
This event is triggered whenever a document is opened. The argument objDocument is a

Document object from the MapForce automation interface and can be used to query for more

details about the document, or perform additional operations. When integrating on document-level,
it is often better to use the event MapForceControlDocument.OnDocumentOpened instead.

OnFileChangedAlert

Event: OnFileChangedAlert (i_strFilePath as String) as bool

Dispatch Id: 1001

Description:
This event is triggered when a file loaded with MapForceControl is changed on the hard disk by
another application. Clients should return true, if they handled the event, or false, if MapForce
should handle it in its customary way, i.e. prompting the user for reload.

© 2018 Altova GmbH

Object Reference 1219ActiveX Integration

Altova MapForce 2018 Professional Edition

OnLicenseProblem

Event: OnLicenseProblem (i_strLicenseProblemText as String)

Dispatch Id: 1005

Description:
This event is triggered when MapForceControl detects that no valid license is available for this
control. In case of restricted user licenses this can happen some time after the control has been
initialized. Integrators should use this event to disable access to this control's functionality. After
returning from this event, the control will block access to its functionality (e.g. show empty
windows in its controls and return errors on requests).

OnOpenedOrFocused

Event: OnOpenedOrFocused (i_strFilePath as String, i_bOpenWithThisControl as

bool)

Dispatch Id: 1000

Description:
When integrating at application level, this event informs clients that a document has been opened,
or made active by MapForce.

When integrating at document level, this event instructs the client to open the file
i_strFilePath in a document window. If the file is already open, the corresponding document

window should be made the active window.

if i_bOpenWithThisControl is true, the document must be opened with MapForceControl,

since internal access is required. Otherwise, the file can be opened with different editors.

OnToolWindowUpdated

Event: OnToolWindowUpdated(pToolWnd as long)

Dispatch Id: 1006

Description:
This event is triggered when the tool window is updated.

OnUpdateCmdUI

Event: OnUpdateCmdUI ()

Dispatch Id: 1003

1220 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Description:
Called frequently to give integrators a good opportunity to check status of MapForce commands
using MapForceControl.QueryStatus. Do not perform long operations in this callback.

OnValidationWindowUpdated

Event: OnValidationWindowUpdated ()

Dispatch Id: 3

Description:
This event is triggered whenever the validation output window is updated with new information.

16.7.4 MapForceControlDocument

Properties:
Appearance
BorderStyle
Document
IsModified
Path
ReadOnly

Methods:
Exec
New
Open
QueryStatus
Reload
Save
SaveAs

Events:
OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnContextChanged
OnFileChangedAlert
OnActivate

If the MapForceControl is integrated in the Document Level mode each document is displayed in
an own object of type MapForceControlDocument. The MapForceControlDocument

contains only one document at the time but can be reused to display different files one after
another.

This object is a complete ActiveX control.

CLSID: DFBB0871-DAFE-4502-BB66-08CEB7DF5255
ProgID: Altova.MapForceControlDocument

© 2018 Altova GmbH

Object Reference 1221ActiveX Integration

Altova MapForce 2018 Professional Edition

Properties16.7.4.1

The following properties are defined:

ReadOnly
IsModified
Path
Appearance
BorderStyle

Access to MapForceAPI:
Document

Appearance

Property: Appearance as short

Dispatch Id: -520

Description:
A value not equal to 0 displays a client edge around the document control. Default value is 0.

BorderStyle

Property: BorderStyle as short

Dispatch Id: -504

Description:
A value of 1 displays the control with a thin border. Default value is 0.

Document

Property: Document as Document

Dispatch Id: 1

Description:
The Document property gives access to the Document object of the MapForce automation

server API. This interface provides additional functionality which can be used with the document
loaded in the control. The property is read-only.

1222 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

IsModified

Property: IsModified as boolean (read-only)

Dispatch Id: 1006

Description:
IsModified is true if the document content has changed since the last open, reload or save

operation. It is false, otherwise.

Path

Property: Path as string

Dispatch Id: 1005

Description:
Sets or gets the full path name of the document loaded into the control.

ReadOnly

Property: ReadOnly as boolean

Dispatch Id: 1007

Description:
Using this property you can turn on and off the read-only mode of the document. If ReadOnly is

true it is not possible to do any modifications.

Methods16.7.4.2

The following methods are defined:

Document handling:
New
Open
Reload
Save
SaveAs

Command Handling:
Exec
QueryStatus

© 2018 Altova GmbH

Object Reference 1223ActiveX Integration

Altova MapForce 2018 Professional Edition

Exec

Method: Exec (nCmdID as long) as boolean

Dispatch Id: 8

Description:
Exec calls the MapForce command with the ID nCmdID. If the command can be executed, the

method returns true. This method should be called only if there is currently an active document

available in the application.

To get commands organized according to their menu structure, use the MainMenu property of
MapForceControl. To get toolbar commands, use the Toolbars property of the MapForceControl.

New

Method: New () as boolean

Dispatch Id: 1000

Description:
This method initializes a new document inside the control..

Open

Method: Open (strFileName as string) as boolean

Dispatch Id: 1001

Description:
Open loads the file strFileName as the new document into the control.

QueryStatus

Method: QueryStatus (nCmdID as long) as long

Dispatch Id: 9

Description:
QueryStatus returns the enabled/disabled and checked/unchecked status of the command

specified by nCmdID. The status is returned as a bit mask.

Bit Value Name Meaning

0 1 Supported Set if the command is supported.

1224 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

1 2 Enabled Set if the command is enabled (can be executed).
2 4 Checked Set if the command is checked.

This means that if QueryStatus returns 0 the command ID is not recognized as a valid

MapForce command. If QueryStatus returns a value of 1 or 5 the command is disabled. The

client should call the QueryStatus method of the document control if there is currently an active

document available in the application.

Reload

Method: Reload () as boolean

Dispatch Id: 1002

Description:
Reload updates the document content from the file system.

Save

Method: Save () as boolean

Dispatch Id: 1003

Description:
Save saves the current document at the location Path.

SaveAs

Method: SaveAs (strFileName as string) as boolean

Dispatch Id: 1004

Description:
SaveAs sets Path to strFileName and then saves the document to this location.

Events16.7.4.3

The MapForceControlDocument ActiveX control provides following connection point events:

OnDocumentOpened
OnDocumentClosed
OnModifiedFlagChanged
OnContextChanged
OnFileChangedAlert
OnActivate

© 2018 Altova GmbH

Object Reference 1225ActiveX Integration

Altova MapForce 2018 Professional Edition

OnSetEditorTitle

OnActivate

Event: OnActivate ()

Dispatch Id: 1005

Description:
This event is triggered when the document control is activated, has the focus, and is ready for
user input.

OnContextChanged

Event: OnContextChanged (i_strContextName as String, i_bActive as bool) as bool

Dispatch Id: 1004

Description: None

OnDocumentClosed

Event: OnDocumentClosed (objDocument as Document)

Dispatch Id: 1001

Description:
This event is triggered whenever the document loaded into this control is closed. The argument
objDocument is a Document object from the MapForce automation interface and should be

used with care.

OnDocumentOpened

Event: OnDocumentOpened (objDocument as Document)

Dispatch Id: 1000

Description:
This event is triggered whenever a document is opened in this control. The argument
objDocument is a Document object from the MapForce automation interface, and can be used

to query for more details about the document, or perform additional operations.

1226 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

OnDocumentSaveAs

Event: OnContextDocumentSaveAs (i_strFileName as String)

Dispatch Id: 1007

Description:
This event is triggered when this document gets internally saved under a new name.

OnFileChangedAlert

Event: OnFileChangedAlert () as bool

Dispatch Id: 1003

Description:
This event is triggered when the file loaded into this document control is changed on the hard disk
by another application. Clients should return true, if they handled the event, or false, if MapForce
should handle it in its customary way, i.e. prompting the user for reload.

OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1002

Description:
This event gets triggered whenever the document changes between modified and unmodified
state. The parameter i_bIsModifed is true if the document contents differs from the original
content, and false, otherwise.

OnSetEditorTitle

Event: OnSetEditorTitle ()

Dispatch Id: 1006

Description:
This event is being raised when the contained document is being internally renamed.

16.7.5 MapForceControlPlaceHolder

Properties available for all kinds of placeholder windows:
PlaceholderWindowID

© 2018 Altova GmbH

Object Reference 1227ActiveX Integration

Altova MapForce 2018 Professional Edition

Properties for project placeholder window:
Project

Methods for project placeholder window:
OpenProject
CloseProject

The MapForceControlPlaceHolder control is used to show the additional MapForce

windows like Overview, Library or Project window. It is used like any other ActiveX control and can
be placed anywhere in the client application.

CLSID: FDEC3B04-05F2-427d-988C-F03A85DE53C2
ProgID: Altova.MapForceControlPlaceHolder

Properties16.7.5.1

The following properties are defined:

PlaceholderWindowID

Access to MapForceAPI:
Project

Label

Property: Label as String (read-only)

Dispatch Id: 1001

Description:
This property gives access to the title of the placeholder. The property is read-only.

PlaceholderWindowID

Property: PlaceholderWindowID as MapForceControlPlaceholderWindow

Dispatch Id: 1

Description:
This property specifies which MapForce window should be displayed in the client area of the
control. The PlaceholderWindowID can be set at any time to any valid value of the

MapForceControlPlaceholderWindow enumeration. The control changes its state immediately
and shows the new MapForce window.

1228 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Project

Property: Project as Project (read-only)

Dispatch Id: 2

Description:
The Project property gives access to the Project object of the MapForce automation server

API. This interface provides additional functionality which can be used with the project loaded into
the control. The property will return a valid project interface only if the placeholder window has
PlaceholderWindowID with a value of MapForceXProjectWindow (=3). The property is

read-only.

Methods16.7.5.2

The following method is defined:

OpenProject
CloseProject

OpenProject

Method: OpenProject (strFileName as string) as boolean

Dispatch Id: 3

Description:
OpenProject loads the file strFileName as the new project into the control. The method will

fail if the placeholder window has a PlaceholderWindowID different to

XMLSpyXProjectWindow (=3).

CloseProject

Method: CloseProject ()

Dispatch Id: 4

Description:
CloseProject closes the project loaded the control. The method will fail if the placeholder

window has a PlaceholderWindowID different to MapForceXProjectWindow (=3).

© 2018 Altova GmbH

Object Reference 1229ActiveX Integration

Altova MapForce 2018 Professional Edition

Events16.7.5.3

The MapForceControlPlaceholder ActiveX control provides following connection point events:

OnModifiedFlagChanged

OnModifiedFlagChanged

Event: OnModifiedFlagChanged (i_bIsModified as boolean)

Dispatch Id: 1

Description:
This event gets triggered only for placeholder controls with a PlaceholderWindowID of

MapForceXProjectWindow (=3). The event is fired whenever the project content changes

between modified and unmodified state. The parameter i_bIsModifed is true if the project contents
differs from the original content, and false, otherwise.

OnSetLabel

Event: OnSetLabel(i_strNewLabel as string)

Dispatch Id: 1000

Description:
Raised when the title of the placeholder window is changed.

16.7.6 Enumerations

The following enumerations are defined:

ICActiveXIntegrationLevel
MapForceControlPlaceholderWindow

ICActiveXIntegrationLevel16.7.6.1

Possible values for the IntegrationLevel property of the MapForceControl.

ICActiveXIntegrationOnApplicationLevel = 0
ICActiveXIntegrationOnDocumentLevel = 1

1230 ActiveX Integration Object Reference

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

MapForceControlPlaceholderWindow16.7.6.2

This enumeration contains the list of the supported additional MapForce windows.

MapForceXNoWindow = -1
MapForceXLibraryWindow = 0
MapForceXOverviewWindow = 1
MapForceXValidationWindow = 2
MapForceXProjectWindow = 3
MapForceXDebuggerValuesWindow = 4
MapForceXDebuggerContextWindow = 5
MapForceXDebuggerPointsWindow = 6

Chapter 17

Appendices

1232 Appendices

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

17 Appendices

These appendices contain technical information about MapForce and important licensing
information. Each appendix contains sub-sections as given below:

Technical Data

OS and memory requirements
Altova XML Parser
Altova XSLT and XQuery Engines
Unicode support
Internet usage
License metering

License Information

Electronic software distribution
Copyrights
End User License Agreement

© 2018 Altova GmbH

Engine information 1233Appendices

Altova MapForce 2018 Professional Edition

17.1 Engine information

This section contains information about implementation-specific features of the Altova XML
Validator, Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery Engine.

17.1.1 XSLT and XQuery Engine Information

The XSLT and XQuery engines of MapForce follow the W3C specifications closely and are
therefore stricter than previous Altova engines—such as those in previous versions of XMLSpy. As
a result, minor errors that were ignored by previous engines are now flagged as errors by
MapForce.

For example:

It is a type error (err:XPTY0018) if the result of a path operator contains both nodes and
non-nodes.
It is a type error (err:XPTY0019) if E1 in a path expression E1/E2 does not evaluate to a
sequence of nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance
document as appropriate.

This section describes implementation-specific features of the engines, organized by
specification:

XSLT 1.0
XSLT 2.0
XQuery 1.0

XSLT 1.017.1.1.1

The XSLT 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT
1.0 Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November
1999. Note the following information about the implementation.

Notes about the implementation
When the method attribute of xsl:output is set to HTML, or if HTML output is selected by
default, then special characters in the XML or XSLT file are inserted in the HTML document as
HTML character references in the output. For instance, the character U+00A0 (the hexadecimal
character reference for a non-breaking space) is inserted in the HTML code either as a character
reference (or) or as an entity reference, .

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

1234 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

XSLT 2.017.1.1.2

This section:

Engine conformance
Backward compatibility
Namespaces
Schema awareness
Implementation-specific behavior

Conformance
The XSLT 2.0 engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT
2.0 Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility
The XSLT 2.0 engine is backwards compatible. The only time the backwards compatibility of the
XSLT 2.0 engine comes into effect is when using the XSLT 2.0 engine to process an XSLT 1.0
stylesheet. Note that there could be differences in the outputs produced by the XSLT 1.0 Engine
and the backwards-compatible XSLT 2.0 engine.

Namespaces
Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to
use the type constructors and functions available in XSLT 2.0. The prefixes given below are
conventionally used; you could use alternative prefixes if you wish.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

XPath 2.0 functions fn: http://www.w3.org/2005/xpath-functions

Typically, these namespaces will be declared on the xsl:stylesheet or xsl:transform
element, as shown in the following listing:
true
<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
...

</xsl:stylesheet>

The following points should be noted:

The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in
the table above) as its default functions namespace. So you can use XPath 2.0 and
XSLT 2.0 functions in your stylesheet without any prefix. If you declare the XPath 2.0

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

© 2018 Altova GmbH

Engine information 1235Appendices

Altova MapForce 2018 Professional Edition

Functions namespace in your stylesheet with a prefix, then you can additionally use the
prefix assigned in the declaration.
When using type constructors and types from the XML Schema namespace, the prefix
used in the namespace declaration must be used when calling the type constructor (for
example, xs:date).
Some XPath 2.0 functions have the same name as XML Schema datatypes. For
example, for the XPath functions fn:string and fn:boolean there exist XML Schema
datatypes with the same local names: xs:string and xs:boolean. So if you were to use
the XPath expression string('Hello'), the expression evaluates as
fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the
xsl:validate instruction.

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects
of the behavior of certain XSLT 2.0 functions.

xsl:result-document

Additionally supported encodings are (the Altova-specific): x-base16tobinary and x-
base64tobinary.

function-available

The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unparsed-text

The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the file:// protocol. Additionally supported encodings are (the Altova-specific):
x-binarytobase16 and x-binarytobase64.

unparsed-text-available

The href attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the file:// protocol. Additionally supported encodings are (the Altova-specific):
x-binarytobase16 and x-binarytobase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's
predecessor product, AltovaXML, are now deprecated: base16tobinary,
base64tobinary, binarytobase16 and binarytobase64.

XQuery 1.017.1.1.3

This section:

Engine conformance
Schema awareness
Encoding

1236 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Namespaces
XML source and validation
Static and dynamic type checking
Library modules
External functions
Collations
Precision of numeric data
XQuery instructions support

Conformance
The XQuery 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's)
XQuery 1.0 Recommendation of 14 December 2010. The XQuery standard gives implementations
discretion about how to implement many features. Given below is a list explaining how the XQuery
1.0 Engine implements these features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding
The UTF-8 and UTF-16 character encodings are supported.

Namespaces
The following namespace URIs and their associated bindings are pre-defined.

Namespace Name Prefix Namespace URI

XML Schema types xs: http://www.w3.org/2001/XMLSchema

Schema instance xsi: http://www.w3.org/2001/XMLSchema-instance

Built-in functions fn: http://www.w3.org/2005/xpath-functions

Local functions local: http://www.w3.org/2005/xquery-local-functions

The following points should be noted:

The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the
corresponding namespaces.
Since the built-in functions namespace listed above is the default functions namespace in
XQuery, the fn: prefix does not need to be used when built-in functions are invoked (for

example, string("Hello") will call the fn:string function). However, the prefix fn: can
be used to call a built-in function without having to declare the namespace in the query
prolog (for example: fn:string("Hello")).
You can change the default functions namespace by declaring the default function
namespace expression in the query prolog.
When using types from the XML Schema namespace, the prefix xs: may be used

http://www.w3.org/TR/xquery/

© 2018 Altova GmbH

Engine information 1237Appendices

Altova MapForce 2018 Professional Edition

without having to explicitly declare the namespaces and bind these prefixes to them in
the query prolog. (Example: xs:date and xs:yearMonthDuration.) If you wish to use
some other prefix for the XML Schema namespace, this must be explicitly declared in the
query prolog. (Example: declare namespace alt = "http://www.w3.org/2001/
XMLSchema"; alt:date("2004-10-04").)
Note that the untypedAtomic, dayTimeDuration, and yearMonthDuration datatypes
have been moved, with the CRs of 23 January 2007, from the XPath Datatypes
namespace to the XML Schema namespace, so: xs:yearMonthDuration.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is
reported. Note, however, that some functions have the same name as schema datatypes, e.g.
fn:string and fn:boolean. (Both xs:string and xs:boolean are defined.) The namespace
prefix determines whether the function or type constructor is used.

XML source document and validation
XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be
well-formed. However, they do not need to be valid according to an XML Schema. If the file is not
valid, the invalid file is loaded without schema information. If the XML file is associated with an
external schema and is valid according to it, then post-schema validation information is generated
for the XML data and will be used for query evaluation.

Static and dynamic type checking
The static analysis phase checks aspects of the query such as syntax, whether external
references (e.g. for modules) exist, whether invoked functions and variables are defined, and so
on. If an error is detected in the static analysis phase, it is reported and the execution is
stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is
incompatible with the requirement of an operation, an error is reported. For example, the
expression xs:string("1") + 1 returns an error because the addition operation cannot be
carried out on an operand of type xs:string.

Library Modules
Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine
supports modules that are stored in a single external XQuery file. Such a module file must
contain a module declaration in its prolog, which associates a target namespace. Here is an
example module:

module namespace libns="urn:module-library";
declare variable $libns:company := "Altova";
declare function libns:webaddress() { "http://www.altova.com" };

All functions and variables declared in the module belong to the namespace associated with the
module. The module is used by importing it into an XQuery file with the import module statement
in the query prolog. The import module statement only imports functions and variables declared
directly in the library module file. As follows:

1238 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

import module namespace modlib = "urn:module-library" at "modulefilename.xq";

if ($modlib:company = "Altova")
then modlib:webaddress()
else error("No match found.")

External functions
External functions are not supported, i.e. in those expressions using the external keyword, as
in:

declare function hoo($param as xs:integer) as xs:string external;

Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of
their Unicode codepoint. Other supported collations are the ICU collations listed here. To use a
specific collation, supply its URI as given in the list of supported collations. Any string
comparisons, including for the fn:max and fn:min functions, will be made according to the
specified collation. If the collation option is not specified, the default Unicode-codepoint collation
is used.

Precision of numeric types

The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.
The xs:decimal datatype has a limit of 20 digits after the decimal point.
The xs:float and xs:double datatypes have limited-precision of 15 digits.

XQuery Instructions Support
The Pragma instruction is not supported. If encountered, it is ignored and the fallback expression
is evaluated.

17.1.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in
XPath and/or XQuery expressions. Altova extension functions can be used with Altova's XSLT and
XQuery engines, and provide functionality additional to that available in the function libraries
defined in the W3C standards.

General points
The following general points should be noted:

Functions from the core function libraries defined in the W3C specifications can be called

http://site.icu-project.org/

© 2018 Altova GmbH

Engine information 1239Appendices

Altova MapForce 2018 Professional Edition

without a prefix. That's because the XSLT and XQuery engines read non-prefixed functions
as belonging to a default functions namespace which is that specified in the XPath/
XQuery functions specificationshttp://www.w3.org/2005/xpath-functions. If this
namespace is explicitly declared in an XSLT or XQuery document, the prefix used in the
namespace declaration can also optionally be used on function names.
In general, if a function expects a sequence of one item as an argument, and a sequence
of more than one item is submitted, then an error is returned.
All string comparisons are done using the Unicode codepoint collation.
Results that are QNames are serialized in the form [prefix:]localname.

Precision of xs:decimal
The precision refers to the number of digits in the number, and a minimum of 18 digits is required
by the specification. For division operations that produce a result of type xs:decimal, the
precision is 19 digits after the decimal point with no rounding.

Implicit timezone
When two date, time, or dateTime values need to be compared, the timezone of the values being
compared need to be known. When the timezone is not explicitly given in such a value, the
implicit timezone is used. The implicit timezone is taken from the system clock, and its value can
be checked with the implicit-timezone() function.

Collations
The default collation is the Unicode codepoint collation, which compares strings on the basis of
their Unicode codepoint. The engine uses the Unicode Collation Algorithm. Other supported
collations are the ICU collations listed below; to use one of these, supply its URI as given in the
table below. Any string comparisons, including for the max and min functions, will be made
according to the specified collation. If the collation option is not specified, the default Unicode-
codepoint collation is used.

Language URIs

da: Danish da_DK

de: German de_AT, de_BE, de_CH, de_DE, de_LI, de_LU

en: English en_AS, en_AU, en_BB, en_BE, en_BM, en_BW, en_BZ, en_CA,
en_GB, en_GU, en_HK, en_IE, en_IN, en_JM, en_MH, en_MP,
en_MT, en_MU, en_NA, en_NZ, en_PH, en_PK, en_SG, en_TT,
en_UM, en_US, en_VI, en_ZA, en_ZW

es: Spanish es_419, es_AR, es_BO, es_CL, es_CO, es_CR, es_DO, es_EC,
es_ES, es_GQ, es_GT, es_HN, es_MX, es_NI, es_PA, es_PE,
es_PR, es_PY, es_SV, es_US, es_UY, es_VE

fr: French fr_BE, fr_BF, fr_BI, fr_BJ, fr_BL, fr_CA, fr_CD, fr_CF,
fr_CG, fr_CH, fr_CI, fr_CM, fr_DJ, fr_FR, fr_GA, fr_GN,
fr_GP, fr_GQ, fr_KM, fr_LU, fr_MC, fr_MF, fr_MG, fr_ML,
fr_MQ, fr_NE, fr_RE, fr_RW, fr_SN, fr_TD, fr_TG

it: Italian it_CH, it_IT

ja: Japanese ja_JP

http://site.icu-project.org/

1240 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

nb: Norwegian
Bokmal

nb_NO

nl: Dutch nl_AW, nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt_AO, pt_BR, pt_GW, pt_MZ, pt_PT, pt_ST

ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_FI, sv_SE

Namespace axis
The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, however,
supported. To access namespace information with XPath 2.0 mechanisms, use the in-scope-
prefixes(), namespace-uri() and namespace-uri-for-prefix() functions.

Altova Extension Functions17.1.2.1

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http://www.altova.com/xslt-extensions, and are indicated in this section with the prefix

altova:, which is assumed to be bound to this namespace. Note that, in future versions of your

product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath
expressions in an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this
documentation we indicate the functions that can be used in the former context (XPath in XSLT)
with an XP symbol and call them XPath functions; those functions that can be used in the latter
(XQuery) context are indicated with an XQ symbol; they work as XQuery functions. The W3C's
XSLT specifications—not XPath/XQuery Functions specifications—also define functions that can
be used in XPath expressions in XSLT documents. These functions are marked with an XSLT

symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function
can be used are indicated in the description of the function (see symbols below). Functions from
the XPath/XQuery and XSLT function libraries are listed without a prefix. Extension functions from
other libraries, such as Altova extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

 XSLT functions

© 2018 Altova GmbH

Engine information 1241Appendices

Altova MapForce 2018 Professional Edition

XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT
2.0's current-group() or key() functions). These functions are not intended for, and will not
work in, a non-XSLT context (for instance, in an XQuery context). Note that XSLT functions for
XBRL can be used only with editions of Altova products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in
XQuery expressions:

Date/Time
Geolocation
Image-related
Numeric
Sequence
String
Miscellaneous

XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not
work in a non-XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Standard functions
distinct-nodes [altova:]

altova:distinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3

Takes a set of one or more nodes as its input and returns the same set minus nodes with
duplicate values. The comparison is done using the XPath/XQuery function fn:deep-equal.

Examples

altova:distinct-nodes(country) returns all child country nodes less those

1242 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

having duplicate values.

evaluate [altova:]

altova:evaluate(XPathExpression as xs:string[, ValueOf$p1, ... ValueOf$pN])

XSLT1 XSLT2 XSLT3

Takes an XPath expression, passed as a string, as its mandatory argument. It returns the
output of the evaluated expression. For example: altova:evaluate('//Name[1]') returns

the contents of the first Name element in the document. Note that the expression //Name[1]
is passed as a string by enclosing it in single quotes.

The altova:evaluate function can optionally take additional arguments. These arguments
are the values of in-scope variables that have the names p1, p2, p3... pN. Note the following
points about usage: (i) The variables must be defined with names of the form pX, where X is
an integer; (ii) the altova:evaluate function's arguments (see signature above), from the
second argument onwards, provide the values of the variables, with the sequence of the
arguments corresponding to the numerically ordered sequence of variables: p1 to pN: The
second argument will be the value of the variable p1, the third argument that of the variable
p2, and so on; (iii) The variable values must be of type item*.

Example

<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />

<xsl:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

The second argument of the altova:evaluate expression is the value
assigned to the variable $p1, the third argument that assigned to the variable
$p2, and so on.
Notice that the fourth argument of the function is a string value, indicated by its
being enclosed in quotes.
The select attribute of the xs:variable element supplies the XPath
expression. Since this expression must be of type xs:string, it is enclosed in
single quotes.

Examples to further illustrate the use of variables

<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, //Name[1])" />
Outputs value of the first Name element.

<xsl:variable name="xpath" select="'$p1'" />
<xsl:value-of select="altova:evaluate($xpath, '//Name[1]')" />

Outputs "//Name[1]"

The altova:evaluate() extension function is useful in situations where an XPath
expression in the XSLT stylesheet contains one or more parts that must be evaluated
dynamically. For example, consider a situation in which a user enters his request for the
sorting criterion and this criterion is stored in the attribute UserReq/@sortkey. In the

mailto:.

© 2018 Altova GmbH

Engine information 1243Appendices

Altova MapForce 2018 Professional Edition

stylesheet, you could then have the expression: <xsl:sort
select="altova:evaluate(../UserReq/@sortkey)" order="ascending"/>. The

altova:evaluate() function reads the sortkey attribute of the UserReq child element of the
parent of the context node. Say the value of the sortkey attribute is Price, then Price is
returned by the altova:evaluate() function and becomes the value of the select attribute:
<xsl:sort select="Price" order="ascending"/>. If this sort instruction occurs within

the context of an element called Order, then the Order elements will be sorted according to
the values of their Price children. Alternatively, if the value of @sortkey were, say, Date,
then the Order elements would be sorted according to the values of their Date children. So
the sort criterion for Order is selected from the sortkey attribute at runtime. This could not
have been achieved with an expression like: <xsl:sort select="../UserReq/@sortkey"

order="ascending"/>. In the case shown above, the sort criterion would be the sortkey
attribute itself, not Price or Date (or any other current content of sortkey).

Note: The static context includes namespaces, types, and functions—but not variables—
from the calling environment. The base URI and default namespace are inherited.

More examples

Static variables: <xsl:value-of select="$i3, $i2, $i1" />
Outputs the values of three variables.

Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"

Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $p1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.

encode-for-rtf [altova:]

altova:encode-for-rtf(input as xs:string, preserveallwhitespace as

xs:boolean, preservenewlines as xs:boolean) as xs:string XSLT2 XSLT3

Converts the input string into code for RTF. Whitespace and new lines will be preserved
according to the boolean value specified for their respective arguments.

[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

xbrl-footnotes [altova:]

altova:xbrl-footnotes(node()) as node()* XSLT2 XSLT3

Takes a node as its input argument and returns the set of XBRL footnote nodes referenced
by the input node.

1244 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

xbrl-labels [altova:]

altova:xbrl-labels(xs:QName, xs:string) as node()* XSLT2 XSLT3

Takes two input arguments: a node name and the taxonomy file location containing the node.
The function returns the XBRL label nodes associated with the input node.

[Top]

XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data held as XML Schema's various date and time
datatypes. The functions in this section can be used with Altova's XPath 3.0 and XQuery 3.0
engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Grouped by functionality

Add a duration to xs:dateTime and return xs:dateTime
Add a duration to xs:date and return xs:date
Add a duration to xs:time and return xs:time
Format and retrieve durations
Remove timezone from functions that generate current date/time
Return weekday as integer from date
Return week number as integer from date
Build date, time, or duration type from lexical components of each type
Construct date, dateTime, or time type from string input
Age-related functions

Grouped alphabetically

altova:add-days-to-date

© 2018 Altova GmbH

Engine information 1245Appendices

Altova MapForce 2018 Professional Edition

altova:add-days-to-dateTime
altova:add-hours-to-dateTime
altova:add-hours-to-time
altova:add-minutes-to-dateTime
altova:add-minutes-to-time
altova:add-months-to-date
altova:add-months-to-dateTime
altova:add-seconds-to-dateTime
altova:add-seconds-to-time
altova:add-years-to-date
altova:add-years-to-dateTime
altova:age
altova:age-details
altova:build-date
altova:build-duration
altova:build-time
altova:current-dateTime-no-TZ
altova:current-date-no-TZ
altova:current-time-no-TZ
altova:format-duration
altova:parse-date
altova:parse-dateTime
altova:parse-duration
altova:parse-time
altova:weekday-from-date
altova:weekday-from-dateTime
altova:weeknumber-from-date
altova:weeknumber-from-dateTime

[Top]

Add a duration to xs:dateTime XP3.1 XQ3.1

These functions add a duration to xs:dateTime and return xs:dateTime. The xs:dateTime type

has a format of CCYY-MM-DDThh:mm:ss.sss. This is a concatenation of the xs:date and xs:time
formats separated by the letter T. A timezone suffix+01:00 (for example) is optional.

add-years-to-dateTime [altova:]

altova:add-years-to-dateTime(DateTime as xs:dateTime, Years as xs:integer) as
xs:dateTime XP3.1 XQ3.1

Adds a duration in years to an xs:dateTime (see examples below). The second argument is
the number of years to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples

altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2024-01-15T14:00:00
altova:add-years-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -4)

returns 2010-01-15T14:00:00

add-months-to-dateTime [altova:]

1246 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

altova:add-months-to-dateTime(DateTime as xs:dateTime, Months as xs:integer)

as xs:dateTime XP3.1 XQ3.1

Adds a duration in months to an xs:dateTime (see examples below). The second argument
is the number of months to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples

altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2014-11-15T14:00:00
altova:add-months-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -2)

returns 2013-11-15T14:00:00

add-days-to-dateTime [altova:]

altova:add-days-to-dateTime(DateTime as xs:dateTime, Days as xs:integer) as
xs:dateTime XP3.1 XQ3.1

Adds a duration in days to an xs:dateTime (see examples below). The second argument is
the number of days to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples

altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), 10)

returns 2014-01-25T14:00:00
altova:add-days-to-dateTime(xs:dateTime("2014-01-15T14:00:00"), -8)

returns 2014-01-07T14:00:00

add-hours-to-dateTime [altova:]

altova:add-hours-to-dateTime(DateTime as xs:dateTime, Hours as xs:integer) as
xs:dateTime XP3.1 XQ3.1

Adds a duration in hours to an xs:dateTime (see examples below). The second argument is
the number of hours to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples

altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), 10)

returns 2014-01-15T23:00:00
altova:add-hours-to-dateTime(xs:dateTime("2014-01-15T13:00:00"), -8)

returns 2014-01-15T05:00:00

add-minutes-to-dateTime [altova:]

altova:add-minutes-to-dateTime(DateTime as xs:dateTime, Minutes as

xs:integer) as xs:dateTime XP3.1 XQ3.1

Adds a duration in minutes to an xs:dateTime (see examples below). The second argument
is the number of minutes to be added to the xs:dateTime supplied as the first argument. The
result is of type xs:dateTime.

Examples

altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), 45)

returns 2014-01-15T14:55:00

© 2018 Altova GmbH

Engine information 1247Appendices

Altova MapForce 2018 Professional Edition

altova:add-minutes-to-dateTime(xs:dateTime("2014-01-15T14:10:00"), -5)

returns 2014-01-15T14:05:00

add-seconds-to-dateTime [altova:]

altova:add-seconds-to-dateTime(DateTime as xs:dateTime, Seconds as

xs:integer) as xs:dateTime XP3.1 XQ3.1

Adds a duration in seconds to an xs:dateTime (see examples below). The second argument
is the number of seconds to be added to the xs:dateTime supplied as the first argument.
The result is of type xs:dateTime.

Examples

altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), 20)

returns 2014-01-15T14:00:30
altova:add-seconds-to-dateTime(xs:dateTime("2014-01-15T14:00:10"), -5)

returns 2014-01-15T14:00:05

[Top]

Add a duration to xs:date XP3.1 XQ3.1

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of

CCYY-MM-DD.

add-years-to-date [altova:]

altova:add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date

XP3.1 XQ3.1

 Adds a duration in years to a date. The second argument is the number of years to be
added to the xs:date supplied as the first argument. The result is of type xs:date.

Examples

altova:add-years-to-date(xs:date("2014-01-15"), 10) returns 2024-01-15

altova:add-years-to-date(xs:date("2014-01-15"), -4) returns 2010-01-15

add-months-to-date [altova:]

altova:add-months-to-date(Date as xs:date, Months as xs:integer) as xs:date

XP3.1 XQ3.1

Adds a duration in months to a date. The second argument is the number of months to be
added to the xs:date supplied as the first argument. The result is of type xs:date.

Examples

altova:add-months-to-date(xs:date("2014-01-15"), 10) returns 2014-11-15

altova:add-months-to-date(xs:date("2014-01-15"), -2) returns 2013-11-15

add-days-to-date [altova:]

1248 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

altova:add-days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3.1

 XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added
to the xs:date supplied as the first argument. The result is of type xs:date.

Examples

altova:add-days-to-date(xs:date("2014-01-15"), 10) returns 2014-01-25

altova:add-days-to-date(xs:date("2014-01-15"), -8) returns 2014-01-07

[Top]

Format and retrieve durations XP3.1 XQ3.1

These functions add a duration to xs:date and return xs:date. The xs:date type has a format of

CCYY-MM-DD.

format-duration [altova:]

altova:format-duration(Duration as xs:duration, Picture as xs:string) as
xs:string XP3.1 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string
submitted as the second argument. The output is a text string formatted according to the
picture string.

Examples

altova:format-duration(xs:duration("P2DT2H53M11.7S"), "Days:[D01]

Hours:[H01] Minutes:[m01] Seconds:[s01] Fractions:[f0]") returns
"Days:02 Hours:02 Minutes:53 Seconds:11 Fractions:7"
altova:format-duration(xs:duration("P3M2DT2H53M11.7S"), "Months:[M01]

Days:[D01] Hours:[H01] Minutes:[m01]") returns "Months:03 Days:02
Hours:02 Minutes:53"

parse-duration [altova:]

altova:parse-duration(InputString as xs:string, Picture as xs:string) as
xs:duration XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument.
The input string is parsed on the basis of the picture string, and an xs:duration is returned.

Examples

altova:parse-duration("Days:02 Hours:02 Minutes:53 Seconds:11

Fractions:7"), "Days:[D01] Hours:[H01] Minutes:[m01] Seconds:[s01]

Fractions:[f0]") returns "P2DT2H53M11.7S"
altova:parse-duration("Months:03 Days:02 Hours:02 Minutes:53

Seconds:11 Fractions:7", "Months:[M01] Days:[D01] Hours:[H01] Minutes:

[m01]") returns "P3M2DT2H53M"

[Top]

© 2018 Altova GmbH

Engine information 1249Appendices

Altova MapForce 2018 Professional Edition

Add a duration to xs:time XP3.1 XQ3.1

These functions add a duration to xs:time and return xs:time. The xs:time type has a lexical

form of hh:mm:ss.sss. An optional time zone may be suffixed. The letter Z indicates Coordinated
Universal Time (UTC). All other time zones are represented by their difference from UTC in the
format +hh:mm, or -hh:mm. If no time zone value is present, it is considered unknown; it is not
assumed to be UTC.

add-hours-to-time [altova:]

altova:add-hours-to-time(Time as xs:time, Hours as xs:integer) as xs:time

XP3.1 XQ3.1

Adds a duration in hours to a time. The second argument is the number of hours to be added
to the xs:time supplied as the first argument. The result is of type xs:time.

Examples

altova:add-hours-to-time(xs:time("11:00:00"), 10) returns 21:00:00

altova:add-hours-to-time(xs:time("11:00:00"), -7) returns 04:00:00

add-minutes-to-time [altova:]

altova:add-minutes-to-time(Time as xs:time, Minutes as xs:integer) as xs:time

 XP3.1 XQ3.1

Adds a duration in minutes to a time. The second argument is the number of minutes to be
added to the xs:time supplied as the first argument. The result is of type xs:time.

Examples

altova:add-minutes-to-time(xs:time("14:10:00"), 45) returns 14:55:00

altova:add-minutes-to-time(xs:time("14:10:00"), -5) returns 14:05:00

add-seconds-to-time [altova:]

altova:add-seconds-to-time(Time as xs:time, Minutes as xs:integer) as xs:time

 XP3.1 XQ3.1

Adds a duration in seconds to a time. The second argument is the number of seconds to be
added to the xs:time supplied as the first argument. The result is of type xs:time. The
Seconds component can be in the range of 0 to 59.999.

Examples

altova:add-seconds-to-time(xs:time("14:00:00"), 20) returns 14:00:20

altova:add-seconds-to-time(xs:time("14:00:00"), 20.895) returns
14:00:20.895

[Top]

Remove the timezone part from date/time datatypes XP3.1 XQ3.1

These functions remove the timezone from the current xs:dateTime, xs:date, or xs:time values,

1250 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

respectively. Note that the difference between xs:dateTime and xs:dateTimeStamp is that in the
case of the latter the timezone part is required (while it is optional in the case of the former). So
the format of an xs:dateTimeStamp value is: CCYY-MM-DDThh:mm:ss.sss±hh:mm. or CCYY-MM-
DDThh:mm:ss.sssZ. If the date and time is read from the system clock as xs:dateTimeStamp,
the current-dateTime-no-TZ() function can be used to remove the timezone if so required.

current-dateTime-no-TZ [altova:]

altova:current-dateTime-no-TZ() as xs:dateTime XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-dateTime()
(which is the current date-and-time according to the system clock) and returns an
xs:dateTime value.

Examples

If the current dateTime is 2014-01-15T14:00:00+01:00:

altova:current-dateTime-no-TZ() returns 2014-01-15T14:00:00

current-date-no-TZ [altova:]

altova:current-date-no-TZ() as xs:date XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-date() (which is
the current date according to the system clock) and returns an xs:date value.

Examples

If the current date is 2014-01-15+01:00:

altova:current-date-no-TZ() returns 2014-01-15

current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:time XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current-time() (which is
the current time according to the system clock) and returns an xs:time value.

Examples

If the current time is 14:00:00+01:00:

altova:current-time-no-TZ() returns 14:00:00

[Top]

Return the weekday from xs:dateTime or xs:date XP3.1 XQ3.1

These functions return the weekday (as an integer) from xs:dateTime or xs:date. The days of
the week are numbered (using the American format) from 1 to 7, with Sunday=1. In the European
format, the week starts with Monday (=1). The American format, where Sunday=1, can be set by
using the integer 0 where an integer is accepted to indicate the format.

© 2018 Altova GmbH

Engine information 1251Appendices

Altova MapForce 2018 Professional Edition

weekday-from-dateTime [altova:]

altova:weekday-from-dateTime(DateTime as xs:dateTime) as xs:integer XP3.1

XQ3.1

Takes a date-with-time as its single argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).

Examples

altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00")) returns

2, which would indicate a Monday.

altova:weekday-from-dateTime(DateTime as xs:dateTime, Format as xs:integer)

as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Monday=1. If the second (integer)
argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the
function is read as having the other signature of this function (see previous signature).

Examples

altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 1)

returns 1, which would indicate a Monday
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 4)

returns 1, which would indicate a Monday
altova:weekday-from-dateTime(xs:dateTime("2014-02-03T09:00:00"), 0)

returns 2, which would indicate a Monday.

weekday-from-date [altova:]

altova:weekday-from-date(Date as xs:date) as xs:integer XP3.1 XQ3.1

Takes a date as its single argument and returns the day of the week of this date as an
integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).

Examples

altova:weekday-from-date(xs:date("2014-02-03+01:00")) returns 2, which

would indicate a Monday.

altova:weekday-from-date(Date as xs:date, Format as xs:integer) as xs:integer

 XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer.
The weekdays are numbered starting with Monday=1. If the second (Format) argument is 0,
then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second argument is an
integer other than 0, then Monday=1. If there is no second argument, the function is read as
having the other signature of this function (see previous signature).

Examples

altova:weekday-from-date(xs:date("2014-02-03"), 1) returns 1, which would

indicate a Monday
altova:weekday-from-date(xs:date("2014-02-03"), 4) returns 1, which would

indicate a Monday

1252 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

altova:weekday-from-date(xs:date("2014-02-03"), 0) returns 2, which would

indicate a Monday.

[Top]

Return the week number from xs:dateTime or xs:date XP2 XQ1 XP3.1 XQ3.1

These functions return the week number (as an integer) from xs:dateTime or xs:date. Week-
numbering is available in the US, ISO/European, and Islamic calendar formats. Week-numbering
is different in these calendar formats because the week is considered to start on different days (on
Sunday in the US format, Monday in the ISO/European format, and Saturday in the Islamic
format).

weeknumber-from-date [altova:]

altova:weeknumber-from-date(Date as xs:date, Calendar as xs:integer) as
xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted Date argument as an integer. The second

argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:

 0 = US calendar (week starts Sunday)

 1 = ISO standard, European calendar (week starts Monday)

 2 = Islamic calendar (week starts Saturday)

Default is 0.

Examples

altova:weeknumber-from-date(xs:date("2014-03-23"), 0) returns 13

altova:weeknumber-from-date(xs:date("2014-03-23"), 1) returns 12

altova:weeknumber-from-date(xs:date("2014-03-23"), 2) returns 13

altova:weeknumber-from-date(xs:date("2014-03-23")) returns 13

The day of the date in the examples above (2014-03-23) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

weeknumber-from-dateTime [altova:]

altova:weeknumber-from-dateTime(DateTime as xs:dateTime, Calendar as

xs:integer) as xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted DateTime argument as an integer. The second

argument (Calendar) specifies the calendar system to follow.

Supported Calendar values are:

 0 = US calendar (week starts Sunday)

 1 = ISO standard, European calendar (week starts Monday)

 2 = Islamic calendar (week starts Saturday)

© 2018 Altova GmbH

Engine information 1253Appendices

Altova MapForce 2018 Professional Edition

Default is 0.

Examples

altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 0)

returns 13
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 1)

returns 12
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"), 2)

returns 13
altova:weeknumber-from-dateTime(xs:dateTime("2014-03-23T00:00:00"))

returns 13

The day of the dateTime in the examples above (2014-03-23T00:00:00) is Sunday. So
the US and Islamic calendars are one week ahead of the European calendar on this
day.

[Top]

Build date, time, and duration datatypes from their lexical components XP3.1

XQ3.1

The functions take the lexical components of the xs:date, xs:time, or xs:duration datatype as
input arguments and combine them to build the respective datatype.

build-date [altova:]

altova:build-date(Year as xs:integer, Month as xs:integer, Date as

xs:integer) as xs:date XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the year, month, and date. They are
combined to build a value of xs:date type. The values of the integers must be within the
correct range of that particular date part. For example, the second argument (for the month
part) should not be greater than 12.

Examples

altova:build-date(2014, 2, 03) returns 2014-02-03

build-time [altova:]

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as

xs:integer) as xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. They are combined to build a value of xs:time type. The
values of the integers must be within the correct range of that particular time part. For
example, the second (Minutes) argument should not be greater than 59. To add a timezone
part to the value, use the other signature of this function (see next signature).

Examples

altova:build-time(23, 4, 57) returns 23:04:57

1254 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

altova:build-time(Hours as xs:integer, Minutes as xs:integer, Seconds as

xs:integer, TimeZone as xs:string) as xs:time XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. The fourth argument is a string that provides the timezone part
of the value. The four arguments are combined to build a value of xs:time type. The values of
the integers must be within the correct range of that particular time part. For example, the
second (Minutes) argument should not be greater than 59.

Examples

altova:build-time(23, 4, 57, '+1') returns 23:04:57+01:00

build-duration [altova:]

altova:build-duration(Years as xs:integer, Months as xs:integer) as
xs:yearMonthDuration XP3.1 XQ3.1

Takes two arguments to build a value of type xs:yearMonthDuration. The first arguments
provides the Years part of the duration value, while the second argument provides the Months
part. If the second (Months) argument is greater than or equal to 12, then the integer is
divided by 12; the quotient is added to the first argument to provide the Years part of the
duration value while the remainder (of the division) provides the Months part. To build a
duration of type xs:dayTimeDuration., see the next signature.

Examples

altova:build-duration(2, 10) returns P2Y10M

altova:build-duration(14, 27) returns P16Y3M

altova:build-duration(2, 24) returns P4Y

altova:build-duration(Days as xs:integer, Hours as xs:integer, Minutes as

xs:integer, Seconds as xs:integer) as xs:dayTimeDuration XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type xs:dayTimeDuration. The
first argument provides the Days part of the duration value, the second, third, and fourth
arguments provide, respectively, the Hours, Minutes, and Seconds parts of the duration
value. Each of the three Time arguments is converted to an equivalent value in terms of the
next higher unit and the result is used for calculation of the total duration value. For example,
72 seconds is converted to 1M+12S (1 minute and 12 seconds), and this value is used for
calculation of the total duration value. To build a duration of type xs:yearMonthDuration.,
see the previous signature.

Examples

altova:build-duration(2, 10, 3, 56) returns P2DT10H3M56S

altova:build-duration(1, 0, 100, 0) returns P1DT1H40M

altova:build-duration(1, 0, 0, 3600) returns P1DT1H

[Top]

Construct date, dateTime, and time datatypes from string input XP2 XQ1 XP3.1

XQ3.1

These functions take strings as arguments and construct xs:date, xs:dateTime, or xs:time
datatypes. The string is analyzed for components of the datatype based on a submitted pattern

© 2018 Altova GmbH

Engine information 1255Appendices

Altova MapForce 2018 Professional Edition

argument.

parse-date [altova:]

altova:parse-date(Date as xs:string, DatePattern as xs:string) as xs:date

XP2 XQ1 XP3.1 XQ3.1

Returns the input string Date as an xs:date value. The second argument DatePattern

specifies the pattern (sequence of components) of the input string. DatePattern is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

D Date

M Month

Y Year

The pattern in DatePattern must match the pattern in Date. Since the output is of type

xs:date, the output will always have the lexical format YYYY-MM-DD.

Examples

altova:parse-date(xs:string("09-12-2014"), "[D]-[M]-[Y]") returns 2014-

12-09
altova:parse-date(xs:string("09-12-2014"), "[M]-[D]-[Y]") returns 2014-
09-12

altova:parse-date("06/03/2014", "[M]/[D]/[Y]") returns 2014-06-03

altova:parse-date("06 03 2014", "[M] [D] [Y]") returns 2014-06-03

altova:parse-date("6 3 2014", "[M] [D] [Y]") returns 2014-06-03

parse-dateTime [altova:]

altova:parse-dateTime(DateTime as xs:string, DateTimePattern as xs:string) as
xs:dateTime XP2 XQ1 XP3.1 XQ3.1

Returns the input string DateTime as an xs:dateTime value.The second argument

DateTimePattern specifies the pattern (sequence of components) of the input string.

DateTimePattern is described with the component specifiers listed below and with

component separators that can be any character. See the examples below.

D Date

M Month

Y Year

H Hour

m minutes

s seconds

The pattern in DateTimePattern must match the pattern in DateTime. Since the output is of

type xs:dateTime, the output will always have the lexical format YYYY-MM-DDTHH:mm:ss.

Examples

altova:parse-dateTime(xs:string("09-12-2014 13:56:24"), "[M]-[D]-[Y]

[H]:[m]:[s]") returns 2014-09-12T13:56:24
altova:parse-dateTime("time=13:56:24; date=09-12-2014", "time=[H]:[m]:

1256 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

[s]; date=[D]-[M]-[Y]") returns 2014-12-09T13:56:24

parse-time [altova:]

altova:parse-time(Time as xs:string, TimePattern as xs:string) as xs:time

XP2 XQ1 XP3.1 XQ3.1

Returns the input string Time as an xs:time value.The second argument TimePattern

specifies the pattern (sequence of components) of the input string. TimePattern is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

H Hour

m minutes

s seconds

The pattern in TimePattern must match the pattern in Time. Since the output is of type

xs:time, the output will always have the lexical format HH:mm:ss.

Examples

altova:parse-time(xs:string("13:56:24"), "[H]:[m]:[s]") returns 13:56:24

altova:parse-time("13-56-24", "[H]-[m]") returns 13:56:00

altova:parse-time("time=13h56m24s", "time=[H]h[m]m[s]s") returns
13:56:24

altova:parse-time("time=24s56m13h", "time=[s]s[m]m[H]h") returns
13:56:24

[Top]

Age-related functions XP3.1 XQ3.1

These functions return the age as calculated (i) between one input argument date and the current
date, or (ii) between two input argument dates. The altova:age function returns the age in terms

of years, the altova:age-details function returns the age as a sequence of three integers giving

the years, months, and days of the age.

age [altova:]

altova:age(StartDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date
submitted as the argument and ending with the current date (taken from the system clock). If
the input argument is a date anything greater than or equal to one year in the future, the
return value will be negative.

Examples

If the current date is 2014-01-15:

altova:age(xs:date("2013-01-15")) returns 1

© 2018 Altova GmbH

Engine information 1257Appendices

Altova MapForce 2018 Professional Edition

altova:age(xs:date("2013-01-16")) returns 0

altova:age(xs:date("2015-01-15")) returns -1

altova:age(xs:date("2015-01-14")) returns 0

altova:age(StartDate as xs:date, EndDate as xs:date) as xs:integer XP3.1 XQ3.1

Returns an integer that is the age in years of some object, counting from a start-date that is
submitted as the first argument up to an end-date that is the second argument. The return
value will be negative if the first argument is one year or more later than the second
argument.

Examples

If the current date is 2014-01-15:

altova:age(xs:date("2000-01-15"), xs:date("2010-01-15")) returns 10

altova:age(xs:date("2000-01-15"), current-date()) returns 14 if the current

date is 2014-01-15
altova:age(xs:date("2014-01-15"), xs:date("2010-01-15")) returns -4

age-details [altova:]

altova:age-details(InputDate as xs:date) as (xs:integer)* XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the date
that is submitted as the argument and the current date (taken from the system clock). The
sum of the returned years+months+days together gives the total time difference between the
two dates (the input date and the current date). The input date may have a value earlier or
later than the current date, but whether the input date is earlier or later is not indicated by the
sign of the return values; the return values are always positive.

Examples

If the current date is 2014-01-15:

altova:age-details(xs:date("2014-01-16")) returns (0 0 1)

altova:age-details(xs:date("2014-01-14")) returns (0 0 1)

altova:age-details(xs:date("2013-01-16")) returns (1 0 1)

altova:age-details(current-date()) returns (0 0 0)

altova:age-details(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)*

XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the two
argument dates. The sum of the returned years+months+days together gives the total time
difference between the two input dates; it does not matter whether the earlier or later of the
two dates is submitted as the first argument. The return values do not indicate whether the
input date occurs earlier or later than the current date. Return values are always positive.

Examples

altova:age-details(xs:date("2014-01-16"), xs:date("2014-01-15")) returns

(0 0 1)
altova:age-details(xs:date("2014-01-15"), xs:date("2014-01-16")) returns

(0 0 1)

1258 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

[Top]

XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of
MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery
expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

parse-geolocation [altova:]

altova:parse-geolocation(GeolocationInputString as xs:string) as xs:decimal+

 XP3.1 XQ3.1

Parses the supplied GeolocationInputString argument and returns the geolocation's
latitude and longitude (in that order) as a sequence two xs:decimal items. The formats in
which the geolocation input string can be supplied are listed below.

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can
be used to supply the geolocation input string (see example below).

Examples

altova:parse-geolocation("33.33 -22.22") returns the sequence of two

xs:decimals (33.33, 22.22)
altova:parse-geolocation("48°51'29.6""N 24°17'40.2""") returns the

sequence of two xs:decimals (48.8582222222222, 24.2945)
altova:parse-geolocation('48°51''29.6"N 24°17''40.2"') returns the

sequence of two xs:decimals (48.8582222222222, 24.2945)
altova:parse-geolocation(image-exif-data(//MyImages/

Image20141130.01)/@Geolocation) returns a sequence of two xs:decimals

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

© 2018 Altova GmbH

Engine information 1259Appendices

Altova MapForce 2018 Professional Edition

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

("").

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, W/E)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for
(N/W) is optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

Degrees, decimal minutes, with suffixed orientation (N/S, W/E)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/W) is

optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

Decimal degrees, with suffixed orientation (N/S, W/E)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

Decimal degrees, with prefixed sign (+/-); the plus sign for (N/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from

standard Exif metadata tags. Geolocation is a concatenation of four Exif tags:

GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added
(see table below).

GPSLatitu

de

GPSLatitude

Ref

GPSLongitu

de

GPSLongitude

Ref

Geolocation

33 51

21.91

S 151 13

11.73

E 33°51'21.91"S 151°

13'11.73"E

1260 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

geolocation-distance-km [altova:]

altova:geolocation-distance-km(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in kilometers. The formats in which the
geolocation input string can be supplied are listed below. Latitude values range from +90 to -
90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can
be used to supply geolocation input strings.

Examples

altova:geolocation-distance-km("33.33 -22.22", "48°51'29.6""N 24°

17'40.2""") returns the xs:decimal 4183.08132372392

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

("").

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, W/E)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for
(N/W) is optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

Degrees, decimal minutes, with suffixed orientation (N/S, W/E)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/W) is

optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

© 2018 Altova GmbH

Engine information 1261Appendices

Altova MapForce 2018 Professional Edition

Decimal degrees, with suffixed orientation (N/S, W/E)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

Decimal degrees, with prefixed sign (+/-); the plus sign for (N/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from

standard Exif metadata tags. Geolocation is a concatenation of four Exif tags:

GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added
(see table below).

GPSLatitu

de

GPSLatitude

Ref

GPSLongitu

de

GPSLongitude

Ref

Geolocation

33 51

21.91

S 151 13

11.73

E 33°51'21.91"S 151°

13'11.73"E

geolocation-distance-mi [altova:]

altova:geolocation-distance-mi(GeolocationInputString-1 as xs:string,

GeolocationInputString-2 as xs:string) as xs:decimal XP3.1 XQ3.1

Calculates the distance between two geolocations in miles. The formats in which a
geolocation input string can be supplied are listed below. Latitude values range from +90 to -
90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can
be used to supply geolocation input strings.

Examples

altova:geolocation-distance-mi("33.33 -22.22", "48°51'29.6""N 24°

17'40.2""") returns the xs:decimal 2599.40652340653

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

1262 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

("").

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, W/E)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for
(N/W) is optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

Degrees, decimal minutes, with suffixed orientation (N/S, W/E)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/W) is

optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

Decimal degrees, with suffixed orientation (N/S, W/E)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

Decimal degrees, with prefixed sign (+/-); the plus sign for (N/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from

standard Exif metadata tags. Geolocation is a concatenation of four Exif tags:

GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added
(see table below).

GPSLatitu

de

GPSLatitude

Ref

GPSLongitu

de

GPSLongitude

Ref

Geolocation

33 51

21.91

S 151 13

11.73

E 33°51'21.91"S 151°

13'11.73"E

© 2018 Altova GmbH

Engine information 1263Appendices

Altova MapForce 2018 Professional Edition

geolocation-within-polygon [altova:]

altova:geolocation-within-polygon(Geolocation as xs:string, ((PolygonPoint

as xs:string)+)) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the polygonal area described

by the PolygonPoint arguments. If the PolygonPoint arguments do not form a closed figure

(formed when the first point and the last point are the same), then the first point is implicitly
added as the last point in order to close the figure. All the arguments (Geolocation and
PolygonPoint+) are given by geolocation input strings (formats listed below). If the
Geolocation argument is within the polygonal area, then the function returns true();
otherwise it returns false(). Latitude values range from +90 to -90 (N to S). Longitude values
range from +180 to -180 (E to W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can
be used to supply geolocation input strings.

Examples

altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48

24", "58 -32")) returns true()

altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55", "48

24")) returns true()

altova:geolocation-within-polygon("33 -22", ("58 -32", "-78 -55",

"48°51'29.6""N 24°17'40.2""")) returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

("").

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, W/E)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for
(N/W) is optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

1264 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Degrees, decimal minutes, with suffixed orientation (N/S, W/E)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/W) is

optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

Decimal degrees, with suffixed orientation (N/S, W/E)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

Decimal degrees, with prefixed sign (+/-); the plus sign for (N/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from

standard Exif metadata tags. Geolocation is a concatenation of four Exif tags:

GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added
(see table below).

GPSLatitu

de

GPSLatitude

Ref

GPSLongitu

de

GPSLongitude

Ref

Geolocation

33 51

21.91

S 151 13

11.73

E 33°51'21.91"S 151°

13'11.73"E

geolocation-within-rectangle [altova:]

altova:geolocation-within-rectangle(Geolocation as xs:string, RectCorner-1

as xs:string, RectCorner-2 as xs:string) as xs:boolean XP3.1 XQ3.1

Determines whether Geolocation (the first argument) is within the rectangle defined by the

second and third arguments, RectCorner-1 and RectCorner-2, which specify opposite

corners of the rectangle. All the arguments (Geolocation, RectCorner-1 and RectCorner-

2) are given by geolocation input strings (formats listed below). If the Geolocation argument

is within the rectangle, then the function returns true(); otherwise it returns false().
Latitude values range from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to
W).

Note: The image-exif-data function and the Exif metadata's @Geolocation attribute can
be used to supply geolocation input strings.

© 2018 Altova GmbH

Engine information 1265Appendices

Altova MapForce 2018 Professional Edition

Examples

altova:geolocation-within-rectangle("33 -22", "58 -32", "-48 24")

returns true()
altova:geolocation-within-rectangle("33 -22", "58 -32", "48 24") returns

false()
altova:geolocation-within-rectangle("33 -22", "58 -32", "48°51'29.6""S

 24°17'40.2""") returns true()

Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to -90 (N to S). Longitude values range from +180 to -180 (E to W).

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

("").

Degrees, minutes, decimal seconds, with suffixed orientation (N/S, W/E)
D°M'S.SS"N/S D°M'S.SS"W/E

Example: 33°55'11.11"N 22°44'55.25"W

Degrees, minutes, decimal seconds, with prefixed sign (+/-); the plus sign for
(N/W) is optional
+/-D°M'S.SS" +/-D°M'S.SS"

Example: 33°55'11.11" -22°44'55.25"

Degrees, decimal minutes, with suffixed orientation (N/S, W/E)
D°M.MM'N/S D°M.MM'W/E

Example: 33°55.55'N 22°44.44'W

Degrees, decimal minutes, with prefixed sign (+/-); the plus sign for (N/W) is

optional
+/-D°M.MM' +/-D°M.MM'

Example: +33°55.55' -22°44.44'

Decimal degrees, with suffixed orientation (N/S, W/E)
D.DDN/S D.DDW/E

Example: 33.33N 22.22W

Decimal degrees, with prefixed sign (+/-); the plus sign for (N/W) is optional
+/-D.DD +/-D.DD

Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55.25"

1266 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

33.33 22°44'55.25"W

33.33 22.45

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from

standard Exif metadata tags. Geolocation is a concatenation of four Exif tags:

GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added
(see table below).

GPSLatitu

de

GPSLatitude

Ref

GPSLongitu

de

GPSLongitude

Ref

Geolocation

33 51

21.91

S 151 13

11.73

E 33°51'21.91"S 151°

13'11.73"E

[Top]

XPath/XQuery Functions: Image-Related

The following image-related XPath/XQuery extension functions are supported in the current version
of MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery
expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

suggested-image-file-extension [altova:]

altova:suggested-image-file-extension(Base64String as string) as string?

XP3.1 XQ3.1

Takes the Base64 encoding of an image file as its argument and returns the file extension of
the image as recorded in the Base64-encoding of the image. The returned value is a
suggestion based on the image type information available in the encoding. If this information

© 2018 Altova GmbH

Engine information 1267Appendices

Altova MapForce 2018 Professional Edition

is not available, then an empty string is returned. This function is useful if you wish to save a
Base64 image as a file and wish to dynamically retrieve an appropriate file extension.

Examples

altova:suggested-image-file-extension(/MyImages/MobilePhone/

Image20141130.01) returns 'jpg'
altova:suggested-image-file-extension($XML1/Staff/Person/@photo) returns

''

In the examples above, the nodes supplied as the argument of the function are assumed to
contain a Base64-encoded image. The first example retrieves jpg as the file's type and
extension. In the second example, the submitted Base64 encoding does not provide usable
file extension information.

image-exif-data [altova:]

altova:image-exif-data(Base64BinaryString as string) as element? XP3.1 XQ3.1

Takes a Base64-encoded JPEG image as its argument and returns an element called Exif

that contains the Exif metadata of the image. The Exif metadata is created as attribute-value
pairs of the Exif element. The attribute names are the Exif data tags found in the Base64
encoding. The list of Exif-specification tags is given below. If a vendor-specific tag is present
in the Exif data, this tag and its value will also be returned as an attribute-value pair.
Additional to the standard Exif metadata tags (see list below), Altova-specific attribute-value
pairs are also generated. These Altova Exif attributes are listed below.

Examples

To access any one attribute, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@GPSLatitude

image-exif-data(//MyImages/Image20141130.01)/@Geolocation

To access all the attributes, use the function like this:
image-exif-data(//MyImages/Image20141130.01)/@*

To access the names of all the attributes, use the following expression:
for $i in image-exif-data(//MyImages/Image20141130.01)/@* return

name($i)

This is useful to find out the names of the attributes returned by the function.

Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geolocation from

standard Exif metadata tags. Geolocation is a concatenation of four Exif tags:

GPSLatitude, GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, with units added
(see table below).

GPSLatitu

de

GPSLatitude

Ref

GPSLongitu

de

GPSLongitude

Ref

Geolocation

33 51

21.91

S 151 13

11.73

E 33°51'21.91"S 151°

13'11.73"E

1268 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Altova Exif Attribute: OrientationDegree

The Altova XPath/XQuery Engine generates the custom attribute OrientationDegree

from the Exif metadata tag Orientation.

OrientationDegree translates the standard Exif tag Orientation from an integer

value (1, 8, 3, or 6) to the respective degree values of each (0, 90, 180, 270), as shown
in the figure below. Note that there are no translations of the Orientation values of 2,
4, 5, 7. (These orientations are obtained by flipping image 1 across its vertical center
axis to get the image with a value of 2, and then rotating this image in 90-degree jumps
clockwise to get the values of 7, 4, and 5, respectively).

Listing of standard Exif meta tags

ImageWidth
ImageLength
BitsPerSample
Compression
PhotometricInterpretation
Orientation
SamplesPerPixel
PlanarConfiguration
YCbCrSubSampling
YCbCrPositioning
XResolution
YResolution
ResolutionUnit
StripOffsets

© 2018 Altova GmbH

Engine information 1269Appendices

Altova MapForce 2018 Professional Edition

RowsPerStrip
StripByteCounts
JPEGInterchangeFormat
JPEGInterchangeFormatLength
TransferFunction
WhitePoint
PrimaryChromaticities
YCbCrCoefficients
ReferenceBlackWhite
DateTime
ImageDescription
Make
Model
Software
Artist
Copyright

ExifVersion
FlashpixVersion
ColorSpace
ComponentsConfiguration
CompressedBitsPerPixel
PixelXDimension
PixelYDimension
MakerNote
UserComment
RelatedSoundFile
DateTimeOriginal
DateTimeDigitized
SubSecTime
SubSecTimeOriginal
SubSecTimeDigitized
ExposureTime
FNumber
ExposureProgram
SpectralSensitivity
ISOSpeedRatings
OECF
ShutterSpeedValue
ApertureValue
BrightnessValue
ExposureBiasValue
MaxApertureValue
SubjectDistance
MeteringMode
LightSource
Flash
FocalLength
SubjectArea
FlashEnergy
SpatialFrequencyResponse
FocalPlaneXResolution
FocalPlaneYResolution
FocalPlaneResolutionUnit

1270 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

SubjectLocation
ExposureIndex
SensingMethod
FileSource
SceneType
CFAPattern
CustomRendered
ExposureMode
WhiteBalance
DigitalZoomRatio
FocalLengthIn35mmFilm
SceneCaptureType
GainControl
Contrast
Saturation
Sharpness
DeviceSettingDescription
SubjectDistanceRange
ImageUniqueID

GPSVersionID
GPSLatitudeRef
GPSLatitude
GPSLongitudeRef
GPSLongitude
GPSAltitudeRef
GPSAltitude
GPSTimeStamp
GPSSatellites
GPSStatus
GPSMeasureMode
GPSDOP
GPSSpeedRef
GPSSpeed
GPSTrackRef
GPSTrack
GPSImgDirectionRef
GPSImgDirection
GPSMapDatum
GPSDestLatitudeRef
GPSDestLatitude
GPSDestLongitudeRef
GPSDestLongitude
GPSDestBearingRef
GPSDestBearing
GPSDestDistanceRef
GPSDestDistance
GPSProcessingMethod
GPSAreaInformation
GPSDateStamp
GPSDifferential

[Top]

© 2018 Altova GmbH

Engine information 1271Appendices

Altova MapForce 2018 Professional Edition

XPath/XQuery Functions: Numeric

Altova's numeric extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data. The functions in this section can be used with
Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Auto-numbering functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double,

Increment as xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1

 XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated
the first time the function is called, is specified by the StartsWith argument. Each
subsequent call to the function generates a new number, this number being incremented over
the previously generated number by the value specified in the Increment argument. In effect,
the altova:generate-auto-number function creates a counter having a name specified by
the ID argument, with this counter being incremented each time the function is called. If the
value of the ResetOnChange argument changes from that of the previous function call, then
the value of the number to be generated is reset to the StartsWith value. Auto-numbering
can also be reset by using the altova:reset-auto-number function.

Examples

altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will

return one number each time the function is called, starting with 1, and incrementing
by 1 with each call to the function. As long as the fourth argument remains
"SomeString" in each subsequent call, the incrementing will continue. When the
value of the fourth argument changes, the counter (called ChapterNumber) will reset
to 1. The value of ChapterNumber can also be reset by a call to the altova:reset-
auto-number function, like this: altova:reset-auto-number("ChapterNumber").

1272 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

reset-auto-number [altova:]

altova:reset-auto-number(ID as xs:string) XP1 XP2 XQ1 XP3.1 XQ3.1

This function resets the number of the auto-numbering counter named in the ID argument.
The number is reset to the number specified by the StartsWith argument of the
altova:generate-auto-number function that created the counter named in the ID
argument.

Examples

altova:reset-auto-number("ChapterNumber") resets the number of the auto-

numbering counter named ChapterNumber that was created by the
altova:generate-auto-number function. The number is reset to the value of the
StartsWith argument of the altova:generate-auto-number function that created
ChapterNumber.

[Top]

Numeric functions
hex-string-to-integer [altova:]

altova:hex-string-to-integer(HexString as xs:string) as xs:integer XP3.1 XQ3.1

Takes a string argument that is the Base-16 equivalent of an integer in the decimal system
(Base-10), and returns the decimal integer.

Examples

altova:hex-string-to-integer('1') returns 1

altova:hex-string-to-integer('9') returns 9

altova:hex-string-to-integer('A') returns 10

altova:hex-string-to-integer('B') returns 11

altova:hex-string-to-integer('F') returns 15

altova:hex-string-to-integer('G') returns an error

altova:hex-string-to-integer('10') returns 16

altova:hex-string-to-integer('01') returns 1

altova:hex-string-to-integer('20') returns 32

altova:hex-string-to-integer('21') returns 33

altova:hex-string-to-integer('5A') returns 90

altova:hex-string-to-integer('USA') returns an error

integer-to-hex-string [altova:]

altova:integer-to-hex-string(Integer as xs:integer) as xs:string XP3.1 XQ3.1

Takes an integer argument and returns its Base-16 equivalent as a string.
Examples

altova:integer-to-hex-string(1) returns '1'

altova:integer-to-hex-string(9) returns '9'

altova:integer-to-hex-string(10) returns 'A'

altova:integer-to-hex-string(11) returns 'B'

© 2018 Altova GmbH

Engine information 1273Appendices

Altova MapForce 2018 Professional Edition

altova:integer-to-hex-string(15) returns 'F'

altova:integer-to-hex-string(16) returns '10'

altova:integer-to-hex-string(32) returns '20'

altova:integer-to-hex-string(33) returns '21'

altova:integer-to-hex-string(90) returns '5A'

[Top]

Number-formatting functions
generate-auto-number [altova:]

altova:generate-auto-number(ID as xs:string, StartsWith as xs:double,

Increment as xs:double, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1

 XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated
the first time the function is called, is specified by the StartsWith argument. Each
subsequent call to the function generates a new number, this number being incremented over
the previously generated number by the value specified in the Increment argument. In effect,
the altova:generate-auto-number function creates a counter having a name specified by
the ID argument, with this counter being incremented each time the function is called. If the
value of the ResetOnChange argument changes from that of the previous function call, then
the value of the number to be generated is reset to the StartsWith value. Auto-numbering
can also be reset by using the altova:reset-auto-number function.

Examples

altova:generate-auto-number("ChapterNumber", 1, 1, "SomeString") will

return one number each time the function is called, starting with 1, and incrementing
by 1 with each call to the function. As long as the fourth argument remains
"SomeString" in each subsequent call, the incrementing will continue. When the
value of the fourth argument changes, the counter (called ChapterNumber) will reset
to 1. The value of ChapterNumber can also be reset by a call to the altova:reset-
auto-number function, like this: altova:reset-auto-number("ChapterNumber").

[Top]

XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data. The functions in this section can be used with
Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

1274 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

attributes [altova:]

altova:attributes(AttributeName as xs:string) as attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the
input argument, AttributeName. The search is case-sensitive and conducted along the
attribute:: axis. This means that the context node must be the parent element node.

Examples

altova:attributes("MyAttribute") returns MyAttribute()*

altova:attributes(AttributeName as xs:string, SearchOptions as xs:string) as
attribute()* XP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the
input argument, AttributeName. The search is case-sensitive and conducted along the
attribute:: axis. The context node must be the parent element node. The second
argument is a string containing option flags. Available flags are:
r = switches to a regular-expression search; AttributeName must then be a regular-

expression search string;
f = If this option is specified, then AttributeName provides a full match; otherwise

AttributeName need only partially match an attribute name to return that attribute. For
example: if f is not specified, then MyAtt will return MyAttribute;

i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; AttributeName should then contain the

namespace prefix, for example: altova:MyAttribute.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed
as the second argument.

Examples

altova:attributes("MyAttribute", "rfip") returns MyAttribute()*

altova:attributes("MyAttribute", "pri") returns MyAttribute()*

altova:attributes("MyAtt", "rip") returns MyAttribute()*

altova:attributes("MyAttributes", "rfip") returns no match

altova:attributes("MyAttribute", "") returns MyAttribute()*

altova:attributes("MyAttribute", "Rip") returns an unrecognized-flag error.

altova:attributes("MyAttribute",) returns a missing-second-argument error.

elements [altova:]

© 2018 Altova GmbH

Engine information 1275Appendices

Altova MapForce 2018 Professional Edition

altova:elements(ElementName as xs:string) as element()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the
input argument, ElementName. The search is case-sensitive and conducted along the
child:: axis. The context node must be the parent node of the element/s being searched
for.

Examples

altova:elements("MyElement") returns MyElement()*

altova:elements(ElementName as xs:string, SearchOptions as xs:string) as
element()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the
input argument, ElementName. The search is case-sensitive and conducted along the
child:: axis. The context node must be the parent node of the element/s being searched
for. The second argument is a string containing option flags. Available flags are:
r = switches to a regular-expression search; ElementName must then be a regular-

expression search string;
f = If this option is specified, then ElementName provides a full match; otherwise

ElementName need only partially match an element name to return that element. For
example: if f is not specified, then MyElem will return MyElement;

i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; ElementName should then contain the

namespace prefix, for example: altova:MyElement.
The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed.

Examples

altova:elements("MyElement", "rip") returns MyElement()*

altova:elements("MyElement", "pri") returns MyElement()*

altova:elements("MyElement", "") returns MyElement()*

altova:attributes("MyElem", "rip") returns MyElement()*

altova:attributes("MyElements", "rfip") returns no match

altova:elements("MyElement", "Rip") returns an unrecognized-flag error.

altova:elements("MyElement",) returns a missing-second-argument error.

find-first [altova:]

altova:find-first((Sequence as item()*), (Condition(Sequence-Item as

xs:boolean)) as item()? XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condition, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is

submitted, in turn, to the function referenced in Condition. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condition to

evaluate to true() is returned as the result of altova:find-first, and the iteration stops.

Examples

altova:find-first(5 to 10, function($a) {$a mod 2 = 0}) returns

xs:integer 6

1276 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The Condition argument references the XPath 3.0 inline function, function(), which

declares an inline function named $a and then defines it. Each item in the Sequence

argument of altova:find-first is passed, in turn, to $a as its input value. The input

value is tested on the condition in the function definition ($a mod 2 = 0). The first input
value to satisfy this condition is returned as the result of altova:find-first (in this

case 6).

altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs:integer

4

Further examples
If the file C:\Temp\Customers.xml exists:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns xs:string C:\Temp
\Customers.xml

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html exists:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns xs:string http://
www.altova.com/index.html

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html also does not exist:

altova:find-first(("C:\Temp\Customers.xml", "http://www.altova.com/

index.html"), (doc-available#1)) returns no result

Notes about the examples given above

The XPath 3.0 function, doc-available, takes a single string argument, which is
used as a URI, and returns true if a document node is found at the submitted URI.
(The document at the submitted URI must therefore be an XML document.)
The doc-available function can be used for Condition, the second argument of

altova:find-first, because it takes only one argument (arity=1), because it
takes an item() as input (a string which is used as a URI), and returns a boolean
value.
Notice that the doc-available function is only referenced, not called. The #1 suffix
that is attached to it indicates a function with an arity of 1. In its entirety doc-
available#1 simply means: Use the doc-availabe() function that has arity=1,
passing to it as its single argument, in turn, each of the items in the first sequence.
As a result, each of the two strings will be passed to doc-available(), which

uses the string as a URI and tests whether a document node exists at the URI. If
one does, the doc-available() evaluates to true() and that string is returned as

the result of the altova:find-first function. Note about the doc-available()

function: Relative paths are resolved relative to the the current base URI, which is
by default the URI of the XML document from which the function is loaded.

© 2018 Altova GmbH

Engine information 1277Appendices

Altova MapForce 2018 Professional Edition

find-first-combination [altova:]

altova:find-first-combination((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs (one item from each sequence

making up a pair) as the arguments of the function in Condition. The pairs are ordered as

follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condition function to evaluate to true() is returned

as the result of altova:find-first-combination. Note that: (i) If the Condition function

iterates through the submitted argument pairs and does not once evaluate to true(), then

altova:find-first-combination returns No results; (ii) The result of altova:find-first-

combination will always be a pair of items (of any datatype) or no item at all.

Examples

altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a

+$b = 32}) returns the sequence of xs:integers (11, 21)
altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a

+$b = 33}) returns the sequence of xs:integers (11, 22)
altova:find-first-combination(11 to 20, 21 to 30, function($a, $b) {$a

+$b = 34}) returns the sequence of xs:integers (11, 23)

find-first-pair [altova:]

altova:find-first-pair((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as item()* XP3.1 XQ3.1

This function takes three arguments:

The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the

function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

1278 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The first ordered pair that causes the Condition function to evaluate to true() is returned

as the result of altova:find-first-pair. Note that: (i) If the Condition function iterates

through the submitted argument pairs and does not once evaluate to true(), then

altova:find-first-pair returns No results; (ii) The result of altova:find-first-pair

will always be a pair of items (of any datatype) or no item at all.

Examples

altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

32}) returns the sequence of xs:integers (11, 21)
altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b =

33}) returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12,
22) (13, 23)...(20, 30). This is why the second example returns No results
(because no ordered pair gives a sum of 33).

find-first-pair-pos [altova:]

altova:find-first-pair-pos((Seq-01 as item()*), (Seq-02 as item()*),

(Condition(Seq-01-Item, Seq-02-Item as xs:boolean)) as xs:integer XP3.1 XQ3.1

This function takes three arguments:

The first two arguments, Seq-01 and Seq-02, are sequences of one or more items of

any datatype.
The third argument, Condition, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seq-01 and Seq-02 are passed in ordered pairs as the arguments of the

function in Condition. The pairs are ordered as follows.
If Seq-01 = X1, X2, X3 ... Xn

And Seq-02 = Y1, Y2, Y3 ... Yn

Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condition function to evaluate to

true() is returned as the result of altova:find-first-pair-pos. Note that if the

Condition function iterates through the submitted argument pairs and does not once

evaluate to true(), then altova:find-first-pair-pos returns No results.

Examples

altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b

= 32}) returns 1
altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b

= 33}) returns No results

Notice from the two examples above that the ordering of the pairs is: (11, 21) (12,
22) (13, 23)...(20, 30). In the first example, the first pair causes the Condition

function to evaluate to true(), and so its index position in the sequence, 1, is returned.

The second example returns No results because no pair gives a sum of 33.

© 2018 Altova GmbH

Engine information 1279Appendices

Altova MapForce 2018 Professional Edition

find-first-pos [altova:]

altova:find-first-pos((Sequence as item()*), (Condition(Sequence-Item as

xs:boolean)) as xs:integer XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condition, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is

submitted, in turn, to the function referenced in Condition. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condition to

evaluate to true() has its index position in Sequence returned as the result of

altova:find-first-pos, and the iteration stops.

Examples

altova:find-first-pos(5 to 10, function($a) {$a mod 2 = 0}) returns

xs:integer 2
The Condition argument references the XPath 3.0 inline function, function(), which

declares an inline function named $a and then defines it. Each item in the Sequence

argument of altova:find-first-pos is passed, in turn, to $a as its input value. The

input value is tested on the condition in the function definition ($a mod 2 = 0). The
index position in the sequence of the first input value to satisfy this condition is returned
as the result of altova:find-first-pos (in this case 2, since 6, the first value (in the

sequence) to satisfy the condition, is at index position 2 in the sequence).

altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns

xs:integer 3

Further examples
If the file C:\Temp\Customers.xml exists:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://

www.altova.com/index.html"), (doc-available#1)) returns 1

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html exists:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://

www.altova.com/index.html"), (doc-available#1)) returns 2

If the file C:\Temp\Customers.xml does not exist, and http://www.altova.com/

index.html also does not exist:

altova:find-first-pos(("C:\Temp\Customers.xml", "http://

www.altova.com/index.html"), (doc-available#1)) returns no result

Notes about the examples given above

The XPath 3.0 function, doc-available, takes a single string argument, which is
used as a URI, and returns true if a document node is found at the submitted URI.
(The document at the submitted URI must therefore be an XML document.)

1280 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

The doc-available function can be used for Condition, the second argument of

altova:find-first-pos, because it takes only one argument (arity=1), because it
takes an item() as input (a string which is used as a URI), and returns a boolean
value.
Notice that the doc-available function is only referenced, not called. The #1 suffix
that is attached to it indicates a function with an arity of 1. In its entirety doc-
available#1 simply means: Use the doc-availabe() function that has arity=1,
passing to it as its single argument, in turn, each of the items in the first sequence.
As a result, each of the two strings will be passed to doc-available(), which

uses the string as a URI and tests whether a document node exists at the URI. If
one does, the doc-available() function evaluates to true() and the index

position of that string in the sequence is returned as the result of the altova:find-

first-pos function. Note about the doc-available() function: Relative paths are

resolved relative to the the current base URI, which is by default the URI of the
XML document from which the function is loaded.

substitute-empty [altova:]

altova:substitute-empty(FirstSequence as item()*, SecondSequence as item())

as item()* XP3.1 XQ3.1

If FirstSequence is empty, returns SecondSequence. If FirstSequence is not empty,
returns FirstSequence.

Examples

altova:substitute-empty((1,2,3), (4,5,6)) returns (1,2,3)

altova:substitute-empty((), (4,5,6)) returns (4,5,6)

XPath/XQuery Functions: String

Altova's string extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data. The functions in this section can be used with
Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

© 2018 Altova GmbH

Engine information 1281Appendices

Altova MapForce 2018 Professional Edition

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

camel-case [altova:]

altova:camel-case(InputString as xs:string) as xs:string XP3.1 XQ3.1

Returns the input string InputString in CamelCase. The string is analyzed using the regular

expression '\s' (which is a shortcut for the whitespace character). The first non-whitespace

character after a whitespace or sequence of consecutive whitespaces is capitalized. The first
character in the output string is capitalized.

Examples

altova:camel-case("max") returns Max

altova:camel-case("max max") returns Max Max

altova:camel-case("file01.xml") returns File01.xml

altova:camel-case("file01.xml file02.xml") returns File01.xml File02.xml

altova:camel-case("file01.xml file02.xml") returns File01.xml

File02.xml
altova:camel-case("file01.xml -file02.xml") returns File01.xml -

file02.xml

altova:camel-case(InputString as xs:string, SplitChars as xs:string, IsRegex

 as xs:boolean) as xs:string XP3.1 XQ3.1

Converts the input string InputString to camel case by using SplitChars to determine the

character/s that trigger the next capitalization. SplitChars is used as a regular expression

when IsRegex = true(), or as plain characters when IsRegex = false(). The first

character in the output string is capitalized.
Examples

altova:camel-case("setname getname", "set|get", true()) returns setName

getName
altova:camel-case("altova\documents\testcases", "\", false()) returns
Altova\Documents\Testcases

char [altova:]

altova:char(Position as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position
argument, in the string obtained by converting the value of the context item to xs:string.
The result string will be empty if no character exists at the index submitted by the Position
argument.

Examples

If the context item is 1234ABCD:

altova:char(2) returns 2

altova:char(5) returns A

altova:char(9) returns the empty string.

altova:char(-2) returns the empty string.

1282 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

altova:char(InputString as xs:string, Position as xs:integer) as xs:string

XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Position
argument, in the string submitted as the InputString argument. The result string will be
empty if no character exists at the index submitted by the Position argument.

Examples

altova:char("2014-01-15", 5) returns -

altova:char("USA", 1) returns U

altova:char("USA", 10) returns the empty string.

altova:char("USA", -2) returns the empty string.

first-chars [altova:]

altova:first-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the first X-Number of characters of the string obtained by
converting the value of the context item to xs:string.

Examples

If the context item is 1234ABCD:

altova:first-chars(2) returns 12

altova:first-chars(5) returns 1234A

altova:first-chars(9) returns 1234ABCD

altova:first-chars(InputString as xs:string, X-Number as xs:integer) as
xs:string XP3.1 XQ3.1

Returns a string containing the first X-Number of characters of the string submitted as the
InputString argument.

Examples

altova:first-chars("2014-01-15", 5) returns 2014-

altova:first-chars("USA", 1) returns U

last-chars [altova:]

altova:last-chars(X-Number as xs:integer) as xs:string XP3.1 XQ3.1

Returns a string containing the last X-Number of characters of the string obtained by
converting the value of the context item to xs:string.

Examples

If the context item is 1234ABCD:

altova:last-chars(2) returns CD

altova:last-chars(5) returns 4ABCD

altova:last-chars(9) returns 1234ABCD

altova:last-chars(InputString as xs:string, X-Number as xs:integer) as
xs:string XP3.1 XQ3.1

Returns a string containing the last X-Number of characters of the string submitted as the
InputString argument.

© 2018 Altova GmbH

Engine information 1283Appendices

Altova MapForce 2018 Professional Edition

Examples

altova:last-chars("2014-01-15", 5) returns 01-15

altova:last-chars("USA", 10) returns USA

pad-string-left [altova:]

altova:pad-string-left(StringToPad as xs:string, StringLength as xs:integer,

PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the left of the string to
increase the number of characters in StringToPad so that this number equals the integer
value of the StringLength argument. The StringLength argument can have any integer
value (positive or negative), but padding will occur only if the value of StringLength is greater
than the number of characters in StringToPad. If StringToPad. has more characters than
the value of StringLength, then StringToPad is left unchanged.

Examples

altova:pad-string-left('AP', 1, 'Z') returns 'AP'

altova:pad-string-left('AP', 2, 'Z') returns 'AP'

altova:pad-string-left('AP', 3, 'Z') returns 'ZAP'

altova:pad-string-left('AP', 4, 'Z') returns 'ZZAP'

altova:pad-string-left('AP', -3, 'Z') returns 'AP'

altova:pad-string-left('AP', 3, 'YZ') returns a pad-character-too-long error

pad-string-right [altova:]

altova:pad-string-right(StringToPad as xs:string, StringLength as

xs:integer, PadCharacter as xs:string) as xs:string XP3.1 XQ3.1

The PadCharacter argument is a single character. It is padded to the right of the string to
increase the number of characters in StringToPad so that this number equals the integer
value of the StringLength argument. The StringLength argument can have any integer
value (positive or negative), but padding will occur only if the value of StringLength is greater
than the number of characters in StringToPad. If StringToPad has more characters than the
value of StringLength, then StringToPad is left unchanged.

Examples

altova:pad-string-right('AP', 1, 'Z') returns 'AP'

altova:pad-string-right('AP', 2, 'Z') returns 'AP'

altova:pad-string-right('AP', 3, 'Z') returns 'APZ'

altova:pad-string-right('AP', 4, 'Z') returns 'APZZ'

altova:pad-string-right('AP', -3, 'Z') returns 'AP'

altova:pad-string-right('AP', 3, 'YZ') returns a pad-character-too-long error

repeat-string [altova:]

altova:repeat-string(InputString as xs:string, Repeats as xs:integer) as
xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a string that is composed of the first InputString argument repeated Repeats
number of times.

Examples

1284 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

altova:repeat-string("Altova #", 3) returns "Altova #Altova #Altova #"

substring-after-last [altova:]

altova:substring-after-last(MainString as xs:string, CheckString as

xs:string) as xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs after CheckString in
MainString is returned. If CheckString is not found in MainString, then the empty string is
returned. If CheckString is an empty string, then MainString is returned in its entirety. If
there is more than one occurrence of CheckString in MainString, then the substring after
the last occurrence of CheckString is returned.

Examples

altova:substring-after-last('ABCDEFGH', 'B') returns 'CDEFGH'

altova:substring-after-last('ABCDEFGH', 'BC') returns 'DEFGH'

altova:substring-after-last('ABCDEFGH', 'BD') returns ''

altova:substring-after-last('ABCDEFGH', 'Z') returns ''

altova:substring-after-last('ABCDEFGH', '') returns 'ABCDEFGH'

altova:substring-after-last('ABCD-ABCD', 'B') returns 'CD'

altova:substring-after-last('ABCD-ABCD-ABCD', 'BCD') returns ''

substring-before-last [altova:]

altova:substring-before-last(MainString as xs:string, CheckString as

xs:string) as xs:string XP3.1 XQ3.1

If CheckString is found in MainString, then the substring that occurs before CheckString
in MainString is returned. If CheckString is not found in MainString, or if CheckString is
an empty string, then the empty string is returned. If there is more than one occurrence of
CheckString in MainString, then the substring before the last occurrence of CheckString
is returned.

Examples

altova:substring-before-last('ABCDEFGH', 'B') returns 'A'

altova:substring-before-last('ABCDEFGH', 'BC') returns 'A'

altova:substring-before-last('ABCDEFGH', 'BD') returns ''

altova:substring-before-last('ABCDEFGH', 'Z') returns ''

altova:substring-before-last('ABCDEFGH', '') returns ''

altova:substring-before-last('ABCD-ABCD', 'B') returns 'ABCD-A'

altova:substring-before-last('ABCD-ABCD-ABCD', 'ABCD') returns 'ABCD-

ABCD-'

substring-pos [altova:]

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string)

as xs:integer XP3.1 XQ3.1

Returns the character position of the first occurrence of StringToFind in the string
StringToCheck. The character position is returned as an integer. The first character of
StringToCheck has the position 1. If StringToFind does not occur within StringToCheck,
the integer 0 is returned. To check for the second or a later occurrence of StringToCheck,

© 2018 Altova GmbH

Engine information 1285Appendices

Altova MapForce 2018 Professional Edition

use the next signature of this function.
Examples

altova:substring-pos('Altova', 'to') returns 3

altova:substring-pos('Altova', 'tov') returns 3

altova:substring-pos('Altova', 'tv') returns 0

altova:substring-pos('AltovaAltova', 'to') returns 3

altova:substring-pos(StringToCheck as xs:string, StringToFind as xs:string,

Integer as xs:integer) as xs:integer XP3.1 XQ3.1

Returns the character position of StringToFind in the string, StringToCheck. The search
for StringToFind starts from the character position given by the Integer argument; the
character substring before this position is not searched. The returned integer, however, is the
position of the found string within the entire string, StringToCheck. This signature is useful
for finding the second or a later position of a string that occurs multiple times with the
StringToCheck. If StringToFind does not occur within StringToCheck, the integer 0 is
returned.

Examples

altova:substring-pos('Altova', 'to', 1) returns 3

altova:substring-pos('Altova', 'to', 3) returns 3

altova:substring-pos('Altova', 'to', 4) returns 0

altova:substring-pos('Altova-Altova', 'to', 0) returns 3

altova:substring-pos('Altova-Altova', 'to', 4) returns 10

trim-string [altova:]

altova:trim-string(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading and trailing whitespace,
and returns a "trimmed" xs:string.

Examples

altova:trim-string(" Hello World ")) returns "Hello World"

altova:trim-string("Hello World ")) returns "Hello World"

altova:trim-string(" Hello World")) returns "Hello World"

altova:trim-string("Hello World")) returns "Hello World"

altova:trim-string("Hello World")) returns "Hello World"

trim-string-left [altova:]

altova:trim-string-left(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any leading whitespace, and returns a
left-trimmed xs:string.

Examples

altova:trim-string-left(" Hello World ")) returns "Hello World "

altova:trim-string-left("Hello World ")) returns "Hello World "

altova:trim-string-left(" Hello World")) returns "Hello World"

altova:trim-string-left("Hello World")) returns "Hello World"

altova:trim-string-left("Hello World")) returns "Hello World"

1286 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

trim-string-right [altova:]

altova:trim-string-right(InputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs:string argument, removes any trailing whitespace, and returns a
right-trimmed xs:string.

Examples

altova:trim-string-right(" Hello World ")) returns " Hello World"

altova:trim-string-right("Hello World ")) returns "Hello World"

altova:trim-string-right(" Hello World")) returns " Hello World"

altova:trim-string-right("Hello World")) returns "Hello World"

altova:trim-string-right("Hello World")) returns "Hello World"

XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current
version of MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery
expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://www.altova.com/xslt-extensions, and are indicated in this section

with the prefix altova:, which is assumed to be bound to this namespace. Note that, in future

versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

get-temp-folder [altova:]

altova:get-temp-folder() as xs:string XP2 XQ1 XP3.1 XQ3.1

This function takes no argument. It returns the path to the temporary folder of the current
user.

Examples

altova:get-temp-folder() would return, on a Windows machine, something like

C:\Users\<UserName>\AppData\Local\Temp\ as an xs:string.

generate-guid [altova:]

© 2018 Altova GmbH

Engine information 1287Appendices

Altova MapForce 2018 Professional Edition

altova:generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1

Generates a unique string GUID string.
Examples

altova:generate-guid() returns (for example) 85F971DA-17F3-4E4E-994E-

99137873ACCD

[Top]

Miscellaneous Extension Functions17.1.2.2

There are several ready-made functions in programming languages such as Java and C# that are
not available as XQuery/XPath functions or as XSLT functions. A good example would be the math
functions available in Java, such as sin() and cos(). If these functions were available to the
designers of XSLT stylesheets and XQuery queries, it would increase the application area of
stylesheets and queries and greatly simplify the tasks of stylesheet creators. The XSLT and
XQuery engines used in a number of Altova products support the use of extension functions in
Java and .NET, as well as MSXSL scripts for XSLT. This section describes how to use extension
functions and MSXSL scripts in your XSLT stylesheets and XQuery documents. The available
extension functions are organized into the following sections:

Java Extension Functions
.NET Extension Functions
MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective
libraries are called; and (ii) what rules are followed for converting arguments in a function call to
the required input format of the function, and what rules are followed for the return conversion
(function result to XSLT/XQuery data object).

Requirements
For extension functions support, a Java Runtime Environment (for access to Java functions) and
.NET Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine
running the XSLT transformation or XQuery execution, or must be accessible for the
transformations.

Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java
constructor or call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or
instance. How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

1288 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

Java: Constructors
Java: Static Methods and Static Fields
Java: Instance Methods and Instance Fields
Datatypes: XPath/XQuery to Java
Datatypes: Java to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

The prefix: part identifies the extension function as a Java function. It does so by
associating the extension function with an in-scope namespace declaration, the URI of
which must begin with java: (see below for examples). The namespace declaration
should identify a Java class, for example: xmlns:myns="java:java.lang.Math".
However, it could also simply be: xmlns:myns="java" (without a colon), with the
identification of the Java class being left to the fname() part of the extension function.
The fname() part identifies the Java method being called, and supplies the arguments for
the method (see below for examples). However, if the namespace URI identified by the
prefix: part does not identify a Java class (see preceding point), then the Java class
should be identified in the fname() part, before the class and separated from the class by
a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example
Here are two examples of how a static method can be called. In the first example, the class name
(java.lang.Math) is included in the namespace URI and, therefore, must not be in the fname()
part. In the second example, the prefix: part supplies the prefix java: while the fname() part
identifies the class as well as the method.

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jmath="java"
select="jmath:java.lang.Math.cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name
of a public static method in the named Java class (java.lang.Math in the example above).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

© 2018 Altova GmbH

Engine information 1289Appendices

Altova MapForce 2018 Professional Edition

User-defined Java classes
If you have created your own Java classes, methods in these classes are called differently
according to: (i) whether the classes are accessed via a JAR file or a class file, and (ii) whether
these files (JAR or class) are located in the current directory (the same directory as the XSLT or
XQuery document) or not. How to locate these files is described in the sections User-Defined
Class Files and User-Defined Jar Files. Note that paths to class files not in the current directory
and to all JAR files must be specified.

User-Defined Class Files

If access is via a class file, then there are two possibilities:

The class file is in a package. The XSLT or XQuery file is in the same folder as the Java
package. (See example below.)
The class file is not packaged. The XSLT or XQuery file is in the same folder as the class
file. (See example below.)
The class file is in a package. The XSLT or XQuery file is at some random location. (See
example below.)
The class file is not packaged. The XSLT or XQuery file is at some random location. (See
example below.)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or
XQuery document. In this case, since all classes in the folder are found, the file location does not
need to be specified. The syntax to identify a class is:

java:classname

where

java: indicates that a user-defined Java function is being called; (Java classes in the
current directory will be loaded by default)

classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call.

Class file packaged, XSLT/XQuery file in same folder as Java package
The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The com.altova.extfunc package is in the folder JavaProject.
The XSLT file is also in the folder JavaProject.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car" >

1290 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file not packaged, XSLT/XQuery file in same folder as class file
The example below calls the getVehicleType()method of the Car class of the
com.altova.extfunc package. The Car class file is in the following folder location:
JavaProject/com/altova/extfunc. The XSLT file is also in the folder JavaProject/com/
altova/extfunc.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car" >

<xsl:output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:template match="/">
 <a>

 <xsl:value-of select="car:getVehicleType()"/>

</xsl:template>

</xsl:stylesheet>

Class file packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc
package. The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any
location. In this case, the location of the package must be specified within the URI as a query
string. The syntax is:

java:classname[?path=uri-of-package]

where

java: indicates that a user-defined Java function is being called
uri-of-package is the URI of the Java package
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

© 2018 Altova GmbH

Engine information 1291Appendices

Altova MapForce 2018 Professional Edition

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:com.altova.extfunc.Car?path=file:///C:/

JavaProject/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Class file not packaged, XSLT/XQuery file at any location
The example below calls the getCarColor()method of the Car class of the com.altova.extfunc
package. The com.altova.extfunc package is in the folder JavaProject. The XSLT file is at any
location. The location of the class file is specified within the namespace URI as a query string.
The syntax is:

java:classname[?path=uri-of-classfile]

where

java: indicates that a user-defined Java function is being called
uri-of-classfile is the URI of the folder containing the class file
classname is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java:Car?path=file:///C:/JavaProject/com/altova/

extfunc/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:new('red')" />

 <a><xsl:value-of select="car:getCarColor($myCar)"/>

</xsl:template>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

1292 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:

xmlns:classNS="java:classname?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the
class: classNS:method()

In the above:

java: indicates that a Java function is being called
classname is the name of the user-defined class
? is the separator between the classname and the path
path=jar: indicates that a path to a JAR file is being given
uri-of-jarfile is the URI of the jar file
!/ is the end delimiter of the path
classNS:method() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the
syntax:

xmlns:ns1="java:docx.layout.pages?path=jar:file:///c:/projects/
docs/docx.jar!/"

ns1:main()

xmlns:ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2:docx.layout.pages.main()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fn="http://www.w3.org/2005/xpath-functions"

xmlns:car="java?path=jar:file:///C:/test/Car1.jar!/" >

<xsl:output exclude-result-prefixes="fn car xsl xs"/>

<xsl:template match="/">
 <xsl:variable name="myCar" select="car:Car1.new('red')" />

 <a><xsl:value-of select="car:Car1.getCarColor($myCar)"/>

</xsl:template>

<xsl:template match="car"/>

</xsl:stylesheet>

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

© 2018 Altova GmbH

Engine information 1293Appendices

Altova MapForce 2018 Professional Edition

Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the
pseudo-function new().

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes, then
the Java extension function will return a sequence that is an XPath/XQuery datatype. If the result
of a Java constructor call cannot be converted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped Java object with a type that is the name of the class returning that
Java object. For example, if a constructor for the class java.util.Date is called
(java.util.Date.new()), then an object having a type java.util.Date is returned. The lexical
format of the returned object may not match the lexical format of an XPath datatype and the value
would therefore need to be converted to the lexical format of the required XPath datatype and then
to the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

It can be assigned to a variable:
<xsl:variable name="currentdate" select="date:new()"
xmlns:date="java:java.util.Date" />

It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:toString(date:new())"

xmlns:date="java:java.util.Date" />

Java: Static Methods and Static Fields

A static method is called directly by its Java name and by supplying the arguments for the
method. Static fields (methods that take no arguments), such as the constant-value fields E and
PI, are accessed without specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(3.14)" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:cos(jMath:PI())" />

<xsl:value-of xmlns:jMath="java:java.lang.Math"
select="jMath:E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefix:fname(). The prefix in all three
cases is jMath:, which is associated with the namespace URI java:java.lang.Math. (The
namespace URI must begin with java:. In the examples above it is extended to contain the class
name (java.lang.Math).) The fname() part of the extension functions must match the name of a
public class (e.g. java.lang.Math) followed by the name of a public static method with its

1294 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

argument/s (such as cos(3.14)) or a public static field (such as PI()).

In the examples above, the class name has been included in the namespace URI. If it were not
contained in the namespace URI, then it would have to be included in the fname() part of the
extension function. For example:

<xsl:value-of xmlns:java="java:"
select="java:java.lang.Math.cos(3.14)" />

XQuery example
A similar example in XQuery would be:

<cosine xmlns:jMath="java:java.lang.Math">

 {jMath:cos(3.14)}

</cosine>

Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such
a Java object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:date="java:java.util.Date"
 xmlns:jlang="java:java.lang">
 <xsl:param name="CurrentDate" select="date:new()"/>

 <xsl:template match="/">
 <enrollment institution-id="Altova School"
 date="{date:toString($CurrentDate)}"

 type="
{jlang:Object.toString(jlang:Object.getClass(date:new()))}">

 </enrollment>
 </xsl:template>
</xsl:stylesheet>

In the example above, the value of the node enrollment/@type is created as follows:

1. An object is created with a constructor for the class java.util.Date (with the
date:new() constructor).

2. This Java object is passed as the argument of the jlang.Object.getClass method.
3. The object obtained by the getClass method is passed as the argument to the

jlang.Object.toString method.

The result (the value of @type) will be a string having the value: java.util.Date.

An instance field is theoretically different from an instance method in that it is not a Java object
per se that is passed as an argument to the instance field. Instead, a parameter or variable is
passed as the argument. However, the parameter/variable may itself contain the value returned by
a Java object. For example, the parameter CurrentDate takes the value returned by a constructor

© 2018 Altova GmbH

Engine information 1295Appendices

Altova MapForce 2018 Professional Edition

for the class java.util.Date. This value is then passed as an argument to the instance method
date:toString in order to supply the value of /enrollment/@date.

Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the
function's arguments is important in determining which of multiple Java classes having the same
name is called.

In Java, the following rules are followed:

If there is more than one Java method with the same name, but each has a different
number of arguments than the other/s, then the Java method that best matches the
number of arguments in the function call is selected.
The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding Java datatype. If the supplied XPath/XQuery type can be
converted to more than one Java type (for example, xs:integer), then that Java type is
selected which is declared for the selected method. For example, if the Java method
being called is fx(decimal) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to Java's decimal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to Java datatypes.

xs:string java.lang.String

xs:boolean boolean (primitive), java.lang.Boolean

xs:integer int, long, short, byte, float, double, and the
wrapper classes of these, such as
java.lang.Integer

xs:float float (primitive), java.lang.Float, double
(primitive)

xs:double double (primitive), java.lang.Double

xs:decimal float (primitive), java.lang.Float,
double(primitive), java.lang.Double

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied
information. For example, consider the following case.

The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).
However, there is another method in the class which takes an argument of another
datatype: mymethod(double).
Since the method names are the same and the supplied type (xs:untypedAtomic) could
be converted correctly to either float or double, it is possible that xs:untypedAtomic is

1296 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

converted to double instead of float.
Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error. However, note that in some cases, it might be possible to create the required
Java type by using a Java constructor.

Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, Java's
java.lang.Boolean and boolean datatypes are converted to xsd:boolean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional
arrays will not be converted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you
can ensure conversion to the required XPath/XQuery type by first using a Java method (e.g
toString) to convert the Java object to a string. In XPath/XQuery, the string can be modified to fit
the lexical representation of the required type and then converted to the required type (for
example, by using the cast as expression).

.NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions
written in any of the .NET languages (for example, C#). A .NET extension function can be used
within an XPath or XQuery expression to invoke a constructor, property, or method (static or
instance) within a .NET class.

A property of a .NET class is called using the syntax get_PropertyName().

This section is organized into the following sub-sections:

.NET: Constructors

.NET: Static Methods and Static Fields

.NET: Instance Methods and Instance Fields
Datatypes: XPath/XQuery to .NET
Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefix:fname().

The prefix: part is associated with a URI that identifies the .NET class being
addressed.
The fname() part identifies the constructor, property, or method (static or instance) within

© 2018 Altova GmbH

Engine information 1297Appendices

Altova MapForce 2018 Professional Edition

the .NET class, and supplies any argument/s, if required.
The URI must begin with clitype: (which identifies the function as being a .NET
extension function).
The prefix:fname() form of the extension function can be used with system classes
and with classes in a loaded assembly. However, if a class needs to be loaded, additional
parameters containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).

sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the
URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

partialname The partial name of the assembly. It is supplied to
Assembly.LoadWith.PartialName(), which will attempt to load the
assembly. If partialname is present, any other parameter is ignored.

loc The locale, for example, en-US. The default is neutral.

If the assembly is to be loaded from a DLL, use the from parameter and omit the sn parameter. If
the assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and
omit the from parameter.

A question mark must be inserted before the first parameter, and parameters must be separated
by a semi-colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class
System.Environment:

xmlns:myns="clitype:System.Environment"

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade.Forward.Scrip:

xmlns:myns="clitype:Trade.Forward.Scrip?asm=forward;version=10.6.2.1"

An example of a namespace declaration in XQuery that identifies the system class
MyManagedDLL.testClass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
declare namespace cs="clitype:MyManagedDLL.testClass?asm=MyManagedDLL;

ver=1.2.3.4;loc=neutral;sn=b9f091b72dccfba8";

1298 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

2. When the assembly is loaded from the DLL (complete and partial references below):
declare namespace cs="clitype:MyManagedDLL.testClass?from=file:///

C:/Altova
Projects/extFunctions/MyManagedDLL.dll;

declare namespace cs="clitype:MyManagedDLL.testClass?
from=MyManagedDLL.dll;

XSLT example
Here is a complete XSLT example that calls functions in system class System.Math:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <math xmlns:math="clitype:System.Math">

 <sqrt><xsl:value-of select="math:Sqrt(9)"/></sqrt>

 <pi><xsl:value-of select="math:PI()"/></pi>

 <e><xsl:value-of select="math:E()"/></e>

 <pow><xsl:value-of select="math:Pow(math:PI(), math:E())"/></pow>

 </math>
 </xsl:template>
</xsl:stylesheet>

The namespace declaration on the element math associates the prefix math: with the URI
clitype:System.Math. The clitype: beginning of the URI indicates that what follows identifies
either a system class or a loaded class. The math: prefix in the XPath expressions associates
the extension functions with the URI (and, by extension, the class) System.Math. The extension
functions identify methods in the class System.Math and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<math xmlns:math="clitype:System.Math">

 {math:Sqrt(9)}

</math>

As with the XSLT example above, the namespace declaration identifies the .NET class, in this
case a system class. The XQuery expression identifies the method to be called and supplies the
argument.

.NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the
pseudo-function new(). If there is more than one constructor for a class, then the constructor that

© 2018 Altova GmbH

Engine information 1299Appendices

Altova MapForce 2018 Professional Edition

most closely matches the number of arguments supplied is selected. If no constructor is deemed
to match the supplied argument/s, then a 'No constructor found' error is returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes, then
the .NET extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects
If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype,
then the constructor creates a wrapped .NET object with a type that is the name of the class
returning that object. For example, if a constructor for the class System.DateTime is called (with
System.DateTime.new()), then an object having a type System.DateTime is returned.

The lexical format of the returned object may not match the lexical format of a required XPath
datatype. In such cases, the returned value would need to be: (i) converted to the lexical format of
the required XPath datatype; and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

It can be used within a variable:
<xsl:variable name="currentdate" select="date:new(2008, 4, 29)"

xmlns:date="clitype:System.DateTime" />

It can be passed to an extension function (see Instance Method and Instance Fields):
<xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

xmlns:date="clitype:System.DateTime" />
It can be converted to a string, number, or boolean:
<xsl:value-of select="xs:integer(data:get_Month(date:new(2008, 4, 29)))"

xmlns:date="clitype:System.DateTime" />

.NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method.
The name used in the call must exactly match a public static method in the class specified. If the
method name and the number of arguments that were given in the function call matches more
than one method in a class, then the types of the supplied arguments are evaluated for the best
match. If a match cannot be found unambiguously, an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is
called using the syntax get_PropertyName().

Examples
An XSLT example showing a call to a method with one argument (System.Math.Sin(arg)):
<xsl:value-of select="math:Sin(30)" xmlns:math="clitype:System.Math"/>

1300 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

An XSLT example showing a call to a field (considered a method with no argument)
(System.Double.MaxValue()):
<xsl:value-of select="double:MaxValue()" xmlns:double="clitype:System.Double"/>

An XSLT example showing a call to a property (syntax is get_PropertyName())
(System.String()):
<xsl:value-of select="string:get_Length('my string')"
xmlns:string="clitype:System.String"/>

An XQuery example showing a call to a method with one argument (System.Math.Sin(arg)):
<sin xmlns:math="clitype:System.Math">
 { math:Sin(30) }
</sin>

.NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This
.NET object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions">
 <xsl:output method="xml" omit-xml-declaration="yes"/>
 <xsl:template match="/">
 <xsl:variable name="releasedate"

 select="date:new(2008, 4, 29)"

 xmlns:date="clitype:System.DateTime"/>

 <doc>
 <date>
 <xsl:value-of select="date:ToString(date:new(2008, 4, 29))"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 <date>
 <xsl:value-of select="date:ToString($releasedate)"

 xmlns:date="clitype:System.DateTime"/>

 </date>
 </doc>
 </xsl:template>
</xsl:stylesheet>

In the example above, a System.DateTime constructor (new(2008, 4, 29)) is used to create a
.NET object of type System.DateTime. This object is created twice, once as the value of the
variable releasedate, a second time as the first and only argument of the
System.DateTime.ToString() method. The instance method System.DateTime.ToString() is
called twice, both times with the System.DateTime constructor (new(2008, 4, 29)) as its first
and only argument. In one of these instances, the variable releasedate is used to get the .NET
object.

© 2018 Altova GmbH

Engine information 1301Appendices

Altova MapForce 2018 Professional Edition

Instance methods and instance fields
The difference between an instance method and an instance field is theoretical. In an instance
method, a .NET object is directly passed as an argument; in an instance field, a parameter or
variable is passed instead—though the parameter or variable may itself contain a .NET object. For
example, in the example above, the variable releasedate contains a .NET object, and it is this
variable that is passed as the argument of ToString() in the second date element constructor.
Therefore, the ToString() instance in the first date element is an instance method while the
second is considered to be an instance field. The result produced in both instances, however, is
the same.

Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the
function's arguments are important for determining which one of multiple .NET methods having the
same name is called.

In .NET, the following rules are followed:

If there is more than one method with the same name in a class, then the methods
available for selection are reduced to those that have the same number of arguments as
the function call.
The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding .NET datatype. If the supplied XPath/XQuery type can be
converted to more than one .NET type (for example, xs:integer), then that .NET type is
selected which is declared for the selected method. For example, if the .NET method
being called is fx(double) and the supplied XPath/XQuery datatype is xs:integer,
then xs:integer will be converted to .NET's double datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to .NET datatypes.

xs:string StringValue, string

xs:boolean BooleanValue, bool

xs:integer IntegerValue, decimal, long, integer,
short, byte, double, float

xs:float FloatValue, float, double

xs:double DoubleValue, double

xs:decimal DecimalValue, decimal, double, float

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the .NET type/s corresponding to that subtype's ancestor type.

1302 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

In some cases, it might not be possible to select the correct .NET method based on the supplied
information. For example, consider the following case.

The supplied argument is an xs:untypedAtomic value of 10 and it is intended for the
method mymethod(float).
However, there is another method in the class which takes an argument of another
datatype: mymethod(double).
Since the method names are the same and the supplied type (xs:untypedAtomic) could
be converted correctly to either float or double, it is possible that xs:untypedAtomic is
converted to double instead of float.
Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs:date) will not be converted and will
generate an error.

Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, .NET's decimal
datatype is converted to xsd:decimal.

When a .NET object or a datatype other than string, numeric or boolean is returned, you can
ensure conversion to the required XPath/XQuery type by first using a .NET method (for example
System.DateTime.ToString()) to convert the .NET object to a string. In XPath/XQuery, the
string can be modified to fit the lexical representation of the required type and then converted to
the required type (for example, by using the cast as expression).

MSXSL Scripts for XSLT

The <msxsl:script> element contains user-defined functions and variables that can be called
from within XPath expressions in the XSLT stylesheet. The <msxsl:script> is a top-level
element, that is, it must be a child element of <xsl:stylesheet> or <xsl:transform>.

The <msxsl:script> element must be in the namespace urn:schemas-microsoft-com:xslt
(see example below).

Scripting language and namespace
The scripting language used within the block is specified in the <msxsl:script> element's
language attribute and the namespace to be used for function calls from XPath expressions is
identified with the implements-prefix attribute (see below).

<msxsl:script language="scripting-language" implements-prefix="user-namespace-
prefix">

© 2018 Altova GmbH

Engine information 1303Appendices

Altova MapForce 2018 Professional Edition

 function-1 or variable-1
 ...
 function-n or variable-n

</msxsl:script>

The <msxsl:script> element interacts with the Windows Scripting Runtime, so only languages
that are installed on your machine may be used within the <msxsl:script> element. The .NET
Framework 2.0 platform or higher must be installed for MSXSL scripts to be used.
Consequently, the .NET scripting languages can be used within the <msxsl:script> element.

The language attribute accepts the same values as the language attribute on the HTML
<script> element. If the language attribute is not specified, then Microsoft JScript is assumed
as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace.
This namespace typically will be a user namespace that has been reserved for a function library.
All functions and variables defined within the <msxsl:script> element will be in the namespace
identified by the prefix specified in the implements-prefix attribute. When a function is called
from within an XPath expression, the fully qualified function name must be in the same
namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a
<msxsl:script> element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 xmlns:user="http://mycompany.com/mynamespace">

 <msxsl:script language="VBScript" implements-prefix="user">

 <![CDATA[
 ' Input: A currency value: the wholesale price
 ' Returns: The retail price: the input value plus 20% margin,
 ' rounded to the nearest cent
 dim a as integer = 13
 Function AddMargin(WholesalePrice) as integer

 AddMargin = WholesalePrice * 1.2 + a
 End Function
]]>
 </msxsl:script>

 <xsl:template match="/">
 <html>
 <body>
 <p>
 Total Retail Price =
 $<xsl:value-of select="user:AddMargin(50)"/>

1304 Appendices Engine information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

 Total Wholesale Price =
 $<xsl:value-of select="50"/>

 </p>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Datatypes
The values of parameters passed into and out of the script block are limited to XPath datatypes.
This restriction does not apply to data passed among functions and variables within the script
block.

Assemblies
An assembly can be imported into the script by using the msxsl:assembly element. The

assembly is identified via a name or a URI. The assembly is imported when the stylesheet is
compiled. Here is a simple representation of how the msxsl:assembly element is to be used.

<msxsl:script>
<msxsl:assembly name="myAssembly.assemblyName" />
<msxsl:assembly href="pathToAssembly" />

...

</msxsl:script>

The assembly name can be a full name, such as:

"system.Math, Version=3.1.4500.1 Culture=neutral
PublicKeyToken=a46b3f648229c514"

or a short name, such as "myAssembly.Draw".

Namespaces
Namespaces can be declared with the msxsl:using element. This enables assembly classes to

be written in the script without their namespaces, thus saving you some tedious typing. Here is
how the msxsl:using element is used so as to declare namespaces.

<msxsl:script>
<msxsl:using namespace="myAssemblyNS.NamespaceName" />

...

</msxsl:script>

The value of the namespace attribute is the name of the namespace.

© 2018 Altova GmbH

Engine information 1305Appendices

Altova MapForce 2018 Professional Edition

1306 Appendices Technical Data

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

17.2 Technical Data

This section contains useful background information on the technical aspects of your software. It
is organized into the following sections:

OS and Memory Requirements
Altova XML Validator
Altova XSLT and XQuery Engines
Unicode Support
Internet Usage

17.2.1 OS and Memory Requirements

Operating System
Altova software applications are available for the following platforms:

Windows 7 SP1 with Platform Update, Windows 8, Windows 10
Windows Server 2008 R2 SP1 with Platform Update or newer

Memory
Since the software is written in C++ it does not require the overhead of a Java Runtime
Environment and typically requires less memory than comparable Java-based applications.
However, each document is loaded fully into memory so as to parse it completely and to improve
viewing and editing speed. The memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting
and pasting large selections in large documents, available memory can rapidly be depleted.

17.2.2 Altova XML Validator

When opening any XML document, the application uses its built-in XML validator to check for well-
formedness, validate the document against a schema (if specified), and build trees and infosets.
The XML validator is also used to provide intelligent editing help while you edit documents and to
dynamically display any validation error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0
and 1.1 specification. New developments recommended by the W3C's XML Schema Working
Group are continuously being incorporated in the XML validator, so that Altova products give you a
state-of-the-art development environment.

17.2.3 Altova XSLT and XQuery Engines

Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.1
Engines. Documentation about implementation-specific behavior for each engine is in the
appendices of the documentation (Engine Information), should that engine be used in the product.

Note: Altova MapForce generates code using the XSLT 1.0, 2.0 and XQuery 1.0 engines.

© 2018 Altova GmbH

Technical Data 1307Appendices

Altova MapForce 2018 Professional Edition

17.2.4 Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need
a font that supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and
are therefore typically targeted at the corresponding writing system. If some text appears garbled,
the reason could be that the font you have selected does not contain the required glyphs. So it is
useful to have a font that covers the entire Unicode range, especially when editing XML
documents in different languages or writing systems. A typical Unicode font found on Windows
PCs is Arial Unicode MS.

In the /Examples folder of your application folder you will find an XHTML file called UnicodeUTF-
8.html that contains the following sentence in a number of different languages and writing
systems:

When the world wants to talk , it speaks Unicode
Wenn die Welt miteinander spricht, spricht sie Unicode

)

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also
indicate what writing systems are supported by the fonts available on your PC.

17.2.5 Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

If you click the "Request evaluation key-code" in the Registration dialog (Help | Software
Activation), the three fields in the registration dialog box are transferred to our web server
by means of a regular http (port 80) connection and the free evaluation key-code is sent
back to the customer via regular SMTP e-mail.
In some Altova products, you can open a file over the Internet (File | Open | Switch to
URL). In this case, the document is retrieved using one of the following protocol methods
and connections: HTTP (normally port 80), FTP (normally port 20/21), HTTPS (normally
port 443). You could also run an HTTP server on port 8080. (In the URL dialog, specify the
port after the server name and a colon.)
If you open an XML document that refers to an XML Schema or DTD and the document is
specified through a URL, the referenced schema document is also retrieved through a
HTTP connection (port 80) or another protocol specified in the URL (see Point 2 above). A
schema document will also be retrieved when an XML file is validated. Note that validation
might happen automatically upon opening a document if you have instructed the
application to do this (in the File tab of the Options dialog (Tools | Options)).
In Altova applications using WSDL and SOAP, web service connections are defined by
the WSDL documents.
If you are using the Send by Mail command (File | Send by Mail) in XMLSpy, the
current selection or file is sent by means of any MAPI-compliant mail program installed
on the user's PC.
As part of Software Activation and LiveUpdate as further described in the Altova Software
License Agreement.

1308 Appendices License Information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

17.3 License Information

This section contains:

Information about the distribution of this software product
Information about software activation and license metering
Information about the intellectual property rights related to this software product
The End-User License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

17.3.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

You can evaluate the software free-of-charge before making a purchasing decision.
Once you decide to buy the software, you can place your order online at the Altova
website and immediately get a fully licensed product within minutes.
When you place an online order, you always get the latest version of our software.
The product package includes a comprehensive integrated onscreen help system. The
latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period
After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the application.
If you would like to continue using the program after the 30-day evaluation period, you have to
purchase an Altova Software License Agreement, which is delivered in the form of a key-code that
you enter into the Software Activation dialog to unlock the product. You can purchase your
license at the online shop at the Altova website.

Helping Others within Your Organization to Evaluate the Software
If you wish to distribute the evaluation version within your company network, or if you plan to use it
on a PC that is not connected to the Internet, you may only distribute the Setup programs,
provided that they are not modified in any way. Any person that accesses the software installer
that you have provided, must request their own 30-day evaluation license key code and after
expiration of their evaluation period, must also purchase a license in order to be able to continue
using the product.

For further details, please refer to the Altova Software License Agreement at the end of this
section.

https://www.altova.com/
https://www.altova.com/
https://www.altova.com/documentation.html
https://www.altova.com/

© 2018 Altova GmbH

License Information 1309Appendices

Altova MapForce 2018 Professional Edition

17.3.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet
connection for the purpose of transmitting license-related data at the time of installation,
registration, use, or update to an Altova-operated license server and validating the authenticity of
the license-related data in order to protect Altova against unlicensed or illegal use of the software
and to improve customer service. Activation is based on the exchange of license related data
such as operating system, IP address, date/time, software version, and computer name, along
with other information between your computer and an Altova license server.

Your Altova product has a built-in license metering module that further helps you avoid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license
When the application starts up, as part of the license metering process, the software sends a
short broadcast datagram to find any other instance of the product running on another computer in
the same network segment. If it doesn't get any response, it will open a port for listening to other
instances of the application.

Multi license
If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order to
help you to better determine that the number of concurrent licenses purchased is not accidentally
violated. This is the same kind of license metering technology that is common in the Unix world
and with a number of database development tools. It allows Altova customers to purchase
reasonably-priced concurrent-use multi-user licenses.

We have also designed the applications so that they send few and small network packets so as
to not put a burden on your network. The TCP/IP ports (2799) used by your Altova product are
officially registered with the IANA (see the IANA website (http://www.iana.org/) for details) and our
license-metering module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

1310 Appendices License Information

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

17.3.3 Intellectual Property Rights

The Altova Software and any copies that you are authorized by Altova to make are the intellectual
property of and are owned by Altova and its suppliers. The structure, organization and code of the
Software are the valuable trade secrets and confidential information of Altova and its suppliers.
The Software is protected by copyright, including without limitation by United States Copyright
Law, international treaty provisions and applicable laws in the country in which it is being used.
Altova retains the ownership of all patents, copyrights, trade secrets, trademarks and other
intellectual property rights pertaining to the Software, and that Altova’s ownership rights extend to
any images, photographs, animations, videos, audio, music, text and "applets" incorporated into
the Software and all accompanying printed materials. Notifications of claimed copyright
infringement should be sent to Altova’s copyright agent as further provided on the Altova Web
Site.

Altova software contains certain Third Party Software that is also protected by intellectual property
laws, including without limitation applicable copyright laws as described in detail at http://
www.altova.com/legal_3rdparty.html.

All other names or trademarks are the property of their respective owners.

17.3.4 Altova End User License Agreement

The Altova End User License Agreement is available here: http://www.altova.com/eula
Altova's Privacy Policy is available here: http://www.altova.com/privacy

http://www.altova.com/legal_3rdparty.html
http://www.altova.com/legal_3rdparty.html
http://www.altova.com/eula
http://www.altova.com/privacy

Chapter 18

Glossary

1312 Glossary

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

18 Glossary

The glossary section includes the list of terms pertaining to MapForce.

© 2018 Altova GmbH

C 1313Glossary

Altova MapForce 2018 Professional Edition

18.1 C

Component

In MapForce, the term "component" is what represents visually the structure (schema) of your
data, or how data is to be transformed (functions). Components are the central building pieces of
any mapping. On the mapping area, components appear as rectangles. The following are
examples of MapForce components:

Constants
Databases
Filters
Conditions
Function components
EDI documents (UN/EDIFACT, ANSI X12, HL7)
Excel 2007+ files
Simple input components
Simple output components
XML Schemas and DTDs

Connection

A connection is a line that you can draw between two connectors. By drawing connections, you
instruct MapForce to transform data in a specific way (for example, read data from an XML
document and write it to another XML document).

Connector

A connector is a small triangle displayed on the left or right side of a component. The connectors
displayed on the left of a component provide data entry points to that component. The connectors
displayed on the right of a component provide data exit points from that component.

1314 Glossary F

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

18.2 F

Fixed Length Field (FLF)

A common text format where data is conventionally separated into fields which have a fixed length
(for example, the first 5 characters of every row represent a transaction ID, and the next 20
characters represent a transaction description).

FlexText

FlexText is a module in MapForce Enterprise Edition which enables you to convert data from non-
standard or legacy text files of high complexity to other formats supported by MapForce, and vice
versa.

© 2018 Altova GmbH

G 1315Glossary

Altova MapForce 2018 Professional Edition

18.3 G

Global Resources

Altova Global Resources represent a way to refer to files, folders, or databases so as to make
these resources reusable, configurable and available across multiple Altova applications.

1316 Glossary I

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

18.4 I

Input component

An input component is a MapForce component that enables you to pass simple values to a
mapping. Input components are commonly used to pass file names or other string values to a
mapping at runtime. Input components should not be confused with source components.

© 2018 Altova GmbH

J 1317Glossary

Altova MapForce 2018 Professional Edition

18.5 J

Join component

A Join component is a MapForce component which enables joining two or more structures on the
mapping based on custom-defined conditions. It returns the association (joined set) of items that
satisfy the condition. Joins are particularly useful to combine data from two structures which
share a common field (such as an identity).

1318 Glossary M

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

18.6 M

MapForce

MapForce is a Windows-based, multi-purpose IDE (integrated development environment) that
enables you to transform data from one format to another, or from one schema to another, by
means of a visual, "drag-and-drop" -style graphical user interface that does not require writing any
program code. In fact, MapForce generates for you the program code which performs the actual
data transformation (or data mapping). When you prefer not to generate program code, you can
just run the transformation using the MapForce built-in transformation language (available in the
MapForce Professional or Enterprise Editions).

Mapping

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to
be transformed from one format to another. A mapping consists of components that you add to
the MapForce mapping area in order to create your data transformations (for example, convert
XML documents from one schema to another). A valid mapping consists of one or several source
components connected to one or several target components. You can run a mapping and preview
its result directly in MapForce. You can generate code and execute it externally. You can also
compile a mapping to a MapForce execution file and automate mapping execution using
MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

MFF

The file name extension of MapForce function files.

MFD

The file name extension of MapForce design documents (mappings).

MFP

The file name extension of MapForce Project files.

© 2018 Altova GmbH

O 1319Glossary

Altova MapForce 2018 Professional Edition

18.7 O

Output component

An output component (or "simple output") is a MapForce component which enables you to return
a string value from the mapping. Output components represent just one possible type of target
components, but should not be confused with the latter.

1320 Glossary P

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

18.8 P

parent-context

parent-context is an optional argument in some MapForce core aggregation functions such as
min, max, avg, count. In a source component which has multiple hierarchical sequences, the

parent context determines the set of nodes on which the function should operate.

© 2018 Altova GmbH

S 1321Glossary

Altova MapForce 2018 Professional Edition

18.9 S

Source component

A source component is a component from which MapForce reads data. When you run the
mapping, MapForce reads the data supplied by the connector of the source component, converts
it to the required type, and sends it to the connector of the target component.

1322 Glossary T

© 2018 Altova GmbHAltova MapForce 2018 Professional Edition

18.10 T

Target component

A target component is a component to which MapForce writes data. When you run the mapping,
a target component instructs MapForce to either generate a file (or multiple files) or output the
result as a string value for further processing in an external program. A target component is the
opposite of a source component.

© 2018 Altova GmbH

Index 1323

Index

.

.NET extension functions,

constructors, 1298

datatype conversions, .NET to XPath/XQuery, 1302

datatype conversions, XPath/XQuery to .NET, 1301

for XSLT and XQuery, 1296

instance methods, instance fields, 1300

overview, 1296

static methods, static fields, 1299

2
2018, 1067

A
A to Z,

sort component, 189

abs,

as MapForce function (in lang | math functions), 753

as MapForce function (in xpath2 | numeric functions), 769

Access database,

updating based on IF condition, 575

acos,

as MapForce function (in lang | math functions), 754

Active, 1119

ActiveDocument, 1078, 1113

ActiveX,

integration at application level, 1165

integration at document level, 1168

integration prerequisites, 1161

ActiveX controls,

adding to the Visual Studio Toolbox, 1163

add,

as MapForce function (in core | math functions), 708

custom library, 666

ADO,

as data connection interface, 322

setting up a connection, 329

ADO.NET,

setting up a connection, 334

age,

as MapForce function (in lang | datetime functions), 739

Altova Engines,

in Altova products, 1306

Altova extensions,

chart functions (see chart functions), 1240

Altova XML Parser,

about, 1306

Ant,

Building an Eclipse project with, 921

setting the environment variables for,, 1027

Any,

xs:any, 311

API,

documentation, 1048

overview, 1049

Application, 1076

for Documents, 1113

Application object, 1051, 1077, 1078

AppOutputLine, 1085

AppOutputLines, 1090

AppOutputLineSymbol, 1091

asin,

as MapForce function (in lang | math functions), 754

atan,

as MapForce function (in lang | math functions), 754

ATTLIST,

DTD namespace URIs, 302

Automated,

processing, 780

Automatic,

loading of libraries, 666

auto-number,

as MapForce function (in core | generator functions), 703

avg,

as MapForce function (in core | aggregate functions), 685

B
Background,

with gradient, 1134

Background Information, 1306

Base package name,

Index

© 2018 Altova GmbH

1324

Base package name,

for Java, 1110

base-uri,

as MapForce function (in xpath2 | accessors library), 762

Batch,

processing automation, 780

Block comment, 526

Bookmarks,

bookmark margin, 527

inserting, 527

navigating, 527

removing, 527

Bool,

output if false, 628

boolean,

as MapForce function (in core | conversion functions), 690

Breakpoints,

about, 276

adding, 279

removing, 279

Breakpoints window,

about, 276, 286

Browser,

applying filters, 530

Database Query, 529

filtering, 530

Browser view,

context menu options, 532

generating SQL statements, 532

build.xml,

enabling the zip64mode in,, 1027

Built-in engine,

definition, 74

using, 74

C
C#,

code, 906

code generation, 1106

code generation settings, 1028

enumeration, 1156

error handling, 1052

generating program code, 907, 915

integrate generated code, 935

integration of MapForce, 1172

options, 1130, 1131

reference to generated classes, 996

C++,

code, 906

code generation, 1107

code generation settings, 1028

enumeration, 1155

error handling, 1052

generating program code, 907, 911

integrate generated code, 937

options, 1130, 1131

reference to generated classes, 980

Call graphs,

SPS stylesheet, 831

capitalize,

as MapForce function (in lang | string functions), 757

CDATA, 310

ceiling,

as MapForce function (in core | math functions), 708

char-from-code,

as MapForce function (in core | string functions), 729

Class ID,

in MapForce integration, 1179

Close, 1105

project, 1137

Code,

built in types, 1040

inline functions & code size, 623

integrating MapForce code, 932

SPL, 1030

code generation, 1115, 1117

C#, 1106

C++, 1107

enumerations, 1152, 1155, 1156, 1157

Java, 1107

options, 1111

options for, 1130, 1131, 1132, 1133

sample, 1065

supported platforms, 907

XSLT, 1109

Code generation settings,

defining for a folder in a project, 121

defining globally for the entire project, 120

Code Generator, 906

Code point,

collation, 189

code-from-char,

as MapForce function (in core | string functions), 729

© 2018 Altova GmbH

Index 1325

Code-generation,

options for, 1083, 1134

Collapse,

regions, 528

Collation,

locale collation, 189

sort component, 189

unicode code point, 189

COM API,

documentation, 1048

Comments,

Adding to target files, 309

Complex,

function - inline, 623

User-defined complex input, 634

User-defined complex output, 639

User-defined function, 633, 639

Complex type,

sorting, 189

Component, 1092

as application menu, 890

definition of, 1313

deleted items, 112

sort data, 189

Components, 1100

adding to the mapping, 69

aligning, 95

changing settings, 96

overview, 93

processing sequence, 258

searching, 94

concat,

(as function) example of usage, 575

as MapForce function (in core | string functions), 729

Configure,

mff file, 666

SQL Editor settings, 536

Connection, 1101

as application menu, 891

definition of, 1313

Connections,

moving to a different component, 107

preserving on root element change, 107

Connector,

definition of, 1313

viewing the history of processed values, 282

Consolidating data,

merging XML files, 315

Constants,

adding to the mapping, 594

contains,

as MapForce function (in core | string functions), 730

Context window,

about, 276, 284

convert-to-utc,

as MapForce function (in lang | datetime functions), 740

Copy all,

mapping method, 133

Copyright information, 1308

cos,

as MapForce function (in lang | math functions), 754

Count, 1090, 1100, 1114, 1128

as MapForce function (in core | aggregate functions), 686

count-substring,

as MapForce function (in lang | string functions), 758

Create,

regions, 528

create-guid,

as MapForce function (in lang | generator functions), 752

CSV,

as mapping source, 563

creating hierarchies - keys, 568

creating multiple rows, 565

replace empty fields, 609

CSV files,

adding or removing fields in,, 571

as source component, 571

as target component, 571

previewing data from,, 571

setting the encoding of,, 571

current,

as MapForce function (in xslt | xslt functions library), 774

current-date,

as MapForce function (in xpath2 | context functions), 764

current-dateTime,

as MapForce function (in xpath2 | context functions), 764

current-time,

as MapForce function (in xpath2 | context functions), 765

Custom,

XQuery functions, 660

Custom library,

adding, 666

Index

© 2018 Altova GmbH

1326

D
Data overlays,

about, 276

Data streaming,

definition, 73

Database,

assign XML schema to field, 512

generate multiple XML files from, 163

generating sequential and unique values for, 423

querying, 522

writing XML files to, 515

Database connection,

reusing from Global Resources, 350

setting up, 322

setup examples, 351

starting the wizard, 324

Database drivers,

overview, 326

Database objects,

adding to the mapping, 402

filtering, 402

removing from the mapping, 402

Database Query,

bookmarks, 527

commenting out text, 526

filtering tables, 530

generating SQL, 529, 533

regions, 528

Result view options, 538

text font options, 539

Database relationships,

defining in mappings, 415

preserving in mappings, 405

Databases,

add to mapping, 397

as Global Resoruces, 805

deleting table data, 456

executing mappings against, 420

inserting data into a table, 429

inserting data into multiple linked tables, 433

merging data into, 440

transaction rollback, 464

updating and inserting table data, 440

updating table data, 437

using bulk insert, 466

Datapoint, 1102

date-from-datetime,

as MapForce function (in lang | datetime functions), 740

datetime-add,

as MapForce function (in lang | datetime functions), 741

datetime-diff,

as MapForce function (in lang | datetime functions), 742

datetime-from-date-and-time,

as MapForce function (in lang | datetime functions), 743

datetime-from-parts,

as MapForce function (in lang | datetime functions), 743

day-from-datetime,

as MapForce function (in lang | datetime functions), 744

day-from-duration,

as MapForce function (in lang | datetime functions), 745

DB,

ORDER BY, 496

Debugger position,

viewing the current value of, 282

Debugging,

about, 276

limitations, 270

preparation for, 273

settings, 293

starting, 274

step-by-step, 270

stopping, 274

with breakpoints, 270

Default,

input value, 628

Default values,

applying to multiple items, 598

default-collation,

as MapForce function (in xpath2 | context functions), 765

degrees,

as MapForce function (in lang | math functions), 754

Delete,

deletions - missing items, 112

Delimiter,

changing in CSV files, 571

changing in flat text files, 582

Derived types,

mapping to/from, 303

Digital signature,

creating in XML output, 298

distinct-values,

as MapForce function (in core | sequence functions), 714

© 2018 Altova GmbH

Index 1327

Distribution,

of Altova's software products, 1308, 1310

divide,

as MapForce function (in core | math functions), 709

divide-integer,

as MapForce function (in lang | math functions), 754

Document, 1103

as MapForce function (in xslt | xslt functions library), 774

closing, 1105

creating new, 1081, 1114

filename, 1111

on closing, 1104

on opening, 1077

opening, 1082, 1114

path and name of, 1106

path to, 1112

retrieving active document, 1113

save, 1112

save as, 1112

Documentation,

defining SPS stylesheets, 834

Documenting,

mappings, 826

Document-level,

examples of integration of XMLSpy, 1172

Documents, 1079, 1113

retrieving, 1114

total number in collection, 1114

DOM type,

enumerations for C++, 1155

for C++, 1130

DoTransform.bat,

execute with RaptorXML Server, 779

DTD,

source and target, 302

Duplicate input, 43

adding, 890

duration-add,

as MapForce function (in lang | datetime functions), 745

duration-from-parts,

as MapForce function (in lang | datetime functions), 745

duration-subtract,

as MapForce function (in lang | datetime functions), 746

E
Eclipse,

generating mapping code for, 918

Edit,

as application menu, 886

Edition, 1079

Element,

recursive element in XML Schema, 643

element-available,

as MapForce function (in xslt | xslt functions library), 774

empty,

as MapForce function (in lang | string functions), 758

Empty fields,

in CSV files, 571

in flat text files, 582

Encoding,

changing in CSV files, 571

changing in flat text files, 582

default for output files, 1132

Encoding settings,

in XML output, 298

End User License Agreement, 1308, 1310

Enumerations, 1152, 1153, 1154, 1155, 1156

for MapForce View, 1157

in MapForceControl, 1229

Environment variables,

ANT_OPS, 1027

equal,

as MapForce function (in core | logical functions), 705

equal-or-greater,

as MapForce function (in core | logical functions), 705

equal-or-less,

as MapForce function (in core | logical functions), 706

Error handling,

general description, 1052

ErrorMarkers, 1115, 1117

Evaluation period,

of Altova's software products, 1308, 1310

Events,

of Document, 1104

Events for Project, 1135

Example,

recursive user-defined mapping, 643

Exceptions,

Index

© 2018 Altova GmbH

1328

Exceptions,

adding, 221

example, 222

throwing when node is missing, 222

exists,

as MapForce function (in core | sequence functions), 715

exp,

as MapForce function (in lang | math functions), 755

Expand,

regions, 528

Extension functions for XSLT and XQuery, 1287

Extension Functions in .NET for XSLT and XQuery,

see under .NET extension functions, 1296

Extension Functions in Java for XSLT and XQuery,

see under Java extension functions, 1287

Extension Functions in MSXSL scripts, 1302

F
false,

as MapForce function (in xpath2 | boolean functions), 763

Field,

keys in text files, 568

File,

as application menu, 883

as button on a component, 96

as button on components, 155

File DSN,

setting up, 341

File names,

supplying as mapping input parameters, 160

File paths,

fixing broken references, 130

in generated code, 131

of file-based databases, 128

relative versus absolute, 126, 131

File/String,

as button on a component, 96

as button on components, 155

File: (default),

as name of root node, 155

File: <dynamic>,

as name of root node, 155

Fill character,

in flat text files, 582

Filter,

database objects, 530

merging XML files, 315

the Online Browser, 530

Filtering,

data from components, 195

database objects on the mapping, 402

database tables, 195

in databases, 499

Filters,

adding to the mapping, 195

find-substring,

as MapForce function (in lang | string functions), 758

Firebird,

Connecting through JDBC, 354

Connecting through ODBC, 352

first-items,

as MapForce function (in core | sequence functions), 716

Fixed,

lenght files - mapping, 563

Flat file,

mapping, 563

FlexText,

definition of, 1314

FLF,

definition of, 1314

floor,

as MapForce function (in core | math functions), 709

Folder,

layout - Database Query, 529

Foreign Key,

in database mappings, 405, 415

format-date,

as MapForce function (in core | conversion functions), 690

format-dateTime,

as MapForce function (in core | conversion functions), 691

format-guid-string,

as MapForce function (in lang | string functions), 758

format-number,

as MapForce function (in core | conversion functions), 693

format-time,

as MapForce function (in core | conversion functions), 696

FullName, 1106, 1138

Function, 623

adding custom XQuery, 660

as application menu, 892

complex - inline, 623

inline, 623

nested user-defined, 628

© 2018 Altova GmbH

Index 1329

Function, 623

standard user-defined function, 624

user-defined function, 645

user-defined look-up function, 624

function-available,

as MapForce function (in xslt | xslt functions library), 775

Functions,

adding as mapping components, 593

adding parameters to, 597

applying to multiple items, 598

deleting parameters from, 597

finding in the Libraries window, 595

finding occurences in active mapping, 595

viewing the argument data type of, 596

viewing the description of, 596

Functions used by, 831

G
Generate,

code & inline functions, 623

code from schema, 906

Generated code,

throwing exceptions from, 221

generate-id,

as MapForce function (in xslt | xslt functions library), 775

generate-sequence,

as MapForce function (in core | sequence functions), 716

get-fileext,

as MapForce function (in core | file path functions), 700

get-folder,

as MapForce function (in core | file path functions), 700

GetRootDatapoint, 1153

Global objects,

in SPL, 1033

Global Resources,

creating, 803

examples of usage, 810, 812, 813, 817

in various execution environments, 808

introduction to, 803

Gradients,

in background, 1134

greater,

as MapForce function (in core | logical functions), 706

group-adjacent,

as MapForce function (in core | sequence functions), 716

group-by,

as MapForce function (in core | sequence functions), 718

group-ending-with,

as MapForce function (in core | sequence functions), 720

group-into-blocks,

as MapForce function (in core | sequence functions), 720

group-starting-with,

as MapForce function (in core | sequence functions), 721

H
Health Level 7,

example, 589

Help,

as application menu, 899

Hierarchy,

from text files, 568

HighlightMyConnections, 1120

HighlightMyConnectionsRecursively, 1120

HL7 2.6 to 3.x,

example, 589

hour-from-datetime,

as MapForce function (in lang | datetime functions), 747

hour-from-duration,

as MapForce function (in lang | datetime functions), 747

HRESULT,

and error handling, 1052

HTML,

integration of MapForce, 1181

mapping documentation, 826

preview mapping output as, 822

HTML example,

of MapForceControl integration, 1179, 1180, 1181

I
IBM DB2,

connecting through ODBC, 355

reading from XML type fields, 512

writing to XML type fields, 512

IBM DB2 for i,

connecting through ODBC, 360

IBM Informix,

connecting through JDBC, 363

Index

© 2018 Altova GmbH

1330

Icons,

in Messages window of Database Query, 533

in Results window of Database Query, 533

If-Else conditions,

adding to the mapping, 195

Impact analysis,

SPS stylesheet, 831

implicit-timezone,

as MapForce function (in xpath2 | context functions), 765

Inline,

functions and code size, 623

Inline / Standard,

user-defined functions, 623

Input, 628

default value, 628

optional parameters, 628

Input component,

definition of, 1316

Insert,

as application menu, 887

block comment, 526

bookmarks, 527

comments, 526

line comment, 526

regions, 528

SQL WHERE component, 496

InsertXMLFile, 1121

InsertXMLSchema, 1121

InsertXMLSchemaWithSample, 1122

Instance,

changing the path reference to, 126

Integrate,

into C#, 935

into C++, 937

into Java, 933

Integrate MapForce code, 932

Integrating,

MapForce in applications, 1160

Internet usage,

in Altova products, 1307

is-not-null,

as MapForce function (in db functions), 737

is-null,

as MapForce function (in db functions), 737

is-xsi-nil,

as MapForce function (in core | node functions), 711

Item, 1090, 1100, 1114, 1128

missing, 112

item-at,

as MapForce function (in core | sequence functions), 721

items-from-till,

as MapForce function (in core | sequence functions), 722

J
Java, 1186

avoiding exceptions in generated code, 1027

code, 906

code generation, 1107

generating program code, 918

integrate generated code, 933

options, 1110, 1130, 1133

reference to generated classes, 1011

Java extension functions,

constructors, 1293

datatype conversions, Java to Xpath/XQuery, 1296

datatype conversions, XPath/XQuery to Java, 1295

for XSLT and XQuery, 1287

instance methods, instance fields, 1294

overview, 1287

static methods, static fields, 1293

user-defined class files, 1289

user-defined JAR files, 1292

JavaScript,

error handling, 1052

JDBC,

as data connection interface, 322

connect to Teradata, 393

handling references in generated code, 920

setting up a connection (Linux), 396

setting up a connection (macOS), 396

setting up a connection (Windows), 344

setting up an Oracle connection on OS X Yosemite, 396

JScript,

code-generation sample, 1065

K
Keeping data,

when using value-map, 216

Keeping data unchanged,

passing through a value-map, 216

© 2018 Altova GmbH

Index 1331

Key,

fields in text files, 568

sort key, 189

L
last,

as MapForce function (in xpath2 | context functions), 765

last-items,

as MapForce function (in core | sequence functions), 722

Layout,

Browser, 529

leapyear,

as MapForce function (in lang | datetime functions), 748

left,

as MapForce function (in lang | string functions), 758

left-trim,

as MapForce function (in lang | string functions), 759

Legal information, 1308

less,

as MapForce function (in core | logical functions), 706

Libraries window,

finding functions in, 595

Library, 1041

add custom, 666

adding XQuery functions, 660

automatic loading of, 666

Library file,

mff, 666

Library type,

enumerations for C++, 1155

for C++, 1130, 1131

License, 1310

information about, 1308

License metering,

in Altova products, 1309

Line comment, 526

Linux,

deploying server execution files to, 395

setting up database connections on, 395

supported databases, 395

Locale collation, 189

local-name-from-QName,

as MapForce function (in lang | QName functions), 714

log,

as MapForce function (in lang | math functions), 755

log10,

as MapForce function (in lang | math functions), 755

logical-and,

as MapForce function (in core | logical functions), 706

logical-not,

as MapForce function (in core | logical functions), 707

logical-or,

as MapForce function (in core | logical functions), 707

logical-xor,

as MapForce function (in lang | logical functions), 753

Logo,

display on startup, 1133

option for printing, 1133

Lookup table,

properties, 218

value map table, 213

lowercase,

as MapForce function (in lang | string functions), 759

M
macOS,

deploying server execution files to, 395

setting up database connections on, 395

supported databases, 395

main-mfd-filepath,

as MapForce function (in core | file path functions), 701

MapForce,

API, 1048

basic concepts, 20

integration, 1160

overview, 14

parent, 1122

MapForce API, 1048

overview, 1049

MapForce API Type Library, 1076

MapForce integration,

example of, 1179, 1180, 1181

MapForce plug-in for Eclipse,

about, 854, 860, 866

accessing common menus and functions, 863

configuring for automatic code generation, 873

creating a MapForce/Eclipse project, 866

creating new mappings, 868

extending functionality, 876

extension point, 876

Index

© 2018 Altova GmbH

1332

MapForce plug-in for Eclipse,

importing mappings into an Eclipse project, 870

installing, 855

switching to the MapForce perspective, 860

working with mappings and projects, 866

MapForce plug-in for Visual Studio,

about, 846

accessing common menus and functions, 851

enabling, 847

working with mappings and projects, 849

MapForce samples,

location on disk, 30

MapForce Server,

automating mappings, 780

compiling mappings for, 785

throwing exceptions from, 221

MapForce view,

enumerations for, 1157

MapForceCommand,

in MapForceControl, 1209

MapForceCommands,

in MapForceControl, 1211

MapForceControl, 1212

documentation of, 1160

example of integration at application level, 1179, 1180, 1181

examples of integration at document level, 1172

integration using C#, 1172

integration using HTML, 1181

integration using Visual Basic, 1196

object reference, 1209

MapForceControlDocument, 1220

MapForceControlPlaceHolder, 1226

MapForceView, 1110, 1118

application, 1120

Mapping,

creating, 69

debugging, 270

definition of, 1318

Documenting, 826

flat file format, 563

inserting XML file, 1121

inserting XML Schema file, 1121

predefined SPS stylesheets for documentation, 831

processing sequence, 258

source driven - mixed content, 133

validating, 75

Mapping input,

supplying custom file name as, 160

Supplying multiple files as, 155, 157, 159

Mapping methods,

standard, 133

standard / mixed / copy all, 133

target-driven, 133

Mapping output,

Generating multiple files as, 155, 159

Mappings,

automated processing, 780

MariaDB,

connect through ODBC, 364

Marked items,

missing items, 112

match-pattern,

as MapForce function (in lang | string functions), 759

max,

as MapForce function (in core | aggregate functions), 686

as MapForce function (in lang | math functions), 755

max-string,

as MapForce function (in core | aggregate functions), 687

Memory requirements, 1306

MERGE,

as statement in MapForce-generated SQL, 440, 447

Merging,

XML files, 315

Messages,

icons in Database Query, 533

window - Database Query, 533

Method names in generating code,

reserving, 1027

MFC support,

fo C++, 1131

mfd,

as file extension, 1318

mfd-filepath,

as MapForce function (in core | file path functions), 701

mff, 666

as file extension, 1318

library file, 666

mff.xsd file, 666

mff file,

configuring, 666

mfp,

as file extension, 1318

mft,

as file extrension, 1318

Microsoft Access,

connecting through ADO, 329, 366

© 2018 Altova GmbH

Index 1333

Microsoft SharePoint Server,

adding files as components from, 70

Microsoft SQL Server,

connecting through ADO, 369

connecting through ODBC, 371

millisecond-from-datetime,

as MapForce function (in lang | datetime functions), 748

millisecond-from-duration,

as MapForce function (in lang | datetime functions), 748

min,

as MapForce function (in core | aggregate functions), 687

as MapForce function (in lang | math functions), 756

min-string,

as MapForce function (in core | aggregate functions), 688

minute-from-datetime,

as MapForce function (in lang | datetime functions), 749

minute-from-duration,

as MapForce function (in lang | datetime functions), 749

Missing items, 112

Mixed, 133

content mapping, 133

content mapping example, 139

content mapping method, 133

source-driven mapping, 133

Mixed content,

Mapping, 140

modulus,

as MapForce function (in core | math functions), 709

month-from-datetime,

as MapForce function (in lang | datetime functions), 749

month-from-duration,

as MapForce function (in lang | datetime functions), 749

MSXML,

generating code for, 1028

supported versions, 907

msxsl:script, 1302

Multiple source,

to single target, 315

multiply,

as MapForce function (in core | math functions), 710

MySQL,

connecting through ODBC, 374

N
Name, 1081, 1111, 1141

Namespace URI,

DTD, 302

Namespace URIs,

and QNames, 305

Namespaces,

and wildcards (xs:any), 311

declaring custom, 317

namespace-uri-form-QName,

as MapForce function (in lang | QName functions), 714

Navigate,

bookmarks, 527

negative,

as MapForce function (in lang | logical functions), 753

Nested,

user-defined functions, 628

NewDocument, 1081, 1114

NewProject, 1081

nillable,

as attribute in XML schema, 305

Node names,

mapping data from/to, 233

node-name,

as MapForce function (in core | node functions), 711

as MapForce function (in xpath2 | accessors library), 762

node-name function,

alternatives to using, 233

normalize-space,

as MapForce function (in core | string functions), 730

not-equal,

as MapForce function (in core | logical functions), 707

not-exists,

as MapForce function (in core | sequence functions), 722

now,

as MapForce function (in lang | datetime functions), 750

NULL,

handling in database mappings, 469

NULL values,

replace in multiple occurences, 598

Nulls,

handling in database components, 422

number,

as MapForce function (in core | conversion functions), 696

numeric,

as MapForce function (in lang | logical functions), 753

Index

© 2018 Altova GmbH

1334

O
Object,

reference, 1076

Object model,

overview, 1051

Object tree navigation,

Application, 1078, 1083

AppOutputLine, 1085, 1089

AppOutputLines, 1090, 1091

AppOutputLineSymbol, 1091, 1092

Component, 1093, 1098

Components, 1100, 1101

Document, 1105, 1111

Documents, 1113, 1115

ErrorMarker, 1115, 1117

ErrorMarkers, 1117, 1118

MapForceView, 1120, 1122

Mapping, 1124, 1127

Mappings, 1128, 1129

Options, 1129, 1133

Project, 1137, 1142

ProjectItem, 1145, 1150

Obsolete, 1111

ODBC,

as data connection interface, 322

connect to MariaDB, 364

connect to Teradata, 389

setting up a connection, 341

ODBC Drivers,

checking availability of, 341

OLE DB,

as data connection interface, 322

OnDocumentClosed, 1104

OnDocumentOpened, 1077

OnProjectClosed, 1135

OnProjectOpened, 1078

OpenDocument, 1082, 1114

OpenProject, 1082

Optional,

input parameters, 628

Options, 1083, 1129

for code generation, 1111, 1132

for Java, 1110

Result view - Database Query, 538

text fonts - Database Query, 539

Oracle,

reading from XML type fields, 512

writing to XML type fields, 512

Oracle database,

connecting through JDBC, 380

connecting through ODBC, 375

Order,

components are processed, 258

ORDER BY,

SQL where component, 496

Ordering data,

sort component, 189

OS,

for Altova products, 1306

Out of memory errors,

troubleshooting, 73

Out of memory exceptions,

resolving, 1027

Output, 628

as application menu, 893

parameter, 628

previewing, 78

saving, 78

user-defined if bool = false, 628

validating, 77

Output component,

definition of, 1319

Output directory,

for code-generation files, 1130

for XSLT generated output, 1134

Output encoding,

default used, 1132

Overall documentation,

SPS stylesheet, 831

Overview,

of MapForce API, 1049

P
pad-string-left,

as MapForce function (in lang | string functions), 759

pad-string-right,

as MapForce function (in lang | string functions), 760

Parameter, 628

optional, 628

© 2018 Altova GmbH

Index 1335

Parameter, 628

output, 628

Parent, 1083, 1089, 1091, 1092, 1098, 1101, 1115, 1117,
1118, 1127, 1129, 1142

parent-context,

definition of, 1320

parse-date,

as MapForce function (in core | conversion functions), 696

parse-dateTime,

as MapForce function (in core | conversion functions), 697

parse-number,

as MapForce function (in core | conversion functions), 699

Parser,

built into Altova products, 1306

parse-time,

as MapForce function (in core | conversion functions), 699

Passing through data,

unchanged through value-map, 216

Path, 1112, 1142

Paths in generated code,

making absolute, 91

PDF,

mapping documentation, 826

preview mapping output as, 822

pi,

as MapForce function (in lang | math functions), 756

Platforms,

for Altova products, 1306

position,

as MapForce function (in core | sequence functions), 724

positive,

as MapForce function (in lang | logical functions), 753

PostgreSQL,

connecting directly (natively), 348

connecting through ODBC, 382

pow,

as MapForce function (in lang | math functions), 756

Primary Key,

generating during database insert action, 429

generating for a database component, 423

in database mappings, 405, 415

Priority Context,

setting on functions, 261

Processing,

automating mappings, 780

Processing Instructions,

Adding to target files, 309

Processing Instructions and Comments,

mapping, 134

Processing sequence,

of components in a mapping, 258

Programming language,

enumerations for, 1155

Progress OpenEdge database,

connecting through JDBC, 386

connecting through ODBC, 384

Project, 1134

as application menu, 889

creating new, 1081

file name, 1141

file name and path, 1138

on opening, 1078

opening, 1082

path with filename, 1142

saving, 1142, 1143

Project type,

enumerations for C#, 1156

for C#, 1131

for Java, 1133

Projects,

closing, 118

creating, 118

opening, 118

searching, 118

Properties,

value map table, 218

Q
QName,

as MapForce function (in lang | QName functions), 713

QName support, 305

QName-as-string,

as MapForce function (in lang | QName functions), 739

Question mark,

missing items, 112

Quit, 1083

Quote character,

in CSV files, 571

Index

© 2018 Altova GmbH

1336

R
radians,

as MapForce function (in lang | math functions), 756

random,

as MapForce function (in lang | math functions), 756

RaptorXML Server,

executing a transformation, 779

Recursive,

calls in functions, 623

user-defined function, 645

user-defined mapping, 643

Reference, 882

Regions,

collapsing, 528

creating, 528

expanding, 528

inserting, 528

removing, 528

Regular expressions,

as parameter to the "match-pattern" function, 681

as parameter to the "tokenize-regexp" function, 681

Remove,

block comment, 526

bookmarks, 527

comments, 526

line comment, 526

regions, 528

remove-fileext,

as MapForce function (in core | file path functions), 701

remove-folder,

as MapForce function (in core | file path functions), 701

remove-timezone,

as MapForce function (in lang | datetime functions), 750

repeat-string,

as MapForce function (in lang | string functions), 760

replace,

as MapForce function (in lang | string functions), 760

replace-fileext,

as MapForce function (in core | file path functions), 701

replicate-item,

as MapForce function (in core | sequence functions), 727

replicate-sequence,

as MapForce function (in core | sequence functions), 728

resolve-filepath,

as MapForce function (in core | file path functions), 702

resolve-uri,

as MapForce function (in xpath2 | anyURI functions), 763

Results,

icons in Database Query, 533

window - Database Query, 533

Retaining data,

passing through vlaue-map, 216

reversefind-substring,

as MapForce function (in lang | string functions), 760

right,

as MapForce function (in lang | string functions), 761

right-trim,

as MapForce function (in lang | string functions), 761

round,

as MapForce function (in core | math functions), 710

round-half-to-even,

as MapForce function (in xpath2 | numeric functions), 769

round-precision,

as MapForce function (in core | math functions), 710

Rows,

mapping from - text files, 568

RTF,

mapping documentation, 826

preview mapping output as, 822

S
Save, 1112, 1142

SaveAs, 1112

Saved, 1112, 1143

Schema,

and XML mapping, 297

changing the path reference to, 126

code generator, 906

generating for an XML file, 297

recursive elements, 643

schemanativetype, 1031

Scripts in XSLT/XQuery,

see under Extension functions, 1287

Search,

files in the Projects window, 118

functions in the Libraries window, 595

items within mapping components, 94

second-from-datetime,

as MapForce function (in lang | datetime functions), 750

© 2018 Altova GmbH

Index 1337

second-from-duration,

as MapForce function (in lang | datetime functions), 750

Section,

CDATA, 310

Select,

table data - Database Query, 533

Sequence,

of processing components, 258

set-empty,

as MapForce function (in core | sequence functions), 728

set-null,

as MapForce function (in db functions), 737

Settings,

Result view - Database Query, 538

text fonts - Database Query, 539

set-xsi-nil,

as MapForce function (in core | node functions), 712

ShowItemTypes, 1123

ShowLibraryFunctionHeader, 1123

shutdown,

of application, 1083, 1084

Simple type,

sorting, 189

sin,

as MapForce function (in lang | math functions), 757

Single target,

multiple sources, 315

skip-first-items,

as MapForce function (in core | sequence functions), 728

Software product license, 1310

Sort,

column icon in Results window, 533

data in result window, 533

sort component, 189

tables Database Query, 529

Sort key,

sort component, 189

Sort order,

changing, 189

Sorting,

in databases, 499

Source component,

definition of, 1321

Source-driven,

- mixed content mapping, 133

Source-driven connections,

as opposed to standard (target-driven) connections, 140

SPL, 1030

code blocks, 1030

conditions, 1036

foreach, 1037

global objects, 1033

subroutines, 1038

using files, 1034

variables, 1032

SPS,

predefined stylesheets for documenting mappings, 831

user-defined stylesheets, 834

SQL, 525

executing statements, 524, 526

exporting statements as SQL scripts, 526

generating statements, 524, 525

importing SQL scripts, 526

load from scripts, 524

writing statements, 525

SQL Editor,

bookmark margin, 527

commenting out text, 526

creating regions, 528

inserting bookmarks, 527

inserting comments, 526

inserting regions, 528

removing bookmarks, 527

removing comments, 526

removing regions, 528

settings - general, 536

using bookmarks, 527

using regions, 528

SQL Server,

connecting through ADO, 329

connecting through ADO.NET, 334

reading from XML type fields, 512

writing to XML type fields, 512

SQL WHERE,

component - insert, 496

ORDER BY, 496

SQL WHERE/ORDER,

as MapForce component, 499

SQLite,

changing database path to absolute in generated code, 131

mapping data to, 227, 476

setting up a connection (Linux), 396

setting up a connection (macOS), 396

using an absolute or relative path, 128

writing XML files to, 515

sqrt,

Index

© 2018 Altova GmbH

1338

sqrt,

as MapForce function (in lang | math functions), 757

Standard,

mapping method, 133

starts-with,

as MapForce function (in core | string functions), 730

startup,

of application, 1084

static-node-annotation,

as MapForce function (in core | node functions), 712

static-node-name,

as MapForce function (in core | node functions), 713

Status, 1084, 1152

string,

as MapForce function (in core | conversion functions), 700

as MapForce function (in xpath2 | accessors library), 762

parsing data from, 225

serializing data to, 225, 227

string-as-QName,

as MapForce function (in lang | QName functions), 739

string-compare,

as MapForce function (in lang | string functions), 761

string-compare-ignore-case,

as MapForce function (in lang | string functions), 761

string-join,

as MapForce function (in core | aggregate functions), 688

string-length,

as MapForce function (in core | string functions), 730

Stylesheets,

defining for documentation, 834

Stylevision,

defining SPS stylesheets for mappings, 834

substitute-missing,

as MapForce function (in core | sequence functions), 729

substitute-missing-with-xsi-nil,

as MapForce function (in core | node functions), 713

substitute-null,

as MapForce function (in db functions), 738

substring,

as MapForce function (in core | string functions), 731

substring-after,

as MapForce function (in core | string functions), 731

substring-before,

as MapForce function (in core | string functions), 731

subtract,

as MapForce function (in core | math functions), 710

sum,

as MapForce function (in core | aggregate functions), 689

Sybase,

connecting through JDBC, 388

System DSN,

setting up, 341

system-property,

as MapForce function (in xslt | xslt functions library), 775

T
Table,

lookup - value map, 213

Table data,

sorting, 189

tan,

as MapForce function (in lang | math functions), 757

Target component,

definition of, 1322

Target-driven connections,

as opposed to source-driven connections, 140

Target-driven mapping, 133

Technical Information, 1306

Teradata,

connect through JDBC, 393

connect through ODBC, 389

Text,

files - defining key fields, 568

mapping text files, 563

Text files,

adding or removing fields in,, 582

as source component, 582

as target component, 582

mapping data from, 575

previewing data from,, 582

setting the encoding of,, 582

setting the fill character, 575

setting the fixed field size, 575

time-from-datetime,

as MapForce function (in lang | datetime functions), 751

timezone,

as MapForce function (in lang | datetime functions), 751

tokenize,

as MapForce function (in core | string functions), 731

tokenize-by-length,

as MapForce function (in core | string functions), 733

tokenize-regexp,

as MapForce function (in core | string functions), 735

© 2018 Altova GmbH

Index 1339

Tools,

as application menu, 897

Transform,

input data - value map, 213

Transformation language,

selecting, 74

Transformations,

RaptorXML Server, 779

translate (in core | string functions),

as MapForce function, 736

true,

as MapForce function (in xpath2 | boolean functions), 763

Types,

built in, 1040

derived types - xsi:type, 303

U
unary-minus,

as MapForce function (in lang | math functions), 757

Unicode,

code point collation, 189

replacing special characters, 421

Unicode support,

in Altova products, 1307

unparsed-entity-uri,

as MapForce function (in xslt | xslt functions library), 776

uppercase,

as MapForce function (in lang | string functions), 762

URI,

in DTDs, 302

URIs,

and QNames, 305

URL,

adding files as components from, 70

User defined, 628

complex input, 634

complex output, 639

function - inline / standard, 623

function - standard, 624

functions - complex, 633, 639

look-up functions, 624

nested functions, 628

output if bool = false, 628

User DSN,

setting up, 341

user-defined function,

recursive, 645

User-defined functions,

creating, 615

deleting, 615

importing, 615

influencing the parameter order, 615

opening, 615

reusing, 615

V
Validate,

mapping design, 75

mapping output, 77

Validator,

in Altova products, 1306

Value,

default, 628

Value-Map,

lookup table, 213

lookup table - properties, 218

passing data unchanged, 216

Values window,

about, 276, 282

Context tab, 282

History tab, 282

Related tab, 282

Variables,

adding to the mapping, 179

changing the scope of, 182

examples of use, 184, 185, 187

in SPL, 1032

introduction to, 177

Version, 1080, 1081

View,

as application menu, 895

of MapForce, 1118

Visible, 1084

Visual Basic,

error handling, 1052

integration of MapForce, 1196

Visual Studio,

adding the MapForce ActiveX Controls to the toolbox,
1163

generating code for, 1028

Index

© 2018 Altova GmbH

1340

Visual Studio,

generating mapping code for, 911, 915

supported versions in code generator, 907

Visual Studio plug-in,

running MapForce as, 846

W
WebDAV Server,

adding files as components from, 70

weekday,

as MapForce function (in lang | datetime functions), 751

weeknumber,

as MapForce function (in lang | datetime functions), 751

WHERE,

SQL WHERE component, 496

Wildcards,

xs:any - xs:anyAtrribute, 311

WindowHandle, 1084

Windows,

deploying server execution files to, 395

support for Altova products, 1306

Word,

mapping documentation, 826

Word 2007+,

preview mapping output as, 822

Wrapper classes,

in generated code, 1028

X
Xerces,

generating code for, 1028

supported versions, 907

XML,

as mapping target, 563

mapping data from CSV to, 563

writing to database field, 515

XML data,

reading from database fields, 512

writing to database fields, 512

XML declaration,

suppressing from output, 298

XML files,

generate from database records, 163

generate from single XML source, 161

XML output,

changing enconding settings, 298

changing instance file name, 298

changing schema, 298

creating digital signature, 298

XML Parser,

about, 1306

XML to XML, 297

XMLSpy command table, 1199

XQuery,

adding custom functions, 660

Extension functions, 1287

previewing generated code, 89

XQuery processor,

in Altova products, 1306

xs: any (xs:anyAttribute), 311

xsi:nil,

as attribute in XML instance, 305

xsi:type,

mapping to derived types, 303

XSLT,

adding custom functions, 654

code generation, 1109

Extension functions, 1287

options, 1134

previewing the generated code, 88

removing custom functions, 654

template namespace, 654

XSLT processors,

in Altova products, 1306

Y
year-from-datetime,

as MapForce function (in lang | datetime functions), 752

year-from-duration,

as MapForce function (in lang | datetime functions), 752

Z
Z to A,

sort component, 189

© 2018 Altova GmbH

Index 1341

zip64mode,

enabling in the build.xml file, 1027

	Altova MapForce 2018 Professional Edition
	What's new...

	Introduction
	Support Notes
	What Is MapForce?
	Basic Concepts
	User Interface Overview
	Conventions

	Tutorials
	Convert XML to New Schema
	Map Multiple Sources to One Target
	Work with Multiple Target Schemas
	Process and Generate Files Dynamically

	Common Tasks
	Working with Mappings
	Adding Components to the Mapping
	Adding Components from a URL
	About Data Streaming
	Selecting a Transformation Language
	Validating Mappings
	Validating the Mapping Output
	Previewing the Output
	Text View Features
	Searching in Text View
	Previewing the XSLT Code
	Generating XSLT Code
	Previewing the XQuery Code
	Working with Multiple Mapping Windows
	Changing the Mapping Settings

	Working with Components
	Searching within Components
	Aligning Components
	Changing the Component Settings
	Duplicating Input

	Working with Connections
	About Mandatory Inputs
	Changing the Connection Display Preferences
	Annotating Connections
	Connection Settings
	Connection Context Menu
	Connecting Matching Children
	Notifications on Missing Parent Connections
	Moving Connections and Child Connections
	Keeping Connections After Deleting Components
	Dealing with Missing Items

	Working with Mapping Projects
	Opening, Searching, and Closing Projects
	Creating a New Project
	Setting the Code Generation Settings
	Managing Project Folders

	Designing Mappings
	Using Relative and Absolute Paths
	Using Relative Paths on a Component
	Setting the Path to File-Based Databases
	Fixing Broken Path References
	Paths in Various Execution Environments
	Copy-Paste and Relative Paths

	Connection Types
	Target-driven connections
	Source-driven connections
	Mapping mixed content
	Mixed content example
	Using standard connections on mixed content items

	Copy-All Connections

	Chained Mappings
	Example: Pass-Through Active
	Example: Pass-Through Inactive

	Processing Multiple Input or Output Files Dynamically
	Mapping Multiple Input Files to a Single Output File
	Mapping Multiple Input Files to Multiple Output Files
	Supplying File Names as Mapping Parameters
	Previewing Multiple Output Files
	Example: Split One XML File into Many
	Example: Split Database Table into Many XML Files

	Supplying Parameters to the Mapping
	Adding Simple Input Components
	Simple Input Component Settings
	Creating a Default Input Value
	Example: Using File Names as Mapping Parameters

	Returning String Values from a Mapping
	Adding Simple Output Components
	Example: Previewing Function Output

	Using Variables
	Adding Variables
	Changing the Context and Scope of Variables
	Example: Counting Database Table Rows
	Example: Filtering and Numbering Nodes
	Example: Grouping and Subgrouping Records

	Sorting Data
	Sorting by Multiple Keys
	Sorting with Variables

	Filters and Conditions
	Example: Filtering Nodes
	Example: Returning a Value Conditionally

	Joining Data
	Adding Join Conditions
	Joining Three or More Structures
	Example: Join XML Structures

	Using Value-Maps
	Passing data through a Value-Map unchanged
	Value-Map component properties

	Adding Exceptions
	Example: Exception on "Greater Than" Condition
	Example: Exception When Node Does Not Exist

	Parsing and Serializing Strings
	About the Parse/Serialize Component
	Example: Serialize to String (XML to Database)

	Mapping Node Names
	Getting Access to Node Names
	Accessing Nodes of Specific Type
	Example: Map Element Names to Attribute Values
	Example: Group and Filter Nodes by Name

	Mapping Rules and Strategies
	Changing the Processing Order of Mapping Components
	Priority Context node/item
	Overriding the Mapping Context

	Debugging Mappings
	Debugger Preparation
	Debugger Commands
	About the Debug Mode
	Adding and Removing Breakpoints
	Using the Values Window
	Using the Context Window
	Using the Breakpoints Window
	Previewing Partially Generated Output
	Viewing the Current Value of a Connector
	Stepping back into Recent Past
	Viewing the History of Values Processed by a Connector
	Setting the Context to a Value
	Debugger Settings

	Data Sources and Targets
	XML and XML schema
	Generating an XML Schema
	XML Component Settings
	Using DTDs as "Schema" Components
	Derived XML Schema Types
	QNames
	Nil Values / Nillable
	Comments and Processing Instructions
	CDATA Sections
	Wildcards - xs:any / xs:anyAttribute
	Merging Data from Multiple Schemas
	Declaring Custom Namespaces

	Databases and MapForce
	Connecting to a Database
	Starting the Database Connection Wizard
	Database Drivers Overview
	Setting up an ADO Connection
	Connecting to an Existing Microsoft Access Database
	Setting up the SQL Server Data Link Properties
	Setting up the Microsoft Access Data Link Properties

	Setting up an ADO.NET Connection
	Creating a Connection String in Visual Studio
	Sample ADO.NET Connection Strings
	ADO.NET Support Notes

	Setting up an ODBC Connection
	Viewing the Available ODBC Drivers

	Setting up a JDBC Connection
	Configuring the CLASSPATH

	Setting up a PostgreSQL Connection
	Setting up a SQLite Connection
	Connecting to an Existing SQLite Database

	Using a Connection from Global Resources
	Database Connection Examples
	Connecting to Firebird (ODBC)
	Connecting to Firebird (JDBC)
	Connecting to IBM DB2 (ODBC)
	Connecting to IBM DB2 for i (ODBC)
	Connecting to IBM Informix (JDBC)
	Connecting to MariaDB (ODBC)
	Connecting to Microsoft Access (ADO)
	Connecting to Microsoft SQL Server (ADO)
	Connecting to Microsoft SQL Server (ODBC)
	Connecting to MySQL (ODBC)
	Connecting to Oracle (ODBC)
	Connecting to Oracle (JDBC)
	Connecting to PostgreSQL (ODBC)
	Connecting to Progress OpenEdge (ODBC)
	Connecting to Progress OpenEdge (JDBC)
	Connecting to Sybase (JDBC)
	Connecting to Teradata (ODBC)
	Connecting to Teradata (JDBC)

	Database Connections on Linux and macOS
	SQLite connections on Linux and macOS
	JDBC connections on Linux and macOS
	Oracle Connections on OS X Yosemite

	Introduction to Database Mappings
	Adding Databases to the Mapping
	Example: Adding the "altova.mdb" Database to the Mapping
	Adding, Editing, and Removing Database Objects
	Handling Database Relationships
	Defining Local Relationships
	Executing Mappings Which Modify Databases
	Replacing Special Characters
	Handling Null Values
	Generating Sequential and Unique Values
	SQL Auto-Completion Suggestions
	Database Component Settings

	Mapping Data to Databases
	Inserting Data into a Table
	Inserting Data into Multiple Linked Tables
	Updating a Table
	"Update if... Insert Rest" Action
	MERGE Statements
	Options for Child Tables When Updating a Parent Table
	"Delete if..." Action
	"Ignore if..." Action
	Using Transaction Rollback
	Bulk Inserts (MapForce Server)
	Handling Nulls in Database Table Actions
	Database Table Actions Settings
	Example: Mapping Data from XML to SQLite

	Joining Database Data
	About Joins in SQL Mode
	Example: Join Tables in SQL Mode
	Example: Create CSV Report from Multiple Tables

	Filtering and Sorting Database Data (SQL WHERE/ORDER)
	Creating WHERE and ORDER BY Clauses

	SQL SELECT Statements as Virtual Tables
	Creating SELECT Statements
	Example: SELECT with Parameters

	Mapping XML Data to / from Database Fields
	Assigning an XML Schema to a Database Field
	Example: Writing XML Data to a SQLite Field
	Example: Extracting Data from IBM DB2 XML Type Columns

	Browsing and Querying Databases
	Selecting or Connecting to a Database
	Creating and Editing SQL Statements
	Generating SQL Statements
	Executing SQL Statements
	Importing and Exporting SQL Scripts
	Adding and Removing SQL Comments
	Using Bookmarks
	Inserting Regions

	Browsing Database Objects
	Filtering and Searching Database Objects
	Context Options in Database Browser

	Copying, Sorting, and Searching the Query Results
	Viewing the Status of Executed Queries
	Database Query Settings
	SQL File Encoding Settings
	SQL Editor General Settings
	SQL Statement Generation Settings
	Query Result View Settings
	SQL Editor Font Settings

	Stored Procedures
	Inserting stored procedures in database components
	Use cases
	Stored procedures and local relations
	Stored procedures as a data source
	Stored procedures without input parameters
	Call with parameters - input and output
	Source components and Local Relations

	Stored procedures in Target components
	Using stored procedures to generate primary keys

	CSV and Text Files
	Example: Mapping CSV Files to XML
	Example: Iterating Through Items
	Example: Creating Hierarchies from CSV and Fixed-Length Text Files
	Setting the CSV Options
	Example: Mapping Fixed-Length Text Files to Databases
	Setting the FLF Options

	HL7 Version 3

	Functions
	How To...
	Add a Built-in Function to the Mapping
	Add a Constant to the Mapping
	Search for a Function
	View a Function's Type and Description
	Add or Delete Function Arguments

	Defaults and Node Functions
	How to Create Defaults and Node Functions
	Choosing the Input or Output Side
	How Defaults and Node Functions Work
	Example: Replace Empty CSV Fields

	User-Defined Functions
	Function parameters
	Inline and regular user-defined functions
	Creating a simple look-up function
	User-defined function - example
	Complex user-defined function - XML node as input
	Defining Complex Input Components

	Complex user-defined function - XML node as output
	Defining Complex Output Components

	Recursive user-defined mapping
	Defining a recursive user-defined function

	Importing Custom XSLT 1.0 or 2.0 Functions
	Example: Adding Custom XSLT Functions
	Example: Summing Node Values

	Importing Custom XQuery 1.0 Functions
	Importing Custom Java and .NET Libraries
	Example: Import Custom Java Class
	Example: Import Custom .NET DLL Assembly

	Referencing Java, C# and C++ Libraries Manually
	Configuring the .mff File
	Importing the .mff File Into MapForce
	Data Type Mapping
	Example: Create a Custom C# Library
	Example: Create a Custom C++ Library
	Example: Create a Custom Java Library

	Regular Expressions
	Function Library Reference
	core | aggregate functions
	avg
	count
	max
	max-string
	min
	min-string
	string-join
	sum

	core | conversion functions
	boolean
	format-date
	format-dateTime
	format-number
	format-time
	number
	parse-date
	parse-dateTime
	parse-number
	parse-time
	string

	core | file path functions
	get-fileext
	get-folder
	main-mfd-filepath
	mfd-filepath
	remove-fileext
	remove-folder
	replace-fileext
	resolve-filepath

	core | generator functions
	auto-number

	core | logical functions
	equal
	equal-or-greater
	equal-or-less
	greater
	less
	logical-and
	logical-not
	logical-or
	not-equal

	core | math functions
	add
	ceiling
	divide
	floor
	modulus
	multiply
	round
	round-precision
	subtract

	core | node functions
	is-xsi-nil
	node-name
	set-xsi-nil
	static-node-annotation
	static-node-name
	substitute-missing-with-xsi-nil

	core | QName functions
	QName
	local-name-from-QName
	namespace-uri-from-QName

	core | sequence functions
	distinct-values
	exists
	first-items
	generate-sequence
	group-adjacent
	group-by
	group-ending-with
	group-into-blocks
	group-starting-with
	item-at
	items-from-till
	last-items
	not-exists
	position
	replicate-item
	replicate-sequence
	set-empty
	skip-first-items
	substitute-missing

	core | string functions
	char-from-code
	code-from-char
	concat
	contains
	normalize-space
	starts-with
	string-length
	substring
	substring-after
	substring-before
	tokenize
	tokenize-by-length
	tokenize-regexp
	translate

	db
	is-not-null
	is-null
	set-null
	substitute-null

	lang | QName functions
	QName-as-string
	string-as-QName

	lang | datetime functions
	age
	convert-to-utc
	date-from-datetime
	datetime-add
	datetime-diff
	datetime-from-date-and-time
	datetime-from-parts
	day-from-datetime
	day-from-duration
	duration-add
	duration-from-parts
	duration-subtract
	hour-from-datetime
	hour-from-duration
	leapyear
	millisecond-from-datetime
	millisecond-from-duration
	minute-from-datetime
	minute-from-duration
	month-from-datetime
	month-from-duration
	now
	remove-timezone
	second-from-datetime
	second-from-duration
	time-from-datetime
	timezone
	weekday
	weeknumber
	year-from-datetime
	year-from-duration

	lang | generator functions
	create-guid

	lang | logical functions
	logical-xor
	negative
	numeric
	positive

	lang | math functions
	abs
	acos
	asin
	atan
	cos
	degrees
	divide-integer
	exp
	log
	log10
	max
	min
	pi
	pow
	radians
	random
	sin
	sqrt
	tan
	unary-minus

	lang | string functions
	capitalize
	count-substring
	empty
	find-substring
	format-guid-string
	left
	left-trim
	lowercase
	match-pattern
	pad-string-left
	pad-string-right
	repeat-string
	replace
	reversefind-substring
	right
	right-trim
	string-compare
	string-compare-ignore-case
	uppercase

	xpath2 | accessors
	base-uri
	node-name
	string

	xpath2 | anyURI functions
	resolve-uri

	xpath2 | boolean functions
	false
	true

	xpath2 | constructors
	xpath2 | context functions
	current-date
	current-dateTime
	current-time
	default-collation
	implicit-timezone
	last

	xpath2 | durations, date and time functions
	xpath2 | node functions
	xpath2 | numeric functions
	xpath2 | string functions
	xslt | xpath functions
	xslt | xslt functions
	currrent
	document
	element-available
	function-available
	generate-id
	system-property
	unparsed-enity-uri

	Automating Mappings and MapForce
	Automation with RaptorXML Server
	Automation with MapForce Server
	Preparing Mappings for Server Execution
	Compiling Mappings to MapForce Server Execution Files
	Deploying Mappings to FlowForce Server
	MapForce Command Line Interface

	Customizing MapForce
	Changing the MapForce Options
	Altova Global Resources
	Creating Global Resources
	Databases as Global Resources
	MapForce and StyleVision Transformation Result as Global Resource
	The Global Resources XML File
	Global Resources in Various Execution Environments
	Example: Run Mapping with Variable Input Files
	Example: Generate Output to Variable Folders
	Example: Switch Databases
	Example: Create an Application Workflow

	Styling Mapping Output with StyleVision
	Examples of Mappings with StyleVision Stylesheets

	Generating and Customizing Mapping Documentation
	Predefined StyleVision Power Stylesheets
	Custom Design

	Customizing Keyboard Shortcuts
	Catalog Files
	Network Proxy Settings

	MapForce Plug-in for Visual Studio
	Enabling the Plug-in
	Working with Mappings and Projects
	Accessing Common Menus and Functions

	MapForce Plug-in for Eclipse
	Installing the MapForce Plug-in for Eclipse
	The MapForce Perspective
	Accessing Common Menus and Functions
	Working with Mappings and Projects
	Creating a MapForce/Eclipse Project
	Creating New Mappings
	Importing Existing Mappings into an Eclipse Project
	Configuring Automatic Build and Generation of MapForce Code

	Extending MapForce Plug-in for Eclipse

	Menu Reference
	File
	Edit
	Insert
	Project
	Component
	Connection
	Function
	Output
	Debug
	View
	Tools
	Window
	Help Menu

	Code Generator
	Introduction to code generator
	What's new ...
	Generating C++ code
	Generating code from a mapping
	Generating code from a mapping project
	Building the project
	Running the application

	Generating C# code
	Generating code from a mapping
	Generating code from a mapping project
	Building the project
	Running the application

	Generating Java code
	Generating code from a mapping
	Generating code from a mapping project
	Handling JDBC references
	Building the project with Ant
	Example: Build a Java application with Eclipse and Ant
	Step 1: Generate Java code
	Step 2: Import the project into Eclipse
	Step 3: Run the project as dialog application
	Step 4: Run the project as console application
	Step 5: Build the JAR file with Ant

	Integrating MapForce-Generated Code
	Java example
	C# example
	C++ example
	Changing the data type of the mapping input/output (C#, Java)

	Generating Code from XML Schemas or DTDs
	About Schema Wrapper Libraries (C++)
	About Schema Wrapper Libraries (C#)
	About Schema Wrapper Libraries (Java)
	Integrating Schema Wrapper Libraries
	Example: Using the Schema Wrapper Libraries
	Example Schema
	Reading and Writing XML Documents (C++)
	Reading and Writing XML Documents (C#)
	Reading and Writing XML Documents (Java)

	Reference to Generated Classes (C++)
	altova::DateTime
	altova::Duration
	altova::DayTimeDuration
	altova::YearMonthDuration
	altova::meta::Attribute
	altova::meta::ComplexType
	altova::meta::Element
	altova::meta::SimpleType
	[YourSchema]::[CDoc]
	[YourSchema]::MemberAttribute
	[YourSchema]::MemberElement

	Reference to Generated Classes (C#)
	Altova.Types.DateTime
	Altova.Types.DateTimeFormat
	Altova.Types.Duration
	Altova.Xml.Meta.Attribute
	Altova.Xml.Meta.ComplexType
	Altova.Xml.Meta.Element
	Altova.Xml.Meta.SimpleType
	[YourSchema].[Doc]
	[YourSchemaType].MemberAttribute
	[YourSchemaType].MemberElement

	Reference to Generated Classes (Java)
	com.altova.types.DateTime
	com.altova.types.Duration
	com.altova.xml.meta.Attribute
	com.altova.xml.meta.ComplexType
	com.altova.xml.meta.Element
	com.altova.xml.meta.SimpleType
	com.[YourSchema].[Doc]
	com.[YourSchema].[YourSchemaType].MemberAttribute
	com.[YourSchema].[YourSchemaType].MemberElement

	Code Generation Tips
	Code Generator Options
	SPL (Spy Programming Language)
	Basic SPL structure
	Declarations
	Variables
	Predefined variables
	Creating output files
	Operators
	Conditions
	Collections and foreach
	Subroutines
	Subroutine declaration
	Subroutine invocation
	Subroutine example

	Built in Types
	Library
	Namespace
	Type
	Member
	NativeBinding
	Facets

	The MapForce API
	Overview
	Accessing the API
	The Object Model
	Error Handling
	Examples
	Example C# Project
	Example Java Project
	JScript Examples
	Start Application
	Simple Document Access
	Generate Code
	Example: Code Generation
	Example: Mapping Execution
	Example: Project Support

	Object Reference
	Application
	Events
	OnDocumentOpened
	OnProjectOpened
	OnShutdown

	ActiveDocument
	ActiveProject
	Application
	Documents
	Edition
	GlobalResourceConfig
	GlobalResourceFile
	HighlightSerializedMarker
	IsAPISupported
	MajorVersion
	MinorVersion
	Name
	NewDocument
	NewProject
	OpenDocument
	OpenProject
	OpenURL
	Options
	Parent
	Quit
	ServicePackVersion
	Status
	Visible
	WindowHandle

	AppOutputLine
	Application
	ChildLines
	GetCellCountInLine
	GetCellIcon
	GetCellSymbol
	GetCellText
	GetCellTextDecoration
	GetIsCellText
	GetLineCount
	GetLineSeverity
	GetLineSymbol
	GetLineText
	GetLineTextEx
	GetLineTextWithChildren
	GetLineTextWithChildrenEx
	Parent

	AppOutputLines
	Application
	Count
	Item
	Parent

	AppOutputLineSymbol
	Application
	GetSymbolHREF
	GetSymbolID
	IsSymbolHREF
	Parent

	Component
	Application
	CanChangeInputInstanceFile
	CanChangeOutputInstanceFile
	ComponentName
	GenerateOutput
	GetRootDatapoint
	HasIncomingConnections
	HasOutgoingConnections
	ID
	InputInstanceFile
	IsParameterInputRequired
	IsParameterSequence
	Name
	OutputInstanceFile
	Parent
	Preview
	Schema
	SubType
	Type
	UsageKind

	Components
	Application
	Count
	Item
	Parent

	Connection
	Application
	ConnectionType
	Parent

	Datapoint
	Application
	GetChild
	Parent

	Document
	Events
	OnDocumentClosed
	OnModifiedFlagChanged

	Activate
	Application
	Close
	CreateUserDefinedFunction
	FindComponentByID
	FullName
	GenerateCHashCode
	GenerateCodeEx
	GenerateCppCode
	GenerateJavaCode
	GenerateOutput
	GenerateOutputEx
	GenerateXQuery
	GenerateXSLT
	GenerateXSLT2
	HighlightSerializedMarker
	JavaSettings_BasePackageName
	MainMapping
	MapForceView
	Mappings
	Name
	OutputSettings_ApplicationName
	OutputSettings_Encoding (obsolete)
	Parent
	Path
	Save
	SaveAs
	Saved

	Documents
	ActiveDocument
	Application
	Count
	Item
	NewDocument
	OpenDocument
	Parent

	ErrorMarker
	Application
	DocumentFileName
	ErrorLevel
	Highlight
	Serialization
	Text
	Parent

	ErrorMarkers
	Application
	Count
	Item
	Parent

	MapForceView
	Active
	ActiveMapping
	ActiveMappingName
	Application
	HighlightMyConnections
	HighlightMyConnectionsRecursivey
	InsertWSDLCall
	InsertXMLFile (obsolete)
	InsertXMLSchema (obsolete)
	InsertXMLSchemaWithSample (obsolete)
	Parent
	ShowItemTypes
	ShowLibraryInFunctionHeader

	Mapping
	Application
	Components
	CreateConnection
	InsertFunctionCall
	InsertXMLFile
	InsertXMLSchema
	InsertXMLSchemaInputParameter
	InsertXMLSchemaOutputParameter
	IsMainMapping
	Name
	Parent

	Mappings
	Application
	Count
	Item
	Parent

	Options
	Application
	CodeDefaultOutputDirectory
	CPPSettings_DOMType
	CPPSettings_GenerateVC6ProjectFile
	CppSettings_GenerateVSProjectFile
	CPPSettings_LibraryType
	CPPSettings_UseMFC
	CSharpSettings_ProjectType
	DefaultOutputByteOrder
	DefaultOutputByteOrderMark
	DefaultOutputEncoding
	GenerateWrapperClasses
	JavaSettings_ApacheAxisVersion (obsolete)
	Parent
	ShowLogoOnPrint
	ShowLogoOnStartup
	UseGradientBackground
	XSLTDefaultOutputDirectory

	Project
	Events
	OnProjectClosed

	_NewEnum
	AddActiveFile
	AddFile
	Application
	Close
	Count
	CreateFolder
	FullName
	GenerateCode
	GenerateCodeEx
	GenerateCodeIn
	GenerateCodeInEx
	InsertWebService
	Item
	Java_BasePackageName
	Name
	Output_Folder
	Output_Language
	Output_TextEncoding
	Parent
	Path
	Save
	Saved

	ProjectItem
	_NewEnum
	AddActiveFile
	AddFile
	Application
	CodeGenSettings_Language
	CodeGenSettings_OutputFolder
	CodeGenSettings_UseDefault
	Count
	CreateFolder
	CreateMappingForProject
	GenerateCode
	GenerateCodeEx
	GenerateCodeIn
	GenerateCodeInEx
	Item
	Kind
	Name
	Open
	Parent
	QualifiedName
	Remove
	WSDLFile

	Enumerations
	ENUMApacheAxisVersion (obsolete)
	ENUMApplicationStatus
	ENUMAppOutputLine_Severity
	ENUMAppOutputLine_TextDecoration
	ENUMCodeGenErrorLevel
	ENUMComponentDatapointSide
	ENUMComponentSubType
	ENUMComponentType
	ENUMComponentUsageKind
	ENUMConnectionType
	ENUMDOMType
	ENUMLibType
	ENUMProgrammingLanguage
	ENUMProjectItemType
	ENUMProjectType
	ENUMSearchDatapointFlags
	ENUMViewMode

	ActiveX Integration
	Prerequisites
	Adding the ActiveX Controls to the Toolbox
	Integration at Application Level
	Integration at Document Level
	ActiveX Integration Examples
	C#
	Running the Sample C# Solution
	Retrieving Command Information
	Handling Events

	HTML
	HTML Integration at Application Level
	Instantiate the Control
	Add Button to Open Default Document
	Add Buttons for Code Generation
	Connect to Custom Events

	HTML Integration at Document Level
	Instantiate the MapForceControl
	Create Editor Window
	Create Project Window
	Create Placeholder for Helper Windows
	Create a Custom Toolbar
	Create More Buttons
	Create Event Handler to Update Button Status

	Java
	Example Java Project
	Creating the ActiveX Controls
	Loading Data in the Controls
	Basic Event Handling
	Menus
	UI Update Event Handling
	Listing the Properties of a MapForce Mapping

	VB.NET

	Command Reference
	"File" Menu
	"Edit" Menu
	"Insert" Menu
	"Project" Menu
	"Component" Menu
	"Connection" Menu
	"Function" Menu
	"Output" Menu
	"Debug" Menu
	"View" Menu
	"Tools" Menu
	"Window" Menu
	"Help" Menu

	Object Reference
	MapForceCommand
	Accelerator
	ID
	IsSeparator
	Label
	Name
	StatusText
	SubCommands
	ToolTip

	MapForceCommands
	Count
	Item

	MapForceControl
	Properties
	Appearance
	Application
	BorderStyle
	CommandsList
	EnableUserPrompts
	IntegrationLevel
	MainMenu
	Toolbars

	Methods
	Exec
	Open
	QueryStatus

	Events
	OnCloseEditingWindow
	OnContextChanged
	OnDocumentOpened
	OnFileChangedAlert
	OnLicenseProblem
	OnOpenedOrFocused
	OnToolWindowUpdated
	OnUpdateCmdUI
	OnValidationWindowUpdated

	MapForceControlDocument
	Properties
	Appearance
	BorderStyle
	Document
	IsModified
	Path
	ReadOnly

	Methods
	Exec
	New
	Open
	QueryStatus
	Reload
	Save
	SaveAs

	Events
	OnActivate
	OnContextChanged
	OnDocumentClosed
	OnDocumentOpened
	OnDocumentSaveAs
	OnFileChangedAlert
	OnModifiedFlagChanged
	OnSetEditorTitle

	MapForceControlPlaceHolder
	Properties
	Label
	PlaceholderWindowID
	Project

	Methods
	OpenProject
	CloseProject

	Events
	OnModifiedFlagChanged
	OnSetLabel

	Enumerations
	ICActiveXIntegrationLevel
	MapForceControlPlaceholderWindow

	Appendices
	Engine information
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XQuery 1.0

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: Geolocation
	XPath/XQuery Functions: Image-Related
	XPath/XQuery Functions: Numeric
	XPath/XQuery Functions: Sequence
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Technical Data
	OS and Memory Requirements
	Altova XML Validator
	Altova XSLT and XQuery Engines
	Unicode Support
	Internet Usage

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Intellectual Property Rights
	Altova End User License Agreement

	Glossary
	C
	F
	G
	I
	J
	M
	O
	P
	S
	T

