User and Reference Manual

ALTOVA®

MapForce® 2018

Unlimited Data

aAgent, UModal,
'tlllnT gether, ann:I .ﬂ-]tl W
rthnr rm:urturnn:i tradamar! ; H
rotec tl-l:l I:n,- LS. = and uthnr pending patents. Th :
software or ruaterljl the ¥ 3 ig subject to other terms and conditions as

Altova MapForce 2018 Basic Edition User &
Reference Manual

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems - without the written permission of the
publisher.

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for anyloss of profit or any other commercial damage caused or
alleged to have been caused directly or indirectly by this document.

Published: 2018

© 2018 Altova GmbH

Table of Contents

21
2.2
2.3
24
25

31
3.2
3.3
34

Altova MapForce 2018 Basic Edition 3
LAY 7% S = S 4
Introduction 10
SUPPOIT NOLES ...ttt e e e e ettt e e e e e e e s s sabbbaeeeaaeeeeaanes 11
WHhat IS MAPFOICE? ... a e e e s et e e e e e 12
BaSIC CONCEPLS .ocouveeieeeiiiie ettt ettt e ettt e e et e e e e st e e e e e ab e e e e e antneeeeannnneaens 18
USEr INErfaCe OVEIVIEWccoiiiiee ettt e e e e e et e e e e a e e e nees 20
(000 1017/ 110 0= PP PRRRR 26
Tutorials 28
Convert XML 10 NEW SCREIMAL........uuiiiiiiiiiie et eeaee e 29
Map Multiple SoUrcesto ONE TargeLuvveeeeeeeiiiiiiieiee e 39
Work with Multiple Target SCheEmMAscccveieiiiiiie e 45
Process and Generate Files Dynamicallycoceiiiriiiiiiniie e 54
Common Tasks 64
WOrking With M@apPINgSeeeeevreeeeeiiiieeesieeeeesiieee e e st e e e snneee e s enaeeeessnseeeeesnnneeees 65
4.1.1 Adding Components to the Mappingccceeeveeieeiieeseesieesreesee e e eeeeas 65
4.1.2 Adding Components froma URLccceevuieiiieiie e 66
4.1.3 Selecting a Transformation Languageccecuveeeiueeeeiieeeiieecieeecireeeeveeens 69
4.1.4 Validating MappinNgScccoveeeiiiieeeiieeeiee e eestre e esare e e sareeesraeesaeeesaeeesreeeens 70
4.15 Validating the Mapping OULPULcueeiiieieieiieeniee e siee e 71
4.1.6 Previewing the OULPULc.cceeiieieieerieeiesiee e esee e see e see e eneesreeneeaneens 72
417 TeXt VIEW FEAIUMESoeeeieiie ettt snee e 73
4.1.8 Searching iN TEXE VIBWoceiieieieeie ettt 78
4.1.9 Previewing the XSLT COOEcccvveeviieiieeiriesieesieese e esee et e sae e eeas 82
4.1.10 Generating XSLT COUEccuvveiieiii et cie ettt ee et neas 82
4.1.11 Working with Multiple Mapping Windowscoovueeeiieeeiiee e 83
4.1.12 Changing the MappinNg SELtNGSeeeeveriiiieeeiiee e e e e sree e %

Altova MapForce 2018 Basic Edition

4.2

4.3

5.2

5.3

5.4

5.5

Working With COMPONENESccouveiiiiie ettt 87

4.2.1 Searching Within COMPONENESc.ueiuirieririeieiesie et 838
4.2.2 AlIgning COMPONENEScveeueeareeeeaseesieesieaseesteesteasessseesseaneesseesseeessseensesnenas 89
4.2.3 Changing the Component SEtiNGSvevererrerrerenere e 0
4.24 DUpliCatiNG INPULoiuveeieeieie ettt seeesie e ae et e sseeenreessaeeneas 0
WOrking With CONMNECHIONScccuveiiiiie ettt 92
4.3.1 About Mandatory INPULScoveivirieririesiieieie e 93
4.3.2 Changing the Connection Display Preferencescccooveveeineneiniennenas A
4.3.3 ANNOLating CONNECHIONSc.veveeiriesieriesieeieeee ettt 95
4.3.4 CONNECHION SEEINGSveveeueeneeieete sttt 95
4.3.5 Connection CONMEXt MENUcc.eeiuiiiriieieeiesiee et 97
4.3.6 Connecting Matching Childrenccoooeiiiieniie e 98
4.3.7 Natifications on Missing Parent COnNECLoNScc.covveevueeieesiieesiesieeneens 100
4.3.8 Moving Connections and Child CONNECLIONScccoceerierieneeneeiesee e 101
4.3.9 Keeping Connections After Deleting COmPONENtSccoervevrerveenennenns 104
4.3.10 Dealing With MiSSING [TEMScceiveiriirieinieseeee s 106
Designing Mappings 112
Using Relative and Absolute Pathsceeeviveeiiiiic e, 114
5.1.1 Using Relative Paths on @ ComMPONENtccooereereerienieeneeneseeseenieseens 114
5.1.2 Fixing Broken Path REfEreNCeScooiiiiiiiniiiie e 116
5.1.3 Pathsin Various Execution ENVIFONMENScccerererereeieenienieseesesieneens 117
5.1.4 Copy-Paste and Relative Pathscccccceiiiiiiiiiiieeeeeeeese 118
CONMNECTHION TYPES ..ttt e eitee et e ettt ettt et e e be e et e e aabe e e ssbe e e ssne e s anneesanneesnneeans 119
521 Target-ariven COMNECHIONSccueerirreeeirie e 119
5.2.2 SOUrce-driven COMNECHIONSccueeerrreerieaeesieesieeneesieeseeeeesseeseeeneesreesseaneens 119
5.2.3 Copy-All CONNECLIONSoeviiiiiiieiiiieiieiee ettt 127
ChaiNed MapPINGSvveeeeiiiiie et e et e e e e e e s s e e e s aasa e e e e anreeaeennnees 131
5.3 1 Example: Pass-Through ACHVEccooeiiiiieiiiie e 133
532 Example: Pass-Through INBCHIVEcccccuririeiiiiiniiieiieneese s 137
Processing Multiple Input or Output Files Dynamicallyccocveviiieiiieeiiieennee 141
5.4.1 Mapping Multiple Input Files to a Single Output File ... 143
5.4.2 Mapping Multiple Input Files to Multiple Output FlEScccoovevereereanenne 144
5.4.3 Supplying File Names as Mapping Parametersccocceoveveereneneneneniens 145
5.4.4 Previewing Multiple OUEPUL FIESocueiiiiieiieie e 146
5.4.5 Example: Split One XML File into Manycccoveviuveiieiiieenie e 146
Supplying Parameters to the Mappingccvveeeiiiiiee e 149

Altova MapForce 2018 Basic Edition

5.5.1 Adding Smple INput COMPONENESccuerreriieiiererieenieere e 149

5.5.2 Simple Input ComMPONENt SEEtNGS ... cevvereeeierierierie e 150
5.5.3 Creating a Default INpUt ValUecoveeiiiiiicieieeeee 151
5.5.4 Example: Using File Names as Mapping Parameterscccoeevvevveiveennen. 152
56 Returning String Values from aMappingccoovereeiiiiieeeiiiee e eiieee e e eevneens 155
5.6.1 Adding Smple Output COMPONENEScciveeireeieeiieesieeseeesiee e sreeseeeneeas 156
5.6.2 Example: Previewing FUNCtION OULPULccuerverienerienineeieiesie e 156
57 USINGVANBDIESoouiiiiiiii ettt 159
9.1 AdAING VariahleS.........ccouiiiiiieiieee e 160
5.7.2 Changing the Context and Scope of Variablesccoovevniiicrcciiennne 163
5.7.3 Example: Grouping and Subgrouping RECOIASccceeverirneeieeieieerieenens 165
S TS o 110 o [T - U PPRPR 168
5.8.1 Sorting by MUItDIE KEYS......cvieieiiiiiece e 170
5.8.2 Sorting With VariableScceeiiiiiieiice e 171
5.9 Filters and CONTItIONScccvirrieiieeiiiesie e 174
5.9.1 Example: FItering NOUESccviiiiiieieieiesie e 175
5.9.2 Example: Returning a Value Conditionallycccccverirerienincnenencneens 177
510 USING VAIUB-MEPScooiiiiiieeiiiiie ettt sttt e e st e e e s e e e e nnnneee s 180
5.10.1 Passing data through a Value-Map unchangedccccooeieeiieienieenennnne 183
5.10.2 Value-Map compoNnent PropertieSc..eeeereerueeeereesieaeeseesieeeesseeseeaneens 185
511 Mapping NOGE NAITIESccooiiiieeiiiiie et e e e eaaeee s 188
5.11.1 Getting AcCesS o NOUE NAMESccueeriiiiiiieriiiie e 189
5.11.2 Accessing Nodes of SPECIfIC TYPEeoveeueeieiieiieiiesie e 196
5.11.3 Example: Map Element Names to Attribute Valuesccccoovvereciniennnn. 201
512 Mapping RUIES aNd SIFALEGIESveiiieie ittt 205
5.12.1 Changing the Processing Order of Mapping Componentscccoceereeeneene 209
5.12.2 Priority CONtext NOGE/IEEMccuiiiiiieieieee s 212
5.12.3 Overriding the Mapping CONEXLceoeeiereerieeiereenieeee e see e 213
Data Sources and Targets 220
6.1 XML and XML SChEIMAc.oiiiiiiiiiiierieeee s 221
6.1.1 Generating an XML SChEIMAL.......cceiiiiiieiiiiesie et 221
6.1.2 XML COMPONENt SEHINGSc.veveeerieeiieieierie sttt 222
6.1.3 Using DTDs as "Schema" COMPONENEScoverierrerierinreeeresiesee e 226
6.1.4 Derived XML SChema TYPESccouiiierieaieieeneeeeesieesie e siee e seeseeeseeaneens 227
B.1.5 QNBIMES ..ottt 229
6.1.6 Nil Values/ Nillahle............cccooiiiiiiiiiec e 229

Altova MapForce 2018 Basic Edition

6.2

7.2

7.3

7.4
7.5

6.1.7 Comments and Processing INStrUCHIONScoerveierierinenieieese e 231

6.1.8 CDATA SECHONSceitieieeieeeieesieeeesieesieeeesieesaeeneesreeseeeneesseesaeeneesreenseaneens 233
6.1.9 Wildcards - xsany / XS:anyAttribUteooeeiieieiiereee e 234
6.1.10 Merging Data from Multiple SChemas............cccooiiiriiinieicieec s 238
6.1.11 Declaring Custom NaMESPACESueeruerurerieeriereesieesieaeesseeseeseesieessesneens 240
o LI = £ o o e TP 243
Functions 246
HOW 0., ittt a s 247
7.1.1 Add aBuilt-in Function to the Mappingccceveurreereeieesee e e e 247
7.1.2 AddaConstant to the Mappingccereeeereererieseesieeee e eee e seeeneens 248
7.1.3 Search for @FUNCHONc.ccviiiiiiiiiieiecc e 249
7.1.4 View aFunction's Type and DeSCIpLioNcccveevireeeiieeeiiee e 250
7.1.5 Add or Delete FUNCLION ATQUMENLSc.ooviiieeriiiierieesie e 251
User-Defined FUNCHIONSccoviiiieiiiiieesie e 252
7.21 FUNCHON PAIrBMELENS ...ttt sttt nb bt 257
7.2.2 Inline and regular user-defined fUNCHIONScccoviririiiciceccec 259
7.2.3 Creating a simple 100K-Up fUNCHONooviiiiieiee e 261
7.2.4 User-defined function - eXample..........cccoeiiieiiiiiniereee e 265
7.25 Complex user-defined function - XML node asinputccooveeereenennns 270
7.2.6 Complex user-defined function - XML node as outputc.cceevveeeeveeennee. 276
7.27 Recursive user-defined MappiNgcccereerrerererieneneseseeeesee e 280
Importing Custom XSLT 1.0 0r 2.0 FUNCLONScoeiieieiiiieiiieeniiee e 290
7.3.1 Example: Adding Custom XSLT FUNCHONSccoveeeinineine e 201
7.3.2 Example: SUmmIng NOGE ValUESccoevriirieininiceeese s 294
RegUIAI EXPrESSIONSeveiii ittt e e e s s 297
Function Library REFEIENCEccoii i 300
7.5.1 core | aggregate fUNCHOMNScccueeiieiieeiie e 300
7.5.2 core | ConVersion FUNCHIONSccouiiieieiiiiie e 305
7.5.3 core | file path fUNCHONSccooviiiiiciec s 312
7.5.4 core | generator fUNCHIONSccviiiiieriiiieseeie e 314
7.5.5 core | 10gical FUNCHONScccoiiiiiiiieee e 317
7.5.6 core | Math fUNCHONSccooiiiieiriree s 320
7.5.7 core | NOde FUNCHIONSeeeiiieiieie s 323
7.5.8 core | QNamMe fUNCHONSoiiiiiiiiieicee e 325
7.5.9 core | SequenCe FUNCHIONSccuiiiieieiee ettt 326
7.5.10 core | String fUNCHOMNScocvveeiieiie e 338

Altova MapForce 2018 Basic Edition

8.1
8.2

9.1
9.2

9.3
9.4
9.5

10
10.1
10.2
10.3
10.4
10.5
10.6
10.7

7.5.11 XPAth2 | @CCESSOISccueiuieieieiiie et 346

7.5.12 xpath2 | anyURI fUNCONScoouriiiiieieeie e 347
7.5.13 xpath2 | boolean fUNCLIONSccoiveiieiiie e 348
7.5.14 XPath2 | CONSITUCIONSeevieiiieceee ettt nneas 348
7.5.15 xpath2 | CONteXt FUNCHIONSeeiviieiieciie e 349
7.5.16 xpath2 | durations, date and time fuNCLIONSccccevveeeiieecciee e 350
7.5.17 xpath2 | NOde fUNCHIONSooiuiiiiieiie e 352
7.5.18 xpath2 | NUMETIC FUNCHIONSccivieiieiiieceeie e 34
7.5.19 xpath2 | StriNg FUNCHIONSeoveeiieee e 34
7.5.20 xSt | Xpath FUNCHONScveeeiiiieie e 356
7.5.21 XSIt | XSIt fUNCHIONS ...t 359
Automating Mappings and MapForce 364
Automation With RAPEOIXIML SEIVEYccoiiiiiiiieiiie e 365
MapForce Command Line INterfacecoocvveiiiiiiiiiiie e 366
Customizing MapForce 370
Changing the MapForce OpPLiONSeeiiiiciiiiieiee e e e e 371
Altova Global RESOUICESeeeiiiiiieiiee et 373
9.21 Creating Global RESOUICES.ccvvveiiieeireeecree et eree e 373
9.2.2 The Global ResourceS XML Flecccveevvieiiiiiiiccie e 374
9.23 Example: Run Mapping with Variable Input Fles.............ccoveviviieiienieennnns 375
9.2.4 Example: Generate Output to Variable FOldersccccvevviieriveie e 377
Customizing Keyboard SNOMCULSueeeeiiiiieee e et e e snvee e e 379
CAAIOG FIIES ... 3381
NEWOrK Proxy SEHINGSuvvieiiieeiiicciiiiiie e e e e e re e e e e e 386
Menu Reference 390
Il e e e e e e a i aeeeannreaes 391
o R 34
S PP SOPRR 395
(O0]0/0/0]07=" o EE PP URPT P 397
COMNECTION ...ttt et s e e e e e e s e e s enn e e nnneena 398
FUNCLION ...ttt ne e 399
(0,7 0, OO 400

Altova MapForce 2018 Basic Edition

LO.8 VIBW ettt ettt ettt et ae e bt e Rt et nae e et e e te e e nre e nneeenee 401
109 TOOIS oeieeiiiie ettt e e e e e et e e e e e e e e nree e e e nnreeeeaan 403
10.10 WINGOW ..ttt ettt ettt etk et esae e et e sbe e e e e e nneeenee 404
1011 HEIPIMENU ...t e e e e r e e e e e e s e bt ra e e e e e e e e e e nnnnrnnees 405
11 Appendices 412
111 ENgINE iNFOMMIALIONeeiiiieieeee ettt e e e 413
11.1.1 XSLT and XQuery Engine INfOrmationccceeeeiueenernieenensieesiee e 413
11.1.2 XSLT and XPath/XQuEry FUNCHIONScovieieaieiiesie e 418
112 TeChNICAl DALcccueeeiiiieiie e 486
11.2.1 OSand Memory REQUIFEIMENESccuueireeriieiieesreesieesieesaeesseessseessaesneaens 486
11.2.2 Altova XML Validatorceiiriiiieniieie e 486
11.2.3 Altova XSLT and XQUErY ENGINEScccvveeiiieeeciee e 486
11.2.4 UNICOUE SUPPOI ...vvevieir e sieesie et e sie et ste et sneeseeeneesne e e sneesraeneessee e 487
11.2.5 INtErNEE USAGE . .veevieieiieitie ettt etee ettt et e s sbeeenae e steesnbeesreeennaens 487
11.3 License INFOMMELIONeveeeiiieeeeeiiiee e e ettt e e et e e e et e e s enae e e e e snneeeeeeneeeeeeenseeeeeanns 488
11.3.1 Electronic Software DiStribUtionccceciveiieeieeiieeiee e 488
11.3.2 Software Activation and License MEeteringccoeevueeveeiieeseesieesee s 489
11.3.3 Intellectual Property RIGhtScooveiieiieeiie e 490
11.3.4 Altova End User License AQreemMENtccceeevueeeeireeeiieeeiieeeeieeeeveeeevees 490
12 Glossary 492
2250 PSR R 493
2 PP RURPR 494
2 S € PP TRUPRPR 495
124 | ettt b et e e r e 496
2 T OO PP PP PP UPPPR 497
2.6 M 498
22 © TSR 499
228 T PSR 500
22N S PR TUR 501
2250 0 PP OTRUPRPR 502
Index

Altova MapForce 2018 Basic Edition

Chapter 1

Altova MapForce 2018 Basic Edition

Altova MapForce 2018 Basic Edition

1 Altova MapForce 2018 Basic Edition

MapForce® 2018 Basic Edition is a visual data mapping tool for advanced data integration
projects. MapForce® is a 32/64-bit Windows application that runs on Windows 7 SP1 with
Platform Update, Windows 8, Windows 10, and Windows Server 2008 R2 SP1 with Platform
Update or newer. 64-bit support is available for the Enterprise and Professional editions.

ALTOVA®

MapForce® 2o18

Unlimited Da

Copyright@ 2018 Altova GrbH. All ights reserved. Use of this software is governed

by an Altova license agreemeant. XMLSpy, MapForce, StyeVision, Schamafgent, UModal,
DatabasaeSpy, DiffDog, Authentic, Missionkit, FlowForce, RaptorXML, MobileTogether, and Altova
as weall as their respective logos are either registerad trademarks or trademarks of Altova GmbH.
Protacted by LS. Patents 8,762 824 and other panding patants. This software contains third party
softwara or material that is protected by copyright and subject to other terms and conditions as
detailed on the Altova website at https://www.altova. com/legal/2rdparty.

Last updated: 21 June 2018

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

4 Altova MapForce 2018 Basic Edition What's new...

1.1 What's new...

New in MapForce 2018 Release 2:

e Built-in functions, user-defined functions, and constants can be conveniently added to
the mapping by double-clicking an empty area on the mapping (see Add a Built-in
Function to the Mapping and Add a Constant to the Mapping)

e Internal updates and optimizations

New in MapForce 2018:

e Internal updates and optimizations

New in MapForce 2017 Release 3:

e The text search options in the Output pane and the XSLT pane have been enhanced
(see Searching in Text View). Also, text highlighting is available in the above-mentioned
panes (see Text Highlighting).

* Internal updates and optimizations

New in MapForce 2017:

e |t is possible to read node names from a source XML and map this information to a
target. It is also possible to dynamically create new XML attributes or elements in a
target based on values supplied from a source. See Mapping Node Names.

e XML instance files can be created with custom namespaces, at element level (see
Declaring Custom Namespaces)

e Internal updates and optimizations

New in MapForce 2016 R2:

* More intuitive code folding in the XSLT pane: collapsed text is displayed with an ellipsis
symbol and can be previewed as a tooltip.

* You can search for all occurrences of a function within the active mapping (in the Libraries
window, right-click the function, and select Find All Calls).

¢ Internal updates and optimizations

New features in MapForce 2016:

e Improved generation of XSLT 1.0 code (generated stylesheets are easier to read and often
faster to execute)

¢ Two new aggregate functions are available in the MapForce core library: m n-stri ng and
max- st ri ng. These functions enable you to get the minimum or maximum value from a
sequence of strings.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Altova MapForce 2018 Basic Edition What's new... 5

New features in MapForce Version 2015 R4:
e Internal updates and optimizations
New features in MapForce Version 2015 R3 include:
e Option to suppress the <?xni ... ?> declaration in XML output

¢ New component type: Simple Output
e Internal updates and optimizations

New features in MapForce Version 2015 include:

e New | anguage argument available in the format-date and format-dateTime functions
* New sequence function: replicate-item

New features in MapForce Version 2014 R2 include:

New sequence functions: generate sequence, item-at, etc.
Ability to define CDATA sections in output components

Keeping connections after deleting components

Automatic highlighting of mandatory items in target components

New features in MapForce Version 2014 include:

Integration of RaptorXML validator and basic support for XML Schema 1.1
Integration of new RaptorXML XSLT engines

XML Schema Wildcard support, xs:any and xs:anyAttribute

Support for Comments and Processing Instructions in XML target components

New features in MapForce Version 2013 R2 SP1 include:

e New super-fast transformation engine

New features in MapForce Version 2013 R2 include:

e Internal updates and optimizations.

New features in MapForce Version 2013 include:

e Internal updates and optimizations

New features in MapForce Version 2012 R2 include:

¢ New Sort component for XSLT 2.0, XQuery, and the Built-in execution engine
e User defined component names

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

6 Altova MapForce 2018 Basic Edition What's new...

New features in MapForce Version 2012 include:
e Auto-alignment of components in the mapping window
* Prompt to connect to target parent node
e Specific rules governing the sequence that components are processed in a mapping

New features in MapForce Version 2011R3 include:

e Intermediate variables

New features in MapForce Version 2011R2 include:

Find function capability in Library window
Reverse mapping

Extendable IF-ELSE function

Node Name and parsing functions in Core Library

New features in MapForce Version 2011 include:

e Ability to preview intermediate components in a mapping chain of two or more
components connected to a target component (pass-through preview).

e Formatting functions for dateTime and numbers for all supported languages

e Enhancement to auto-number function

New features in MapForce Version 2010 Release 3 include:

e Support for Nillable values, and xsi:nil attribute in XML instance files

¢ Ability to disable automatic casting to target types in XML documents
New features in MapForce Version 2010 Release 2 include:

e Automatic connection of identical child connections when moving a parent connection
¢ Ability to tokenize input strings for further processing

New features in MapForce Version 2010 include:

Multiple input/output files per component

Upgraded relative path support

xsi:type support allowing use of derived types

New internal data type system

Improved user-defined function navigation

Enhanced handling of mixed content in XML elements

New features in MapForce Version 2009 SP1 include:

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Altova MapForce 2018 Basic Edition What's new... 7

e Parameter order in user-defined functions can be user-defined
e Ability to process XML files that are not valid against XML Schema
e Regular (Standard) user-defined functions now support complex hierarchical parameters

New features in MapForce Version 2009 include:

EDI HL7 versions 3.x XML as source and target components
Grouping of nodes or node content
Ability to filter data based on a nodes position in a sequence

QName support

ltem/node search in components

New features in MapForce Version 2008 Release 2 include:

e Ability to automatically generate XML Schemas for XML files
e Support for Altova Global Resources
e Performance optimizations

New features in MapForce Version 2008 include:

e Aggregate functions

e Value-Map lookup component

e Enhanced XML output options: pretty print XML output, omit XML schema reference and
Encoding settings for individual components

e Various internal updates

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Chapter 2

Introduction

10 Introduction

2 Introduction

This introduction includes an oveniew of the MapForce features and user interface, the basic
concepts in MapForce, as well as the conventions used in this documentation.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Introduction Support Notes 11

2.1 Support Notes
MapForce® is a 32/64-bit Windows application that runs on the following operating systems:

e Windows 7 SP1 with Platform Update, Windows 8, Windows 10
e Windows Server 2008 R2 SP1 with Platform Update or newer

64-bit support is available for the Enterprise and Professional editions.

For other technical information, see Technical Data.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

12

Introduction What Is MapForce?

2.2

What Is MapForce?

Altova website: Data mapping tool

MapForce is a Windows-based, multi-purpose IDE (integrated development environment) that
enables you to transform data from one format to another, or from one schema to another, by
means of a visual, "drag-and-drop" -style graphical user interface that does not require writing any
program code. In fact, MapForce generates for you the program code which performs the actual
data transformation (or data mapping). When you prefer not to generate program code, you can
just run the transformation using the MapForce built-in transformation language (available in the
MapForce Professional or Enterprise Editions).

Mappings designed with MapForce enable you to conveniently convert and transform data from
and to a variety of file-based and other formats. Regardless of the technology you work with,
MapForce determines automatically the structure of your data, or gives you the option to supply a
schema for your data, or generate it automatically from a sample instance file. For example, if you
have an XML instance file but no schema definition, MapForce can generate it for you, thus
making the data inside the XML file available for mapping to other files or formats.

The technologies supported as mapping sources or targets are as follows.

MapForce Basic Edition MapForce Professional MapForce Enterprise Edition
Edition
¢ XML and XML schema ¢ XML and XML schema ¢ XML and XML schema
e HL7 version 3.x (schema- e Flat files, including comma- | e Flat files, including comma-
based) separated values (CSV) and separated values (CSV) and
fixed-length field (FLF) fixed-length field (FLF)
format format
e Databases (all major e Data from legacy text files
relational databases, can be mapped and
including Microsoft Access converted to other formats
and SQLite databases) with MapForce FlexText

e Databases (all major
relational databases,
including Microsoft Access
and SQLite databases)

e EDI family of formats
(including UN/EDIFACT,
ANSI X12, HL7, IATA
PADIS, SAP IDoc,
TRADACOMS)

e JSON files

e Microsoft Excel 2007 and
later files

¢ XBRL instance files and
taxonomies

Based on the MapForce edition, you can choose the preferred language for your data
transformation as follows.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

https://www.altova.com/mapforce

Introduction

What Is MapForce? 13

MapForce Basic Edition

MapForce Professional
Edition

MapForce Enterprise Edition

e XSLT1.0
e XSLT 2.0

e MapForce built-In
transformation language
XSLT 1.0

XSLT 2.0

XQuery

Java

C#

C++

e MapForce built-In
transformation language

e XSLT1.0

e XSLT 2.0

* XQuery

e Java

e C#

o C++

You can preview the result of all transformations, as well as the generated XSLT or XQuery code
without leaving the graphical user interface. Note that, as you design or preview mappings,
MapForce validates the integrity of your schemas or transformations and displays any validation
errors in a dedicated window, so that you can immediately review and address them.

When you choose Java, C#, or C++ as transformation language, MapForce generates the required
projects and solutions so that you can open them directly in Visual Studio or Eclipse, and run the
generated data mapping program. For advanced data integration scenarios, you can also extend
the generated program with your own code, using Altova libraries and the MapForce API.

In MapForce, you design all mapping transformations visually. For example, in case of XML, you
can connect any element, attribute, or comment in an XML file to an element or attribute of
another XML file, thus instructing MapForce to read data from the source element (or attribute),
and write it to the target element (or attribute).

& Articles

1 £ File: Articles.xml Filg|
B {} Articles
B4} Article
------- {} Humber

& Aricles_Export
1 £ File: (default) File|
"3 {} Articles
"B () Article
....... £} Humber

i) format-number

Bvalue

eformat
{decimal-point-character
E#gruupin g-zeparator

resulth

Sample data transformation between two XML files

Likewise, when working with databases in MapForce Professional or Enterprise Editions, you can
see any database column in the MapForce mapping area and map data to or from it by making
visual connections. As with other Altova MissionKit products, when setting up a database
connection from MapForce, you can flexibly choose the database driver and the connection type
(ADO, ODBC, or JDBC) according to your existing infrastructure and data mapping needs.
Additionally, you can visually build SQL queries, use stored procedures, or query a database

directly (support varies by database type, edition and driver).

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

14

Introduction

What Is MapForce?

& Attova_Hierarchical
« B[] File: Altova_Hierarchit
B {}Altova
‘o {} PrimaryKey

m

-2 {} Department
....... {} PrimaryKey
------- {} Foreignkey

[l AtovaTarget

- [[MAaddress

B MMAtova DEL Aln

....... Dﬁ PrimaryKey

‘0 [office Adn| Foreignk
....... 0% PrimaryKey

------- 0f ForeignKey - ~lova
....... 0 Desc

....... 07 EMail

------- 07 Established

....... 0 Fax

....... 0 Hame

....... 0 Phone

m

....... I:Iﬁ PrimaryKey

....... I:Iﬁ PrimaryKey
....... Dﬁ ForeignKey = C

— 1

o

«—[[MAddress A:n]| For

------- 0ff Foreignkey = 0ff

[[Department A:n| F

ol

Sample data transformation between an XML file and a database

In a very simple scenario, a mapping design created with MapForce could be resumed as "read
data from the source X and write it to target Y". Howewer, you can easily design MapForce
scenarios such as "read data from the source X and write it to target Y, and then read data from
the source Y and write it to the target Z'. These are known as "pass-through”, or "chained"
mappings, and enable you to access your data at an intermediary stage in the transformation

process (in order to sawe it to a file, for example).

Note that the data mappings you can create in MapForce are not limited to single, predefined
files. In the same transformation, you can process dynamically multiple input files from a directory
and generate multiple output files. Therefore, you can have scenarios such as "read data from
multiple Xfiles and write it to a single Y file", or "read file X and generate multiple files Y", and so

on.

Importantly, in the same transformation, you can mix multiple sources and multiple targets, which
can be of any type supported by your MapForce edition. For example, in case of MapForce
Professional or Enterprise, this makes it possible to merge data from two different databases into
a single XML file. Or, you can merge data from multiple XML files, and write some of the data to
one database, and some of the data to another database. You can preview the SQL statements

before committing them to the database.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Introduction

What Is MapForce? 15

Direct conversion of data from a source to a target is not typically the only thing you want to
achieve. In many cases, you might want to process your data in a particular way (for example,
sort, group or filter it) before it reaches the destination. For this reason, MapForce includes, on
one hand, miscellaneous functional components that are simplified programming language
constructs (such as constants, variables, SQL-WHERE conditions, Filter and Sort components).
On the other hand, MapForce includes rich and extensible function libraries which can assist you
with virtually any kind of data manipulation.

If necessary, you can extend the built-in library either with functions you design in MapForce
directly (the so-called User-Defined Functions, or UDF), or with functions or libraries created
externally in XSLT, XQuery, Java, or C# languages.

Libraries

E core

count
sUm

boolean
format-number
number

string

get-fileext
get-folder

mfd-filepath
remove-filesxt
remove-folder
replace-fileext
rezohve-filepath

auto-number

equal

ggualor-less
greater
le=s

Searah for funchion

g-jaggregate functions

g conversion functions

g file path functions

main-mfd-filepath

gzl generator functions

gl logical functions

equal-or-greater

result = count{ nodes/rows)
result = sumi values }

Converts the value

of arg to a boolean value.]

J—

rezult = boolean g arg)

rezult = format-number{ value,
rezult = number [arg }

rezult = string (arg)

extension = get-fileext(fiepatr
folder = get-folder(file-path)
filepath = main-mfd-filepath(})
filepath = mfd-filepath(}
rezult-filepath = remowve-fileext
filename = remove-folder(file-|
rezult-filepath = replace-fileext
rezult-filepath = rezolve-filepat

result = auto-number{ global-id

result = a egual b

resut=a>=b

rezut=a<==0b

rezut=a=b

resut=a-<=b 8

Add/Remove Libraries. ..

Libraries pane (MapForce Basic Edition)

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

16

Introduction What Is MapForce?

When your data mapping design files become too many, you can organize them into mapping
projects (available in MapForce Professional and Enterprise edition). This allows for easier access
and management. Importantly, you can generate program code from entire projects, in addition to
generating code for individual mappings within the project.

For advanced data processing needs (such as when running mapping transformations with the
MapForce Server API), you can design a mapping so that you can pass values to it at run-time, or
get a simple string value from it at run-time. This feature also enables you to quickly test the
output of functions or entire mappings that produce a simple string value. The Professional and
Enterprise editions of MapForce also include components that enable you to perform run-time
string parsing and serialization, similar to how this works in many other programming languages.

With MapForce Enterprise Edition, you can visually design SOAP 1.0 and SOAP 2.0 Web
senices based on Web Senice Language Definition (WSDL) files. You can also call and get data
from a WSDL 1.0 or a WSDL 2.0 Web senvice from within a mapping. This includes Web senices
available both through the HTTP and HTTPS protocols, as well as Web senices which require that
the caller uses the WS-Security mechanism, or HTTP authentication.

With MapForce Professional and Enterprise Editions, you can generate detailed documentation of
your mapping design files, in HTML, Word 2007+, or RTF formats. Documentation design can be
customized (for example, you can choose to include or exclude specific components from the
documentation).

If you are using MapForce alongside other Altova MissionKit products, MapForce integrates with
them as well as with the Altova server-based products, as shown in the following table.

MapForce Basic Edition MapForce Professional MapForce Enterprise Edition
Edition

You can choose to run the generated XSLT directly in MapForce and preview the data
transformation result immediately. When you need increased performance, you can process
the mapping using RaptorXML Server, an ultra-fast XML transformation engine.

If XMLSpy is installed on the same machine, you can conveniently open and edit any supported
file types, by opening XMLSpy directly from the relevant MapForce contexts (for example, the
Component | Edit Schema Definition in XMLSpy menu command is available when you
click an XML component).

You can run data transformations either directly in MapForce,
or deploy them to a different machine and even operating
system for command-line or automated execution. More
specifically, you can design mappings on Windows, and run
them on a Windows, Linux, or Mac server machine which runs
MapForce Sener (either standalone or under FlowForce Server
management).

If StyleVision is installed on the same machine, you can
design or reuse existing StyleVision Power Stylesheets and
preview the result of the mapping transformations as HTML,
RTF, PDF, or Word 2007+ documents.

MapForce Professional and Enterprise edition can be installed as a plug-in of Visual Studio and
Eclipse integrated development environments. This way, you can design mappings and get

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Introduction What Is MapForce? 17

access to MapForce functionality without leaving your preferred development environment.

In MapForce, you can completely customize not only the look and feel of the development
environment (graphical user interface), but also various other settings pertaining to each
technology and to each mapping component type, for example:

e When mapping to or from XML, you can choose whether to include a schema reference,
or whether the XML declaration must be suppressed in the output XML files. You can also
choose the encoding of the generated files (for example, UTF-8).

e When mapping to or from databases, you can define settings such as the time-out period
for executing database statements, whether MapForce should use database
transactions, or whether it should strip the database schema name from table names
when generating code.

¢ In case of XBRL, you can select the structure views MapForce should display (such as
the "Presentation and definition linkbases" view, the "Table Linkbase" View, or the "All
concepts” view).

All editions of MapForce are available as a 32-bit application. The MapForce Professional and
Enterprise editions are additionally available as a 64-bit application.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

18

Introduction Basic Concepts

2.3

Basic Concepts

This section outlines the basic concepts that will help you get started with data mapping.

Mapping

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to
be transformed from one format to another. A mapping consists of components that you add to
the MapForce mapping area in order to create your data transformations (for example, convert
XML documents from one schema to another). A valid mapping consists of one or several source
components connected to one or several target components. You can run a mapping and preview
its result directly in MapForce. You can generate code and execute it externally. You can also
compile a mapping to a MapForce execution file and automate mapping execution using
MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

Connection

Source component
Target component

& Employees |
B[] File: Employees.xml Fie| l'f | &) PersonList I
[‘B {} Company seril = ['Manager = (] File: (default) Fie] [
II- {) Name IE (c2Tanager’ [» '3 {) PersonList Lt of ¢ 'IE
II- ‘B {} Employees i B2 () Person IL
|I. & ()} Manager = role IL
II.> {}FirstName {) First |L
I,}.> {} LastHame {}Last I
I1-> {} PhoneExt [{} Details
11) {} Email ‘=€) Person (2)
-3 {}¥ Programmer = role
{} Firstame {} First
{} LastHame {}Last
{} PhoneExt I {} Details
{} Email & {} Person (3)
2 {} Support = role
IL {} FirstName {}First
I’L {} LastName {}Last
rL {} PhoneExt Ir {} Details
I {} Email

!

QOutput connector

Input connector

Basic structure of a MapForce mapping

Component

In MapForce, the term "component” is what represents \isually the structure (schema) of your
data, or how data is to be transformed (functions). Components are the central building pieces of

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Introduction Basic Concepts 19

any mapping. On the mapping area, components appear as rectangles. The following are
examples of MapForce components:

Constants

Filters

Conditions

Function components

EDI documents (UN/EDIFACT, ANSI X12, HL7)
Excel 2007+ files

Simple input components

Simple output components

XML Schemas and DTDs

Connector

A connector is a small triangle displayed on the left or right side of a component. The connectors
displayed on the left of a component provide data entry points to that component. The connectors
displayed on the right of a component provide data exit points from that component.

Connection

A connection is a line that you can draw between two connectors. By drawing connections, you
instruct MapForce to transform data in a specific way (for example, read data from an XML
document and write it to another XML document).

Source component

A source component is a component from which MapForce reads data. When you run the

mapping, MapForce reads the data supplied by the connector of the source component, converts
it to the required type, and sends it to the connector of the target component.

Target component

A target component is a component to which MapForce writes data. When you run the mapping,
a target component instructs MapForce to either generate a file (or multiple files) or output the
result as a string value for further processing in an external program. A target component is the
opposite of a source component.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

20 Introduction User Interface Overnview

2.4 User Interface Overview

The graphical user interface of MapForce is organized as an integrated development environment.
The main interface components are illustrated below. You can change the interface settings by
using the menu command Tools | Customize.

Use the ™ ™ * puttons displayed in the upper-right corner of each window to show, hide, pin, or
dock it. If you need to restore toolbars and windows to their default state, use the menu
command Tools | Restore Toolbars and Windows.

Mapping pane

(%) Attova MapForce - [PersonList.mid] =3 5T
Menu bar B Fle Edit lnset Component Connection Function Output Miew Tools Window Help -8 X
Dl aoce | 8By @ X Mm% Defout - B oo Toolbars
G0 I R Wz b b R[S MM DT Bl e . EEm] ey
Libraries - ax A
[core
jate functions
NS v || [T 2T
sum resuk = sumi B () Company \([c= [anagery B[] File: (detault) Fie]
4} Hame [+ B() PersonlList
aconversion functions B4) employees I B4} person
boiean resull = boole B() Manager = role
Libraries window e p— prp—) Firstiame) First
umber p— () Lastame {}Last
waing resut = srng g:"":’m iy ;,’,N“"'m
<3 fie path functions 2{} Programmer = role
ot flenct dension = o { ¥ Firstame {)First
pet-fokder fokder = get-t £} Lastiame {duast
main-mic-fiepatn fiepath = mai g P"°:‘E“ “ﬂ Details.
. fiepath flepath = mid Emal B} Person (3
remove. fisext resul.fiepatr B4 support = role
per oo o O Firstame st
replace-fieext resul-flepatt) Lastiame {rLast
£ B i resoive-Mepath resuhfiepalt {} Phonetxt i {} Details
Function libraries {3 emain
g generator functions.
suto-number result = auto-
| - Output button
gllogical functions Mapping | XsUT Output
- opens the Output pane
equa resu=aea | Personlistmfi | B ArticlePricing mfd | B CompletePO.mfd | B MapAdticle.mid |BhSimpleT 4 » x fop plrpanc]
equak-or-greater resull = 3 ==
e pas=a = f oweton R o o]
oreater resut=arb -
less. resut=a<h r .
logicak-and resut = logict
logicak-not resul = logict
logicai-or resul = logiee [F—1]
not-squal resul = logiet - =
MapForce Basic Edition v2015 rel. 3 Registered to Mr, Nobody (Altova GmbH) ©1998-201% Attova GmbH CAP | NUM | SCRL

Overview window Messages window

XSLT button (opens the X5LT pane)

MapForce graphical user interface (MapForce Basic Edition)

Menu Bar and Toolbars
The Menu Bar displays the menu items. Each toolbar displays a group of buttons

representing MapForce commands. You can reposition the toolbars by dragging their
handles to the desired locations.

Libraries window

The Libraries window lists the MapForce built-in functions, organized by library. The list of
available functions changes based on the transformation language you select. If you have

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Introduction User Interface Overview 21

created user-defined functions, or if you imported external libraries, they also appear in
the Libraries window.

E core o2

=-laggregate functions

=

avyg result =
count result = —
A result =
miin result =
string-jein result =
sum result =

== conversion functions

boolean result =
format-date result =
format-dateTime result =
format-number result =
format-time result =
number result =
string result =

g file path functions

get-fileext extensic
get-folder folder =
main-mfd-filepath filepath

mfd-filepath filepath

remowve-fileext result-fil
remove-folder filename
replace-fileext result-fil
resohve-filepath result-fil

Search for function -

[Add/Bemove Libraries...]

To search functions by name or by description, enter the search value in the text box at
the bottom of the Libraries window. To find all occurrences of a function (within the
currently active mapping), right-click the function, and select Find All Calls from the
context menu. You can also view the function data type and description directly from the
Libraries window. For more information, see Working with Functions.

Mapping pane

The Mapping pane is the working area where you design mappings. You can add
mapping components (such as files, schemas, constants, variables, and so on) to the
mapping area from the Insert menu (see Adding Components to the Mapping). You can
also drag into the Mapping pane functions displayed in the Libraries window (see Working

with Functions).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

22 Introduction

User Interface Overnview

XSLT (XSLT2) pane

The XSLT (or XSLT2) pane displays the XSLT 1.0 (or 2.0) transformation code generated
from your mapping. To switch to this pane, select XSLT (or XSLT 2) as transformation
language, and then click the XSLT tab (or XSLT2 tab, respectively).

This pane provides line numbering and code folding functionality. To expand or collapse
portions of code, click the "+" and "-" icons at the left side of the window. Any portions of
collapsed code are displayed with an ellipsis symbol. To preview the collapsed code
without expanding it, move the mouse cursor over the ellipsis. This opens a tooltip that
displays the code being previewed, as shown in the image below. Note that, if the
previewed text is too big to fit in the tooltip, an additional ellipsis appears at the end of the

tooltip.

<?xml version="1.0" enceding="UTF-8"?=
<l =

<xslstylesheet version="2.0" xmins:xsl="http:/feww. w3.org/M 899X SLTransform™ xmins:xs="http:fwww.w3.org/2001/XMLSchema" xmins: f
<%gl.output metho ml" encoding="UTF-8" byte-order-mark="no" indent="yes"/>

<xglparam name="Articles2" select="C./Users/atova/Documents/Akova/MapForce2016/MapForceExamples/ Articles.xml™/=

<xglparam name="ShortP02" select=""C./Users/atova/Documents/Attova/MapForce2016/MapForceExamples/ShortPO. xml™/=

<xsltemplate match="/"=

i <xslvariable name="initial" as="node(}" select=""1=

<xslvariable name="vard_ShortP0" as="node(}?" select="fn.doc(3ShortPO2WShetPO"/=

<CompleteP0=

<¥sl-attribute name="xsinoNamespaceSchemalocation” namespace="http:/'ww w . w3.org/2001/XMLSchema-instance” select="file:iC
<xsl:for-each select="Svard_ShortPO">[__|<ixs
="Svard_ShortPO"= [|=/xs

<_0t-a |>E <Total «xglvariable na-rne="'.ra r1_current” as="node(}" select=""/>
| </CompletePO> <xgl for-each zelect="{SinitialCustomers/Customer)[ixs:integer(fn:string(Svar1_current/Cust
</xsltemplate= EETTED)) .
<ixslstyleshests =xslsequence select="(/@node(), /node())f=
<iCustomers

<fxsl for-eachs

To configure the display settings (including indentation, end of line markers, and others),
right-click the pane, and select Text View Settings from the context menu. Alternatively,

click the Text View Settings (2) toolbar button.

Output pane

The Output pane displays the result of the mapping transformation (for example, an XML
file), when you click the Output button. If the mapping generates multiple files, you can
navigate sequentially through each generated file.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Introduction User Interface Overview 23

1 Fxml version="1.0" encoding="UTF-8"7=
2 <PersonList xmins: xsi="hitp/Mwww . w3.orgi2001/XMLS chema-instance” xsinoNamespaceSchemalocation="
T C:/Users/atova/Documents/Altova/MapFerce201 S/MapForceExamples/PersonList xsd™=
3 = <=Person role="Manager">
4 { <First=Vernon=/First=
5 i <lLast=Callaby</Last=
[r </Person>
T = <Perzon role="Programmer”=
& i =First=Frank=/First=
9 { <last=Further«/Last=
10 - =iPerson=
11 = <Person role="Suppert”=
12 { <First=Loby=/First=
13 { <lLast=Matise</Last=
14 - <=iPerson=
15 = <Person role="Support"=
16 i <First=Susi=/First=
17 { <lLast=Sanna<iLast=
18 - =iPerson=
19 - =/PersonList>
Mapping XSLT2 Output

This pane also provides line numbering and code folding functionality, which works in a
similar way as in the XSLT pane (see abowe).

Overview window

The Oveniew window gives a bird's-eye view of the Mapping pane. Use it to navigate
quickly to a particular location on the mapping area when the size of the mapping is very
large. To navigate to a particular location on the mapping, click and drag the red
rectangle.

Messages window

The Messages window shows messages, errors, and warnings when you execute a
mapping (see Previewing the Output) or perform a mapping validation (see Validating

Mappings).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

24 Introduction User Interface Overnview

Messages

- Y via BnE 28] X

IE:/} Tut-ExpReport-multi.mfd: Mapping validation successful - O error(s), 2 wwarning(s)

(]

= i, [ALL] Component core equal Mone of the outputs is connected.

= E| . Travel" == hool The input is coerced ta boolean.

= G Ay SOURCE: xEiEtring Target: xethoolean

i | ﬁ Tut-ExpReport-multi. mfd: Execution failed - 1 error(=), O warning(s)

iy : u Source-value 'Travel' of type string could nat be converted into target-type boolean.
oo
(ag]

To highlight on the mapping area the component or structure which triggered the
information, warning, or error message, click the underlined text in the Messages
window.

The results of a mapping execution or validation operation is displayed in the Messages
window with one of the following status icons:

Icon Description

(] Operation completed successfully.
] Operation completed with warnings.
X Operation has failed.

The Message window may additionally display any of the following message types:
information messages, warnings, and errors.

Icon Description

L] Denotes an information message. Information messages do not stop the
mapping execution.

i, Denotes a warning message. Warnings do not stop the mapping execution.
They may be generated, for example, when you do not create connections to
some mandatory input connectors. In such cases, output will still be generated
for those component where valid connections exist.

1] Denotes an error. When an error occurs, the mapping execution fails, and no
output is generated. The preview of the XSLT or XQuery code is also not
possible.

Other buttons in the Messages window enable you to take the following actions:

Icon Description
| Filter messages by sewerity (information messages, errors, warnings). Select

Check All to include all sewerity lewels (this is the default behaviour).

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

25

Introduction User Interface Oveniew

Icon Description
Select Uncheck All to remowe all severity levels from the filter. In this case, only
the general execution or validation status message is displayed.

hd Jump to next line.

al Jump to previous line.

Copy the selected line to clipboard.

Copy the selected line to clipboard, including any lines nested under it.

Copy the full contents of the Messages window to clipboard.

& Find a specific text in the Messages window. Optionally, to find only words,
select Match whole word only. To find text while presening the upper or lower
case, select Match case.

kY Find a specific text starting from the currently selected line up to the end.

3 Find a specific text starting from the currently selected line up to the beginning.

b Clear the Messages window.

When you work with multiple mapping files simultaneously, you might want to display
information, warning, or error messages in individual tabs for each mapping. In this case,
click the numbered tabs available on the left side of the Messages window before
executing or validating the mapping.

Application status bar

The application status bar appears at the bottom of the application window, and shows
application-level information. The most useful of this information are the tooltips that are

displayed here when you mowve the mouse ower a toolbar button. If you are using the 64-bit
version of MapForce, the application name appears in the status bar with the suffix (x64).

There is no suffix for the 32-bit version.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

26

Introduction Conwentions

2.5

Conventions

Example files
Most of the data mapping design files (files with .mfd extension, as well as other accompanying
instance files) illustrated or referenced in this documentation are available in the following folders:

e C \Users\ <usernane>\ Docurent s\ Al t ova\ MapFor ce2018\ MapFor ce Exanpl es
® C\Users\ <usernane>\ Docurent s\ Al t ova\ MapFor ce2018\ MapFor ce Exanpl es
\Tutorials

The example mappings and instance files accompanying MapForce illustrate most aspects of
how it works, and you are highly encouraged to experiment with them as you learn about
MapForce. When in doubt about the possible effects of making changes to the MapForce original
examples, create back-ups before changing them.

Graphical user interface

Some of the images (screen shots) accompanying this documentation depict graphical user
interface elements that may not be applicable to your MapForce edition. In relevant contexts,
images typically include the name of the source mapping design (*.mfd) file, as well as the edition
of MapForce in which the graphic was produced.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Chapter 3

Tutorials

28

Tutorials

Tutorials

The MapForce tutorials are intended to help you understand and use the basic data
transformation capabilities of MapForce in a short amount of time. You can regard these tutorials
as a "crash course" of MapForce. While the goal is not to illustrate completely all MapForce
features, you will be guided through the MapForce basics step-by-step, so it is recommended that
you follow the tutorials sequentially. It is important that you understand each concept before
moving on to the next one, as the tutorials gradually grow in complexity. Basic knowledge of XML
and XML schema will be advantageous.

Convert XML to New Schema

This tutorial shows you how to convert data from an XML structure to another using the
XSLT 2.0 language, without writing any code. You will also learn about MapForce
sequences and items, creating mapping connections, using a function, validating and
previewing a mapping, as well as saving the resulting output to the disk.

Map Multiple Sources to One Target

This tutorial shows you how to read data from two XML files with different schema and
merge it into a single target XML file. You will also learn how to change the name and
instance files of each mapping component, and the concept of "duplicate inputs”.

Work with Multiple Target Schemas

This tutorial shows you how to work with more complex mappings that produce two or
more target outputs. More specifically, you will learn how to generate, in the same
mapping, an XML file that stores a list of book records, and another XML file that contains
only a subset of the books in the first file, filtered by a specific publication year. To
support filtering data, you will use a Filter component, a function and a numeric constant.

Process and Generate Files Dynamically

This tutorial shows you how to read data from multiple XML instance files located in the
same folder and write it to multiple XML files generated on the fly. You will also learn
about stripping the XML and schema declarations and using functions to concatenate
strings and extract file extensions.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Convert XML to New Schema 29

3.1 Convert XML to New Schema

This tutorial shows you how to convert data between two XML files, while helping you learn the
basics of the MapForce dewelopment environment. Both XML files store a list of books, but their
elements are named and organized in a slightly different way (that is, the two files have different

schemas).

books.xsd library.xsd

ok w

Abstract model of the data transformation

The code listing below shows sample data from the file that will be used as data source (for the
sake of simplicity, the XML and the namespace declarations are omitted).

<books>
<book id="1">
<aut hor >Mar k Twai n</ aut hor >
<title>The Adventures of Tom Sawyer</title>

<cat egor y>Fi cti on</ cat egor y>
<year >1876</ year >
</ book>

<book id="2">
<aut hor >Fr anz Kaf ka</ aut hor >

<title>The Metanorphosis</title>
<cat egor y>Fi cti on</ cat egor y>
<year >1912</ year >
</ book>
</ books>

books.xml

This is how data should look in the target (destination) file:

<library>
<l ast _updat ed>2015- 06- 02T16: 26: 55+02: 00</ | ast _updat ed>
<publ i cati on>
<id>1</id>
<aut hor >Mar k Twai n</ aut hor >

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

30 Tutorials Convert XML to New Schema

<title>The Adventures of Tom Sawyer</title>
<genr e>Fi cti on</ genr e>
<publ i sh_year >1876</ publ i sh_year >
</ publ i cati on>
<publ i cati on>
<i d>2</i d>
<aut hor >Franz Kaf ka</ aut hor >
<title>The Metanorphosis</title>
<genr e>Fi cti on</ genr e>
<publ i sh_year >1912</ publ i sh_year >
</ publ i cati on>
</library>

library.xml

As you may hawve noticed, some element names in the source and target XML are not the same.
Our goal is to populate the <aut hor >, <tit| e>, <genr e> and <publ i sh_year > elements of the
target file from the equivalent elements in the source file (<aut hor >, <ti t| e>, <cat egor y>,

<year >). The attribute i d in the source XML file must be mapped to the <i d> element in the target
XML file. Finally, we must populate the <I ast _updat ed> element of the target XML file with the
date and time when the file was last updated.

To achieve the required data transformation, let's take the following steps.

Step 1: Select XSLT2 as transformation language

You can do this in one of the following ways:

¢ Click the XSLT2 () toolbar button.
e On the Output menu, click XSLT 2.0.

Step 2: Add the source XML file to the mapping

The source XML file for this mapping is located at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\books.xml. You can add it to the mapping in
one of the following ways:

e Click the Insert XML Schemal/File () toolbar button.
e On the Insert menu, click XML Schemal/File.
e Drag the XML file from Windows Explorer into the mapping area.

Now that the file has been added to the mapping area, you can see its structure at a glance. In
MapForce, this structure is known as a mapping component, or simply component. You can
expand elements in the component either by clicking the collapse (&) and expand icons (&), or
by pressing the + and - keys on the numeric keypad.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Convert XML to New Schema 31

& books
&1 [] File: books.xml File]
-3 {} books
-2} book

....... =id

. {} author

....... {} title

....... {} category

b { Y year

Mapping component

To mowve the component inside the mapping pane, click the component header and drag the
mouse to a new position. To resize the component, drag the corner of the component -4 . You
can also double-click the corner so that MapForce adjusts the size automatically.

The top level node £l represents the file name; in this particular case, its title displays the name
of the XML instance file. The XML elements in the structure are represented by the icon, while
XML attributes are represented by the =licon.

The small triangles displayed on both sides of the component represent data inputs (if they are on
the left side) or outputs (when they are on the right side). In MapForce, they are called input
connectors and output connectors, respectively.

Step 3: Add the target XML schema to the mapping

To generate the target XML, we will use an existing XML schema file. In a real-life scenario, this
file may have been provided to you by a third party, or you can create it yourself with a tool such
as XMLSpy. If you don't have a schema file for your XML data, MapForce prompts you to generate
it whenever you add to the mapping an XML file without an accompanying schema or schema
reference.

For this particular example, we are using an existing schema file available at: <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\library.xsd. To add it to the mapping,
follow the same steps as with the source XML file (that is, click the Insert XML Schemal/File (

) toolbar button). Click Skip when prompted by MapForce to supply an instance file.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

32 Tutorials Convert XML to New Schema

MapForce

I'e'l file or global resource to preview your transformation.

MapForce allows you to define XML Schemnas as source and target. For a source schema, you might want to provide a sample XML

Do you want to supply a sample XML file, a global resource, or not supply any at all?

| Browse... | | Skip

At this stage, the mapping design looks as follows:

-~ {} title

....... {}'!Irear

| books &/ library
El [] File: books.xml File| EI [] File: library.xml File|
B {} books -8 {} library
-3 {} book - {} last_updated
= id @ {} publication

{ ¥} author

-{} category

Step 4: Make the connections

For each <book> in the source XML file, we want to create a new <publ i cat i on> in the target

XML file

. We will therefore create a mapping connection between the <book> element in the

source component and the <publ i cat i on> element in the target component. To create the
mapping connection, click the output connector (the small triangle) to the right of the <book>
element and drag it to the input connector of the <publication> element in the target.

When you do this, MapForce may automatically connect all elements which are children of

<book>

in the source file to elements having the same name in the target file; therefore, four

connections are being created simultaneously. This behavior is called "Auto Connect Matching
Children" and it can be disabled and customized if necessary.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Convert XML to New Schema 33

& books & library
&1 [] File: books.xml File| &1] File: library.xml File|
"B {} books B {} library
E-E_l{}b-o-ok - {} last_updated
—
-{} author
- } title
i 4 ¥ category
........ {} year

You can enable or disable the "Auto Connect Matching Children" behavior in one of the following
ways:

e Click the Toggle auto connect of children () toolbar button.
e On the Connection menu, click Auto Connect Matching Children.

Notice that some of the input connectors on the target component have been highlighted by
MapForce in orange, which indicates that these items are mandatory. To ensure the validity of the
target XML file, provide values for the mandatory items as follows:

e Connect the <cat egor y> element in the source with the <genr e> element in the target
e Connect the <year > element in the source with the <publ i sh_year > element in the
target

Finally, you need to supply a value to the <l ast _updat ed> element. If you move the mouse over
its input connector, you can see that the element is of type xs: dat eTi me. Note that, for tips to be

displayed, the Show tips () toolbar button must be enabled.

& books
= {'] File: books.xmi @
‘B {} books :
E-E_l{}book
....... =id
. {} author b
e {) title
- ------- {} category -
o {yyear {} genre
- {} publish_year

This input requires a connecticn.
type: xsidateTime

You can also make the data type of each item visible at all times, by clicking the Show Data

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

34

Tutorials Convert XML to New Schema

Types () toolbar button.

You can get the current date and time (that is, the xs: dat eTi ne value) by means of a date and
time XSLT function. To find the XSLT function to the mapping, start typing "date" in the text box
located in the lower part of the Libraries window. Alternatively, double-click an empty area on the
mapping and start typing "current-date".

Libraries b4
"
g=lcontext functions)
current_date @urnsthe current xs:dateTime. J
current-dateTime re£ult
gjdurations, date and time function | =
adjust-date-to-timezone result
adjust-date-to-timezone result

adjust-dateTime-to-timezone |result
adjust-dateTime-to-timezone |result
day-from-date result
date x -

l Add/Remove Libraries...]

As shown abowe, if you move the mouse over the "result" part of the function, you can see its

description. For tips to be displayed, make sure that the Show tips () toolbar button is
enabled.

To add the function to the mapping, drag the function into the mapping pane, and connect its
output to the input of the <l ast _updat ed> element.

| books fi) current-dateTime &| library
= D File: books.xml @ resultly = D File: library.xml @
B {} books -3 {} library
E| {} book ~-{} last_updated
o =id -3 {} publication
E ------- {}author e Y id
o { } title - ------- {3 author
. {} category {}title
e { ¥ year -{} genre

“{} publish_year

You have now created a MapForce mapping design (or simply a "mapping") which converts data
from the books.xml instance file (having the books.xsd schema) to the new library.xml file
(having the library.xsd schema). If you double-click the header of each component, you can view

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Convert XML to New Schema 35

these and other settings in the Component Settings dialog box, as shown below.

- -

@ Component Settings @

Companent name: books

Schema file
books, xsd I Browse Il Edit I

Input XML File
books. xml I Browse I l Edit I

Output XML File

T
[=]

Browse Edit

Component settings for the source

@ Component Settings @
Companent name: library

Schema file
library. x=d I Browse Il Edit

Input XML File

(=]

Browse

Output XML File
library. xml I Browse Il Edit

Component settings for the target

Step 5: Validate and save the mapping

Validating a mapping is an optional step that enables you to see and correct potential mapping
errors and warnings before you run the mapping. To check whether the mapping is valid, do one of
the following:

e On the File menu, click Validate Mapping.
¢ Click the Validate () toolbar button.

The Messages window displays the validation results:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

36 Tutorials Convert XML to New Schema

- Y va nnE 422 X

a MNew Designi: Mapping validation successful - 0 error(s), 0 warning(s) -

Messages window

At this point, you might also want to save the mapping to a file. To save the mapping, do one of
the following:

e On the File menu, click Save.
e Click the Save ((=) toolbar button.

For your convenience, the mapping created in this tutorial is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\\BooksToLibrary.mfd.
Therefore, from this point onwards, you can either continue with the mapping file you created, or
with the BooksToLibrary.mfd file.

Step 6: Preview the mapping result

You can preview the result of the mapping directly in MapForce. To do this, click the Output
button located in the lower part of the mapping pane. MapForce runs the transformation and
displays the result of the mapping in the Output pane.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Convert XML to New Schema 37

@ Altova MapForce - [BooksToLibrary.mfd] EI@
% File Edit Insert Component Connection Function Output View Tools Window Help -5 X
DEdd & % Bn B X @b G 52 L0 Default o - R
& s md o,
Libraries -+ 0 X 1 =%xml version="1.0" encoding="UTF-8"7= -
2 <library xmins:xsi="hitp:/'wwow. w3.org/2001XMLSchema-instance™ xsinolamespaceSchemaloc
E core - 3 <last_updated=2015-04-03T17:22:27+02.00</last_updated=
=-laggregate functions 4 <publication=
avg result = | = 5 <id=1<fid=
count resutt = 6 =guthor=Mark Twain</author=
- T <title=The Adventures of Tom Sawyer</title=
max resuft =] <genre=Fiction</genre=
min result = 9 <publish_year=1878</publish_year=
string-join result = 10 =/publication= |
sum result = M =publication= b
12 <id=2=lid=
. . 13 <author=Franz Kafka</author=
gjconversion functions 14 <titie=The Metamorphosis<ititle>
boolean result = 15 <genre=Fiction</genre>
format-date result = 16 <|:u_t Iish_year:-1 912<ipublish_year=
format-dateTime result = w </publication=-
18 =publication=
format-number result = 19 <id=3<fid>
format-time resutt = 20 <auther=Herman Melville</author=
number result = 21 <title=Moby Dick<title=
string result = 22 «genre=Fiction=/genre=
23 «publish_year=1851</publish_year=
24 =/publication=>
gifile path functions 25 =publication= =
get-fileext extensic q | o »
get-folder folder = p— TEIE T
main-mid-filepath filepath LELil T
mfd-filepath filepath % BooksTolibrary.mfd 4 F X
remove-fileext resul-fil)
remove-folder fiename ~ Overview w1 X Messages vax
replace-fileext result-fi = | val BBE 422 X
resolve-filepath resul-fi Q ° BooksToLibrary.mfd: Mapping validation successful - 0 error(g), 0 warnini »
q ° BooksTolLibrary.mfd: Execution successful - 0 error(s), 0 warning(s)
=-lgenerator functions Q
auto-number result = Q
Seardh for function - B
[Add/Remove Librares...] = [l 3
MapForce Basic Edition v2015 rel. 3 spl Registered te Mr. Nobedy (Altova GmbH) ©1998-2015 Altova GmbH CAP | NUM | SCRL
Output pane

You can now see the result of the transformation in MapForce.

By default, the files displayed for preview in the Output pane are not written to the disk.
Instead, MapForce creates temporary files. To save the file displayed in the Output pane to
the disk, select the menu command Output | Save Output File, or click the Save

generated output () toolbar button.

To configure MapForce to write the output directly to final files instead of temporary, go to
Tools | Options | General, and then select the Write directly to final output files check
box. Note that enabling this option is not recommended while you follow this tutorial, because
you may unintentionally overwrite the original tutorial files.

You can also preview the generated XSLT code that performs the transformation. To preview the
code, click the XSLT2 button located in the lower area of the mapping pane.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

38

Tutorials

Convert XML to New Schema

wE &,

® Altova MapForce - [BooksToLibrary.mfd]
% File Edit Insert Component

ODSEHE & o o % EnE x| #hd g 58 _° Default

Connection

Libraries w* 0 X
5 core R
=-laggregate functions
avy result = |=
count result =
max result= "
min result =
=string-join result =
sum result =
g conversion functions
boolean resuft =
format-date result =
format-dateTime result =
format-number result =
format-time result =
number resuft =
string result =
gofile path functions
get-fileext extensic
get-folder folder =
main-mfd-filepath filepath
mfd-filepath filepath
remove-fileext result-fil
remove-folder filename
replace-fileext result-fil
resolve-filepath resul-fi
=-lgenerator functions
auto-number result =
Seardh for function -

[Add/Remave Libraries...

)

Function Output View Tools Window Help -5 X
1 Fxml version="1.0" encoding="UTF-8"%= -
2 =l
3
4
5
[
T
8 =
9
10
1 Cl=xslstylesheet version="2.0" xmins:xsl="http:www. w3 org/1988XSLUTransform” xmins:xs="htt|
12 =xsloutput method="xml" encoding="UTF-8" byte-order-mark="no" indent="yes"/>
13 & =xsltemplate match=""=
14 = <library=
15 <xslattribute name="xsinoNamespaceSchemal ocation” namespace="httpJ/fwww w3.org
16 = <last_updated=
17 <xslzequence select="xs:string(fn: current-dateTime)} /=
18 </last_updated=
19 =2 <xslfor-each select="books/book™=
20 <xslvariable nams="var1_id" as="node()?" select="@id"=
21 = <publication=
22 = <xslif test="fn.exists(Svari_id)"=
23 = <id=
24 <xslseguence select="fn:string(Svari_id)"/>
25 <fid> il
;_| n = r
Mapping K5LT2 Output
E% BooksTolibrary.mfd 4 b x
Overview w 0 X Messages v 3 X
2 ¥ vammE A28 X
Q ° BooksTolLibrary.mfd: Mapping validation successful - 0 error(g), 0 warnini -
q ° BooksTolLibrary.mfd: Execution successful - 0 error(s), 0 warning(s)
|
2 4 | 1 +

MapForce Basic Edition v2015 rel. 3 spl Registered te Mr. Nobedy (Altova GmbH) ©1998-2015 Altova GmbH

CAP | NUM | SCRL

XSLT2 pane

To generate and save the XSLT2 code to a file, select the menu item File | Generate Code in |
XSLT 2.0. When prompted, select a folder where the generated code must be saved. After code
generation completes, the destination folder includes the following two files:

1. An XSLT transformation file, named after the target schema (in this example,
MappingMaptolibrary.xslt).

2. A DoTransform.bat file. The DoTransform.bat file enables you to run the XSLT
transformation in RaptorXML Server (for more information, see https://www.altova.com/

raptorxml.html).

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

https://www.altova.com/raptorxml.html
https://www.altova.com/raptorxml.html

Tutorials Map Multiple Sources to One Target 39

3.2 Map Multiple Sources to One Target

In the previous tutorial, you have converted data from a source file (books.xml) to a target file
(library.xml). The target file (library.xml) did not exist before running the mapping; it was
generated by the mapping transformation. Let's now imagine a scenario where you already have
some data in the library.xml file, and you want to merge this data with data converted from the
books.xml. The goal in this tutorial is to design a mapping that generates a file called
merged_library.xml. The generated file will include data from two sources: the books.xml file
and the library.xml file. Note that the files used as source (books.xml and library.xml) have
different schemas. If the source files had the same schema, you could also merge their data
using a different approach (see Process and Generate Files Dynamically).

books.xsd

DODES. X

library.xsd

]
[}
m

m

&1

=)
1

]

li bra ry.xsd

=)

Abstract model of the data transformation

To achieve the required goal, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the BooksToLibrary.mfd mapping from the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. You have already designed this
mapping in the Convert XML to New Schema tutorial. To begin, open the BooksToLibrary.mfd
file in MapForce, and sawe it with a new name.

Make sure to save the new mapping in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder, because it references several files from it.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Map Multiple Sources to One Target

40 Tutorials
#| books H) current-dateTime & library
B E| File: books.xml @ resultly = E| File: library.xmil @
B {} books & {} library
B {}book - {} last_updated
e 2 id -2 {} publication
I {} author [{} id
........ £} title o {} author
... {} category o { } title
........ {}year {} genre

BooksToLibrary.mfd (MapForce Basic Edition)

Step 2: Create a second source component

- {} publish_year

First, select the target component and copy it (press Ctrl + C), and then paste it (press Ctrl + V)
into the same mapping. Click the header of the new component and drag it under the books

component.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Tutorials

Map Multiple Sources to One Target

41

&| books ¥ current-dateTime & library
= E| File: books.xml @ resulily = E| File: library.xmil @
-3 {} books = {} library
E| {} book - {} last_updated
....... =id
. {} author

{3} title

&/ library
2 £ File: library.xmi File|
-3 {} library

- ------- {}genre
b { } publish_year

The mapping now has two source components: books and library, and one target component:

library.

MapForce installation.

You can always move the mapping components in any direction (left, right, top, bottom).
Nevertheless, placing a source component to the left of a target component will make your
mapping easier to read and understand by others. This is also the convention for all mappings
illustrated in this documentation, as well as in the sample mapping files accompanying your

Step 3: Verify and set the input/output files

In the previous step, the new source component was copy-pasted from the target component, so
it inherits the same settings. To ensure that the name input/output instance files are correctly set,
double-click the header of each component, and, in the Component Settings dialog box, verify and

change the name and the input/output files of each component as shown below.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

42 Tutorials Map Multiple Sources to One Target

- 2]

@ Component Settings @

Companent name: books

Schema file
books, xsd [Browse][Edit]

Input XML File
books. xml [Browse] [Edit]

Qutput XML File

Browse Edit

Components settings for the first source (books)

IE':I Component Settings @
Component name: library

Schema file
library. xsd [Browse][Edit]

Input XML File
library. xml [Browse] [Edit]

Output XML File

Browse Edit

Component settings for the second source (library)

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Map Multiple Sources to One Target 43

k- 2]

@ Component Settings @

Companent name: merged_library

Schema file
library.x=d I Browse Il Edit

Input XML File

Browse

Output XML File
merged_library. xml I Browse Il Edit

Component settings for the target (merged_library)

As shown abowe, the first source component reads data from books.xml. The second source
component reads data from library.xml. Finally, the target component outputs data to a file
called merged_library.xml.

Step 4: Make the connections

To instruct MapForce to write data from the second source to the target, click the output
connector (small triangle) of the publ i cati ons item in the source library component and drag it
to the input connector of the publications item in the target library component. Because the
target input connector already has a connection to it, the following notification message appears.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

44 Tutorials Map Multiple Sources to One Target

-,

[MapForce @

The input connector you are trying to connect to has already a connection
assigned. Only one connection can be defined per input connector. What
action do you want?

Replace Connection] I Duplicate Input ‘ I Cancel

In this particular tutorial, replacing the connection is not what we want to achieve; our goal is to
map data from two sources. Therefore, click Duplicate Input. By doing so, you configure the
target component to accept data from the new source as well. The mapping now looks as follows:

| books By current-dateTime | merged_library
El {] File: books.xml File| resulthy E1{] File: merged_library.xml File|
“B{} books L {} library
El {¥book B L e {} last_updated
1 = {} publication
- ------- {yauthor B— T e {}id
e title O R—— T e {} author
-.{}category B { title
{yyear BT e {}genre
------- {} publish_year
& forary B pl..lblication (2)
: . — L e e {} id
= {1 File: libraryxmi Fiel - | {3 author
HQubrary b 7 Ly {) title
= 4 Iast_.upcflated _______) genre
h?ii;";:“':atmn ------- {} publish_year
i 3 author
b (it
- ------- {} genre

- {} publish_year

Notice that the publ i cati on item in the target component has now been duplicated. The new
publ i cati on(2) node will accept data from the source library component. Importantly, even
though the name of this node appears as publ i cati on(2) in the mapping, its name in the
resulting XML file will be publ i cati on, which is the intended goal.

You can now click the Output button at the bottom of the mapping pane, and view the mapping
result. You will notice that data from both library.xml and books.xml files has now been merged
into the new merged_library.xml file.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials

Work with Multiple Target Schemas

45

3.3

Work with Multiple Target Schemas

In the previous tutorial, Map Multiple Sources to One Target, you have seen how to map data from
multiple source schemas to a single target schema. You have also created a file called
merged_library.xml, which stores book records from two sources. Now let's assume that
someone from another department has asked you to provide a subset of this XML file.
Specifically, you must deliver an XML file that includes only the books published after 1900.

For conwvenience, you can modify the existing MultipleSourcesToOneTarget.mfd mapping so
that, whenewver required, you can generate both the complete XML library, and the filtered library.

books.xsd

books. xm

library.xsd

LWV
Abstract model of the data transformation

In the diagram abowve, the data is first merged from two different schemas (books.xsd and
library.xsd) into a single XML file called merged_library.xml. Secondly, the data is transformed
using a filtering function and passed further to the next component, which creates an XML file
called filtered_library.xml. The "intermediate” component acts both as data target and source.
In MapForce, this technique is known as "chaining mappings", which is also the subject of this
tutorial.

Our goal is to make it possible to generate at any time both the merged_library.xml and the
filtered_library.xml. To achiewe the goal, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the MultipleSourcesToOneTarget.mfd mapping from the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. You have already
designed this mapping in the Map Multiple Sources to One Target tutorial. To begin, open the
MultipleSourcesToOneTarget.mfd file in MapForce, and sawe it with a new name.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

46 Tutorials

Work with Multiple Target Schemas

Make sure to save the new mapping in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder, because it references several files from it.

| books i) current-dateTime | merged_library
(= E| File: books.xml @ resuliy = E| File: merged_library.xml @
B {} books .3 {} library
E_l {¥book L e {} last_updated
....... =id = £} publication
. {} author = B—u T i e {} id
....... {} title =00 B T i e {} author
{Ycategory B {} title
v {yyear 0 BT e {}genre
------- {} publish_year
& torary =€} pl..lblit:ation (2)
: . — e e {¥id
EI {'] File: library.xmi @ _______ {} author
E‘ Otoray 7 L £} title
--{}last_updated [> 7 |) genre

. {} genre
b {} publish_year

MultipleSourcesToOneTarget.mfd (MapForce Basic Edition)

------- {} publish_year

Step 2: Add and configure the second target component

To add the second target component, click the Insert XML Schemal/File () toolbar button,
and open the library.xsd file located in the <Documents>\Altova\MapForce2018

\MapForceExamples\Tutorial\ folder. Click Skip when prompted to supply a sample instance
file. The mapping now looks as follows:

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Tutorials Work with Multiple Target Schemas 47

& books | i) current-dateTime | €| merged_library |) |
=] El File: books.xml File resuﬂ& = El File: merged_library.xml w =] El File: library.xml File

“E1{} books ‘2 {} library & {} library
= {3 book I -{} last_updated -{} last_updated

- =id I {} publication 7 {} publication
-{} author B {¥id ;
-} title i3 {}author
- {} category I {} title
-------- {3 year g
[
i I
EJ Ilhra.ry . _ | B e {¥id
E| [l] Fll.e: library.xml File| O O author
"B} library B) title
..... {3 Iast_.upc?ated b (genre
& {¥ publication B e {} publish_year

~{}id

- {} author

- {} title
-{}genre

‘- {} publish_year

As shown abowe, the mapping now has two source components: books and library, and two
target components. To distinguish between the target components, we will rename the second
one to filtered_library, and also set the name of the XML file that should be generated by it. To
do this, double-click the header of the right-most component and edit the component settings as
follows:

T =

IE':' Component Settings @

Companent name; filtered_library

Schema file
library. xsd I Browse Il Edit

Input XML File

Browse

Qutput XML File
filtered_library. xml l Browse Il Edit

Notice that the new name of the component is filtered_library, and the output XML file is named
filtered_library.xml.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

48 Tutorials Work with Multiple Target Schemas

& fitered_library
=1] File: filtered_library.xml Fil|
-2 {} library
------- {}last_updated
214} publication
....... {¥id
. {} author
o {) tite
....... {} genre
“{} publish_year

Step 3: Make the connections

Create a connection from the item publication in the merged_library to the item publication in
the filtered_library. When you do this, a notification message is displayed.

-

[MapForce @

You have created multiple target components in the mapping project. To preview the output
of a specific target component, click the Preview button in the title bar of that component,
then click the X5LT, or Output tab, to preview the result.

Don't show this message again.

Click OK. Notice that new buttons are now available in the upper-right corner of both target

components: Preview (|) and Pass-through (2|). These buttons will be used and
explained in the following steps.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials

Work with Multiple Target Schemas 49

€| merged_library =
= E| File: merged_library.xmil File|
‘=3 {} library

....... {} last_updated
-1 {} publication

....... {} author

------- {} title

....... {} genre

------- {} publish_year
- {} publication (2)

------- {} author

------- {} title

....... £} genre

------- {} publish_year

& fitered_library <&
= E| File: filtered_libraryxml File
B {} library

i {} last_updated

------- {} author

e A Y title

- {} genre

- {} publish_year

Step 4: Filter data

To filter data before supplying it to the filtered_library, we will use a Filter component. To add a
filter component, right-click the connection between merged_library and filtered_library, and
select Insert Filter: Nodes/Rows from the context menu.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

50 Tutorials Work with Multiple Target Schemas
& merged_library = & fittered_library E
&1] File: merged_library.xml File| &1 L] File: filtered_library.xmi Filg|
34} library @ {} library
------- {} last_updated H[f {}last_updated
LT £ muhlination

B £} publication

------- {} author

------- {} title

....... {} genre

------- {} publish_year
B {} publication (2)

------- {} author

------- {} title

....... {} genre

------- {} publish_year

Connect Matching Children...

> Delete Delete

Target Driven (Standard)
Copy-All (Copy Child Items)

Source Driven (Mixed Content)

4.2 Insert Sort: Nodes/Rows

|% Insert Filter: Modes/Rows

Insert Value-Map

Properties

The filter component has now been added to the mapping.

B {} publication (2

....... {} author

------- {} title

....... {} genre

------- {} publish_year

&| merged_library = & fittered_library E
= f:l File: merged_library.xmil @ = f:l File: fitered_library.xml @
‘B {} library "B {3 library
....... {} last_updated < publication {¥ last_updated
2 {} publication node/row | on-truely E‘ {? publication
....... {}id [::>I::-EII:I| on-fa lse[# e { i
....... {} author i { ¥ author
------- {} title - {Hitle
....... {} genre ;.......{}genre
------- {3 publish_year ‘- {} publish_year

As shown abowe, the bool input connector is highlighted in orange, which suggests that an input
is required. If you move the mouse over the connector, you can see that an input of type

xs: bool ean is required. Note that, for tips to be displayed, the Show tips () toolbar button

must be enabled.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Tutorials Work with Multiple Target Schemas 51

g8 fitered_library L)
=l E| File: fitered_library.xml Filg

brary

This input requires a connection.
last_updated

type: xs:boclean
publication

o {)id
....... {}authﬂ.r
- {itle

The filter component requires a condition that returns either t r ue or f al se. When the Boolean
condition returns t r ue, data of the current publication sequence will be copied over to the target.
When the condition returns f al se, data will not be copied.

In this tutorial, the required condition is to filter all books which were published after 1900. To
create the condition, do the following:

1. Add a constant of numeric type having the value "1900" (On the Insert menu, click
Constant). Choose Number as type.

i)

@ Insert Constant @

1900] Siring
‘@ Mumber
All other

oK] | Cancel

2. Inthe Libraries window, locate the function gr eat er and drag it to the mapping pane.

3. Make the mapping connections to and from the function gr eat er as shown below. By
doing this, you are instructing MapForce: "When publ i sh_year is greater than 1900,
copy the current publ i cati on source item to the publ i cati on target item".

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Tutorials Work with Multiple Target Schemas

&3] merged_library = &| fitered_library E
= D File: merged_library.xmil m = f:l File: filtered_library.xmil @
“E {} library & {3 library

------- {} last_updated = publication i { } last_updated

1 {} publication fnodeirow | on-truefy

g id ool on-faleely
- 4 ¢ author

- 3 title i
—{¥ genre ------- {}genre

- {} publish_year -} publish_year
El{l: ;Liljlication 12) E grester
- £ ¥ author :% resultp
- { } title L
. {} genre

- { ¥ publish_year C= 1900}

Step 5: Preview and save the output of each target component

You are now ready to preview and save the output of both target components. When multiple
target components exist in the same mapping, you can choose which one to preview by clicking
the Preview (@) button. When the Preview button is in a pressed state ([&), it indicates
that that specific component is currently enabled for preview (and this particular component will
generate the output in the Preview pane). Only one component at a time can have the preview
enabled.

Therefore, when you want to view and save the output of the merged_library (that is, the
"intermediate") component, do the following:

1. Click the Preview button ([&) on the merged_library component.
2. Click the Output button at the bottom of the mapping pane.
3. On the Output menu, click Save Output File if you want to save the output to a file.

When you want to view and save the output of the filtered_library component :

Click the Pass-through button ([2) on the merged_library component.

Click the Preview button ([&) on the filtered_library component.

Click the Output button at the bottom of the mapping pane.

On the Output menu, click Save Output File if you want to save the output to a file.

PN P

Notice the Pass-through (ﬂ) button—clicking or not clicking it makes a big difference in any
mapping which has multiple target components, including this one. When this button is in a

pressed state (e), MapForce lets data pass through the intermediate component, so that you
can preview the result of the entire mapping.

Release the button (=) if you want to preview only the portion of the mapping between the
merged_library and the filtered_library. In the latter case, an error will be generated. This
behavior is expected, because the intermediate component does not have a valid input XML file
from which it should read data. To solve the problem, double-click the header of the component

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Work with Multiple Target Schemas 53

and edit so as to supply a valid input XML file, as shown below:

k- 2]

@ Component Settings @

Companent name: merged_library

Schema file
library.x=d I Browse Il Edit I

Input XML File
library. xmi I Browse I l Edit I

Output XML File
merged_library. xml I Browse Il Edit I

You have now finished designing a mapping which has multiple target components, and you can
view and save the output of each target, which was the intended goal of this tutorial. For further
information about working with pass-through components, see Chained mappings / pass-through

comgonents.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

54

Tutorials Process and Generate Files Dynamically

3.4

Process and Generate Files Dynamically

This tutorial shows you how to read data from multiple source XML files and write it to multiple
target files in the same transformation. To illustrate this technique, we will now create a mapping
with the following goals:

Read data from multiple XML files in the same directory.

Convert each file to a new XML schema.

For each source XML file, generate a new XML target file under the new schema.
Strip the XML and namespace declaration from the generated files.

el e

books.xsd libra ry.xsd

hooke ntruvl wm

)
)
m
1]
o
-]
|

=)
m
1]
o
k]
1

DOORE MMy o XT

L]
E
L)
(m]
[#1)
(=]
L

v

Abstract model of the data transformation

We will use three source XML files as example. The files are located in the <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\ folder, and they are named bookentryl.xml,
bookentry2.xml, and bookentry3.xml. Each of the three files stores a single book.

<?xm version="1.0" encodi ng="UTF-8"?>
<books xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNamespaceSchenmalLocat i on="books. xsd" >
<book id="1">
<aut hor >Mar k Twai n</ aut hor >
<title>The Adventures of Tom Sawyer</title>
<cat egor y>Fi cti on</ cat egor y>
<year >1876</ year >
</ book>
</ books>

bookentryl.xml

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Process and Generate Files Dynamically 55

<?xm version="1.0" encodi ng="UTF-8"?>
<books xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchenalLocat i on="books. xsd" >
<book id="2">
<aut hor >Franz Kaf ka</ aut hor >
<title>The Metanorphosis</title>
<cat egor y>Fi cti on</ cat egor y>
<year >1912</ year >
</ book>
</ books>

bookentry2.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<books xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : noNanmespaceSchenmalLocat i on="books. xsd" >
<book id="3">
<aut hor >Her man Mel vi | | e</ aut hor >
<title>Mbby D ck</title>
<cat egor y>Fi ct i on</ cat egor y>
<year >1851</ year >
</ book>
</ books>

bookentry3.xml

The source XML files use the books.xsd schema available in the following folder: <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\. To convert the source files to a new
XML schema, we will use the library.xsd schema (available in the same folder). After the
transformation, the mapping will generate three files according to this new schema (see the code
listings below). We will also configure the mapping so that the name of the generated files will be:
publicationl.xml, publication2.xml, and publication3.xml. Notice that the XML declaration
and the namespace declaration must be stripped.

<library>
<publ i cati on>
<i d>1</i d>

<aut hor >Mar k Twai n</ aut hor >
<title>The Adventures of Tom Sawyer</title>
<genr e>Fi cti on</ genr e>
<publ i sh_year >1876</ publ i sh_year >
</ publ i cati on>
</library>

publication1.xml

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

56 Tutorials Process and Generate Files Dynamically

<library>
<publ i cati on>
<i d>2</i d>

<aut hor >Fr anz Kaf ka</ aut hor >
<title>The Metanorphosis</title>
<genr e>Fi cti on</ genr e>
<publ i sh_year >1912</ publ i sh_year >
</ publ i cati on>
</library>

publication2.xml

<library>
<publ i cati on>
<i d>3</i d>

<aut hor >Her man Mel vi | | e</ aut hor >
<title>Moby D ck</title>
<genr e>Fi cti on</ genr e>
<publ i sh_year >1851</ publ i sh_year >
</ publ i cati on>
</library>

publication3.xml

To achieve the goals, let's take the following steps.

Step 1: Prepare the mapping design file

This tutorial uses as starting point the BooksToLibrary.mfd mapping from the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. You have already designed this
mapping in the Convert XML to New Schema tutorial. To begin, open the BooksToLibrary.mfd
file in MapForce, and sawe it with a new name, in the same folder.

Make sure to save the new mapping in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder, because it references several files from it.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials

Process and Generate Files Dynamically 57

#| books H) current-dateTime & library
B E| File: books.xml @ resultly = E| File: library.xmil @
-E1¢{} books & {} library
E| £} book - {} last_updated

= id E-EI {} publication

I {} author {} id

........ {3} title - {} author

... {} category o { } title

........ {}year {} genre

i { ¥} publish_year

BooksToLibrary.mfd (MapForce Basic Edition)

Step 2: Configure the input

To instruct MapForce to process multiple XML instance files, double-click the header of the
source component. In the Component Settings dialog box, enter bookentry*.xml as input file.

i

@ Component Settings

Component name: | Seeid

Schema file
books, xsd

Input XML File
bookentry=, xmil

Output XML File

Component Settings dialog box

-

=

I Browse Il

Edit

Browse

Browse

The asterisk (*) wildcard character in the file name instructs MapForce to use as mapping input
all the files that have the bookentry- prefix. Because the path is a relative one, MapForce will
look for all bookentry- files in the same directory as the mapping file. Note that you could also
enter an absolute path if necessary, while still using the * wildcard character.

Step 3: Configure the output

To create the file name of each output file, we will use the concat function. This function
concatenates (joins) all the values supplied to it as argument.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

58 Tutorials Process and Generate Files Dynamically

To build the file name using the concat function:

1. Search for the concat function in the Libraries window and drag it to the mapping area.
By default, this function is added to the mapping with two parameters; however, you can
add new parameters if necessary. Click the Add parameter (@) symbol inside the
function component and add a third parameter to it. Note that clicking the Delete
parameter (®) symbol deletes a parameter.

_,-EI concat
Svaluel @

result[;

1k

2. Insert a constant (on the Insert menu, click Constant). When prompted to supply a
value, enter "publication” and leave the String option unchanged.

P =

@ Insert Constant @

publication @) 5fring
Mumber
All other

Ok] | Cancel

3. Connect the constant with valuel of the concat function.

_,-EI concat
_".falu&1 =

[zvalued =

resultl,

[Fvalues =
& books) current-dateTime &| library
= E| File: books.xml @ resultiy = E| File: library.xml @
B {} books -3 {} library
3 {} book - {} last_updated
- ‘2 {} publication

-{¥ author

- {} title

-} genre

‘. { } publish_year

-{} title
-{} category
e ¥ year

4. Connect the i d attribute of the source component with value2 of the concat function.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials

Process and Generate Files Dynamically

59

"publization™

_,-EI concat

resultl,

& books i) current-dateTime &| library
= E| File: books.xml @ resultly = E| File: library.xmil @
B¢} books B {} library
E| {} book - {} last_updated

- =id ‘2 {} publication

. {} author e} id

) title i { } author

. {} category -) title

f{} year - ------- {} genre

i { ¥ publish_year

5. Search for the get - fi | eext function in the Libraries window and drag it to the mapping
area. Create a connection from the top node of the source component (File: books.xml)
to the filepath parameter of this function. Then create a connection from the result of the
get-fil eext function to value3 of the concat function. By doing this, you are extracting
only the extension part (in this case, .xml) from the source file name.

| books
Bl [File: books.xml File|
“E1{} books
‘B {} book [
....... =id B
- {¥ author 13
) title 8
i {} category S
Lo { Y year [

| fiy concat
Bvaluel =
i) oet-fieext Bvalus? E|result
b filepath | extension i Bvalued = T

B current-dateTime] library |
resulti Bl {] File: library.xml File
“H{} library

So far, you have provided as parameters to the concat function the three values which, when
joined together, will create the generated file name (for example, publicationl.xml):

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

60 Tutorials Process and Generate Files Dynamically

Part Example
The constant "publication” supplies the constant string value | publication
"publication”.

The attribute i d of the source XML file supplies a unique 1

identifier value for each file. This is to prevent all files from
being generated with the same name.

The get -fil eext function returns the extension of the file xml
name to be generated.

You can now instruct MapForce to actually build the file name when the mapping runs. To do this,
click the File (Fiel) or File/String (File/String|) button of the target component and select Use
Dynamic File Names Supplied by Mapping.

&
E_l f:| File: library.xml File/Str(z
B {2 library Use File Mames from Component Settings

....... {} last_update |

@ () publicati Use Dynamic File Mames Supplied by Mapping
& {3 publication

b Y id Parse Strings to AML

- ------- {3 author Serialize XML to Strings
-~ {) title

- {) genre

‘. {} publish_year

You have now instructed MapForce to generate the instance files dynamically, with whatever
name will be provided by the mapping. In this particular example, the name is created by the
concat function; therefore, we will connect the result of the concat function with the File:
<dynamic> node of the target component.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Tutorials Process and Generate Files Dynamically 61

_,EI concat

result

fi) current-dateTime E| library
resulthy = E| File: =dynamic= File
“E{} library

....... {} last_updated
-2 {} publication

e Y id

b { ¥ author

....... £} title

. {} genre

- {} publish_year

If you double-click the target component header at this time, you will notice that the Input XML
File and Output XML File text boxes are disabled, and their value shows <File names
supplied by the mapping>.

i)

IE':I Component Settings @

Component name: H rary

Schema file
library. xsd Browse Il Edit

Input XML File

<File names supplied by mapping =

[[=]
=]
w
m

Irm

Output XML File

<File names supplied by mapping > Brow

)

o

m
[[=]

This senves as an indication that you have supplied the instance file names dynamically from a
mapping, so it is no longer relevant to define them in the component settings.

Finally, you need to strip the XML namespace and schema declaration from the target. To achieve
this, clear the selection from the Add schema/DTD reference... and Write XML Declaration
check boxes on the Component Settings dialog box.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

62 Tutorials Process and Generate Files Dynamically

[] Add schema D7D reference {leave field empty to use absolute file path of schema):

[] arite XML Dedaration;

You can now run the mapping and see the result, as well as the name of generated files. This
mapping generates multiple output files. You can navigate through the output files using the left
and right buttons in the upper left corner of the output pane, or by picking a file from the adjacent
drop-down list.

-
-

Preview 1 of 4 [C:iUserslaltova\Documents\AltovaiapForce2015\WapForceExamples\Tutoriahpublication 1 ml v]

<library= Chlserstatova\Documents\sltova'MapForce201S\WapForceExamplesiTuteriahpublicationt.xml

<|53;Tuﬂﬁﬂteﬂ>2“15 ne CUsersiatova\Documents\AltovaiMapForce20 S\MapForceExamples\Tutoriahpublication2 xml
<publication=>
<jid=1</id=

rm CUsersiatova\Documentsialtova\WapForce201 5\WapForceExamplesiTuteriahpublication3.xml
<author=Mark T Chlzerstatova\Documentsialtova'MapForce201 S\WapForceExamplesiTuterialpublication. xml

=title=The Adventures of Tom Sawyer=fitle=
=genre=Fiction</genre=
=publigh_vyear=1876=/publish_year=
=/publication>
<flibrary:=>

(=T =T - T - - I L LK

=

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Chapter 4

Common Tasks

64 Common Tasks

4 Common Tasks

This section describes common MapForce tasks and concepts, such as working with mappings,
components, and connections.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Mappings 65

4.1

4.1.1

Working with Mappings

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to
be transformed from one format to another. A mapping consists of components that you add to
the MapForce mapping area in order to create your data transformations (for example, convert
XML documents from one schema to another). A valid mapping consists of one or several source
components connected to one or several target components. You can run a mapping and preview
its result directly in MapForce. You can generate code and execute it externally. You can also
compile a mapping to a MapForce execution file and automate mapping execution using
MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

To create a new mapping:

1. Do one of the following:
0 On the File menu, click New.

0 Click the New () toolbar button.

Your mapping is now created; however, it does not yet do anything because it is empty. A
mapping requires at least two connected components to become valid, so the next step is to add
components to the mapping (see Adding Components to the Mapping) and draw connections
between components (see Working with Connections).

Adding Components to the Mapping

In MapForce, the term "component” is what represents visually the structure (schema) of your
data, or how data is to be transformed (functions). Components are the central building pieces of
any mapping. On the mapping area, components appear as rectangles. The following are
examples of MapForce components:

Constants

Filters

Conditions

Function components

EDI documents (UN/EDIFACT, ANSI X12, HL7)
Excel 2007+ files

Simple input components

Simple output components

XML Schemas and DTDs

To add a component to the mapping, do one of the following:

e On the Insert menu, click the option relevant for the component type you wish to add (for
example, XML Schemal/File).

e Drag a file from Windows File Explorer onto the mapping area. Note that this operation is
possible only for compatible file-based components.

e Click the relevant button on the Insert Component toolbar.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Working with Mappings

66 Common Tasks

Insert Component v X
10 0k B 2 X1EED w2 2z b O h B () fidh iz = DT BB

Insert Componenttoolbar (MapForce Enterprise Edition)
Each component type has specific purpose and behavior. For component types where that is
necessary, MapForce walks you through the process by displaying contextual wizard steps or
dialog boxes. For example, if you are adding an XML schema, a notification dialog box prompts
you to optionally select an instance file as well.
For an introduction to components, see Working with Components. For specific information about
each technology supported as mapping source or target, see Data Sources and Targets. For
information about MapForce built-in components used to store data temporarily or transform it
(such as filtering or sorting), see Designing Mappings.

4.1.2 Adding Components from a URL

In addition to adding local files as mapping components, you can also add files from a URL. Note
that this operation is supported when you add a component as source component (that is, your
mapping reads data from the remote file). The supported protocols are HTTP, HTTPS, and FTP.

To add a component from a URL:

1. Onthe Insert menu, select the type of the component type you wish to add (for
example, XML Schemal/File).
2. On the Open dialog box, click Switch to URL.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Common Tasks

Working with Mappings

67

@ Open

b
oy

Recent Places

-
Desktop

=
Libraries

Ay
Computer

el

Metwork

Look in:

[l
| MapForce Bxamples @' ¥ g
Mame . Date modified Type =
J Tutorial 3/2/2015 2:56 PM File fol E|
|| address.xsd 3/2/2015 2:03 AM WICX—
|| Altova_Hierarchical.xml 3/2/2015 2:03 AM KMLD
|| Altova_Hierarchical.xsd 3/2/2015 2:03 AM W3CX
|| Altova_SQLXML.xsd 3/2/2015 2:03 AM W3C X
|| altova-cmpy.xml 3/2/2015 2:03 AM AMLD
|| altova-cmpy-extra.xml 3/2/2015 2:03 AM AMLD
|| AltovaToolsxml 3/2/2015 2:03 AM AMLD
|| AltovaTools.xsd 3/2/2015 2:03 AM W3CX
| ApplicationsPage.xml 3/2/2015 2:03 AM AMLD
|| Articlexsd 3/2/2015 2:03 AM W3CX
| Articles.xml 37272015 2:03 AM AMLD
Articles.xsd 3/2/2015 2:03 AM W3CK ™
4 | n 3
File name: | - Open
Files of type: [AII Supported File Types (*xsd;” dtd:™xml) '] ’ Cancel]

Switch to LRL

H Switch to Global Resources]

Enter the URL of the file in the File URL text box, and click Open.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

68 Common Tasks Working with Mappings

Open @
File URL: http: #/ga-ghp201 30 ocuments/BoaokList. #ml -
Open az: File load
@ Auto bl DTD @ |ze cache/proxy Reload
|dentification

Remember paszwaord

Usgr: Passpord: between application starts
Available files
Server URL: - Browsze

Thiz iz a Microsoft® SharePoint® Server

Mew Folder Delete

| SwitchtoFile Dialng | | Switch to Global Resouces Opeh] | Cancel |

Make sure that the file type in the File URL text box is the same as the file type you
specified in step 1.

If the server requires password authentication, you will be prompted to enter the user name and
password. If you want the user name and password to be remembered next time you start
MapForce, enter them in the Open dialog box and select the Remember password between
application starts check box.

The Open As setting defines the grammar for the parser when opening the file. The default and
recommended option is Auto.

If the file you are loading is not likely to change, select the Use cache/proxy option to cache
data and speed up loading the file. Otherwise, if you want the file to be reloaded each time when
you open the mapping, select Reload.

For servers with Web Distributed Authoring and Versioning (WebDAV) support, you can browse
files after entering the server URL in the Server URL text box and clicking Browse. Although the
preview shows all file types, make sure that you choose to open the same file type as specified in
step 1 abowe; otherwise, errors will occur.

If the server is a Microsoft SharePoint Server, select the This is a Microsoft SharePoint Server
check box. Doing so displays the check-in or check-out state of the file in the preview area. If you
want to make sure that no one else can edit the file on the server while you are using it in

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Mappings 69

MapForce to read data from it, right-click the file and select Check Out. To check in any file that
was previously checked out by you, right-click the file and select Check In.

-

Server URL: http: /!
Thig iz a Microgoft® SharePoint® Server

@ Use cache/proxy

Open
File LIRL: hittp: A /Documents/BookLizt xed
Open az: File load
1 Auto 1ML @ DTD
|dentification
I_ISE[: PaSSWDrd: FEREERRERRERRI
Axnailable files

(=)

-

' Reload

Remember paszword
between application startz

- Browse

+-{[) Cache Profiles
—-[i& Documents

+{ﬁ| Forms

@ BookListaxml

CheckIn...

Undo Check Qut...

I Switch to File Dialog I I Switch to Global Resources

m

-

Mew Folder Delete
Open I I Carcel I

Open dialog box (in Switch to URL mode)

4.1.3 Selecting a Transformation Language

You can choose one of the following as data transformation language:

e XSLT1.0
e XSLT20

ihall | Hille

41

To select a transformation language, do one of the following:

On the Output menu, click the name of the language you wish to use for transformation.

e Click the name of the language in the Language Selection toolbar.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

70

Common Tasks Working with Mappings

4.1.4

Validating Mappings

MapForce validates mappings automatically, when you click the Output tab to preview the
transformation result. You can also validate a mapping explicitly, before attempting to preview its
result. This helps you identify and correct potential mapping errors and warnings before the
mapping is run. Note that running a mapping may generate additional runtime errors or warnings
depending on the processed data, for example, when values mapped to attributes are overwritten.

To validate a mapping explicitly, do one of the following:

e On the File menu, click Validate Mapping.
¢ Click the Validate () toolbar button.

The Messages window displays the validation results, for example:

- Y vla ninE 8 X
e @ CompletePO.mfd: Mapping validation successful - 0 error(s), 2 warningis)

p -------- {} The cutput component Ej CompleteP0 haz no output file name =et. A default file name will be used.
= ; /i, Target component EEJ CompleteP0 has one or more unconnected mandatory inputs.

= /v, Component S core.Customer: Mone of the cutputs is connected.
(=]
-

Messages window

When you validate a mapping, MapForce checks for the validity of the mapping (such as incorrect
or missing connections, unsupported component kinds), and the validation result is then
displayed in the Messages window with one of the following status icons:

Icon Meaning

o Validation has completed successfully.
& Validation has completed with warnings.
o Validation has failed.

The Message window may additionally display any of the following message types: information
messages, warnings, and errors.

Icon Meaning

!] Denotes an information message. Information messages do not stop the
mapping execution.

i, Denotes a warning message. Warnings do not stop the mapping execution.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Mappings 71

4.1.5

Icon Meaning

They may be generated, for example, when you do not create connections to
some mandatory input connectors. In such cases, output will still be generated
for those component where valid connections exist.

1] Denotes an error. When an error occurs, the mapping execution fails, and no
output is generated. The preview of the XSLT or XQuery code is also not
possible.

To highlight on the mapping area the component or structure which triggered the information,
warning, or error message, click the underlined text in the Messages window.

For components that transform data (such as functions or variables), MapForce validation works
as follows:

e [fa mandatory input connector is unconnected, an error message is generated and the
transformation is stopped.

e [fan output connector is unconnected, then a warning is generated and the
transformation process continues. The offending component and its data are ignored and
are not mapped to the target document.

To display the result of each validation in an individual tab, click the numbered tabs available on
the left side of the Messages window. This may be useful, for example, if you work with multiple
mapping files simultaneously

Other buttons in the Messages window enable you to take the following actions:

e Filter the message by types (for example, to show only errors or warnings)
e Mowe up or down through the entries

e Copy the message text to the clipboard

e Find a specific text in the window

e Clear the Messages window.

For general information about the Messages window, see User Interface Oveniew.

Validating the Mapping Output

After you click the Output tab to preview the mapping, the resulting output becomes available in
the Output pane. You can validate this output against the schema associated with it. For
example, if the mapping transformation generates an XML file, then the resulting XML document
can be validated against the XML schema.

For XML files, you can specify the schema associated with the instance file in the Add Schema/
DTD reference field of the Component Settings dialog box (see XML Component Settings). The
path specifies where the schema file referenced by the produced XML output is to be located. This
ensures that the output instance can be validated when the mapping is executed. You can enter
an http:// address in this field, as well as an absolute or relative path. If you do not select the
Add Schema/DTD reference field, then the validation of the output file against the schema is not
possible. If you select this check box but leave it empty, then the schema filename of the
Component Settings dialog box is generated into the output and the validation is done against it.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

72 Common Tasks Working with Mappings

To validate the mapping output, do one of the following:

e Click the Validate Output toolbar button.

AN
;‘?‘xml version="1.0" encoding="UTF-5"7=
=Perzonlizt xminssi="http: e w2 org 2000 DL
=Perzon role="Manager"=
i =First="Yernon=/First=
| =l ast=Callaby=iLasts
=Person=
=Perzon role="Programmet"=
i <First=Frank=/First=

-y

00~ @ B L) RS

e On the Output menu, click Validate Output File.

Note: The Validate Output button and its corresponding menu command (Output | Validate
Output File) are enabled only if the output file supports validation against a schema.

The result of the validation is displayed in the Messages window, for example:

ﬂ CTutorial'ExpReport-Target <ml; Output file walidation successful. - O error(z]), O warning(s)

If the validation was not successful, the message contains detailed information on the errors that
occurred.

B €% C\Documents and Settings'pihly Documents\AtovatapF orce20 1 WapForceExamplesTutorialTut-f
E_l ﬂEIement =Mame=GH iz not allowwed at thiz location under element =Company-Person= BE
§--E_|Reasu:un: The followwing elements are expected at thiz location (zee below)
{heaCompanyLogos= HE
-------- Errar location: Company-Persan F Name
-l Details
-------- |J,_:|3 cvic-model-groug; Element =MName= @@ unexpected by type {anonymous f GE of element =Ct
b @ cve-elt.5.2.1: The element =Company-Person: @E iz not valid with respect to the actual type

The validation message contains a number of hyperlinks you can click for more detailed
information:

e Clicking the file path opens the output of the transformation in the Output tab of
MapForce.

e Clicking <ElementName> link highlights the element in the Output tab.

e Clicking the @ icon opens the definition of the element in XMLSpy (if installed).

e Clicking the hyperlinks in the Details subsection (e.g., cvc-model-group) opens a
description of the corresponding validation rule on the https://www.w3.0rg/ website.

4.1.6 Previewing the Output

When working with MapForce mappings, you can preview the resulting output without having to
run and compile the generated code with an external processor or compiler. In general, it is a
good idea to preview the transformation output within MapForce before attempting to process the
generated code externally.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

https://www.altova.com/xmlspy-xml-editor
https://www.w3.org/

Common Tasks Working with Mappings 73

When you choose to preview the mapping results, MapForce executes the mapping and
populates the Output pane with the resulting output.

Once data is available in the Output pane, you can validate and sawe it if necessary (see
Validating the Mapping Output). You can also use the Find command (Ctrl + F key combination)
to quickly locate a particular text pattern within the output file (see also Searching in Text View).

Any errors, warning, or information messages related to the mapping execution are displayed in
the Messages window (see User Interface Ovenview).

To preview the transformation output:

e Click the Output tab under the Mapping window. MapForce executes the mapping using
the transformation language selected in the Language toolbar and populates the Output
pane with the resulting output.

To sawve the transformation output, do one of the following:

e On the Output menu, click Save Output File.
e Click the Save Generated Output toolbar button.

Partial output preview

When you are previewing large output files, MapForce limits the amount of data displayed in the
Output pane. More specifically, MapForce displays only a part of the file in the Output pane, and
a Load more... button appears in the lower area of the pane. Clicking the Load more... button
appends the next file part to the currently visible data, and so on.

Result file zize: 324.3 MB. 3% of the result are displayed. Load more Load all

Note: The Pretty-print button becomes active when the complete file has been loaded into the
Output pane.

You can configure the preview settings from the General tab of the Options dialog box (see
Changing the MapForce Options).

4.1.7 Text View Features

The Output pane and the XSLT pane have multiple visual aids to make the display of text easier.
These include:

Line Numbers

Syntax Coloring
Bookmarks

Source Folding
Indentation Guides
End-of-Line and Whitespace Markers

Zooming
Pretty-printing

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

74 Common Tasks Working with Mappings

e Word wrapping
e Text highlighting

Where applicable, you can toggle or customize the features above from the Text View Settings
dialog box. Settings in the Text View Settings dialog box apply to the entire application—not
only to the active document.

() Text View Settings X
b arginz Tabs Yizual aid
L T ab size: EI |rdertation quides
Cancel
Bookmark margin (®) Inzer tabs []1End of line markers
Folding margin () Insert spaces [whitespace markers Apply
Enable auto-highlighting
(®) Match selected word
() Match any selection from; 4 charachers.
M atch caze
K.ey map
p Ore line up ~
Do One line down
Left Ore colurme left
Right Qe columi right
Chl+Up Scroll ane line up
Ctrl + Down Scroll one line down
Chrl + Left Ore word left
Chrl + Right Ore ward right
Ll P o P I L e N oy v

Text View Settings dialog box

To open the Text View settings dialog box, do one of the following:

¢ On the Output menu, select Text View Settings.

e Click the Text View Settings toolbar button.
¢ Right-click the Output pane, and select Text View Settings from the context menu.

Some of the navigation aids can also be toggled from the Text View toolbar, the application menu,
or keyboard shortcuts.

Bk

Text Viewtoolbar

For reference to all applicable shortcuts, see the "Key Map" section of the Text View Settings
dialog box illustrated above.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Mappings 75

Line numbers

Line numbers are displayed in the line numbers margin, which can be toggled on and off in the
Text View Settings dialog box. When a section of text is collapsed, the line numbers of the
collapsed text are also hidden.

Syntax coloring

Syntax coloring is applied according to the semantic value of the text. For example, in XML
documents, depending on whether the XML node is an element, attribute, content, CDATA
section, comment, or processing instruction, the node name (and in some cases the node's
content) is colored differently.

Bookmarks
Lines in the document can be bookmarked for quick reference and access. If the bookmarks
margin is toggled on, bookmarks are displayed in the bookmarks margin.

1 =?xml version="1.0" encoding="UTF-8" 7=
2 [l <CompletePO xmins:xsi="http:/Aw.w3.org/2001
3 = =Customer=
4 <MNumber=3</Number=
g zFirstMame=Ted=</FirstName:
B <l astMame=Little</LastMame=
T8 <Address>
o =3treet=Long Way=/Street>
9 <City=Los-Angeles</City=
10 <Z|P=34424=/7IP=
11 <State>CA=/State=
12 2 =/Address>
13 - =/Customer=
14 @ <Lineltems>
15 D <Lineltem>[__]</Lineltem:
24 <Lineltem=[__|</Lineltem:
a3 - =/Lineltems=
34 = <Total=
35 <TotalSum=595<TotalSum:=
36 zTotalltems=2</Totalltems=
a7 - </Total=
38 - <{CompletePO=

Otherwise, bookmarked lines are highlighted in cyan.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

76 Common Tasks Working with Mappings

1 <%xmlversion="1.0" encoding="UTF-§"7=
2 H=CompletePO xminsxsi="http:/fwww. w3.org/2001
3 <Customer=
4 <MNumber=3=</Mumber=
g <FirstMame=Ted</FirstName:
B <l astMame=Little</LastMame>
7 <Address>
o <Street=Long Way</Street>
9 =City=Los-Angeles</City=
10 =ZIP=34424</7|P=
11 =State=CA«/Statex
12 <fAddress=
13 </Customer:=
14 <Lineltems=
15 <Lineltem>[__]</Lineltem:
24 <Lineltem=[__|</Lineltem:
a3 </Lineltems:
34 <Total=
35 <TotalSum=595<TotalSum:=
36 <Totalltems=2</Totalltems=
a7 <Total=
38 - </CompletePO=

The bookmarks margin can be toggled on or off in the Text View Settings dialog box.

You can edit and navigate bookmarks using the following commands:

= Insert/Remove Bookmark (Ctrl + F2)
g Go to Next Bookmark (F2)
‘s Go to Previous Bookmark (Shift + F2)

m- Delete All Bookmarks (Ctrl + Shift + F2)

The commands abowe are available in the Output menu. Bookmark commands are also available
through the context menu, when you right-click the Output (or XSLT, or XQuery) pane.

Source folding

Source folding refers to the ability to expand and collapse nodes and is displayed in the source
folding margin. The margin can be toggled on and off in the Text View Settings dialog box. To
expand or collapse portions of text, click the "+" and "-" nodes at the left side of the window. Any
portions of collapsed code are displayed with an ellipsis symbol. To preview the collapsed code
without expanding it, move the mouse cursor over the ellipsis. This opens a tooltip that displays
the code being previewed, as shown in the image below. Note that, if the previewed text is too big
to fit in the tooltip, an additional ellipsis appears at the end of the tooltip.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Mappings

77

1 [?xml version="1.0" encoding="UTF-8"7>

2 <l edited with XMLSPY v2004 U (http-/fwww_xmlspy_com) by Mr. Nobody (Altova
GmbH) —=

3 <Customers xmins:xsi="http:/fwww w3 org/2001/XMLSchema-instance”
xsi:noMamespaceSchemalocation="Customers xsd">

4 <Customer=

5 <Mumber=1</Mumber=

B <FirstMame=Fred=</Firstame=

7 <l astName=Landis=</LastMName:=

g <Address>=|.. MNa/Address>

14 </Customer> _giraat>Oakstreet</Street=

15 =Customer= (it~ Boston</City=

E =humber=2< 7193320 </71P>

17 <FirstName= _gato-A</State>

18 = astMame> oomer=rasmrame

Indentation guides
Indentation guides are vertical dotted lines that indicate the extent of a line's indentation. They can
be toggled on and off in the Text View Settings dialog box.

Note: The Insert tabs and Insert spaces options take effect when you use the Output | Pretty-
Print XML text option.

End-of-line markers, whitespace markers

End-of-line (EOL) markers and whitespace markers can be toggled on in the Text View Settings
dialog box. The image below shows a document where both end-of-line and whitespace markers
are visible. An arrow represents a tab character, a "CR" is a carriage return, and a dot represents
a space character.

1 <?uml-version="1.8" encoding="UTF-3" 7 >[@

2 <books - xmlns:xsi="http:/ /www.w3.org/ 2001/ XMLSchema-instance™ -
w=i:nolameszpacesSchemalocation="books.xsd" >0

3 = —<book - id="1">[ER

4 — <authorsMark Twain</author:ER

5 — ¢title>The - Adventures - of - Tom Sawyer</title>[d3

6 — <category>Fiction</category >l

7 — Cyear>1876</year: @R

8 —</book>[E

g </books > @@

Zooming in and out
You can zoom in and out by scrolling (with the scroll-wheel of the mouse) while holding the Citrl
key pressed. Alternatively, press the "-" or "+" keys while holding the Ctrl key pressed.

Pretty-printing

The Pretty-Print XML Text command reformats the active XML document in Text View to give a
structured display of the document. By default, each child node is offset from its parent by four
space characters. This can be customized from the Text View Settings dialog box.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

78

Common Tasks Working with Mappings

4.1.8

To pretty-print an XML document, select the Output | Pretty-Print XML Text menu command, or

click the Pretty Print toolbar button.

Word wrapping
To toggle word wrapping in the currently active document, select the Output | Word Wrap menu

command, or click the Word Wrap =] toolbar button.

Text highlighting

When you select text, all matches in the document of the text selection that you make are
highlighted automatically. The selection is highlighted in pale blue, and matches are highlighted in
pale orange. The selection and its matches are indicated in the scroll bar by gray marker-squares.
The current cursor position is given by the blue cursor-marker in the scroll bar.

To switch text highlighting on, select Enable auto-highlighting in the Text View Settings dialog
box. A selection can be defined to be an entire word or a fixed number of characters. You can
also specify whether casing should be taken into account or not.

For a character selection, you can specify the minimum number of characters that must match,
starting from the first character in the selection. For example, you can choose to match two or
more characters. In this case, one-character selections will not be matched, but a selection
consisting of two or more characters will be matched. So, in this case, if you select t, then no
matches will be shown; selecting ty will show all ty matches; selecting t yp will show all typ
matches; and so on.

For word searches, the following are considered to be separate words: element names (without
angular brackets), the angular brackets of element tags, attribute names, and attribute values
without quotes.

Searching in Text View

The text in the Output pane and the XSLT pane can be searched using an extensive set of
options and visual aids.

To start a search , press Ctrl+F (or select the menu command Edit | Find). You can then search
in the entire document or within a text selection for a search term that you enter in the dialog.

e Enter a string to find, or use the combo box to select a string from one of the last 10
strings.

e When you enter or select a string to find, all matches are highlighted and the positions of
the matches are indicated by beige markers in the scroll bar.

e The currently selected match has a different highlight color than the other matches, and
its position is indicated in the scroll bar by the dark blue cursor-marker.

e The total number of matches is listed below the search term field, together with the index
position of the currently selected match. For example, 2 of 4 indicates that the second
of four matches is currently selected.

e You can mowe from one match to the next, in both directions, by selecting the Previous

4 (Shift+F3) and Next > (F3) buttons at bottom right.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Mappings

79

To close the Find dialog, click the Close x button at top right, or press Esc.

Note the following points:

The Find dialog is modeless. This means that it can remain open while you continue to
use Text View.

If text is selected prior to opening the dialog box, then the selected text is automatically
inserted into the search term field.

To search within a selection, do the following: (i) Mark the selection; (ii) Toggle on the

Find in Selection |= | option to lock the selection; (iii) Enter the search term. To search
within another selection, unlock the current selection by toggling off the Find in Selection

option, then make the new selection and toggle on the Find in Selection option.
After the Find dialog is closed, you can repeat the current search by pressing F3 for a
forward search, or Shift+F3 for a backward search. The Find dialog will appear again in
this case.

Find options
Find criteria can be specified via buttons located below the search term field. When an option is
toggled on, its button color changes to blue. You can select from the following options:

L v e X
Nobody (Al Aal Bbe || | = 1 of 8 4/)
3 <Articles i
I?xsi:n:ur-laTespaceSchETa_:u:ati:||1="Articles.xsd">
4 = <Articles
5 <Numher‘|>1<..-"Numher‘>
6 <Name>T-Shirt</Name> —
7 <5inglePrice>25</5inglePrice>
8 3 </Article»
9 = <Article>
1@ <Number:2</Number:
11 <Name>Socks</Name:
12 <5inglePrice>2.3@8</5inglePrice:
13 3 </Articles
14 = <Article>
15 <Number:3</Number: -
16 <Name>Pants</Name:
17 <5inglePrice>34</5inglePricex
18 3 </Article»
19 = <Article>
20 <Number:>4</Number:
21 <Name>Jacket</Name:>
22 <SinglePrice»57.58</5inglePrice>
23 - <fArticle .
24 -<fArticless

Option Icon | Description
Match case Aa Performs a case-sensitive search when toggled on ("Address" is
not the same as "address").
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

80 Common Tasks Working with Mappings

Option Icon | Description

Match whole word | [ag: Only the exact words in the text will be matched. For example, for
the input string fit, with Match whole word toggled on, only the
word fit will match the search string; the fit in fitness, for example,

will not.
Regular ok If toggled on, the search term will be read as a regular expression.
expression See "Using regular expressions" below.
Find anchor When a search term is entered, the matches in the document are

highlighted and one of these matches will be marked as the current
selection. The Find anchor toggle determines whether that first
current selection is made relative to the cursor position or not. If
Find anchor is toggled on, then the first currently selected match
will be the next match from the current cursor location. If Find
anchor is toggled off, then the first currently selected match will
be the first match in the document, starting from the top.

Find in selection When toggled on, locks the current text selection and restricts the
search to the selection. Otherwise, the entire document is
searched. Before selecting a new range of text, unlock the current

selection by toggling off the Find in Selection option.

Using regular expressions
You can use regular expressions (regex) to find a text string. To do this, first, switch the Regular

expression o option on. This specifies that the text in the search term field is to be evaluated as
a regular expression. Next, enter the regular expression in the search term field. For help with

building a regular expression, click the Regular Expression Builder ¥ button, which is located
to the right of the search term field. Click an item in the Builder to enter the corresponding regex
metacharacter/s in the search term field. The screenshot below shows a simple regular
expression to find email addresses.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Mappings 81

H<expense-report i
xsi:noNamespaceSchemalocation="ExpReport.xsd” currency="USD" deta
false" total-sum="556.9">

<?uml version=": S 1
- -Za-z8- A-Ta-z@- -z

- edited witl |[A Za-zB-9. [HI[A-Za-z@8-9]+. [a-z]+ V| X

(Altova GmbH) - Aal Bbe {% == 1 ef 1 4 Any Character

<Personz
<First>Fred</First>
<Lastxlandis</Last>
<Title*Project Manager</Title>
<Phone>123-456-789@<,/Phone>
<Email>f.landis@nanonull.com</Email>

</Persan>

<expense-item type="Meal" expto="Marketing":
<Date>2883-81-81</Date>
<expense>122.11</expense>

</expense-item>

<expense-item type="Lodging" expto="Development”:
<Date>2003-81-82</Date>
<expense>122.12«</expensex

</expense-item>

<expense-item type="Lodging” expto="Marketing"»
<Date>2883-81-82</Date>
<expense>299.45¢/expense>

</expense-item>

<expense-item type="Entertainment™ expto="Sales":
<Date>2003-81-82</Date>
<expense>13.22</expenses

</expense-item>

- </expense-reports

Character in Range
Character Mot in Range
Beginning of Word
End of Word
Beginning of Line
End of Line

Tagged Expression

0 or More Matches

1 or More Matches

The following custom set of regular expression metacharacters are supported when finding and
replacing text.

Matches any character. This is a placeholder for a single character.

(abc)

The (and) metacharacters mark the start and end of a tagged expression. Tagged
expressions may be useful when you need to tag ("remember") a matched region for
the purpose of referring to it later (back-reference). Tagged expressions are similar to
matched subexpressions (indexed groups) in the .NET flavour of regular
expressions. Up to nine sub-expressions can be tagged (and then back-referenced

later).

For example, (the) \1 matches the string t he t he. This expression can be
literally explained as follows: match the string "the" (and remember it as a tagged
region), followed by a space character, followed by a back-reference to the tagged

region matched previously.

\n

Where n is 1 through 9 , n refers to the first through ninth tagged region (see

abowe).

\ <

Matches the start of a word.

\ >

Matches the end of a word.

Escapes the character following the backslash. In other words, the expression \x
allows you to use the character x literally. For example, \ [would be interpreted as

[and not as the start of a character set.

Matches any characters in this set. For example, [abc] matches any of the
characters a, b or c. You can also use ranges: for example [a- z] for any lower

case character.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

82 Common Tasks Working with Mappings
[~ .. Matches any characters not in this set. For example, [*A- Za- z] matches any
character except an alphabetic character.
" Matches the start of a line (unless used inside a set, see above).
$ Matches the end of a line. For example, A+$ matches one or more A's at end of line.
* Matches zero or more occurrences of the preceding expression. For example, Sa* m
matches Sm Sam Saam Saaamand so on.
+ Matches one or more occurrences of the preceding expression. For example, Sa+m
matches Sam Saam Saaamand So on.
Finding special characters
You can search for any the following special characters within text, provided that the Regular
expression option “*is enabled:
e \t (Tab)
¢ \r (Carriage Return)
¢ \n (New line)
e \\ (Backslash)
For example, to find a tab character, press Ctrl + F, select the * option, and then
enter \'t in the Find dialog box.
4.1.9 Previewing the XSLT Code
You can preview the XSLT code generated by MapForce if you selected XSLT 1.0 or XSLT 2.0 as
data transformation language (see Selecting a transformation language).
To preview the generated XSLT 1.0 (or XSLT 2.0) code, do one of the following:
e To preview the XSLT 1.0 code, click the XSLT tab under the Mapping window.
e To preview the XSLT 2.0 code, click the XSLT2 tab under the Mapping window.
Note: The XSLT (or XSLT2) tab becomes available if you have selected XSLT (or XSLT2,
respectively) as transformation language.
4.1.10 Generating XSLT Code

To generate XSLT code:
1. Select the menu item File | Generate code in | XSLT 1.0 (XSLT 2.0).
2. Select the folder you want to save the generated XSLT file, and click OK. MapForce
generates the code and displays the result of the operation in the Messages window.

The name of the generated .xslt file has the form <A>MapTo.xslt, where:

e "<A>"is the value of the Application Name field in mapping settings (see Changing the
Mapping Settings).

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Mappings 83

e ""is the name of the target mapping component. To change this value, open the
settings of the target component and edit the value of the Component Name field (see
Changing the Component Settings).

The folder where the .xslt file is saved also contains a batch file called DoTransform.bat which
can be run with RaptorXML Senver to transform the data (see Automation with RaptorXML Server).

To run the transformation with RaptorXML Server:

1. Download and install RaptorXML from the download page (https://www.altova.com/

download#senser).

2. Start the DoTransform.bat batch file located in the previously designated output folder.

Note that you might need to add the RaptorXML installation location to the path variable of the
Environment Variables. You can find the RaptorXML documentation on the website documentation
page (https://www.altova.com/documentation).

4.1.11 Working with Multiple Mapping Windows

MapForce uses a Multiple Document Interface (MDI). Each mapping file you open in MapForce
has a separate window. This enables you to work with multiple mapping windows and arrange or
resize them in various ways inside the main (parent) MapForce window. You can also arrange all
open windows using the standard Windows layouts: Tile horizontally, Tile vertically, Cascade.

When multiple mappings are open in MapForce, you can quickly switch between them using the
tabs displayed in the lower part of the Mapping pane.

4 ;

Mapping X5LT2 Output

%HE-.‘:-DEEiEJI'I]. %I‘-Je-&:[ﬁesignﬂ I%)I*If_wmrI}E-sign} 4 b x

Window management options are available both on the Window menu and on the Windows
dialog box. From the Windows dialog box, you can take actions against any or all currently open
mapping windows (including saving, closing, or minimizing them).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

https://www.altova.com/download#server
https://www.altova.com/download#server
https://www.altova.com/documentation

84 Common Tasks Working with Mappings

Windows @
Select window: [Activite]
5% New Design1
[E% New Design2 [DK]
5 New Designd
[Save]
[Cloze Window(s)]
Cascade
Tile Haorizontally
Tile Verticalhy
Minimize

Windows dialog box

You can open the Windows dialog box using the menu command Window | Windows... To
select multiple windows in the Windows dialog box, click the required entries while holding the
Ctrl key pressed.

4.1.12 Changing the Mapping Settings

You can change the document-specific settings of the currently active mapping design file from
the Mapping Settings dialog box. This information is stored in the *.mfd file.

To open the Mapping Settings dialog box:

e On the File menu, click Mapping Settings.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Mappings 85

Mapping 5ettings

Mapping Output

-

=

Java Settings

File Path Settings

Output File Settings

Application name: Mappinc

Base package name: com.mapfarce

| Make paths absolute in generated code

| Ensure Windows path convention for file path output for files from a local file system

Line ends: Platform default -

¥ML Schema Version

v 1.0 otherwise
Abways vi1.1

@ Always v1.0

(supported in Built-in execution and C#, Java and C++ code generation)

w1, 1if <xs:schema vominVersion="1.1" ... =

Ok] | Cancel

Mapping Settings dialog box

The available settings are as follows.

Application Name

Defines the XSLT1.0/2.0 file name prefix for the generated
transformation files.

Mak e paths absolute in
generated code

Defines whether the file paths should be relative or absolute
in the generated program code. For more information, see
About Paths in Generated Code.

Ensure Windows path
convention for file path

The "Ensure Windows path convention...." check box makes
sure that Windows path conventions are followed. When
outputting XSLT2 (and XQuery), the currently processed file
name is internally retrieved using the document-uri function,
which returns a path in the form file:// URI for local files.

When this check box is active, a file:// URI path specification
is automatically converted to a complete Windows file path
(e.g. "C:\...") to simplify further processing.

XML Schema Version

Lets you define the XML Schema Version used in the
mapping file. You can define if you always want to load the
Schemas conforming to version 1.0 or 1.1. Note that not all

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

86 Common Tasks Working with Mappings

version 1.1 specific features are currently supported.

If the xs:schema vc:minVersion="1.1" declaration is present,
then version 1.1 will be used; if not, version 1.0 will be used.

¥ML Schema Version

v1.1 1 =xs:zchema vominVersion="1.1" ... =
v1.0 otherwise

Aways v1.1
Abways v1.0

If the XSD document has no vc: m nVer si on attribute or the
value of the vc: mi nVer si on attribute is other than 1. 0 or
1. 1, then XSD 1.0 will be the default mode.

Note: Do not confuse the vc: mi nVer si on attribute with
the xsd: ver si on attribute. The former holds the XSD
version number, while the latter holds the document
version number.

Changing this setting in an existing mapping causes a
reloading of all schemas of the selected XML schema
version, and might also change its validity.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Components 87

4.2 Working with Components

Components are the central elements of any mapping design in MapForce. Generally, the term
"component” is a convenient way to call any object which acts as a data source, or as a data
target, or represents your data in the mapping at an intermediary processing stage.

There are two main categories of components: structure components and transformation
components.

The structure components represent the abstract structure or schema of your data. For example,
when you add an XML file to the mapping area (using the menu command Insert | XML Schema/
File), it becomes a mapping component. For further information about structure components and
their specifics, see Data Sources and Targets. With a few exceptions, structure components
consist of items and sequences. An item is the lowest level mapping unit (for example, a single
attribute in the XML file, or an element of simple type). A sequence is a collection of items.

The transformation components either transform data (for example, functions), or assist you in
transformations (for example, constants or variables). For information on how you can use these
components to achieve various data transformation tasks, see Designing Mappings.

With the help of structure components, you can either read data from files or other sources, write
data to files or other sources, or store data at some intermediary stage in the mapping process
(for example, in order to preview it). Consequently, structure components can be of the following
types:

e Source. You declare a component as source by placing it on the left of the mapping area,
and, thus, instructing MapForce to read data from it.

e Target. You declare a component as target by placing on the right of the mapping area,
and, thus, instructing MapForce to write data to it.

e Pass-through. This is a special component type which acts both as a source and target
(for further information, see Chained mappings / pass-through components).

On the mapping area, components appear as rectangles. The following sample mapping
illustrates three source components, one target XML component, and various transformation
components (functions and filters) through which data goes before being written to the source.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

88 Common Tasks Working with Components

[8 shortro

£l [] File: ShortPO.xml Filel 7 Customer
B {} ShortPO
} CustomerNr

Bnode/row | on-trueh

»hool |c|n-false|:‘>
=1 {} Lineltems | & CompletePO |
‘3 {) Lineltem 1 [] File: (default) File/String
2 “B{} CompleteP0
§ equal ‘B {}Customer
2| resut ~{} Number
| £ Customers b ! - {} Firsthame
=] El File: Customers.xml F - {¥ LastName
E| {} Customers fiy count 1 {} Address
{} Customer iparent-context result {3} Street
{3 Number nodesirows {}city
{} FirstName {3zIp
{} LastName = Article {) state
{} Address bnudes'ruw| on-true/ ‘B{} Lineltems
#bool on-falsely {3} Lineltem
i equal
a
[& Articles p] ="
2] File: Articles.xml File/)
3 {) Articles M.

&£} Article iparent-context resul - {} TotalSum
=4} Humber T aaey vales ~{} Totalltems
~{¥MName | Ju mutip

i... {¥ SinglePrice rvaluel resut = fiter

pvaluez

priode/row | on-trueh

ehool on-falsely

CompletePO.mfd

This mapping sample is available at the following path: <Documents>\Altova\MapForce2018
\MapForceExamples\CompletePO.mfd.

4.2.1 Searching within Components
To search for a specific node/item in a component:

1. Click the component you want to search in, and press the CTRL+F keys.
2. Enter the search term and click Find Next.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Components 89

.

Find =

Find what: SupplementalCash -
Options | Find Previous
[Match whole name only |Tﬁ]l
[Match case |W

Search in Restrictions

Display Mame @) All Items

[Local Mame ~1 Ttemns with Connections
|:| MNamespace URI _ Ttems without Connections
|:| Annotation

[C] Type

Use the Advanced options to define which items (nodes) are to be searched, as well as restrict
the search options based on the specific connections.

4.2.2 Aligning Components

When you move components in the mapping pane, MapForce displays auto-alignment guide
lines. These guide lines help you align a component to any other component in the mapping
window.

In the sample mapping below, the lower component is being mowved. The guide lines show that it
can be aligned to the component on the left side of the mapping.

| IPO-source

B El File: PurchaseOrders.xml File/Siring
“F{} PurchaseOrders
‘@ {} PurchaseOrder The PurchaseOrder element is us

|
E_| El File: ShortPO.xml File/5iring
E “E1{} ShortPO

- {} Customerhr
‘@ {} Lineltems

Component auto-alignment guide lines

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

20 Common Tasks Working with Components

To enable or disable this option:

1. Onthe Tools menu, click Options.
2. Inthe Editing group, select the Align components on mouse dragging check box.

4.2.3 Changing the Component Settings

After you add a component to the mapping area, you can configure the settings applicable to it
from the Component Settings dialog box. You can open the Component settings dialog box in one
of the following ways:

e Select the component and, on the Component menu, click Properties.
e Double-click the component header.
¢ Right-click the component header, and then click Properties.

For a description of the settings available on the Component Settings dialog box, see XML
Component Settings.

For any file-based component, such as XML, a File (M) button appears next to the root node.
This button specifies advanced options applicable if you want to process or generate multiple files
in a single mapping (see Processing Multiple Input or Output Files Dynamically).

4.2.4 Duplicating Input

Sometimes, you may need to configure a component to accept data from more than one source.
For example, you may need to convert data from two different XML schemas into a single
schema. To make the destination schema accept data from both source schemas, you can
duplicate any of the input items in the component. Duplicating input is meaningful only for a
component which is a target component. On any given target component, you can duplicate as
many items as required.

To duplicate a particular input item, right-click it and select Add Duplicate Input After/Before
from the context menu.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Components 91

£

= E| File: (default) File/String
‘3 {} CompletePO

& {} Customer

B8 {} Lineltems
El {} Lineltem

.2 Article |§f Add Duplicate Input Before
"""" O Humb|.ﬁ1ﬁ Add Duplicate Input After
b { ¥ Hame | ;= :
= Rermove Duplicate
-------- {} single s .
- {} Amou Comment/Processing Instruction 3
-------- {} Price
B {} Total Write Content as CDATA Section
-} TotalSum
L £ Y Totalltem Move Up

In the image abowe, the item Li nel t emis being duplicated in order to provide the ability to map
data from a second source.

Once you duplicate an input, you can make connections both to the original input and to the

duplicate input. For example, this would enable you to copy data from source A to original input,
and data from source B to the duplicate input.

Note: Duplication of XML attributes is not allowed, as it would make the resulting XML instance
invalid. In case of XML elements, duplicating input is allowed regardless of the value of the
element's maxQccur s attribute in the schema. This behaviour is intentional, since the
schema could change later, or the source data could be optional. For example, a
mapping could generate a single XML element, even if the input is duplicated on the
mapping.

For a step-by-step example, see Map Multiple Sources to One Target.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

92

Common Tasks Working with Connections

4.3

Working with Connections

A mapping is ultimately about transforming data from one format or structure into another. In a
very basic mapping scenario, you add to the mapping area the components which represent your
source and your target data (for example, a source XML schema and a destination one), and then
draw visually the mapping connections between the two structure. A connection is, therefore, the
visual representation of how data is mapped from a source to a destination.

Components have inputs and outputs which appear on the mapping as small triangles, called
connectors. Input connectors are positioned to the left of any item to which you can draw a
connection. Output connectors are positioned to the right of any item from which you can draw a
connection.

To draw a connection between two items:

¢ Click the output connector of a source item and drag it to a destination item. When the
drop action is allowed, a link tooltip appears next to the text cursor.

An input connector accepts only one incoming connection. If you try to add a second connection
to the same input, a message box appears asking if you want to replace the connection with a
new one or duplicate the input item. An output connector can have sewveral connections, each to a
different input.

To move a connection to a different item:

e Click the stub of the connection (the straight section closer to the target) and drag it to
the destination.

& mi-ExpReport
~H El File: mf-ExpReport.s[>
H {} expense-report =P

E| ExpReport-Target

= El File: (default) File/String

B {¥ Company-EU Foot element

" = detailed . | fiy concat "B Company
- = cUrrency [3 Bvalugl & ‘E @ Employee
{} Person [3 Pvalus? @ resulthe @ Title
-{} First 3 Bvalued - Name

To copy a connection to a different item:

e Click the stub of the connection (the straight section closer to the target), and drag it to
the destination while holding down the Ctrl key.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Connections

93

To view the item(s) at the other end of a connection:

e Point to the straight section of a connection (close to the input/output connector). A
tooltip appears which displays the name(s) of the item(s) at the other end of the
connection. If multiple connections have been defined from the same output, then a
maximum of ten item names are displayed. In the sample below, the two target items
are SinglePrice and value?2 of the multiply function.

& Articles \Eﬂ

.« [a [IFile: Articles.xml

-3 {} Articles
E‘ {} article - =5inglePrice
- {}Humber -mvalue? ultiply
; {}Hame

To change the connection settings, do one of the following:

e Onthe Connection menu, click Properties (this menu item becomes enabled when you

select a connection).
e Double-click the connection.
e Right-click the connection, and then click Properties.

See also Connection Settings.

To delete a connection, do one of the following:

e Click the connection, and then press the Delete key.
e Right-click the connection, and then click Delete.

4.3.1 About Mandatory Inputs
To aid you in the mapping process, MapForce highlights in orange the mandatory inputs in target
components:
e In XML and EDI components these are items where the minOccurs parameter is equal/
greater than 1.
¢ In databases these are fields that have been defined as "not null"
e WSDL calls and WSDL response (all nodes)
e XBRL nodes that have been defined as mandatory
e In functions these are the specific mandatory parameters such that once one parameter
has been mapped, then the other mandatory ones will be highlighted to show that a
connection is needed. E.g. once one of the filter input parameters is mapped, then the
other one is automatically highlighted.
e Worksheet names in MS Excel sheets
Example:
When creating a mapping like CompletePO.mfd, available in the ...\MapForceExamples folder, the
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

94 Common Tasks Working with Connections

inserted XML Schema files exist as shown below.

& ShortPO

&1 [File: ShortPO.xml

-3 {} shortPO

- {}Customerhr
EE|{}‘Lin|E!ItIE!ms
E| {}Lineltem
- {} ArticleNr
- {} Amount

&| CompletePO

& Customers

&1 [File: Customers xm
‘Bl {}Customers
-3 {) Customer
- {}Number
- {}Firstame
~{}Lastlame

=1 [] File: CompletePO.xm
‘H {}CompletePO
B2 {}Customer
....... {}Humber
- ------- {}Firstame
- {}Lastame
E-{__;_I\i‘:1.\‘Jfl.rc:h::|rvass
------- {} Street

& {}Lineltems

B {} Lineltem

@) Article
& {} Total

The Number element of the Customers component is then connected to the Number element of
the CompletePO component. As soon as the connection has been made, the mandatory items/
nodes of the CompletePO component are highlighted. Note that the collapsed "Article" node/icon

is also highlighted.

£y

E8| ShortPO | CompletePO
B] File: ShortPO.xml E1 {| File: CompletePO.xml
= {}ShortPD A {} CompletePO
.. {} Customerhr B {}Customer
E-E{}Lineltems """" {}Number
E‘ £} Lineltemn - ------- {}FirstName
....... {} ArticleNr ------- {}LastName
e {} Amount ‘B1{}Address
oY Street
&| Customers - {¥City
= f] File: Customers.xmi - £}yZIP
El {}Customers . {} State
& {} customer B {}Lineltems
- {} Number B {}Lineltem
- { } Firstame @ {}Article
- {} Lastlame & {} Total

4.3.2 Changing the Connection Display Preferences

You can selectively view the connections in the mapping window.

Show selected component connectors switches between showing:
¢ all mapping connectors in black, or
¢ those connectors relating to the currently selected component in black. Other
connectors appear dimmed.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Connections 95

Show connectors from source to target switches between showing:
e connectors that are directly connected to the currently selected component, or
e connectors linked to the currently selected component, originating from source and
terminating at the target components.

4.3.3 Annotating Connections

Individual connections can be labeled allowing you to comment your mapping in great detail. This
option is available for all connection types.

To annotate to a connection:

=

Right-click the connection, and select Properties from the context menu.

2. Enter the name of the currently selected connection in the Description field. This
enables all the options in the Annotation Settings group.

2. Use the remaining groups to define the starting location, alignment and position of the

label.

1R
3. Activate the Show annotations icon in the View Options toolbar to see the
annotation text.

[C] footnote
[#|Mortgage Servicing Rights

= aniteer [e

% - ‘@[feotnote

Mortgage servicing B #Mortgage Servicing

Note: Ifthe Show annotations icon is inactive, you can still see the annotation text if you
place the mouse cursor over the connection. The annotation text will appear in a callout if

the Show tips toolbar button is active in the View Options toolbar.

4.3.4 Connection Settings

Right-clicking a connection and selecting Properties from the context menu, or double-clicking a
connection, opens the Connection Settings dialog box in which you can define the settings of the
current connection. Note that unavailable options are disabled.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

96 Common Tasks Working with Connections

Connection Settings

Connection Type

Target Driven (Standard)
Copy-all (Copy child items)
@) Spurce Driven (Mixed content)

| Map Processing Instructions

Annotation Settings
Description: mixed
Starting Location

Source Connection

@ Midpaint
Target Connection
Alignment Position
Horizontal
@ Above Line
Vertical
Below Line
@ Sloped
QK] | Cancel

Connection Settings dialog box

For items of complexType, you can choose one of the following connection types for mapping
(note that these settings also apply to complexType items which do not have any text nodes):

Target Driven
(Standard)

Changes the connection type to "Target-driven" (see Target-driven /
Standard mapping).

Copy-all (Copy
child items)

Changes the connection type to "Copy-all" and automatically connects all
identical items in the source and target components (see Copy-all
connections).

Source Driven
(mixed content)

Changes the connection type to "Source-driven", and enables the
selection of additional elements to be mapped. The additional elements
must be child items of the mapped item in the XML source file, to qualify
for mapping.

Activating the Map Processing Instructions or Map Comments check
boxes enables you to include these data groups in the output file.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Common Tasks

Working with Connections 97

E =Desce

7 =para=The company was established in=hald= Yereno=hold=in 1995, Nanonull devel
italic=multi-core processors <ftalic=February 1999 savw the unveiling of the first prototype =k
hopes to expand itz operations =italic=offshore=ftalic=to drive dovwn operational costs.

=] B i1 =vaorn alpha-ascending 7=
9 B i =k-Company details: location and general company information.--=
10 i =lhara=
11 =para=\white papers and further information will be made available in the near future.

Note: CDATA sections are treated as text.

The Annotation Settings group enables you to annotate the connection (see Annotating

Connections).

4.3.5 Connection Context Menu
When you right-click a connection, the following context commands are available.
Connect Matching Children...
¥ Delete Delete
Go to source: book
Go to target: publication
Target Driven (Standard)
Copy-All (Copy Child Itermns)
Source Driven (Mixed Content)
-{;2 Insert Sort: Modes/Rows
& Insert Filter: Nodes/Rows
% Insert SQL-WHERE/QORDER
Insert Value-Map
Properties
Connect matching children Opens the "Connect Matching Children" dialog box (see
Connecting Matching Children). This command is enabled
when the connection is eligible to have matching children.
Delete Deletes the selected connection.
Go to source: <item name> Selects the source connector of the current connection.
Go to target: <item name> Selects the target connector of the current connection.
Target Driven (Standard) Changes the connection type to "Target-driven" (see Target-
driven connections).
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

98 Common Tasks Working with Connections

Copy-All (Copy Child Items) Changes the connection type to "Copy-all" and automatically
connects all identical items in the source and target
components (see Copy-all connections).

This command is enabled (and meaningful) when both the
source item and the target item hawe children items.

Source Driven (Mixed Content) | Changes the connection type to "Source-driven" (see Source-
driven connections).

This command is enabled (and meaningful) when both the
source item and the target item have children items.

Insert Sort: Nodes/Rows Adds a Sort component between the source and the target
item (see Sorting Data).

Insert Filter: Nodes/Rows Adds a Filter component between the source and the target
item (see Filters and Conditions).

Insert Value-Map Adds a Value-Map component between the source and the
target item (see Using Value-Maps).

Properties Opens the Connections Settings dialog box (see Connection
Settings).

4.3.6 Connecting Matching Children

You can create multiple connections between items of the same name in both the source and
target components. Note that a "Copy-all* connection (see Copy-all connections) is created by
default.

To toggle the "Auto Connect Matching Children" option on or off, do one of the following:

e Click the Auto Connect Matching Children () toolbar button.
¢ On the Connection menu, click Auto Connect Matching Children.

To change the settings for "Connect Matching Children":
1. Connect two (parent) items that share identically named child items in both

components.
2. Right click the connection and select the Connect matching child elements option.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Connections 99

Settings for Connect Matching Children

&
| Ignore Mamespaces
| Recursive
| Mix Attributes and Elements

| Create copy-all connections

Existing Conmections
+ | Ignore existing output connections
@ Retain

Owerwrite

Delete all existing

(=]

Cancel

-

3. Select the required options (see the table below), and click OK. Connections are created
for all the child items that have identical names and adhere to the settings defined in the

dialog box.
Note: The settings you define here are applied when connecting two items if the Toggle auto
connect of children () toolbar button is active.
Ignore Case Ignores the case of the child item names.

Ignore Namespaces

Ignores the namespaces of the child items.

Recursive

Creates new connections between any matching items
recursively. That is, a connection is created no matter how
deep the items are nested in the hierarchy, as long as they
have the same name.

Mix Attributes and Elements

When enabled, allows connections to be created between
attributes and elements which have the same name. For
example, a connection is created if two "Name" items
exist, even though one is an element, and the other is an
attribute.

Create copy-all connections

items.

This setting is active by default. It creates (if possible) a
connection of type "Copy-all" between source and target

Ignore existing output
connections

Creates additional connections for any matching items,
ewen if they already have outgoing connections.

Retain Retains existing connections.
Overwrite Recreates connections according to the settings defined.
Existing connections are discarded.
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

100 Common Tasks Working with Connections

Delete all existing Deletes all existing connections, before creating new ones.

Deleting connections

Connections that have been created using the Connect Matching Children dialog, or during the
mapping process, can be removed as a group.

ooy il T — e
B {}Pers - ! "ﬁ b ﬂHamE
....... {}Firﬂ ﬁﬁ Duplicate Input | eyt i e @ Tel
....... {YLaz| IS Remove Duplicate = : EEmail
....... £} Title {E@expense
_______ {}Phol (= Database Table Actions 5-------0Curren
....... {YEma 'P Database Key Settings i-------aBill-tu
= {}EHPEI Y - TP
_______ - l'_',.FDE| Delete connections * Delete all direct connections
....... =ex Delete all incoming child connections
F:] Camponent]
"""" {}Dat Delete all oukgaing child connections
20 Meal SR .

To delete connections:

1. Right-click the item name in the component, not the connection itself ("Person” in this
example).

2. Select Delete Connections | Delete all ... connections.

Delete all direct connections Deletes all connections directly mapped to, or from, the
current component to any other source or target
components.

Delete all incoming child Only active if you hawe right clicked an item in a target

connections component. Deletes all incoming child connections.

Delete all outgoing child Only active if you hawe right clicked an item in a source

connections component. Deletes all outgoing child connections.

4.3.7 Notifications on Missing Parent Connections

When you create connections between source and target items manually, MapForce
automatically analyzes the possible mapping outcomes. If you are mapping two child items, a

notification message can appear suggesting that you also connect the parent of the source item
with the parent in the target item.

This notification message helps you prevent situations where a single child item appears in the
Output window when you preview the mapping. This will generally be the case if the source node
supplies a sequence instead of a single value.

To understand how this works, open the sample mapping Tut-OrgChart.mfd available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. If you connect the
source t ext () item to the target t ext () item, a notification message appears, stating that the
parent item "para" is not connected and will only be generated once in the output.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Connections

&| Tut-OrgChart

» E1£] File: Tut-OrgChart.xml Filg
‘= {} OrgChart

| Tut-Person

» B File: (default) Fike|
‘2 {¥ Company-Person

E| {} CompanyLogo -2 {} CompanyLogo
e = href b = href
io-{¥Name 0 | {} Name
B {} office 2 {} Office
....... {3} Hame - { ¥ Name
-2 {}Desc 3 {} Desc
‘2 {)para | 2 {} para
oAb tEXE() 3 e Abc text])
~{} bold - {} bold
L} italic b () italic
------- {} Location - { ¥ Location
....... {} Phone - { } Phone
MapForce @

The target item's parent 'para’ is not connected.
If you leave it unconnected, MapForce will automatically generate a single 'para’ in the cutput.

You might want to connect it from an ancestor of item 'text()’ in source component
‘Tut-OrgChart' to get several 'para’ in the output.

Don't show this message again.

Tut-OrgChart.mfd (MapForce Basic Edition)

To generate multiple par a items in the target, connect the source and target par a items to each
other.

To disable such notifications, do the following:

1. Onthe Tools menu, click Options.

2. Click the Messages group.

3. Click to clear the When creating a connection, suggest connecting ancestor items
check box.

4.3.8 Moving Connections and Child Connections

When you mowe a connection to a different component, MapForce automatically matches
identical child connections and will prompt you whether it should move them to the new location
as well. A common use of this feature is if you have an existing mapping and then change the root
element of the target schema. Normally, when this happens, you would need to remap all
descending connections manually. This feature helps you prevent such situations.

This example uses the Tut-ExpReport.mfd file available in the <Documents>\Altova
\MapForce2018\MapForceExamples\Tutorial\ folder.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Working with Connections

102 Common Tasks
£5| mf-ExpReport &5 ExpReport-Target
+ B[] File: mf-ExpReport. « B[] File: (default) Filg|
‘E{} expense-report = “E {} Company Root element
....... = detailed _'.E| concat -3 {} Employee
....... = currency pvaluel @ - - {3 Tithe
B £} Perszon E_:.fﬂluez | result I = {} Hame
------- £} First IE:'."E"J g3 = T e 3 Tel
....... {} Last 2 - { ¥ Email
= [-~ OTitle pr—1— ' [i e {} DomesticDailyRate
....... {} Phone ca E - { } ForeignDailyRate
....... {} Email - { ¥ Expense-detail
B {} expense-item & {} expense-item
....... = type oo == CUFFENCY
....... = expto o == Bill-to
....... {3} Date - { ¥ Date
B £} Meal = {3} Travel
....... = mealtype = expense-item e = Travel-Cost
....... {} Name Enodeirow| on-trush - { ¥ Destination
....... {¥ Location *buul un—false[# - { ¥ Car-Rental
BA{YLodging > | . s i e {} Air-Travel
....... = Lodge-cost - { ¥ Misc-Travel
....... {} Name Bl {} Accommodation
....... {3 Location -2 {} DomesticAcc
& {3 Travel 1, equal ------- = DomesticAcc-Cost
....... = means - = {} Location
....... = Trav-cost E resurtT i { ¥ Hotel
- e {3} Destination il F1{} ForeignAcc

Tut-ExpReport.mfd (MapForce Basic Edition)

To understand how it works, do the following:

1. Open the Tut-ExpReport.mfd sample mapping.

2. Edit the ExpReport-Target.xsd schema outside MapForce so as to change the Conpany
root element of the target schema to Conpany- EU. You do not need to close MapForce.

3. Atfter you have changed the Conpany root element of the target schema to Conpany- EU,

a "Changed files" prompt appears in MapForce.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Connections

103

Changed files

Thesze filez or their components are modified or deleted from outside of the application:

Y'ou can reload the file or ignore the modification.

E| Cilzers\atova\Documents\Altova\MapForce201 5\WapForceExam.. \ExpReport-Target. xsd

-~

Reload] [

Cancel

4. Click the Reload button to reload the updated Schema. Since the root element was

deleted, the component displays multiple missing nodes.

W

/., Select new root element

5. Click Select new root element at the top of the component. (You can also change the

=1 (] File: (default) File]
-E1@ Company

root element by right clicking the component header and selecting Change Root

El

ement from the context menu.)

i

6. Select Conpany- EU as new root element and click OK to confirm. The Conpany- EU root

IE':I Select root element @

Name Mamespace URI &

Cash&dvance hitp:/my-company. com/namespace

I T T T
Cate hitp:/fmy-company. com/namespace

element is now \visible at the top of the component.

.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

104 Common Tasks Working with Connections

=]

=1 [] File: (default) File
-E {} Company-EU Foot element

7. Click the target stub of the connection that exists between the expense-report item of
the source component and the Conpany item of the target component, and then drag-and-
drop it on the Conpany- EU root element of the target component.

& mi-ExpReport
~ (E f:l File: mf-ExpReport.al>
-E {} expense-report =P

E| ExpReport-Target

= f:l File: (default) File/String

& {} Company-EU Root element

i = detailed - _VE concat E| & Company

. - = currency B Bvalued ‘E@Employee
‘B {} Person [8 Pvalus? @ resultiy b (@ Title

¢ {YFirst [8 Pvaluel =

A notification dialog box appears.

MapForce @

|'®'| You are about to move a connection. There are also connected descendants.
Do you want matching descendent connections to be moved, too?

[Only this connection l [Include descendent connections J I Cancel J

8. Click Include descendent connections. This instructs MapForce to re-map the correct
child items under the new root element, and the mapping becomes valid again.

Note: If the node to which you are mapping has the same name as the source node but is in a
different namespace, then the notification dialog box will contain an additional button:
"Include descendants and map namespace". Clicking this button mowves the child
connections of the same namespace as the source parent node to the same child nodes
under the different namespace node.

4.3.9 Keeping Connections After Deleting Components

You can decide what happens when you delete a component that has multiple (child) connections
to another component, e.g. a filter or sort component. This is very useful if you want to keep all
the child connections and not hawe to restore each one individually.

You can opt to keep/restore the child connections after the component is deleted, or to delete all
child connections immediately.

Select Tools | Options | Editing (tab) to see the current setting. The default setting for the check
box is inactive, i.e. "Smart component deletion (keep useful connections)" is disabled.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks

Working with Connections 105

rd

Options

Libraries
General

Messages
Generation

XBRL

Editing

_diing | Il

[] Align components on mouse dragging

Smart companent deletion (keep useful connections)

E.g. using the CompletePO.mfd mapping in the ...\MapForceExamples folder, and the check box
is active, the Customer filter is a copy-all connection with many connected child items, as shown

below.

&| CompletePO
= |‘_;||°:|File: (default)

nodelfrow

bool

on-tru eﬂ\ ‘2 {}CompletePD
on-falze B2 {}Customer

....... {}¥Number
- { }Firstame
-} LastName
EI {}Address
....... {} Street

a {}Lineltems
EI {}Lineltem
‘2 { Article

Deleting the Customer filter opens a prompt asking if you really want to delete it. If you select

Yes, then the filter is deleted but all the child connectors remain.

i

B {}Customer
------- {¥Number
------- { }Firstlame

& CompletePO
=1 [] File: (default)
“F {}CompletePO

- {}LastName
E_l {}Address
------- {}Street

B {}Lineltems
B {}Lineltem
3 {} Article

Note that the remaining connectors are still selected (i.e. shown in red). If you want to delete

them as well, hit the Del.

key.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

106 Common Tasks

Working with Connections

Clicking anywhere in the mapping area deselects the connectors.

If the "Smart component deletion..." check box is inactive, then deleting the filter will delete all

child connectors immediately.

Note: |If a filter component has both "on-true" and "on-false" outputs connected, then the
connectors for both outputs will be retained.

4.3.10 Dealing with Missing ltems

Ower time, it is likely that the structure of one of the components in a mapping may change e.g.
elements or attributes are added/deleted to an XML schema. MapForce uses placeholder items to
retain all the connectors, and any relevant connection data between components, when items

have been deleted.

Example:

Using the MFCompany.xsd schema file as an example. The schema is renamed to
MyCompany.xsd and a connector is created between the Company item in both schemas. This
creates connectors for all child items between the components, if the Autoconnect Matching

Children is active.

& MFComparny

-+ |= EFite: MFCompany.xmi
E| {}Company Foct elemen
@ {)Address TrPE|
.= {}Person
....... = Manager
....... = Programmer
....... =Degree

[|

& hivCompany

-« |= [Fite: MYCompany.xmi
EI {}Company Foot elemer
@ {}Address TP
‘A {}Person
....... = Manager
- = Programimer
- = Degree

[|

While editing MyCompany.xsd, in XMLSpy, the First and Last items in the schema are deleted.
Returning to MapForce opens a Changed Files notification dialog box, prompting you to reload the
schema. Clicking Reload updates the components in MapForce.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Common Tasks

Working with Connections

107

& MFCompany

.+ |2 []File: MFCompany.xmi
E| {¥Company Foct elemen
@ {} Address 1P|
& {}Person
....... = Managﬂr
....... = Programmer
....... = DegrEE

[|

& hivCompany

_» |= (] File: MYCompany.xmi
E_l {}Company Foot elemer
@ {}Address TP
‘@ {}Person
- = Manager
- = Programimer
- = Degree

[|

The deleted items and their connectors are now marked in the MyCompany component. You
could now reconnect the connectors to other items if necessary, or delete the connectors.

Note that you can still preview the mapping (or generate code), but warnings will appear in the
Messages window if you do so at this point. All connections to, and from, missing items are
ignored during preview or code-generation.

Clicking one of the highlighted connectors and deleting it, removes the "missing" item from the
component, e.g. Last, in MyCompany.

&| MFCamparry

-« |= EFite: MFCompany.xmi
E| {}Company Foct elemen
@ {}Address TvrE|
B {}Person
....... i Manager
------- = Programmer
------- =Degree

[/]

£8| WY Company

Renamed items

If a parent item is renamed e.g. Person to ZPerson, then the original parent item connector is

AEI E| File: MY Company.xmil
El {}Company Foot elemer
@ {}Address Tree|
‘B {}Person
- = Manager
- = Programmer
- = Megree

[|

retained and the child items and their connectors are deleted.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

Working with Connections

108 Common Tasks

....... { }Street o {3 Street

- iy BB e {}City

‘3 {}Person E {}ZPerson
------- = Manager o = MlAN@QET
------- = Programmer - = Programmer
....... =Degree o = DEgree
------- {}First - L} ikl
....... {}Last - { Y PhoneExt
------- {1 Title - Y ETO
------- { }PhoneExt - (gPerson
....... { YEmail

"Copy all" connectors and missing items
Copy all connections are treated in the same way as normal connections, with the only difference

being that the connectors to the missing child items are not retained or displayed.

‘@ {}Perzon ‘B {}Person
....... = Manager - = Manager
....... = Programmer e = POOQrAMIMEer
....... =Degree oo = DEgree
....... {}First - {3 Title
....... {MLast - { }PhoneExt
....... {}Title - { ¥ Ermvail
------- {}PhoneExt
....... £ YEmail

Renamed or deleted component sources

If the data source of a component i.e. schema has been renamed or deleted, then all items it
contained are highlighted. The red frame around the component denotes that there is no valid
connection to a schema and prevents preview and code generation.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Common Tasks Working with Connections 109

| MFCompany {5 ompany
-« [2 E]File: MFCompany.xml = |21 E]Fite: MY Company.xml
E_l {}Company Foot elemert El @company
@ {}Address TP @ Address
3 {}Person -E@Person
....... = Manager - (giManager
------- =Programmer - {gProgrammer
....... =Degree -------ﬂﬂegree
....... {}First - @ Title
....... {}Last -------ﬂPhuneExt
....... {}Title -------ﬂEmall
....... {}PhoneExt - {E)Fir st
------- {}Email

-] | -]

Placing the mouse cursor over the highlighted component, opens a popup containing pertinent
information.

This companent does nok have any walid skrockare information,
Local file 'C:h20100MapForceExamples) Tutarial\MyY Campany ., xsd' was not Found.,

& hFCompany (= ompany
;IEI E| File: MFCompany.xmil ;IEI E| File: MY Company.xmil
El {}Company Foot elemen El @company
@ {} Address TiPE] H@Address
‘B {}Person ‘E1@Person
- =Manager = B B e @Manager
- = Programmer p— e ﬂPrugrammer
-~ =Degree = BB e @Degree
....... {}Firste'ﬁue
....... {}Last -------epthEEﬂ
....... {}Title ---"--eEITIﬂII
....... {YPhoneExt -------eFirs’t
....... {}EITIEII

= | -]

Double-clicking the title bar of the highlighted component opens the Component Settings dialog
box. Clicking the Browse button in the Schema file group allows you to select a different, or
backed-up version of the schema. Please see "Component” in the Reference section for more

information.
All valid/correct connections will be retained if you select a schema of the same structure.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Chapter 5

Designing Mappings

112

Designing Mappings

Designing Mappings

Altova website: Data integration tool

This section describes how to design data mappings, and ways in which you can transform data
on the mapping area. It also includes various considerations applicable to mapping design. Use
the following roadmap for quick access to specific tasks or concepts:

| want to...

Read this topic...

Create or edit path references to
miscellaneous schema, instance, and other
files used by a mapping.

Using Relative and Absolute Paths

Fine-tune the data mapping for specific needs
(for example, influence the sequence of items
in a target component).

Connection Types

Use the output of a component as input of
another component.

Chained mappings / pass-through components

Process multiple files (for example, all files
within a directory) in the same mapping, either
as a source or a target.

Processing Multiple Input or Output Files
Dynamically

Pass an external value (such as a string
parameter) to the mapping.

Supplying Parameters to the Mapping

Get a string value out of the mapping, instead
of a file.

Returning String Values from a Mapping

Store some mapping data temporarily for later
processing (similar to variables in a
programming language).

Using Variables

Sort data in ascending or descending order.

Sorting Data

Filter nodes/rows based on specific criteria, or
process values conditionally.

Filters and Conditions

Merge data from multiple sources with different
schema.

Merging Data from Multiple Schemas

Process key-value pairs, for example, to
convert months from numerical representation
(01, 02, and so on) to text representation
(January, February, and so on).

Using Value-Maps

Learn how to awoid undesired results when
designing complex mappings.

Mapping rules and strategies

Importantly, MapForce additionally includes an extensive built-in function library (see Function

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

https://www.altova.com/mapforce

Designing Mappings 113

Library Reference) to help you with a wide array of processing tasks. When the built-in library is
not sufficient, you can always build your own custom functions in MapForce, or re-use external
XSLT files. For further information, see Using Functions.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

114 Designing Mappings Using Relative and Absolute Paths

5.1 Using Relative and Absolute Paths

A mapping design file (*.mfd) may hawve references to several schema and instance files. The
schema files are used by MapForce to determine the structure of the data to be mapped, and to
validate it. The instance files, on the other hand, are required to read, preview, and validate the
source data against the schema.

All references to files used by a mapping design are created by MapForce when you add a
component to the mapping. However, you can always set or change such path references
manually if required.

This section provides instructions for setting or changing the path to miscellaneous file types
referenced by a mapping, and the implications of using relative versus absolute paths.

511 Using Relative Paths on a Component

The Component Settings dialog box (illustrated below for an XML component) provides the option
to specify either absolute or relative paths for various files which may be referenced by the

component:
e Input files (that is, files from which MapForce reads data)
e OQutput files (that is, files to which MapForce writes data)
e Schema files (applicable to components which have a schema)

Structure files (applicable to components which may have a complex structure, such as
input or output parameters of user-defined functions, or variables)

e StyleVision Power Stylesheet (*.sps) files, used to format data for outputs such as PDF,
HTML and Word.

You can enter relative paths directly in the relevant text boxes (shown enclosed in a red frame in
the image below).

Before entering relative file paths, make sure to save the mapping file (.mfd) first. Otherwise,
all relative paths are resolved against the personal application folder of Windows (Documents
\Altova\MapForce2018), which may not be the intended behavior.

You can also instruct MapForce to save all above-mentioned file paths relative to the mapping
.mfd file. In the sample image below, notice the option Save all file paths relative to MFD file.
If the check box is enabled (which is the default and recommended option), the paths of any files
referenced by the component will be saved relative to the path of the mapping design file (.mfd).
This affects all files referenced by the component (shown enclosed in a red frame in the image).

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Using Relative and Absolute Paths 115

I

@ Component Settings

Component name; books

-

=

Schema file

C:\Usersialtova\Documents WMyMappingibooks., xsd [Browse] Edit]
Input XML File

C:\sersialtova\DocumentsMyMappingbooks, xml [Browse] [Edit]

Qutput XML File

Browse

Prefix for target namespace:

Write XML Dedaration
at risk of writing invalid output)
Pretty print output
[] Create digital signature (Built-in execution only)

In case of failed creation: Stop processing

i@ Continue without signature

Add schema,/DTD reference (leave field empty to use absolute file path of schema):

Cast values to target types (disable to preserve formatting of numeric or date values

Erit

Output Encoding
Encoding name: Lnicode UTF-8 -
Byte order: Litde Endian [] indude byte order mark
StyleVision Power Stylesheet file
[Browse] [Create...
Enable input processing optimizations based on min/maxOcocurs
Save all file paths relative to MFD file
[Ok] [Cancel

Component Settings dialog box

Although the component illustrated abowve is an XML component, the setting Save all file paths

relative to MFD file works in the same way for the following files:

e Structure files used by complex input or output parameters of user-defined functions and

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

116 Designing Mappings Using Relative and Absolute Paths

variables of complex type
e Input or output flat files *
e Schema files referenced by database components which support XML fields *
e Input or output XBRL, FlexText, EDI, Excel 2007+, JSON files **

* MapForce Professional and Enterprise Edition
** MapForce Enterprise Edition only

Taking the component above as an example, if the .mfd file is in the same folder as the
books.xsd and books.xml files, the paths will be changed as follows:

C:\Users\altova\Documents\MyMapping\books.xsd will change to books.xsd
C:\Users\altova\Documents\MyMapping\books.xml will change to books.xml

Paths that reference a non-local drive or use a URL will not be made relative.

When the check box is enabled, MapForce will also keep track of the files referenced by the
component if you save the mapping to a new folder using the Save as menu command. Also, if all
files are in the same directory as the mapping, path references will not be broken when you move
the entire directory to a new location on the disk.

Using relative paths (and, therefore, enabling the Save all file paths relative to MFD file check
box) may be important in many cases, for example:

e The location of the mapping on your operating system is likely to change in future.

e The mapping is stored in a directory which is under source control (using a version control
system such as TortoiseSVN, for example).

e You intend to deploy the mapping for execution to a different machine or even to a
different operating system.

If the Save all file pathsrelative to MFD file check box is disabled, saving the mapping does
not modify the file paths (that is, they remain as they appear in the Component Settings dialog
box).

5.1.2 Fixing Broken Path References

When you add or change a file reference in a mapping, and the path cannot be resolved,
MapForce displays a warning message. This way, MapForce diminishes the chance for broken
path references to happen. Nevertheless, broken path references may still occur in cases such
as:

* You use relative paths, and then move the mapping file to a new directory without moving
the schema and instance files.

* You use absolute paths to files in the same directory as the mapping file, and then move
the directory to another location.

When this happens, MapForce highlights the component in red, for example:

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings

Using Relative and Absolute Paths

117

& books K current-dateTime & library
21 [] File: books.xml File/Str resulth &l] File: library.xml File/Str
B @books B {} library
E| € book . {} last_updated

- @id -2 {} publication

e ﬂauth or £Yyid

....... @ title - ------- {}author

- @ category o {} title

i@ year - ------- {} genre

Broken path reference

- {} publish_year

The solution in this case is to double-click the component header and update any broken path

references in the Component Settings dialog box (see also Changing the Component Settings).

5.1.3 Paths in Various Execution Environments
If you generate code from mappings, the generated files are no longer run by MapForce. Instead,
the mappings are run by the target environment you have chosen (for example, RaptorXML
Server). The implication is that, for the mapping to run successfully, any relative paths must be
meaningful in the environment where the mapping runs.
Consequently, when the mapping uses relative paths to instance or schema files, consider the
base path to be as follows for each target language:
Target language Base path
XSLT/XSLT2 Path of the XSLT file.
XQuery* Path of the XQuery file.
C++, C#, Java* Working directory of the generated
application.
BUILT-IN* (when previewing the mapping in Path of the mapping (.mfd) file.
MapForce)
BUILT-IN* (when running the mapping with MapForce | The current working directory.
Senver)
BUILT-IN* (when running the mapping with MapForce | The working directory of the job or the
Sener under FlowForce Server control) working directory of FlowForce Senver.
* Languages available in MapForce Professional and Enterprise editions
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

118 Designing Mappings Using Relative and Absolute Paths

If required, you can instruct MapForce to convert all paths from relative to absolute when
generating code for a mapping. This option might be useful if you run the mapping code on the
same operating system, or perhaps on another operating system where any absolute path
references used by the mapping can still be resolved.

To conwert all paths to absolute in the generated code, select the Make paths absolute in
generated code check box, on the Mapping Settings dialog box (see Changing the Mapping

Settings).

When you generate code and the check box is selected, MapForce resolves any relative paths
based on the directory of the mapping file (. mfd), and makes them absolute in the generated
code. This setting affects the path of the following files:

e Input and output instance files for all file-based component kinds

When the check box is not selected, the file paths will be preserved as they are defined in the
component settings.

5.1.4 Copy-Paste and Relative Paths

When you copy a component from a mapping and paste it into another, a check is performed to
ensure that relative paths of schema files can be resolved against the folder of the destination
mapping. If the path cannot be resolved, you will be prompted to make the relative paths absolute
by means of the folder of the source mapping. It is recommended to save the destination mapping
first, otherwise relative paths are resolved against the personal application folder.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Connection Types 119

5.2

521

5.2.2

Connection Types

When you create a mapping connection (and both the source and the target item have child
items), you can optionally choose the type of the connection to be one of the following.

e Target Driven (Standard)
e Source Driven (Mixed Content)
e Copy-All (Copy Child Items).

The connection type determines the sequence of children items in the output generated by the

mapping. This section provides information about each connection type and the scenarios when
they are useful.

Target-driven connections

When a connection is "target-driven" (or "standard"), the sequence of child nodes in the mapping
output is determined by the sequence of nodes in the target schema. This connection type is
suitable for most mapping scenarios and is the default connection type used in MapForce.

On a mapping, target-driven connections are shown with a solid line.

....... {}“an],& """" {}"an]'&

E'E—‘ {Yoffice Standard = {}Office
....... {}Hame ------- {¥Hame
‘B {}Desc ‘B {}Desc

Target-driven connections might not be suitable when you want to map XML nodes that contain
mixed context (character data as well as child elements), for example:

<p>Thi s is our <i>best-selling</i> product.</p>

With mixed content, it is likely that you want to preserve the sequence of items as they appear in
the source file, in which case a source-driven connection is recommended (see Source-driven
connections).

Source-driven connections

Source-driven (Mixed Content) mapping enables you to automatically map text and child nodes in
the same sequence that they appear in the XML source file.

e Mixed content text node content is supported/mapped.
e The sequence of child nodes is dependent on the source XML instance file.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

120 Designing Mappings Connection Types

-E{}Desc) B {}Desc
L:_‘ {}para +u+!1;“+]{+e;{! FP«!FFJF+ e L:_| {}parﬁ
o Fibe teet{) o Fibe tet{)
. {}hold {}hold
Lo Yitalic Lo Yitalic

Mixed content mappings are shown with a dotted line.

Source-driven / mixed content mapping can also be applied to XML schema complexType items.
Child nodes will then be mapped according to their sequence in the XML source file.

Source-driven / mixed content mapping supports:

Mappings from
e As source components:
— XML schema complexTypes (including mixed content, i.e. mixed=true)

e As target components:
— XML schema complexTypes (including mixed content),Note: CDATA sections are
treated as text.

5.2.2.1 Mapping mixed content

The files used in the following example (Tut-OrgChart.mfd, Tut-OrgChart.mfd.xml, Tut-
OrgChart.mfd.xsd, Tut-Person.xsd) are available in the ...\MapForceExamples\Tutorial\
folder.

Source XML instance
A portion of the Tut-OrgChart.xml file used in this section is shown below. Our area of concern
is the mixed content element "para”, along with its child nodes "bold" and "italic".

The par a element also contains a Processing Instruction (<?sort al pha- ascendi ng?>) as well
as Comment text (<! - - Conpany details... -->)which can also be mapped, as shown below.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Connection Types 121

=7xml version="1.0" encoding="UTF-3"7=
al-- edited with XMLSpy w2005 zp2 U (http: faeeesy aftowva.cam) by e, Mobody (Akova GmikH) --:~|
=0rgChart xmins si="http: e s 3.0rgl20010 MLSCchema-instance”
wzinoMamespaceschemalocation="Tut-OrgChatt xsd"=

=icompanyLogo href="nanonul gif"f=

=Mame=Crganization Chart=Mames=

=0ffices
=Mame=hanonull, Inc. =Mame:=
=Desc=
=para=The campany was established in=hald= Yereno=Mhald=in 1995, Nanonull
develops nanoelectronic technologies for=talic=multi-core processors <ftalic=February 1999
zayy the unveiling of the first protatype =bold=MNano-grid =hald=The company hopes to expand
itz operations =italic=offshore=talic=to drive down operational costs.
{1 wvaor alpha-ascending 7=
‘ =l--Company details: location and general company information .--=
i =iparss
=para=ywhite papers and further information will ke made available in the near future.,
=lDesce

Note the sequence of the text and bold/italic nodes in the XML instance file:

<para> The company...
<bold>Vereno</bold>in 1995 ...
<italic>multi-core...</italic>February 1999

<bold>Nano-grid.</bold>The company ...
<italic>offshore...</italic>to drive...
</para>

Initial mapping
The initial state of the mapping when you open Tut-Orgchart.mfd is shown below.

E| Tut-CrgChart E5| Tut-Person
- |3 { | File: Tut-OrgChart.xml - |3 []File: tdefault)
& {}orgChart ‘3 {}Company-Person

-3 {}CompanyLogo B {}CompanyLogo
P - = href

Output of above mapping
The result of the initial mapping is shown below: Organization Chart as well as the individual office
names have been output.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

122 Designing Mappings Connection Types

=fCampany-Person=

1 =Txml werzion="1.0" encoding="UTF-3"?=
2 =Company-Person xminsxsi="http ey w3 orgf2001 HMLSchema-instance” xsinoMames
3 =Mame=Crganization Chart=Mame:=

4 =ioffice=

= i =hlames=tlanonull, Inc. =tlames

5] =ioffices

7 =ioffices

=] =Mame=Manonull Europe, AG=Mame=
9 =iDffice:=

0

.1

—_

Mapping the para element

The image below shows an example of mixed content mapping. The para element is of mixed
content, and the connector is shown as a dotted line to highlight this. The text() node contains
the textual data and needs to be mapped for the text to appear in the target component.

-3 { Y office 3 {}office
....... {}Hame - { ¥Hame
B {}pesc 8 {)Desc
E| {}para El {}para
o Al bt () i b tent()
. {}bold - ------- {}bold
b Yitalic “o { Yitalic
....... {}Location - { }Location

To annotate (add a label to) any connection, right-click it and select Properties (see Annotating

Connections).

The image below shows the content model of the Description element (Desc) of the Tut-
OrgChart.xsd schema file. This definition is identical in both the source and target schemas used

in this example.

Desc
Ivpe

;para

=
bype

1.

l_TextT_'..-'pe _i
“bold |
- bype |xs:string
_i _/E} _ |
"'._'_'L'_"d. = - -
III..-:; italic |
bype |xs:string |

Note the following properties of the para element in the Content model:

e parais a complexType with mixed="true", of type "TextType"

e bold and italic elements are both of type "xs:string", they have not been defined as
recursive in this example, i.e. neither bold, nor italic are of type "TextType"

e bold and italic elements can appear any number of times in any sequence within para

e any number of text nodes can appear within the para element, interspersed by any
number of bold and italic elements.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Connection Types 123

To create mixed content connections between items:

1. Select the menu option Connection | Auto Connect Matching Children to activate this
option, if it is not currently activated.

2. Connect the para item in the source schema, with the para item in the target schema. A
message appears, asking if you would like MapForce to define the connectors as source
driven.

" "

MapForce

You have connected two elements which contain mixed content. In most such cases the type
of connection should be source-driven with text() nodes connected to each other.

Do you want MapForce to make these changes for you?

Don't show this message again.

Yes l | Mo

3. Click Yes to create a mixed content connection.

Note: Para is of mixed content, and makes the message appear at this point. The mixed-
content message also appears if you only map the para items directly, without having the
autoconnect option activated.

All child items of para have been connected. The connector joining the para items is
displayed as a dotted line, to show that it is of type mixed content.
4. Click the Output tab to see the result of the mapping.

1 =7aml version="1.0" encoding="UTF-2"7=
2 =Company-Person <mins:xosi="http feesewe e orgf2001 HMLSchema-instance” <sinoMames
3 =Mame=0rganization Chart=Mame=
4 =ioffices=
5 =Mame=Manonull, Inc.<Mame=
=] =Desc=
) =para=The company was establizhed in=bold= “Yereno=bold=in 1995, Manonull devel
g Pl amaras
9 =para=vhite papers and further information will be made available in the near future.
10 i aiparas
11 =iDesc=
12 =i0ffice=
13 =ioffices
14 =Mame=tanonull Europe, AG=hame=
15 =Dezce=
16 =para=n kay 2000, Manonull=talic=-Europe=italic= was et up in Vienna. The team od
17 =iDescs
18 =i0ffices
19 =iZompany-Person=
20

WE
AF

5. Click the word Wrap icon
Output window.

in the Output tab icon bar, to view the complete text in the

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

124

Designing Mappings

Connection Types

3 =Mame=0rganization Chart=Mame=
4 =inffices=
5 =Mame=Manonull, Inc.=Mame=
E =Desc=
7 =para=The company wasz establizhed in=hold= Yereno=hald=in 1995, Manonull develops
nanoelectronic technologies for=italic=multi-core processors =italic=February 1399 saw the
urveiling of the first prototype =bald=Mano-grid =bold=The company hopes to expand its
operations =italic=offshore=italic=to drive down operational costs.
g {1 =iparas
g =para=hite papers and futher information will be made available inthe near future.
10 | oaiparas
1 =lDescs
12 =iDffice=
13 =igffice=
14 =Mame=MNanonull Europe, AG=Mame:=
15 =Deszc=
16 =para=n May 2000, Manonull=italic=Europe=fitalic= was set up in Yienna. The team
conzizts of=hold= five rezearch scientistz =fhold=and one administrative staff <fpara=
17 | =Desce
18 =iDffice=
19 =fCompany-Fersans=
20

The mixed content text of each office description has been mapped correctly; the text, as
well as the bold and italic tag content, have been mapped as they appear in the XML

source file.
6. Switch back to the Mapping view.

To remove text nodes from mixed content items:

1. Click the text() node connector and press Del. to delete it.

= {}Desc
El {}para
- Abc tet()

2. Click the Output tab to see the result of the mapping.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Connection Types

125

5 =Mame=hanonull, Inc. =Mame:=

G =Desc=

T =para=

g i =holds Wereno=hbolds

) | =talicemuti-core processors =italice
10 i =hald=Nanao-grid =hald=

11 i =talic=offzhoresitalics

12 =hara=

13 =paral=

14 =iDescE

15 =0 ffice=

16 =0ffices

17 =Mame=tanonull Europe, AG=hlame=

15 =Desce

19 | oeparss

20 | =talic=Europe=italic=

rl i =hold= five research scientizts =fold=
22 Poalparas

23 =iDesce

Result:
e all text nodes of the para element have been removed.
e mapped bold and italic text content remain
e the bold and italic item sequence still follows that of the source XML file.

To map the Processing Instructions and Comments:
1. Right-click the mixed content connection, and select Properties.

2. Under Source-Drive (Mixed content), select the Map Processing Instructions and
Map Comments check boxes.

5.2.2.2 Mixed content example

The following example is available as "ShortApplicationinfo.mfd" in the ...\MapForceExamples

folder.

A snippet of the XML source file for this example is shown below.

=“Page xmlns:xsi="http:/ fwmmr. w3 org/ 2001 /XML chena-instance”
x¥=i-nollamespaceSchenalocation="5%actionedPags . xsd" >
=Item=
i <Title>XMLEpy</Title>
“MainSection author="altova'r
i Altova =Trademark=>xMLEpyv<,/Trademnark>
“Subfection=Altova “Trademark=:MLSpvy=,/Trademark=> E00L Enter
i=s the 1ndustry standard <Keyword-xML< /FKeyword> dewelopment enwvirohment
editing, debugging and transforming all <Eeyword=}kHNL-< /HEeywords> technolao
automatically geherating runtime code in maltiple programwing latogquages
: = fMainfection-
=S Ttem=

The mapping is shown below. Please note the following:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edi

tion

126 Designing Mappings Connection Types

e The "SubSection" item connector is of mixed content, and is mapped to the Description
item in the target XML/schema.

¢ The text() nodes are mapped to each other

e Trademark text is mapped to the Bold item in the target

e Keyword text is mapped to the Italic item in the target

| SectionedPage
;IE_I E| File: ApplicationzPage.xmil
‘B {}Page 2l the applications

“E{Iem Ore specific application &/ Shartinfa
fee {) Title The application's title ﬂEl [File: (defautt)
E-E_l {¥MainSection Deszcription of the spplic ~& {}shortinfo
- Sauthor Author of the describing text & {}Info
. Abc text() e 3 TitlE
....... {¥Trademark o }Description
) Keyword Roc text()

El {}SubSection Further description sec]
------- = author Author of the describing te]

e ABC et}

{} Trademark

i { YKeyword

LI @ {}SubSection Further description =e

-4 ¥nalic

Mapping result
The mixed content text of each description has been mapped correctly; the text, as well as the
bold and italic tag content, have been mapped as they appear in the XML source file.

=y

=7xml vwersion="1 0" encoding="LTF-5"7=

2 =Shortinfo wmins: si="khttp: e e 3 orgl2001 SMLSchema-instance”
xEinoMamespaceschemalocation="

CUPROGRA~ SA s MapF orce 2005 MapF orceExamplesrShortinfo xed"=

3 =lnfa=

| {oaTitle= XML Sy = Titles

5 =Description=2kova =Bold=XMLSpy=Bold= 2005 Erterprize Edition iz the industry standard
=falic=xML=Malic= development environment for modeling, editing, debugging and transforming
all =talic=xmML=ftalic= technaologies, then automatically generating runtime code in multiple
programming languages =/Description=

5] =dnfo=

5.2.2.3 Using standard connections on mixed content items

As mentioned before, source-driven (not standard) connections are normally used when mapping
data from mixed content nodes. Otherwise, the resulting output may be undesirable. To see the
consequences of using a standard (target-driven) connection when mapping data from a mixed
content node, follow the steps below:

1. Open the mapping Tut-OrgChart.mfd from the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder.

2. Create a connection between the par a node in the source and the par a node in the
target. A message appears, asking if you would like MapForce to define the connections

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings

Connection Types 127

as source-driven. Click No (this disregards the MapForce suggestion and creates a

standard connection).

-3 {}office B { ¥ Office
....... {}Hame - { YHame
2 {}Desc B {}Desc
E| {Ipara E_| {}para
e A bt () i Abc text()
v { Yol - { }bold
........ { }italic b o Yitalic

Note: Make sure that the connection is standard (target-driven), as shown abowe. If a Copy-All
connection is created automatically, right-click the connection, and select Target Driven
(Standard) from the context menu.

3. Click the Output tab to see the result of the mapping.

=igffice=

=Mame=MNanonull, Inc.<Mame=

=Dezc=

=para=The company was established inin 1995, Manonull develops nanoelectronic techn)

unveiling of the first prototype The company hopes to expand itz operations to drive dowen operg
| =hold= Vereno=fhold=

! =hald=Nano-grid =hald=

=talic=multi-core processors <ftalic=

i =talic=offehoresitalics

=hara=

=para=y¥hite papers and further information will be made availakble inthe near future.

=hara=

=iDesc=

=IDffice=

=ioffice=

As illustrated above, mapping mixed content nodes using standard connections produces the
following result:

e The content of the t ext () source item is copied to the target; howewer, the sequence of
child nodes (bol d and i t al i ¢, in this case) in the output corresponds to the sequence in
the target XML schema. In other words, the child nodes (bol d andi tal i c, in this case)
appear after the mixed content node text.

e For each par a element, MapForce has mapped the t ext () node first, then all bol d
items, and, finally, all i tal i ¢ items. As a result, multiple bol d and i t al i ¢ items appear
stacked on each other. Note that the content of each item is mapped if a connection
exists to it from the source.

5.2.3 Copy-All Connections

Copy-All connections map data between complex structures (nodes with children items) that are
very similar or identical. The main benefit of "Copy-All" connections is that they simplify the
mapping workspace (one "thick" connection is created instead of multiple).

On the mapping, a "Copy-All" connection appears as a single bold line (with input and output

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

128

Designing Mappings

Connection Types

"forks" for each child item) that connects two identical or similar structures.

e { YEMail

e lame
E-E {}Person

o { ¥First Chriztian name
{}Last Surname
e { 3 Title Academic title
------- {}PhoneExt Fhone exte
e YEMaIL

Copy All

Copy-All connection

When you draw a mapping connection between two structures on the mapping, MapForce creates
a "Copy-All" connection automatically if it detects that the source and target structure are
assignment compatible (that is, when both structures are either of the same type, or the target is
a subtype of the source type). At mapping runtime, all instance data will be copied from the
source to the target recursiwely, including children.

To create a "Copy-All" connection manually, right-click an existing connection between two
similar nodes with child items, and select Copy-All (Copy Child Items) from the context menu.

Note the following:

In contexts where a "Copy-All" connection is not meaningful or not supported, it is not
possible to create this kind of connection manually.

A "Copy-All" connection cannot be created to the r oot element of an XML/Schema
component.

When creating "Copy-All" connections between a schema and a parameter of a user-
defined function, the two components must be based on the same schema. It is not
necessary that they both have the same root elements, however.

For an example of a "Copy-All" connection created manually, take the following steps:

=

Create a new mapping.

On the Insert menu, click XML Schema/File and browse for the books.xml file located
in the folder <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\.

On the Insert menu, click XML Schemal/File and browse for the library.xsd file located
in the folder <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\.
Draw a mapping connection between the book node of the "books" component to the
publ i cati on node of the "library" component.

Right-click the new connection, and select Copy-All (Copy Child Items) from the
context menu.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Connection Types 129

& books & library
El {] File: books.xml File/String =] File: library.xml File/String
24} books B {} library
E| £} book - {} last_updated
e =id -2 {} publication
. {% author ------- {id
e {) title - ------- {3 author
- {} category o) title
b {3 year ' ----- {} genre

- { ¥ publish_year

If there are slight differences between the source and the target structures, the "Copy-All"
connection will enumerate, at mapping runtime, the source items (such as elements and
attributes) and will copy only those that exist in the target type. This is repeated recursively.

For example, in the mapping abowve, only two child items are identical between the two structures
(aut hor and title) and thus they are mapped to the target. The item i d is not included
automatically because it is an attribute in the source and an element in the target. If you need to
map, for example, cat egory to genr e, the "Copy-All" connection is no longer possible, because
these are different items.

When an input connector (the small triangle to the side of the component) receives a "Copy-All"
connection, it cannot accept any other connections. In the example abowe, if you attempt to
create a connection between cat egory and genr e, MapForce prompts you to either replace it, or
duplicate the input.

MapForce >

This input connector has already a connection assigned to it via a copy-all
connection. Only one connection can be defined per input connector. What
action should be taken?

E Beplace Connection i Duplicate Input Cancel

Duplicating input is meaningful only if you want the target to accept data from more than one
input, which is not required here (see also Duplicating Input). If you choose to replace the "Copy-
All" connection, a message box prompts you again to either resolve or delete the "Copy-All"
connection.

MapForce >

Cennecting 'publication’ requires to either resclve the copy-all connection to 'publication’ and to keep all connections to the other
child nodes, or to remove the copy-all connection including all its child connections.
What action should be taken?

I Besolve copy-all connection ; Delete child connections Cancel

Click Resolve copy-all connection if you want to replace the "Copy-All" connection by standard

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

130 Designing Mappings Connection Types

individual target-driven connections to corresponding child items. If you prefer to remowe the
"Copy-All" connection completely, click Delete child connections.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Chained Mappings 131

5.3 Chained Mappings

MapForce supports mappings that consist of multiple components in a mapping chain. Chained
mappings are mappings where at least one component acts both as a source and a target. Such
a component creates output which is later used as input for a following mapping step in the chain.
Such a component is called an "intermediate” component.

For example, the mapping illustrated below shows an expense report (in XML format) that is being
processed in two stages. The part of the mapping from A to B filters out only those expenses that

are marked as "Travel". The mapping from B to C filters out only those "Travel" expenses that
have a travel cost less than 1500. Component B is the "intermediate” component, as it has both
input and output connections. This mapping is available at the following path: <Documents>

\Altova\MapForce2018\MapForceExamples\Tutorial\ChainedReports.mfd.

& Reporta

=] E| File: ReportA.xml File/S
“H {} expense-report sxpe

currency

&| ReportB = =

=] E| File: ReportB.xml File/S|
‘B {} expense-report zxpe

= detailed

= currency

& ReportC [&

=] E| File: ReportC.xml File/5|
‘E {} expense-report sxpe

@ {} Person @ {} Person
‘B {} expense-item lb—‘ll b E1{) expense-item f_l {} expense-item
....... = type '| = type ,[- = type
....... = expto . = expto - = gxpto
....... {} Date .. {} Date .. { ¥ Date
& {} Meal & {} Meal & {} Meal
@ {} Lodging ? E -3 {} Lodging = Travel @ {} Lodging
2 {} Travel } Travel bnodeirow | on-truel) 3) Travel
: means I - Ly e 2
_I = expense-item e bool on-falsel
- {} Destination prodelrow [on-truekh+ {} Destinati | - {} Destination
o {3 Mileage ﬂw {} Mileage o { ¥ Mileage
@ {} Parking -3 {} Parking - {} Parking
- {} Entertainment 'ff equal - {} Entertainment & equaroress - {3} Entertainment
-H {} Misc resuﬂ# - {} Misc - k -H) Misc
E{} description K -2 {} description =kb -B1 {} description
b text() e text() oo b text()
.I{} strong {} strong @ {} strong
@ {} italic Q,J Travel| @ {} italic [c= [1z00g @ {} italic

ChainedReports.mfd

Chained mappings introduce a feature called "pass-through". "Pass-through" is a preview
capability allowing you to view the output produced at each stage of a chained mapping in the
Output window. For example, in the mapping abowe, you can preview and save the XML output
resulting from A to B, as well as the XML output resulting from B to C.

Note: The "pass-through” feature is available only for file-based components (for example, XML,
CSV, and text). Database components can be intermediate, but the pass-through button
is not shown. The intermediate component is always regenerated from scratch when
previewing or generating code. This would not be feasible with a database as it would
have to be deleted prior to each regeneration.

If the mapping is executed by MapForce Sener, or by generated code, then the full mapping chain
is executed. The mapping generates the necessary output files at each step in the chain, and the
output of a step of a mapping chain is forwarded as input to the following mapping step.

It is also possible for intermediate components to generate dynamic file names. That is, they can
accept connections to the "File:" item from the mapping, provided that the component is

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

132 Designing Mappings Chained Mappings

configured correspondingly. For more information, see Processing Multiple Input or Output Files
Dynamically.

|=| preview button

Both the component B and the component C have preview buttons. This allows you to preview in
MapForce the intermediate mapping result of B, as well as the final result of the chained mapping.
Click the preview button of the respective component, then click Output to see the mapping result.

"Intermediate" components with the pass-through button active cannot be previewed. Their preview
button is automatically disabled, because it is not meaningful to preview and let data pass through
at the same time. To see the output of such a component, first click the "pass-through" button to
deactivate it, and then click the preview button.

@ Pass-through button
The intermediate component B has an extra button in the component title bar called "pass-
through".

If the pass-through button is active =3 , MapForce maps all data into the preview window in one
go; from component A to component B, then on to component C. Two result files will be created:

e the result of mapping component A to intermediate component B
e the result of the mapping from the intermediate component B, to target component C.

If the pass-through button is inactive k=] , MapForce will execute only parts of the full mapping
chain. Data is generated depending on which preview buttons are active:

e [fthe preview button of component B is active, then the result of mapping component A to
component B is generated. The mapping chain actually stops at component B.
Component C is not involved in the preview at all.

e [fthe preview button of component C is active, then the result of mapping intermediate
component B to the component C is generated. Because pass-through is inactive,
automatic chaining has been interrupted for component B. Only the right part of the
mapping chain is executed. Component A is not used.

When the "pass-through” button is inactive, it is important that the intermediate component
has identical file names in the "Input XML File" and "Output XML File" fields. This ensures
that the file generated as output when you preview the portion of the mapping between A and
B is used as input when you preview the portion of the mapping between B and C. Also, in
generated code, or in MapForce Sener execution, this ensures that the mapping chain is not
broken.

As previously mentioned, if the mapping is executed by MapForce Senver, or by generated code,
then the output of all components is generated. In this case, the settings of the pass-through
button of component B, as well as the currently selected preview component, are disregarded.
Taking the mapping above as example, two result files will be generated, as follows:

1. The output file resulting from mapping component A to B
2. The output file resulting from mapping component B to C.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Chained Mappings 133

The following sections, Example: Pass-Through Active and Example: Pass-Through Inactive,
illustrate in more detail how the source data is transferred differently when the pass-through button
is active or inactive.

5.3.1 Example: Pass-Through Active

The mapping used in this example (ChainedReports.mfd) is available in the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. This mapping processes an XML
file called ReportA.xml that contains travel expenses and looks as shown below. For simplicity,
the namespace declaration and some expense- i t emelements have been omitted:

<?xm version="1.0" encodi ng="UTF-8"?>
<expense-report currency="USD' detail ed="true">
<Per son>
<Fi r st >Fr ed</ Fi r st >
<Last >Landi s</ Last >
<Titl e>Project Manager</Title>
<Phone>123- 456- 78</ Phone>
<Emai | >f . | andi s@anonul | . conx/ Enai | >
</ Per son>
<expense-item type="Travel " expto="Devel oprment ">
<Dat e>2003- 01- 02</ Dat e>
<Travel Trav-cost="337.88">
<Desti nati on/ >
</ Travel >
<descri ption>Bi z jet</description>
</ expense-itenr
<expense-item type="Lodgi ng" expto="Sal es">
<Dat e>2003- 01- 01</ Dat e>
<Lodgi ng Lodge-cost="121. 2">
<Locat i on/ >
</ Lodgi ng>
<descri pti on>Mt el mani a</descri ption>
</ expense-itenr
<expense-item type="Travel " expto="Marketing">
<Dat e>2003- 02- 02</ Dat e>
<Travel Trav-cost="2000">
<Desti nati on/ >
</ Travel >
<descri pti on>Hong Kong</ descri pti on>
</ expense-itenr
</ expense-report >

ReportA.xml

The goal of the mapping it to produce, based on the file above, two further reports:

e ReportB.xml - this report should contain only those travel expenses that are of type
"Travel".

e ReportC.xml - this report should contain only those travel expenses that are of type
"Travel" and do not exceed 1500.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

134 Designing Mappings Chained Mappings

To achiewe this goal, the intermediate component of the mapping (component B) has the pass-

through button =3 active, as shown below. This causes the mapping to be executed in stages:
from A to B, and then from B to C. The output created by the intermediate component will be used
as input for the mapping between B and C.

& Reportd | | ReportB ¥ = £ ReportC [&
= [] File: ReportA.xml| File/S = [] File: ReportB.xmil File/S =] [] File: ReportC.xml File/5
3 {} expense-report =xpe ‘B {¥ expense-report sxpe 3 {} expense-report sxpe

= detailed c

= currency

i = detailed e = detailed B
i = currency A currency

The names of generated output files at each stage in the mapping chain is determined by the
settings of each component. (To open the component settings, right-click it, and then select
Properties from the context menu). Namely, the first component is configured to read data from
an XML file called ReportA.xml. Because this is a source component, the Output XML File field
is irrelevant and it was left empty.

Component name: ReportA

Schema file

ExpenseReport. xsd Browse Edit

Input XML File
Reporta. xml Browse Edit

Qutput XML File

Browse

Settings of the source component

As shown below, the second component (ReportB) is configured to create an output file called
ReportB.xml. Notice that the Input XML File field is grayed out. When pass-through is active
(as in this example), the Input XML File field of the intermediate component is automatically
deactivated. An input file name need not exist for the mapping to execute, because the output
created at this stage in the mapping is stored in a temporary file and reused further in the
mapping. Also, if an Output XML File is defined (as illustrated below), then it is used for the file
name of the intermediate output file. If no Output XML File is defined, a default file name will be
automatically used.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Chained Mappings 135

Component name: ReportB

Schema file

ExpenseReport, xsd Browse Edit

Input XML File
Reparts. xml

Output XML File
Reportd.xml Browse Edit

Settings of the intermediate component

Finally, the third component is configured to produce an output file called ReportC.xml. The
Input XML File field is irrelevant here, because this is a target component.

Component name: ReportC

Schema file

ExpenseReport. xsd Browse Edit

Input XML File

Browse

Output XML File
ReportC.xml Browse Edit

Settings of the target component

If you preview the mapping by clicking the Output tab in the mapping window, two files are shown
in the output, as expected:

1. ReportB.xml, which represents the result of the mapping A to B
2. ReportC.xml, which represents the result of mapping B to C.

To select which of the two generated output files should be displayed in the Output window, either
click the arrow buttons, or select the desired entry from the dropdown list.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

136 Designing Mappings

Chained Mappings

Pl —

LI R R T R Y

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24

D—l

Preview 1 of 1 (2) CASamples\ReportC xml
|ﬂ|. CASamples\ReportC.xml
hitocl! 3.0ral20 Ej Intermediate from component ReportB
priierwew e 3.0 -
<Person= ReportB: C\Samples\ReportB.xml

<First=Fred-/First=
<l azt=Landiz</Last=
<Title=Project Manager</Title=
<Phone=123-456-78</Phone=
<Email=f.landis@nanonull. com=/Email=
=/Person=
<gxpense-iem type="Travel" expto="Development™=
«Date=2003-011-02=/Date=
<Travel Trav-cost="337.38"=
<Destination=</Destination=
=Travel=
<description=Biz jet</description=
<lexpense-item=
=gxpense-item type="Travel" expto="Accounting™=
«<Date=2003-07-07</Date>
<Travel Trav-cost="1014.22"=
=Destination==/Destination=
<iTravel=
<description=Ambassador class</description=
<lexpenze-item=
</expense-report=

<#xml version="1.0" e
<gxpense-report xsin

Generated output files

When the mapping is executed by MapForce, the setting "Write directly to final output

file" (configured from Tools | Options | General) determines whether the intermediate files are
saved as temporary files or as physical files. Note that this is only valid when the mapping is
previewed directly in MapForce. Had this mapping been executed by MapForce Server or by
generated code, actual files would be produced at each stage in the mapping chain.

If StyleVision is installed, and if a StyleVision Power Stylesheet (SPS) file has been assigned to
the target component (as in this example), then the final mapping output can be viewed (and
sawved as) HTML, RTF file. To generate and view this output in MapForce, click the tab with the
corresponding name.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Chained Mappings 137

Nan(hull

Personal Expense Report

) ' '
Currency: “® Dollars “_/Eurcs '/ Yen Currency

Detailed report

Employee Information

Fred Landis Prcj ZELL T
First Hame Last Name Title
flandis@nanonull com 123-456-78
E-Mail Phone
Expense List
Type Expense To Date f;'_g‘_].*—m— Expenses $ Description
2003-01- ||Travel [Lodging ||
Travel v | |Development| v Biz jet
I JI P 4 02 |33?_88 ” | 1Z]
: 2003-07- |Tr:wel ||Ludging|
| Travel ~| |Accounting [v| 07 |1D14.22 ” | Ambassador class

Mapping DB Query Output GIHTML | @RTF | & POF | & Word 2007+

Generated HTML output

Note that only the output of the final target component in the mapping chain is displayed. To
display StyleVision output of intermediary components, you would need to deactivate the pass-
through button, and preview the intermediate component (as shown in Example: Pass-Through
Inactive).

5.3.2 Example: Pass-Through Inactive

The mapping used in this example (ChainedReports.mfd) is available in the <Documents>
\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. This example illustrates how

output is generated differently when the pass-through button 2*is deactivated on the
intermediate component.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

138

Designing Mappings

Chained Mappings

| ReportA

=] {1 File: ReportA.xml File/S

&| =

E| {} expense-report sxpe

Sy

i S currency

= [] File: ReportB.xml File/S|
E| {} expense-report zxpe

i = detailed B
i = currency

& ReporiC =|

=] {1 File: ReportC.xml File/S
E| {} expense-report sxpe

= detailed c

i I currency

As explained in Example: Pass-Through Active, the goal of the mapping is to produce two
separate reports. In the previous example, the pass-through button was active g, and both
reports were generated as expected and could be viewed in the Output tab. However, if you want
to preview only one of the reports (either ReportB.xml or ReportC.xml), then the pass-through

button must be deactivated (B). More precisely, deactivating the pass-through button may be
useful if you want to achieve the following:

e Preview only output generated from A to B, and disregard the portion of the mapping from
BtoC

e Preview only output generated from B to C, and disregard the portion of the mapping from
A to B.

When you deactivate the pass-through button as shown abowe, you can choose whether to
preview either ReportB or ReportC (notice that both have preview [& buttons).

Deactivating the pass-through button also lets you to choose what input file should be read by the
intermediate component. In most cases, this should be the same file as defined in Output XML
File field (as in this example).

Component name: ReportB

Schema fille

ExpenseReport. xsd Browse Edit

Input XML File
Reports. xml Browse Edit

Dutput XML File
ReportB. xml Browse Edit

Settings of the intermediate component

Having the same input and output file on the intermediate component is particularly important if
you intend to generate code from the mapping, or run the mapping with MapForce Server. As
previously mentioned, in these environments, all outputs created by each component in the
mapping chain are generated. So, it usually makes sense for the intermediate component to
receive one file for processing (in this case ReportB.xml) and forward the same file to the
subsequent mapping, rather than look for a different file name. Be aware that, not having the same
input and output file names on the intermediate component (when the pass-through button is
inactive) might cause errors such as "The system cannot find the file specified" in generated code
or in MapForce Senrver execution.

If you click the preview button [& on the third component (ReportC), and attempt to preview the
mapping in MapForce, you will notice that an execution error occurs. This is expected, since,

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Chained Mappings 139

according to the settings abowe, a file called ReportB.xml is expected as input. Howewer, the
mapping did not produce yet such a file (because the pass-through button is not active, and only
the portion of the mapping from B to C is executed). You can easily fix this problem as follows:

1. Click the preview button on the intermediate component.

2. Click the Output tab to preview the mapping.

3. Sawe the resulting output file as ReportB.xml, in the same folder as the mapping
(<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\).

Now, if you click again the preview button on the third component (ReportC), the error is no longer
shown.

When the pass-through button is inactive, you can also preview the StyleVision-generated output
for each component that has an associated StyleVision Power StyleSheet (SPS) file. In
particular, you can view the HTML version of the intermediate report as well (in addition to that of
the final report):

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

140 Designing Mappings Chained Mappings

Nan(hull

Personal Expense Report

) ' '
Currency: “®'[Dollars '/ Eurcs "/ Yen Currency

Detailed report

Employee Information

Fred Landis Jiila L
First HName Last Name Title
flandis@nanonull com 123-456-78
E-Mail Phone
Expense List
Type Expense To Date w Expenses $ Description
01- |[Travel |Lodgi
| Travel || | Development| v | ggm i I3;:.;3 ” === IEi_zjet
07- |[Travel |Lodgi
| Travel V| |Accounting || ggm 07 Il[]]-:_EE H e I Ambassador class
_02- || Travel |Lodgi
|Tra\rel v |Marketing v ggm e IES;; “ ocems I Hong Kong

Mapping DB Query Output | /@Y HTML | & RTF | & PDF | & Word 2007+

HTML output of the intermediate component

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Processing Multiple Input or Output Files Dynamically 141

5.4 Processing Multiple Input or Output Files Dynamically

You can configure MapForce to process multiple files (for example, all files in a directory) when
the mapping runs. Using this feature, you can solve tasks such as:

Supply to the mapping a list of input files to be processed

Generate as mapping output a list of files instead of a single output file

Generate a mapping application where both the input and output file names are defined at
runtime

Convert a set of files to another format

Split a large file into smaller parts

Merge multiple files into one large file

You can configure a MapForce component to process multiple files in one of the following ways:

Supply the path to the required input or output file(s) using wildcard characters instead of
a fixed file name, in the component settings (see Changing the Component Settings).
Namely, you can enter the wildcards * and ? in the Component Settings dialog box, so
that MapForce resolves the corresponding path when the mapping runs.

Connect to the root node of a component a sequence which supplies the path
dynamically (for example, the result of the r epl ace- fi | eext function). When the
mapping runs, MapForce will read dynamically all the input files or generate dynamically
all the output files.

Depending on what you want to achieve, you can use either one or both of these approaches on
the same mapping. Howewer, it is not meaningful to use both approaches at the same time on the
same component. To instruct MapForce which approach you want to use for a particular
component, click the File (Fil) or File/String (File/String|) putton available next to the root
node of a component. This button enables you to specify the following behavior:

Use File Names from Component If the component should process one or several
Settings instance files, this option instructs MapForce to

process the file name(s) defined in the Component
Settings dialog box.

If you select this option, the root node does not
have an input connector, as it is not meaningful.

& Articles
&1 [] File: (default) File|
B {} Articles

@ {} Article

If you did not specify yet any input or output files in
the Component Settings dialog box, the name of

the root node is File: (default). Otherwise, the root
node displays the name of the input file, followed by

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

142 Designing Mappings

Processing Multiple Input or Output Files Dynamically

a semi-colon (;), followed by the name of the
output file.

If the name of the input is the same with that of the
output file, it is displayed as name of the root node.

EE| Articles

B {} Articles
@ {} Article

I [] File: Articles.xml File| E

No
Us

option.

te that you can select either this option or the
e Dynamic File Names Supplied by Mapping

Use Dynamic File Names Supplied by
Mapping

This option instructs MapForce to process the file
name(s) that you define on the mapping area, by
connecting values to the root node of the
component.

If you select this option, the root node gets an input
connector to which you can connect values that
supply dynamically the file names to be processed
during mapping execution. If you have defined file
names in the Component Settings dialog box as
well, those values are ignored.

When this option is selected, the name of the root
node is displayed as File: <dynamic>.

;

& Articles

(= [| File: =dynamic> @

-3} Articles E
@ {) Article

This option is mutually exclusive with the Use File
Names from Component Settings option.

Multiple input or output files can be defined for the following components:

e XML files

e Text files (CSV*, FLF* files and FlexText** files)

e EDI documents**
e Excel spreadsheets**
e XBRL documents**

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Processing Multiple Input or Output Files Dynamically 143

* Requires MapForce Professional Edition
** Requires MapForce Enterprise Edition

The following table illustrates support for dynamic input and output file and wildcards in MapForce

languages.
Target Dynamic input Wildcard support for Dynamic output file
language file name input file name name
XSLT 1.0 * Not supported by XSLT 1.0 Not supported by XSLT
1.0
XSLT 2.0 * *(1) *
C++ * * *
C# * * *
Java * * *
BUILT-IN * * *
Legend:

* Supported

(1) | Uses the fn: col | ecti on function. The implementation in the Altova XSLT 2.0 and
XQuery engines resolves wildcards. Other engines may behave differently. For details on
how to transform XSLT 1.0/2.0 code using the RaptorXML Server engine, see Generating
XSLT 1.0, or 2.0 code

5.4.1 Mapping Multiple Input Files to a Single Output File

To process multiple input files, do one of the following:

e Enter a file path with wildcards (* or ?) as input file in the Component Settings dialog box.
All matching files will be processed. The example below uses the * wildcard character in
the Input XML file field to supply as mapping input all files whose name begins with
"Nanonull-". Multiple input files are being merged into a single output file because there
is no dynamic connector to the target component, while the source component accesses
multiple files using the wildcard *. Notice that the name of the root node in the target
component is File: <default>, indicating that no output file path has been defined in the
Component Settings dialog box. The multiple source files are thus appended in the target
document.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

144 Designing Mappings Processing Multiple Input or Output Files Dynamically

& Altova_Hierarchical & Altova_Hierarchical |
&I £] File: Nanonull-*xmi1 File| I &I L] File: (default) File
B {} Altova ‘B {} Altova
T C=
- {} PrimaryKey [T I - {} PrimaryKey
i { ¥ Hame "Organization Chart” I ~{} Name
‘3 {} office '8 B 2 {)office
{2} PrimaryKey '8 3 - {} PrimaryKey
- {} ForeignKey i3 -'E' EO I {3} ForeignKey
- {} Desc [c= ["read from file: * Revaluet resuft B -{}Desc
oo {3} EMail B Pvalue2 T B e {) EMail
. {} Established [8 P -{}Established
- {} Fax [> - {} Fax
(} Name [> {} Name
- {} Phone 1S B --{}Phone
& {} Address & {} Address
& {} Department & {} Department

MergeMultipleFiles.mfd (MapForce Basic Edition)

e Map a sequence of strings to the File node of the source component. Each string in the
sequence represents one file name. The strings may also contain wildcards, which are
automatically resolved. A sequence of file names can be supplied by components such

as an XML file.
FileList i B
& FileLis | iy mfd-filepath % get-folder
E| [l F”?: NgnonullFiIes.me filepath iy Kofilepath| folderis El resclve-filepath
2 {} FileList Ipbasefolder -
........ {3 File Efiepath result-fiepa
E| Attova_Hierarchical | £ Altova_Hierarchical |
[] File: <dynamic> File| B £] File: (default] Fil
“E {} Altova Co B4} Altova

g :nmaryKey “Organization Chart {} PrimaryKey
~{¥ Name
‘= {} Office i

g PrimaryKey [concat | g PrimaryKey

. {} Foreignkey @~ B — w1 e Foreignk
oreignKey — Eranel [oreignKey

- {} Desc -_,=l _rea rom file: a2 resufti | S - {}Desc

- {¥ EMail | R {} EMail

... { } Established B e {} Established

o { ¥ Fax B e {¥Fax

A} Hame | {} Name

- {} Phone B {}Phone

- {} Address & {} Address

- {} Department ‘& {} Department

MergeMultipleFiles_List.mfd (MapForce Basic Edition)

5.4.2 Mapping Multiple Input Files to Multiple Output Files

To map multiple files to multiple target files, you need to generate unique output file names. In
some cases, the output file names can be derived from strings in the input data, and in other

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings

Processing Multiple Input or Output Files Dynamically 145

cases it is useful to derive the output file name from the input file name, e.g. by changing the file

extension.

In the following mapping, the output file name is derived from the input file name, by adding the

prefix "Persons-" with the help of the concat function.

) Alova_Hierarchical

&l [] File: Nanonull*.xml File|
‘= { Altova
- { ¥ PrimaryKey
~{¥Name
&= {} office
-} PrimaryKey
- {} Foreignkey
- {} Desc
- {) EMail

_,-El concat

Bvaluei

) remove-folder

pefilepath | filename-

| C=a |"Generﬂted by Altova *

i) main-mfd-filepath
filepathi

resuft]
Bvalue?

_ﬁ‘ concat

Bvaluei

resuft]
Bvalue2

| PersonList

&l [] File: <dynamic= File|

- {t~comment()

{} PersonList List of Persons

w- { ¥ Details

... { } Establizshed
-} Fax
(} Hame
- {} Phone
- {} Address
-8 {3 Department

i { ¥ PrimaryKey
} ForeignKey
¥ Hame
B {}Person
-{} PrimaryKey
-{} ForeignKey
-{} EMail
-{}First
-{¥ Last
-{} PhoneExt
L) Title

fi concat

i) count fevaluel &
Ivalue2 resurtT

i-parent-context
result
{nudesﬁruws Ievaluel =

| Cz | Persons mapped frum..."*

MultipleInputToMultipleOutputFiles.mfd (MapForce Basic Edition)

Note: Awid simply connecting the input and output root nodes directly, without using any
processing functions. Doing this will overwrite your input files when you run the mapping.
You can change the output file names using functions such as the concat function, as

shown abowe.

The menu option File | Mapping Settings allows you to define globally the file path settings used
by the mapping (see Changing the mapping settings).

5.4.3 Supplying File Names as Mapping Parameters
To supply custom file names as input parameters to the mapping, do the following:
1. Add an Input component to the mapping (On the Function menu, click Insert Input). For
more information about such components, see Simple Input.
1. Click the File (Fikl) or File/String (Fil/String|) putton of the source component and
select Use Dynamic File Names Supplied by Mapping.
2. Connect the Input component to the root node of the component which acts as mapping
source.
For a worked example, see Example: Using File Names as Mapping Parameters.
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

146 Designing Mappings Processing Multiple Input or Output Files Dynamically
5.4.4 Previewing Multiple Output Files
Click the Output tab to display the mapping result in a preview window. If the mapping produces
multiple output files, each file has its own numbered pane in the Output tab. Click the arrow
buttons to see the individual output files.
LI (3 Preview 10of2 [. C\Us&rs\artuva\Ducum&nts\AItu\.ra\MapFurc&ZD‘l S\WapForceExamples\Persons-Nanonul-Branch.xml -
1 % 4ml sersion="1.0" encoding="UTF-8"%= T CE) USing
C a\Documents\AtovaiMap o putTolulti g _><PersunL|5h-:mI
= hﬁp..n'a'www w3 urg.?ZIJIJﬂXHLSchema |nstance * n:nHamespaceschﬂmaumtmn PersunLlstxsd =<5 Persons '
file C:\Users\akova\Documents\Altova\MapForce2015\MapForceExamples\Nanonull-Branch xml—=<Person role= Dfﬂce r.1anager
"=
2 | =First=Steve=/First=
3 i «<last=Meier=/Last=
4 «/Person=
] <Person role="Accounts Receivable™s
8 i <First=Theo=/First=
7 i <last=Bone=iLast=
] «/Person=
9 <Person role="PR & Marketing Manager US">
10 | =First=-Max=/First=
11 i =Last-Nafta</Last=
12 </Person=
13 <Person role="T Manager"=
14 | =First=Valentin=/First=
15 ! <lLast-Bass<iLasts
16 «/Person=
17 <Person role="Support Engineer™=
18 i <First=Carl=(First=
19 i <last=Franken</Last=
20 «/Person=
21 «<Person role="Support Engineer”=
22 i =First=-Mark=/First=
23 i =Last-Redgreen</Last=
24 </Person=
25 </PersonList=
MultipleInputToMultipleOutputFiles.mfd
To sawe the generated output files, do one of the following:
e On the Output menu, click Save All Output Files ([= -)
e Click the Save all generated outputs ([= =il) toolbar button.
5.4.5 Example: Split One XML File into Many

This example shows you how to generate dynamically multiple XML files from a single source
XML file. The accompanying mapping for this example is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\Tut-ExpReport-dyn.mfd.

The source XML file (available in the same folder as the mapping) consists of the expense report
for a person called "Fred Landis" and contains five expense items of different types. The aim of
the example is to generate a separate XML file for each of the expense items listed below.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings

Processing Multiple Input or Output Files Dynamically 147

k

k

Person

{3} First
{3} Last
{3 Title
{} Phone
£} Email

expense-itemn (2

= bype
1 Trawvel
2 Lodging
3 Trawvel
4 Travel
5 Meal

Fred

Landis

Project Manager
123-456-73

f landizi@nanonull.com

= expto {}Date {3} Travel {} Lodging
Developtnent 2002-01-02| = Trawvel Trawv-cost=237 88
Sales 2003-01-01 > Lodging ||

Accounting 2003-07-07| = Trawvel Trav-cozt=1014 22
harketing 2003-02-02 = Travel Trayv-cost=2000
Sales 2003-03-03

mf-ExpReport.xml (as shown in XMLSpy Grid view)

As the t ype attribute defines the specific expense item type, this is the item we will use to split
up the source file. To achieve the goal of this example, do the following:

1. Insert a concat function (you can drag it from the core | string functions library of the
Libraries pane).

2. Insert a constant (on the Insert menu, click Constant) and enter ".xml" as its value.

3. Insert the aut o- nunber function (you can drag it from the core | generator functions
library of the Libraries pane).

1. Click the File (Filel) or File/String (File/String|) putton of the target component and
select Use Dynamic File Names Supplied by Mapping.

4. Create the connections as shown below and then click the Output tab to see the result of
the mapping.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

148 Designing Mappings

Processing Multiple Input or Output Files Dynamically

fi) auto-number
iglobal-id

gobakd |

irstart-with

| ——

ivincrement

| e r——

resulti-

iprestart-on-change

_,-EI concat

_".fﬂlue1 =

& mi-ExpReport
B {] File: mi-ExpReport.xm|

It
resulthe £ ExpReport-Target

=0 expense-report =xpe
....... —_— detﬂlled

....... = currency

B {}Person

{}First

{) Title

{} Phone

{3} Email

B {} expense-item
....... = type

....... = expto

& {} Meal

& {} Lodging

& £} Travel

& {3} Parking

& {} Entertainment
& {3} Misc

- {} description

Tut-ExpReport-dyn.mfd (MapForce Basic Edition)

= ('] File: «:u:l',rnamic:- m
“F{¥Company F
B Emplcq.ree

{} Title

{2} Email

{} DomesticDailyRate
{} ForeignDailyRate
{} Expense-detail

A {} expense-item

....... = Currency
....... e B”I_to

& {} Travel

& {} Accommaodation
& {} Entertainment
H{} Misc

& {} description

& {} CashAdvance

& {) Exec

Note that the resulting output files are named dynamically as follows:

¢ The t ype attribute supplies the first part of the file name (for example, "Travel").
¢ The aut o- nunber function supplies the sequential number of the file (for example,

"Travell", "Travel2", and so on).

¢ The constant supplies the file extension, which is ".xml", thus "Travell.xml" is the file

name of the first file.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Supplying Parameters to the Mapping

149

5.5

5.5.1

Supplying Parameters to the Mapping

You can pass simple values to a mapping by means of simple input components. On the mapping
area, simple input components play the role of a source component which has a simple data type
(for example, string, integer, and so on) instead of a structure of items and sequences.
Consequently, you can create a simple input component instead of (or in addition to) a file-based
source component.In the generated XSLT file, simple input components correspond to stylesheet
parameters.

You can create each simple input component (or parameter) as optional or mandatory (see Input
Component Settings). If necessary, you can also create default values for the mapping input

parameters (see Creating a Default Input Value). This enables you to safely run the mapping even
if you do not explicitly supply a parameter value at mapping execution time.

Input parameters added on the main mapping area should not be confused with input parameters
in user-defined functions (see User-defined functions). There are some similarities and differences
between the two, as follows.

Input parameters on the mapping Input parameters of user-defined functions

Added from Function | Insert Input menu. Added from Function | Insert Input menu.

Can hawe simple data types (string, integer, Can hawve simple as well as complex data

and so on). types.

Applicable to the entire mapping. Applicable only in the context of the function
in which they were defined.

When you create a reversed mapping (using the menu command Tools | Create Reversed
Mapping), a simple input component becomes a simple output component.

For an example, see Example: Using File Names as Mapping Parameters.

Adding Simple Input Components

To add a simple input to the mapping:

1. Make sure that the mapping window displays the main mapping (not a user-defined
function).

2. On the Function menu, click Input.

3. Enter a name and select the data type required for this input. If the input should be
treated as a mandatory mapping parameter, select the Input is required check box. For
a complete list of settings, see Simple Input Component Settings.

Note: The parameter name can contain only letters, digits, and underscores; no other
characters are allowed. This makes it possible for a mapping to work across all code
generation languages.

4. Click OK.

© 2018 Altova GmbH Altova MapForce 2018 Basic Ed

ition

150 Designing Mappings

Supplying Parameters to the Mapping

r

@ Create Input @

Mame: input]

Datatype: string -
Input is required

Design-time Execution
[specify value

Value:

OK] I Cancel

Create Input dialog box

You can change later any of the settings defined here (see Simple Input Component Settings).

5.5.2

Simple Input Component Settings

You can define the settings applicable to a simple input component when adding it to the mapping
area. You can also change the settings at a later time, from the Edit Input dialog box.

F

(¥ Edit Input =

Mame: [nputFileMame

Datatype: string -
[tnput is required

Design-time Execution
[specify value

Value:

OK] I Cancel

o

Edit Input dialog box

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Supplying Parameters to the Mapping 151

To open the Edit Input dialog box, do one of the following:
e Select the component, and, on the Component menu, click Properties.
e Double-click the component.
¢ Right-click the component, and then click Properties.

The available settings are as follows.

Name Enter a descriptive name for the input parameter corresponding to this
component. At mapping execution time, the value entered in this text box
becomes the name of the parameter supplied to the mapping; therefore, no
spaces or special characters are allowed.

Datatype By default, any input parameter is treated as string data type. If the
parameter should have a different data type, select the respective value from
the list. When the mapping is executed, MapForce casts the input
parameter to the data type selected here.

Input is required | When enabled, this setting makes the input parameter mandatory (that is,
the mapping cannot be executed unless you supply a parameter value).

Disable this check box if you want to specify a default value for the input
parameter (see Creating a Default Input Value).

Specify value This setting is applicable only if you execute the mapping during design
time, by clicking the Preview tab. It allows you to enter directly in the
component the value to use as mapping input.

Value This setting is applicable only if you execute the mapping during design
time, by clicking the Preview tab. To enter a value to be used by
MapForce as mapping input, select the Specify Value check box, and then
type the required value.

5.5.3 Creating a Default Input Value

After you add an Input component to the mapping area, notice the default item to the left of the
component.

wE| input
§1.>|:I efault|input] N

Simple input component

The default item enables you to connect an optional default value to this input component, as
follows:

1. Add a constant component (on the Insert menu, click Constant), and then connect it to
the default item of the input component.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

152

Designing Mappings

Supplying Parameters to the Mapping

5.5.4

Note:

| C= |".ﬂ~rtnva_Hierar|:hical...."*

wi| InpLtFileMame
Seclefautt InputFilenlame i

| Aftova_Hierarchical

(= E| File: =dynamic=
; El {} Alova [];

Double click the input component and make sure that the Input is required check box is
disabled. When you create a default input value, this setting is not meaningful and
causes mapping validation warnings.

-

(*) Edit Input

-

[l

Mame: U= Ski=
Datatype: string
Input is required

Design-time Execution
Spedfy value

Value;

o] |

Cancel

Click OK.

If you click the Specify value check box and enter a value in the adjacent box, the
entered value takes precedence over the default value when you preview the mapping (that
is, at design-time execution). However, the same value has no effect in the generated
code.

Example: Using File Names as Mapping Parameters

This example walks you through the steps required to execute a mapping that takes input
parameters at runtime. The mapping design file used in this example is available at the following
path: <Documents>\Altova\MapForce2018\MapForceExamples
\FileNamesAsParameters.mfd.

The mapping uses two input components: InputFileName and OutputFileName. These supply
the input file name (and the output file name, respectively) of the source and target XML file. For
this reason, they are connected to the File: <dynamic> item.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Supplying Parameters to the Mapping 153

| C=i |"Artuva_Hierarchical...."* | C= |"AItuva_Hierarchical_..."#

»Z| InputFileName »£| OutputFileName

gdefault| QutputFileName i
| | £ Attova_Hierarchical |

defau It| InputFileName i

| Atova_Hierarchical

| 4= {'] File: <dynamic> File &] File: <dynamic= File
~E{} Altova ‘2 {} Altova
o {} PrimaryKey B oo} PrimaryKey

i { ¥ Hame | Ca |"Drganizatiun Chart"*

-1 {} Office B 3 {}Office
o {} PrimaryKey I - {} PrimaryKey
- {} ForeignKey B - {)Foreignkey
- {} Desc 9 - {} Desc
- ¥ EMail B - {YEMail
- {} Established B - {}Established
-4} Fax B - ¥ Fax
- {} Name B - {}Name
- {} Phone I {}Phone
A {} Address -H {} Address
- {} Department -B {} Department

FileNamesAsParameters.mfd (MapForce Basic Edition)

Both the InputFileName and OutputFileName components are simple input components in the
mapping, so you can supply them as input parameters when executing the mapping. The
following sections illustrate how to do this in the following transformation languages:

e XSLT 2.0, using RaptorXML Senver

XSLT 2.0

If you generate code in XSLT 1.0 or XSLT 2.0, the input parameters are written to the
DoTransform.bat batch file, for execution by RaptorXML Sener (see Automation with RaptorXML
Server). To use a different input (or output) file, you can either pass the required parameters at
command line, when calling the DoTransform.bat file, or edit the latter to include the required
parameters.

To supply a custom input parameter in the DoTransform.bat file:

1. Generate the XSLT 2.0 code (File | Generate Code In | XSLT 2.0) from the
FileNamesAsParameters.mfd sample.

2. Copy the Altova_Hierarchical.xml file from the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory to the directory where you generated the XSLT 2.0 code
(in this example, c:\codegen\examples\xslt2\). This file will act as custom parameter.

3. Edit DoTransform.bat to include the custom input parameter either before or after % (as
highlighted below). Note that the parameter value is enclosed with single quotes. The
available input parameters are listed in the rem (Remark) section.

@-cho off

Rapt or XML xslt --xslt-version=2 --

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

154 Designing Mappings Supplying Parameters to the Mapping

i nput =" Mappi ngMapToAl t ova_Hi erarchical . xsl t" --
par an¥l nput Fi | eNane: ' Al tova_Hi erarchical . xm ' %
" Mappi ngMapToAl t ova_H erarchical . xslt"

rem - - par anvl nput Fi | eNane:

rem - - par am=Qut put Fi | eNare:

| F ERRORLEVEL 1 EXI T/ B Y%ERRORLEVEL%

When you run the DoTransform.bat file, RaptorXML Server completes the transformation using
Altova_Hierarchical.xml as input parameter.

EA Command Prompt EI@

C:=“codegensexamplessxzs1t2>DoTransform_bat
file://7C:/codegensexanplesxslt2-MappingMapToAltova_Hierarchical.xslt: result

OK" xslt—main—output—-files="" xslt—additional-output—files="file:/~~C:/codegene
xamples xslt2/Altova_Hierarchical _output.xml"

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Returning String Values from a Mapping 155

5.6

Returning String Values from a Mapping

Use a simple output component when you need to return a string value from the mapping. On the
mapping area, simple output components play the role of a target component which has a string
data type instead of a structure of items and sequences. Consequently, you can create a simple
output component instead of (or in addition to) a file-based target component. For example, you
can use a simple output component to quickly test and preview the output of a function (see
Example: Testing Function Output).

Simple output components should not be confused with output parameters of user-defined
functions (see User-defined functions). There are some similarities and differences between the

two, as follows.

Output components Output parameters of user-defined
functions

Added from Function | Insert Output menu. Added from Function | Insert Output menu.

Hawe "string" as data type. Can have simple as well as complex data
types.

Applicable to the entire mapping. Applicable only in the context of the function
in which they were defined.

If necessary, you can add multiple simple output components to a mapping. You can also use
simple output components in combination with file-based target components. When your mapping
contains multiple target components, you can preview the data returned by a particular
component by clicking the Preview (|E) button in the component title bar, and then clicking
the Output tab on the Mapping window.

You can use simple output components as follows in MapForce transformation languages:

Language How it works

XSLT 1.0, XSLT 2.0 If the generated XSLT files, a simple output components defined
in the mapping becomes the output of the XSLT transformation.

If you are using RaptorXML Sener, you can instruct RaptorXML
Server to write the mapping output to the file passed as value to
the - - out put parameter.

To write the output to a file, add or edit to the - - out put
parameter in the DoTransform.bat file. For example, the
following DoTransform.bat file has been edited to write the
mapping output to the Output.txt file (see highlighted text).

Rapt or XML xslt --xslt-version=2 --
i nput =" Mappi ngMapToResul t 1. xslt" --
out put="CQut put.txt" % "Mappi ngMapToResul t1. xslt"

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

156 Designing Mappings Returning String Values from a Mapping

If an - - out put parameter is not defined, the mapping output will
be written to the standard output stream (stdout) when the
mapping is executed.

When you create a reversed mapping (using the menu command Tools | Create Reversed
Mapping), the simple output component becomes a simple input component.

5.6.1 Adding Simple Output Components

To add an Output component to the mapping area:

1. Make sure that the mapping window displays the main mapping (not a user-defined
function).

2. On the Function menu, click Output.
3. Enter a name for the component.
4. Click OK.

' =

@ Create Output @

Mame: result

Datatype: | string

K] | Cancel

Create Output dialog box

You can change the component name at any time later, in one of the following ways:

e Select the component, and, on the Component menu, click Properties.
e Double-click the component header.
¢ Right-click the component header, and then click Properties.

5.6.2 Example: Previewing Function Output

This example illustrates how to preview the output returned by MapForce functions with the help of
simple output components. You will make the most of this example if you already have a basic
understanding of functions in general, and of MapForce functions in particular. If you are new to
MapForce functions, you may want to refer to Using Functions before continuing.

Our aim is to add a number of functions to the mapping area, and learn how to preview their output
with the help of simple output components. In particular, the example uses a few simple functions
available in the core library. Here is a summary of their usage:

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Returning String Values from a Mapping 157

string-1ength Returns the number of characters in the string provided as argument. For
example, if you pass to this function the value "Lorem ipsum"”, the result is
"11", since this is the number of characters that the text "Lorem ipsum"
takes.

substring-after Returns the part of the string that occurs after the separator provided as
argument. For example, if you pass to this function the value "Lorem
ipsum” and the space character (" "), the result is "ipsum".

substri ng- Returns the part of the string that occurs before the separator provided as
bef ore argument. For example, if you pass to this function the value "Lorem
ipsum" and the space character (" "), the result is "Lorem".

To test each of these functions against a custom text value ("Lorem ipsum”, in this example),
follow the steps below:

1. Add a constant with the value "Lorem ipsum" to the mapping area (use the menu
command Insert | Constant). The constant will be the input parameter for each of the
functions to be tested.

2. Addthe string-1ength, substring-after, and subst ri ng- bef or e functions to the
mapping area, by dragging them to the mapping area from the core library, string
functions section.

3. Add a constant with an empty space (" ") as value. This will be the separator parameter
required by the substring-after and substri ng- bef or e functions.

4. Add three simple output components (use the menu command Function | Insert
Output). In this example, they have been named Resultl, Result2, and Result3, although
you can give them another title.

5. Connect the components as illustrated below.

F string-length i Result! <&
string resuft Re=zult1

| Cz |"L|:| rem ipsu m"*

) substring-after

imResultz G
result J
Result2
#, substring-before
iw Result3 [&5
result
Result3

Testing function output with simple output components

As shown in the sample abowve, the "Lorem ipsum" string acts as input parameter to each of the
string-1ength, substring-after, and substri ng- bef or e functions. In addition to this, the
substring-after and substri ng- bef or e functions take a space value as second input
parameter. The Resultl, Result2, and Result3 components can be used to preview the result of
each function.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

158 Designing Mappings Returning String Values from a Mapping

To preview the output of any function

¢ Click the Preview (@) button in the component title bar, and then click the Output tab
on the Mapping window.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Using Variables 159

5.7 Using Variables

Variables are a special type of component used to store an intermediate mapping result for further
processing. They might be necessary in situations where you want to temporarily “remember"
some data on the mapping and process it in some way (for example, filter it, or apply some
functions) before it is copied to the target component.

Variables can be of simple type (for example, string, integer, boolean, etc) or complex type (a tree
structure).

Wﬂ_
T = B compute-when

]
]
[;}_» value [!}

Simple variable

You can create a variable of complex type by supplying an XML schema which expresses the
structure of the variable. If the schema defines any elements globally, you can choose which one
should become the root node of the variable structure. Note that a variable does not have any
associated instance XML file; the data of the variable is computed at mapping runtime.

T——
ok " compute-when |
= {} books
[i> = {} book E
e = i
ﬁ; b {} author [-1'>
b o) title i
i {¥ category
b 3 yeaR d>

Complex variable created from an XML schema

In the images abowe, you may notice that each variable has an item called conput e- when.
Connecting this item is optional; this enables you to control how the variable value should be
computed on the mapping (see Changing the Context and Scope of Variables).

When necessary, items of a variable structure can be duplicated to accept data from more than
one source connection, similar to how this is done for standard components (see Duplicating

Input). This does not apply, however, to variables created from database tables.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

160

Designing Mappings

Using Variables

5.7.1

lvar;

]
#“él” compute-when |
wE value [L
E»E value (2) |
vivalue (3) |

Simple variable with duplicated inputs

One of the most important things about variables is that they are sequences, and can be used to
create sequences. The term "sequence" here means a list of zero or more items (see also
Mapping Rules and Strategies). This makes it possible for a variable to process multiple items for
the duration of the mapping lifetime. If, however, you want to assign a value once to a variable and
keep it the same for the rest of the mapping, it is also possible (see Changing the Context and

Scope of Variables).

To some extent, variables can be compared to intermediate components of a chained mapping
(see Chained Mappings). Howeer, they are more flexible and convenient if you don't need to
produce intermediary files at each stage in the mapping. The following table outlines differences

between variables and chained mappings.

Chained mappings

Variables

Chained mappings involve two totally
independent steps. For example, let's assume
a mapping that has three components A, B,
and C. Running the mapping involves two
stages: executing the mapping from A to B,
and then executing the mapping from B to C.

While the mapping is executed, variables are
evaluated according to their context and
scope. Their context and scope can be
influenced (see Changing the Context and
Scope of Variables).

When the mapping is executed, intermediate
results are stored externally in files.

When the mapping is executed, intermediate
results are stored internally. No external files
containing a variable's results are produced.

The intermediate result can be previewed
using the preview [& pbutton.

A variable's result cannot be previewed, since
it is computed at mapping runtime.

Note:

Adding Variables

Variables are not supported if the mapping transformation language is set to XSLT 1.0.

There are several ways to add variables to a mapping, as shown below.

Using a menu or toolbar command

1. Onthe Insert menu, click Variable. (Alternatively, click the Variable toolbar

button).

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Using Variables 161

{(¥) Create Variable x

Type
() simple type (integer, string, etc.)

Datatype: string e

(®)Complex type (iree structure);

Structure: | | Choose Edit

Root: | | Chopose

Save structure file path relative to MFD file

QK Cancel

2. Select the type of variable you want to insert (simple or complex type).
If you select "Complex type", there are a few additional steps:

3. Click Choose to select the source which should provide the structure of the variable (for
example, an XML Schema).

{(¥) Create Variable et

Choose an existing structure or @ new structure type to insert:

Insert an existing structure as a parameter:

Filename / Connection Path / De=scription

(®) Insert a new structure of the one of the following types:

@ XML Schema Structure
[0l Database Structure

0l EDI Structure

El| FlexText Structure

Cancel

Y’

4. When prompted, specify a root item of the structure. In case of XML Schemas, the root

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

162 Designing Mappings Using Variables

item can be any element defined globally. In case of databases, the root item can be any
table.

{(¥) Choose Root Item x

Please choose a root item for the parameter:

{} book
{} books
E of bookType

Show annotations

[]show types Cancel

Using a context menu

e Right-click the output connector of a component (in this example, "Article") and select
Create Variable from Source node.

E Y i 21
=1 £ File: Articles.xml File]
“E1{} Articles
B2 {} Article
e d ¥ Humber [Delete All Qutgoing Child Connections
v {3 Name [Create Variable from Source Mode

- {} SinglePrice /l]f

This creates a complex variable using the same source schema and automatically
connects all items with a Copy-All connection.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Using Variables 163

| Aricles
EI £ File: Articles.xml Fie] fam — = — ™
“E{} Articles ? "5 compute-when '
“E1{} Article = {} Article IL
- {} Number - {¥ Humber LJF
....... {}Name £} Name
... {} SinglePrice T ------- {} singlePrice HD:

¢ Right-click the input connector of a target component and select Create Variable for
Target Node. This creates a complex variable using the same schema as the target, and
automatically connects all items with a Copy-All connection.

e Right-click the output connector of a filter component (on-true/on-false) and select Create
Variable from Source Node. This creates a complex component using the source
schema, and automatically uses the item linked to the filter input as the root element of

the intermediate component.

5.7.2 Changing the Context and Scope of Variables

Every variable has a conput e- when input item which allows you to control the scope of the
variable; in other words, when and how often the variable value is computed when the mapping is
executed. You do not have to connect this input in many cases, but it can be essential to override
the default context, or to optimize the mapping performance.

lvmm _

' compute-when

]
]
[E» value [L

The "compute-when" item

In the following text, a subtree means the set of an item/node in a target component and all of its
descendants, for example, a <Per son> element with its <Fi r st Nane> and <Last Nane> child

elements.

A variable value means the data that is available at the output side of the variable component.

e For simple variables, it is a sequence of atomic values that have the datatype specified in

the component properties.
e For complex variables, it is a sequence of root nodes (of the type specified in the

component properties), each one including all its descendant nodes.

The sequence of atomic values (or nodes) may contain one or even zero elements. This depends
on what is connected to the input side of the variable, and to any parent items in the source and

target components.

"Compute-when" is not connected (default)

If the conput e- when input item is not connected (to an output node of a source component), the

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

164

Designing Mappings Using Variables

variable value is computed whenever it is first used in a target subtree (either directly via a
connector from the variable component to a node in the target component, or indirectly via
functions). The same variable value is also used for all target child nodes inside the subtree.

The actual variable value depends on any connections between parent items of the source and
target components.

This default behavior is the same as that of complex outputs of regular user-defined functions and
Web senice function calls.

If the variable output is connected to multiple unrelated target nodes, the variable value is
computed separately for each of them. This can produce different results in each case, because
different parent connections influence the context in which the variable's value is evaluated.

"Compute-when" is connected

By connecting an output connector of a source component to conput e- when, the variable is
computed whenever that source item is first used in a target subtree.

The variable actually acts as if it were a child item of the item connected to conput e- when. This
makes it possible to bind the variable to a specific source item. That is, at runtime the variable is
re-evaluated whenever a new item is read from the sequence in the source component. This
relates to the general rule governing connections in MapForce: "for each source item, create one
target item". With conput e- when, it means "for each source item, compute the variable

value" (see Mapping Rules and Strategies).

"Compute-once"

If necessary, you can choose to compute the variable value once before each of the target
components, making the variable essentially a global constant for the rest of the mapping. To do
this, right-click the conput e- when item and select Compute Once from the context menu:

_

=] 1

e compute-whe

[># value Compute Once
Delete Connections »
Create Variable Component k
Component r

When you change the scope of a variable to conput e- when=once, the input connector is removed
from the conput e- when item, since such a variable is only evaluated once.

In a user-defined function, the conput e- when=once variable is evaluated each time the function is
called, before the actual function result is evaluated.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Using Variables 165

Parent-context

Adding a parent-context may be necessary, for example, if your mapping uses multiple filters and
you need an additional parent node to iterate over, see also Owerriding the Mapping Context.

To add a parent-context to a variable, right-click the root node (in this example, "PersonList") and
select Add Parent Context from the context menu. This adds a new node, par ent - cont ext , to
the existing hierarchy.

e

[5 compite-when

B = parent-context
E| {}PersonList Lizt of Perzons
E E| {}Person
o =role
q; -{}First
Ii -{}Last

L O ¢

The parent context adds a virtual "parent” node to the hierarchy within the component. This allows
you to iterate over an additional node in the same, or in a different source component.

5.7.3 Example: Grouping and Subgrouping Records

The mapping illustrated in this example is available as
DividePersonsByDepartmentintoGroups.mfd in the <Documents>\Altova\MapForce2018
\MapForceExamples\ folder.

This mapping processes an XML file that contains employee records of a fictitious company. The
company has two offices: "Nanonull, Inc." and "Nanonull Partners, Inc". Each office has seeral
departments (for example, "IT", "Marketing", and so on), and each department has one or more
employees. The goal of the mapping is to create groups of maximum three people from each
department, regardless of the office. The size of each group is three by default; however, it should
be easy to change if necessary. Each group must be saved as a separate XML file, with the name
having the format "<Department Name>_GroupN" (for example, Marketing_Groupl.xml,
Marketing_Group2.xml, and so on).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

166 Designing Mappings

Using Variables

i group-by

‘E{)Artova
- {¥ PrimaryHey

- {} EMail

i {} Established
i () Fax

o {} Hame

i {} Phone

{} Address

-1 {3 Department

fnndesa’rnws‘ groupsh
brey =T

fiy aroup-into-biocks

pnodes/rows
- groupsh
Fhlock-size

broce resut

| fi concat

paluel

Pvalue)|

pvalued

bvalued)|

resultiy

& B computs-when

[™= parent-context
;E| 4% parent-context

143 Department

- { ¥ PrimaryKey

() ForeignKey
oo {} Name
Person
¥ PrimaryKey
} ForeignKey
¥ EMail

PersonList |

i { ¥ First
{}Last
- {} Details

i {} PrimaryKey
i {} Foreignkey
i {) Name
‘@ {) Person
- {¥ PrimaryHey
i~ {} ForeignKey
- {} EMail
- {}First
-~ {}Last
i+ {} PhoneExt
-} Title

- {}First
{}Last
' {} PhoneExt
e () Title

|
|
[i> o= ﬂ File: <dynamic= File/String
i ‘2 {} PersonList List of Persons
‘2 {}Person
= role
3
b
i
)

DividePersonsByDepartmentintoGroups.mfd

As illustrated abowe, in order to achieve the mapping goal, a complex variable was added to the
mapping, and a few other component types (primarily functions). The variable has the same
structure as a Depart ment item in the source XML. If you right-click the variable in order to view
its properties, you will notice that it uses the same XML schema as the source component, and
has Depart ment as root element. Importantly, the variable has two nested par ent - cont ext
items, which ensure that the variable is computed first in the context of each department, and
then in the context of each group within each department (see also Changing the Context and
Scope of Variables).

Initially, the mapping iterates through all departments in order to obtain the name of each
department (this will be subsequently required to create the file name corresponding to each
group). This is achieved by connecting the gr oup- by function to the Depart nent source item, and
by supplying the department name as grouping key.

Next, within the context of each department, a second grouping takes place. Namely, the
mapping calls the gr oup-i nt o- bl ocks function in order to create the required groups of people.
The size of each group is supplied by a simple input component which has a default value of "3".
The default value is supplied by a constant. In this example, in order to change the size of each
group, one can easily modify the constant value as required. Howewer, the "size" input component
can also be modified so that, if the mapping is run by generated code or with MapForce Sener,
the size of each group could be conwveniently supplied as a parameter to the mapping. For more
information, see Supplying Parameters to the Mapping.

Next, the value of the variable is supplied to the target PersonList XML component. The file name
for each created group was computed by concatenating the following parts, with the help of the
concat function:

=

The name of each department
The string "_Group"
3. The number of the group in the current sequence (for example, "1" if this is the first group

N

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Using Variables 167

for this department)
4. The string ".xml"

The result of this concatenation is stored in the Nane item of the variable, and then supplied as a
dynamic file name to the target component. This causes a new file name to be created for each
received value. In this example, the variable computes eight groups in total, so eight output files

are created when the mapping runs, as required. For more information about this technique, see
Processing Multiple Input or Output Files Dynamically.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

168 Designing Mappings Sorting Data

5.8 Sorting Data

To sort input data based on a specific sort key, use a Sort component. The Sort component
supports the following target languages: XSLT2, XQuery, and Built-in.

To add a sort component to the mapping, do one of the following:

¢ Right-click an existing connection, and select Insert Sort: Nodes/Rows from the context
menu. This inserts the Sort component and automatically connects it to the source and
target components. For example, in the mapping below, the Sort component was inserted
between a variable and an XML component. The only thing that remains to be connected
manually is the sorting key (the field by which you want to sort).

& PersonList

[wir = T T T A2 Person EIE| File: (default) FIIE-'Strlng

| El {} PersonlList L Persans
result 2 {} Person

....... = role

i B compute-when

nodes/rows
key |A=Z|

= {} Person

i = role

e Onthe Insert menu, click Sort (alternatively, click the Sort L_2_] toolbar button). This
inserts the Sort component in its "unconnected" form.

AZ zor

odesirowws
result
ey |ADE| I:|>

Ik

As soon as a connection is made to the source component, the title bar name changes
to that of the item connected to the nodes/ r ows item.
To define the item by which you want to sort:

e Connect the item by which you want to sort to the key parameter of the Sort component.
For example, in the mapping below, the Per son nodes/rows are sorted by the field Last .

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Sorting Data

169

& PersonList

[~ = 1 A2 Person El {'] File: (default) File/String
t» B compute-when | . +E1) Personlist List of Persons
& {3 Person key 1.A=">2] result E| {} Person
....... = role = role
: {} First R {} First
........ {} Last {} Last
:I {}Detaits ®»—~ e {} Details

To change the sort order:

e Click the A=*Z] jcon in the Sort component. It changes to %A to show that the sort
order has been reversed.
To sort input data consisting of simple type items:

e Connect the item to both the nodes/ r ows and key parameters of the sort component. In
the mapping below, the element of simple type fi rst is being sorted.

&| BranchOffices
E| E| File: Branch(ffices.xmil
E| {}BranchOffices restrict

------- {}Hame restriction of =

3 {}Office restriction of
------- { }YHame restriction of
------- { ¥EMail restriction of
------- { }Fax restriction of x=
------- {}Phone restriction of
------- {}Location x=string |
0 {3} Address restrictior
....... {eity restriction of
------- {}etate restriction o
------- {}street restriction
------- {}zip restriction of
E {}Contact restriction
....... {}first = =tring
------- {Hast x==tring

£
1 [File: (default) =trin
El {}PersonList rezty
E_l {}Person restrict
HEZ fir st o =role s string
ndesow s - ------- { }First == string
e € ¥Last wstring

{}Details = =tr

To sort strings using language-specific rules:

¢ Double-click the header of the Sort component to open the Sort Properties dialog box.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

170 Designing Mappings Sorting Data

(%) Sort Properties >

Select the collation you want to use for string sorting.

(®) Linicode codepoint collation;

() Language-spedific collation

Locale

Language:

Country:

Corcel

Unicode codepoint collation: This (default) option compares/orders strings based on code point
values. Code point values are integers that have been assigned to abstract characters in the
Universal Character Set adopted by the Unicode Consortium. This option allows sorting across

many languages and scripts.

Language-specific collation: This option allows you to define the specific language and country
variant you want to sort by. This option is supported when using the BUILT-IN execution engine.
For XSLT, support depends on the specific engine used to execute the code.

5.8.1 Sorting by Multiple Keys

After you add a Sort component to the mapping, one sorting key called key is created by default.

A2 zor

odesirowws

resuft
ey [ASZ]

Ik

Default Sort component

If you want to sort by multiple keys, adjust the Sort component as follows:

e Click the Add Key (=) icon to add a new key (for example, key2 in the mapping below).

e Click the Delete Key (@) icon to delete a key.
e Drop a connection onto the @ icon to add a key and also connect to it.

A mapping which illustrates sorting by multiple key is available at the following path:
<Documents>\Altova\MapForce2018\MapForceExamples\SortByMultipleKeys.mfd.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Sorting Data 171

#| OrgChart [C= [nanonull.gif

=] El File: OrgChartxxml _File/5tring
B {} OrgChart C=i [Share Rank{ & Company |
&1 £] File: (default) File/Strin

&1 {} Company
E| {} CompanyLogo
| = hiref
@) Desc i) Mame
- { ¥ Location '@ () Office
‘B {}Address 000000 e T {} Name
‘& {} Address_EU - {¥ Desc
- {¥Phone = e L {} Location
o £} Fax ‘A {} Address
- {} EMail A {} Address_EU
a {} Department = {3 Phone
{} Name #person | [e {3} Fax
R=| {',:}Person Cmm——penodesrows |0 | o {} EMail
- {} First First [given) name of person W—|] & {2 Person
- {¥ Last Last (family name of person — rkeiz EE‘ resultl.—/ {3 First
- {} Title Academic (or other) title — bleyd (A=Z]E y
-~ {}Phonebxt Phone extension fordirte— /&= ————— | @ . {} Title Academic (o it
e { ¥ EMail A " S {} PhoneExt Phone extension
£} Shares | xR o N, {} EMail
-« { } LeaveTotal . T e O { Shares
A} LeaveUsed | e I ' N, {} LeaveTotal
- {} Leavel eft e { Leavelsed
------- {} Leaveleft

SortByMultipleKeys.mfd

In the mapping abowve, Per son records are sorted by three sorting keys:

1. Shares (number of shares a person holds)
2. Last (last name)
3. First (first name)

Note that the position of the sorting key in the Sort component determines its sort priority. For
example, in the mapping abowve, records are initially sorted by the number of shares. This is the
sorting key with the highest priority. If the number of shares is the same, people are then sorted
by their last name. Finally, when multiple people have the same number of shares and the same
last name, the person's first name is taken into account.

The sort order of each key can be different. In the mapping abowe, the key Shar es has a
descending sort order (Z-A), while the other two keys have ascending sort order (A-2).

5.8.2 Sorting with Variables

In some cases, it may be necessary to add intermediate variables to the mapping in order to
achiewve the desired result. This example illustrates how to extract records from an XML file, and
sort them, with the help of intermediate variables. The example is accompanied by a mapping
sample located at the following path: <Documents>\Altova\MapForce2018
\MapForceExamples\Altova_Hierarchical_Sort.mfd.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

172 Designing Mappings Sorting Data

| | Attova_Hierarchical
= L 1File: Altova_Hierarchicall>
B () Altova
o { YPTIMArYKey
i { Y llame
‘B {}office
e { Y Primaryey
- { }ForeignKey
- {}Dese
. { YEMal
- { yEstablished
- { }Fax
- }Hame
- { }Phone
B {}Address
- { yPrimaryKey
- { }ForeignKey
- { }state
- {}street
(}Zip
B {¥Department
- { yPrimaryKey
- { }ForeignKey
- { lame
B {}Person
o {}PrimaryKey
- {}ForeignKey
- { YEMail
- {}First
~{}Last
- {}PhoneExt
{3 Title

i concat

;'value‘l =

pyalue? ()

= compte-when
Bl {}Person &2 Person | | Personlist
£ []File: (defautt)
‘B {¥PersonList L

‘B {}Person
- =role

- { }First
- {¥Last
i { ¥ Details

bralues |

pyalued =)

=role prindestows
{}First Bhey (A2
{}Last

{}Details
- - 4

Altova_Hierarchical_Sort.mfd

This mapping reads data from a source XML file called Altova_Hierarchical.xml and writes it to
a target XML file. As shown abowe, the source XML contains information about a fictitious
company. The company is divided into offices. Offices are sub-divided into departments, and
departments are further divided into people.

The target XML component, Per sonLi st , contains a list of Per son records. The Det ai | s item is
meant to store information about the office and department where the person belongs.

The aim is to extract all persons from the source XML and sort them alphabetically by last name.
Also, the office and department hame where each person belongs must be written to the Det ai | s
item.

To achiewe this goal, this example makes use of the following component types:

1. The concat function. In this mapping, this function returns a string in the format
O fice(Departnent). It takes as input the office name, the department name, and two
constants which supply the start and end brackets. See also Working with Functions.

2. An intermediate variable. The role of the variable is to bring all data relevant to a person
into the same mapping context. The variable causes the mapping to look up the
department and office of each person, in the context of each person. To put it differently,
the variable "remembers" the office and department name to which a person belongs.
Without the variable, the context would be incorrect, and the mapping would produce

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Sorting Data 173

unwanted output (for more information about how a mapping is executed, see Mapping
Rules and Strategies). Notice that the variable replicates the structure of the target XML
file (it uses the same XML schema). This makes it possible to connect the sort result to
the target, through a Copy-All connection. See also Using Variables and Copy-All
Connections.

3. A Sort component, which performs the actual sorting. Notice that the key input of the
Sort component is connected to the Last item of the variable, which sorts all person
records by their last name.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

174

Designing Mappings Filters and Conditions

5.9

Filters and Conditions

When you need to filter data, or get a value conditionally, you can use one of the following
component types:

¢ Filter: Nodes/Rows (v)
* |f-Else Condition (2

You can add these components to the mapping either from the Insert menu, or from the Insert
Component toolbar. Importantly, each of the components above has specific behavior and
requirements. The differences are explained in the following sections.

Filtering nodes or rows
When you need to filter data, including XML nodes, use a Filter Nodes/Rows component. The

Filter Nodes/Rows component enables you to retrieve a subset of nodes from a larger set of
data, based on a true or false condition. Its structure on the mapping area reflects this:

= fitter
[:|>n|:| delrow| on-tru e[:f
¢buu| UHJEBE¢

In the structure above, the condition connected to bool determines whether the connected node/
row goes to the on-true or on-false output. Namely, if the condition is true, the node/row will be
redirected the on-true output. Conwversely, if the condition is false, the node/row will be
redirected to the on-false output.

When your mapping needs to consume only items that meet the filter condition, you can leave
the on-false output unconnected. If you need to process the items that do not meet the filter
condition, connect the on-false output to a target where such items should be redirected.

For a step-by-step mapping example, see Example: Filtering Nodes.

Returning a value conditionally

If you need to get a single value (not a node or row) conditionally, use an If-Else Condition. Note
that If-Else conditions are not suitable for filtering nodes or rows. Unlike Filter Nodes/Rows
components, an If-Else Condition returns a value of simple type (such as a string or integer).
Therefore, If-Else Conditions are only suitable for scenarios where you need to process a simple
value conditionally. For example, let's assume you have a list of average temperatures per month,
in the format:

<Tenper at ur es>
<data tenp="19.2" nonth="2010-06" />
<data tenp="22.3" nonth="2010-07" />
<data tenp="19.5" nonth="2010-08" />
<data tenp="14.2" nont hh="2010-09" />

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Filters and Conditions 175

<data tenp="7.8" nonth="2010-10" />

<data tenp="6.9" nonth="2010-11" />

<data tenp="-1.0" nonth="2010-12" />
</ Tenper at ur es>

An If-Else Condition would enable you to return, for each item in the list, the value "high" if
temperature exceeds 20 degrees Celsius, and value "low" if temperature is lower than 5 degrees
Celsius.

On the mapping, the structure of the If-Else Condition looks as follows:

_V-EI if-else
“hool

Cavalue-true resultf;

T

ETNaIue-false

If the condition connected to bool is true, then the value connected to value-true is output as
result. If the condition is false, the value connected to value-false is output as result. The data
type of result is not known in advance; it depends on the data type of the value connected to
value-true or value-false. The important thing is that it should always be a simple type (string,
integer, and so on). Connecting input values of complex type (such as nodes or rows) is not
supported by If-Else Conditions.

I-Else Conditions are extendable. This means that you can add multiple conditions to the
component, by clicking the Add (=) button. To delete a previously added condition, click the
Delete (@) the button. This feature enables you to check for multiple conditions and return a
different value for each condition, if it is true.

_'_EI if-elze

F”:buun =

walue-true

Ebuulz =

walue-true | resultf]

{%buul?} =l

§I>'.fﬂlu e-trued

§T>|:|th erwise

Expanded If-Else Conditions are evaluated from top to bottom (first conditions is checked first,
then the second one, and so on). If you want to return a value when none of the conditions are
true, connect it to otherwise.

For a step-by-step mapping example, see Example: Returning a Value Conditionally.

5.9.1 Example: Filtering Nodes

This example shows you how to filter nodes based on a true/false condition. A Filter: Nodes/
Rows (o) component is used to achieve this goal.

The mapping described in this example is available at the following path: <Documents>\Altova

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

176 Designing Mappings Filters and Conditions

\MapForce2018\MapForceExamples\MarketingExpenses.mfd.

“type="textixsl" href.."

£ ExpReport

- . - | C=i |"MarketingE 5p..."
E| [] File: ExpReport.xml File/String —..-El concat | | P
‘E {} expense-report expense-repo _— =
....... = detailed 7”‘ | Ca | Generated by Aftova ... \

& MarketingExpenses

El File: (default) File/String

{? xml-stylesheet

{? altova_sps

{comment{)

{} marketing-expenses =xper|

..... currency
....... = total-sum

-E1{} Person 2 {}Person
....... {}First |y \—I» ~-{} FullName
....... {} Last B 4 {} Title
....... {} Title ¥ 3 {} Phone
....... {} Phone ¥ 3 {} Email
....... {3} Email [¢ £ {}expense-item

) expomac tom |>_< = expense-item '74:' O type
o = type [_ﬁ__ﬁ_______——lb {} Date
= expto ! -nude.n’ruw| on-truehy L ") expense
....... {} Date [

------- {} expense [

As shown abowve, the mapping reads data from a source XML which contains an expense report
("ExpReport") and writes data to a target XML ("MarketingExpenses"). There are several other
components between the target and source. The most relevant component is the expense-item

filter (=), which represents the subject of this topic.

The goal of the mapping is to filter out only those expense items that belong to the Marketing
department. To achieve this goal, a filter component has been added to the mapping. (To add a
filter, click the Insert menu, and then click Filter: Nodes/Rows.)

To identify whether each expense item belongs to Marketing, this mapping looks at the value of
the "expto" attribute in the source. This attribute has the value "Marketing" whenewver the expense
is a marketing expense. For example, in the code listing below, the first and third expense item
belongs to Marketing, the second belongs to Development, and the fourth belongs to Sales:

<expense-itemtype="Meal " expto="Marketing">
<Dat e>2003- 01- 01</ Dat e>
<expense>122. 11</ expense>

</ expense-itenr

<expense-item type="Lodgi ng" expto="Devel oprent ">
<Dat e>2003- 01- 02</ Dat e>
<expense>122. 12</ expense>

</ expense-itenr

<expense-item type="Lodgi ng" expto="Marketing">
<Dat e>2003- 01- 02</ Dat e>
<expense>299. 45</ expense>

</ expense-itenr

<expense-itemtype="Entertai nment" expto="Sal es">
<Dat e>2003- 01- 02</ Dat e>
<expense>13. 22</ expense>

</ expense-itenr

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Filters and Conditions 177

5.9.2

XML input before the mapping is executed

On the mapping area, the node/row input of the filter is connected to the expense-item node in
the source component. This ensures that the filter component gets the list of nodes that it must
process.

To add the condition based on which filtering should occur, we have added the equal function
from the MapForce core library (for more information, see Working with Functions). The equal
function compares the value of the "type" attribute to a constant which has the value "Marketing".
(To add a constant, click the Insert menu, and then click Constant.)

Since we need to filter only those items that satisfy the condition, we connected only the on-true
output of the filter to the target component.

When you preview the mapping result, by clicking the Output tab, MapForce evaluates, for each
expense-item node, the condition connected to the bool input of the filter. When the condition is
true, the expense-item node is passed on to the target; otherwise, it is ignored. Consequently,
only the expense items matching the criteria are displayed in the output:

<expense-iten»

<t ype>Meal </t ype>

<Dat €>2003- 01- 01</ Dat e>

<expense>122. 11</ expense>
</ expense-itenr
<expense-iten»

<t ype>Lodgi ng</ t ype>

<Dat e>2003- 01- 02</ Dat e>

<expense>299. 45</ expense>
</ expense-itenr

XML output after the mapping is executed

Example: Returning a Value Conditionally

This example shows you how to return a simple value from a component, based on a true/false
condition. An If-Else Condition (LA) is used to achieve the goal. Note that If-Else Conditions
should not be confused with filter components. If-Else Conditions are only suitable when you
need to process simple values conditionally (string, integer, etc.). If you need to filter complex
values such as nodes, use a filter instead (see Example: Filtering Nodes).

The mapping described in this example is available at the following path: <Documents>\Altova
\MapForce2018\MapForceExamples\ClassifyTemperatures.mfd.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

178 Designing Mappings Filters and Conditions

| Ca |"Cla ssifyTemperatures...”|

| Cal |"Generﬂted by Altowa .."

i, concat

| | C=i |"Input parameters: Iu..."*—_';j;_alluﬂ

=] {] File: Temperatures.xm[>
“E{} Temperatures
‘21 {} data

& Temperatures

£| Temperatures
= E| File: (default) File/Strin
{7 altova_sps
-comment()
=comment() (2)
“B{} Temperatures

‘B {}data
: temp
maonth

= month

desc

fi if-else
<

| upper
Ca bdefauﬂ|upperl

ipotherwise

wE| lower
t= E -defﬁult| I eriy

This mapping reads data from a source XML which contains temperature data ("Temperatures")
and writes data to a target XML which conforms to the same schema. There are several other
components between the target and source, one of them being the if-else condition (highlighted in
red), which is also the subject of this topic.

The goal of the mapping is to add short description to each temperature record in the target.
Specifically, if temperature is above 20 degrees Celsius, the description should be "high". If the
temperature is below 5 degrees Celsius, the description should be "low". For all other cases, no
description should be written.

To achiewe this goal, conditional processing is required; therefore, an If-Else Condition has been
added to the mapping. (To add an I-Else Condition, click the Insert menu, and then click If-Else
Condition.) In this mapping, the If-Else Condition has been extended (with the help of the @
button) to accept two conditions: bool1 and bool2.

The conditions themselves are supplied by the great er and | ess functions, which have been
added from the MapForce core library (for more information, see Working with Functions). These
functions evaluate the values provided by two input components, called "upper" and "lower". (To
add an input component, click the Insert menu, and then click Insert Input. For more information
about input components, see Supplying Parameters to the Mapping.)

The great er and | ess functions return either true or false. The function result determines what is
written to the target instance. Namely, if the value of the "temp" attribute in the source is greater
than 20, the constant value "high" is passed to the if-else condition. If the value of the "temp"
attribute in the source is less than 5, the constant value "low" is passed on to the if-else
condition. The otherwise input is not connected. Therefore, if none of the above conditions is
met, nothing is passed to the result output connector.

Finally, the result output connector supplies this value (once for each temperature record) to the

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings

Filters and Conditions 179

"desc" attribute in the target.

When you are ready to preview the mapping result, click the Output tab. Notice that the resulting
XML output now includes the "desc" attribute, whenever the temperature is either greater than 20
or lower than 5.

<dat a
<dat a
<dat a
<dat a
<dat a
<dat a
<dat a
<dat a

tenp="-3.6" nont h="2006-01" desc="Iow'/>
tenp="-0.7" nont h="2006- 02" desc="Iow'/>
tenp="7.5" nont h="2006- 03"/ >

tenp="12. 4" nont h="2006- 04"/ >

tenp="16. 2" nont h="2006- 05"/ >

tenp="19" nont h="2006- 06"/ >

tenp="22. 7" nont h="2006- 07" desc="hi gh"/>
tenp="23. 2" nont h="2006- 08" desc="hi gh"/>

XML output after the mapping is executed

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

180 Designing Mappings Using Value-Maps

5.10 Using Value-Maps

The Value-Map component allows you to transform an input value to a different output value using
a lookup table. This is useful for converting different enumeration types. The component only has
one input and output item.

Note: if you want to retrieve/filter data based on specific criteria, please use the Filter component,
see Filters and Conditions.

To use a Value-Map component:

1. Select the menu option Insert | Value-Map, or click the Value-Map icon o in the icon
bar.
rﬂ}value-map
'ﬂ'nput result T
2. Double click the Value-Map component to open the value map table.
i value-Map Properties x|
"W alue-t ap table to map specific values to others:
= X]
input & result &
string | =string i
*> ifnew entry)
[cherwise
ok Cancel
&

3. Click into the column headers and enter Weekday input in the first, and Day of the
Week in the second.

&9 value-Map Properties x|

Walye-tap table to map specific values to others;

= [
v
|

Weekday input & Day of the Week
string | string

*> new entry)
[Ctherwise

ok Cancel

4

4. Enter the input value that you want to transform, in the Weekday input column.
5. Enter the output value you want to transform that value to, in the Day of the week

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Using Value-Maps 181

column.

6. Simply type in the (new entry) input field to enter a new value pair.

7. Click the datatype combo box, below the column header to select the input and output
datatypes, e.g. integer and string.

&9 value-Map Properties x|
Yalue-Map table to map specific values to others:
=]
input _/ result _/
integer | |=tring =]
“ i Sunday
2 Moz
3 Tuesday
4 Wizdnesday
5 Thursday
-] Friclay
7 Saturday
*Z | (hew ehiny)
Ctherwize incarrect date
ik Cancel
5

Note: activate the Otherwise check box, and enter the value, to define an alternative
output value if the supplied values are not available on input. To pass through source data
without changing it please see Passing data through a Value-Map unchanged.

8. You can click the edit icons in the header rows to change the column names, which are
also displayed in the mapping. This will make it easier to identify the purpose of the
component in the mapping.

The Expense-valmap.mfd file in the ...\MapForceExamples\Tutorial\ folder is a sample mapping
that shows how the Value-Map can be used.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

182 Designing Mappings Using Value-Maps

& ExpReport
EI f:l File: ExpReport-item.oml =ty
B {Yexpense-report restriction

- = gletailed <= boolean
- S eurrency restriction of xs: £ ExpReport-tem

- == total-sum xsidecimal = D File: ExpReport-item-out.xml
B {}Person restriction of xzar T value-man E| {}Person restriction of x=sany T
- { ¥First restr.ict_iu:un of xs:s*tr_i Rinput | resuit {}Hame xs::?n'y'T’fFle [IZI_..1_]
—{¥Last restriction of x3:stri EI {Yexpense-item restriction o
- { ¥ Title s string [0.1 B {Hype wsanyType [0

- { }Phone res:trigti[on olf %53 fy weekday {}gleektlay :s::'uy'[rype] ..
- § ¥Email emailType [0.1] Ildatetimelweekdaylr “E {}MHotes w=anyType [0.1]
- { Yexpense-item restriction ~{¥Date xzdate [0.1]

- == type restriction of xzstri -{yexpense x=decimal [0.1]
- = @Xpto restriction of xs: st CEAYGroup wsanyType [0.1]
-~ {}Date xzdate [0.1]

w

rﬂpvalue-map
Beirpt | result i

-~ { yexpense x=decimal [0, E cortains
e
P=ubstring

What this mapping does:
Extracts the day of the week from the Date item in the data source, converts the numerical value
into text, and places it in the Weekday item of the target component i.e. Sunday, Monday etc.

e The weekday function extracts the weekday number from the Date item in the
ExpReport source file. The result of this function are integers ranging from 1 to 7.

e The Value-Map component transforms the integers into weekdays, i.e. Sunday, Monday,
etc. as shown in the graphic at the top of this section.

e [fthe output contains "Tuesday", then the corresponding output "Prepare Financial
Reports" is mapped to the Notes item in the target component.

e Clicking the Output tab displays the target XML file with the transformed data.

3 =Mame=Landiz=Mame:=
4 =gxpenze-tems
=] qtype:%ﬂeal:.l‘type:é
B Weekday=Tuesday=Meckday:=
v =PMotez=-- Prepare financial repotts -- l=Motes=
g =Date=2003-01-01 =Date=
g =gxpenzse=122 11 <fexpenses=
10 =lexpenze-tem=
11 =gxpense-tems=
12 =type=Lodging=type=
13 Weekday=Monday=Meekday=
14 =Motess= --=Miotes=
15 =Date=2003-01-14=Date=
16 =gxpenze=122.12=fexpenzes
17 =lfexpense-tem=

Note:
Placing the mouse cursor over the value map component opens a popup containing the
currently defined values.

The output from various types of logical, or string functions, can only be a boolean "true”

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings

Using Value-Maps 183

or "false" value. The value you want to test for, must thus be entered into the input field

of the value map table e.g. "true".

5.10.1 Passing datathrough a Value-Map unchanged

This section describes a mapping situation where some specific node data have to be
transformed, while the rest of the node data have to be passed on to the target node unchanged.

An example of this would be a company that changes some of the titles in a subsidiary. In this
case it might change two title designations and want to keep the rest as they currently are.

& MFCompany
&1 {]File: MFCompany.xmi

‘B {}Company Foot element

{} Address TrPE
‘A {}Person
....... =Manager

....... — pmgrammer
....... =Degree
....... { YFirst N[

& MFCompany

------- {}Last Title |Mewy Title

&1 {]File: MFCompany.xmi
E| {}Company Foot element
{} Address Tvre|
& {}Person
....... =Manager
....... — pmgrammer
....... =Degree

The obvious mapping would be the one shown abowve, which uses the value-map component to

transform the specific titles.

Clicking the Output tab shows us the result of the mapping:

33 =Perzon=

34 =First=Fred=/Firzt=

35 =Last=Landiz=Laszt=

36 =PhoneExt=9351 =/PhoneExd=

3 =Email=f landiz@nanonull.com=Email=
38 =Perzon=

39 =Perzon=

40 =First=Michelle=/Firzt=

41 =Last=-Butler=ast=

42 =Title=Code Magician=iTitle=

43 =PhoneExt=654=/FhoneExt=

44 =Email=tm landiz@nanonul com=/Email=
45 =iFerzon=

For those persons who are neither of the two types shown in the value-map component, the Title

element is deleted in the output file.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

184 Designing Mappings Using Value-Maps

&9 value-Map Properties x|

Walye-tap table to map specific values to others;

=]
Title & Hew Title &
string | =tring |
Software Enginesr i Code Magician
Support Engineer Zocial Engineering Manager

*F | Chew ehiny)
[Ctherwise

ok Cancel

4

Possible alternative:
Clicking the Otherwise check box and entering a substitute term, does make the Title node

reappear in the output file, but it now contains the same New Title for all other persons of the
company.

Solution:
Create a user-defined function containing the value-map component, and use the substitute-
missing function to supply the original data for the empty nodes.

1. Click the value-map component and select Function | Create user-defined function
from Selection.

Create User-defined Function il

Settingz

Function narme: IPESS-THTDUQH

Library name: Iuser

2. Enter a name for the function e.g. Pass-Through and click OK.

E’ﬁl uzer.Fass-Thraugh

| Title rﬂpvalue-map i Title?

El.sdefaurt Title! tT'rtIe My T'rtIe! tT'rtIeE

3. Insert a substitute-missing function from the core | node function section of the
Libraries pane, and create the connections as shown in the screen shot below.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Using Value-Maps 185

E‘El user.Pass-Through

fD» value-map

i Title Title |Mew Title
toletautt | Title i E substitute-missing
| S Title2

ode resutt
eplace-ywith T B Title2

4. Click the Output tab to see the result:

Result of the mapping:

e The two Title designations in the value-map component are transformed to New Title.
e All other Title nodes of the source file, retain their original Title data in the target file.

38 =Perzon=

29 =First=Fred=Firzt=

40 =Last=Landiz=/Laszt=

41 =Title=Program Manager=Title=

42 =PhoneE:xt=951 =/PhoneExd=

43 =Email=f landiz@nanonull.com=/Email=
44 =/Ferzan=

45 =Perzon=

46 =First=Michelle=/Firzt=

47 =Last=Butler=/Last=

43 =Title=Code Magician=/Title=

449 =PhoneExt=654=FhoneExt=

S0 =Email=m landiz@nanonull com=/Email=
o1 =/Perzon=

Why is this happening:
The value-map component evaluates the input data.

e [fthe incoming data matches one of the entries in the first column, the data is
transformed and passed on to the node parameter of substitute-missing, and then on to
Title2.

e [fthe incoming data does not match any entry in the left column, then nothing is passed
on from value-map to the node parameter i.e. this is an empty node.

When this occurs the substitute-missing function retrieves the original node and data from

the Title node, and passes it on through the replace-with parameter, and then on to
Title2.

5.10.2 Value-Map component properties

Actions:

EI Click the insert icon to insert a new row before the currently active one.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

186 Designing Mappings Using Value-Maps

ﬁl Click the delete icon to delete the currently active row.

E Click the edit icon to edit the column header.
You can also reorder lines by dragging them.

Changing the column header:

Double clicking the column header, or clicking the pencil icon, allows you to edit the column
name and change it to something more meaningful. This will make it easier to identify the purpose
of the component, as the column names are also displayed in the mapping.

& value-Map Properties x|

Yalue-Map table to map specific values to others:

e |

= x|
input _/ result _/
irteger | string =
i {Sunday
2 honday
3 Tuesday
4 Wizdnesday

Using unique Input values:
The values entered into the input column must be unique. If you enter two identical values, both
are automatically highlighted for you to enable you to correct one of them.

& value-Map Properties x|
Yalue-Map table to map specific values to others:
e |
= x|
input _/ result _/
integer | l=tring o
=1 Sunday
=1 hdoncay
3 Tuesday

Having corrected one of the values, the OK button is again enabled.

Input and output datatypes

The input and result datatypes are automatically checked when a selection is made using the
combo box. If a mismatch occurs, then the respective fields are highlighted and the OK button is
disabled. Change the datatype to one that is supported.

In the screenshot below a boolean and string have been selected.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Using Value-Maps 187

@ valuevap properies x
Yalue-Map table to map specific values to athers:
= X]
input _/ result _/
hoolean | |=tring o
1 Sunday
12 Mondsy
o B sy
14 Wizdnesday
s Thur=day
1B Friclay
a1 T Saturday
*3 | (hew ehing)
Ctherwize incorrect date
i1 Yalues mismatching their bypes detected,
I Cancel
5

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

188

Designing Mappings Mapping Node Names

5.11

Mapping Node Names

Most of the time when you create a mapping with MapForce, the goal is to read values from a
source and write values to a target. However, there might be cases when you want to access not
only the node values from the source, but also the node names. For example, you might want to
create a mapping which reads the element or attribute names (not values) from a source XML and
converts them to element or attribute values (not names) in a target XML.

Consider the following example: you have an XML file that contains a list of products. Each
product has the following format:

<pr oduct >
<i d>1</id>
<col or >r ed</ col or >
<si ze>10</si ze>

</ pr oduct >

Your goal is to convert information about each product into name-value pairs, for example:

<pr oduct >
<attribute nane="id" val ue="1" />
<attribute nanme="col or" value="red" />
<attribute nanme="size" val ue="10" />
</ pr oduct >

For such scenarios, you would need access to the node name from the mapping. With dynamic
access to node names, which the subject of this topic, you can perform data conversions such as
the one abowe.

Note: You can also perform the transformation above by using the node- name and st ati c-
node- nane core library functions. However, in this case, you need to know exactly what
element names you expect from the source, and you need to connect every single such
element manually to the target. Also, these functions might not be sufficient, for example,
when you need to filter or group nodes by name, or when you need to manipulate the data
type of the node from the mapping.

Accessing node names dynamically is possible not only when you need to read node names, but
also when you need to write them. In a standard mapping, the name of attributes or elements in a
target is always known before the mapping runs; it comes from the underlying schema of the
component. With dynamic node names, however, you can create new attributes or elements
whose name is not known before the mapping runs. Specifically, the name of the attribute or
element is supplied by the mapping itself, from any source supported by MapForce.

For dynamic access to a hode's children elements or attributes to be possible, the node
must actually have children elements or attributes, and it must not be the XML root node.

Dynamic node names are supported when you map to or from the following component types:

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Node Names 189

e XML
e CSV/FLF*

* Requires MapForce Professional or Enterprise Edition.

Dynamic node names are supported in any of the following mapping languages: Built-In*, XSLT2,
XQuery*, C#*, C++*, Java*.

* Requires MapForce Professional or Enterprise Edition.

For information about how dynamic node names work, Getting Access to Node Names. For a
step-by-step mapping example, see Example: Map Element Names to Attribute Values.

5.11.1 Getting Access to Node Names

When a node in an XML component has children nodes, you can get both the name and value of
each child node directly on the mapping. This technique is called "dynamic node names".
"Dynamic" refers to the fact that processing takes place "on the fly", during mapping runtime, and
not based on the static schema information which is known before the mapping runs. This topic
provides details on how to enable dynamic access to node names and what you can do with it.

When you read data from a source, "dynamic node names" means that you can do the following:

e Get alist of all children nodes (or attributes) of a node, as a sequence. In MapForce,
"sequence" is a list of zero or more items which you can connect to a target and create
as many items in the target as there are items in the source. So, for example, if a node
has five attributes in the source, you could create five new elements in the target, each
corresponding to an attribute.

¢ Read not only the children node values (as a standard mapping does), but also their
names.

When you write data to a target, "dynamic node names" means that you can do the following:

¢ Create new nodes using names supplied by the mapping (so-called "dynamic" names),
as opposed to names supplied by the component settings (so-called "static” names).

To illustrate dynamic node names, this topic makes use of the following XML schema:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\Products.xsd. This
schema is accompanied by a sample instance document, Products.xml. To add both the
schema and the instance file to the mapping area, select the Insert | XML Schema/File menu
command and browse for <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\Products.xml. When prompted to select a root element, choose pr oduct s.

To enable dynamic node names for the pr oduct node, right-click it and select one of the following
context menu commands:

e Show Attributes with Dynamic Name, if you want to get access to the node's
attributes

e Show Child Elements with Dynamic Name, if you want to get access to the node's
children elements

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

190 Designing Mappings

Mapping Node Names

El {} products

= D File: Products.xml File/String %

....... {}id ﬂ@
. {} colo @ﬁ
o {} size| 4 =

Add Duplicate Input Before
Add Duplicate Input After

Remove Duplicate

Mowve Up

Mowve Down
Comment/Processing Instruction

Add Mamespace
Show Attributes with Dynamic Name

Show Child Elerments with Dynamic Mame...

Write Content as COATA Section

Delete Connections

Create Variable Component

Component

Fig.1 Enabling dynamic node names (for child elements)

Note: The commands abowe are available only for nodes that have children nodes. Also, the
commands are not available for root nodes.

When you switch a node into dynamic mode, a dialog box such as the one below appears. For
the purpose of this topic, set the options as shown below; these options are further discussed in
Accessing Nodes of Specific Type.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Mapping Node Names 191

T

-

() Dynamically Named Children Settings =
LIse these settings to configure access of child elements using a generic structure,

Select types to access content of the dynamically named item:

[] of xs:anyType
ol text()

Selecting a type here wil only make its structure available for mapping.
The actual type is not checked at runtime.,

[¥]5how name test nodes to filter or create elements by fixed node name

Showe schema child elements of parent element

QK] [Cancel

Fig.2 "Dynamically Named Children Settings" dialog box

Fig. 3 illustrates how the component looks when dynamic node names are enabled for the
pr oduct node. Notice how the appearance of the component has now significantly changed.

&| products

B [] File: Products.xml File/String|
Lr B {} products
l]: B8 {} product
!

_gl'rlode-nﬂmeﬂ Reads or writes child element names, as QMame

M local-namef() ——— Reads or writes child element names, as string

Fibc teadt() —— Type cast node, reads orwrites a child element’s value
i node-name()="id"”
% 0 :| Mame test nodes, can be used to group or fikker child

{ ¥ node-name(}="color" elements by name

{ ¥ node-name()="size"

% B{*relement() = ——— Representsthe sequence of child elements

W
oy
b
-

|

I] v) size

|

Fig.3 Enabled dynamic node names (for elements)

L
L
bl
[z
e
=]
=

o

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

192

Designing Mappings Mapping Node Names

To switch the component back to standard mode, right-click the pr oduct node, and disable the
option Show Child Elements with Dynamic Name from the context menu.

The image below shows how the same component looks when dynamic access to attributes of a
node is enabled. The component was obtained by right-clicking the pr oduct element, and
selecting Show Attributes with Dynamic Name from the context menu.

&| products

B[] File: Products.xml Fike/String
[> ‘& {} products
[“E{}product
3 E=*attribute() ———— Represents the node’'s attributes

4 '.'.":B:rlﬂde-nﬂmeﬂ Reads or writes the attribute names, as OName
i local-name() ——— Reads or writes the attribute names, as string

: (}id

[{} color

[{} size

I

Fig.4 Enabled dynamic node names (for attributes)

To switch the component back to standard mode, right-click the pr oduct node, and disable the
option Show Attributes with Dynamic Name from the context menu.

As illustrated in Fig. 3 and Fig. 4, the component changes appearance when any node (in this
case, product) is switched into "dynamic node name" mode. The new appearance opens
possibilities for the following actions:

e Read or write a list of all children elements or attributes of a node. These are provided by
the el ement () orattribute() item, respectively.

e Read or write the name of each child element or attribute. The name is provided by the
node- nane() and | ocal - nane() items.

e In case of elements, read or write the value of each child element, as specific data type.
This value is provided by the type cast node (in this case, the t ext () item). Note that
only elements can have type cast nodes. Attributes are treated always as "string" type.

e Group or filter child elements by name.

The node types that you can work with in "dynamic node name" mode are described below.

element()

This node has different behaviour in a source component compared to a target component. In a
source component, it supplies the child elements of the node, as a sequence. In Fig.3,

el enent () provides a list (sequence) of all children elements of pr oduct . For example, the
sequence created from the following XML would contain three items (since there are three child
elements of pr oduct):

<pr oduct >
<id>1</id>

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Node Names 193

<col or>r ed</ col or >
<si ze>10</ si ze>
</ pr oduct >

Note that the actual name and type of each item in the sequence is provided by the node- nane()
node and the type cast node, respectively (discussed below). To understand this, imagine that
you need to transform data from a source XML into a target XML as follows:

1 |-"'y.::.: version="1.0" encoding="UTF-8"7> 1 «?xml version="1.0" encoding="UTF-8"%>

2 [l <products xmins:xsi="hitpfwww.w3.org 2 [l <products xsinoNamespaceSchemalocation="/f
3 =product> 3 =product>

4 <id=1<fid> 4 <attribute name="w" value="1"/>

5 <color=red</color= 5 <attribute name="color" value="red"/>

6 <size>10</size> 6 <attribute name="size" value="10"f>

T </product= T </product=

8 <product> 8 <product>

-] <id=2<fid=> 9 <aftribute name="id" value="2"/>
10 <color=blue</color> 10 <attribute na color” value="blue"/>
11 <size=20</zize> 11 <aftribute name="gize" value="20"/>
12 <fproduct= 12 </product=
13 & <product> 13 = <product>
14 <id=>3<hid> 14 <afttribute name="id" value="3"/>
15 <color=green<fcolors 15 <attribute name="color” value="green"/>
16 <gize=30</5ize> 16 <attribute name="size" value="30"">
17 «/product> 17 «/product>

18 </productss 18 </productss

Fig.6 Mapping XML element names to attribute values (requirement)

The mapping which would achiewe this goal looks as follows:

&| Products &| ProductvalueFairs
= E| File: Products.xml File/String = f:| File: ProductValuePairs.xml Fik
El {} products El {} products
‘3 {} product El {} product
B{*relement() ‘S| -3 {} attribute
....... 'ﬁ'node-name:] = name
i -'ﬁllocal-name:] o = yalue
-Abe text()
....... {}id
....... {} color
....... {} size

Fig. 7 Mapping XML element names to attribute values (in MapForce)

The role of el enent () here is to supply the sequence of child elements of pr oduct , while node-
nanme() and t ext () supply the actual name and value of each item in the sequence. This
mapping is accompanied by a tutorial sample and is discussed in more detail in Example: Map
Element Names to Attribute Values.

In a target component, el enent () does not create anything by itself, which is an exception to the
basic rule of mapping "for each item in the source, create one target item". The actual elements

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

194

Designing Mappings Mapping Node Names

are created by the type cast nodes (using the value of node- nane()) and by name test nodes
(using their own name).

attribute()

As shown in Fig. 4, this item enables access to all attributes of the node, at mapping runtime. In
a source component, it supplies the attributes of the connected source node, as a sequence. For
example, in the following XML, the sequence would contain two items (since pr oduct has two
attributes):

<product id="1" color="red" />

Note that the att ri but e() node supplies only the value of each attribute in the sequence, always
as string type. The name of each attribute is supplied by the node- nane() node.

In a target component, this node processes a connected sequence and creates an attribute value
for each item in the sequence. The attribute name is supplied by the node- nane() . For example,
imagine that you need to transform data from a source XML into a target XML as follows:

1 |<?xmi version="1.0" encoding="UTF-8"%>

&l [F<products xsinoMamespaceSchemalocations"i

3 <product>

4 <attribute name="" value="1">

5 <attribute name="color” value="red"/>

6 <attribute name="size" value="10"/>

T =/product=

8 <product= 1 <7xmi version="1.0" encoding="UTF-8"7>

g zattribute name="id" value="2"'> 2 [E=<products xsinoNamespaceSchemalocation="iN
10 <attribute name="color" value="blue"/> 3 <product id="1" color="red" size="10"/>
11 <attribute name="size" value="20"/> 4 <product id="2" color="blue" size="20"/>
12 b </product> 5 «product id="3" color="green” size="30"/>
13 = <product 6 - ziproducts>
14 <attribute name="d" value="3"/>
15 <attribute name="color” value="green"/>
16 <aftribute name="size" value="30"/>

17 </product>

18 - «/producis>

Fig. 8 Mapping attribute values to attribute names (requirement)

The mapping which would achieve this goal looks as follows:

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Node Names 195

8| ProductvaluePairs & Products
= E| File: ProductValuePairs.xml = E| File: Products.xml File/String
El {} products El {} products
El {} product El {} product
B {} attribute
b = name

e == yalue

Fig.9 Mapping attribute values to attribute names (in MapForce)

Note: This transformation is also possible without enabling dynamic access to a node's
attributes. Here it just illustrates how at t ri but e() works in a target component.

If you want to reconstruct this mapping, it uses the same XML components as the
ConvertProducts.mfd mapping available in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder. The only difference is that the target has now become the
source, and the source has become the target. As input data for the source component, you will
need an XML instance that actually contains attribute values, for example:

<?xm version="1.0" encodi ng="UTF-8"?>
<pr oduct s>
<pr oduct >
<attribute name="id" val ue="1"/>
<attribute name="col or" val ue="red"/>
<attribute name="size" val ue="big"/>
</ pr oduct >
</ pr oduct s>

Note that, in the code listing above, the namespace and schema declaration have been omitted,
for simplicity.

node-name()

In a source component, node- nane() supplies the name of each child element of el enent (), or
the name of each attribute of at t ri but e(), respectively. By default, the supplied name is of type
xs: QNarre. To get the name as string, use the | ocal - nane() node (see Fig. 3).

In a target component, node- nane() writes the name of each element or attribute contained in
elenent () orattribute().

local-name()

This node works in the same way as node- nane() , with the difference that the type is xs: string
instead of xs: Q\ane.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

196

Designing Mappings Mapping Node Names

5.11.2

Type cast node

In a source component, the type cast node supplies the value of each child element contained in
el enent () . The name and structure of this node depends on the type selected from the
"Dynamically Named Children Settings" dialog box (Fig. 2).

To change the type of the node, click the Change Selection (=) button and select a type from
the list of available types, including a schema wildcard (xs: any). For more information, see
Accessing nodes of specific type.

In a target component, the type cast node writes the value of each child element contained in
el ement (), as specific data type. Again, the desired data type can be selected by clicking the
Change Selection ({&) button.

Name test nodes

In a source component, name test nodes provide a way to group or filter child elements from a
source instance by name. You may need to filter child elements by name in order to ensure that
the mapping accesses the instance data using the correct type (see Accessing Nodes of Specific

Type).

In general, the name test nodes work almost like normal element nodes for reading and writing
values and subtree structures. However, because the mapping semantics is different when
dynamic access is enabled, there are some limitations. For example, you cannot concatenate the
value of two name test nodes.

On the target side, name test nodes create as many elements in the output as there are items in
the connected source sequence. Their name owverrides the value mapped to node- nane() .

If necessary, you can hide the name test nodes from the component. To do this, click the
Change Selection (ﬂ) button next to the el ement () node. Then, in the "Dynamically Named
Children Settings" dialog box (Fig. 2), clear the Show name test nodes... check box.

Accessing Nodes of Specific Type

As mentioned in the previous section, Getting Access to Node Names, you can get access to all
child elements of a node by right-clicking the node and selecting the Show Child Elements with
Dynamic Name context menu command. At mapping runtime, this causes the name of each
child element to be accessible through the node- nane() node, while the value—through a special
type cast node. In the image below, the type cast node is the t ext () node.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings

Mapping Node Names 197

& products

B [] File: Products.xml Fie/String|
s L3 { ¥ products
l] B {} product

1
B{*}element() S|
_,“__B,_ node-name()
'ﬁllml—name[]
Abe text()
{ } node-name()="id"
{ } node-name()="color"
IL oo ¥ node-name()="size"
ey id
{} color
{}size

5

1
|

W N

——— Representsthe sequence of child elements
——— Reads or writes child element names, a= QMame

Reads or writes child element names, as string
Type cast node, reads orwrites a child element’s value

Mame test nodes, can be used to group or filter child
elements by name

Importantly, the data type of each child element is not known before the mapping runtime.
Besides, it may be different for each child element. For example, a pr oduct node in the XML
instance file may have a child element i d of type xs: i nt eger and a child element si ze of type
xs:string. To let you access the node content of a specific type, the dialog box shown below
opens every time when you enable dynamic access to a node's child elements. You can also
open this dialog box at any time later, by clicking the Change Selection (E) button next to

the el enent () node.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

198 Designing Mappings Mapping Node Names

@ Dynamically Mamed Children Settings @

LIse these settings to configure access of child elements using a generic structure,

Select types to access content of the dynamically named item:

[] of xs:anyType T
ol text()

Selecting a type here wil only make its structure available for mapping.
The actual type is not checked at runtime.,

¥|5how name test nodes to filter or create elements by fixed node name!

| Show schema child elements of parent element

QK] | Cancel

"Dynamically Named Children Settings" dialog box

To access the content of each child element at mapping runtime, you have several options:

1. Access the content as string. To do this, select the text() check box on the dialog box
abowe. In this case, atext () node is created on the component when you close the
dialog box. This option is suitable if the content is of simple type (xs: i nt, xs: string,
etc.) and is illustrated in the Example: Map Element Names to Attribute Values. Note
that a text() node is displayed only if a child node of the current node can contain text.

2. Access the content as a particular complex type allowed by the schema. When custom
complex types defined globally are allowed by the schema for the selected node, they are
also available in the dialog box abowve, and you can select the check box next to them. In
the image abowe, there are no complex types defined globally by the schema, so none
are available for selection.

3. Access the content as any type. This may be useful in advanced mapping scenarios (see
"Accessing deeper structures" below). To do this, select the check box next to
xs:anyType.

Be aware that, at mapping runtime, MapForce (through the type cast node) has no
information as to what the actual type of the instance node is. Therefore, your mapping must
access the node content using the correct type. For example, if you expect that the node of
a source XML instance may have children nodes of various complex types, do the following:
a) Set the type cast node to be of the complex type that you need to match (see item 2 in

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Node Names 199

the list abowe).
b) Add a filter to read from the instance only the complex type that you need to match. For
more information about filters, see Filters and Conditions.

Accessing deeper structures

It is possible to access nodes at deeper lewvels in the schema than the immediate children of a
node. It is useful for advanced mapping scenarios. In simple mappings such as Example: Map
Element Names to Attribute Values, you don't need this technique because the mapping

accesses only the immediate children of an XML node. However, if you need to access deeper

structures dynamically, such as "grandchildren”, "grand-grandchildren®, and so on, this is
possible as shown below.

1. Create a new mapping.

2. On the Insert menu, click Insert XML Schema/File and browse for the XML instance file
(in this example, the Articles.xml file from the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder).

3. Right-click the Arti cl es node and select the Show Child Elements with Dynamic
Name context command.

4. Select xs:anyType from the "Dynamically Named Children Settings" dialog box.

5. Right-click the xs: anyType node and select again the Show Child Elements with
Dynamic Name context command.

6. Select text() from the "Dynamically Named Children Settings" dialog box.

| Articles
(= E| File: Articles.xml File/String
@ {} Articles

E{*)element() =

2 node-namef)

2 local-namel)

e o xs:anyType ﬂ
....... = xz:anyAttribute E
....... Aibc text()
B{Frelement|) =

B node-named)
v B lpeal-named()
L Bbe tet()

....... £} xzany ﬂ

B {} Article

------- {} Humber

In the component abowve, notice there are two el enent () nodes. The second el enent () node
provides dynamic access to grandchildren of the <Arti cl es> node in the Articles.xml instance.

<?xm version="1.0" encodi ng="UTF-8"?>

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

200 Designing Mappings Mapping Node Names

<Articles xmns: xsi="http://ww.w3. org/ 2001/ XM_Schemna- i nst ance"
xsi : noNanmespaceSchenalLocati on="Arti cl es. xsd" >
<Article>
<Nunber >1</ Nunber >
<Nane>T- Shi rt </ Nane>
<Si ngl ePri ce>25</ Si ngl ePri ce>
</Article>
<Article>
<Nunber >2</ Nunber >
<Nane>Socks</ Nane>
<Si ngl ePri ce>2. 30</ Si ngl ePri ce>
</Article>
<Article>
<Nunber >3</ Nunber >
<Nane>Pant s</ Nane>
<Si ngl ePri ce>34</ Si ngl ePri ce>
</Article>
<Article>
<Nunber >4</ Nunber >
<Nane>Jacket </ Nane>
<Si ngl ePri ce>57. 50</ Si ngl ePri ce>
</Article>
</Articl es>

Articles.xml

For example, to get "grandchildren” element names (Nunber, Name, Si ngl ePri ce), you would
draw a connection from the | ocal - name() node under the second el enent () node to a target
item. Likewise, to get "grandchildren” element values (1, T- Shirt, 25), you would draw a
connection from the t ext () node.

Although not applicable to this example, in real-life situations, you can further enable dynamic
node names for any subsequent xs: anyType node, so as to reach even deeper lewvels.

Note the following:

e The I putton allows you to select any derived type from the current schema and
display it in a separate node. This may only be useful if you need to map to or from
derived schema types (see Derived XML Schema Types).

e The Change Selection (E) button next to an el enent () node opens the
"Dynamically Named Children Settings" dialog box discussed in this topic.

e The Change Selection (E) button next to xs: anyAttri but e allows you to select any
attribute defined globally in the schema. Likewise, the Change Selection (E) button
next to xs: any element allows you to select any element defined globally in the schema.
This works in the same way as mapping to or from schema wildcards (see also
Wildcards - xs:any / xs:anyAttribute). If using this option, make sure that the selected
attribute or element can actually exist at that particular level according to the schema.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Node Names 201

5.11.3 Example: Map Element Names to Attribute Values

This example shows you how to map element names from an XML document to attribute values in
a target XML document. The example is accompanied by a sample mapping, which is available at
the following path: <Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\ConvertProducts.mfd.

To understand what the example does, let's assume you have an XML file that contains a list of
products. Each product has the following format:

<pr oduct >
<i d>1</id>
<col or >r ed</ col or >
<si ze>10</si ze>

</ pr oduct >

Your goal is to convert information about each product into name-value pairs, for example:

<pr oduct >
<attribute nane="id" val ue="1" />
<attribute nanme="col or" value="red" />
<attribute nanme="size" val ue="10" />
</ pr oduct >

To perform a data mapping such as the one above with minimum effort, this example uses a
MapForce feature known as "dynamic access to node names". "Dynamic" means that, when the
mapping runs, it can read the node names (not just values) and use these names as values. You
can create the required mapping in a few simple steps, as shown below.

Step 1: Add the source XML component to the mapping
e Onthe Insert menu, click XML Schemal/File, and browse for the following file:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\Products.xml.
This XML file points to the Products.xsd schema located in the same folder.
Step 2: Add the target XML component to the mapping
e Onthe Insert menu, click XML Schemal/File, and browse for the following schema file:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial
\ProductValuePairs.xsd. When prompted to supply an instance file, click Skip. When

prompted to select a root element, select product s as root element.

At this stage, the mapping should look as follows:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

202 Designing Mappings Mapping Node Names

& products & ProductValuePairs
= f:l File: Products.xml File/String = E| File: ProductValuePairs.xml File/String
El {} products El {} products
El {} product El {} product
Y id B {} attribute
. £} color i = pame
LY size b = value

Step 3: Enable dynamic access to child nodes

1. Right-click the pr oduct s node on the source component, and select Show Child
Elements with Dynamic Name from the context menu.
2. Inthe dialog box which opens, select text() as type. Leave other options as is.

i o)

@ Dynamically Mamed Children Settings @

IIse these settings to configure access of child elements using a generic structure,

Select types to access content of the dynamically named item:

[of produciType »
[0 of xzanyType
on text()

Selecting a type here wil only make its structure available for mapping.
The actual type is not checked at runtime.

[] show name test nodes to filter or create elements by fixed node name

Showe schema child elements of parent element

[ak] I Cancel

Notice that a t ext () node has been added on the source component. This node will supply the

content of each child item to the mapping (in this case, the value of "id", "color", and "size").

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Node Names 203

& products & ProductValuePairs
= E| File: Products.xml File/String B E| File: ProductValuePairs.xml File/String
E_l {} products El {} products
-B{x}element|) S "= {} product
------- " node-name() E_l {} attribute
"B local-name|) ------- = name
Abe texti) e == yalue
=4} product
....... {}id
....... {} color
....... {} size

Step 4: Draw the mapping connections

Finally, draw the mapping connections A, B, C, D as illustrated below. Optionally, double-click
each connection, starting from the top one, and enter the text "A", "B", "C", and "D", respectively,

into the Description box.

& Products £ ProductvaluePairs
= E| File: Products.xml File/String = E| File: ProductValuePairs.xml Fil
El {} products El {} products
3 {} product El {} product
El{#relement() Z| El {} attribute
E ':g:'node-name:] = name
b :g:'lot:al-name:] i = yalue
‘e Abe tE3H()
....... {}id
------- {} color
....... {} zjze

ConvertProducts.mfd

In the mapping illustrated above, connection A creates, for each product in the source, a product
in the target. So far, this is a standard MapForce connection that does not address the node
names in any way. The connection B, however, creates, for each encountered child element of
pr oduct, a new element in the target called attri but e.

Connection B is a crucial connection in the mapping. To reiterate the goal of this connection,
it carries a sequence of child elements of pr oduct from the source to the target. It does not
carry the actual names or values. Therefore, it must be understood as follows: if the source
element() has N child elements, create N instances of that item in the target. In this

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

204 Designing Mappings

Mapping Node Names

attribute.

item in the target.

particular case, product in the source has three children elements (i d, col or and si ze).
This means that each pr oduct in the target will have three child elements with the name

Although not illustrated in this example, the same rule is used to map child elements of
attribute(): if the source attribute() item has N child attributes, create N instances of that

Next, connection C copies the actual name of each child element of product to the target

(iiterally, "id", "color",

and "size").

Finally, connection D copies the value of each child element of product, as string type, to the

target.

To preview the mapping output, click the Output tab and observe the generated XML. As
expected, the output contains several products whose data is stored as nhame-value pairs, which
was the intended goal of this mapping.

<?xm version="1.0" encodi ng="UTF-8"?>

<product s xsi : noNanmespaceSchenmalLocat i on="Pr oduct Val uePai r s. xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >

<pr oduct >
<attribute
<attribute
<attribute

</ pr oduct >

<pr oduct >
<attribute
<attribute
<attribute

</ pr oduct >

<pr oduct >
<attribute
<attribute
<attribute

</ pr oduct >

</ pr oduct s>

nane="id" val ue="1"/>
nane="col or" val ue="red"/>
nane="si ze" val ue="10"/>

nane="id" val ue="2"/>
nane="col or" val ue="bl ue"/>
nane="si ze" val ue="20"/>

nane="id" val ue="3"/>
nanme="col or" val ue="green"/>
nane="si ze" val ue="30"/>

Generated mapping output

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Mapping Rules and Strategies 205

5.12 Mapping Rules and Strategies

MapForce generally maps data in an intuitive way, but you may come across situations where the
resulting output seems to have too many, or too few items. This topic is intended to help you
awid such mapping problems.

General rule

Generally, every connection between a source and target item means: for each source item,
create one target item. If the source node contains simple content (for example, string or integer)
and the target node accepts simple content, then MapForce copies the content to the target node
and, if necessary, converts the data type.

This generally holds true for all connections, with the following exceptions:

e A target XML root element is always created once and only once. If you connect a
sequence to it, only the contents of the element will be repeated, but not the root element
itself, and the result might not be schema-valid. If attributes of the root element are also
connected, the XML serialization will fail at runtime, so you should awid connecting a
sequence to the root element. If what you want to achieve is creating multiple output files,
connect the sequence to the "File" node instead, via some function that generates file
names.

e Some nodes accept a single value, not a sequence (for example, XML attributes, , and
output components in user-defined functions).

The "context" and "current" items

MapForce displays the structure of a schema file as a hierarchy of mappable items in the
component. Each of these nodes may have many instances (or none) in the instance file or
database.

Example: If you look at the source component in PersonListByBranchOffice.mfd, there is only
a single node first (under Contact). In the BranchOffices.xml instance file, there are multiple
first nodes and Contact nodes having different content, under different Office parent nodes.

It depends on the current context (of the target node) which source nodes are actually selected
and hawe their data copied, via the connector, to the target component/item.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

206 Designing Mappings Mapping Rules and Strategies

| Cai |"Nanu:unu||, Inc." wi| Officehlame
efaun|01ficemamep—_l fiy =qual

& BranchOffices
= I File: BranchOffices.xml
“E1{}BranchOffices

= Office FM
odefrowy | on-true g

&1 [] File: {default)

Bl {}PersonList Liz
El {}Person

i =role

{}First

{}Last

i { ¥Details

ool Dn-falsel}

O/ LookupPerzon

wi| Office_Name | Ewresult
wi|First_Hame
wiLast_Hame

PersonListByBranchOffice.mfd

This context is defined by the current target node and the connections to its ancestors:

e Initially the context contains only the source components, but no specific nodes. When
evaluating the mapping, MapForce processes the target root node first (PersonList),
then works down the hierarchy.

e The connector to the target node is traced back to all source items directly or indirectly
connected to it, even via functions that might exist between the two components. The
source items and functions results are added to the context for this node.

e For each new target node a new context is established, that initially contains all items of
the parent node's context. Target sibling nodes are thus independent of each other, but
have access to all source data of their parent nodes.

Applied to the example mapping above (PersonListByBranchOffice.mfd):

¢ The connection from Office through the filter (Office) to PersonList defines a single office
as the context for the whole target document (because PersonList is the root element of
the target component). The office name is supplied by the input component, which has a
default containing "Nanonull, Inc."

e All connections/data to the descendants of the root element PersonList, are
automatically affected by the filter condition, because the selected single office is in the
context.

e The connection from Contact to Person creates one target Person per Contact item of
the source XML (general rule). For each Person one specific Contact is added to the
context, from which the children of Person will be created.

e The connector from first to First selects the first name of the current Contact and writes it
to the target item First.

Leaving out the connector from Contact to Person would create only one Person with multiple

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Rules and Strategies 207

First, Last, and Detail nodes, which is not what we want here. In such situations, MapForce
issues a warning and a suggestion to fix the problem: "You can try to connect Contact with
Person to resolwe":

- Y ~a ninlE 8]2]s] X

PersonListByBranchoffice mid Mapping validation successtul - 0 error(s), 1 warningis)
) Information: The output component 'EEJ Perzanlist has no output file name set. A default file name will be uzed)
, [=Perzon haz no input connection and will be generated only once.

Q --------- “ou can try to connect [=Contact with [>Person to resalve.
----- u PersonListByBranchOffice mfd: Execution successful - O error(=], 0 wearning(=)

[d=]

Sequences
MapForce displays the structure of a schema file as a hierarchy of mappable items in the
component.

Depending on the (target) context, each mappable item of a source component can represent:

e asingle instance node of the assigned input file
e asequence of zero to multiple instance nodes of the input file

If a sequence is connected to a target node, a loop is created to create as many target nodes as
there are source nodes.

If a filter is placed between the sequence and target node, the bool condition is checked for each
input node i.e. each item in the sequence. More exactly, a check is made to see if there is at
least one bool in each sequence that evaluates to true. The priority context setting can influence
the order of evaluation, see below.

As noted abowe, filter conditions automatically apply to all descendant nodes.

Note: If the source schema specifies that a specific node occurs exactly once, MapForce may
remove the loop and take the first item only, which it knows must exist. This optimization
can be disabled in the source Component Settings dialog box (check box "Enable input
processing optimizations based on min/maxOccurs").

Function inputs (of normal, non-sequence functions) work similar to target nodes: If a sequence
is connected to such an input, a loop is created around the function call, so it will produce as
many results as there are items in the sequence.

If a sequence is connected to more than one such function input, MapForce creates nested
loops which will process the Cartesian product of all inputs. Usually this is not desired, so only
one single sequence with multiple items should be connected to a function (and all other
parameters bound to singular current items from parents or other components).

Note: If an empty sequence is connected to such a function (e.g. concat), you will get an
empty sequence as result, which will produce no output nodes at all. If there is no result
in your target output because there is no input data, you can use the “substitute-missing”
function to insert a substitute value.

Functions with sequence inputs are the only functions that can produce a result if the input
seqguence is empty:

e exists, not-exists and substitute-nissing (also, is-not-null,is-null and
substi t ut e-nul I, which are aliases for the first three)

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

208

Designing Mappings Mapping Rules and Strategies

e aggregate functions (sum count, etc.)
¢ regular user-defined functions that accept sequences (i.e. non-inlined functions)

The sequence input to such functions is always evaluated independently of the current target node
in the context of its ancestors. This also means that any filter components connected to such
functions, do not affect any other connections.

Priority context
Usually, function parameters are evaluated from top to bottom, but its is possible to define one
parameter to be evaluated before all others, using the priority context setting.

In functions connected to the bool input of filter conditions, the priority context affects not only
the comparison function itself but also the evaluation of the filter, so it is possible to join together
two source sequences (see CompletePO.mfd, CustomerNo and Number).

ShartPo
|= [File: ShortPo.xmi
& {}shortPo
------- {}CustomerHr
E| {}Lineltems
B {}Lineftem
- {} ArticleNr
- {3} Amount

Fi ecual

| CompletePo

| Scustomer___| = [=2 [TFite: (def;

odefrovy | on-true “E {}Comple
B {}Custg

ool nn-false[#

Customers
= E| File: Customers.xm
El {}Customers
El {}Customer
. { YHumber
i { }FiretHame

| Ji count |

In this example, the priority context forces ShortPO/CustomerNr to be evaluated before iterating
and filtering the Customer nodes from the Customers component. See Priority Context node/item

Overriding the context

Some aggregate functions have an optional “parent-context” input. If this input is not connected, it
has no effect and the function is evaluated in the normal context for sequence inputs (that is, in
the context of the target node's parent).

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Rules and Strategies

209

5.12.1

F min
& Customers Text fil
i - arent context EINETT
S| (']File: aggregate. XML —— VESU“T B ("] File: {default)
“H {}Customers ‘B {}Rows
El {}Customer i, max :
"""" (ilumber arert-corntext
. { YFirstllame W rESUHT
-~ {}Lastllame
El {}Address fly court
"""" {}street arent contesxt -
- {) City noesFovws T
b {3 ZIP
{}state £} sum
Earent -context esurtT
alues
Ty av

arent-context
result
alues T

If the par ent - cont ext input is connected to a source node, the function is evaluated for each
par ent - cont ext node and will produce a separate result for each occurrence. See also
Owerriding the Mapping Context.

Bringing multiple nodes of the same source component into the context
This is required in some special cases and can be done with Intermediate variables.

Changing the Processing Order of Mapping Components

MapForce supports mappings that have several target components. Each of the target
components has a preview button allowing you to preview the mapping result for that specific
component.

If the mapping is executed from the command line or from generated code, then, regardless of the

currently active preview, the full mapping is executed and the output for each target component is

generated.

The order in which the target components are processed can be directly influenced by changing

the position of target components in the mapping window. The position of a component is defined

as its top left corner.

Target components are processed according to their Y-X position on screen, from top to bottom

and left to right.

e [ftwo components have the same vertical position, then the leftmost takes precedence.
e [ftwo component have the same horizontal position, then the highest takes precedence.

e In the unlikely event that components have the exact same position, then an unique

internal component ID is automatically used, which guarantees a well-defined order but

which cannot be changed.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

210 Designing Mappings Mapping Rules and Strategies

The screenshot below shows the tutorial sample Tut-ExpReport-multi.mfd available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\ folder. Both target
components (ExpReport-Target) have the same vertical position, and the preview button is active
on the right hand target component.

& mf-ExpReport | | ExpReport-Target g | 8| ExpReport-Target [&
A E| [] File: mf-ExpReport. AEI {}Ti;le' - E| [File: SecondXML.xml _File/St
‘3 {} expense-report | Blol e £} Name ‘B {} Company Foot element
= detailed Rl O el B .E{}Employee
- = currency R ¢} Email 3 L - {3} Title
HPerson p=FOATH T T b e {} DomesticDailyRate M () Name
....... {}First ... {} ForeignDailyRate [e {} Tl .
....... {} Ln.ist () Expense-detail [- { ¥ Email - .
....... {3 Title il {) expense-item - {} DomesticDailyRate
------- {} Phone b = Currency - {} ForeignDailyRate
------- {} Email b = BillLto - {} Expense-detail
- | ‘B {}expense-item 'y } Date 1 3 B {} expense-item
....... = type Ca E b {} Travel B - = Currency
= P = Travel-Cost P {_} Bill-to
. . '. Date
expense-tem - {} Destination
-3 {} Meal L -3 {} Travel
= l-nudea'ruw| on-true —— ¥
mealtype T, equal X . | Tra\.rél C.ost
....... {3 Name £ frbool on-falsel } Destination
....... {} Location Bal n* } Car-Rental
-3 {) Lodging L L } Air-Travel
- = Lodge-cost ¥ Misc-Travel
....... {¥ Name 3 -3 {} Accommodation
....... {} Location - E| {} DomesticAcc
-3 {} Travel —
... = means
Trav-cost
------- {} Destination
....... {¥ Mileage
-2 {} Parking
i { ¥ Location
-2 {} Entertainment|
- {} Client-name
i B4} Misc

Tut-ExpReport-multi.mfd (MapForce Enterprise Edition)

Having selected XSLT2 and generated the code:

e The leftmost target component is processed first and generates the ExpReport.xml file.
e The component to the right of it is processed next and generates the SecondXML.xml
file.

You can check that this is the case by opening the DoTransform.bat file (in the output folder you
specified) and see the sequence the output files are generated. ExpReport-Target.xml is the
first output to be generated by the batch file, and SecondXML.xml the second.

Wecho off

RaptoriHL ==lt ——z=lt-version=:2 ——

input="0C: ~Jzerz~ne~Docunent=~Al tova~MapForceZ013~HapForceExanples~Tutorial~mn
f-ExpReport . zml" ——

output="C: “Izers ne~Docunent="Altova~MapForce2ll3~HapForceEzanples~Tutorial™
ExpReport-Target .=mnl" ** "HappingHMapToEzpReport-Targeset =z=1t"

IF ERRFORLEVEL 1 EXIT~-B %“ERROELEVELX

RaptorXHL m=lt ——x=lt-version=:2 ——

input="C: ~Izerzs~ne~Docunents~Al tova~MapForce2013~HapForceEzanples~Tutorial~n
f-ExpReport . =ml" ——

Dut-ut—"C \Users\me\DDcuments\AltDva\HapFDrCEEDlS\MapFDrCEEHamples\TutDrial\
=l IR % "HappingHapToExpReport-Target? =x=lt"

IF ERRCRLEVEL 1 EXIT-B *ERROELEVELX

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Rules and Strategies 211

Changing the mapping processing sequence:

1. Click the left target component and mowe it below the one at right.

&l [®

- E|] File: SecondXML.xml _File/5t]

£ Exp-F‘.epurt—Targ&t) “E{} Company Root slement
T = Employee
e {}Tﬂm E EhY F ¥
------- {3 Title
) I R {}Hame
| T T P e I S {} Name
....... {}TE
e {} Tel
------- {} Email _
{} DomesticDailyRate [.——""_ | {3 Email
Dm.es 'c. rale T e {} DomesticDailyRate
------- {3} ForeignDailyRate _ _
O Ex detal T {¥ ForeignDailyRate
VERpensedetal o 4 {} Expense-detail

2. Regenerate your code and take a look at the DoTransform.bat file.

Wecho off

FaptoriML ==lt —==lt—-version=¢ —
input="0C:“U=zerszalp-Docunents~Al tova~HapForcelll3~HapForceExzanples~Tutorial~
mf— EHpRepDrt =ml" ——

" \Users\alp\DDcuments\AltDva\HapFDrce2Dl3\HapFDrDeExamples\Tutarlal
et z* "MappingMapToExzpReport-Target =z=slt"
IF RRORLEVEL 1 EXIT-B XERROFLEVELX
FaptoriML ==lt —Eslt-version=:Z —
input="C: “U=zers+alp~Documnents™Al tova~MapForcei 01 3~HapForceEzanples~Tutorial™
mnf-ExpReport . znl" ——
output="C:“Isers~alp~Docunents="Altova~HapForce20l3i~HapForceExanples~Tutorial
~ExpReport-Target zml" X% "HappingMapToExpReport—-Target? =z=1t"
IF EFRORLEVEL 1 EXIT-E XERRORLEVELX

SecondXML.xml is now the first output to be generated by the batch file, and
ExpReport-Target.xml the second.

Chained mappings

The same processing sequence as described abowe is followed for chained mappings. The
chained mapping group is taken as one unit however. Repositioning the intermediate or final target
component of a single chained mapping has no effect on the processing sequence.

Only if multiple "chains" or multiple target components exist in a mapping does the position of
the final target components of each group determine which is processed first.

e If two final target components have the same \vertical position, then the leftmost takes
precedence.

¢ If two final target component have the same horizontal position, then the highest takes
precedence.

¢ In the unlikely event that components have the exact same position, then an unique
internal component ID is automatically used, which guarantees a well-defined order but
which cannot be changed.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

212

Designing Mappings Mapping Rules and Strategies

5.12.2

Priority Context node/item

When applying a function to different items in a schema, MapForce needs to know what the
context node will be. All other items are then processed relative to this one. This is achieved by
designating the item (or node) as the priority context.

Priority-context is used to prioritize execution when mapping unrelated items.

Mappings are always executed top-down; if you loop/search through two sources then each loop
is processed consecutively. When mapping unrelated elements, without setting the priority
context, MapForce does not know which loop needs to be executed first, it therefore
automatically selects the first source.

Solution:
Decide which source data is to be looped/searched first, and then set the priority context on the
connector to that source data.

The CompletePO.mfd file available in the ...\MapForceExamples folder, is shown below.

Please note that there are multiple source components in this example. ShortPO, Customers,
and Articles are all schemas with associated XML instance files. The data from each, are then
mapped to the CompletePO schema / XML file. The priority context icon, is enclosed in a circle
as a visual indication.

e The CustomerNr in ShortPO is compared with the item Number in the Customers file.

e CustomerNr has been designated as the priority context, and is placed in the a
parameter of the equal function.

e The Customers file is then searched (once) for the same number. The b parameter
contains the Number item from the Customers file.

e If the number is found, then the result is passed to the bool parameter of the filter
function.

e The node/row parameter passes on the Customers data to "on-true" when the bool
parameter is true, i.e. when the same number has been found.

e The rest of the customer data is then passed on as: Number, FirstName, LastName
items, are all connected to the corresponding items in the target schema.

Designating the b parameter of the equal function (i.e. item Number), as the priority context
would cause:

MapForce to load the first Number into the b parameter

Check against the CustomerNr in a, if not equal,

Load the next Number into b, check against a, and

lterate through every Number in the file while trying to find that number in ShortPO.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings Mapping Rules and Strategies 213

ShartPo
|= [File: ShortPo.xmi
-3 {}shortPo
. {}CustomerHr Fi ecual
E| {}Lineltems=s | CompletePo
‘= {}Linettem W -« |= £ Fite: (def;
"""" {} Articlehr ocedrovye | on-true ‘B {)Comple
- {} Amount ol on-false[B () Custg
........ { }Hum
Customers i L ¥Fir
= E| File: Customers.xm(> || »~ .~ e i i {}La
-8 {}¥Customers ={}ad
‘B{)Customer B - g {35t
- {}Humber e MO
- { }FirstHame | fi count Y

5.12.3 Overriding the Mapping Context

In some mappings, in order to achieve the desired mapping output, it may be necessary to
override the mapping context. For this reason, some components provide an optional par ent -
cont ext item in their structure which enables you to influence the mapping context if so required.
Examples of such components are aggregate functions and variables.

i court

Carent-context
ﬁ result
odesiows E|>

An aggregate function with optional parent-context

To understand why the mapping context is important, let's add to the mapping an XML file that
contains nested nodes with multiple lewvels. On the Insert menu, click XML Schema/File, and
browse for the file: <Documents>\Altova\MapForce2018\MapForceExamples
\Altova_Hierarchical.xml.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

214 Designing Mappings

Mapping Rules and Strategies

& Altova_Hierarchical

= {} Altova
....... {} Primaw[e}r

& {} Address

= {} Department
....... {} PrimaryKey
....... {} ForeignKey

-3 {} Person
------- {} PrimaryKey
------- {} ForeignKey
....... {} EMail

= E| File: Altova_Hierarchical.xml File/5tring

Altova_Hierarchical.xml

Importantly, in the XML file abowe, the O f i ce parent node contains multiple Depart ment nodes,
and each Depar t nent contains multiple Per son nodes. If you open the actual XML file in an XML
editor, you can see that the distribution of people by office and department is as follows:

Office Department Number of people
Nanonull, Inc. Administration 3

Marketing 2

Engineering 6

IT & Technical Support 4
Nanonull Partners, Inc. Administration 2

Marketing 1

IT & Technical Support 3

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Designing Mappings Mapping Rules and Strategies 215

Now let's assume that your mapping should count all people in all departments. To achieve this
requirement, you can add the count function from core | aggregate functions and map data as

follows:

8| Altova_Hierarchical
= E| File: Altova_Hierarchicalaoml File/5tring
3 {) Altova

------- {2} PrimaryKey

------- {) Established fi) count i result
------- {} Fax iparent-context result result

------- {} Name nodes/rows

H {} Address

‘2 {} Department

- {} PrimaryKey
....... {} Foreignkey

@ {} Person
....... {3 PrimaryKey
....... {3 ForeignKey
------- {} EMail

If you preview the mapping at this stage, the output is 21, which corresponds to the total number
of people in all departments. Notice that the count function includes an optional par ent - cont ext
item, which so far has not been connected. As a result, the parent context of the count function
is the default root node of the source component (which, in this case, is the Al t ova item). This
means that all the persons, from all departments, are considered for the scope of the count
function. This is the way the mapping context works by default, as outlined in Mapping Rules and
Strategies, and this is sufficient in most mapping scenarios.

Howe\er, it is possible to override the default mapping context if necessary. To do this, add a
connection from the Depart ment node to the par ent - cont ext item as shown below.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

216

Designing Mappings Mapping Rules and Strategies

& Altova_Hierarchical
= f:l File: Altova_Hierarchical.xml File/5tring
“E{}Altova

....... {} PrimaryKey

Emresult

result
resuItT/?—

....... {3} Phone

A {} Address

‘B {} Department
- {} PrimaryKey
....... {} ForeignKey

@ {} Person
....... {3} Prim aryKey
....... {} ForeignKey
------- {} EMail

By changing the mapping as shown abowe, you are instructing the mapping to iterate over people
records in the context of each office. Therefore, if you preview the mapping now, the output will
be 15*. This is exactly the number of people in the first office, "Nanonull, Inc.”. The explanation is
that this time the people nodes were counted twice (once for each office). The count of people in
each office was 15 and 6, respectively. Howewer, only the first result was returned (because the
function cannot return a sequence of values, only a simple value).

* Assuming that the target language of the mapping is other than XSLT 1.0.

You can further modify the mapping so as to change the mapping context to Depar t nent , as
shown below. This time the people records would be counted in the context of each department
(that is, 7 times, which corresponds to the total number of departments). Again, only the first of
the results is returned, so the mapping output is 3, which corresponds to the number of people in
the first department of the first office.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Designing Mappings

Mapping Rules and Strategies

| Altova_Hierarchical

= {} Altova
....... {} Pr[maw[e}r

M {¥ Address

= {¥ Department
....... {3 PrimaryKey
....... {} ForeignKey

@ {} Person
------- {} PrimaryKey
------- {} ForeignKey
------- {3 EMail

= E| File: Altova_Hierarchical.xml File/5tring

iy count

Emresult

parent-context
nodes/rows

result
resultw—/_?—

While this mapping is not doing much yet, its point is to illustrate how the par ent - cont ext item
influences the output of the mapping. Having this in mind, you can override the par ent - cont ext
in other mappings, such as those that contain variables. See also Example: Grouping and

Subgrouping Records.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

Chapter 6

Data Sources and Targets

220 Data Sources and Targets

6 Data Sources and Targets

This section provides information specific to various source and target component types that
MapForce can map from or to:

e XML and XML Schema
e HL7 Version 3

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets XML and XML schema 221

6.1

6.1.1

XML and XML schema

Altova website: XML mapping

In the introductory part of this documentation, you have seen examples of simple mappings that
use XML and XML schema files as source or target components. This section provides further
information about using XML components in your mappings. It includes the following topics:

e XML Component Settings

e Using DTDs as "schema" components

e Derived XML Schema types - mapping to
e QName support

e Nil Values / Nillable

e Comments and Processing Instructions
e CbData sections

e Wildcards - xs:any

Generating an XML Schema

MapForce can automatically generate an XML schema based on an existing XML file if the XML
Schema is not available. Whenever you add to the mapping area an XML file without a schema
(using the menu command Insert | XML Schemal/File), the following dialog box appears.

-

MapForce £

g - 1 The zelected XML file does not contain a schema reference.
"' Do you want MapForce to create a schema for you?

Yes | | [

Click Yes to generate the schema, you will then be prompted to select the directory where the
generated schema should be saved.

When MapForce generates a schema from an XML file, data types for elements/attributes must
be inferred from the XML instance document and may not be exactly what you expect. It is
recommended that you check whether the generated schema is an accurate representation of the
instance data.

If elements or attributes in more than one namespace are present, MapForce generates a
separate XML Schema for each distinct namespace; therefore, multiple files may be created on
the disk.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

https://www.altova.com/mapforce/xml-mapping

222 Data Sources and Targets XML and XML schema

6.1.2 XML Component Settings

After you add an XML component to the mapping area, you can configure the settings applicable
to it from the Component Settings dialog box. You can open the Component settings dialog box in
one of the following ways:

e Select the component on the mapping, and, on the Component menu, click Properties.
¢ Double-click the component header.

¢ Right-click the component header, and then click Properties.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets XML and XML schema 223

F =

@ Component Settings @

Component name: Artides

Schema file
Artides, xsd [Browse][Edit]

Input XML File
Articles, xml [Browse] [Edit]

Dutput XML File
Prefix for target namespace:

Add schema,/DTD reference (leave field empty to use absolute file path of schema):

Write ¥ML Dedaration

Cast values to target types (disable to preserve formatting of numeric or date values
at risk of writing invalid output)

Pretty print output
Create digital signature (Requires edition upgrade) Signature Settings
In case of failed creation: Stop processing
i@ Continue without signature
Output Encoding
Encoding name: Lnicode UTF-8 -
Byte order: Litde Endian [] indude byte order mark

StyleVision Power Stylesheet file

[Browse] [Create...

Enable input processing optimizations based on min/maxOcocurs

Save all file paths relative to MFD file

[Ok] [Cancel
XML Component Settings dialog box
The available settings are as follows.
Component name The component name is automatically generated when you

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

224 Data Sources and Targets XML and XML schema

create the component. You can however change the name at
any time.

If the component name was automatically generated and you
select an instance file after that, MapForce will prompt you to
optionally update the component name as well.

The component name can contain spaces (for example,
"Source XML File") and full stop characters (for example,
"Orders.EDI"). The component name may not contain
slashes, backslashes, colons, double quotes, leading or
trailing spaces. In general, be aware of the following
implications when changing the name of the component:

e [fyou intend to deploy the mapping to FlowForce
Sener, the component name must be unique.

e |tis recommended to use only characters that can
be entered at the command line. National characters
may hawe different encodings in Windows and at the
command line.

Schema file Specifies the name or path of the XML schema file used by
MapForce to validate and map data.

To change the schema file, click Browse and select the new
file. To edit the file in XMLSpy, click Edit.

Input XML file Specifies the XML instance file from which MapForce will
read data. This field is meaningful for a source component
and is filled when you first create the component and assign
to it an XML instance file.

In a source component, the instance file name is also used
to detect the XML root element and the referenced schema,
and to validate against the selected schema.

To change the location of the file, click Browse and select
the new file. To edit the file in XMLSpy, click Edit.

Output XML file Specifies the XML instance file to which MapForce will write
data. This field is meaningful for a target component.

To change the location of the file, click Browse and select
the new file. To edit the file in XMLSpy, click Edit.

Prefix for target namespace Allows you to enter a prefix for the target namespace. Ensure
that the target namespace is defined in the target schema,
before assigning the prefix.

Add schema/DTD reference Adds the path of the referenced XML Schema file to the root
element of the XML output. The path of the schema entered
in this field is written into the generated target instance files
in the xsi : schemalLocat i on attribute, or into the DOCTYPE

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets

XML and XML schema

225

declaration if a DTD is used.

Entering a path in this field allows you to define where the
schema file referenced by the XML instance file is to be
located. This ensures that the output instance can be
validated at the mapping destination when the mapping is
executed. You can enter an http:// address as well as an
absolute or relative path in this field.

Deactivating this option allows you to decouple the XML
instance from the referenced XML Schema or DTD (for
example, if you want to send the resulting XML output to
someone who does not have access to the underlying XML
Schema).

Write XML declaration

This option enables you to suppress the XML declaration
from the generated output. By default, the option is enabled,
meaning that the XML declaration is written to the output.

This feature is supported as follows in MapForce target
languages and execution engines.

Target language | When outputis | When output is
/ Execution a file a string

engine

XSLT, XQuery Yes No

Cast values to target types

Allows you to define if the target XML schema types should
be used when mapping, or if all data mapped to the target
component should be treated as string values. By default,
this setting is enabled.

Deactivating this option allows you to retain the precise
formatting of values. For example, this is useful to satisfy a
pattern facet in a schema that requires a specific number of
decimal digits in a numeric value.

You can use mapping functions to format the number as a
string in the required format, and then map this string to the
target.

Note that disabling this option will also disable the detection
of invalid values, e.g. writing letters into numeric fields.

Pretty print output

Reformats the output XML document to give it a structured
look. Each child node is offset from its parent by a single tab
character.

Output Encoding

Allows you specify the following settings of the output
instance file:

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

226 Data Sources and Targets XML and XML schema

e Encoding name
Byte order
Whether the byte order mark (BOM) character
should be included.

By default, any new components hawe the encoding defined
in the Default encoding for new components option. You
can access this option from Tools | Options, General tab.

If the mapping generates XSLT 1.0/2.0, activating the Byte
Order Mark check box does not have any effect, as these
languages do not support Byte Order Marks.

StyleVision Power Stylesheet This option allows you to select or create an Altova

file StyleVision stylesheet file. Such files enable you to output
data from the XML instance file to a variety of formats suitable
for reporting, such as HTML, RTF, and others.

See also Using Relative Paths on a Component.

Enable input processing This option allows special handling for sequences that are
optimizations based on min/ known to contain exactly one item, such as required
maxOccurs attributes or child elements with ni nQccur s and

maxQccur s="1". In this case, the first item of the sequence
is extracted, then the item is directly processed as an atomic
value (and not as a sequence).

If the input data is not valid against the schema, an empty
sequence might be encountered in a mapping, which stops

the mapping with an error message. To allow the processing
of such invalid input, disable this check box.

Save all file paths relative to When this option is enabled, MapForce sawes the file paths
MFD file displayed on the Component Settings dialog box relative to
the location of the MapForce Design (.mfd) file. See also
Using Relative Paths on a Component.

6.1.3 Using DTDs as "Schema" Components

Starting with MapForce 2006 SP2, namespace-aware DTDs are supported for source and target
components. The namespace-URIs are extracted from the DTD "xmlIns"-attribute declarations, to
make mappings possible.

However, some DTDs contain xmins*-attribute declarations without namespace-URIs (for
example, DTDs used by StyleVision). Such DTDs have to be extended to make them useable in
MapForce. Specifically, you can make such DTDs useable by defining the xmins-attribute with
the namespace-URI, as shown below:

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets XML and XML schema 227

<I ATTLI ST f o: r oot
xm ns: fo CDATA #FI XED ' http://ww. w3. or g/ 1999/ XSL/ For mat '

6.1.4 Derived XML Schema Types

MapForce supports the mapping to/from derived types of a complex type. Derived types are
complex types of an XML Schema that use the xsi:type attribute to identify the specific derived

types.

The screenshot below shows the definition of a derived type called US- Addr ess, in XMLSpy. The
base type (or originating complex type) is Addr essType. Two extra elements were added to
create the derived type US- Addr ess: Zi p and St at e.

|
|
(shdoross

Sample derived type (XMLSpy schema view)

The following example shows you how to map data to or from derived XML schema types.

1. Onthe Insert menu, click XML Schemal/File, and open the following XML Schema:
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial

\MFCompany.xsd.
2. When prompted to supply an instance file, click Skip, and then select Conpany as the

root element.

& MFCompany
= E| File: MFCompanyxml File/String
E “E{} Company Root element

{} Address TvPE
‘@ {} Person

3. Click the T**e| button next to the Addr ess element. This button indicates that derived
types exist for this element in the schema.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

228 Data Sources and Targets

XML and XML schema

i

@ Derived Types (xsi:type)

Select derived schema types to display in separate nodes:

|$|-{}AddressTyp-e
~[]{} UK-Address
e[{ ¥ US-Address

Ok

] I Cancel

)

4. Select the check box next to the derived type you want to use (US- Addr ess, in this
case), and confirm with OK. A new element Addr ess xsi :type="US- Addr ess" has been

added to the component.

& MFCompany

= E| File: MFCompany.xml File/String

‘3 {} Company Hoot element

& {} Address TvPE|

& {} Address xsittype="US-Address"
------- {} Name

H{}Person

You can now map data to or from the US- Addr ess derived type.

Note that you can also include multiple derived types by selecting them in the Derived Types
dialog box. In this case, each would hawe its own xsi : t ype element in the component.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Data Sources and Targets XML and XML schema

229

6.1.5 QNames
MapForce resolves QName (qualified name) prefixes (https://www.w3.org/TR/xml-names/#ns-
gualnames) when reading data from XML files at mapping execution run-time.
QNames are used to reference and abbreviate namespace URIs in XML instance documents.
There are two types of QNames: Prefixed and Unprefixed QNames.
PrefixedName Prefix "' LocalPart
UnPrefixedName LocalPart
where LocalPart is an Element or Attribute name.
For example, in the listing below, <x: p/ > is a QName, where:
e the prefix "x" is an abbreviation of the namespace "http://myCompany.com".
® pis the local part.
<?xm version='1.0" ?>
<doc xm ns: x="htt p:// myConpany. con{ >
<x:pl/>
</ doc>
MapForce also includes several QName-related functions in the core | QName functions
library.
6.1.6 Nil Values / Nillable
The XML Schema specification allows for an element to be valid without content if the
ni |l abl e="true" attribute has been defined for that specific element in the schema. In the
instance XML document, you can then indicate that the value of an element is nil by adding the
xsi:nil="true" attribute to it. This section describes how MapForce handles nil elements in
source and target components.
'xsi:nil' versus 'nillable’
The xsi : ni | ="true" attribute is defined in the XML instance document.
14 =Perzonz
15 =Primarykey=2=/Primarykey>
16 =Fareignkey=1</Foreignkey=
17 <EMail=bififamail. com=/EMail>
18 =First=biff«/First=
19 <Lastrbander</Last=
20 <PhoneExt=22</PhoneExt=
21 <0rderD xsi:nil="true"/=
22 <Title=IT services</Titla=
23 </Parsons
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

https://www.w3.org/TR/xml-names/#ns-qualnames
https://www.w3.org/TR/xml-names/#ns-qualnames

230

Data Sources and Targets

XML and XML schema

The xsi : ni | ="true" attribute indicates that, although the element exists, it has no content. Note
that the xsi : ni | ="t rue" attribute applies to element values, and not to attribute values. An
element with xsi : ni | ="t rue" may still have other attributes, even if it does not have content.

The xsi : ni | attribute is not displayed explicitly in the MapForce graphical mapping, because it is
handled automatically in most cases. Specifically, a "nilled" node (one that has the
xsi:nil="true" attribute) exists, but its content does not exist.

The ni | | abl e="true" attribute is defined in the XML schema. In MapForce, it can be present in

both the source and target components.

!
"
8

:
1
|
.
|

44
1
Person «iz] !
1

|

.

1

|

.

1

|

.

1 | 3
Tet | Grid | Schema wsDL | 4| »|

Er—

Narme CrcderlD
izFef O
mincc |0
maxcs |1

by pe waatring
cortert simple
detivedBy

default

fixed

nilzble Rrue
black

farm

Nillable elements as mapping source

MapForce checks the xsi : ni | attribute automatically, whenever a mapping reads data from nilled
XML elements. If the value of xsi : ni | is true, the content will be treated as non-existent.

When you create a Target-driven mapping from a nillable source element to a nillable target
element with simple content (a single value with optional attributes, but without child elements),
where xsi : ni | is set on a source element, MapForce adds the xsi : ni | attribute to the target
element (for example, <Order I D xsi:nil ="true"/>).

When you create a Copy-All mapping from a nillable source element to a nillable target element,
where xsi : ni | is set on a source element, MapForce adds the xsi : ni | attribute to the target
element (for example, <Order I D xsi:ni |l ="true"/>).

To check explicitly whether a source element has the xsi : ni | attribute set to t rue, use the i s-

xsi -ni | function. It returns TRUE for nilled elements and FALSE for other nodes.

To substitute a nilled (non-existing) source element value with something specific, use the

subst i t ut e- mi ssi ng function.

Notes:

e Connecting the exi st s function to a nilled source element returns TRUE, since the

element node actually exists, ewven if it has no content.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Data Sources and Targets XML and XML schema 231

6.1.7

e Using functions that expect simple values (such as mul ti pl y and concat) on
elements where xsi : ni | has been set does not yield a result, as no element
content is present and no value can be extracted. These functions behawve as if the
source node did not exist.

Nillable elements as mapping target

When you create a Target-driven mapping from a nillable source element to a nillable target
element with simple content (a single value with optional additional attributes, but without child
elements), where xsi : ni | is set on a source element, MapForce inserts the xsi : ni | attribute
into the target element (for example, <Order | D xsi : ni | ="true"/>). If the xsi : ni| ="true"
attribute has not been set in the XML source element, then the element content is mapped to the
target element in the usual fashion.

When mapping to a nillable target element with complex type (with child elements), the xsi : ni |
attribute will not be written automatically, because MapForce cannot know at the time of writing
the element's attributes if any child elements will follow. For such cases, define a Copy-All
connection to copy the xsi : ni | attribute from the source element.

When mapping an empty sequence to a target element, the element will not be created at all,
independent of its nillable designation.

To force the creation of an empty target element with xsi : ni | set to t rue, connect the set - xsi -
ni | function directly to the target element. This works for target elements with simple and
complex types.

If the node has simple type, use the substit ut e- m ssi ng-wi t h-xsi -ni | function to insert

xsi : ni | in the target if no value from your mapping source is available. This can happen if the
source node does not exist at all, or if a calculation (for example, multiply) involved a nilled source
node and therefore yielded no result.

Note:
e Functions which generate xsi : ni | cannot be passed through functions or
components which only operate on values (such as the i f - el se function).

Comments and Processing Instructions

Comments and Processing Instructions can be inserted into target XML components. Processing
instructions are used to pass information to applications that further process XML documents.
Note that Comments and Processing instructions cannot be defined for nodes that are part of a
copy-all mapped group.

To insert a Processing Instruction:
1. Right-click an element in the target component and select Comment/Processing

Instruction, then one of the Processing Instruction options from the menu (Before, After)
2. Enter the Processing Instruction (target) name in the dialog and press OK to confirm, e.g.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

232 Data Sources and Targets XML and XML schema

xml-stylesheet.
This adds a node of this name to the component tree.

TF Iy

m

[C=H"href="book.css™ type.."

....... {® xml-stylesheet
= {}Lineltems
‘B {}Lineltem

3. You can use, for example, a constant component to supply the value of the Processing
Instruction attribute, e.g. hr ef =" book. css" type="text/css".

Note:
Multiple Processing Instructions can be added before or after any element in the target
component.

To insert a comment:

1. Right-click an element in the target component and select Comment/Processing
Instruction, then one of the Comment options from the menu (Before, After).

B {}Lineltem

-2 {}Article
....... {¥Number
....... { comment|)

[C=H"1SS article number”

....... {} SinglePrice
....... {¥}Amount
....... {}Price
-8 {}Total

....... {3} TotalSum

- { } Totalltems

This adds the comment node (<! - - corment ()) to the component tree.
2. Use a constant component to supply the comment text, or connect a source node to the
comment node.

Note:
Only one comment can be added before and after a single target node. To create multiple
comments, use the duplicate input function.

To delete a Comment/Processing Instruction:

¢ Right-click the respective node, select Comment/Processing Instruction, then select
Delete Comment/Processing Instruction from the flyout menu.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets XML and XML schema

6.1.8 CDATA Sections

CDATA sections are used to escape blocks of text containing characters which would normally
be interpreted as markup. CDATA sections start with "<|[CDATA[" and end with the "]]>".

Target nodes can now write the input data that they receive as CDATA sections. The target node
components can be:

e XML data

e XML data embedded in database fields

e XML child elements of typed dimensions in an XBRL target

To create a CDATA section:

1. Right-click the target node that you want to define as the CDATA section and select
"Write Content as CDATA section"”.

&|
&1 [File: (default)
"B {} ShortinfoWlithHTML
& {}info
....... {}Title
o {} De=scription
fith Add Duplicate Input Before

l’ﬁﬂ Add Duplicate Input After
i | Rernove Duplicate

Comment/Processing Instruction r

| Write Content as COATA section

A prompt appears warning you that the input data should not contain the CDATA section
close delimiter 7]>', click OK to close the prompt.

The [C.. icon shown below the element tag shows that this node is now defined as a
CDATA section.

(t* Description

e

Note:
CDATA sections can also be defined on duplicate nodes, and xsi:type nodes.

Example:
The HTMLinCDATA.mfd mapping file available in the ...\MapForceExamples folder shows an
example of where CDATA sections can be very useful.

In this example:

e Bold start () and end () tags are added to the content of the Trademark source
element.

e [talic start (<i>) and end (</i>) tags are added to the content of the Keyword source

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

234 Data Sources and Targets XML and XML schema

element.

e The resulting data is passed on to duplicate text() nodes in the order that they appear in
the source document, due to the fact the Subsection element connector, has been
defined as a Source Driven (Mixed content) node.

e The output of the MixedContent node is then passed on to the Description node in the
Shortinfo target component, which has been defined as a CDATA section.

| £ SectionedPage

E| E| File: ApplicationsPage.xml |'EJ Shortinfo
B OPage 411 E1{] File: {default)
= (}(l;eTTl ! L3 {} ShortinfoWithHTML
O Title -
‘B {}nf
E| {}_I-'Iailliection & (;T?ﬂe
H author ~uth

[‘" Description

-Abe text()

-{} Trademark

i {} Keyword

B {} SubSection Furth
i = author Author ofth
e text()

{} Trademark
i { } Keyword
@ {} subSection Further description secti

)

& computs-when |
+E_| {}MixedContent

- ibe text() rr
- Abe text() (2)
Abctext() (3) |
| e dxsiany 1) J

S

K

o
praluel

pvalue? & result

pvalued =

_ﬁl concat
Bvaluat
Evalue2 B result

Fevalued | T

Clicking the Output button shows the CDATA section containing the marked-up text.

r <Info=
] | <Title=MapForce=Title=
9 { =Description=<{[CDATA[Alova <b=MapForce«/b= 2014 Enterprise Edition is the premier <i=XML</i=

! <i=database</i= | <i=flat file</i= / <i=EDl=/i= data mapping tool that auto-generates mapping code in
<i=XS5LT<ft= 1.0/2.0, <i=XQuery</i-, <i=Java<fi= , <i=C++<fi= and <i=C#=fi= . It iz the definitive tool for
data integration and infoermation lewverage.]]==/Description>

10 </info=

6.1.9 Wildcards - xs:any / xs:anyAttribute

The wildcards xs: any (and xs: anyAttri but e) allow you to use any elements/attributes from
schemas. The screenshot shows the "any" element in the Schema view of XMLSpy.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets XML and XML schema 235

sttributes Globals | Namespaces
=3

Details
PrimaryKey

ForeignKey process

Person

EMail maxOce

= 1]

1
3
-

@

=First

= PhoneExt

1]

= Title

constraints

In MapForce, a Change Selection (E) button appears to the right of the xs: any element (or
Xs:anyAttri bute).

‘B {}Person

------- = xs:anyattribute 15|
------- {}PrimaryKey

------- {}ForeignKey

------- {}EMail

....... O xsiany 12 Annie
....... {}First

....... {}F‘hDHEEﬂ
------- {}Title

When clicked, the Change Selection button =l opens the "Wildcard selections" dialog box. The
entries in this list show the global elements and attributes declared in the current schema.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

236

Data Sources and Targets

XML and XML schema

"

@ Wildcard selections

Select global elements to display in separate nodes:

Elements
Address
Altova

O

Ol
Department

[] |Office

Ol

Person

To use elements ar attributes from a different schema, dick I Import a different schema I

Namespace e

[Ok,]I Cancel]

Clicking one or more of the check boxes and confirming with OK, inserts that element/attribute
(and any other child nodes) into the component. The wildcard elements or attributes are inserted
immediately after the node whose Change Selection (E) button was clicked.

‘B {}Person

------- = xz:anyAftribute E
------- {}PrimaryKey

------- {}ForeignKey

------- {}EMail

....... Oxsany S| Annie

‘& {}Department [xs:any)
....... {}First

....... {}PhoneEﬂ
------- {}Title

You can now map to/from these nodes as with any other element.

On a component, the wildcard elements or attributes can be recognized by the (xs:any) text
appended to their name.

To remove a wildcard element, click the Change Selection (=l) button, and then deselect it from
the "Wildcard selections" dialog box.

Wildcards and dynamic node names

Mapping data to or from wildcards is generally suitable where all possible elements or attributes
that appear in the XML instance are declared by the component's XML schema (or can be
imported from external schemas). Howeer, there may be situations where elements or attributes
appearing in an instance are too many to be declared in the schema. Consider the following
instance where the number of child elements of <nessage> is arbitrary:

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Data Sources and Targets XML and XML schema 237

<?xm version="1.0" encodi ng="UTF-8"?>
<message>

<l inel>1</1inel>

<l i ne2>2</1ine2>

<l i ne3>3</1ine3>

<l i ne999></ i ne999>
</ nessage>

For such situations, use dynamic access to node names (see Mapping Node Names) instead of
wildcards.

Adding elements from a different schema as wildcards

Elements from a schema other than the one assigned to the component can also be used as
wildcards. To make such elements visible on the component, click the Import a different
schema button on the "Wildcard selections" dialog box. This opens a new dialog box where you
have two options:

1. Import schema
2. Generate wrapper schema

For example, the image below illustrates what happens if you attempt to import an external
schema called HasExpenses.xsd into a current schema assigned to a component.

i "

Import Schema @

Spedfy details for importing the selected schema C:\Users\altova\DocumentsHasExpenses. xsd
into the current component.

[Impart schema]

Import the selected schema C:\Wserslaltova\Documents\HasExpenses. xed into the
current schema of the component.

| Generate wrapper schema |

Generate a new schema file. This wrapper schema will just indude the current schema of
the component and impart the selected schema
C:Wsers\altovaDocuments\HasExpenses. xsd, The new wrapper schema will then be set
for the current component.

Cancel

The Import schema option imports the external schema into the current schema assigned to the
component. Be aware that this option overrides the existing schema of the component on the
disk. If the current schema is a remote schema that was opened from a URL (see Adding
Components from a URL) and not from the disk, it cannot be modified. In this case, use the
Generate wrapper schema option.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

238 Data Sources and Targets XML and XML schema

The Generate wrapper schema option creates a new schema file called a "wrapper" schema.
The advantage of using this option is that the existing schema of the component is not modified.
Instead, a new schema will be created (that is, the wrapper schema) which will include both the
existing schema and the schema to be imported. When you select this option, you are prompted
to choose where the wrapper schema should be saved. By default, the wrapper schema has a
name in the form somefile-wrapper.xsd. After you save the wrapper schema, it is by default
automatically assigned to the component, and a dialog box prompts you:

P)

MapForce @

'G The schema location component setting will automatically reference
‘' the new wrapper schema
- "Ch\Users\altova\Documents\MessageFramework-wrapperasd”. Do
you want to adjust the schema location to reference the previous main
schema "ChUsers\altovat Documentsi MessageFramework.xsd” instead?

Ve || No || Cancel

Click Yes to revert to the previous schema; otherwise click No to keep the newly created wrapper
schema assigned to the component.

6.1.10 Merging Data from Multiple Schemas

MapForce allows you to merge multiple files into a single target file.

This example merges multiple source components with different schemas to a target schema. To
merge an arbitrary number of files using the same schema, see Processing Multiple Input or
Output Files Dynamically.

The CompletePO.mfd file available in the ...\MapForceExamples folder shows how three XML
files are merged into one purchasing order XML file.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets XML and XML schema 239

| ShortPo
=[] Fite: ShortPo.xml
EI {}ShortP0 E equal
i 4 ¥CUStOMErtr
- GE result i
& {)Lineitems b = Customer £ CompletePO
E‘ {}:;"E'fem erocetowe | on-true 21 EJFile: (default)
"""" {}:rtlcler:r el on-falzely “E {}CompleteP0
mou = {}Customer
| Custamers - g:uzzer
[irstlame
= ' File: Customers.xml i {}LastName
L:J {}Customers E'E| {}Address
‘B {3} Customer
- {}Number Ji court .
- {}FirstHame pin-context resul iy
odesirowes
- {}LastHame
-3 {} Address & {)Lineltems
. sniociedrovy | on-true i E| {}Lineltem
ihcu:l an-falselp] {} Article
------- { }*Number
iy sl {}Hame
£ Aricles 5 l e - {}singlePrice
—— eyl i | i 4 AMMoumnt
E| DFIlE. Articles.xml b §in-contesxt resutthb P {OYPrice
E {} Articles #;alues = {3 Total
‘2 {3 Article "
E‘ — - ; i { 3 TotalSum
= umber _,-EI multiply = fitter P {}Totalltems
--{}H_ame) frvalue result b Benodefovy | on-true
........ {}singlePrice If:valuez baal on-falze [

Note that multiple source component data are combined into one target XML file - CompletePO

e ShortPO is a schema with an associated XML instance file and contains only customer
number and article data, i.e. Line item, number and amount. (There is only one customer
in this file with the Customer number of 3)

e Customersis a schema with an associated XML instance file and contains customer
number and customer information details, i.e. Name and Address info.

e Articles is a schema with an associated XML instance and contains article data, i.e.
article name number and price.

e CompletePO is a schema file without an instance file as all the data is supplied by the
three XML instance files. The hierarchical structure of this file makes it possible to merge
and output all XML data.

This schema file has to be created in an XML editor such as XMLSpy, it is not generated by
MapForce (although it would be possible to create if you had a CompletePO.xml instance file).

The structure of CompletePO is a combination of the source XML file structures.

The filter component (Customer) is used to find/filter the data where the customer numbers are
identical in both the ShortPO and Customers XML files, and pass on the associated data to the
target CompletePO component.

e The CustomerNr in ShortPO is compared with the Number in Customers using the

"equal" function.
e As ShortPO only contains one customer (number 3), only customer and article data for

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

240 Data Sources and Targets XML and XML schema

customer number 3, can be passed on to the filter component.

e The node/row parameter, of the filter component, passes on the Customer data to "on-
true" when the bool parameter is true, i.e. when the same number has been found, in this
case customer number 3.

e The rest of the customer and article data are passed on to the target schema through the
two other filter components.

6.1.11 Declaring Custom Namespaces

By default, when a mapping produces XML output, the namespace (or set of namespaces) of
each element and attribute is automatically derived by MapForce from the schema associated
with the target component. This is the default behavior in MapForce and is suitable for most
mapping scenarios that involve generation of XML output.

Howeer, there might be cases when you want to have more control over namespaces of elements
in the resulting XML output. For example, you may want to manually declare the namespace of an
element directly from the mapping.

To understand how this works, open the BooksToLibrary.mfd mapping available in the
<Documents>\Altova\MapForce2018\MapForceExamples\Tutorial\. Right-click the | i brary
node, and select Add Namespace from the context menu.

£

= E| File: library.xml FiIe.l'E-tr[I>
= {} liy

fifn Add Duplicate Input Before

E| O il Add Duplicate Input After
------- {}#= Remove Duplicate

b
) Move Up
"""" \t Mowe Down
b £
Comment/Processing Instruction k

Add Mamespace

Notice that two new nodes are now available under the | i br ary node: a nanespace and a
prefix.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets XML and XML schema 241

&/ library
B E| File: library.=ml File/Str
-2 {} library E
+E1 NS namespace
L pE prefix
i 4 } last_updated
-2{} publication
....... {} id
- ------- {} author
-} title
....... {} genre
i { ¥ publish_year

You can now map to them string values from the mapping. In the image below, two constants
were defined (from Insert | Constant menu command) that provide the namespace "altova.library"
and the prefix "lib":

| C=i |"ﬂrt|:| Vﬂ."brﬂr}f"*

c= [

£| books) current-dateTime &/ library
=1 [] File: books.xml File/Str resuftly &l £ File: library.xml File/Str
-21{} books -8 {} library E
L:.| £} book E| MS namespace
....... =id e Pr: prefix
. £} author - {} last_updated
- {}itle -3{} publication
------- {} category - {}id
b { Y year - ------- {} author
- {} title
....... {}genre

- {} publish_year

The result is that, in the generated output, an xm ns: <pr ef i x>="<nanespace>" attribute is added
to the element, where <pr ef i x> and <nanmespace> are values that come from the mapping (in this
case, from constants). The generated output will now look as follows (notice the highlighted part):

<?xm version="1.0" encodi ng="UTF-8"?>
<library xm ns:lib="altova.library" xm ns:xsi="http://wwm. w3. or g/ 2001/
XM_Schema- i nst ance" xsi : noNanespaceSchenmalLocati on="1li brary. xsd">

Note: Declaring custom namespaces (and the Add Namespace command) is meaningful only
for target XML components, and applies to elements only. The Add Namespace

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

242 Data Sources and Targets XML and XML schema

command is not available for attributes and wildcard nodes. It is also not available for
nodes which receive data by means of a Copy-All connection.

You can also declare multiple namespaces for the same element, if necessary. To do this, right-
click the node again, and select Add Namespace from the context menu. A new pair of
namespace and prefix nodes become available, to which you can connect the new prefix and
namespace values.

To remowve a previously added namespace declaration, right-click the ns: namespace node, and
select Remove Namespace from the context menu.

Both the nanespace and pr ef i x input connectors must be mapped, even if you provide
empty values to them.

If you want to declare a default namespace (that is, one in the format
xm ns="nydef aul t nanespace"), map an empty string value to pr ef i x. To see this case in
action, edit the example mapping above so as to make the second constant an empty string.

| C= |"E| ltova.libra ry"*

ST

| books # current-dateTime &| library
= E| File: books.xml File/Str regulktly = E| File: library.xml File/Str
“B{} books B2 {} library E
B {} book Bl NS namespace
— P prefix
- ------- {} author ------- {} last_updated
{} title - {} publication
- {} category {}id
o {yyear {} author
) title
....... {} genre

~{} publish_year

The resulting output would then looks as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<library xm ns="altova.library" xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schena-
i nstance" xsi: noNanespaceSchemalLocation="1ibrary. xsd">

If you need to create prefixes for attribute nhames, for example <nunber

prod: i d="prod557" >557</ nunber >, you can achieve this by either enabling dynamic access to
node's attributes (see Mapping Node Names), or by editing the schema so that it has a prod: i d
attribute for <nunber >.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Data Sources and Targets

HL7 Version 3 243

6.2 HL7 Version 3

Support for HL7 version 3.x is automatically included in MapForce 2018 as it is XML based.

A separate installer for the HL7 V2.2 - V2.5.1 XML Schemas and configuration files is available on
the Libraries page of the Altova website (https://www.altova.com/mapforce/download!/libraries)
Select the Custom Setup in the installer, to only install the HL7 V3 components and XML

Schemas.

Location of HL7 XML Schemas after installation:

32-bit MapForce on 32-bit
operating system,

or

64-bit MapForce on 64-bit
operating system

C:\Program Files\Altova\Common2018\Schemas\hl7v3

32-bit MapForce on 64-bit
operating system

C:\Program Files(x86)\Altova\Common2018\Schemas
\hI7v3

HL7 documents can be used as source and target components in MapForce. This data can also
be mapped to any number of XML schema components.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

https://www.altova.com/mapforce/download/libraries

Chapter 7

Functions

246 Functions

7 Functions

Functions represent a powerful way to transform data according to your specific needs. This
section provides instructions on working with functions (regardless if they are built-in to MapForce,
defined by you, or reused from external sources). Use the following roadmap for quick access to
specific tasks related to functions:

| want to... Read this topic...
Add MapForce built-in functions or e Add a Built-in Function to the Mapping
constants to the mapping e Add a Constant to the Mapping
e Search for a Function
e View a Function's Type and Description
e Add or Delete Function Arguments
Create my own functions in MapForce User-Defined Functions
Add custom XSLT functions to MapForce Importing Custom XSLT 1.0 or 2.0 Functions

View all built-in MapForce functions, or look | Function Library Reference
up the description of a specific function.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

How To... 247

7.1 HowTo...
7.1.1 Add a Built-in Function to the Mapping
To use a function in a mapping:

1. Select the transformation language (see Selecting a transformation language). Note that
the list of available functions depends on the selected transformation language.

2. Click the required function in the Libraries window and drag it to the mapping area. To
filter functions by name, start typing the function name in the text box located in the lower
part of the window:

E core -

==jaggregate functions
avyg result = |5
count result = —
max result =
min result =
string-join result =
sUMm result =

gjconversion functions
boolean result =
format-date result =
format-dateTime result =
format-number result =
format-time result =
number result =
string result =

=) file path functions
get-fileext extensic
get-folder folder =
main-mfd-filepath filepath
mfd-filepath filepath
remove-fileext result-fil
remove-folder filename
replace-fileext result-fil
rezohve-filepath result-fil

Search for funchion -
[Add/Remove Libraries. ..]
Alternatively, you can also quickly add a function to the mapping as follows:
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

248 Functions How To...

1. Double-click anywhere on the empty area of the mapping and start typing the function
name. A combo box appears with the same functions as in the Libraries window, filtered
by the text you entered. To see a tooltip with more details about each function, select
any function in the list.

con|

caore,concat

core.contains
lang.convert-to-utc
lang.milisecond-from-datetime
lang.milisecond-from-duration
lang.second-from-datetime
lang.second-from-duration

2. Select the required function, and press Enter to add it to the mapping. To close the
combo box without selecting a function, press Escape, or click anywhere outside the
box.

Note: Using the "double-click" alternative way described abowve, you can also add user-defined
functions to the mapping.

7.1.2 Add a Constant to the Mapping

Constants enable you to supply custom text or numbers to the mapping. A constant's value, as
the name implies, will remain the same for the duration of the mapping lifetime.

To add a constant to the mapping:
1. Do one of the following:

a. On the Insert menu, click Constant.
b. Right-click the mapping, and select Insert Constant from the context menu.

*! Insert Constant >

i) All other

Cance

2. Enter the value of the constant, select the data type ("String”, "Number", "All other"), and
click OK.

Alternatively, you can also quickly add a constant as follows:

1. Double-click anywhere on an empty mapping area.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions How To... 249

2. Do one of the following:
a. To add a string constant, start typing a double quote followed by the constant value.

The closing double quote is optional.

myvalue”™

b. To add a numeric constant, just type the number.
3. Press Enter.

7.1.3 Search for a Function

To search for a function in the Libraries window:

1. Start typing the function name in the text box located in the lower part of the Libraries

window.
Libraries »
E core -
=-laggregate functions
count rezult = coun
count] ¥ -
[Add/Remove Libraries...]

By default, MapForce searches by function name and description text. If you want to
exclude the function description from the search, click the down-arrow and disable the

Include function descriptions option.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

250 Functions How To...

Libraries b4
E core -
g-jaggregate functions
count result = coun

count X

l Add/Remove Librares... Include function descriptions

To cancel the search, press the Esc key or click .

The functions available in the Libraries window depend on the transformation language
currently selected, see Selecting a Transformation Language.

To find all occurrences of a function within the currently active mapping:

e Right-click the function name in the Libraries window, and select Find All Calls from the
context menu. The search results are displayed in the Messages window.

7.1.4 View a Function's Type and Description

To view the data type of a function input or output argument:

1. Make sure that the Show tips toolbar button is enabled.
2. Mowve your mouse over the argument part of a function.

m&}rpe: xsiboolean J
k]|

arg | result

To view the description of a function:

1. Make sure that the Show tips toolbar button is enabled.
2. Mowe your mouse of the function (this works both in the Libraries pane and on the
mapping area)

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions How To... 251

Result is krue iF ais equal b, otherwise False, J

7.1.5 Add or Delete Function Arguments

To add or delete function arguments (for functions where that is applicable):

e Click Add parameter (=) or Delete parameter (@) next to the parameter you want to
add or delete, respectively.

Click to delete
argument

f£ concat
3 - T
[valuel &
[value2 E

resultf;

Click to add
argument

Dropping a connection on the = symbol automatically adds the parameter and connects
it.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

252

Functions User-Defined Functions

7.2

User-Defined Functions

MapForce allows you to create user-defined functions visually, in the same way as in the main
mapping window.

These functions are then available as function entries in the Libraries window (for example,
"First_Last" in the image below), and are used in the same way as the currently existing
functions. This allows you to organize your mapping into separate building blocks which are
reusable across different mappings.

Libraries T 3X =8| userFirst_Last
core ;I
E user
=] First_Last W] valuel
51.=defaurt value !
E xsht
Hxpath functior wi| valued
go1x=ht functions fpdefault | valuediy

User-defined functions are stored in the *.mfd file, along with the main mapping.

A user-defined function uses input and output components to pass information from the main
mapping (or another user-defined function) to the user-defined function and back.

User-defined functions can contain "local" source components (i.e that are within the user-defined
function itself) such as XML schemas, which are useful when implementing lookup functions.

User-defined functions can contain any number of input and outputs where any of these can be in
the form of: simple values, or XML nodes.

User-defined functions are useful when:

e combining multiple processing functions into a single component, e.g. for formatting a
specific field or looking up a value

e reusing these components any number of times

e importing user-defined functions into other mappings (by loading the mapping file as a
library)

e using inline functions to break down a complex mapping into smaller parts that can be
edited individually

e mapping recursive schemas by creating recursive user-defined functions

User-defined functions can be either built from scratch, or from functions already available in the
mapping tab.

This example uses the Tut-ExpReport.mfd file available in the ...\MapForceExamples\Tutorial\
folder.

Creating user-defined function from existing components

1. Drag to select both the "concat" and the constant components (you can also hold down

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions User-Defined Functions 253
the CTRL key and click the functions individually).
&| mf-ExpReport | ExpReport-Target
;IL——_I { }expense-report =:p ;IEI {}Company F
------- = detailed ; H {}Employee
_______ = currency N S— e
B{}Person | - RvEluelElo e {}Hame
....... { }First result i {3 Tel
....... {}Last e 4 ¥ Ermvail
....... {} Title o { Y Domesti
------- {}Phone - { ¥ Foreign
------- { }Email = | e {}Expense
3 { }expense-itemn B {}expense
....... —_— t_',.l']]E —_— Currﬂn
....... —_— E'.lf.ptu . —_— Bi“-tﬂ
2. Select the menu option Function | Create User-Defined Function from Selection.
3. Enter the name of the new user-defined function (First_Last).
Note: valid characters are: alphanumeric, a-z, A-Z, 0-9 as well as underscore "_", hyphen/

dash "-" and colon

Use the Syntax and Detail fields to add extra information on the new function, and click

OK to confirm. The text you enter will appear as a tooltip when the cursor is placed over

the function.

The library name "user" is supplied as a default, you can of course define your own library

name in this field.

Create User-defined Function

X

~ Settings

Funiction name: IFirst_Last

Library name: Iuser

— Dezcrption

Syntas: Iresult=u:u:unu:at[string1 . zpace-char, string2]

Dietail:
them)|

Combines bwo strings and inserts a gpace character bebween

— Irmplementation

v |rlined use

The individual elements that make up the function group appear in a tab with the function
name. The new library "user" appears in the Libraries pane with the function name

"First_Last" below it.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

254 Functions User-Defined Functions
Libraries r3X =8| userFirst_Last
core ;I
E user
|=| Firzt_| ast wE| value
E rat fpdetautt |valuet by Smblame
gTixpath functior | valued Ame
gz xsht functions tpdetault | valuedly
currernt
document

elemert-svailakb
farmat-number
function-availak
generate-id
system-propert:

o
|| First_Last | ®SLT | Datsbase Guery | Output

Czi

|%)Tut—E:-l:|.'nlil'.|:|:m|.1rt.mﬁ:l"‘ J

Click the Home button to return to the main mapping window. The components have
now been combined into a single function component called First_Last. The input and
output parameters have been automatically connected.

& mf-ExpReport

------- = detailed

« |5 {}expense-report =:p

' [J) First_Last
'k #E valuet
I:* #E value3

Note that inline user-defined functions are displayed with a dashed outline. See Inline
user-defined functions for more information.

Dragging the function name from the Libraries pane and dropping it in the mapping
window, allows you to use it anywhere in the current mapping. To use it in a different
mapping, please see Reusing user-defined functions

Opening user-defined functions

To open a user-defined function, do one of the following:

e Double-click the title bar of a user-defined function component
e Double-click the specific user-defined function in the Libraries window.

This displays the individual components inside the function in a tab of that name. Click the Home

button to return to the main mapping. Double-clicking a user-defined function of a different
*.mfd file (in the main mapping window) opens that .mfd file in a new tab.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions User-Defined Functions 255

Navigating user-defined functions

When navigating the various tabs (or user-defined function tabs) in MapForce, a history is
automatically generated which allows you to travel forward or backward through the various tabs,
by clicking the back/forward icons. The history is session-wide, allowing you to traverse multiple
MFD files.

The Home button returns you to the main mapping tab from within the user-defined

function.
o .
The Back button takes you back through your history
= The Forward button mowves you forward through your history

Deleting user-defined functions from a library

1. Double-click the specific user-defined function in the Libraries window.
2. Click the Erase button in the top right of the title bar.

?__E] uzer.First_Last "ﬂ
ﬂ -

| value
étﬁefaurt |value1 ! Dw ame
wE| valled Ame

él.sdefaurt |value3 !
I

Reusing (importing) user-defined functions
User-defined functions defined in one mapping can be imported into any other mapping as follows:

1. Click the Add/Remove Libraries button at the base of the Libraries window.

2. Click Add and select the *.mfd file that contains the user-defined function(s) you want to
import. The user-defined function now appears in the Libraries window. The library name
is "user" if you created the user-defined function with the default library name. Otherwise,
look for the library name that you specified when creating the user-defined function.

2. Drag the imported function from the Libraries window into the mapping.

If the same library name is specified across multiple *.mfd files, functions from all
available sources appear under the same library name in the Libraries window.
However, only the functions in the currently active document can be edited by

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

256 Functions User-Defined Functions

double-clicking.

Note that possible changes in imported functions are applied to importing mappings when saving
the library *.mfd file.

Parameter order in user-defined functions

&| mf-ExpReport

- |E {}expense-report =
------- = detailed

------- = currency

2 {}Person

o {YLast + O First_Lasst 5
() Title I #ivaluel | inHame B
- { }Phone B v value3 :

The parameter order within user-defined functions can be directly influenced:

e Input and output parameters are sorted by their position from top to bottom (from the top
left corner of the parameter component).

e [ftwo parameters have the same vertical position, the leftmost takes precedence.

e Inthe unusual case that two parameters have exactly the same position, the internal
component ID is automatically used.

_%_ﬁ] uzer.First_Last "ﬂ
ﬂ -

| waluel
Ldetault |value1 L S Mame
| valued Gl

El.sdefaurt |valu33 !
c= 'y

Notes:

¢ The Component positioning and resizing actions are undoable.

e Newly added input or output components are created below the last input or output
component.

e Complex and simple parameters can be mixed. The parameter order is derived from the
component positions.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

User-Defined Functions 257

7.2.1

Function parameters

Function parameters are represented inside a user-defined function by input and output
components.

Input components/parameters: a, b, and

Output component/parameter: result

e tautt | F ol

_,EI logical-and

imrezutt

result
esult

Input parameters are used to pass data from the main mapping into the user-defined function,
while output parameters are used to return data back to the main mapping. Note that user-defined
functions can also be called from other user-defined functions.

Simple and complex parameters
The input and output parameters of user-defined functions can be of various types:

e Simple values, e.g. string or integer
e Complex node trees, e.g. an XML element with attributes and child nodes

wE| POLANY

By equal

wE| Aricles
== {3 articles
-3 {) Article
------- { *Humber

odefrowy | on-true ECARET
[ulal| on-falze SImE

Input parameter POATrtNr is a simple value of datatype "string"
Input parameter Articles is a complex XML document node tree

Output parameter Name is a simple value of type string

Note:
The user-defined functions shown above are all available in the
PersonListByBranchOffice.mfd file available in the ...\MapForceExamples folder.

Sequences
Sequences are data consisting of a range, or sequence, of values. Simple and complex user-
defined parameters (input/output) can be defined as sequences in the component properties

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

258 Functions User-Defined Functions

dialog box.

Aggregate functions, e.g. min, max, awg, etc., can use this type of input to supply a single
specific value from the input sequence.

When the "Input is a Sequence" check box is active, the component handles the input as a
sequence. When inactive, input is handled as a single value.

Edittoput x|

M ame: ITemperatures

— Type
" Simple wpe (integer, sting, ete.]

Liatatype: I j

% Complex tpe [tree stucture]

Stucture:; IEIHMapF-::n:eE mamplessT emperatures. xsd Choose |

Raoot: I{}T emperaturesAtdata Chaoze |

¥ Input iz required

¥ Input iz a Sequence

k. I Cancel

This type of input data, sequence or non-sequence, determines how often the function is called.

¢ When connected to a sequence parameter the user-defined function is called only once
and the complete sequence is passed into the user-defined function.

< data

mEnode oy | on-true [Calculste

fpbool on-falsely & {}data (Temperaturi ~| |2 {} vearlyStats (Tem
o = temp oo = Year
i = monith i { YMinimumTemp

L ¥MazximumTemp

-------- {} AverageTemp
[N |

) substring-before

rimg
bty

i equal

resurt?

resuft

The screenshot shows the user-defined function "Calculate" of the

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions User-Defined Functions 259

"InputlsSequence.mfd" mapping in the ...\MapForceExamples folder. The
Temperatures input component (shown below) is defined as a sequence.

wi| Temperatures i Temperatures™y early
=~ = data |2 {} YearlyStats
=temp e = Year
- =month i { yMinimumTemp

{}MaximumTemp

{} AverageTemp

e When connected to a non-sequence parameter, the user-defined function is called once
for each single item in the sequence.

Please note:
The sequence setting of input/output parameters is ignored when the user-defined
function is of type inline.

Connecting an empty sequence to a non-sequence parameter has the result that the function
is not called at all.

This can happen if the source structure has optional items, or when a filter condition returns no
matching items. To awoid this, either use the substitute-missing function before the function input
to ensure that the sequence is never empty, or set the parameter to sequence, and add handling
for the empty sequence inside the function.

When a function passes a sequence of multiple values to its output component, and the output
component is not set to sequence, only the first result is used when the function is called.

7.2.2 Inline and regular user-defined functions

Inline functions differ fundamentally from regular functions, in the way that they are implemented
when code is generated.

e The code for inline type functions is inserted at all locations where the user-defined
functions are called/used

¢ The code of a regular function is implemented as a function call.

Inline functions thus behawe as if they had been replaced by their implementation. That
makes them ideal for breaking down a complex mapping into smaller encapsulated
parts.

Please note:
using inline functions can significantly increase the amount of generated program code!
The user-defined function code is actually inserted at all locations where the function is
called/used, and thus increases the code size substantially - as opposed to using a

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

260 Functions User-Defined Functions

regular function.

INLINE user-defined functions are shown with a dashed outline:

' O] Findrticle
I i POArtHr =] «]:wHame

>3} Articles (Artis
I> -2} Article

* {YHumber

_____________"..___J

Inline user-defined functions support:
e Multiple output components within a function

do not support:

e The setting of a priority context on a parameter
e Recursive calls to an inline user-defined function

REGULAR user-defined functions i.e. non-inline functions are shown with a solid outline:

| LookupAricle
I k| ArticleHr | ErHame B

Regular (non-inline) user-defined functions support:
e Only asingle output component within a function
e Recursive calls (where the exit condition must be supplied, e.g. use an If-Else condition
where one branch, or value, exits the recursion)
e Setting a priority context on a parameter

Please note:
Although regular functions do not support multiple output components, they can be
created in this type of function. Howewer, an error message appears when you try to
generate code, or preview the result of the mapping.

If you are not using recursion in your function, you can change the type of the function to
"inline".

do not support:

e Direct connection of filters to simple non-sequence input components

e Sequence or aggregate functions on simple input components (like exists, substitute-
missing, sum, group-by, ...)

Code generation
The implementation of a regular user-defined function is generated only once as a callable
XSLT template or function. Each user-defined function component generates code for a
function call, where inputs are passed as parameters, and the output is the function
(component) return value.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions User-Defined Functions 261

At runtime, all the input parameter values are evaluated first, then the function is called for
each occurrence of the input data. See Function parameters for details about this
process.

To change the user-defined function "type":
1. Double click the user-defined function to see its constituent components.
2. Select the menu option Function | Function settings and click the "Inlined use" check
box.

User-defined functions and Copy-all connections

When creating Copy-all connections between a schema and a complex user-defined function

parameter, the two components must be based on the same schemal! It is not necessary that
they both have the same root elements howewer. Please see "Complex output components -

defining” for an example.

7.2.3 Creating a simple look-up function

This example is provided as the lookup-standard.mfd file available in the ...
\MapForceExamples folder.

Aim:
To create a generic look-up function that:
e supplies Articles/Number data from the Articles XML file, to be compared to Article
numbers of a different XML file, ShortPO in this case.

& ShortPo | CompletePo
=1 {File: ShortPO.xml O] Lookupdicle = []File: CompleteP0.xml
E| {}ShortP0 B »| ArticleHr | (»Hame B ‘B{}CompletePo
- {}CustomerHr A {} Customer
E.E {}Lineltems 3 {}Lineltems
E| {}Linettern E| {}Linetem
- {} ArticleHr -2{} Article
{} Amount {¥Humber
....... {}Hame
- {}SinglePrice
. £} Amount
i { } Price
& {} Total

e Insert the ShortPO.xsd and assign ShortPO.xml as the source XML file.
e Insert the CompletePO.xsd schema file, and select CompletePO as the root element.
e Insert a new user-defined function using the method described below.

To create a user-defined function:

1. Select the menu option Function | Create User-defined function.
2. Enter the name of the function e.g. LookupArticle.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

262 Functions User-Defined Functions

Create User-defined Funckion x|

Settingz

Function name: ILDDkUFU'-\'-TtiﬂE

Library narme; Iuser

B D ezcription |

3. Uncheck the "Inlined use" check box and click OK to confirm

— Implementation
I+ Inlired use

"Inlined uze" advizes MapForce to extract contents of this function in
all locations where wou will uze it Thiz will make generated code
longer, but iz uzually zlightly Fazter and allows to define multiple Dutputs
in one funchion.

Uncheck “lnlined use" if you want b0 call this function recursively. [F
yaou have ba return multiple values pou can till use, for example, a #ML
gtructure with multiple elements in it

A tab only containing only one item, an output function currently called "result", is
displayed.

iﬁ]user. Lookupdirticle

E c:nre ;I

=% logical functions imresul
math functions p—
string functions AL

edifact
lang
5 user

= | ookupdrticle

This is the working area used to define the user-defined function.

A new library has been created in the Libraries pane with the name "user" and the
function name "LookupArticle".

3. Click the Insert Schema/XML file icon to insert the Articles schema and select the
XML file of the same name to act as the data source.

-

4. Click the Insert input componenticon ™ to insert an input component.
5. Enter the name of the input parameter, ArticleNr in this case, and click OK.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

User-Defined Functions

263

Create Inpuk

Marne: I."lftiC'ENl‘I

x|

— Type
% Simple ype (integer, sting, etc.]

D atatype: I zhring

= Complex pe [iree stucture]

=~

StnLCtLre: |

Chonze

Boat: I

Chomze

=
X

¥ Input is required

[Input iz a Sequence

]

Cancel

This component acts as a data input to the user-defined function and supplies the input

icon of the user-defined function.

6. Insert an "equal" component by dragging it from the core library/logical functions group.

7. Insert a filter component by clicking the Insert Filter icon in the toolbar.

wE| Articlerlr

51.=defaurt ArticleMr f

& Articles
[-E1 [|File: Articles.xml [
B4} Articles
B} Article
------- { }Humber

Hy el

&

result]>

== fitter
[znodefovw | on-truele
le>b|:u:|I Dn-fﬁlﬁ&[#

Erresul

'ﬂesurt

Use the diagram below as an aid to creating the mappings in the user-defined function,

please take note of the following:

[e¢]

case "Name".

Right click the a parameter and select Priority context from the pop up menu.
9. Double click the output function and enter the name of the output parameter, in this

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

264 Functions

User-Defined Functions

wE| Articlehr

i eoual

& Articles
[L] File: Articles.xml
-3) Articles
-3 {} Article
- { }Humber

resuft

This ends the definition of the user-defined function.

Please note:

= Mame
odesrowy | on-true
ool on-false £ 58‘”"'3

Double clicking the input and output functions opens a dialog box in which you can
change the name and datatype of the input parameter, as well as define if the function is
to have an input icon (Input is required) and additionally if it should be defined as a

sequence.

This user-defined function:

e has one input function, ArticleNr, which will receive data from the ShortPO XML file.
e compares the ShortPO ArticleNr, with the Article/Number from the Articles XML

instance file, inserted into the user-defined function for this purpose.

e uses a filter component to forward the Article/Name records to the output component, if

the comparison returns true.

e has one output function, Name, which will forward the Article Name records to the

CompletePO XML file.

10. Click the Home icon to return to the main mapping.
The LookupArticle user-defined function, is now available under the user library.

Libraries

E User

= ookupitticle
= gtice
(=] wpml-ct

& ShartPo

=1 (] File: ShortPO.xml
B {}ShortP0
------- {}CustomerHr
E_| {}Lineltems

11. Drag the LookupArticle function into the Mapping window.

The user-defined function is displayed:

e with its name "LookupArticle" in the title/function bar,

e with named input and output icons.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions User-Defined Functions 265
& ShortPo | CompletePo
=1 {File: ShortPO.xml O Lookupdicle &= []Fite: CompleteP0.xml
E| {}ShortPO [#| ArticleHr | ixHame [‘B {}CompletePo
- {}CustomerHr A {} Customer
E.E {}Lineltems 3 {}Lineltems
E| {}Linettern E| {}Linetem
. {} ArticleNr B {} Article
b £} Amount - {}Humber
....... {}Hame
- {}SinglePrice
....... £} Amount
i { } Price
& {}Total
10. Create the connections displayed in the graphic below and click the Output tab to see the
result of the mapping.
E| ShortPo & CompletePC
&l [] File: ShortPo.xmi O Lookup&icle = [File: CompleteP0.xmi
E| {}ShortPO B | Articlelr | (»Hame B ‘B {}CompletePo
- {}CustomerHr & {}Customer
E| {}Lineltemns 2 {}Lineltems
E| {}Lineltem El {}Linetem
- {} ArticleHr B {} Article
e Y Amount - { }Humber
....... {}Hame
- {}SinglePrice
....... £} Amount
i { Y Price
& {}Total
7.2.4 User-defined function - example

The PersonListByBranchOffice.mfd file available in the <Documents>\Altova\MapForce2018

\MapForceExamples\ folder illustrates the following features:

¢ Nested User-defined functions e.g. LookupPerson
e Look-up functions that generate a string output e.g. LookupPerson
e Optional input-parameters which can also supply a default value e.g. the EqualAnd

component (contained in the LookupPerson component)
e Configurable input parameters, which can also double as a command line parameter(s)

when executing the generated mapping code!

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

266 Functions User-Defined Functions

wE| Officeflame

o T s |otficeniame |y

& BranchOffices

= Office

&1 [] File: BranchOffices.xml - fpnodeirovy | on-true b sl persarList
“E1{}Branchoffices fi equal S'bm' on-1alsely f (L5 F] Fite: (default)
i { YHame il I » - { }PersonList |
= {}office o 3 EI {}Person
& ¥YHame L =role
-4 ¥ EMail I -~ { ¥First
{)Fax 0| LookupPerson B {Last
- {}Phone = wi| Office_Mame | Swresult B B e {}Details
3 {YAddress I wE|First_Hame
....... {deity I wi[Last_Hame
"""" {} state
....... {}etreet
....... {}Zip
3 {}Contact
------- {first
------- {Hast

Configurable input parameters

The input component (OfficeName) receives data supplied when a mapping is executed. This is
possible in two ways:

e as acommand line parameter when executing the generated code, e.g. Mapping.exe /
OfficeName "Nanonull Partners, Inc."

e as apreview value when using the Built-in execution engine to preview the data in the
Output window.

wi| OfficeMame

m,:= T Inc_..iﬂdefauﬂ@fficemame

& BranchOffices

&1 [File: BranchOffices.xml -

-B {}Branchoffices Ty sl i
- { }Hame result
‘@ {)office

i {3 Hame

i 4 ¥ EMail

________ {}Fax O/ LookupPerzon
f3Dhana wE Office_Hame

To define the Input value:

1. Double click the input component and enter a different value in the "Value" text box of the
Preview Mode group e.g. "Nanonull Partners, Inc.", and click OK to confirm.
2. Click the Output tab to see the effect.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions User-Defined Functions 267

A different set of persons are now displayed.

Please note that the data entered in this dialog box is only used in "preview" mode i.e.
when clicking the Output tab. If a value is not entered, or the check box is deactivated,
then the data mapped to the input icon "default" is used.

Please see Input Components for more information.
Editput x|

Mame: IfoiceN ame

D atatype: Istring j

Freview Settings

v Specify value

W ale; INanDnuII Partners Inc.

| k. I Cancel

LookupPerson component

| LookupPerson
I> wi| Office_Hame fvresult [
i+ wi|Firgt_Hame
L wE Last_Hame

W

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

e Compares the Office, First, and Last names of BranchOffices.xml, with the same fields of the
Altova_Hierarchical.xml file, using the input components and the EqualAnd user-defined
components.

e Combines the Email, PhoneExt and Title items using the Person2Details user-defined
function

e Passes on the combined person data to the output component if the previous EqualAnd
comparisons are all true (i.e. supplied "true" to the filter component).

A user-defined function always outputs a value, which may even be an empty string! This would be
the case if the filter component bool value is false. Only an empty string would be output instead
of data supplied by the Person2Details component.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

268 Functions User-Defined Functions

wE| Office_hlame
Ledetault | Office_Mame | Eqqualnd

| 3HF] ivresult |
| @wp —

i wiland

{} Address
B {}Department
;-------{)Prim_aryﬂey we| First_Mame [ErE——_—
- {)Foreignkey tetefaut [First_hame vila inresult |
i { YHame -
i # wilb
‘2 {}Person | ijand
i { ¥ PrimanyKey ui Last_Mame -an | Equal&nd
-{ ¥ForeignKey " H frresult B
- { YEMail
-{}First O] PerzonzDetails
-{¥Last - -
] EnDetails B -
-{}PhoneExt F Details —
= - = et K £ It
- e {3 Title - Jenoclesirony | an-true ke ERresu
It »{Phone ool on-falzelp —result

e The three input components, Office_Name, First_Name, Last_Name, receive their data
from the BranchOffices.xml file.

e The EqualAnd component compares two values and provides an optional comparison
value, as well as a default value.

e Person2Details combines three person fields and passes on the result to the filter
component.

EqualAnd component

wi| Office_Mame
cdefault |Offiu:e_NameQ | EqualAnd

wi|a ivresult B
a_Hierarchical ?Jh—
{}Fﬂ“ [|7 ET:- ﬁaand

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

e Compare two input parameters a and b, and pass the result on to the logical-and component.
Note that the b parameter has been defined as the priority context (right click the icon to do
s0). This ensures that the person data of the specific office, supplied by the input parameter
a, is processed first.

e Logical-and the result of the first comparison, with an optional input parameter, "and".

e Pass on the boolean value of this comparison to the output parameter.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions User-Defined Functions 269

wEl &

7
; F el
fpoletautt |aly fiy logical-and Ewresult
= resurtT e
: aluel Ll
LH]:] E result esul
irdefaut Jobh e

| and

Eefaurt and!

Optional parameters
Double clicking the "and" parameter, of the EqualAnd user-defined function shown abowve, allows
you to make parameters optional, by unchecking the "Input is required" check box.

L wE| Office_Mame

r IFiput is required Tﬁefauﬂl@ffice_ﬁlame? | Equalsnd
_ . wia iwresult b
[Inputiz a Sequence 2 Herarchical évjh— L
{}FEH [|> ;T:- ha and

If "Input is required" is unchecked, then:

e A mapping connector is not required for the input icon of this user-defined function, e.g. the
and parameter of the first EqualAnd function, does not have an input connector. The input
icon has a dashed outline to show this visually.

e A default value can be supplied by connecting a component, within the user-defined function
e.g. using a constant component containing the value "true".

LN
ddetault |b
| and
default [and

e A mapping from another item, mapped to the optional Input, takes precedence over the default
value. E.g. the "and" parameter of second EqualAnd function, receives input data from the
"result" parameter of the first EqualAnd user-defined function.

Person2Details component

[Person2Detailz

| Title inDetails [
2 | EMail

i #EPhone

b

Double clicking this user-defined component displays its constituent components shown below.
What this component does is:

e Concatenate three inputs and pass on the result string to the output parameter.
e Double clicking an output parameter allows you to change the parameter name (Details), and
select the datatype (String).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

270 Functions User-Defined Functions

wi| Title

él.sdefaurt T'rtle!

wi| EMail

Efdefaurt Ehﬂail!

_'EI concat

i Details:

@etails

result i

wi| Phaone

Etdefaurt F‘hu:une!

7.2.5 Complex user-defined function - XML node as input

This example is provided as the lookup-udf-in.mfd file available in the ...\MapForceExamples
folder. This section illustrates how to define an inline user-defined function that contains a
complex input component.

Note that the user-defined function "FindArticle" consists of two halves.
The left half contains the input parameters:

e asimple input parameter POATrtNr
e acomplex input component Articles, with mappings directly to its XML child nodes

The right half contains a simple output parameter called "Name".

| & compietero

& ShortPo .
D File: ShortPO.AmI EI E| File: CompleteP0.xml
E| : E A {}CompletePO
‘3 {}ShortPO
B {¥Customer
{}CustomerHr Co { YHumnber
E| {}Linelems {}FirstHame
E| {}Lineltem {¥LastHame
é.......::::]::rtm:lu‘.nr"ltr L@ O Address
mou e SRy SR -8 {}Lineltems
' O] FindArticle '3 (ILineltem
_ I »Z POATtHr imHame L E-E| {} Article
| & articles [?E] {} Articles (Articl : - {}Humber
2 []File: Articles.xmil B -3 {) Article ; -~ {}Hame
E {} Articles Ib {}HLIITIDET E {}SingIePrice
E| {} Article > i {}Hame ; - { ¥ Amount
i ¥Humber Ip {}SinglePrice E - {}Price
{}Hame i E - {}Total
__________________ &

{}SinglePrice

The screenshot below shows the constituent components of the user-defined function, the two
input components to the left and the output component to the right.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions

User-Defined Functions

271

E'EI uzer.FindAricle

wi| POMANMY

E.[a:iefaurt F‘O.ﬂ-.rtNr! i, equal
1|

result
wi Articles E_T b

L { } SinglePrice

|3 {} Articles Bnodefrow | on-truely
2 EI {} article tphaol on-false[}
- {}Humber
- {}Hame

i plame

ame

7.25.1 Defining Complex Input Components

Follow these steps to create a function that takes an XML structure as input parameter:

1. Create a user-defined function in the usual manner, i.e. Function | Create User-Defined
function and click OK to confirm. Note that the Inlined use check box is automatically

selected.

— |mplementation

v |rlined uze

"Inlined uze" advizes MapForce to exstract contentz of this function in
all lozations where you will uze it Thiz will make generated code
longer, but iz uzually zlightly Faster and allows to define multiple Outputs
it one function.

Uncheck "Inlined wuze" if you want bo call thiz function recursively, [f
wan have tareturn multiple values you can still uze, for example, a =ML
gtructure with multiple elements in it

-

2. Click the Insert input component icon " in the icon bar.
3. Enter the name of the input component into the Name field.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

272 Functions User-Defined Functions

Create Input x|

M arme; I.-'l‘-.rticles

— Type
= Simple pe [integer, sting, ete.]

[atatype: I j

£ Complex tpe [ree strusture]

Structure: II::"-.D ocuments and Settingzhhypihy Docu Chaoze |

Baat: | Diaricles Choose

¥ Input iz required
¥ | Input iz a Sequence

k. I Cancel

4. Click the Complex type (tree structure) radio button, then click the "Choose" button
next to the Structure field. This opens another dialog box.

The top list box displays the existing components in the mapping (three schemas if you
opened the example mapping). Note that this list contains all of the components that
have been inserted into the active mapping: e.g. XML schema file.

The lower list box allows you to select a new complex data structure i.e. XML Schema
file.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions User-Defined Functions 273

x

Chonze an exizting structure or a new structure tpe ta insert:

% |nzert an existing structure as a parameter:

Filename ! Connection Path ! Description
& CompletePo x=d ChDocuments and Settingshyinly Document=istoyaibdapFo
'Ej ShortPO xad ChDocuments and Settingshyiby Documerts\Atowa tWapFo
'Ej Aicles xzd ChDocuments and Settingzhlyihly Documentz\AtovahlapFar

[~

" Inzert a new stucture of the one of the following types:

Ej ¥hL Schema Structure
B Databaze Structure

i EDl Structure

El FlexText Structure

5. Click "Insert a new structure... " radio button, select the XML Schema Structure entry,

and click OK to continue.
6. Select Articles.xsd from the "Open" dialog box.
7. Click the element that you would like to become the root element in the component, e.g.

Articles, and click OK, then OK again to close both dialog boxes.

x

Pleaze choose a roat item far the parameter:

{} Article -
= {} Articles

B {} Article

- { ¥Humber

- {¥Hame

i ¥ SiNglePrice

{} ArticleType

" o

¥ Show annotations

[~ Show types 0k I Cancel |

&

The Articles component is inserted into the user-defined function. Please note the input
icon £ to the left of the component name. This shows that the component is used as a

complex input component.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

274 Functions

User-Defined Functions

wE| Articles
(= |3 {} Articles
B4} Article
....... {}Humher

[-]

8. Insert the rest of the components as shown in the screenshot below, namely: a second
"simple" input component (called POATrtNr), filter, equal and output component (called

Name), and connect them as shown.

gﬁl uzer.FindAricle

wE| PO

El.sdefaurt F‘O.ﬂ-.rtNr! E ezl

result
wi| Aticles E_T b

L} SinglePrice

;|E| {} Articles Bnodefrow | on-truely
EEI {} Article bl on-false [
- { }Humber
- {}Hame

implame

ame

e The Articles input component receives its data from outside of the user-defined function.
Input icons that allow mapping to this component, are available there.
e An XML instance file to provide data from within the user-defined function, cannot be

assigned to a complex input component.

e The other input component POATrtNr, supplies the ShortPO article number data to which

the Article | Number is compared.

e The filter component filters the records where both numbers are identical, and passes

them on to the output component.

10. Click the Home icon to return to the mapping.

11. Drag the newly created user-defined component from the Libraries pane into the mapping.

Libraries
left result = leftl str;l
E uger
= | FindArticle =
Add Libraries. .
IE Libraries l IE5 Project ‘

12. Create the connections as shown in the screenshot below.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions User-Defined Functions 275

T | Com-pletePO
FlFile: ShortPOmmi EI] File: CompletePO.xml
E‘ {}Sl:u il - “H {}CompleteP0
E| o = {}Customer
{}CustomerHr ‘. { YHumnber
B {}Lineltems -{}FirstHame
E| {}Lineltem -{}LastHame
g :'—t“:'e:tr {} Address
mou S s-r~ S = {}Lineltems
' O] FindArticle : ‘B {ILinettemn
_ B nE| POACtHr imHame s E-E| {} Article
| 8| Articles [>E {} Articles (Artic| ; - { }Humber
E| {"] File: Articles.xml [j? E‘ {} Article E . {}Hame
= {2 articles b - {}Humber E - {}SinglePrice
“E1{) Article b {}Hame ! :
& { ¥Humber B {}singlePrice ;
- {YHame : : B {}Total
i ¥SinglePrice ' dl

The left half contains the input parameters to which items from two schema/xml files are mapped:

e ShortPO supplies the data for the input component POArtNr.

e Articles supplies the data for the complex input component. The Articles.xml instance
file was assigned to the Articles schema file when the component was inserted.

e The complex input component Articles with its XML child nodes, to which data has been
mapped from the Articles component.

The right half contains a simple output parameter called "Name", which passes the filtered line
items which have the same Article number to the "Name" item of CompletePO.

1 =7xml verzion="1 0" encoding="UTF-&"7=
2 =CompleteP O xmins: si="hitp eeweny w3 orgf 2001 MLSchema-instance”
3 =Lineftems:=
4 =Linetemns=
5 =&ricle=
B { ahumber=S=hlumbers
7 | =Mame=Parts=Mame=
g {=Amourt=S=itmourts
9 =iicle=
10 =lLineftern=
11 =Linetetn=
12 =Aticle=
13 i ahumber=1=humbers=
14 i =Mames=T-Shit=Mame=
15 i =dmount=1T=itmount=
16 =iaHicle=
17 =lLineftern=
18 =iLinetems:=
19 =fcompleteP o=

Note: When creating Copy-all connections between a schema and a user-defined function
parameter, the two components must be based on the same schema. It is not necessary
that they both have the same root elements however.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

276 Functions

User-Defined Functions

7.2.6 Complex user-defined function - XML node as output

This example is provided as the lookup-udf-out.mfd file available in the ..\MapForceExamples

folder. What this section will show is how to define an inline user-defined function that allows a
complex output component.

Note that the user-defined function FindArticle consists of two halves.

A left half which contains the input parameter:
e asimple input parameter POArtNr

A right half which contains:
e acomplex output component Article (CompletePO) with its XML child nodes mapped to

7.2.6.1

CompletePO.
& ShortPO s - & CompletsPO
& [IFile: ShortPO.xml + Bl FindArticle ; =1 [IFile: CompletePO.xn
‘B {)ShortPo I# 11| POATtHr & {}Article (Complete -3 {) CompletePO
- {}Customerhr . o {¥Humber & {}Customer
E| {}Lineltems ' e {}Hame H {}Lineltem=
& {JLinettem : - {}SinglePrice ‘B {}Linekem
....... {} ArticleNr E E {} Amount E| £} Article
- {) Amount ‘o { ¥Price b _______ {YHumber

& {} Total

The screenshot below shows the constituent components of the user-defined function, the input
components at left and the complex output component at right.

wi| POAMN
| henel| rey—
. = t £ CompletePO
& Articles odedrove | on-true 5 () Article
| {_ | File: Article=.xmil ool nn-false[# f { YHumber
-3 () Articles i { YHame
B {l::;.rticle jﬁl mttiply - {}SinglePrice
(- Humber sl -
- {}Name E 2 resut | g:m“““‘
v auez2 | T e i e ricE
-------- {}SinglePrice

Defining Complex Output Components

Follow these steps to create a function that returns an XML structure as output parameter:

1. Create a user-defined function in the usual manner, i.e. Function | Create User-Defined

function name it FindArticle, and click OK to confirm. Note that the Inline... option is
automatically selected.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions User-Defined Functions 277

— Implementation
v |rlined Lze

"Inlined uze" advizes MapForce to estract contents of this function in
all lazations where you will use it Thiz will make generated code
longer, but iz uzually zlightly faster and allows to define multiple Outputs
it one function.

ncheck "Inlined wuze if you want bo call thiz function recursively. [f
wau have tareturn multiple values you can still use, for example, a <ML
stucture with muliiple elements in it

—
Am

2. Click the Insert Output icon in the icon bar, and enter a name e.g. CompletePO.

Create Output - El

Mame: IEDmpIeteF'EI

— Type
™ Simple twpe [integer, sting, etc.]

D atatype: I zhring j

% ‘Complex twpe [tree stucture}

Shiucture; | Choose

_ Chose |
Boat: | Chooze |

¥ | Dutput iz a Sequence

[F I Cancel |

3. Click the Complex type... radio button, then click the "Choose" button.
This opens another dialog box.

The top list box displays the existing components in the mapping, (three schemas if you
opened the example file). Note that this list contains all of the components that have been
inserted into the active mapping: e.g. XML Schema file.

The lower list box allows you to select a new complex data structure i.e. XML Schema
file.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

278 Functions

User-Defined Functions

x|

Chooze an existing structure or a new stiucture bpe ba ingert;

% |nsert an existing structure a3 a parameter:

Filename ! Connection

Path ! Description
ChDocuments and Settingsbdyihdy Documentsiatovaibiap

@ ShortPO x=d
'Ej CampleteP O xzd
'Ej Articles xad

ChDocuments and Settings\hyihdy Documents\Aovaihblap
ChDocuments and Settings\Wyihdy Documents\Aovaihblap

[~

" Inzert a new structure of the one of the fallowing wpes:

Eﬂ WL Schema Structure
A Database Structure

N E0N Structure

Bl FlexText Structure

k. I Cancel

4

and click OK to continue.

Click "Insert new structure... " radio button, select the XML Schema Structure entry,

5. Select the CompletePO.xsd from the "Open" dialog box.

Click the element that you would like to become the root element in the component, e.g.

Article, and click OK, then OK again to close the dialog boxes.

Choose Root Ikem X

Pleaze choose a roat item for the parameter:

{}Article
=1 {} CompletePo
@ {}Customer
E-E_l {}Linettems
El {}Linettem
B4} Article
....... {}Humher

- {}SinglePrice
. {}Amount
i { YPrice

{}Customer

LI._

¥ Show annatations

[T Show types

The CompletePO component is inserted into the user-defined function. Please note the

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions

User-Defined Functions 279

7.

9.

output icon E* to the left of the component name. This shows that the component is used
as a complex output component.

EmCompletePO

= |21 {3 Article
....... {¥Humber

------- {}singlePrice
. {} Amount

LI - {}Price

Insert the Articles schema/XML file into the user-defined function and assign the
Articles.xml as the XML instance.

Insert the rest of the components as shown in the screenshot below, namely: the
"simple" input components (POATrtNr), filter, equal and multiply components, and connect
them as shown.

wi| POAMNY

B equal

M Em CompletePO
5| Articles odefrow | on-true = () Article
[::>|$_| E| File: Articles.xmil oal DI‘l-fE|SE|:|LJ ------ {}Humber
E| {} Articles - {}Hame
L3 {} Article _'E, muitiply ------- {}singlePrice
~{ ¥Humber E}aalum e - {} Amount
- {)Name pralue2 resu T o { Y Price
- { 3 SinglePrice =

The Articles component receives its data from the Articles.xml instance file, within the
user-defined function.

The input components supply the POATrtNr (article number) and Amount data to which the
Articles | Number & Price are compared.

The filter component filters the records where both numbers are identical, and passes
them on to the CompletePO output component.

Click the Home icon . to return to the mapping.

10. Drag the newly created user-defined component from the Libraries pane into the mapping.

Libraries

left result = leftl str;l

E uzer

= | FindArticle —

Add Libraries...
IE Libraries l =5 Project ‘

11. Create the connections as shown in the screenshot below.

Having created the Article (CompletePO) connector to the target, right click it and select

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

280 Functions User-Defined Functions

"Copy-all" from the context menu. The rest of the connectors are automatically
generated, and are highlighted in the screenshot below.

| & shortpo f e emeeeemeemeeeoaeoas \ [& completero
& [File: ShortPO.xml Ol FindArticls ; O [File: CompletePO.xn
@ {}shortPo 01| POATtHY = {} Article {Completef -3 {)CompletePo
‘e {}Customerlr ' - {¥Humber : & {} Customer
§.r;| {)Linelterns -{}Hame ; B {}Linetterns
E.E.! {}Lineltemn I - {)SinglePrice EE‘ {ILinektem
e {} ArticleHr | b {} Amount : ‘B {} Article
i ¥ Arnount Lo {3 Price : e { YHurnber
--- ¢ -{}Hame
{}SinglePrice
- {} Amount
v { Y PriCe
- {} Total
Please note:

When creating Copy-all connections between a schema and a user-defined function of type
"Inline", the two components must be based on the same schema. It is not necessary that they
both have the same root elements however.

The left half contains the input parameter to which a single item is mapped; ShortPO supplies the
article number to the POArtNr input component.

The right half contains a complex output component called "Article (CompletePO)" with its XML
child nodes, which maps the filtered items, of the same Article number, to CompletePO.

1 =7xml version="1.0" encoding="UTF-53"7=
2 =CompleteP D cmins: xsi="htp Seewewe e orgf2001 HMLSchema-instance" =i noMamespacs
3 =Linetems=

4 =Lineftem=

5 =&ticles

g | =Mumber=3=Mumber=

7 | =hames=Pantz=Mames:

g =ainglePrice=34=/zinglePrice=
g i =Price=102=/Price=

10 =iaicles

11 =lLinetem:=

12 =Linettetn=

13 =&ticle=

14 | =humber=1 =hlumbers

15 | =Mame=T-Shirt=Tame=

16 ==inglePrice=25=iSinglePrices=
17 | =Price=25 Frices

18 =rAHicle=

7.2.7 Recursive user-defined mapping

This section will describe how the mapping RecursiveDirectoryFilter.mfd, available in the ...
\MapForceExamples folder, was created and how recursive mappings are designed. The
MapForceExamples project folder contains further examples of recursive mappings.

The screenshot below shows the finished mapping containing the recursive user-defined function

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

User-Defined Functions 281

FilterDirectory, the aim being to filter a list of the .xml files in the source file.

| Directary | Directary
= |= £ File: Directory.xmil> | Ol FiterDirectory >~ |3 £ File: (default)
E| {}directory P (directory (directon ~| < |3 (Jdirectory (directorye & E| {}directory
- = name P - =name i = name [i = MAME
@ (}ile @ {)ile - {}ile

@ {}directory @ { ydirectory ‘@ { ydirectory

14

..... wi|SearchFor LI LI

wE| SearchFor

!]; l%; &) file
@ {}directory
=

default |SearchF|:ur [8

ot

The source file that contains the file and directory data for this mapping is Directory.xml. This
XML file supplies the directory and file data in the hierarchical form you see below.

24
25
2B
27
2
29
30
31
32
33
34
35
36
37
Ja
39
40
41
42
43
44

=directory name="output"=

=file name="examplesitel.css" size="3174"/=

=directary name="images">

- <file narme="blank.gif* size="88"/>
<file name="block_file.gif" size="13173"/>
<file name="block_schema.qgif" size="9211"=
<file name="nav_file.gif" size="B03E5"/>

¢ =file name="nav_schema.gif" size="6002"/>

<fdirectary=

<fdirectory

=</directory=

=directory name="lmpart">

=file name="altova.mdh" size="266240"/>

=file name="Data_shape mdb" size="225280"/=>

</directary=

=directory name="Industry 3tandards"=

=directary name="Mews">

L «file narne="high-tide.jpy" size="10793"/>
=file name="MNewsml-example xml" size="5004"/>

 =file name="nitkexample. xml" size="227"/>

=/directory=

The XML schema file referenced by Directory.xml has a recursive element called "directory"
which allows for any number of subdirectories and files below the directory element.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

282 Functions User-Defined Functions

B sttricutes

B sttrivutes

——

ﬁIE = : name |

P
SR =
i

:

0..m

|

1
[
I.__:_p".} I'.:_

7.2.7.1 Defining a recursive user-defined function
Follow these steps to create a recursive user-defined function:

1. Select Function | Create User defined Function to start designing the function and
enter a name e.g. FilterDirectory.

2. Make sure that you deselect the Inlined Use check box in the Implementation group, to
make the function recursive, then click OK.

~ Implementation

"Inlined uze'" advizes MapForce to extract contentz of this function in
all locations where you will uze . Thiz will make generated code
longer, but iz uswally slightly faster and allows to define multiple Outputs
if one function.

Uncheck “lnlined uze" if you want ko call thiz function recursively. [f
wou have to returm multiple values you can still uze, for example, a =ML
ghiucture with multiple elements in it

You are now in the FilterDirectory window where you create the user-defined function.

Select Function | Insert Input to insert an input component.

4. Give the component a name e.g. "directory” and click on the Complex Type (tree
structure) radio button.

w

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions User-Defined Functions 283
Create Input 3
Mame: Idireu:tu:ur_l,l
~ Type
" Simple twpe [integer, sting, etc.]
Dratatype: I ztring j
* Complex lype [ree stucture]
Structure: II::"-.DD-:uments and Settingzbdpbdy Docu
Hont: I Choose |
5. Click the Choose button, click the "XML Schema Structure” entry in the lower pane, then
click OK.
& Create Input ! x|
Choose an existing skruckure or a new skruckure bype bo insert:
" Insert an existing struckure as a parameter:
Filename ! Connection Path ! Description ﬂ
f+ Insert a new struckure of the one of the Fallawing bypes:
@ *ML Schema Structure
[l Database Structure
tl EDN Structure
Ell FlexText Structure
(04 I Cancel
A
Select the Directory.xsd file in the ...\MapForceExamples folder and click the Open
button.
Click OK again when asked to select the root item, which should be "directory” as shown
below.
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

284 Functions

User-Defined Functions

Pleaze chooze a root item for the parameter;

&4 Choose Root Ttem

= {}directory
------- = name

' {}ile

@ {}directory

8. Click OK again to insert the complex input parameter.
The user-defined function is shown below.

Eﬁl uzer.Filterliracton

w2 directory

;IE_l { }directory
....... = name
'El {}file

- = name

e S gize
‘@ { }directory

||

Emresyutt

Iﬁesuﬂ

9. Delete the simple result output component, as we need to insert a complex output

component here.

10. Select Function | Insert Output... to insert an output component and use the same
method as outlined above, to make the output component, "directory"”, a complex type.

You now have two complex components, one input and the other output.

11. Select Function | Insert Input... and insert a component of type Simple type, and enter
a name e.g. SearchFor. Deselect the "Input is required" check box.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions

User-Defined Functions 285

E’ﬁl uzer.Filterlirecton

| directory
+|= O directory
....... —_— name

'El {}file

[-]

{ }directory

wE| SearchFor
ipdefaul |Searn:th:nr|:;

Emdirectory
-« |3 {}directory

Inserting the recursive user-defined function

At this point, all the necessary input and output components have been defined for the user-
defined function. What we need to do now is insert the "unfinished" function into the current user-
defined function window. (You could do this at almost any point howewer.)

1. Find the FilterDirectory function in the user section of the Libraries window.
2. Click FilterDirectory then drag and drop it into the FilterDirectory window you have just

been working in.

=8 user.FilterDirectory_

core — I

lang
E user

=| FiterDirectory

5 xbrl

xhrl-measure-currencres
shrl-measure-pure res
xhrl-measure-shares res

AF=—"]

| directory
;IEJ {}directory

P = MIAIMTIE

[|

wE| SearchFor
pdletaut |Sear|:hF|:ur[:f

The user-defined function now appears in the user-defined function window as a recursive

component.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

286

Functions

IS

Eﬁl uzer.FilterDirectony_

Evdirectory
= |2 {}directo

wE| directory
=3 {directory

O FikerDirectary

‘@ { ydirectory “H {Jdirect

& {}directory (directory) -] ;|5 {}directory (directory

LI = name

2 {Hile

fe = MAME

@ {}directory

[N

‘@ {}directory
----- wE|SearchFor

wi| SearchFor
isietaut

Connect the directory, name and file items of the input component to the same items
in the output component.

Right click the connector between the file items and select "Insert Filter" to insert a filter
component.

Right click the on-true connector and select Copy-All from the context menu.

The connectors change appearance to Copy-All connectors.

| directory Emdirectory
ﬂE {}directory ;|E| { }directory|
e = nAMmeE o = name
= file B {}ile
Priodefow | on-trug - =name
[:>b|:u:|l Dn-false[# =size
;I ‘@ {}directo
[FiterDirectory
wE| SearchFar = {}directory (directury};l ;IE_l {}directory (directory]
thefautt | SearchForly ; - =name - = name ?
P %oy P SN oy

Insert a Contains function from the Core | String functions library.
Connect name to value and the SearchFor parameter to substring, then result to the
bool item of the filter.

Altova MapForce 2018 Basic Edition

User-Defined Functions

© 2018 Altova GmbH

Functions User-Defined Functions 287

E’ﬁl uzer.Filterlirectony_

| directory Erbdlirectary
=z Ordirectory -« |= {rdirectory
....... = name = file ------- = name
= {ile fnode/row | on-truely B {ile
: = name Bl on-falsely
E =gize e = gize
- @ { }directory fiy contains @ {rdirectg
w
alue
- resurtT
Libstring
wE| SearchFor
e tautt| SearchFor i 0| FiterDirectory

I°E] {}directory (directory) «| |3 {}directory (director]

8. Connect the SearchFor item of the input component to the SearchFor item of the user-
defined function.

Defining the recursion

At this point, the mapping of a single directory recursion level is complete. Now we just need to
define how to process a subdirectory.

Making sure that the Toggle Autoconnect icon is active in the icon bar:
1. Connect the lower directory item of the input component to the top directory item of the
recursive user-defined function.

| directory EL AT
B £ ¥ directory

- name

{}ile = file
= name erodeiow | an-trugly

- ==ize :
[{}directory fiy contains ipool on-falsely

alue
- resurtT
ubstring
wE| SearchFor
- iefaut [SearchFor FM

& {}directory (directory)|E {}directory (directory

' {}ile
‘@ { }directory
----- wi| SearchFor

2. Connect the top output directory item of the user-defined function to the lower directory
item of the output component.

3. Right click the top connector, select Copy-All from the context menu and click OK when
prompted if you want to create Copy-All connection.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

288 Functions User-Defined Functions

i directory
= == {}directory
i = nrarme
defk -t
Prodeiow | ontruely a0 file
*lcu:n:ul Dn-false[# —_
{ e S RAMe
=zize
A {}directory
": —_— name
— {}ile
ary P
e 22 (A
ry (directory) « | ﬂEl {}directory (directory jd I —
: i = name
'E| {}file
e i = mame
B —_— size
tory ‘@] { ydirectory

For ;I ;I

This completes the definition of the user-defined function in this window.

Click the Return to main mapping window icon, to continue defining the mapping
there.

Main Mapping window

1. Drag the FilterDirectory function from the user section of the Libraries window, into the

main mapping area.
2. UseInsert | XML Schema file to insert Directory.xsd and select Directory.xml as the

instance file.

3. Use the same method to insert Directory.xsd and select Skip, to create the output
component.

4. Insert a constant component, then a Input component e.g. SearchFor.

5. Create the connections as shown in the screenshot below.

6. When connecting the top-level connectors, directory to directory, on both sides of the
user-defined component, right click the connector and select Copy-All from the context

menu.
| 88| Directaory | | & Directaory
= |2 E]File: Directory.xmil> | Il FiterDirectory = [= []File: tdefautt)
‘B {directory kG {}directory (directon «| = |3 {}directory (directon)® & {}directory
- =name B =name i = name [8 ~ = name
i@ { Hile @ {Hile @ {}ile @ () fite
‘@ { }directony @ {}directory @ { }directory @ { }directory
LI ----- wf|SearchFor LI
- I i
v SearchFor
!-defauﬂlSearchFDrlr
=
7. Click the Output tab to see the result of the mapping.
© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

Functions User-Defined Functions 289

Notes:

Double clicking the lowest "directory" item in the Directory component, opens a new level of
recursion, i.e. you will see a new directory | file | directory sublevel. Using the Copy-all
connector automatically uses all existing lewvels of recursion in the XML instance, you do not need

expand the recursion levels manually.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

290

Functions Importing Custom XSLT 1.0 or 2.0 Functions

7.3

Importing Custom XSLT 1.0 or 2.0 Functions

You can extend the XSLT 1.0 and 2.0 function libraries available in MapForce with your own
custom functions, provided that your custom functions return simple types.

Only custom functions that return simple data types (for example, strings) are supported.

To import functions from an XSLT file:

1. Onthe Tools menu, click Options. (Alternatively, click Add/Remove Libraries in the
lower area of the Libraries window.)
2. Next to Libraries, click Add and browse for the .xsl or .xslt file.

Imported XSLT files appear as libraries in the Libraries window, and display all named templates
as functions below the library name. If you do not see the imported library, ensure you selected
XSLT as transformation language (see Selecting a Transformation Language).

Note the following:

¢ To be eligible for import into MapForce, functions must be declared as named templates
conforming to the XSLT specification in the XSLT file. You can also import functions that
occur in an XSLT 2.0 document in the form <xsl : f uncti on nanme="M/Functi on">. If the
imported XSLT file imports or includes other XSLT files, then these XSLT files and
functions will be imported as well.

¢ The mappable input connectors of imported custom functions depends on the number of
parameters used in the template call; optional parameters are also supported.

e Namespaces are supported.

e [f you make updates to XSLT files that you have already imported into MapForce,
changes are detected automatically and MapForce prompts you to reload the files.

¢ When writing named templates, make sure that the XPath statements used in the
template are bound to the correct namespace(s). To see the namespace bindings of the
mapping, preview the generated XSLT code.

Datatypes in XPath 2.0

If your XML document references an XML Schema and is valid according to it, you must explicitly
construct or cast datatypes that are not implicitly converted to the required datatype by an
operation.

In the XPath 2.0 Data Model used by the Altova XSLT 2.0 Engine, all atomized node values from
the XML document are assigned the xs: unt ypedAt om ¢ datatype. The xs: unt ypedAt om ¢
type works well with implicit type conwersions.

For example,

e the expression xs: unt ypedAt om c("1") + 1 results in a value of 2 because the
xdt : unt ypedAt oni ¢ value is implicitly promoted to xs: doubl e by the addition
operator.

e Arithmetic operators implicitly promote operands to xs: doubl e.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions Importing Custom XSLT 1.0 or 2.0 Functions 291

e Value comparison operators promote operands to xs: st ri ng before comparing.

See also:

Example: Adding Custom XSLT 1.0 Functions
Example: Summing Node Values

XSLT 1.0 engine implementation

XSLT 2.0 engine implementation

7.3.1 Example: Adding Custom XSLT Functions

This example illustrates how to import custom XSLT 1.0 functions into MapForce. The files
needed for this example are available in the <Documents>\Altova\MapForce2018
\MapForceExamples\ directory.

e Name-splitter.xslt. This XSLT file defines a named template called "tokenize" with a
single parameter "string”. The template works through an input string and separates
capitalized characters with a space for each occurrence.

2 =xzlstvleshest version="1 0" xminz: xsl="http ey e 3 orgM 999X SLIMransfarm
3 =xsloutput method="xml" verzion="1 0" encoding="UTF-3" indent="yez"=
4
5 xzltemplate match="*"=
& { =zl for-sach select=""=
7 =xzlcalltemplate name="tokenize"=
g { =ushwith-param name="string" select=""/=
9 io=lslcall-templates
10 i =faslfor-sachs
11 =resltemplates
12
13 =xsltemplate name="tokenize"=
14 =%zl param name="string" select=""r=
15 P oawslvariable name="caps" select="tranzlate $string, -abcdefghikimnopgrstu
16 i ewslvariable name="capscount” select="string-lengthicaps)"=
17 =xzlvariable name="token"=

e Name-splitter.xml (the source XML instance file to be processed)
e Customers.xsd (the source XML schema)
e CompletePO.xsd (the target XML schema)

To add a custom XSLT function:

1. Select XSLT as transformation language (see Selecting a Transformation Language).

2. Click the Add/Remove Libraries button, in the lower area of the Libraries window.
Alternatively, on the Tools menu, click Options, and then select Libraries.

3. Click Add, and browse for the XSL, or XSLT file, that contains the named template you
want to act as a function, in this case Name-splitter.xslt.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

292 Functions Importing Custom XSLT 1.0 or 2.0 Functions

Options @
Libraries Libranes
General .
Editing i A\UsershatovahDocuments \AtovatMapForce 201 6 \Map Force Bamples \Namespli; - Add

Messages

4. Click OK. The XSLT file name appears in the Libraries window, along with the functions
defined as named templates (in this example, Name-splitter with the t okeni ze function).

Librares » O X
core -+
5 Name-splitter
tokenize result = tokenize([string] }
5 xslt
gz =path functions
lang result = lang(string §
last result = last) =
lpcal-name result = local-name(node)
names result = name(node)
namegpace-uri rezult = namespace-uril nod
position result = position(}

To use the XSLT function in your mapping:

1. Drag the t okeni ze function into the Mapping window and map the items as show below.

t3| Customers i tokenize ts| Completel

& Cust) tokeni &| CompletePO

=] ﬂ File: Name-splitter. XML File/String -string|re3ultl =] E| File: CompletePO.xml File/String
‘2 {} Customers ' ‘5 {} CompletePO

B {} Customer
~{} Humber
- {} Firstlame

“E {} Customer] v
i {} Humber
-{} Firstlame lo—llr _|..

- {} LastName -~ {} Lastame
im{} Address [[{} Address
E & {} Lineltems
@ {} Total

2. Click the XSLT tab to see the generated XSLT code.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

Importing Custom XSLT 1.0 or 2.0 Functions

293

-

=yl output method="xml" encoding="UTF-5"i=

=xsltemplate match="jCustomers"=
=CampleteP 0=

=xzl for-each zelect="Customer"=

=Customer=
=xzl for-each select="Mumher"=
=Mumbet=
i awalvalue-of select=""i=
=Mumber=

=rxslfor-eachs
=zl for-each select="FirstMName"=

=xzlvariable name="v47993524 _47930520"=
=xslcall-template name="tokenize"=

=izl call-template=
=ixzlvariables

=xalstyleshest version="1 0" xminz xel="htp e w3 orgM 9990 S0 Transform” <mins: <si="hittp: J

=xzlinclude href="C.\Program Files\AtovaMWAPFORCEZO04 MapF orceExamplesName-spliter xsht"H

=xzlattribute name="xzi.noMNamespaceSchemalocation"=C PROGR A~ 1 FARova A PFORCE200]

=xslvariable name="%47993524_47355944" zelect=""1=

=xzlwith-param name="string" select="§v47993524_47935944" /=

Note: As soon as a named template is used in a mapping, the XSLT file containing the named
template is included in the generated XSLT code (xsl:include href...), and is called
using the command xsl:call-template.

3. Click the Output tab to see the result of the mapping.
1 =7=ml wersion="1.0" encoding="UTF-5"7=
2 =Camplete PO cmins: <zi="hitp: s we 3 0rg 20010 SMLSchema-instance”
3 =Customers=
4 =mFumber=1=mumkber=
o =FirstMame=Fred John=Firzthame:=
G =LaztMame=Landiz=LaztMName=
7 =fcustomer=
g =Zustomers=
9 =Mumber=2=Mumber=
10 =FirzstMame=mMichelle Ann-marie=Firzthlame=
11 =LaztMame=Butler=Lastiame=
12 =fCustomer=
13 =Customer=
14 =Mumber=3=Mumber=
15 =Firstiame=Ted Mac=Firzthlame:=
16 =LaztMame=Little=1Lasthame=

To remove custom XSLT libraries from MapForce:

1. Click the Add/Remove Libraries button, in the lower area of the Libraries window.
2. Click the XSLT library to be deleted, and then click Delete.
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

294

Functions Importing Custom XSLT 1.0 or 2.0 Functions

7.3.2

Example: Summing Node Values

This example shows you how to process multiple nodes of an XML document and have the result
mapped as a single value to a target XML document. Specifically, the goal of the mapping is to
calculate the price of all products in a source XML file and write it as a single value to an output
XML file. The files used in this example are available in the <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\ folder:

Summing-nodes.mfd — the mapping file

input.xml| — the source XML file

input.xsd — the source XML schema

output.xsd — the target XML schema

Summing-nodes.xslt — A custom XSLT stylesheet containing a named template to
sum the individual nodes.

There are two different ways to achieve the goal of the mapping:

* By using the sumaggregate function of the cor e library. This function is available in the
Libraries window (see also Working with Functions).
e By importing a custom XSLT stylesheet into MapForce.

Solution 1: Using the "sum" aggregate function

To use the sumaggregate function in the mapping, drag it from the Libraries window into the
mapping. Note that the functions available in the Libraries window depend on the XSLT language
version you selected (XSLT 1 or XSLT 2). Next, create the mapping connections as shown below.

&/ input) sum & output
B[] File: input.xml File/s parent-context =] File: output.xml Filg
E-E_l {} Input values resut E-E_l {} Output
B {} Products -} Total
24} Product -2 4{) Product
e {} Hame e {} Hame

-} Amount
....... {} Price

For more information about aggregate functions of the cor e library, see also core | aggregate
functions.

Solution 2: Using a custom XSLT Stylesheet

As mentioned abowve, the aim of the example is to sum the Pri ce fields of products in the source
XML file, in this case products A and B.

<?xm version="1.0" encodi ng="UTF-8"?>

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Importing Custom XSLT 1.0 or 2.0 Functions 295

<l nput xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNanespaceSchemalLocat i on="i nput . xsd" >
<Pr oduct s>
<Pr oduct >
<Nanme>Pr oduct A</ Nane>
<Anount >10</ Anount >
<Pri ce>5</Price>
</ Product >
<Pr oduct >
<Nane>Pr oduct B</ Nane>
<Anount >5</ Arount >
<Pri ce>20</ Pri ce>
</ Product >
</ Pr oduct s>
</ | nput >

The image below shows a custom XSLT stylesheet which uses the named template "Total" and a
single parameter st ri ng. The template works through the XML input file and sums all the values
obtained by the XPath expression / Product/ Pri ce.

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl : styl esheet version="1.0" xnins:xsl="http://ww.w3. org/ 1999/ XSL/
Tr ansf or mi' >
<xsl : out put met hod="xm " version="1.0" encodi ng="UTF-8" indent="yes"/>

<xsl :tenpl ate nmatch="*">

<xsl :for-each select=".">
<xsl:call-tenpl ate nanme="Total ">
<xsl : wi t h- param nanme="string" select="."/>

</ xsl:call-tenpl at e>
</ xsl : for - each>
</ xsl : tenpl at e>

<xsl :tenpl at e nane="Total ">
<xsl : param nane="string"/ >
<xsl : val ue- of sel ect ="sun($string/ Product/Price)"/>
</ xsl : tenpl at e>
</ xsl : styl esheet >

Note: To sum the nodes in XSLT 2.0, change the stylesheet declaration to ver si on="2. 0".
To import the XSLT stylesheet into MapForce:

1. Select XSLT as transformation language. For more information, see Selecting a

Transformation Language.

In the Libraries window, click Add/Remove Libraries.

On the Options dialog box, click the Libraries tab.

4. Click Add and browse for <Documents>\Altova\MapForce2018\MapForceExamples
\TutoriaNSumming-nodes.xslt.

5. Drag the Total function from the newly created "Summing-nodes" library into the mapping,
and create the mapping connections as shown below.

w N

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

296 Functions Importing Custom XSLT 1.0 or 2.0 Functions

F Total
& input string [result & putput
=1 (] File: input.xml File/S &1 {] File: output.xmi File
-3 {} Input -3 {} Output
-8 {} Products - {} Total
‘B{} Product ‘B{} Product
. {} Name v { ¥ Name
i {} Amount -{} Amount

{} Price {} Price

To preview the mapping result, click the Output tab. The sum of the two Pri ce fields is now
displayed in the Tot al field.

<?xm version="1.0" encodi ng="UTF-8"?>
<Cut put xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance”
xsi : noNanmespaceSchenmalLocat i on="out put . xsd" >
<Tot al >25</ Tot al >
<Pr oduct >
<Nane>Pr oduct A</ Nane>
<Amount >10</ Amount >
<Price>5</Price>
</ Pr oduct >
<Pr oduct >
<Nane>Pr oduct B</ Nane>
<Amount >5</ Amount >
<Price>20</Pri ce>
</ Pr oduct >
</ Cut put >

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Regular Expressions 297

7.4 Regular Expressions

MapForce can use regular expressions in the pattern parameter of the tokenize-regexp
function, to find specific strings.

The regular expression syntax and semantics for XSLT and XQuery are identical to those defined
in https://www.w3.org/TR/xmlschema-2/. Please note that there are slight differences in regular
expression syntax between the various programming languages.

Terminology

input the string that the regex works on

pattern the regular expression

flags optional parameter to define how the regular expression is to be
interpreted

result the result of the function

) tokenize-regexp Elj

=1 L] File: (default) =tring
resLt ‘B {}Rows [0
"[aeiu:uu]" tfiags e = Fieldd string [0.1]

| Cai |"Art|:|va MapForce"

Tokenize-regexp returns a sequence of strings. The connection to the Rows item creates one row
per item in the sequence.

regex syntax

Literals e.g. a single character:
e.g. The letter "a" is the most basic regex. It matches the first occurrence of the character "a" in
the string.

Character classes []
This is a set of characters enclosed in square brackets.

One, and only one, of the characters in the square brackets are matched.

pattern [aeiou]
Matches a lowercase vowel.

pattern [mjJust
Matches must or just

Please note that "pattern” is case sensitive, a lower case a does not match the uppercase A.

Character ranges [a-z]
Creates a range between the two characters. Only one of the characters will be matched at one
time.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

https://www.w3.org/TR/xmlschema-2/

298

Functions Regular Expressions

pattern [a-z]
Matches any lowercase characters between a and z.

negated classes ["]
using the caret as the first character after the opening bracket, negates the character class.

pattern [“a-z]
Matches any character not in the character class, including newlines.

Meta characters ".
Dot meta character
matches any single character (except for newline)

pattern
Matches any single character.

Quantifiers ? + * {3}
Quantifiers define how often a regex component must repeat within the input string, for a match to
occur.

?
Zero or one preceding string/chunk is optional
+
one or more preceding string/chunks may match one or more times
*
Z€ero or more preceding string/chunks may match zero or more times
{}
min / max no. of repetitions a string/chunks has to match
repetitions
e.g. mo{1,3} matches mo, moo, mooo.
0
subpatterns

parentheses are used to group parts of a regex together.

Alternation/or allows the testing of subexpressions form left to right.
(horse|make) sense - will match "horse sense" or "make sense"

Flags

These are optional parameters that define how the regular expression is to be interpreted.
Individual letters are used to set the options, i.e. the character is present. Letters may be in any
order and can be repeated.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Regular Expressions 299

If present, the matching process will operate in the "dot-all" mode.

The meta character "." matches any character whatsoever. If the input string contains "hello" and
"world" on two different lines, the regular expression "hello*world" will only match if the s flag/
character is set.

m
If present, the matching process operates in multi-line mode.

In multi-line mode the caret ~ matches the start of any line, i.e. the start of the entire string and
the first character after a newline character.

The dollar character $ matches the end of any line, i.e. the end of the entire string and the
character immediately before a newline character.

Newline is the character #x0A.

i
If present, the matching process operates in case-insensitive mode.
The regular expression [a-z] plus the i flag would then match all letters a-z and A-Z.

[Bliedie
S| ("] File: (default) =tring
2 {}Rows [0

f =Field string [0.1]

) tokenize-regexp

| Cz |".E~rt|:wa MapForce"

result

X
If present, whitespace characters are removed from the regular expression prior to the matching
process. Whitespace chars. are #x09, #x0A, #x0D and #x20.

Exception:
Whitespace characters within character class expressions are not remowved e.g. [#x20].

Please note:
When generating code, the advanced features of the regex syntax might differ slightly between the
various languages, please see the specific regex documentation for your language.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

300

Functions Function Library Reference

7.5

7.5.1

Function Library Reference

This reference chapter describes the MapForce built-in functions available in the Libraries pane,
organized by library.

The availability of function libraries in the Libraries pane depends on the transformation language
you have selected (see Selecting a transformation language).

XPath 2.0 restrictions: Sewveral XPath 2.0 functions dealing with sequences are currently not
available.

core | aggregate functions

Aggregate functions perform operations on a set, or sequence, of input values. The input data for
min, max, sum and avg is conwerted to the decimal data type for processing.

e The input values must be connected to the values parameter of the function.

e A context node (item) can be connected to the parent-context parameter to override the
default context from which the input sequence is taken. The parent-context parameter is
optional.

e The result of the function is connected to the specific target item.

The mapping shown below is available as Aggregates.mfd in the ...\Tutorial folder and shows
how these functions are used.
Aggregate functions have two input items.

e values (nodes/rows) is connected to the source item that provides the data, in this case

Number.
e parent-context is connected to the item you want to iterate over, i.e. the context, in this

case over all Customers. The parameter is, however, optional.

i min
& Customers = El| Text file

- arent-context
= (" IFile: aggregate. XML T VESU“T = {]File: {default)

El {}Customers E| {}Pows

El {}Customer i, max =Min
-l arent-contesxt =Max
. {}FirstHame W resurtT = Count
- {}Lastlame L =Sum
EI {}Address £}, count L= Avg
- {)Street arert-context|
ity odesiroes T
i § ¥ ZIP
- {}mm,& EI .
arent-context
% result
alues T
B ava

arent-context
result
alues T

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions Function Library Reference 301

The input instance in this case is an XML file containing the following data:

{i Commment| edited with XMLSPY 2004 1 (Rt Svsnese <mlspy .com) by N

4 Customers

B iy a3 ora 2001 (ML Sch

= xsi:noHamespace... Customers xad
Customer (4]

{} Humber ¢} FirstHame

12 FredJohn
24 Michelle &nn-marie
36 TedMac

|| 4 5 AnnLong

e The source data supplied to the values item is the number sequence 2,4,6,8.
e The output component in this case is a simple text file.
Clicking the Output tab for the above mapping delivers the following result:

1 E,8,4, 20,8

eSr T

min=2, max=8, count=4, sum=20 and awy=>5.

7.5.1.1 avg

Returns the average value of all values within the input sequence. The average of an empty set is
an empty set. Not available in XSLT1.

B avo
Cparent-context result

alues E|>
Argument Description

parent-context | Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric.

For an example of usage, see the mapping GroupTemperaturesByYear.mfd in the
<Documents>\Altova\MapForce2018\MapForceExamples\ directory.

7.5.1.2 count

Returns the number of individual items making up the input sequence. The count of an empty set
is zero. Limited functionality in XSLT1.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

302 Functions Function Library Reference

i court
rt-cortext
Aarent-conte —
odesiraves
Argument Description

parent-context | Optional argument. Supplies the parent context. See also Owerriding the
Mapping Context.

nodes/rows This argument must be connected to the source item to be counted.

7.5.1.3 max

Returns the maximum value of all numeric values in the input sequence. Note that this function
returns an empty set if the strings argument is an empty set. Not available in XSLT1.

Fy mane
Carent-context result

alues E|>
Argument Description

parent-context | Optional argument. Supplies the parent context. See also Overriding the
Mapping Context.

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric. To get
the maximum from a sequence of strings, use the nax- st ri ng function.

For an example of usage, see the mapping GroupTemperaturesByYear.mfd in the
<Documents>\Altova\MapForce2018\MapForceExamples\ directory.

7.5.1.4 max-string

Returns the maximum value of all string values in the input sequence. For example, nax-
string("a", "b", "c") returns "c". This function is not available in XSLT1.

i max-string

i t-context

i paren context| __
strings

Argument Description

parent-context | Optional argument. Supplies the parent context. See also Owerriding the
Mapping Context.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 303

Argument Description

strings This argument must be connected to a source item which supplies the
actual data. The supplied argument value must be a sequence (zero or
many) of xs: stri ng.

Note that the function returns an empty set if the strings argument is an empty set.

7.5.1.5 min

Returns the minimum value of all numeric values in the input sequence. The minimum of an empty
set is an empty set. Not available in XSLT1.

min
Cparent-context result

alues E|>
Argument Description

parent-context | Optional argument. Supplies the parent context. See also Owverriding the
Mapping Context.

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric. To get
the minimum from a sequence of strings, use the m n- stri ng function.

For an example of usage, see the mapping GroupTemperaturesByYear.mfd in the
<Documents>\Altova\MapForce2018\MapForceExamples\ directory.

7.5.1.6 min-string

Returns the minimum value of all string values in the input sequence. For example, ni n-
string("a", "b", "c") returns "a". This function is not available in XSLT1.

fi; min-string
i t-context

f paren conte r&surtl:r
gstrlngs

Argument Description

parent-context | Optional argument. Supplies the parent context. See also Owerriding the
Mapping Context.

strings This argument must be connected to a source item which supplies the
actual data. The supplied argument value must be a sequence (zero or
many) of xs: stri ng.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

304 Functions Function Library Reference

Note that the function returns an empty set if the strings argument is an empty set.

7.5.1.7 string-join

Concatenates all the values of the input sequence into one string delimited by whatewver string you
choose to use as the delimiter. The string-join of an empty set is the empty string. Not available in
XSLTL.

) string-jain

Cparent-context
Erings resurtT

{rdlelimiter

The example below contains four separate customer numbers 2 4 6 and 8. The constant character
supplies a hash character "#" as the delimiter.

Result = 2#4#6#8

& Customers | Text file
&1 {File: Customers.xml &1 [File: =dynamic=
El {}Customers EI {}Rows

‘& {) Customer fiy string-join . = Field1

o { 3Humber
. ------- {}Firstllame
- { }Lastllame
@ {) Address

resurtT

S

If you do not supply a delimiter, then the default is an empty string, i.e. no delimiter of any sort.
Result = 2468.

7.5.1.8 sum

Returns the arithmetic sum of all values in the input sequence. The sum of an empty set is zero.

) sum
Cparent-context result

alues E|>
Argument Description

parent-context | Optional argument. Supplies the parent context. See also Owverriding the
Mapping Context.

values This argument must be connected to a source item which supplies the
actual data. Note that the supplied argument value must be numeric.

See also Example: Summing Node Values.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 305

7.5.2 core | conversion functions

To support explicit data type conversion, several type conversion functions are available in the
conversion library. Note that, in most cases, MapForce creates necessary conversions
automatically and these functions need to be used only in special cases.

If the input nodes are of differing types, e. g. integer and string, you can use the conversion
functions to force a string or numeric comparison.

@ Text file Preview
|5 {}Rows E

i =Field] string

i number

In the example abowe the first constant is of type string and contains the string "4".
The second constant contains the numeric constant 12. To be able to compare the two values
explicitly the types must agree.

Adding a number function to the first constant converts the string constant to the numeric value
of 4. The result of the comparisons is then "true".

Note that if the number function were not be used, i.e 4 would be connected directly to the a
parameter, a string compare would occur, with the result being false.

7.5.2.1 boolean

Converts an input numeric value into a boolean (as well as a string to numeric - true to 1). E.g. 0
to "false", or 1 to "true", for further use with logical functions (equal, greater etc.) filters, or if-else
functions.

) boolean

[ard | resuft [y

7.5.2.2 format-date

Converts an xs: dat e input value into a string and formats it according to specified options.

) format-date

value
format result T

:tslanguage
Argument Description
value The date to be formatted.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Function Library Reference

306 Functions
Argument Description
format A format string identifying the way in which the date is to be formatted. This
argument is used in the same way as the f or rat argument in the f or mat -
dat eTi me function.
language Optional argument. When supplied, the name of the month and the day of the

week are returned in a specific language. Valid values:

en (default) English
es Spanish
de German
ja Japanese

In the following example, the output result is: "21 August 2014, Thursday". To translate this value
to Spanish, set the value of the language argument to es.

[c= [2014-08-217 i e
s format-dat
L, nrmat-date = {'] File: (default)
wvalug ‘B {¥ Rows
[c= ["[D] MNn] [, [FNA resutt - = Field4

7.5.2.3 format-dateTime

Converts a date and time value (xs: dat eTi ne) into a string. The string representation of date and
time is formatted according to the value of the f or mat argument.

format-dateTime

value
format result
irlanguage

Argument Description

value The xs: dat eTi ne value to be formatted.

format A format string identifying the way in which value is to be formatted.
language Optional argument. When supplied, the name of the month and the day of the

week are returned in a specific language. Valid values:

en (default) English

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

307

Functions Function Library Reference
Argument Description
es Spanish
de German
ja Japanese
Note: If the function’s output (result) is connected to a node of type other than string, the

formatting may be lost as the value is cast to the target type. This automatic cast can be

disabled by unchecking the Cast target values to target types check box in the
Component Settings of the target component (see Changing the Component Settings).

The f or mat argument consists of a string containing so-called variable markers enclosed in

square brackets. Characters outside the square brackets are literal characters to be copied into

the result. If square brackets are needed as literal characters in the result, then they should be

doubled.

Each variable marker consists of a component specifier identifying which component of the date

or time is to be displayed, an optional formatting modifier, another optional presentation modifier

and an optional width modifier, preceded by a comma if it is present.

format := (literal | argument)*
argument := [component(format)?(presentation)?(width)?]
width := , min-width ("-" max-width)?

The components are as follows:

Specifier Description Default Presentation
Y year (absolute value) four digits (2010)
month of the year 1-12
D day of month 1-31
d day of year 1-366
F day of week name of the day (language dependent)
w week of the year 1-53
w week of month 1-5
hour (24 hours) 0-23
h hour (12 hour) 1-12
P A.M. or P.M. alphabetic (language dependent)
m minutes in hour 00-59
s seconds in minute 00-59
f fractional seconds numeric, one decimal place
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

308 Functions

Function Library Reference

Specifier Description Default Presentation
z timezone as a time offset from UTC +08:00
z timezone as a time offset using GMT GMT+n

The formatting modifier can be one of the following:

Character Description Example
1 decimal numeric format with no leading zeros: 1, 2, 1,2, 3
3, ...
01 decimal format, two digits: 01, 02, 03, ... 01, 02, 03
N name of component, upper case MONDAY, TUESDAY D
n name of component, lower case monday, tuesday ¥
Nn name of component, title case Monday, Tuesday

Note: N, n, and Nn modifiers only support the following components: M, d, D.

The width modifier, if present, is introduced by a comma. It takes the form:

, min-width ("-" max-width)?

The table below illustrates some examples of formatting xs: dat eTi e values with the help of the
f or mat - dat eTi e function. The "Value" column specifies the value supplied to the val ue

argument. The "Format" column specifies the value of the f or mat argument. The "Result" column
illustrates what is returned by the function.

Value Format Result

2003-11- [D/[M/[Y] 3/11/2003

03T00:00:00

2003-11- [YI-[M2]-[D 2] 2003-11-03

03T00:00:00

2003-11- [YI-[M2]-[D,2] [H2]:[nm:[s] 2003-11-03 00:00:00
03T00:00:00

2010-06- [Y] [M\n] [DO1] [F,3-3] [d] [H:[n: 2010 June 02 Wed 153
02T08:02 [s].[f] 8:02:12.054

2010-06- [Y] [M\n] [DO1] [F,3-3] [d] [H:[n: 2010 June 02 Wed 153
02T708:02 [s].[f] [z] 8:02:12.054 GMT+02:00
2010-06- [Y] [MIn] [D1] [F] [H:[mM:[s].[f] [2Z] 2010 June 2 Wednesday
02T708:02 8:02:12.054 +02:00
2010-06- [Y] [MNn] [D [F,3-3] [HO1]:[ni:[s] 2010 June 2 Wed

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions

309

Function Library Reference
Value Format Result
02T08:02 08:02:12

7.5.2.4 format-number

Converts a number into a string. The function is available for XSLT 1.0, XSLT 2.0, Java, C#, C++

and Built-in execution engine.

i format-numier
[value

[::f::urmat
E#sdecimal-puint-character
é#sgrnuping-separatur

result];

Argument Description
val ue Mandatory argument. Supplies the number to be formatted.
f or mat

Mandatory argument. Supplies a format string that identifies the
way in which the number is to be formatted. This argument is
used in the same way as the f or rat argument in the f or mat -
dat eTi ne function.

deci mal - poi nt - f or mat

Optional argument. Supplies the character to be used as the
decimal point character. The default value is the full stop (.)
character.

gr oupi ng- separ at or

Optional argument. Supplies the character used to separate
groups of numbers. The default value is the comma (,)
character.

Note: If the function’s output (i.e. result) is connected to a node of type other than string, the

formatting may be lost as the value is cast to the target type. This automatic cast can be

disabled by unchecking the Cast target values to target types check box in the
component settings of the target component.

Format:

format := subformat (;subformat)?
subformat := (prefix)? integer (.fraction)? (suffix)?
prefix := any characters except special characters
suffix := any characters except special characters

integer := (#)* (0)* (allowing
fraction := (0)* (#)* (allowing

The first subformat is used for formatting positive numbers, and the second subformat for negative

', to appear)
', to appear)

numbers. If only one subformat is specified, then the same subformat will be used for negative
numbers, but with a minus sign added before the prefix.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

310 Functions Function Library Reference

Special Character default Description

zero-digit 0 A digit will always appear at this point in the
result

digit # A digit will appear at this point in the result
string unless it is a redundant leading or trailing
zero

decimal-point . Separates the integer and the fraction part of the
number.

grouping-separator , Separates groups of digits.

percent-sign % Multiplies the number by 100 and shows it as a
percentage.

per-mille %0 Multiplies the number by 1000 and shows it as
per-mille.

The characters used for decimal-point-character and grouping-separator are always "." and ",
respectively. They can, however, be changed in the formatted output, by mapping constants to
these nodes.

S TS ErT

e =1 (] File: Article.xml =tring
| C=i [0 00" format E {}Article ~ricleType [0.1]

result - ‘i
ecimal-pu:uint-u:haracter - {INumber xs.fnteger
s grouping-separator -~ {3Name - string

i { 3SINglePrice = decimal
[c=r -

@

The result of the format number function shown abowe.
¢ The decimal-point character was changed to a "+".
e The grouping separator was changed to a "-"

=Aricle xsinoMamespacezchemalocation="
=Mame=1-000-000+00=Mame=
=isHicle=

Rounding

The rounding method used for this function is "half up”, e.g. the value gets rounded up if the
fraction is greater than or equal to 0.5. The value gets rounded down if the fraction is less than
0.5. This method of rounding only applies to generated code and the built-in execution engine.

In XSLT 1.0, the rounding mode is undefined. In XSLT 2.0, the rounding mode is "round-half-to-

ewven".
Number Format String Result
1234.5 #,##0.00 1,234.50

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

311

Functions Function Library Reference
Number Format String Result
123.456 #,##0.00 123.46
1000000 #,##0.00 1,000,000.00
-59 #,##0.00 -59.00
1234 #H#HO. O 1234.0
1234.5 H#HHO. Ot 1234.5
.00025 #H#HO. O 0.0003
.00035 H#HHO. Ot 0.0004
0.25 #00% 25%

0.736 #00% 74%

1 #00% 100%
-42 #00% -4200%
-3.12 #.00;(#.00) (3.12)
-3.12 #.00;#.00CR 3.12CR

7.5.2.5 format-time

Converts an xs:time input value into a string. The f or rat argument is used in the same way as
the f or mat argument in the f or mat - dat eTi ne function.

i format-time

alue
rezult]>
format

E.g

Ca["1215:33"

i format-time

alue

[C= TisHmLhr —tptormt

result

Result: 33-15-12

7.5.2.6 number

[EFFT =
&1 L] File: (default)
El {}Rows

‘... = Field1

Converts an input string into a number. Also conwerts a boolean input to a number.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

312 Functions Function Library Reference

B number

Farg result h

7.5.2.7 string

Converts an input value into a string. The function can also be used to retrieve the text content of
a node.

) string
A resuft [

If the input node is a XML complex type, then all descendents are also output as a single string.

7.5.3 core | file path functions

The file path functions allow you to directly access and manipulate file path data, i.e. folders, file
names, and extensions for further processing in your mappings. They can be used in all
languages supported by MapForce.

7.5.3.1 get-fileext

Returns the extension of the file path including the dot "." character.

B oet-fileext
[=filepath | estension [

E.g. 'c:\data\Sample.mfd' returns '.mfd'

7.5.3.2 get-folder

Returns the folder name of the file path including the trailing slash, or backslash character.

B oet-folder

Efilepath folder b

E.g. 'c:/data/Sample.mfd' returns ‘c:/data/’

7.5.3.3 main-mfd-filepath

Returns the full path of the mfd file containing the main mapping. An empty string is returned if the
mfd is currently unsaved.

iy main-mtd-filepsth
filepathly

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 313

7.5.3.4 mfd-filepath

If the function is called in the main mapping, it returns the same as main-mfd-filepath function, i.e.
the full path of the mfd file containing the main mapping. An empty string is returned if the mfd is
currently unsaved.

) mid-filepath

filepath h

If called within an user-defined function which is imported by a mfd-file, it returns the full path
of the imported mfd file which contains the definition of the user-defined function.

7.5.3.5 remove-fileext

Remowves the extension of the file path including the dot-character.

B remove-fileest
[ilepath |resurt-filepath[:f

E.g. ‘c:/data/Sample.mfd' returns 'c:/data/Sample".

7.5.3.6 remove-folder

Removwes the directory of the file path including the trailing slash, or backslash character.

iy remove-folder

Efilepath | filename b

E.g. 'c:/data/Sample.mfd' returns 'Sample.mfd'.

7.5.3.7 replace-fileext

Replaces the extension of the file path supplied by the filepath parameter, with the one supplied
by the connection to the extension parameter.

B replace-filee:xt

filepath
[]’De'epi_ resurt-filepathtr
wtension

E.g. c:/data/Sample.mfd" as the input filepath, and '.mfp' as the extension, returns ‘c:/data/
Sample.mfp'

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

314 Functions Function Library Reference

7.5.3.8 resolve-filepath

Resolves a relative file path to a relative, or absolute, base folder. The function supports *.' (current
directory) and ".." (parent directory).

i resolve-flepsth

fold
.ase i result-filepath
filepath

For an example, see the mapping MergeMultipleFiles_List.mfd available in the ...
\MapForceExamples folder.

| & mid-ilepath,|

Fi) oet-folder

filepath
rfilepathlfalderIZ i resolve-fiepsath
EJ FileList -blasefulder result-filepath
=] File: HanonullFiles.xmil Ifilepsth V
- B {)FileList
N b {}File _,EI concat
prvallie
| C=i |"read from file: "* A;aluez result i
| Altova_Hierarchical N & Atova_Hierarchical
~#3 [File: =dynamic= = L] File: (defautt)
“E] ¥ Altova 21 {} Altova
....... {}PrimaryKey | LA |"Organizatil:|n Chart"# ------- {}PrimaryKey
i { Y HaME i { JHamE
= {}office = {}office
- {}PrimaryKey fp — — — e {}PrimaryKey
~-{}ForeignKey B — — — — — L e { }ForeignKey
O 5 1 1 - - S | S {}Desc
o {YFMail B i { ¥Email
- {}Established F — — — — — e {}Established
i 3Fax 0 OB e {}Fax
- ¥3Hame = B e {¥Hame
.. { yPbORIGEE O e {}Phone
A {} Address - {} Address
-H {)Department -& { yDepartment

7.5.4 core | generator functions

The core / generator functions library includes functions which generate values.

7.5.4.1 auto-number

The auto-number function generates integers in target nodes of a component, depending on the
various parameters you define. The function result is a value starting at start_with and increased
by increment. Default values are: start-with=1 and increase=1. Both parameters can be negative.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference

315

) suto-nmber
Isglu:ubal-id
w=tart-with
ILresurt[:

CAncrement

I—

iprestart-on-change

Make sure that the result connector (of the auto-number function) is directly connected to a
target node. The exact order in which functions are called by the generated mapping code is
undefined. MapForce may choose to cache calculated results for reuse, or evaluate expressions
in any order. It is therefore strongly recommended to take care when using the auto-number
function.

global-id
This parameter allows you to synchronize the number sequence output of two separate auto-
number functions connected to a single target component.

If the two auto-number functions do not have the same global-id, then each increments the target
items separately. In the example below, each function has a different global-id i.e. a and b.

The output of the mapping is 1,1,2,2. The top function supplies the first 1 and the lower one the
second 1.

fi) suto-number ------- {}Hame = =tring
‘3 {¥Person =xen
------- {}First =xtens

atart-wvith resul
EIﬂ'nl:remEnt ------- {¥Last == =trin
 rogrmgrrerws BENE L N SN {3} Title == =trin

{prestart-on-change

------- {}PhoneExt
------- {}EMail =maiT
------- {}Shares =

i) suto-number

z s Iubal_ic.ﬂ ------- {}LeaveTotal
fI,.Staﬁ_WT_: resutp—s. —B e {}LeaveUsed
UL . {}LeavelL eft
E#restar‘t-n:nn-change

If both functions have identical global-ids, a in this case, then each function "knows" about the
current auto-number state (or actual value) of the other, and both numbers are then synchronised/
in sequence.

The output of the mapping is therefore 1, 2, 3, 4.The top function supplies the first 1 and the lower
one now supplies a 2.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

316 Functions Function Library Reference

fiy auto-number ------- {¥Hame == =trin
alobial-icd ‘B {}Person =:ten

Caztart-with Y . S {¥First =:tens
ELin-:rement ------- {Last == =trin|
 ywrsrammprens BN I S O {ITitle == =trin|

iprestart-on-change

------- {}PhoneExt :

Fpvemsprem— T L {}EMail =msilT

= il S (R SN S {}Shares =i
. Inbal-u:_ﬂ ------- {}LeaveTotal
I% resut b e e {}LeavelUsed
EIM ------- {}Leaveleft
iprestart-on-change

start-with
The initial value used to start the auto numbering sequence. Default is 1.

increment
The increment you want auto-number sequence to increase by. Default is 1.

restart on change
Resets the auto-number counter to "start-with", when the content of the connected item
changes.

In the example below, start-with and increment are both using the default 1. As soon as the
content of Department changes, i.e. the department name changes, the counter is reset and
starts at 1 for each new department.

& CrgChart
@ Pecple E group-by el | = El File: (default) =tring
= ElF'l p g Prodesirows Jgroups i ‘B {}0rgChart restriction of xzany Ty
ile: People. *k .
: ey ke';.f* ‘@ {}CompanyLogo restriction of =
‘E{}Rows [0.=] =

o { Y Hame scsostring
‘B {yOffice OfficeType [1.=]
------- {}Mame == =tring

= Company =trir _£I group-by
- = Department = Prodesfows [aroups iy

:) f First str.lng [D"; *ke‘:-" kE‘:-"* H {}Desc restriction of x=any Ty
' ':L?m s‘tr!ng [D"e ------- {¥Location = =tring
o =Title sting [0. Jiy suto-rumber & {} Address ipo - Address [0
"""" = EMail string [0 {sylabal-id & {3 Address_EU ipocElL-Address
?I?“tart-w'rth PR U = {}Phone =z =tring
gIancrement ------- {}Fax «==tring
’;testar‘t-un-change ------- {}EMail =mailType

B {}Department DivisionType [1,
o {¥Mame = string
L’—_| {}Person extension of Persn
------- {}First extension of ==t
....... {}Last x=string
------- {3 Title = =tring [0.1]
------- {}PhoneExt «=int
------- {}EMail cmailType
LI ------- {}Shares x=integer [0.1]

L%

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

Function Library Reference 317

7.5.5

7.5.5.1

7.5.5.2

core | logical functions

Logical functions are (generally) used to compare input data with the result being a boolean "true"
or " false". They are generally used to test data before passing on a subset to the target
component using a filter.

input parameters = a | b, or valuel | value2
output parameter = result

The evaluation result of two input nodes depends on the input values as well as the data types
used for the comparison.

For example, the 'less than' comparison of the integer values 4 and 12 yields the boolean value
"true”, since 4 is less than 12. If the two input strings contain '4' and '12', the lexical analysis
results in the output value "false”, since '4' is alphabetically greater than the first character '1' of
the second operand (12).

If all input data types are of the same type, e.g. all input nodes are numerical types, or strings,
then the comparison is done for the common type.

If the input nodes are of differing types (for example, integer and string, or string and date), then
the data type used for the comparison is the most general (least restrictive) input data type of
the two input types.

Before comparing two values, all input values are converted to a common datatype. Using the
previous example; the datatype "string" is less restrictive than "integer". Comparing integer value
4 with the string '12', converts integer value 4 to the string '4', which is then compared with the
string '12".

Note: Logical functions cannot be used to test the existence of null values. If you supply a null
value as argument to a logical function, it returns a null value. For more information about
handling null values, see Nil Values / Nillable.

equal

Result is true if a=b, else false.

B enqual

o=y

equal-or-greater

Result is true if a is equal/greater than b, else false.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

318 Functions Function Library Reference

i equal-or-grester

i -

7.5.5.3 equal-or-less

Result is true if a is equal/less than b, else false.

B equal-or-less

E ety

7.5.5.4 greater

Result is true if a is greater than b, else false.

B oreater

o

7.5.5.5 less

Result is true if a is less than b, else false.

B le=s

7.5.5.6 logical-and

If both valuel and value2 of the logical-and function are true, then result is true; if different then
false.

_V-EI logical-and

£,

aluel
result
alue?

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 319

—

A 1 fi) eoual 5| Articles
= st — ;IEl () Article rtickType?
_,El logical-and - {YHumber == irteger

alue i { ¥Hame = string
alue2 resut - { }singlePrice = dec
= T eoual 9 ’
resuft LI
I_';E' zi

7.5.5.7 logical-not

Inverts or flips the logical state/result; if input is true, result of logical-not function is false. If input
is false then result is true.

) logical-not

'ﬂalue resurt!'f

The logical-not function shown below, inverts the result of the equal function. The logical-and
function now only returns true if boolean values of valuel and value2 are different, i.e. true-false, or

false-true.
F) Ingical-not
= Ealue resurt!

fiy eoquial & Aricles

- " a3 (3 Article &ticleType?
resu T i logical-and

p { YHumber = irteger

£,

e i { YHame w2 string
ez | = - {)SinglePrice =
E equal = I inglePrice = dec
resuft LI
= zi

7.5.5.8 logical-or

Requires both input values to be boolean. If either valuel or value2 of the logical-or function are
true, then the result is true. If both values are false, then result is false.

i logical-or

Cvalued
result]>
alue2

7.5.5.9 not-equal

Result is true if a is not equal to b.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

320

Functions Function Library Reference

7.5.6

7.5.6.1

7.5.6.2

) not-ecusl

core | math functions

Math functions are used to perform basic mathematical functions on data. Note that they cannot
be used to perform computations on durations, or datetimes.

input parameters = valuel | value2
output parameter = result

input values are automatically converted to decimal for further processing.

& Aricles T &
|5 () articles o 2 |51 () articles
-2 {) Article result -3 {} Article

------- { YHumber ------- { YHumber

The example shown abowe, adds 20% sales tax to each of the articles mapped to the target
component.

add

Result is the decimal value of adding valuel to value2.

_,-EI acdd

Svalued
result
alue?

ceiling

Result is the smallest integer that is greater than or equal to value, i.e. the next highest integer
value of the decimal input value.

) ceiling
'ﬂalue rezult b

E.qg. if the result of a division function is 11.2, then applying the ceiling function to it makes the
result 12, i.e. the next highest whole number.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 321

7.5.6.3 divide

Result is the decimal value of dividing valuel by value2. The result precision depends on the
target language. Use the round-precision function to define the precision of result.

i divide
aliel
resuft]>
alue2

7.5.6.4 floor

Result is the largest integer that is less than or equal to value, i.e. the next lowest integer value
of the decimal input value.

) floor
'ﬂalue resurt!;

E.qg. if the result of a division function is 11.2, then applying the floor function to it makes the
result 11, i.e. the next lowest whole number.

7.5.6.5 modulus

Result is the remainder of dividing valuel by value2.

B modulus

aluel
& rtﬁ>

alue2 resu
In the mapping below, the numbers have been multiplied by 3 and passed on to valuel of the
modulus function. Input values are now 3, 6, 9, and 12.

When applying/using modulus 8 as value2, the remainders are 3, 6, 1, and 4.

Lo E £ mttiply
| T

Ly

8| Articles Sl 8| Articles Preview
=]2 O Articles aluez < [= (¥ articles

EI {} article T, moduius E| {} Article
....... g:umher _— -y i;:umher
i ame | ame
i E e i
i { }SinglePrice E J [i { ¥SinglePrice

[=T

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

322 Functions Function Library Reference

7.5.6.6 multiply

Result is the decimal value of multiplying valuel by value?2.

_ﬁ, multiply

" aluel
result
galuez

7.5.6.7 round

Returns the value rounded to the nearest integer. When the value is exactly in between two
integers, the "Round Half Towards Positive Infinity" algorithm is used. For example, the value
"10.5" gets rounded to "11", and the value "-10.5" gets rounded to "-10".

) round

'ﬁalue result v

7.5.6.8 round-precision

Result is the decimal value of the number rounded to the decimal places defined by "decimals"”.

) round-precision

alue
- result
ecimnals

C= - B Articles [Praview
fiy divide ;IEl {} Articles restriction of =s:any]
e - .
% resurtT i round-precision B (¥ Article ~riicleType+
aluel i { ¥ HUMber 25 intemger

= alue " .
ElT comalz | o T oo {¥Hame == string

_I L ¥SINglePrice = decimal
w
C= o

In the mapping abowe, the result is 0.429. For the result to appear correctly in an XML file, make
sure to map it to an element of xs:decimal type.

7.5.6.9 subtract

Result is the decimal value of subtracting value2 from valuel.

_,-EI subtract

Ll

aliel
result
alue?

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 323

7.5.7 core | node functions

The node functions allow you to access nodes, or process nodes in a particular way.

75.7.1 is-xsi-nil

Returns true (<OrderID>true</OrderID>) if the element node, of the source component, has the
xsi:nil attribute set to "true".

B is-xsi-nil

'lzflement result b

7.5.7.2 node-name

Returns the qualified name (QName) of the connected node. If the node is an XML text() node, an
empty QName is returned. This function only works on those nodes that have a name. If XSLT is
the target language (which calls fn:node-name), the function returns an empty sequence for nodes
which have no names.

) node-name

oce name

e Getting a name from database tables/fields is not supported.
e XBRL and Excel are not supported.
e Getting a name of File input node is not supported.

e WebSenice nodes behawe like XML nodes except that:
o node-name from "part" is not supported.
o node-name from root node ("Output” or "Input") is not supported.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Function Library Reference

324 Functions
&| Employvees
j = : - £ Personlizt @B
EI {}Company Comment o e . &1 £ File: (default)
- {IName EQI WapPerson : “E {}PersonList Li
@ {¥Employees [{ }Manager [Empluye{ {}Person (Person) [k 2 {}Person
B {¥Manager R P S =role
------- {¥Firstlame e - § }First
....... {}LastHame 1 [MapPerson i e { YLast
....... {}PhoneExt [:E {}Manager (Employed {}Person (Person) [& oo { ¥ Details
------- {}Email :_______________________ ______________________4' £ {}Person (2)
B {}Programmer k- L e =role
------- {}Firstlame 'CJ MspPerson T - { }First
"""" {}Lastlame 2 {}Manager (Employee|c] {}Person (Person) ¢ '""'-{}Last_
"""" {}Phu':'EEﬂ b - { }Firstilame i =role » 4} Details
"""" {}Email b - { }LastHame {}First B = {}_Persun 3
RS {}SUI_JPUrt & ~{¥PhoneExt | - {}Last .* ------- —rl_:IIE
"""" {)Firstiame B {}Email - {}Details b -4 }First
------- {}LastName E E e { ¥Last
] {}PhoneExt H PN I Alp e {}Details
- e {}Email
The MapPerson user-defined function uses node-name to return the name of the input node, and
place it in the role attribute. The root node of the Employees.xsd, in the user-defined function, has
been defined as "Manager".
i) node-name
w| Employess Brode | namel— | I%Person
= {}Manager = {}Person
....... { }FirstName =role
. {¥LastHame { YFirst
i { YPhoneExt i { ¥Last
........ { YEmail i { ¥Details
Manager gets its data from outside the user-defined function, where it can be either: Manager,
Programmer, or Support. This is the data that is then passed on to the role attribute in
PersonList.
7.5.7.3 set-xsi-nil
Sets the target node to xsi:nil.
By set-xsioni
result b
7.5.7.4 static-node-annotation

Returns the string with annotation of the connected node. The input must be: (i) a source
component node, or (ii) an inline function that is directly connected to a parameter, which in turn

is directly connected to a node in the calling mapping.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 325

F static-node-annotation

[:lznnde | name [:ﬁ

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined
function. This is a pseudo-function, which is replaced at generation time with the text acquired
from the connected node, and is therefore available for all languages.

7.5.7.5 static-node-name

Returns the string with the name of the connected node. The input must be: (i) a source
component node, or (ii) an inline function that is directly connected to a parameter, which in turn
is directly connected to a node in the calling mapping.

iy static-node-name

[:I::ncude | name [:f

The connection must be direct. It cannot pass through a filter or a non-inlined user-defined
function. This is a pseudo-function, which is replaced at generation time with the text acquired
from the connected node, and is therefore available for all languages.

7.5.7.6 substitute-missing-with-xsi-nil

For nodes with simple content, this function substitutes any missing (or null values) of the source
component, with the xsi : ni | attribute in the target node.

iy substitute-missing-with-xsi-nil
[irpt | resuttly

7.5.8 core | QName functions

QName functions provide ways to manipulate the Qualified Names (QName) in XML documents.

7581 QName

Constructs a QName from a namespace URI and a local part. Use this function to create a
QName in a target component. The uri and localname parameters can be supplied by a constant
function.

i GMName

ri

resuft
ocalname

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

326 Functions Function Library Reference

7.5.8.2 local-name-from-QName

Returns the local name part of the QName.

E local-name-from-Gkame

[:p@Name | resurt[:ﬁ

7.5.8.3 namespace-uri-from-QName

Returns the namespace URI part of the QName.

E namespace-uri-from-Gkame

[aMEme | resuttly

7.5.9 core | sequence functions

Sequence functions allow processing of input sequences and grouping of their content. The value/
content of the key input parameter, mapped to nodes/rows, is used to group the sequence.

e Input parameter key is of an arbitrary data type that can be converted to string for group-
adjacent and group-by

e Input parameter bool is of type Boolean for group-starting-with and group-ending-with

e The output key is the key of the current group.

7.5.9.1 distinct-values

Allows you to remove duplicate values from a sequence and map the unique items to the target
component.

iy distinct-values
[alues | results [y

In the example below, the content of the source component "Title" items, are scanned and each
unique title is mapped to the Department / Name item in the target component.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

Function Library Reference

327

| MFCompany

2 () Address Tree

‘B {}Person

....... = Manager

....... = Programmer
....... =Degree

LI { YEmail

-+ |= C]Fite: MFCompany.xmi
‘B {}Company Foct elemert

i distinct-values

alues | rezults

] i
|z £1File: Tut-orgChart.xmi
‘3 {}0rgChart

El {}CompanyLogo

H {}Desc
------- { }Location
....... {}Phone

------- £ }EMail
-8 {}Department
- { ¥Hame
‘[{}Person
j

Note that the sequence of the individual Title items in the source component are retained when

mapped to the target component.

=0rgChart xzizchemalocation="tttp: Mhvewesy xmlzpy comfzchemasiorgehart CHDOCL

=Mame=Marketing Manager Europe=Mame=

=Mame=PE Zamp; Marketing Manager Uz=Mame:=

1 =7zml version="1 0" encoding="TF-28"?=
2
3 =ioffices
4 =Department=
5 =Mame=0ffice Manager=Mame:=
5] =Mame=Accounts Receivable=hames
v :Name*:.ﬂ-.c-:ﬁuurlting Manager =Mame=
8
9 =Mame=2ar Directar=Mame:=
10 =Mame=Program hManager=Mame=
11 =Mame=Software Engineer<Mame=
12 =Mame=Technical YWiter=Mame:=
13 =Mame=IT Manager=Tame=
14 =Mame=\"eh Developer=Mame:=
15 =Mame=Support Engineer =Mame=
16
17 =Department=
18 =M0ffice=
19 =forgChart=

7.5.9.2 exists

Returns true if the node exists, else returns false.

i exists

F_nu:ude rezult [

The "HasMarketingExpenses.mfd" file in the

example shown below.

If an expense-item exists in the source XML, then the "hasExpenses" attribute is set to "true" in

...\MapForceExamples folder contains the small

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

328 Functions Function Library Reference

the target XML/Schema file.

& ExpReport

gt = f:l File: ExpReport.xml
‘B {}expense-report =:pense-r Czi E
------- = detailed
....... = currency _,El A— 8| HasExpenses
....... = total- ile:
S al-sum vt @ ;|E| f1File (default)
B {}T:::::n Prealue? Elresutt i --?éir;srke‘tmg-expenses =
erson
I3 =]
{}Last "3"\"8 LIg e — hasE“penses
- ¥ Title i -{ }Fulllame
- {}Phone T
< £ ¥ Ermvail . {}Phone
A {}_e::pense-item 1 existe ;I e Y Ermiail
e = e
= te!:cpptu fenode |resu|tlb
- e { Y Date
x| - {)expense

7.5.9.3 first-items

Returns the first "X' items of the input sequence, where Xis the number supplied by the "count"
parameter. E.g. if the value 3 is mapped to the count parameter and a parent node to the nodes/
row parameter, then the first three items will be listed in the output.

¥ first-items

'lzn odesirows
resurtstr

{;=count

7.5.9.4 generate-sequence

Creates a sequence of integers using the "from" and "to" parameters as the boundaries.

_§| generate-zequence

i+from
resultzs
;tu E|>

7.5.9.5 group-adjacent

Groups the input sequence nodes/rows into groups of adjacent items sharing the same key.
Note that group-adjacent uses the content of the node/item as the grouping key.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference
El| orders-atternste W =] TUt-hEEderDE!tail _
;|E| { |File: Orders-alternate nodesiows | groups i 1= El { IFile: Tut-headerDetail.xmi
“H {}Rows oy ke k= {}order Roct elemert
.. = Head_Detail ‘B {}Header
= Orde;ﬂu ------- {}RecordType
=proddo @ B - - e {}OrderHo
i =UnitWeight B - - o o e e {} Totalweight
e =Fields [e | e {) TotalUnitCost
LI ------- {}Currency
------- { }Shipping-details
-2 {}Detail
i { YRecordType
{}0rderHo
{}Productto
| i { FUnitWeight
- {}UnitHo
7.5.9.6 group-by

Groups the input sequence nodes/rows into groups of not necessarily adjacent items sharing the
same key. Groups are output in the order the key occurs in the input sequence. The example
below shows how this works:

e The key that defines the specific groups of the source component is the Title item. This is

used to group the persons of the company.
The group name is placed in the Department/Name item of the target component, while
the concatenated person's first and last names are placed in the Person/First child item.

| MFCompany

-« |=] File: MFCompany.xmi
E| {}Company Root slement
{}Address Trrg|
‘g {}pPerson
------- = Manager
....... = Prugraml‘l‘lﬂr
....... = DEQTEE

g
H

T

odesirows [groups
ey key

_,EI concat
Bevaluel =
IﬁfalueZ | result
E}falueS =

£ Tut-OrgChart

-« = []File: Tut-orgChart.xmi
“E{}0rgChart

- {}De=c
------- { }Location
....... {}Phone

E| {}Perzon
~{ ¥First Christian |
~{¥Last Surname
~{}Title Lcademic
~{}PhoneExt Fhor
LI - {}EMﬂil

Note that group-by uses the content of the node/item as the grouping key. The content of the

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

330 Functions Function Library Reference

Title field is used to group the persons and is mapped to the Department/Name item in the target.

Note also: there is an implied filter of the rows from the source document to the target
document, which can be seen in the included example. In the target document, each Department
item only has those Person items that match the grouping key, as the group-by component
creates the necessary hierarchy on the fly.

Clicking the Output button shows the result of the grouping process.

1 Txml version="1.0" encoding="UTF-5"7=
2 =0rgChart i zchemalocation="Http: Mhvewesy xmilzpy comfschemasiorgehart CHDOCL
3 =0t fice=
4 =Department=
5 =Mame=0ffice Manager=Mame=
[=Perzon=
) =First="ernon Callaby=First=
g ! =First=Steve heier=First=
9 =iPersan=
10 =Department=
11 =Departnent=
12 =Mame=Accounts Receivahle=Mames=
13 =Perzon=
14 { =First=Frank Further=/Firat=
15 =Firzt=Theo Bone=/First=
16 =Perzon=
17 =Department=

7.5.9.7 group-ending-with

This function groups the input sequence nodes/rows into groups, ending a new group whenever
bool is true.

7.5.9.8 group-into-blocks

Groups the input sequence nodes/rows into blocks of the same size defined by the number
supplied by the block-size parameter.

oroup-into-blocks
nodesirows
- groups|
block-zsize E|>

7.5.9.9 group-starting-with

This function groups the input sequence nodes/rows into groups, starting a new group when bool
is true.

i group-starting-with

odesirows

grnupstr
[ulul]

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 331

The following example illustrates a sequence of nodes where bool returns t r ue whenever the
node "header" is encountered. Applying the gr oup- st arti ng-wi t h function on this sequence of

nodes results in two groups, as shown below.

header
pl
o
B3 -

header
D4 =
jals))

Note that the first node in the sequence starts a new group regardless of the value of bool. In
other words, a sequence such as the one below would create three groups.

pl y
Bl —
B3
header =
p4 -
B3 J
header
jal -
p7 .

7.5.9.10 item-at

Returns the nodes/rows at the position supplied by the position parameter. The first item is at
position "1".

B tem-at

nodes/rows
— result]
position ?

7.5.9.11 items-from-till

Returns a sequence of nodes/rows using the "from" and "till" parameters as the boundaries. The
first item is at position "1".

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

332 Functions Function Library Reference

F tems-from-til

resu HST

7.5.9.12 last-items

Returns the last "X' nodes/rows of the sequence where Xis the number supplied by the "count”
parameter. The first item is at position "1".

i last-items

'lznuu:l es/rows

§T>|:-:|u nt

resu rts|:|>

7.5.9.13 not-exists

Returns false if the node exists, else returns true.

By not-exists

'@Dde resut [y

The example below shows how you can use the not-exists function to map nodes that do not
exist in one of a pair of source files.

What this mapping does:

e Compare the nodes of two source XML files

e Filter out the nodes of the first source XML file, that do not exist in the second source
XML file

e Map only the missing nodes, and their content, to the target file.

| miz=zing & mis=zing
=]z {¥root [>~ |E {}root
E‘ {}a F—————— gnodeirow]| on-truel

E| {Jb I shool on-falsely

e =Kind |} i) not-exists

¥ 8 sriode | resutib=
i . {}d k=

i) el ='a

'EJ i sing wall FesULtR priociefrowy | an-true
:IE—' Oroot el shiool on-falzely

The two XML instance files are shown below, the differences between them are:

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions

Function Library Reference

333

e a.xml (left) contains the node <b kind="3">, which is missing from b.xml.
e b.xml (right) contains the node <b kind="4"> which is missing from a.xml.

=/ ro

Sroot xmlns:xsi=""http: /. w3,

£a

<h kind="1"=hl</hb>
Lo=old fol

wd=dls fd

<iE

< ar

<h kind="Z2"=ha< b
L0020

=2 S

<iEs

< ar

«h kind="3"=h3< /b
<o=odd o

=3 S

LS E
ot

<root ®¥mlns:xsi="http: /7 wr. ws,

£an

#h kind="1">foo< /b
<oxfood i
Ld=fond S d

fE

“Er

«h kind="2">=foo< /b
<oxfood i
Llefoo S d

<fEs

“Er

#h kind="4":=foo<L /b
<cxfood /o
Llefoo S d

Ll

< Sroots

e The equal function compares the kind attribute of both XML files and passes the result

to the filter.

¢ A not-exists function is placed after the initial filter, to select the missing nodes of each

of the source files.

e The second filter is used to pass on the missing node and other data only from the

a.xm

The mapping result is that the node missing from b.xml, <b kind="3">, is passed on to the target

component.

| file to the target.

5=
<

=rodt xsinoMamespacesSchemalocation="C, DOCLMEA

b kind="3"=h3=h=
CceCaelics
d=d3=id=

=lg=
=lroat=

7.5.9.14 position

Returns the position of a node inside its containing sequence.

B pos

ition

Egnde result ;

The position function allows you to determine the position of a specific node in a sequence, or use

a specific position to filter out items based on that position.

The context item is defined by the item connected to the "node" parameter of the position

function, Person, in the example below.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

334 Functions

Function Library Reference

The simple mapping below adds a position number to each Person of each Department.

& Tut-company

_+ |= C]Fite: Tut-company.xmi
-2 {) Attova

E-E_l {}Person
- { YEMail
{ }First
{}Last
{ }PhoneExt

i) position

Ende resurt!

& Tut-company

-« [= T Fite: (defaulty
El {} Altova

E-E_l {}Person
- { YEMail
- { ¥First
~{¥Last
- { ¥PhoneExt

The position number is reset for each Department in the Office.

=0ffice=

=Mame=hMicratech, Inc =Mame=
=Departmert=
=kame=Admin=Mame=
=Perzon=

=EMdail=1=/EMail=
=Firzt=&lbert=/Firzt=
=Last=Aldrich=/Last=

=Title=Manager=Title=
=Perzon:=

=Perzon=
=Etail=2=/Ehtail=:
=First=Bert=JFirzt=
=Last=-Bander="1Last=

=Perzon:=

=PhioneExt=582=FhoneExt=

=PhioneExt=471=FhoneExt=
=Title=2&ccourts Receivable=Title=

Using the position function to filter out specific nodes

Using the position function in conjunction with a filter allows you to map only those specific nodes
that have a certain position in the source component.

The filter "node/row" parameter and the position "node" must be connected to the same item of
the source component, to filter out a specific position of that sequence.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Functions

Function Library Reference 335

| B8 Tut-camparry
(=] El File: Tut-company.xmil
B {} Attova

- {}Hame

}office = Person
{¥Hame rnodefrowe | antruel
{ }street ——frhool on-falsely

{eity
-{}Phone
{}Department

) position

Splel] | resul i

What this mapping does is to output:
e The second Person in each Department
¢ of each Office in Altova.

| £ Tut-company
=] El File: Tut-company.xml

i {}Phone
P EI {}Department
S L T {}Hame
F result
ok

=0ffices

=Mame=Microtech, Inc_=Mame=
=Department=

=Mames=2Ldmin=Mame=

=Perzon:=

i =EMail=h hander@micr ctech com=/Ehtail=
: =First=Bert=First=

i =Last=Bander=iLast=
=Title=Accounts Receivable=/Title=
=iPerson=

=Department=

=Departmert=

=Mame==ales and Marketing=Mame:=
=Perzon=

=EMail=e elazg@microtech com=/Ehail=
i =First=Eve=/First=

| zlast=Ellas=Last=

{ =Title=art Director=/Title=

=iPerson=

=Department=

=Departmert=
=Mame=Manufacturing=Mame=
=Perzon=

=EMail=q . gundalli@mictotech .com=/Ehail=

Finding the position of items in a filtered sequence:

As the filter component is not a sequence function, it cannot be used directly in conjunction with
the position function to find the position of filtered items. To do this you hawe to use the "Variable"

component.

The results of a Variable component are always sequences, i.e. a delimited list of values, which

can also be used to create sequences.

starts with a letter higher than "M".

The variable component is used to collect the filtered contacts where the last name

The contacts are then passed on (from the variable) to the target component

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

336 Functions Function Library Reference

e The position function then numbers these contacts sequentially

| | BranchOffices |
£1] File: BranchOffices.xml

‘3 {}BranchOffices
(} Name
8 {} Office
-~ {)Name f position | g CIJH.'(ECL% |
~{}EMail L node]resull &1 £] File: (default)

B {}Contacts
‘B {}Contact Tvee|

-{}Fax
-{}Phone
{3 Location
{}Address
{}Contact

{}irst
- { } last

‘& compute-when

B {}Contact
= Contact i { Hirst
pnode/row | on-truel -{ Hast

—frbool on-falsely L———

i oreater

>3
Ca . resulti™

7.5.9.15 replicate-item

Repeats ewery item in the input sequence the number of times specified in the count argument. If
you connect a single item to the node/ r ow argument, the function returns N items, where N is the
value of the count argument. If you connect a sequence of items to the node/ r ow argument, the
function repeats each individual item in the sequence count times, processing one item at a time.
For example, if count is 2, then the sequence (1, 2, 3) produces (1,1, 2,2, 3,3).

i, replicate-item
nodel/row

i results)]>
count

Note that you can supply a different count value for each item. For example, let's assume that
you have a source XML file with the following structure:

<?xm version="1.0" encodi ng="UTF-8"?>
<Sour ceLi st xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : noNamespaceSchenalLocat i on="sour ce. xsd" >
<per son>
<nane>M chel | e</ nanme>
<count >2</ count >
</ per son>
<per son>
<nane>Ted</ nane>
<count >4</ count >
</ per son>
<per son>
<nane>Ann</ nane>
<count >3</ count >
</ per son>
</ Sour ceLi st >

With the help of the repl i cat e- i t emfunction, you can repeat each person name a different
number of times in a target component. To achiewe this, connect the <count > node of each

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 337

person to the count input of the repl i cat e-i t emfunction:

€| =ource | £ target |
=] E| File: source.xml| File/String =] E| File: target.xml File/String
= {} SourceList 2 {} TargetLists
‘1 4{} person “H1{} TargetList
e {3 name [f replcate-tem = b { } TargetString
- { ¥ count [
prnodelrow
»_\—I resultsiy
Bcount

The output is as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<Target Li sts xsi: noNamespaceSchenalLocati on="t ar get . xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<Tar get Li st >
<Target Stri ng>M chel | e</ Tar get Stri ng>
<Target Stri ng>M chel | e</ Tar get Stri ng>
</ Tar get Li st >
<Tar get Li st >
<Tar get Stri ng>Ted</ Tar get St ri ng>
<Tar get Stri ng>Ted</ Tar get St ri ng>
<Tar get Stri ng>Ted</ Tar get St ri ng>
<Tar get Stri ng>Ted</ Tar get St ri ng>
</ Tar get Li st >
<Tar get Li st >
<Tar get St ri ng>Ann</ Tar get Stri ng>
<Tar get St ri ng>Ann</ Tar get Stri ng>
<Tar get St ri ng>Ann</ Tar get Stri ng>
</ Tar get Li st >
</ Tar get Li st s>

7.5.9.16 replicate-sequence

Repeats all items in the input sequence the number of times specified in the count argument. For
example, if count is 2, then the sequence (1, 2, 3) produces (1,2,3,1, 2, 3).

El replicate-seguence

nodes/rows
results)
count Er

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

338 Functions Function Library Reference

7.5.9.17 set-empty

Returns an empty sequence.

B set-empty

empty [

7.5.9.18 skip-first-items

Skips the first "X' items/nodes of the input sequence, where Xis the number supplied by the
"count" parameter, and returns the rest of the sequence.

skip-first-tems

nodesirows
% resurtstr

ETH:::Iunt

7.5.9.19 substitute-missing

This function is a convenient combination of exists and a suitable if-else condition. Used to map
the current field content if the node exists in the XML source file, otherwise use the item mapped
to the "replace-with" parameter.

B substitute-missing

ode
- result
eplace-with E|>

7.5.10 core | string functions

The string functions allow you to use the most common string functions to manipulate many
types of source data to: extract portions, test for substrings, or retrieve information on strings.

7.5.10.1 char-from-code

Result is the character representation of the decimal Unicode value of value.

i char-from-code

[value | resultly

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions

Function Library Reference

339

7.5.10.2 code-from-char

Result is the decimal Unicode value of the first character of value.

i code-from-char

[:|:>'-.-'alue | resurt[:ﬁ

7.5.10.3 concat

Concatenates (appends) two or more values into a single result string. All input values are

automatically converted to type string.

_,EI concat

sl

aliel
5: resurtﬁ
alue2

&| mf-ExpReport Fﬁm
-+ |5 {}expense-report =:p -« |5 {}Company F
....... = detailed B {}Employee
....... e ——— —{}Title
a{}rerson [_-—fvalusi® | | {}Hame
o {}First {}TEI
e {ast 000 p————tealez® | | e {}Email
........ {} itle - { }Domesti
i { 3Phone S . {}Foreignil
........ { }Email -~ { YExpense

7.5.10.4 contains

Result is true if data supplied to the value parameter contains the string supplied by the substring

parameter.

i contains

alue
—result
Lbstring

7.5.10.5 normalize-space

Result is the normalized input string, i.e. leading and trailing spaces are removed, then each
sequence of multiple consecutive whitespace characters are replaced by a single whitespace

character. The Unicode character for "space" is (U+0020).

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

340 Functions Function Library Reference

B normalize-space

[string | resultly

7.5.10.6 starts-with

Result is true if the input string "string" starts with substr, else false.

By startz-with

rin
cl result
ubstr

7.5.10.7 string-length

Result is the number of characters supplied by the string parameter.

i string-length

'I:Etring result i

7.5.10.8 substring

Result is the substring (string fragment) of the "string" parameter where "start" defines the
position of the start character, and "length" the length of the substring.

) substring

Firg

att [result
Etﬂength

If the length parameter is not specified, the result is a fragment starting at the start position and
ending at the end position of the string. Indices start counting at 1.

E.g. substring("56789",2,3) results in 678.

7.5.10.9 substring-after

Result is the remainder of the "string" parameter, where the first occurrence of the substr
parameter defines the start characters; the remainder of the string is the result of the function. An
empty string is the result, if substr does not occur in string.

B substring-after

Fir
g result
ubstr

E.g. substring-after("2009/01/04","/") results in the substring 01/04. substr in this case is the first
"["character.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 341

7.5.10.10 substring-before

Result is the string fragment of the "string” parameter, up to the first occurrence of the substr
characters. An empty string is the result, if substr does not occur in string.

i substring-before

rir
=l resuft
ubstr

E.g. substring-before ("2009/01/04","/") results in the substring 2009. substr in this case is the
first "/" character.

7.5.10.11 tokenize

Result is the input string split into a sequence of chunks/sections defined by the delimiter
parameter. The result can then be passed on for further processing.

i tokenize

inpt

—result
elimiter

E.g. Input string is A,B,C and delimiter is "," - then result is A B C.

Example

The tokenizeStringl.mfd file available in the ...\MapForceExamples folder shows how the
tokenize function is used.

& AtovaToals
= { IFile: AttovaTools.xmil

5 -
@ {} AltovaTools EI i s
 Overson neut |t = []File: AttovaToolFeatures.csv
— elimiter E'E—' {}Rows
— Hame = Tool
e 1, lefttrm ... = Fegture
: {}MissionKit E w
i = Edition
- ToolCodes

The XML source file is shown below. The Tool element has two attributes: Name and Code, with
the Tool element data consisting of comma delimited text.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

342 Functions Function Library Reference

< AltovaTools
= xmins:xsé http: ey e 3 orgf2001 ML Schema-instance
= xsi:noHame... AtovaTools xsd
{} version 2010
4 Tool (9]
= Hame = Code Abc Texi
1 HMLSpy HE WML editor, XELT editor, X5LT debugger, Xouery editor, XQuery debugger,
2 MapForce MWF Diata integration, XML mapping, database mapping, text conversion, ECI tran:
3 StyleMision S Stylesheet designer, electronic forms, ¥5LT design, X5LFO design, databa
4 Uhiocdel LIk UL modeling tool, code generation, reverse engineering, UL, BPRMA, Sy
5 DatabaseSpy DS hulti-database tool, SGL auto-completion, graphical database design, table
6 DitfDag DD Diff f merge tool, campare files, sync directories, compare xkL, compare O
T Schemasgent sS4 #ML Schema management toal, IR management, XSLT management, WDl
8 SemarticwWorks S Semantic Web tool, RDF editor, OWL editor, RDF2ML and M-Triples generati
|| 9 Authentic Al WML authoring tool, database editor, XML publishing tool, e-Forms editor
| | = MissionKit (4

What the mapping does:

e The tokenize function receives data from the Tool element/item and uses the comma ","
delimiter to split that data into separate chunks. l.e. the first chunk "XML editor".

e As the result parameter is mapped to the Rows item in the target component, one row is
generated for each chunk.

e The result parameter is also mapped to the left-trim function which remowves the leading
white space of each chunk.

e The result of the left-trim parameter (each chunk) is mapped to the Feature item of the
target component.

e The target component output file has been defined as a CSV file (AltovaToolFeatures.csv)
with the field delimiter being a semicolon (double click component to see settings).

Result of the mapping:

For each Tool element of the source file

The (Tool) Name is mapped to the Tool item in the target component

Each chunk of the tokenized Tool content is appended to the (Tool Name) Feature item
E.g. The first tool, XMLSpy, gets the first Feature chunk "XML editor"

This is repeated for all chunks of the current Tool and then for all Tools.

Clicking the Output tab delivers the result shown below.

Tool;Feature

FMLEpy ;L editor

FMLEpy;¥BLT editor

FMLEpyw;¥ELT debugger

FMLApy; ¥0aery editor

FMLApy; ¥uaery debugger
FMLEpy;¥ML Schema f DTD editor
FMLEpy;WEDL editor

FMLApy; B0AP debugger

MapForce ;Data integration

Ww oo -1 o on R W M

=
[=

MapForce ;XML mapping

=
)

MapForce;database mapping

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 343

7.5.10.12 tokenize-by-length

Result is the input string split into a sequence of chunks/sections defined by the length
parameter. The result can then be passed on for further processing.

i tokenize-by-length

input
P resut
endgth

E.g. Input string is ABCDEF and length is "2" - then result is AB CD EF.

Example

The tokenizeString2.mfd file available in the ...\MapForceExamples folder shows how the
tokenize-by-length function is used.

"MiSSiDnKit for " T -
#| atovaTools _V-EI S
= f]File: AltovaTools.xml Eeralue]
21 {} AltovaTools | et

- { }Wersion

i el | —

bl | resutth sriocledrowe | on-truelg
- sniodedrowy | on-truel '?'\"b i pan
Edition ehiool on-falsely oo on-falsely
i = TooICodes
T equal i tokenize-by-lencth fi exists
|C_ ||| . " H . 4 f.n’ if-el
Cz ['Enterprize ®ML Dewvel... *:- . A npLt result B bnu:ude|resurtl Ty it-el=g
™ resLlt plength ’_\—l-bnol

wi| Selecthizsionkit f Ca 2 Pvalue-tru

Ca [y
=Zdetault |Se|ectMi33iDnKitl Fralus-fal

C= "

The XML source file is shown below, and is the same as the one used in the previous example.
The MissionKit element also has two attributes: Edition and ToolCodes, but no MissionKit
element content.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

344 Functions Function Library Reference

4 Tool (3]
= Hame = Code Abe Text
1 HMLSpy HS ML editor, XELT editor, XSLT debugger, XGuery editor, XGuery debugger, XML 3
2 MapFaorce MF Data integration, XML mapping, database mapping, text conversion, EDI translator |
3 Stylevision S Stylesheet designer, electranic forms, X5LT design, XSLFO design, databasze reg
4 Uhdadel LIk UL modeling tool, code generation, reverse engineering, UkL, BPMB, Syshil | prd
5 DatabaszeSpy D= wiulti-dstabasze tool, SGL auto-completion, graphical database design, table brawes|
6 DiffDog DD Diff Fmerge tool, compare files, sync directories, compare XL, compare O0xML
T Schemasgert SA whiL Schema management tool, IR management, X5LT management, WsDL manag
& Semanticvvorks S Semantic Web tool, RDF editor, OWL editor, RDFSRML and M-Triples generation an
= 9 Authentic Al *WL authoring tool, database editor, XML publishing tool, e-Forms editor
| Mis=sionKit (4]
= Edition = ToolCodes
1 Erterprizse Softveare Architects HEMFESWYUMDSDDS ASWY
2 Professional Software Architects HKSMFSVUMDS
3 Enterprize XML Developers HEMFSWDDSASW
|| 4 Professional XML Developers HEMFSW

Aim of the mapping:
To generate a list showing which Altova tools are part of the respective MissionKit editions.

How the mapping works:

e The SelectMissionKit Input component receives its default input from a constant
component, in this case "Enterprise XML Developers".

e The equal function compares the input value with the "Edition" value and passes on the
result to the bool parameter of the ToolCodes filter.

e The node/row input of the ToolCodes filter is supplied by the ToolCodes item of the
source file. The value for the Enterprise XML Developers edition is: XSMFSVDDSASW.

e The XSMFSVDDSASW value is passed to the on-true parameter, and further to the
input parameter of the tokenize-by-length function.

What the tokenize-by-length function does:

e The ToolCodes input value XSMFSVDDSASW, is split into multiple chunks of two
characters each, defined by length parameter, which is 2, thus giving 6 chunks.

e Each chunk (placed in the b parameter) of the equal function, is compared to the 2
character Code value of the source file (of which there are 9 entries/items in total).

e The result of the comparison (true/false) is passed on to the bool parameter of the filter.

e Note that all chunks, of the tokenize-by-length function, are passed on to the node/row
parameter of the filter.

e The exists functions now checks for existing/non-existing nodes passed on to it by the
on-true parameter of the filter component.

Existing nodes are those where there is a match between the ToolCodes chunk and the
Code value.

Non-existing nodes are where there was no ToolCodes chunk to match a Code value.

e The bool results of the exists function are passed on to the if-else function which passes
on a 'Y to the target if the node exists, or a N, if the node does not exist.

Result of the mapping:

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 345

ﬁuul;HiSSiDnKit for Enterprise XML Dewvelopers
HHLEpy:T

MapForce;T

StyleWision;T

Model N

Databaselpy,N

Diffhog; T

Schemabgent ;T

SemanticWorks;Y

Authentic ;N

W0 -] on ode L M

=
= o

7.5.10.13 tokenize-regexp

Result is the input string split into a sequence of strings, where the supplied regular expression
pattern match defines the separator. The separator strings are not output by the result
parameter. Optional flags may also be used.

f tokenize-regesxp

inpt
attern result
flags

E
fi) tokenize-regexp &1 L] File: (defautt)
“E {}Rows
result i = Fieldd

e T .
LI flags

In the example shown abowve:
input string is a succession of characters separated by spaces and/or commas, i.e. a, bc,d

The regex pattern defines a character class ["space""'comma”] - of which one and only one
character will be matched in a character class, i.e. either space or comma.

The + quantifier specifies "one or more" occurrences of the character class/string.

result string is:
a

h
c
d

o W M

Please note that there are slight differences in regular expression syntax between the various
languages. Tokenize-regexp in C++ is only available in Visual Studio 2008 SP1 and later.

For more information on regular expressions, see Regular expressions.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

346

Functions Function Library Reference

7.5.10.14 translate

7.5.11

The characters of string1 (search string) are replaced by the characters at the same position in
string2 (replace string), in the input string "value".

) translate

result

When there are no corresponding characters in string2, the character is removed.

[ET R
4 transtat -

fi translate <3 O Article

- { YHumber

- { ¥Hame

-------- {}SinglePrice

result

input string is 123145
(search) stringl is 15
(replace) string2 is xy

So:
each 1 is replaced by x in the input string value
each 5 is replaced by y in the input sting value

Result string is x23x4y

If string2 is empty (fewer characters than stringl) then the character is remowed.

E.g.2
input string aabaacbca
stringl is "a"
string2 is "" (empty string)

result string is "bcbc"

E.g.3

input string aabaacbca
stringl is "ac"
string2 is "ca"

result string is "ccbccabac”

Xpath2 | accessors

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 347

7.5.11.1 base-uri

The base-uri function takes a node argument as input, and returns the URI of the XML resource
containing the node. The output is of type xs: stri ng. MapForce returns an error if no input node
is supplied.

7.5.11.2 node-name

The node- nane function takes a node as its input argument and returns its QName. When the
QName is represented as a string, it takes the form of prefi x: | ocal nane if the node has a
prefix, or | ocal nane if the node has no prefix. To obtain the namespace URI of a node, use the
nanespace- URl - f r om QNane function (in the library of QName-related functions).

7.5.11.3 string

The st ri ng function works like the xs: st ri ng constructor: it converts its argument to xs: stri ng.

When the input argument is a value of an atomic type (for example xs: deci mal), this atomic
value is converted to a value of xs: st ri ng type. If the input argument is a node, the string value of
the node is extracted. (The string value of a node is a concatenation of the values of the node's
descendant nodes.)

7.5.12 xpath2 | anyURI functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

7.5.12.1 resolve-uri

The resol ve-uri function takes a URI as its first argument (datatype xs: st ri ng) and resolves it
against the URI in the second argument (datatype xs: st ri ng).

The result (datatype xs: stri ng) is a combined URI. In this way a relative URI (the first argument)
can be conwverted to an absolute URI by resolving it against a base URI.

B resolve-uri &/ Summary

elative ;IL:J {¥languages
result B {}language
- {}ll'lfl]

[]

C=

"CPath TobdyFiley!

In the screenshot abowve, the first argument provides the relative URI, the second argument the

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

348

Functions Function Library Reference

7.5.13

base URI. The resolved URI will be a concatenation of base URI and relative URI, so C
\ Pat ht oM/Fi | e\ MyFi | e. xm .

Note: Both arguments are of datatype xs: st ri ng and the process of combining is done by
treating both inputs as strings. So there is no way of checking whether the resources
identified by these URIs actually exist. MapForce returns an error if the second argument
is not supplied.

xpath2 | boolean functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.
The Boolean functions t r ue and f al se take no argument and return the boolean constant values,
true and f al se, respectively. They can be used where a constant boolean value is required.

7.5.13.1 false

Returns the Boolean value "false".

7.5.13.2 true

7.5.14

Returns the Boolean value "true".

xpath2 | constructors

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

The functions in the Constructors part of the XPath 2.0 functions library construct specific
datatypes from the input text. Typically, the lexical format of the input text must be that expected
of the datatype to be constructed. Otherwise, the transformation will not be successful.

For example, if you wish to construct an xs: dat e datatype, use the xs: dat e constructor function.
The input text must have the lexical format of the xs: dat e datatype, which is: YYYY- M DD
(screenshot below).

&8 Summary

-« |2 {}languages
El { }language

FC=2009-08-22"

In the screenshot abowe, a string constant (2009- 08- 22) has been used to provide the input
argument of the function. The input could also have been obtained from a node in the source

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 349

document.

The xs: dat e function returns the input text (2009- 08- 22), which is of xs: st ri ng datatype
(specified in the Constant component), as output of xs: dat e datatype.

When you mouseover the input argument in a function box, the expected datatype of the
argument is displayed in a popup.

7.5.15 xpath2 | context functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

The Context functions library contains functions that provide the current date and time, the default
collation used by the processor, and the size of the current sequence and the position of the
current node.

7.5.15.1 current-date

Returns the current date (xs: dat e) from the system clock.

7.5.15.2 current-dateTime

Returns the current date and time (xs: dat eTi ne) from the system clock.

7.5.15.3 current-time

Returns the current time (xs: ti ne) from the system clock.

7.5.15.4 default-collation

The default-collation function takes no argument and returns the default collation, that is, the
collation that is used when no collation is specified for a function where one can be specified.

The Altova XSLT 2.0 Engine supports the Unicode codepoint collation only. Comparisons,
including for the f n: max and f n: m n functions, are based on this collation.

7.5.15.5 implicit-timezone

Returns the value of the "implicit timezone" property from the evaluation context.

7.5.15.6 last

The | ast and posi ti on functions take no argument. The | ast function returns the position of the
last node in the context nodeset. The posi ti on function returns the position of the current node in
the nodeset being processed.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

350 Functions Function Library Reference
The context nodeset at the nodes where the functions are directed, is the nodeset to which the
functions will apply. In the screenshot below, the nodeset of Language elements is the context
nodeset for the | ast and posi ti on functions.

£
E8| Catalog-2009 ;|E| Olanguages
AEI {IBooks - = number
E| {¥Language B Olanguage
E - = xmilzlang . = position
F = name
........ {3 Title
H postion
J result _I
In the example abowe, the | ast function returns the position of the last node of the context
nodeset (the nodeset of Language elements) as the value of the nunber attribute. This value is
also the size of the nodeset since it indicates the number of nodes in the nodeset.
The posi ti on function returns the position of the Language node being currently processed. For
each Language element node, its position within the nodeset of Langauge elements is output to
the | anguage/ @osi ti on attribute node.
We would advise you to use the position and count functions from the core library.
7.5.16 xpath2 | durations, date and time functions

XPath2 functions are available when either the XSLT2 or XQuery languages are selected.

The XPath 2 duration and date and time functions enable you to adjust dates and times for the
timezone, extract particular components from date-time data, and subtract one date-time unit
from another.

The 'Adjust-to-Timezone' functions

Each of these related functions takes a date, time, or dateTime as the first argument and adjusts
the input by adding, removing, or modifying the timezone component depending on the value of
the second argument.

The following situations are possible when the first argument contains no timezone (for example,
the date 2009- 01 or the time 14: 00: 00).

e Timezone argument (the second argument of the function) is present: The result will
contain the timezone specified in the second argument. The timezone in the second
argument is added.

e Timezone argument (the second argument of the function) is absent: The result will
contain the implicit timezone, which is the system's timezone. The system's timezone is
added.

e Timezone argument (the second argument of the function) is empty: The result will

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 351

contain no timezone.

The following situations are possible when the first argument contains a timezone (for example,
the date 2009- 01- 01+01: 00 or the time 14: 00: 00+01: 00).

e Timezone argument (the second argument of the function) is present: The result will
contain the timezone specified in the second argument. The original timezone is replaced
by the timezone in the second argument.

e Timezone argument (the second argument of the function) is absent: The result will
contain the implicit timezone, which is the system's timezone. The original timezone is
replaced by the system's timezone.

e Timezone argument (the second argument of the function) is empty: The result will
contain no timezone.

The 'From' functions
Each of the 'From' functions extracts a particular component from: (i) date or time data, and (ii)
duration data. The results are of the xs:decimal datatype.

As an example of extracting a component from date or time data, consider the day-from dat e
function (screenshot below).

&

;IEI {¥anguages
{anguage

[= |"2008-01-01

F) day-from-ciate

The input argument is a date (2009- 01- 01) of type xs: dat e. The day- f r om dat e function
extracts the day component of the date (1) as an xs:decimal datatype.

Extraction of time components from durations requires that the duration be specified either as

xs: year Mont hDur at i on (for extracting years and months) or xs: dayTi meDur at i on (for extracting
days, hours, minutes, and seconds). The result will be of type xs: deci mal . The screenshot below
shows a dayTi neDur at i on of P2DTOH being input to the days- f r om dur at i on function. The result
is the xs:decimal 2.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

352 Functions Function Library Reference

E s dayTimeDuration Ej SUMMmaty
Fy | resuti— :IEJ { Manguages
{Hanguage :[%
"P2DTOH'R— 7 L

i days-from-duration

<Tpduration result

The 'Subtract’ functions

Each of the three subtraction functions enables you to subtract one time value from another and
return a duration value. The three subtraction functions are: subt r act - dat es, subtract -ti nmes,
subtract - dat eTi nmes.

The screenshot below shows how the subtract-dates function is used to subtract two dates
(2009- 10- 22 minus 2009- 09- 22). The result is the dayTimeDuration P30D.

iy weidate ¥

T subtract-dates ;|E| {Manguages
@ {Hanguage

reslt b IO

| c=i |'2009-10-22"
| c= [2009-09-22"

7.5.17 xpath2 | node functions

The following XPath 2 node functions are available:

lang

The | ang function takes a string argument that identifies a language code (such as en). The
function returns t r ue or f al se depending on whether the context node has an xni : | ang attribute
with a value that matches the argument of the function.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 353

L
= Language £ CatalogSummary
& Catalog-2009 eniocero | on-trug ;IEI{}lﬂll pr—
dEJ {}Books [; shiocl on-falselp o {};: 9
E‘ {Language p—— L] T =titles
: Bequal |V e =exists

B {}de
....... = titles

result i

1k

i tang
e=tring |resuﬂl

In the screenshot above notice the following:

1. Inthe source schema, the Language element has an xni : | ang attribute.

2. Language nodes are filtered so that only those Language nodes having an xni : | ang value
of en are processed (the filter test is specified in the equal function).

3. The Language node is the context node at the point where the en element is created in
the output document.

4. The output of the | ang function (t rue or f al se) is sent to the en/ @xi st s attribute node
of the output. The argument of the function is provided by the string constant en. The
| ang function then checks whether the context node at this point (the Language element)
has an xni : | ang attribute with a value of en (the argument of the function). If yes, then
true is returned, otherwise f al se.

local-name, name, namespace-uri

The | ocal - nane, nane, and nanmespace- uri functions, return, respectively, the local-name, name,
and namespace URI of the input node. For example, for the node al t ova: Product s, the local-
name is Product s, the name is al t ova: Product s, and the namespace URI is the URI of the
namespace to which the al t ova: prefix is bound (say, htt p://ww. al t ova. coni mapf or ce).

Each of these three functions has two variants:

e With no argument: the function is then applied to the context node (for an example of a
context node, see the example given for the | ang function abowve).
e An argument that must be a node: the function is applied to the submitted node.

The output of each of these six variants is a string.

number
Converts an input string into a number. Also conwerts a boolean input to a number.

The number function takes a node as input, atomizes the node (that is, extracts its contents), and
converts the value to a decimal and returns the conwerted value. The only types that can be
converted to numbers are booleans, strings, and other numeric types. Non-numeric input values
(such as a non-numeric string) result in NaN (Not a Number).

There are two variants of the number function:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

354 Functions Function Library Reference
e With no argument: the function is then applied to the context node (for an example of a
context node, see the example given for the | ang function abowe).
e An argument that must be a node: the function is applied to the submitted node.
7.5.18 xpath2 | numeric functions
The following XPath 2 numeric functions are available:
abs
The abs function takes a humeric value as input and returns its absolute value as a decimal. For
example, if the input argument is - 2 or +2, the function returns 2.
round-half-to-even
The r ound- hal f - t 0- even function rounds the supplied number (first argument) to the degree of
precision (number of decimal places) supplied in the optional second argument. For example, if
the first argument is 2. 141567 and the second argument is 3, then the first argument (the
number) is rounded to three decimal places, so the result will be 2. 141. If no precision (second
argument) is supplied, the number is rounded to zero decimal places, that is, to an integer.
The 'even’ in the name of the function refers to the rounding to an even number when a digit in the
supplied number is midway between two values. For example, r ound- hal f -t o- even(3. 475, 2)
would return 3. 48.
7.5.19 xpath2 | string functions

The following XPath 2 string functions are available:

compare

The conpar e function takes two strings as arguments and compares them for equality and
alphabetically. If String-1 is alphabetically less than String-2 (for example the two string are: A
and B), then the function returns - 1. If the two strings are equal (for example, A and A), the
function returns 0. If String-1 is greater than String-2 (for example, B and A), then the function
returns +1.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

ends-with
The ends- wi t h function tests whether String-1 ends with String-2. If yes, the function returns
true, otherwise f al se.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 355

escape-uri

The escape- uri function takes a URI as input for the first string argument and applies the URI
escaping conventions of RFC 2396 to the string. The second boolean argument (escape-
reser ved) should be set to t rue() if characters with a reserved meaning in URIs are to be
escaped (for example "+" or "/ ").

For example:

escape-uri ("My A+B.doc", true()) would give M/9%20A%2B. doc
escape-uri ("My A+B.doc", false()) would give My/%20A+B. doc

lower-case
The | ower - case function takes a string as its argument and conwverts every upper-case character
in the string to its corresponding lower-case character.

matches

The mat ches function tests whether a supplied string (the first argument) matches a regular
expression (the second argument). The syntax of regular expressions must be that defined for
the pat t er n facet of XML Schema. The function returns t r ue if the string matches the regular
expression, f al se otherwise.

The function takes an optional f | ags argument. Four flags are defined (i , m s, x). Multiple flags
can be used: for example, i nx. If no flag is used, the default values of all four flags are used.

The meaning of the four flags are as follows:

i Use case-insensitive mode. The default is case-sensitive.

m Use multiline mode, in which the input string is considered to have multiple lines, each
separated by a newline character (x0a). The meta characters » and $ indicate the
beginning and end of each line. The default is string mode, in which the string starts and
ends with the meta characters ~ and $.

s Use dot-all mode. The default is not-dot-all mode, in which the meta character " . "
matches all characters except the newline character (x0a). In dot-all mode, the dot also
matches the newline character.

X Ignore whitespace. By default whitespace characters are not ignored.

normalize-unicode

The nor mal i ze- uni code function normalizes the input string (the first argument) according to the
rules of the normalization form specified (the second argument). The normalization forms NFC,
NFD, NFKC, and NFKD are supported.

replace

The r epl ace function takes the string supplied in the first argument as input, looks for matches
as specified in a regular expression (the second argument), and replaces the matches with the
string in the third argument.

The rules for matching are as specified for the matches attribute abowve. The function also takes an

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

356

Functions Function Library Reference

7.5.20

optional f I ags argument. The flags are as described in the mat ches function abowve.

starts-with
The st art s-wi t h function tests whether String-1 starts with String-2. If yes, the function returns
true, otherwise f al se.

A variant of this function allows you to choose what collation is to be used to compare the strings.
When no collation is used, the default collation, which is the Unicode codepoint collation, is used.
The Altova Engines support the Unicode codepoint collation only.

substring-after

The substring-after function returns that part of String-1 (the first argument) that occurs after the
test string, String-2 (the second argument). An optional third argument specifies the collation to
use for the string comparison. When no collation is used, the default collation, which is the
Unicode codepoint collation, is used. The Altova Engines support the Unicode codepoint collation
only.

substring-before

The substring-before function returns that part of String-1 (the first argument) that occurs before
the test string, String-2 (the second argument). An optional third argument specifies the collation
to use for the string comparison. When no collation is used, the default collation, which is the
Unicode codepoint collation, is used. The Altova Engines support the Unicode codepoint collation
only.

upper-case
The upper - case function takes a string as its argument and converts every lower-case character
in the string to its corresponding upper-case character.

xslt | xpath functions

The functions in the XPath Functions library are XPath 1.0 nodeset functions. Each of these
functions takes a node or nodeset as its context and returns information about that node or
nodeset. These function typically have:

e acontext node (in the screenshot below, the context node for the | ang function is the
Language element of the source schema).

e an input argument (in the screenshot below, the input argument for the | ang function is
the string constant en). The | ast and posi ti on functions take no argument.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 357

L
= Language £ CatalogSummary

& Catalog-2009 eniocero | on-trug ;IEI{}lﬂll pr—
== {¥Books E/nhuul an-falsslp o {}eﬂ g
‘E {¥Language &

....... = titles

Bequal |V e =exists
B {}de
....... = titles

result i

1k

i tang
e=tring |resuﬂl

lang

The | ang function takes a string argument that identifies a language code (such as en). The
function returns t r ue or f al se depending on whether the context node has an xni : | ang attribute
with a value that matches the argument of the function. In the screenshot above notice the

following:

1. Inthe source schema, the Language element has an xni : | ang attribute.

2. Language nodes are filtered so that only those Language nodes having an xni : | ang value
of en are processed (the filter test is specified in the equal function).

3. The Language node is the context node at the point where the en element is created in
the output document.

4. The output of the | ang function (t rue or f al se) is sent to the en/ @xi st s attribute node
of the output. The argument of the function is provided by the string constant en. The
I ang function then checks whether the context node at this point (the Language element)
has an xni : | ang attribute with a value of en (the argument of the function). If yes, then
true is returned, otherwise f al se.

last, position
The | ast and posi ti on functions take no argument. The | ast function returns the position of the
last node in the context nodeset. The posi ti on function returns the position of the current node in

the nodeset being processed.

The context nodeset at the nodes where the functions are directed is the nodeset to which the
functions will apply. In the screenshot below, the nodeset of Language elements is the context
nodeset for the | ast and posi ti on functions.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

358 Functions Function Library Reference

E8| Catalog-2009

« = {}languages

|_-m

AEI {}Books o S number
i {}Language = {Manguage
o = xml:lang b = position
. - name
L ¥ Title

H postion

result

In the example abowe, the | ast function returns the position of the last node of the context
nodeset (the nodeset of Language elements) as the value of the nunber attribute. This value is
also the size of the nodeset since it indicates the number of nodes in the nodeset.

The posi ti on function returns the position of the Language node being currently processed. For
each Language element node, its position within the nodeset of Language elements is output to
the | anguage/ @osi ti on attribute node.

name, local-name, namespace-uri

These functions are all used the same way and return, respectively, the name, local-name, and
namespace URI of the input node. The screenshot below shows how these functions are used.
Notice that no context node is specified.

The name function returns the name of the Language node and outputs it to the | anguage/
@ enment nane attribute. If the argument of any of these functions is a nodeset instead of a single
node, the name (or local-name or namespace URI) of the first node in the nodeset is returned.

3
& Catalog-2009 ;lE_l { Hanguages
;IE_l {}Books ------- = pumber
El {}Language EEI {Hanguage
....... = xmklang - = position
- ------- = name L = elementllame
LD Title

[|

The nane function returns the QName of the node; the | ocal - nane function returns the local-
name part of the node's QName. For example, if a node's QName is al t ova: M/Node, then M/Node
is the local name.

The namespace URI is the URI of the namespace to which the node belongs. For example, the
al tova: prefix can be declared to map to a namespace URI in this way:
xm ns: al tova="http://ww. al t ova. conl namespaces”.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference

359

Note: Additional XPath 1.0 functions can be found in the Core function library.

7.5.21 xslt | xslt functions

The functions in the XSLT Functions library are XSLT 1.0 functions.

7.5.21.1 currrent

The current function takes no argument and returns the current node.

7.5.21.2 document

The docunent function addresses an external XML document (with the uri argument; see
screenshot below). The optional nodeset argument specifies a node, the base URI of which is

used to resolve the URI supplied as the first argument if this URI is relative. The result is output to

a node in the output document.

E8| Summary
AEJ {}languages
El {}language

fi) document o Stitles
O e name

result

| C= |"|::'I.C|:und'rtil:unal.xml"

[]

Note that the uri argument is a string that must be an absolute file path.

7.5.21.3 element-available

The el enent - avai | abl e function tests whether an element, entered as the only string argument
of the function, is supported by the XSLT processor.

The argument string is evaluated as a QName. Therefore, XSLT elements must have an xsl :

prefix and XML Schema elements must have an xs: prefix—since these are the prefixes declared

for these namespaces in the underlying XSLT that will be generated for the mapping.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

360 Functions Function Library Reference

| Summaty

;lEI {}anguages
fi) element-available B {}language

lement | result
| C= |"xsl:message"*5*e

The function returns a boolean.

7.5.21.4 function-available

The f uncti on- avai | abl e function is similar to the el enent - avai | abl e function and tests
whether the function name supplied as the function's argument is supported by the XSLT
processor.

The input string is evaluated as a QName. The function returns a boolean.

7.5.21.5 generate-id

The gener at e- i d function generates a unique string that identifies the first node in the nodeset
identified by the optional input argument.

If no argument is supplied, the ID is generated on the context node. The result can be directed to
any node in the output document.

7.5.21.6 system-property

The syst em property function returns properties of the XSLT processor (the system). Three
system properties, all in the XSLT namespace, are mandatory for XSLT processors. These are
xsl : versi on, xsl : vendor, and xsl : vendor - url .

The input string is evaluated as a QName and so must have the xsl : pr ef i x, since this is the
prefix associated with the XSLT namespace in the underlying XSLT stylesheet.

£8| Summary

_« |= {1anguages
El { Ylanguage

i) system-property

rirg | result

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Functions Function Library Reference 361

7.5.21.7 unparsed-enity-uri

If you are using a DTD, you can declare an unparsed entity in it. This unparsed entity (for example
an image) will have a URI that locates the unparsed entity.

The input string of the function must match the name of the unparsed entity that has been
declared in the DTD. The function then returns the URI of the unparsed entity, which can then be
directed to a node in the output document, for example, to an hr ef node.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Chapter 8

Automating Mappings and MapForce

364 Automating Mappings and MapForce

8 Automating Mappings and MapForce

Mappings designed with MapForce can be executed in a sernver environment (including Linux and
macOS seners), and with sener-level performance, by the following Altova transformation engines
(licensed separately):

e RaptorXML Server. Running a mapping with this engine is suitable if the transformation
language of the mapping is XSLT 1.0, XSLT 2.0, or XQuery. See Automation with
RaptorXML Senver.

e MapForce Server (or MapForce Server Advanced Edition). This engine is suitable for any
mapping where the transformation language is BUILT-IN*. The BUILT-IN language
supports the most mapping features in MapForce, while MapForce Server (and, in
particular, MapForce Sener Advanced Edition) provides best performance for running a
mapping.

* The BUILT-IN transformation language requires MapForce Professional or Enterprise Edition.

In addition to this, MapForce provides the ability to automate generation of XSLT code from the
command line interface. For more information, see MapForce Command Line Interface.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Automating Mappings and MapForce Automation with RaptorXML Server 365

8.1

Automation with RaptorXML Server

RaptorXML Sener (hereafter also called RaptorXML for short) is Altova's third-generation, super-
fast XML and XBRL processor. It has been built to be optimized for the latest standards and
parallel computing environments. Designed to be highly cross-platform capable, the engine takes
advantage of today's ubiquitous multi-core computers to deliver lightning fast processing of XML
and XBRL data.

RaptorXML is available in two editions which can be downloaded from the Altova download page
(https://www.altova.com/download-trial-server.html):

e RaptorXML Sener is a very fast XML processing engine with support for XML, XML
Schema, XSLT, XPath, XQuery, and more. This edition is part of the FlowForce Sener
installation package.

¢ RaptorXML+XBRL Server supports all the features of RaptorXML Server with the additional
capability of processing and validating the XBRL family of standards.

If you generate code in XSLT 1.0 or 2.0, MapForce creates a batch file called DoTransform.bat
which is placed in the output folder that you choose upon generation. Executing the batch file
calls RaptorXML Sener and executes the XSLT transformation on the sener.

Note: You can also preview the XSLT code using the built-in engine.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

https://www.altova.com/download-trial-server.html

366 Automating Mappings and MapForce MapForce Command Line Interface

8.2 MapForce Command Line Interface

The general syntax of a MapForce command at the command line is:

MapFor ce. exe <fil enanme> [/{target} [[<outputdir>] [/options]]]

Legend

The following notation is used to indicate command line syntax:

Notation Description

Text without brackets or braces | ltems you must type as shown

<Text inside angle brackets> Placeholder for which you must supply a value
[Text inside square brackets] Optional items

{Text inside braces} Set of required items; choose one

Vertical bar (]) Separator for mutually exclusive items; choose one
Ellipsis (...) Items that can be repeated

<filename>

The mapping design (.mfd) file from which code is to be generated.

/{target}

Specifies the target language or environment for which code is to be generated. The following code
generation targets are supported.

Target Description
/| XSLT Generates XSLT 1.0 code.
/ XSLT2 Generates XSLT 2.0 code.

<outputdir>

Optional parameter which specifies the output directory. If an output path is not supplied, the
current working directory will be used. Note that any relative file paths are relative to the current
working directory.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Automating Mappings and MapForce

MapForce Command Line Interface

367

/options

The / opt i ons are not mutually exclusive. One or more of the following options can be set.

Option

Description

/ GLOBALRESQURCEFI LE
<fil ename>

This option is applicable if the mapping uses Global
Resources to resolve input or output file or folder paths, or
databases. For more information, see Altova Global
Resources.

The option / GLOBALRESOURCEFI LE specifies the path to a
Global Resource .xml file. Note that, if / G.OBALRESOURCEFI LE
is set, then / GLOBALRESOURCECONFI G must also be set.

/ GLOBALRESOURCECONFI G
<confi g>

This option specifies the name of the Global Resource
configuration (see also the previous option). Note that, if /
GLOBALRESQURCEFI LE is set, then / GLOBALRESOURCECONFI G
must also be set.

/ LGG <l ogfi | enanme>

Generates a log file at the specified path. <l ogfi | ename> can
be a full path name, for example, it can include both a
directory and a file name. Howewer, if a full path is supplied,
the directory must exist for the log file to be generated. If you
only specify the file name, then the file will be placed in the
<out put di r > directory.

Remarks

¢ Relative paths are relative to the working directory, which is the current directory of the
application calling MapForce. This applies to the path of the .mfd filename, output
directory, log filename, and global resource filename.

e Do not use the end backslash and closing quote at the command line (for example, "C:
\My directory\"). These two characters are interpreted by the command line parser as a
literal double quotation mark. Use the double backslash \\ if spaces occur in the

command line and you need the quotes ("c:\My Directory\\"), or try to awoid using spaces

and therefore quotes at all.

Examples

1) To start MapForce and open the mapping <f i | ename>. nf d, use:

MapFor ce. exe <fil enanme>. nfd

2) To generate XSLT 2.0 code and also create a log file with the name <l ogf i | enane>, use:

MapFor ce. exe <fil ename>.nfd /XSLT2 <outputdir> /LOG <I ogfi | ename>

3) To generate XSLT 2.0 code taking into account the global resource configuration

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

368 Automating Mappings and MapForce MapForce Command Line Interface

<gr conf i gnane> from the global resource file <gr fi | ename>, use:

Mapf or ce. exe <filename>. nfd /XSLT2 <out put di r> / G_COBALRESOQURCEFI LE
<grfil enane> / GLOBALRESOQURCECONFI G <gr conf i gnane>

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Chapter 9

Customizing MapForce

370 Customizing MapForce

9 Customizing MapForce

This section provides information about working with Altova Global Resources, and working with
catalog files.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Customizing MapForce

Changing the MapForce Options

371

9.1

Changing the MapForce Options

You can change the general and other preferences in MapForce as follows:

e Onthe Tools menu, click Options.

The available options are grouped as shown below.

Libraries

From this page, you can add or delete custom function libraries to MapForce. For more
information, see Importing Custom XSLT 1.0 or 2.0 Functions).

General

The settings available in this page are as follows:

Show logo | Show on
start

Shows or hides an image (splash screen) while MapForce starts.

Show gradient
background

Enables or disables the gradient background in the Mapping pane.

Limit annotation
display to N lines

This option applies to components which support annotations (for
example, XML schema, EDI). If the annotation text contains multiple
lines, then enabling this option shows only the first N lines on the
component, where N is the value you specify. This setting also
applies to SELECT statements visible in a component.

Encoding name

Sets the default character encoding for new components. This
setting can also be changed individually for each component, see
Changing the Component Settings.

Use execution timeout

Sets an execution timeout when previewing the mapping result in
the Output pane.

Generate output to
temporary files

When this option is set, the output generated when you preview the
mapping result will be written to temporary files (this is the default
option). If the output file path contains folders that do not exist yet,
MapForce will create these folders.

Warning: If you intend to deploy the mapping to a sener
for execution, any directories in the path must exist on the
sener; otherwise, an execution error will occur. See also
Preparing Mappings for Sener Execution.

Write directly to final

When this option is set, the output generated when you preview the

output files mapping result will be written to actual files. If the output file path
contains folders that do not exist yet, then a mapping error occurs.
Warning: This option overwrites any existing output files
without requesting further confirmation.
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

372 Customizing MapForce Changing the MapForce Options

Show logo | Show on Shows or hides an image (splash screen) while MapForce starts.
start

Display text in steps of | Specifies the maximum size of the text displayed in the Output

N million characters pane when you preview mappings that generate large XML and text
files. If the output text exceeds this value, you will need click a
Load more button to load the next chunk. For more information,
see Previewing the Output.

Editing
The settings available in this page are as follows:

Align components on Specify whether components or functions should be aligned with
mouse dragging other components, while you drag them with the mouse, see
Aligning Components.

Smart component When enabled, this option "remembers" connections of deleted
deletion components, see Keeping Connections After Deleting Components.
Messages

From this page, you can re-enable message notifications that were previously disabled using the
"Do not show this message again" option.

Network proxy
See Network Proxy Settings.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Customizing MapForce Altova Global Resources 373

9.2 Altova Global Resources

Altova Global Resources represent a way to refer to files, folders, or databases so as to make
these resources reusable, configurable and available across multiple Altova applications. For
example, let's assume that several MapForce mappings routinely read data from the same XML
file which is critical for your business workflow. If this file has been renamed on the disk for
whatever reason, this would cause "file not found" errors in multiple contexts, and break the
workflow. To prevent such issues, it is possible to create a so-called "file alias” (in other words, a
Global Resource), and change all mappings to refer to this Global Resource instead of the actual
file on disk. This way, if the file name ever changes, you would only need to change the file alias,
in one place.

Global Resources can be defined and shared between the following Altova desktop applications:
Authentic, MobileTogether Designer, MapForce, DatabaseSpy, and XMLSpy. On the sener side,
Global Resources can be consumed by the following Altova server applications: MapForce Sener,
MapForce Server Advanced Edition, RaptorXML Senrver, RaptorXML+XBRL Senver.

Global Resources (be they file, folder, or database references) can be used in MapForce for
various scenarios, for example:

e To supply a configurable file path as mapping input, see Example: Run Mappings with
Variable Input Files.

¢ To redirect the mapping output to a configurable path. For more information, see
Example: Generate Mapping Output to Variable Folders.

Note:
e FlowForce Server does not support Global Resources. MapForce Server can
consume Global Resources either at the command line or at API level.
e MapForce Basic Edition does not support consuming database connections defined
as Global Resources.

9.2.1 Creating Global Resources

A Global Resource alias is a reusable reference which represents a file or folder path, or a
database connection. Aliases are defined only once and can be reused as many times as
necessary in contexts which support them, including across multiple Altova applications. Taking
databases as example, if you frequently work with a specific database in more than one Altova
application, then it is a good idea to add the database connection as a Global Resource. This
way, you wouldn't need to go through all the Database Connection Wizard steps each time when
you need to connect to the same database from another Altova application.

File, folder, and database aliases are configurable in their turn, by means of so-called
"configurations”. Configurations make it possible to easily switch between files, folders and
databases that are consumed or produced by Altova applications, which is particularly useful for
testing scenarios. For example, you could create a database alias that consists of three separate
connections to the same database, each with a different driver kind: (a) ODBC, the default
connection kind, (b) JDBC, and (c) ADO.NET. This way, to connect to the database with a
specific driver, you would just select the corresponding configuration from the Global Resources
drop-down list before running the mapping.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

374 Customizing MapForce Altova Global Resources

Default 5B -

ADCLMET
IDEC

Global Resources drop-down list

Configurations can also help you generate mapping output to variable folders, with a click of a
button. For example, you could create a folder alias with two configurations: (a) "Testing", which
points to directory C:\Testing and (b) "Production”, which points to directory C:\Production. It is
then possible to configure a mapping to generate output to either C:\Testing or C:\Production
folders, just by selecting the required configuration from the Global Resources drop-down list
before running the mapping. This example is discussed in more detail in Example: Generate
Output to Variable Folders.

How to create a Global Resource alias

o

On the Tools menu, click Global Resources. (Alternatively, click the Global Resource

El toolbar button.)

Click Add and select the resource type you wish to create (file, folder, database).

Enter a descriptive name for this alias in the Resource alias text box (for example,

"MappinglnputFile", "MappingOutputFolder”, "DatabaseConnection”).

Set up the "Default" configuration:

a) Ifit's a file or folder, browse for the file or folder to which this resource should point by
default.

b) If it's a database connection, click Choose Database and follow the Database
Connection Wizard to connect to the database . This database connection will be used
by default when the mapping runs (unless a different configuration is explicitly selected
from the Global Resources drop-down list or supplied as a command line parameter in
server execution).

Optionally, if the resource should have an additional configuration (for example, a driver

kind in case of databases, or an alternative path in case of files or folders), click the Add

configuration # button, enter a descriptive name (for example "ProductionFolder" or

"JDBC_Alternative"), and set it up as follows:

a) If it's a file or folder, browse for the file or folder to which this resource should point as
an alternative to the default configuration defined in previous step.

b) If it's a database connection, follow the Database Connection Wizard to connect to the
database. This database connection will be used as an alternative to the default one.

In some cases, it might be more convenient to create a configuration as a copy of the

default configuration, and then edit it. In this case, click the Add configuration as a

copy of the currently selected configuration & button.
Repeat the previous step for each additional configuration required.

9.2.2 The Global Resources XML File

By default, all Global Resources, regardless of the Altova application where they were created,
are stored at the following path: C:\Users\Documents\Altova\GlobalResources.xml. This
makes them transparent, easy to backup, as well as portable to other workstations where Altova

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Customizing MapForce Altova Global Resources 375

9.2.3

products are installed. It is also possible to rename or duplicate the GlobalResources.xml file
and thus create multiple Global Resource files. However, only one Global Resource file can be
active at a time in an Altova application.

To set up the active Global Resource file:

1. Onthe Tools menu, click Global Resources. (Alternatively, click the Global Resource

toolbar button.)
2. Click Browse and select the required Global Resource XML file.

If you are using multiple Global Resource files, make sure that the currently active Global
Resource file contains all Global Resources required to run the mapping. For example, if a
mapping was configured to read data from a path using a Global Resource, then the currently
active Global Resource file must contain that specific Global Resource. Otherwise, error
messages like "Errors resolving global resource” will occur in the Messages window.

Example: Run Mapping with Variable Input Files

Let's assume that, as part of your job duties, you frequently run a mapping that takes as input an
XML file. Under normal circumstances, whenever you want to change the input XML of the
mapping, you can open the properties of the source XML component and browse for the new input
file, see Changing the Component Settings. This is easy to accomplish if it's a one time task.
Howewer, what if you need to change the input XML file of the mapping multiple times per day, or
even per hour? For example, every morning you need to run the mapping and generate a report by
using one XML file as mapping input, and every evening the same report must be generated from
another XML file. This is where Global Resources can help you: instead of editing the mapping
multiple times per day (or keeping multiple copies of it), you could configure the mapping to read
from a file defined as a global resource (a so-called "file alias"). To address the requirement laid
out in this example, the file alias could be configured to have two configurations:

1. "Default" - This configuration would supply a "morning" XML file as mapping input
2. "EveningReports" - This configuration would supply an "evening" XML file as mapping
input.

Having these configurations in place would make it possible to run the mapping with either input
file. Once the file alias is set up as shown below, you will be able to select the desired
configuration from a drop-down list, before running the mapping.

Step 1: Create the Global Resource
The file alias can be created as follows:

1. Onthe Tools menu, click Global Resources. (Alternatiwely, click the Global Resource

toolbar button.)

Click Add | File.

3. Enter a name in the Resource alias text box (in this example, "DailyReports” would be
an appropriate name).

4. Click Browse and select the following file: <Documents>\Altova\MapForce2018
\MapForceExamples\Tutorial\mf-ExpReport.xml.

N

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

376 Customizing MapForce Altova Global Resources

5. Click Add Configuration ¥ and name it "EveningReports".

6. Click Browse and this time select the following file: <Documents>\Altova

\MapForce2018\MapForceExamples\Tutorial\mf-ExpReport2.xml.

Step 2: Use the Global Resource in the mapping

The required Global Resource has now been created; howewer, the mapping is not

using it yet. To

change the mapping so that it reads from the previously defined file alias (Global Resource), do

the following:

1. Open the following mapping <Documents>\Altova\MapForce2018\MapForceExamples

\Tutorial\Tut-ExpReport.mfd.

2. Right-click the header of the source component on the mapping, and select Properties

from the context menu.
3. Next to Input XML file, click Browse.

4. Click Switch to Global Resources and select the file alias "DailyReports” defined

previously.

5. Click Open. The input XML file path has now become altova://file_resource/

DailyReports, which indicates that the path uses a Global Resource.

E':l Component Settings

Component name: mf-ExpReport |

Schema file
| mf-ExpRepart, xsd | Browse Edit

Input XML File
|alh:wa:ffﬁle_rEsnurcemailyREpnrts | E Browse i Edit

Qutput XML File

| mf-ExpRepart, xml | Browse Edit

Step 3: Run the mapping with the desired configuration

You can now easily switch the input XML file before running the mapping, as follows:

e Onthe Tools menu, click Active Configuration | Default, to use the file mf-

ExpReport.xml as input.

e Onthe Tools menu, click Active Configuration | EveningReports, to use the file mf-

ExpReport2.xml as input.

Alternatively, select the required configuration from the Global Resources drop-down list.

Default - EL .

To preview the mapping result with either configuration, click the Output tab and obsene

differences in the generated output.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Customizing MapForce Altova Global Resources 377

9.24

Example: Generate Output to Variable Folders

This example illustrates how mapping output can be redirected to different folders by means of
Global Resources.

Let's suppose that sometimes you need to generate the mapping output to one directory (for
example, C:\Testing), while in certain cases output must be generated to another directory (for
example, C:\Production). With Global Resources, this is possible by creating a folder alias with
two configurations:

1. "Default" configuration - Generates output to C:\Testing
2. "Production" configuration - Generates output to C:\Production.

The steps below illustrate how to achieve this goal.

Step 1: Create the Global Resource
The folder alias can be created as follows:

1. Onthe Tools menu, click Global Resources. (Alternatively, click the Global Resource

EL toolbar button.)

Click Add | Folder.

3. Enter a name in the Resource alias text box (in this example, "OutputDirectory" could
be an appropriate name).

4. Click Browse and select the following folder: C:\Testing. (Make sure that this folder
already exists on your operating system.)

5. Click Add Configuration ** and enter a name for the new configuration (in this example,
"ProductionDirectory").

6. Click Browse and this time select the following folder: C:\Production. (Make sure that
this folder already exists on your operating system.)

N

Step 2: Use the Global Resource in the mapping

The required Global Resource has now been created; howewer, the mapping is not using it yet. To
change the mapping so that it uses from the previously defined folder alias (Global Resource), do
the following:

1. Open the following mapping <Documents>\Altova\MapForce2018\MapForceExamples
\Tutorial\Tut-ExpReport.mfd.

2. Right-click the target component on the mapping, and select Properties from the context

menu.

Next to Output XML file, click Browse.

Click Switch to Global Resources, and then click Save.

5. When prompted to save the output XML file, enter output.xml (or another descriptive file
name that you wish to give to the output file). The output XML file path has now become
altova://folder_resource/OutputDirectory/output.xml, which indicates that the path is
defined as a Global Resource.

pw

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

378 Customizing MapForce Altova Global Resources

Step 3: Run the mapping with the desired configuration

You can now easily switch to the desired mapping output folder file before running the mapping,
as follows:

¢ Onthe Tools menu, click Active Configuration | Default, and then click the Output tab
to preview the mapping result. The mapping output (either a temporary or a permanent
file, as explained below) will be generated in the C:\Testing directory.

¢ Onthe Tools menu, click Active Configuration | ProductionDirectory, and then click
the Output tab. The mapping output (either a temporary or a permanent file, as explained
below) will be generated in the C:\Production directory.

Note: The mapping output is written by default as a temporary file, unless you explicitly
configured MapForce to write output to permanent files.

To configure MapForce to generate permanent files instead of temporary, do the following:

1. Onthe Tools menu, click Options.
2. Inthe General section, select the option Write directly to final output files.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Customizing MapForce Customizing Keyboard Shortcuts 379

9.3 Customizing Keyboard Shortcuts

You can define or change the keyboard shortcuts in MapForce as follows:

1.
2.

On the Tools menu, click Customize.

Click the Keyboard tab.

To assigh a new Shortcut to a command:

PN

Select the Tools | Customize command and click the Keyboard tab.

Click the Category combo box to select the menu name.

Select the command you want to assign a new shortcut to, in the Commands list box
Click in the Press New Shortcut Key: text box, and press the shortcut keys that are to
activate the command.

Customize x|

Eummandsl Toolbars Feyboard |Menu I Elptinnsl

Categony: Set Acceleratar for;

|File =] |Defau -~

Commands: Current Feys:

Java _ ~| |cuko £330
kapping Settings

Mew... IS |

Hemaove

F'rint Fresigw ﬂ
Prirt Sehin Press Mew Shortout Key: Feget Al

i

D ezcription; I

Open an existing document

Cloze

'

The shortcuts appear immediately in the text box. If the shortcut was assigned
previously, then that function is displayed below the text box.

Click the Assign button to assign the shortcut.

The shortcut now appears in the Current Keys list box.

(To clear the entry in the Press New Shortcut Key text box, press any of the control
keys, CTRL, ALT or SHIFT).

To de-assign or delete a shortcut:

1.
2.
3.

Note:

Click the shortcut you want to delete in the Current Keys list box.
Click the Remove button.
Click the Close button to confirm.

The Set accelerator for does not currently have any function.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

380

Customizing MapForce

Customizing Keyboard Shortcuts

F1

F2

F3
F10
Num +
Num -
Num *

CTRL + TAB
CTRL + F6
CTRL + F4

Alt + F4
Alt+F, F, 1
Alt+F T, 1

CTRL+ N
CTRL+ O
CTRL+ S
CTRL + P

CTRL + A
CTRL + X
CTRL+C
CTRL +V
CTRL + Z
CTRL+Y

Del
Shift + Del
CTRL + F
F3
Shift + F3

Arrow keys
(up / down)
Esc

Return

Output window hotkeys

CTRL + F2
F2
SHIFT + F2

CTRL + SHIFT + F2

Zooming hotkeys

CTRL + mouse wheel forward
CTRL + mouse wheel back
CTRL + 0O (Zero)

The currently assigned keyboard shortcuts are as follows:

Help Menu

Next bookmark (in output window)

Find Next

Activate menu bar
Expand current item node
Collapse item node

Expand all from current item node

Switches between open mappings

Cycle through open windows

Closes the active mapping document

Closes MapForce
Opens the last file
Opens the last project

File New
File Open
File Save
File Print

Select All
Cut

Copy
Paste
Undo
Redo

Delete component (with prompt)
Delete component (no prompt)
Find

Find Next

Find Previous

Select next item of component
Abandon edits/close dialog box
Confirms a selection

Insert Remowve/Bookmark
Next Bookmark

Previous Bookmark
Remowe All Bookmarks

Zoom In
Zoom Out
Reset Zoom

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Customizing MapForce Catalog Files 381

9.4 Catalog Files

MapForce supports a subset of the OASIS XML catalogs mechanism. The catalog mechanism
enables MapForce to retrieve commonly used schemas (as well as stylesheets and other files)
from local user folders. This increases the overall processing speed, enables users to work offline
(that is, not connected to a network), and improves the portability of documents (because URIs
would then need to be changed only in the catalog files.)

The catalog mechanism in MapForce works as outlined below.

RootCatalog.xml

When MapForce starts, it loads a file called Root Cat al og. xn (structure shown in listing below),
which contains a list of catalog files that will be looked up. You can modify this file and enter as
many catalog files to look up as you like, each in a next Cat al og element. Each of these catalog
files is looked up and the URIs in them are resolved according to the mappings specified in them.

<?xm version="1.0" encodi ng="UTF-8"?>
<cat al og xm ns="urn: oasi s: nanes: tc:entity:xm ns: xni : cat al og"
xm ns: spy="http://ww. al t ova. coni cat al og_ext"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="urn: oasi s: nanes:tc: entity: xm ns: xm : cat al og
Cat al og. xsd" >
<next Cat al og cat al og="%er sonal Fol der % Al t ova/ ¥AppAndVer si onNane%
Cust ontCat al og. xm "/ >
<next Cat al og cat al og="Cor eCat al og. xm "/ >
<I-- Include all catal ogs under common schemas folder on the first directory
| evel -->
<next Cat al og spy: r ecur seFron=" %A t ovaCommonFol der % Schenas"
cat al og="cat al og. xm " spy: dept h="1"/>
<l-- Include all catal ogs under common XBRL fol der on the first directory
| evel -->
<next Cat al og spy: r ecur seFrom=" %A t ovaConmonFol der % XBRL"
cat al og="cat al og. xm " spy: dept h="1"/>
</ cat al og>

In the listing abowve, notice that in the Schermas and XBRL folders of the folder identified by the
variable %Al t ovaConmonFol der %are catalog files named cat al og. xni . (The value of the %
Al t ovaConmonFol der %variable is given in the table below.)

The catalog files in the Altova Common Folder map the pre-defined public and system identifiers
of commonly used schemas (such as SVG and WSDL) and XBRL taxonomies to URIs that point
to locally saved copies of the respective schemas. These schemas are installed in the Altova
Common Folder when MapForce is installed.You should take care not to duplicate mappings in
these files, as this could lead to errors.

CoreCatalog.xml, CustomCatalog.xml, and Catalog.xml
In the Root Cat al og. xnl listing above, notice that Cor eCat al og. xm and Cust onCat al og. xnl are
listed for lookup:

e CoreCatal og. xml contains certain Altova-specific mappings for locating schemas in the

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Customizing MapForce

Catalog Files

Altova Common Folder.

® (CustontCat al og.

xm is a skeleton file in which you can create your own mappings. You

can add mappings to Cust onCat al og. xmi for any schema you require but that is not
addressed by the catalog files in the Altova Common Folder. Do this using the supported
elements of the OASIS catalog mechanism (see below).

e There are a number of Cat al og. xni files in the Altova Common Folder. Each is inside the
folder of a specific schema or XBRL taxonomy in the Altova Common Folder, and each
maps public and/or system identifiers to URIs that point to locally saved copies of the
respective schemas.

Location of catalog files and schemas

The files Root Cat al og. xmi and Cor eCat al og. xn are installed in the MapForce application
folder. The file Cust ontCat al og. xnl is located in your MyDocunent s/ Al t ova/ MapFor ce folder.
The cat al og. xni files are each in a specific schema folder, these schema folders being inside
the folders: %Al t ovaCommonFol der % Schenmas and %Al t ovaCommonFol der % XBRL.

Shell environment variables and Altova variables
Shell environment variables can be used in the next Cat al og element to specify the path to
various system locations (see RootCatalog.xml listing above). The following shell environment

variables are supported:

%
Al t ovaCommonFol der
%

C:\Program Files\Altova\Common2018

%eskt opFol der %

Full path to the Desktop folder for the current user.

%°r ogr amvenuFol der
%

Full path to the Program Menu folder for the current user.

%%t ar t MenuFol der %

Full path to Start Menu folder for the current user.

ust art UpFol der %

Full path to Start Up folder for the current user.

% enpl at eFol der %

Full path to the Template folder for the current user.

%Adm nTool sFol der %

Full path to the file system directory that stores administrative tools for
the current user.

%AppDat aFol der %

Full path to the Application Data folder for the current user.

%
ComonAppDat aFol de
r %

Full path to the file directory containing application data for all users.

%-avoritesFol der %

Full path of the Favorites folder for the current user.

%er sonal Fol der %

Full path to the Personal folder for the current user.

%GendToFol der %

Full path to the SendTo folder for the current user.

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Customizing MapForce Catalog Files 383

9%-ont sFol der % Full path to the System Fonts folder.

% Full path to the Program Files folder for the current user.
Pr ogr anti | esFol der
%

%CommonFi | esFol der | Full path to the Common Files folder for the current user.
%

9V ndows Fol der % Full path to the Windows folder for the current user.

%8yst enfol der % Full path to the System folder for the current user.

% Full path to the file directory containing application data for all users.
ComonAppDat aFol de

r%

% Full path to the file system directory that serves as the data repository

Local AppDat aFol der | for local (nonroaming) applications.
%

9% Pi ct ur esFol der %| Full path to the MyPictures folder.

How catalogs work

Catalogs are commonly used to redirect a call to a DTD to a local URI. This is achieved by
mapping, in the catalog file, public or system identifiers to the required local URI. So when the
DOCTYPE declaration in an XML file is read, the public or system identifier locates the required
local resource via the catalog file mapping.

For popular schemas, the PUBLI C identifier is usually pre-defined, thus requiring only that the URI
in the catalog file point to the correct local copy. When the XML document is parsed, the PUBLI C
identifier in it is read. If this identifier is found in a catalog file, the corresponding URL in the
catalog file will be looked up and the schema will be read from this location. So, for example, if
the following SVG file is opened in MapForce:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1// EN'
"http://ww. w3. or g/ G aphi cs/ SVE 1. 1/ DTDY svgll. dt d" >

<svg wi dt h="20" hei ght ="20" xmnl : space="preserve">
<g style="fill:red; stroke:#000000">
<rect x="0" y="0" w dth="15" hei ght="15"/>
<rect x="5" y="5" w dth="15" hei ght="15"/>
</ g>
</ svg>

This document is read and the catalog is searched for the PUBLI C identifier. Let's say the catalog
file contains the following entry:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

384 Customizing MapForce Catalog Files

<cat al og>
<public publicld="-//WBC//DID SVG 1. 1//EN' uri="schenas/svg/svgll.dtd"/>
</ cat al og>

In this case, there is a match for the PUBLI C identifier, so the lookup for the SVG DTD is
redirected to the URI schenmas/ svg/ svgll. dt d (this path is relative to the catalog file), and this
local file will be used as the DTD. If there is no mapping for the Publ i ¢ ID in the catalog, then the
URL in the XML document will be used (in the example abowe: htt p: / / www. w3. or g/ G aphi cs/
SV@E 1. 1/ DTD svgll. dt d).

The catalog subset supported by MapForce

When creating entries in Cust ontCat al og. xm (or any other catalog file that is to be read by
MapForce), use only the following elements of the OASIS catalog specification. Each of the
elements below is listed with an explanation of their attribute values. For a more detailed
explanation, see the XML Catalogs specification. Note that each element can take the xni : base
attribute, which is used to specify the base URI of that element.

<public publicld="PubliclD of Resource" uri="URL of local file"/>
<system syst em d="System D of Resource" uri="URL of local file"/>
<uri name="filenane" uri="URL of file identified by fil enane"/>
<rewiteURl wuriStartString="StartString of URI to rewite"
rewitePrefix="String to replace StartString"/>

® <rewiteSystemsystem dStartString="StartString of Systen D'
rewitePrefix="Replacenment string to | ocate resource |ocally"/>

In cases where there is no public identifier, as with most stylesheets, the system identifier can be
directly mapped to a URL via the syst emelement. Also, a URI can be mapped to another URI
using the uri element. TherewiteUR andrewitsSyst emelements enable the rewriting of the
starting part of a URI or system identifier, respectively. This allows the start of a filepath to be
replaced and consequently enables the targeting of another directory. For more information on
these elements, see the XML Catalogs specification.

File extensions and intelligent editing according to a schema

Via catalog files you can also specify that documents with a particular file extension should have
MapForce's intelligent editing features applied in conformance with the rules in a schema you
specify. For example, if you create a custom file extension . nyht m for (HTML) files that are to be
valid according to the HTML DTD, then you can enable intelligent editing for files with these
extensions by adding the following element of text to Cust ontCat al og. xni as a child of the

<cat al og> element.
<spy: fil eExt Hel per ext="nyhtm " uri="schenas/xhtm /xhtm 1-transitional.dtd"/>
This would enable intelligent editing (auto-completion, entry helpers, etc) of . nyht m files in

MapForce according to the XHTML 1.0 Transitional DTD. Refer to the cat al og. xnl file in the %
Al t ovaCommonFol der % Schenas\ xht m folder, which contains similar entries.

XML Schema and catalogs
XML Schema information is built into MapForce and the validity of XML Schema documents is

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html
http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

Customizing MapForce Catalog Files 385

checked against this internal information. In an XML Schema document, therefore, no references
should be made to any schema for XML Schema.

The cat al og. xni file in the %Al t ovaCommonFol der % Schenas\ schena folder contains references
to DTDs that implement older XML Schema specifications. You should not validate your XML
Schema documents against either of these schemas. The referenced files are included solely to
provide MapForce with entry helper info for editing purposes should you wish to create documents
according to these older recommendations.

More information
For more information on catalogs, see the XML Catalogs specification.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

386 Customizing MapForce Network Proxy Settings

9.5 Network Proxy Settings

The Network Proxy section enables you to configure custom proxy settings. These settings
affect how the application connects to the Internet (for XML validation purposes, for example). By
default, the application uses the system's proxy settings, so you should not need to change the

proxy settings in most cases. If necessary, howewer, you can set an alternative network proxy
using the options below.

Note: The network proxy settings are shared between all Altova MissionKit applications.

Consequently, if you change the settings in one application, they will automatically affect
all other applications.

Network Proxy
@ Lse system proxy settings
() Automatic proxy configuration

Mto-detect settings
Script LURL

() Manual proxy corfiguration

HTTP Proxy Port 0
|se this proxy server for all protocols
551 Proxy Paort 0
Mo Proxy for
Do not use the proxy server for local addresses
Cument proxy settings
Test URL |http://www example.com | 3]

Found |E auto-proxy configuration.

~
Methods WPAD (using test URL hitp:/Awww example.com)

PAC resovled DIRECT (NO PROXY).

|sing no Prowy. W

Use system proxy settings

Uses the Internet Explorer (IE) settings configurable via the system proxy settings. It also queries
the settings configured with net sh. exe wi nhttp.

Automatic proxy configuration
The following options are provided:

Auto-detect settings: Looks up a WPAD script (htt p: // wpad. LOCALDOVAI N/ wpad. dat)
via DHCP or DNS, and uses this script for proxy setup.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Customizing MapForce Network Proxy Settings 387

Script URL: Specify an HTTP URL to a proxy-auto-configuration (. pac) script that is to be
used for proxy setup.

Reload: Resets and reloads the current auto-proxy-configuration. This action requires
Windows 8 or newer, and may need up to 30s to take effect.

Manual proxy configuration

Manually specify the fully qualified host name and port for the proxies of the respective protocols.
A supported scheme may be included in the host name (for example: htt p: / / host nane). It is not
required that the scheme is the same as the respective protocol if the proxy supports the
scheme.

The following options are provided:

Use this proxy for all protocols: Uses the host name and port of the HTTP Proxy for all
protocols.

No Proxy for: A semi-colon (;) separated list of fully qualified host names, domain names,
or IP addresses for hosts that should be used without a proxy. IP addresses may not be
truncated and IPv6 addresses have to be enclosed by square brackets (for example:

[2606: 2800: 220: 1: 248: 1893: 25c8: 1946]). Domain names must start with a leading
dot (for example: . exanpl e. con).

Do not use the proxy server for local addresses: If checked, adds <l ocal > to the No
Proxy for list. If this option is selected, then the following will not use the proxy: (i)
127.0.0. 1, (ii) [: : 1], (iii) all host names not containing a dot character (.).

Current proxy settings

Provides a verbose log of the proxy detection. It can be refreshed with the Refresh button to the
right of the Test URL field (for example, when changing the test URL, or when the proxy settings
have been changed).

Test URL: A test URL can be used to see which proxy is used for that specific URL. No I/
O is done with this URL. This field must not be empty if proxy-auto-configuration is used
(either through Use system proxy settings or Authomatic proxy configuration).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

Chapter 10

Menu Reference

390 Menu Reference

10 Menu Reference

This reference section contains a description of the MapForce menu commands.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference File 391

10.1 File

New
Creates a new mapping document.

Open
Opens previously saved mapping design (.mfd) files. Note that it is not possible to open mapping
files which contain features not available in your MapForce edition.

Save
Sawes the currently active mapping using the currently active file name.

Save As
Sawes the currently active mapping with a different name, or allows you to supply a new name if
this is the first time you sawe it.

Save All
Sawes all currently open mapping files.

Reload
Reloads the currently active mapping file. You are asked if you want to lose your last changes.

Close
Closes the currently active mapping file. You are asked if you want to save the file before it
closes.

Close All
Closes all currently open mapping files. You are asked if you want to save any of the unsaved
mapping files.

Print
Opens the Print dialog box, from where you can print out your mapping as hard copy.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

392 Menu Reference File

o -

Print @
“What
2) "Whaole diagram
Selection —
zc'f'.'f' Frint S etup
9 llze curent
1 Uze ophirmal Cancel

o0 | oz

Page zplit of pictures

@) Prevent
0 Allow

Print dialog box

Use current retains the currently defined zoom factor of the mapping. Use optimal scales the
mapping to fit the page size. You can also specify the zoom factor numerically. Component
scrollbars are not printed. You can also specify if you want to allow the graphics to be split over
several pages or not.

Print Preview
Opens the same Print dialog box with the same settings as described abowe.

Print Setup
Opens the Print Setup dialog box in which you can define the printer you want to use and the
paper settings.

Validate Mapping
Validates that all mappings (connectors) are valid and displays any warnings or errors (see
Validating mappings).

Mapping settings
Opens the Mapping Settings dialog box where you can define the document-specific settings
(see Changing the mapping settings).

Generate code in selected language
Generates code in the currently selected language of your mapping. The currently selected
language is visible as a highlighted programming language icon in the toolbar: XSLT, XSLT 2.

Generate code in | XSLT (XSLT2)

This command generates the XSLT file(s) needed for the transformation from the source file(s).
Selecting this option opens the Browse for Folder dialog box where you select the location of the
XSLT file. The name of the generated XSLT file(s) is defined in the Mapping Settings dialog box
(see Changing the mapping settings).

Recent files
Displays a list of the most recently opened files.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference File 393

Exit
Exits the application. You are asked if you want to save any unsaved files.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

394 Menu Reference Edit

10.2 Edit

Most of the commands in this menu become active when you view the result of a mapping in the
Output tab, or preview XSLT code in the XSLT tab.

KT
Undo
MapForce has an unlimited number of "Undo" steps that you can use to retrace you mapping
steps.

Redo
The redo command allows you to redo previously undone commands. You can step backward and
forward through the undo history using both these commands.

Find ¢
Allows you to search for specific text in either the XSLT, XSLT2 or Output tab.

Find Next F3 @
Searches for the next occurrence of the same search string.

Find Previous Shift F3 Cﬂ
Searches for the previous occurrence of the same search string.

Cut/Copy/Paste/Delete
The standard windows Edit commands, allow you to cut, copy etc., any components or functions
visible in the mapping window.

Select all
Selects all components in the Mapping tab, or the text/code in the XSLT, XSLT2, or Output tab.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference Insert 395

10.3

Insert

XML Schema / File

Adds to the mapping an XML schema or instance file. If you select an XML file which references a
schema, no additional information is required for the mapping. If you select an XML file without a
schema reference, you are prompted to generate a matching XML schema automatically (see
Generating an XML Schema). If you select an XML schema file, you are prompted to include
optionally an XML instance file which supplies the data for preview.

Insert Input

When the mapping window displays a mapping, this command adds an input component to the
mapping (see Supplying Parameters to the Mapping). When the mapping window displays a
user-defined function, this command adds an input component to the user-defined function (see
Defining Complex Input Components).

Insert Output

When the mapping window displays a mapping, this command adds an output component to the
mapping (see Returning String Values from a Mapping). When the mapping window displays a
user-defined function, this command adds an output component to the user-defined function (see
Defining Complex Output Components).

Constant

Inserts a constant which supplies fixed data to an input connector. The data is entered into a
dialog box when creating the component. You can select the following types of data: String,
Number and All other.

=
Variable

Inserts an Intermediate Variable which is equivalent to a regular (non-inline) user-defined function.
Variables are structural components, without instance files, and are used to simplify the mapping
process (see Intermediate variables).

Sort: Nodes/Rows
Inserts a component which allows you to sort nodes (see Sort Nodes/Rows).

Filter: Nodes/Rows

Inserts a component that uses two input and output parameters: node/row and bool, and on-
true, on-false. If the Boolean is true, then the value of the node/row parameter is forwarded to the
on-true parameter. If the Boolean is false, then the complement value is passed on to the on-false
parameter. For more information, see Filters and Conditions.

Value-Map [’
Inserts a component that transforms an input value to an output value using a lookup table. This is
useful when you need to map a set of values to another set of values (for example, month
numbers to month names). For more information, see Using Value-Maps.

IF-Else Condition

Inserts a component of type "If-Else Condition" (see Filters and Conditions).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

396 Menu Reference Insert

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference Component 397

10.4 Component

Change Root Element
Allows you to change the root element of the XML instance document.

Edit Schema Definition in XMLSpy
Selecting this option, having previously clicked an XML-Schema/document, opens the XML
Schema file in the Schema view of XMLSpy where you can edit it.

Add Duplicate Input Before

Inserts a copy/clone of the selected item before the currently selected item. Duplicate items do
not have output icons, you cannot use them as data sources. For an example, see Map Multiple
Sources to One Target section in the tutorial. Right clicking a duplicate item also allows you to
reposition it using the menu items Move Up/Move Down, depending on where the item is.

Add Duplicate Input After

Inserts a copy/clone of the selected item after the currently selected item. Duplicate items do not
have output icons, you cannot use them as data sources. For an example, see the Map Multiple
Sources to One Target section in the tutorial. Right clicking a duplicate item also allows you to
reposition it using the menu items Move Up/Move Down, depending on where the item is.

Remove Duplicate
Remowes a previously defined duplicate item. For an example, see the Map Multiple Sources to
One Target section in the tutorial.

Align Tree Left
Aligns all the items along the left hand window border.

Align Tree Right
Aligns all the items along the right hand window border. This display is useful when creating
mappings to the target schema.

Properties
Opens a dialog box which displays the settings of the currently selected component. See
Changing the Component Settings .

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

398 Menu Reference Connection

10.5 Connection

Auto Connect Matching Children
Activates or deactivates the "Auto Connect Matching Children" option, as well as the icon in the
icon bar.

Settings for Connect Matching Children
Opens the Connect Matching Children dialog box in which you define the connection settings
(see Connecting matching children).

Connect Matching Children
This command allows you to create multiple connectors for items of the same name, in both the
source and target schemas. The settings you define in this dialog box are retained, and are

applied when connecting two items, if the "Auto connect child items" icon in the title bar is
active. Clicking the icon switches between an active and inactive state. For further information,
see Connecting matching children.

Target Driven (Standard)
Changes the connector type to Standard mapping. For further information, see Target Driven
(Standard) mapping.

Copy-all (Copy Child Items)
Creates connectors for all matching child items, where each of the child connectors are displayed
as a subtree of the parent connector (see Copy-all connections).

Source Driven (Mixed Content)
Changes the connector type to Source Driven (Mixed Content). For further information, see Source
Driven (Mixed Content) mapping.

Properties

Opens a dialog box in which you can define the specific (mixed content) settings of the current
connector. Unavailable options are greyed out. These settings also apply to complexType items
which do not have any text nodes. For further information, see Connection settings.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference Function 399

10.6 Function

Create User-Defined Function
Creates a new user-defined function (see User-defined functions).

Create User-Defined Function from Selection
Creates a new user-defined function based on the currently selected elements in the mapping
window.

Function Settings
Opens the settings dialog box of the currently active user-defined function allowing you to change
its settings.

Remove Function
Deletes the currently active user-defined function if you are working in a context which allows this.

Insert Input

When the mapping window displays a mapping, this command adds an input component to the
mapping (see Simple Input). When the mapping window displays a user-defined function, this
command adds an input component to the user-defined function (see Defining Complex Input

Components).

Insert Output

When the mapping window displays a mapping, this command adds an output component to the
mapping (see Simple Output). When the mapping window displays a user-defined function, this

command adds an output component to the user-defined function (see Defining Complex Qutput

Components).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

400

Menu Reference Output

10.7

Output

XSLT 1.0, XSLT 2.0, XQuery, Java, C#, C++, Built-in Execution Engine
Sets the transformation language in which the mapping should be executed (see Selecting a
Transformation Language).

Validate Output File
Validates the output XML file against the referenced schema (see Validating the Mapping Output).

Save Output File
Sawes the data \visible in the Output pane to a file.

Save All Output Files
Sawes all the generated output files of dynamic mappings. See Processing Multiple Input or
Output Files Dynamically for more information.

Regenerate Output
Regenerates the data visible in the Output pane.

Insert/Remove Bookmark
Inserts a bookmark at the cursor position in the Output pane.

Next Bookmark
Navigates to the next bookmark in the Output pane.

Previous Bookmark
Navigates to the previous bookmark in the Output pane.

Remove All Bookmarks
Removwes all currently defined bookmarks in the Output pane.

Pretty-Print XML Text

Reformats your XML document in the Output pane to give a structured display of the document.
Each child node is offset from its parent by a single tab character. This is where the Tab size
settings (i.e. inserting as tabs or spaces) defined in the Tabs group, take effect.

Text View Settings

Displays the Text View settings dialog box. This dialog box allows you to customize the text view
settings in the Output pane and XSLT pane, and also shows the currently defined hotkeys that
apply in the window. For more information, see Text View Features.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference View 401

10.8 View

Show Annotations
Displays XML schema annotations in the component window.
If the Show Types icon is also active, then both sets of info are show in grid form.

= F1060
| twpe | string
anr. | Rewizion identifier

Show Types

Displays the schema datatypes for each element or attribute.
If the Show Annotations icon is also active, then both sets of info are show in grid form.

Show library in Function Header n
Displays the library name in parenthesis in the function title.

Show Tips

Displays a tooltip containing explanatory text when the mouse pointer is placed over a function.

Show Selected Component Connectors
Switches between showing all mapping connectors, or those connectors relating to the currently
selected components.

Show Connectors from Source to Target
Switches between showing:
e connectors that are directly connected to the currently selected component, or
e connectors linked to the currently selected component, originating from source and
terminating at the target components.

Zoom
Opens the Zoom dialog box. You can enter the zoom factor numerically, or drag the slider to
change the zoom factor interactively.

Back
Steps back through the currently open mappings of the mapping tab.

Forward
Steps forward through the currently open mappings of the mapping tab.

Status Bar
Switches on/off the Status Bar visible below the Messages window.

Library Window
Switches on/off the Library window.

Messages
Switches on/off the Validation output window. When generating code the Messages output

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

402 Menu Reference View

window is automatically activated to show the validation result.

Overview
Switches on/off the Oveniew window. Drag the rectangle to navigate your Mapping view.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference Tools 403

10.9 Tools

Global Resources
Opens the Manage Global Resources dialog box, where you can add, edit or delete settings
applicable across multiple Altova applications (see Altova Global Resources).

Active Configuration
Allows you to select the currently active global resource configuration from a list of configurations
previously defined in the Global Resources.

Create Reversed Mapping

Creates a "reversed" mapping from the currently active mapping in MapForce, which is to be the
basis of a new mapping. Note that the result is not intended to be a complete mapping, only the
direct connections between components are retained in the reversed mapping. It is very likely that
the resulting mapping will not be valid or suitable for preview in the Output pane, without manual
editing.

When you reverse a mapping, the source component becomes the target component, and target
component becomes the source. If an input or output XML instance file have been assigned to a
component, then they will be swapped.

The following data is retained:

Direct connections between components

Direct connections between components in a chained mapping
The type of connection: Standard, Mixed content, Copy-All
Pass-through component settings

Database components

The following data is not retained:

e Connections via functions, filters, etc, along with the functions, filters, etc.
* User-defined functions
¢ Web senice components

Restore Toolbars and Windows
Resets the toolbars, entry helper windows, docked windows etc. to their defaults. MapForce
needs to be restarted for the changes to take effect.

Customize...

Opens a dialog box that lets you to customize the MapForce graphical user interface. This
includes showing or hiding toolbars, as well as editing the context menus and keyboard shortcuts
(see Customizing Keyboard Shortcuts).

Options
Opens a dialog box where you can change the default MapForce settings (see Changing the
MapForce Options).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

404 Menu Reference Window

10.10 Window

Cascade
This command rearranges all open document windows so that they are all cascaded (i.e.
staggered) on top of each other.

Tile Horizontal
This command rearranges all open document windows as horizontal tiles, making them all
visible at the same time.

Tile Vertical
This command rearranges all open document windows as vertical tiles, making them all visible
at the same time.

1

2

This list shows all currently open windows, and lets you quickly switch between them.
You can also use the Ctrl-TAB or CTRL F6 keyboard shortcuts to cycle through the open
windows.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference Help Menu 405

10.11 Help Menu

+ Table of Contents

= Description
Opens the onscreen help manual of MapForce with the Table of Contents displayed in
the left-hand-side pane of the Help window. The Table of Contents provides an overview
of the entire Help document. Clicking an entry in the Table of Contents takes you to that
topic.

* |ndex

= Description
Opens the onscreen help manual of MapForce with the Keyword Index displayed in the
left-hand-side pane of the Help window. The index lists keywords and lets you navigate
to a topic by double-clicking the keyword. If a keyword is linked to more than one topic,
a list of these topics is displayed.

= Search

=1 Description

Opens the onscreen help manual of MapForce with the Search dialog displayed in the
left-hand-side pane of the Help window. To search for a term, enter the term in the input
field, and press Return. The Help system performs a full-text search on the entire Help
documentation and returns a list of hits. Double-click any item to display that item.

= Software Activation

= Description

After you download your Altova product software, you can license—or activate—it using
either a free evaluation key or a purchased permanent license key.

e Free evaluation key. When you first start the software after downloading and
installing it, the Software Activation dialog will pop up. In it is a button to
request a free evaluation key-code. Enter your name, company, and e-mail
address in the dialog that appears, and click Request Now! The evaluation key
is sent to the e-mail address you entered and should reach you in a few
minutes. Now enter the key in the key-code field of the Software Activation
dialog box and click OK to start working with your Altova product. The software
will be unlocked for a period of 30 days.

e Permanent license key. The Software Activation dialog contains a button to
purchase a permanent license key. Clicking this button takes you to Altova's
online shop, where you can purchase a permanent license key for your product.
There are two types of permanent license: single-user and multi-user. Both will
be sent to you by e-mail. A single-user license contains your license-data and

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

406 Menu Reference

Help Menu

Note:

includes your name, company, e-mail, and key-code. A multi-user license
contains your license-data and includes your company name and key-code.
Note that your license agreement does not allow you to install more than the
licensed number of copies of your Altova software on the computers in your
organization (per-seat license). Please make sure that you enter the data
required in the registration dialog exactly as given in your license e-mail.

When you enter your license information in the Software Activation dialog,
ensure that you enter the data exactly as given in your license e-mail. For
multi-user licenses, each user should enter his or her own name in the Name
field.

Your license email and the different ways to license (activate) your
Altova product

The license email that you receive from Altova will contain:

e Your license details (name, company, email, key-code)
e As an attachment, a license file with a . al t ova_| i censes file
extension

To activate your Altova product, you can do one of the following:

e Enter the email-supplied license details in the Altova product's
Software Activation dialog, and click OK.

e Saw the license file (. al t ova_| i censes) to a suitable location,
double-click the license file, enter any requested details in the
dialog that appears, and finish by clicking Apply Keys.

e Sawe the license file (. al t ova_l i censes) to any suitable location,
and upload it from this location to the license pool of your Altova
LicenseSener. You can then either: (i) acquire the license from
your Altova product via the product's Software Activation dialog, or
(if) assign the license to the product from Altova LicenseServer.
For more information about licensing via LicenseServer, read the
rest of this topic.

The Software Activation dialog (screenshot below) can be accessed at any time by
clicking the Help | Software Activation command.

You can activate the software by either:

Entering the license key information (click Enter a New Key Code), or
Acquiring a license via an Altova LicenseServer on your network (click Use
Altova LicenseServer, located at the bottom of the Software Activation
dialog). The Altova LicenseSener must have a license for your Altova product in
its license pool. If a license is available in the LicenseServer pool, this is
indicated in the Software Activation dialog (screenshot below), and you can
click Save to acquire the license.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Menu Reference Help Menu 407

Altova XML5py Enterprise Edition 2017 Software Activation

Thank you for choosing Altova ¥MLSpy Enterprise Edition 2017 and welcome to the software activation process. You can view your
assigned license or select an Altova LicenseServer which provides a license for you. (NOTE: To use this software you must be licensed
via Altova LicenseServer or a valid license key code from Altova.)

If you do not want to use Altova LicenseServer dick here to enter a key code manually Enter Key Code

To activate your software please enter or select the name of the Altova LicenseServer on your network.

Altova LicenseServer: DOC.co v||D

= O Alicense is already azsigned to you on LicenseServer at DOC.co.
Name AQA (Cencurrent 50 Users)
Company Altova GmbH

User count | 50

) License type concurrent
Expires in -
SMP 243 days left

Return License Check out License Copy Support Code Save Close

Connected to Altova License Server at DOC altova.com

After a machine-specific (aka installed) license has been acquired from a
LicenseSeneer, it cannot be returned to the LicenseSenrver for a period of seven
days. After that time, you can return the machine license to LicenseSener
(click Return License) so that this license can be acquired from LicenseServer
by another client. (A LicenseServer administrator, however, can unassign an
acquired license at any time via the administrator's Web Ul of LicenseServer.)
Note that the returning of licenses applies only to machine-specific licenses,
not to concurrent licenses.

Check out license

You can check out a license from the license pool for a period of up to 30 days
so that the license is stored on the product machine. This enables you to work
offline, which is useful, for example, if you wish to work in an environment where
there is no access to your Altova LicenseServer (such as when your Altova
product is installed on a laptop and you are trawveling). While the license is
checked out, LicenseSener displays the license as being in use, and the
license cannot be used by any other machine. The license automatically
reverts to the checked-in state when the check-out period ends. Alternatively, a
checked-out license can be checked in at any time via the Check in button of
the Software Activation dialog.

To check out a license, do the following: (i) In the Software Activation dialog,
click Check out License (see screenshot above); (ii) In the License Check-out
dialog that appears, select the check-out period you want and click Check out.
The license will be checked out. The Software Activation dialog will display the
check-out information, including the time when the check-out period ends. The
Check out License button in the dialog changes to a Check In button. You
can check the license in again at any time by clicking Check In. Because the
license automatically reverts to the checked-in status, make sure that the
check-out period you select adequately cowvers the period during which you will
be working offline.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

408 Menu Reference Help Menu

Note: For license check-outs to be possible, it must be enabled on the
LicenseSener. If this functionality has not been enabled, you will get an error
message to this effect. In this event, contact your LicenseServer administrator.

Copy Support Code
Click Copy Support Code to copy license details to the clipboard. This is the
data that you will need to provide when requesting support via the online

support form.

Altova LicenseServer provides IT administrators with a real-time oveniew of all Altova
licenses on a network, together with the details of each license, as well as client
assignments and client usage of licenses. The advantage of using LicenseServer
therefore lies in administrative features it offers for large-volume Altova license
management. Altova LicenseServer is available free of cost from the Altova website. For
more information about Altova LicenseSener and licensing via Altova LicenseSenr,
see the Altova LicenseServer documentation.

+ Order Form

=1 Description

When you are ready to order a licensed version of the software product, you can use
either the Order license key button in the Software Activation dialog (see previous
section) or the Help | Order Form command to proceed to the secure Altova Online
Shop.

+ Registration

=1 Description

Opens the Altova Product Registration page in a tab of your browser. Registering your
Altova software will help ensure that you are always kept up to date with the latest
product information.

+ Check for Updates

=1 Description

Checks with the Altova server whether a newer version than yours is currently available
and displays a message accordingly.

* Support Center

= Description
A link to the Altova Support Center on the Internet. The Support Center provides FAQs,

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

https://www.altova.com/support
https://www.altova.com/support
https://www.altova.com/
https://manual.altova.com/AltovaLicenseServer/

Menu Reference Help Menu 409

discussion forums where problems are discussed, and access to Altova's technical
support staff.

+* FAQ on the Web
=1 Description

A link to Altova's FAQ database on the Internet. The FAQ database is constantly
updated as Altova support staff encounter new issues raised by customers.

+ Download Components and Free Tools
= Description

A link to Altova's Component Download Center on the Internet. From here you can
download a variety of companion software to use with Altova products. Such software
ranges from XSLT and XSL-FO processors to Application Server Platforms. The software
available at the Component Download Center is typically free of charge.

+ MapForce on the Internet
= Description

A link to the Altova website on the Internet. You can learn more about MapForce and
related technologies and products at the Altova website.

+ MapForce Training
= Description

A link to the Online Training page at the Altova website. Here you can select from online
courses conducted by Altova's expert trainers.

+ About MapForce
=1 Description

Displays the splash window and version number of your product. If you are using the 64-

bit version of MapForce, this is indicated with the suffix (x64) after the application name.
There is no suffix for the 32-bit version.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

https://www.altova.com/
https://www.altova.com/
https://www.altova.com/

Chapter 11

Appendices

412 Appendices

11 Appendices

These appendices contain technical information about MapForce and important licensing
information. Each appendix contains sub-sections as given below:

Technical Data

e OS and memory requirements

e Altova XML Parser

e Altova XSLT and XQuery Engines
e Unicode support

* Internet usage

e License metering

License Information

e Electronic software distribution
e Copyrights
e End User License Agreement

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 413

11.1

11.1.1

Engine information

This section contains information about implementation-specific features of the Altova XML
Validator, Altova XSLT 1.0 Engine, Altova XSLT 2.0 Engine, and Altova XQuery Engine.

XSLT and XQuery Engine Information

The XSLT and XQuery engines of MapForce follow the W3C specifications closely and are
therefore stricter than previous Altova engines—such as those in previous versions of XMLSpy. As
a result, minor errors that were ignored by previous engines are now flagged as errors by
MapForce.

For example:

e |tis atype error (err: XPTY0018) if the result of a path operator contains both nodes and
non-nodes.

e |tis atype error (err: XPTY0019) if E1 in a path expression E1/ E2 does not evaluate to a
sequence of nodes.

If you encounter this kind of error, modify either the XSLT/XQuery document or the instance
document as appropriate.

This section describes implementation-specific features of the engines, organized by
specification:

e XSLT1.0
e XSLT2.0
e XQuery 1.0

11.1.1.1 XSLT 1.0

The XSLT 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT
1.0 Recommendation of 16 November 1999 and XPath 1.0 Recommendation of 16 November
1999. Note the following information about the implementation.

Notes about the implementation

When the net hod attribute of xsl : out put is set to HTML, or if HTML output is selected by
default, then special characters in the XML or XSLT file are inserted in the HTML document as
HTML character references in the output. For instance, the character U+00AO (the hexadecimal
character reference for a non-breaking space) is inserted in the HTML code either as a character
reference (8 or) or as an entity reference, .

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

414 Appendices Engine information

11.1.1.2 XSLT 2.0

This section:

Engine conformance

Backward compatibility
Namespaces

Schema awareness
Implementation-specific behavior

Conformance
The XSLT 2.0 engine of MapForce conforms to the World Wide Web Consortium's (W3C's) XSLT
2.0 Recommendation of 23 January 2007 and XPath 2.0 Recommendation of 14 December 2010.

Backwards Compatibility

The XSLT 2.0 engine is backwards compatible. The only time the backwards compatibility of the
XSLT 2.0 engine comes into effect is when using the XSLT 2.0 engine to process an XSLT 1.0
stylesheet. Note that there could be differences in the outputs produced by the XSLT 1.0 Engine
and the backwards-compatible XSLT 2.0 engine.

Namespaces

Your XSLT 2.0 stylesheet should declare the following namespaces in order for you to be able to
use the type constructors and functions available in XSLT 2.0. The prefixes given below are
conventionally used; you could use alternative prefixes if you wish.

Namespace Name | Prefix | Namespace URI

XML Schema types | xs: htt p: // wwv. w3. or g/ 2001/ XM_Schena

XPath 2.0 functions |fn: ht t p: / / wwv. w3. or g/ 2005/ xpat h- f unct i ons

Typically, these namespaces will be declared on the xsl : st yl esheet or xsl : transf orm
element, as shown in the following listing:
true
<xsl :styl esheet version="2.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: fn="http://ww. w3. or g/ 2005/ xpat h- f unct i ons"

</ xsl : styl esheet >
The following points should be noted:
e The XSLT 2.0 engine uses the XPath 2.0 and XQuery 1.0 Functions namespace (listed in

the table abowe) as its default functions namespace. So you can use XPath 2.0 and
XSLT 2.0 functions in your stylesheet without any prefix. If you declare the XPath 2.0

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/TR/xpath20/

Appendices Engine information 415

Functions namespace in your stylesheet with a prefix, then you can additionally use the
prefix assigned in the declaration.

e When using type constructors and types from the XML Schema namespace, the prefix
used in the namespace declaration must be used when calling the type constructor (for
example, xs: dat e).

e Some XPath 2.0 functions have the same name as XML Schema datatypes. For
example, for the XPath functions f n: string and f n: bool ean there exist XML Schema
datatypes with the same local names: xs: stri ng and xs: bool ean. So if you were to use
the XPath expression string(' Hel 1 o'), the expression evaluates as
fn:string('Hello')—not as xs:string('Hello').

Schema-awareness
The XSLT 2.0 engine is schema-aware. So you can use user-defined schema types and the
xsl : val i dat e instruction.

Implementation-specific behavior
Given below is a description of how the XSLT 2.0 engine handles implementation-specific aspects
of the behavior of certain XSLT 2.0 functions.

xsl :resul t - document
Additionally supported encodings are (the Altova-specific): x- basel6t obi nary and x-
base64t obi nary.

function-avail abl e
The function tests for the availability of in-scope functions (XSLT, XPath, and extension functions).

unpar sed-t ext

The hr ef attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the fil e: // protocol. Additionally supported encodings are (the Altova-specific):
X- bi nar yt obasel6 and x- bi nar yt obase64.

unpar sed-t ext - avai |l abl e

The hr ef attribute accepts (i) relative paths for files in the base-uri folder, and (ii) absolute paths
with or without the fil e: // protocol. Additionally supported encodings are (the Altova-specific):
X- bi nar yt obasel6 and x- bi nar yt obase64.

Note: The following encoding values, which were implemented in earlier versions of RaptorXML's

predecessor product, AltovaXML, are now deprecated: basel6t obi nary,
base64t obi nary, bi naryt obasel6 and bi nar yt obase64.

11.1.1.3 XQuery 1.0

This section:

e Engine conformance
e Schema awareness

e Encoding

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

416 Appendices

Engine information

Namespaces
XML source and validation

Static and dynamic type checking

Library modules
External functions

Collations

Precision of numeric data

XQuery instructions support

Conformance

The XQuery 1.0 Engine of MapForce conforms to the World Wide Web Consortium's (W3C's)
XQuery 1.0 Recommendation of 14 December 2010. The XQuery standard gives implementations

discretion about how to implement many features. Given below is a list explaining how the XQuery
1.0 Engine implements these features.

Schema awareness
The XQuery 1.0 Engine is schema-aware.

Encoding

The UTF-8 and UTF-16 character encodings are supported.

Namespaces

The following namespace URIs and their associated bindings are pre-defined.

Namespace Name | Prefix | Namespace URI

XML Schema types | xs: htt p: // wwv. w3. or g/ 2001/ XM_Schena

Schema instance XSi : htt p: // www. w3. or g/ 2001/ XM_Schema- i nst ance
Built-in functions fn: ht t p: / / wwv. w3. or g/ 2005/ xpat h- f unct i ons

Local functions | ocal : http://ww. w3. or g/ 2005/ xquer y- 1 ocal - functi ons

The following points should be noted:

e The XQuery 1.0 Engine recognizes the prefixes listed above as being bound to the
corresponding hamespaces.
e Since the built-in functions namespace listed above is the default functions namespace in
XQuery, the f n: prefix does not need to be used when built-in functions are invoked (for
example, string("Hello") will call the fn: string function). However, the prefix f n: can
be used to call a built-in function without having to declare the namespace in the query
prolog (for example: fn: string("Hel | 0")).
e You can change the default functions namespace by declaring the def aul t functi on
nanespace expression in the query prolog.
e When using types from the XML Schema namespace, the prefix xs: may be used

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

http://www.w3.org/TR/xquery/

Appendices Engine information 417

without having to explicitly declare the namespaces and bind these prefixes to them in
the query prolog. (Example: xs: dat e and xs: year Mont hDur at i on.) If you wish to use
some other prefix for the XML Schema namespace, this must be explicitly declared in the
query prolog. (Example: decl are nanespace alt = "http://wwv. w3. or g/ 2001/
XM.Schema"; alt: date("2004-10-04").)

e Note that the unt ypedAt om c, dayTi neDur at i on, and year Mont hDur at i on datatypes
have been moved, with the CRs of 23 January 2007, from the XPath Datatypes
namespace to the XML Schema namespace, so: xs: year Mont hDur at i on.

If namespaces for functions, type constructors, node tests, etc are wrongly assigned, an error is
reported. Note, however, that some functions have the same name as schema datatypes, e.g.
fn:string and fn: bool ean. (Both xs: stri ng and xs: bool ean are defined.) The namespace
prefix determines whether the function or type constructor is used.

XML source document and validation

XML documents used in executing an XQuery document with the XQuery 1.0 Engine must be
well-formed. However, they do not need to be valid according to an XML Schema. If the file is not
valid, the invalid file is loaded without schema information. If the XML file is associated with an
external schema and is valid according to it, then post-schema validation information is generated
for the XML data and will be used for query evaluation.

Static and dynamic type checking

The static analysis phase checks aspects of the query such as syntax, whether external
references (e.g. for modules) exist, whether invoked functions and variables are defined, and so
on. If an error is detected in the static analysis phase, it is reported and the execution is
stopped.

Dynamic type checking is carried out at run-time, when the query is actually executed. If a type is
incompatible with the requirement of an operation, an error is reported. For example, the
expression xs: string("1") + 1 returns an error because the addition operation cannot be
carried out on an operand of type xs: stri ng.

Library Modules

Library modules store functions and variables so they can be reused. The XQuery 1.0 Engine
supports modules that are stored in a single external XQuery file. Such a module file must
contain a nodul e declaration in its prolog, which associates a target namespace. Here is an
example module:

nmodul e namespace |ibns="urn: nmodul e-library";
decl are variabl e $libns: conpany := "Altova";
decl are function |ibns:webaddress() { "http://wwm. al tova. cont' };

All functions and variables declared in the module belong to the namespace associated with the
module. The module is used by importing it into an XQuery file with the i nport nodul e statement
in the query prolog. The i nport nodul e statement only imports functions and variables declared
directly in the library module file. As follows:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

418 Appendices Engine information
i mport nodul e nanespace nodlib = "urn:nodul e-library" at "nodul efil enane. xq";
if ($nodl i b: conpany = "Al tova")

t hen nmod! i b: webaddr ess()

el se error("No match found.")
External functions
External functions are not supported, i.e. in those expressions using the ext er nal keyword, as
in:

decl are function hoo($param as xs:integer) as xs:string external;
Collations
The default collation is the Unicode-codepoint collation, which compares strings on the basis of
their Unicode codepoint. Other supported collations are the ICU collations listed here. To use a
specific collation, supply its URI as given in the list of supported collations. Any string
comparisons, including for the f n: max and f n: m n functions, will be made according to the
specified collation. If the collation option is not specified, the default Unicode-codepoint collation
is used.
Precision of nhumeric types

e The xs:integer datatype is arbitrary-precision, i.e. it can represent any number of digits.

e The xs: deci mal datatype has a limit of 20 digits after the decimal point.

e The xs: float and xs: doubl e datatypes have limited-precision of 15 digits.
XQuery Instructions Support
The Pr agna instruction is not supported. If encountered, it is ignored and the fallback expression
is evaluated.

11.1.2 XSLT and XPath/XQuery Functions

This section lists Altova extension functions and other extension functions that can be used in
XPath and/or XQuery expressions. Altova extension functions can be used with Altova's XSLT and
XQuery engines, and provide functionality additional to that available in the function libraries
defined in the W3C standards.

General points
The following general points should be noted:

¢ Functions from the core function libraries defined in the W3C specifications can be called

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

http://site.icu-project.org/

Appendices Engine information 419

without a prefix. That's because the XSLT and XQuery engines read non-prefixed functions
as belonging to a default functions namespace which is that specified in the XPath/
XQuery functions specificationsht t p: / / www. w3. or g/ 2005/ xpat h- f uncti ons. If this
namespace is explicitly declared in an XSLT or XQuery document, the prefix used in the
namespace declaration can also optionally be used on function names.

e In general, if a function expects a sequence of one item as an argument, and a sequence
of more than one item is submitted, then an error is returned.

e All string comparisons are done using the Unicode codepoint collation.

e Results that are QNames are serialized in the form [prefi x:]I ocal nane.

Precision of xs:decimal

The precision refers to the number of digits in the number, and a minimum of 18 digits is required
by the specification. For division operations that produce a result of type xs: deci nal , the
precision is 19 digits after the decimal point with no rounding.

Implicit timezone

When two dat e, ti ne, or dat eTi ne values need to be compared, the timezone of the values being
compared need to be known. When the timezone is not explicitly given in such a value, the
implicit timezone is used. The implicit timezone is taken from the system clock, and its value can
be checked with the i nplicit-timezone() function.

Collations

The default collation is the Unicode codepoint collation, which compares strings on the basis of
their Unicode codepoint. The engine uses the Unicode Collation Algorithm. Other supported
collations are the ICU collations listed below; to use one of these, supply its URI as given in the
table below. Any string comparisons, including for the max and m n functions, will be made
according to the specified collation. If the collation option is not specified, the default Unicode-
codepoint collation is used.

Language URIs

da: Danish da_DK

de: German de_AT, de_BE, de_CH, de DE, de_ LI, de_ LU

en: English en_AS, en_AU, en_BB, en_BE, en_BM en_BW en_BZ, en_CA

en_GB, en_GQJ, en_HK en_IlE en_IN en_JM en_M, en_M,
en_MI, en_MJ, en_NA, en_NZ, en_PH en_PK en_SG en_TT,
en_UM en_US, en_VI, en_ZA en_ZW

es: Spanish es_419, es_AR es_BO es_C, es_0CO es_CR es_DO es_EC
es_ES, es_GQ es_GI, es_HN, es_MX, es_N, es_PA es_PE
es PR es PY, es SV, es US es UY, es VE

fr: French fr_BE, fr_BF, fr_Bl, fr_BJ, fr_BL, fr_CA fr_CD fr_CF,
fr g fr_CcH fr_a, fr_ CM fr_DJ, fr_ FR fr_GA fr_ G\,
fr &, fr_ &Q fr_ KM fr_ LU, fr_ MC fr_ M, fr M3 fr_M,
fr M fr_Ng fr_ RE fr_ RW fr_SN, fr_TD, fr_TG

it: ltalian it CH it IT

j a: Japanese ja_JP

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

http://site.icu-project.org/

420 Appendices Engine information

nb: Norwegian nb_NO

Bokmal

nl : Dutch nl_AW nl_BE, nl_NL

nn: Nynorsk nn_NO

pt: Portuguese pt _AO, pt_BR pt_GN pt_ M, pt_PT, pt_ST
ru: Russian ru_MD, ru_RU, ru_UA

sv: Swedish sv_Fl, sv_SE

Namespace axis

The namespace axis is deprecated in XPath 2.0. Use of the namespace axis is, howewer,
supported. To access namespace information with XPath 2.0 mechanisms, use the i n- scope-
prefixes(), namespace-uri () and namespace-uri-for-prefix() functions.

11.1.2.1 Altova Extension Functions

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions namespace,
http: // wwn. al t ova. cont xsl t - ext ensi ons, and are indicated in this section with the prefix

al t ova: , which is assumed to be bound to this namespace. Note that, in future versions of your
product, support for a function might be discontinued or the behavior of individual functions might
change. Consult the documentation of future releases for information about support for Altova
extension functions in that release.

Functions defined in the W3C's XPath/XQuery Functions specifications can be used in: (i) XPath
expressions in an XSLT context, and (ii) in XQuery expressions in an XQuery document. In this
documentation we indicate the functions that can be used in the former context (XPath in XSLT)
with an xp symbol and call them XPath functions; those functions that can be used in the latter
(XQuery) context are indicated with an xqQ symbol; they work as XQuery functions. The W3C's
XSLT specifications—not XPath/XQuery Functions specifications—also define functions that can
be used in XPath expressions in XSLT documents. These functions are marked with an xsLt
symbol and are called XSLT functions. The XPath/XQuery and XSLT versions in which a function
can be used are indicated in the description of the function (see symbols below). Functions from
the XPath/XQuery and XSLT function libraries are listed without a prefix. Extension functions from
other libraries, such as Altova extension functions, are listed with a prefix.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

XSLT functions

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 421

XSLT functions can only be used in XPath expressions in an XSLT context (similarly to XSLT

2.0's current-group() or key() functions). These functions are not intended for, and will not
work in, a non-XSLT context (for instance, in an XQuery context). Note that XSLT functions for
XBRL can be used only with editions of Altova products that have XBRL support.

XPath/XQuery functions
XPath/XQuery functions can be used both in XPath expressions in XSLT contexts as well as in
XQuery expressions:

Date/Time
Geolocation
Image-related
Numeric
Sequence

String
Miscellaneous

XSLT Functions

XSLT extension functions can be used in XPath expressions in an XSLT context. They will not
work in a non-XSLT context (for instance, in an XQuery context).

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://ww. al t ova. coni xsl t - ext ensi ons, and are indicated in this section
with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Standard functions
= distinct-nodes [altova:]
al tova: di stinct-nodes(node()*) as node()* XSLT1 XSLT2 XSLT3
Takes a set of one or more nodes as its input and returns the same set minus nodes with
duplicate values. The comparison is done using the XPath/XQuery function f n: deep- equal .
= Examples
e al tova: di stinct-nodes(country) returns all child count ry nodes less those

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

422 Appendices Engine information

having duplicate values.

+ evaluate [altova:]
al t ova: eval uat e(XPat hExpressi on as xs:string[, ValueO$pl, ... Val ued $pN|)
XSLT1 XSLT2 XSLT3
Takes an XPath expression, passed as a string, as its mandatory argument. It returns the
output of the evaluated expression. For example: al t ova: eval uate('// Nane[1] ') returns
the contents of the first Name element in the document. Note that the expression // Nane[1]
is passed as a string by enclosing it in single quotes.

The al t ova: eval uat e function can optionally take additional arguments. These arguments
are the values of in-scope variables that have the names p1, p2, p3... pN. Note the following
points about usage: (i) The variables must be defined with names of the form pX, where X is
an integer; (ii) the al t ova: eval uat e function's arguments (see signature above), from the
second argument onwards, provide the values of the variables, with the sequence of the
arguments corresponding to the numerically ordered sequence of variables: p1 to pN: The
second argument will be the value of the variable p1, the third argument that of the variable
p2, and so on; (iii) The variable values must be of type i t ent.

= Example
<xsT:variable name="xpath" select=""'$p3, $p2, $p1'" />
<xsT:value-of select="altova:evaluate($xpath, 10, 20, 'hi')" />
outputs "hi 20 10"

In the listing above, notice the following:

e The second argument of the al t ova: eval uat e expression is the value
assigned to the variable $p1, the third argument that assigned to the variable
$p2, and so on.

¢ Notice that the fourth argument of the function is a string value, indicated by its
being enclosed in quotes.

e The sel ect attribute of the xs: vari abl e element supplies the XPath
expression. Since this expression must be of type xs: stri ng, it is enclosed in
single quotes.

= Examples to further illustrate the use of variables

® <xsl:variable name="xpath" select=""$pl'" />
<xs1:value-of select="altova:evaluate($xpath, //Name[1l])" />
Outputs value of the first Nane element.

® <xsl:variable name="xpath" select=""$pl'" />
<xsT:value-of select="altova:evaluate($xpath, '//Name[1l]')" />

Outputs "/ / Nare[1] "

The al t ova: eval uat e() extension function is useful in situations where an XPath
expression in the XSLT stylesheet contains one or more parts that must be evaluated
dynamically. For example, consider a situation in which a user enters his request for the
sorting criterion and this criterion is stored in the attribute User Req/ @or t key. In the

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

mailto:.

Appendices Engine information 423
stylesheet, you could then have the expression: <xsl : sort
sel ect ="al t ova: eval uat e(. ./ User Req/ @ortkey)" order="ascendi ng"/>. The
al t ova: eval uat e() function reads the sort key attribute of the User Req child element of the
parent of the context node. Say the value of the sort key attribute is Pri ce, then Pri ce is
returned by the al t ova: eval uat e() function and becomes the value of the sel ect attribute:
<xsl :sort select="Price" order="ascendi ng"/>. If this sort instruction occurs within
the context of an element called O der, then the O der elements will be sorted according to
the values of their Pri ce children. Alternatively, if the value of @Gort key were, say, Dat e,
then the O der elements would be sorted according to the values of their Dat e children. So
the sort criterion for Or der is selected from the sort key attribute at runtime. This could not
have been achieved with an expression like: <xsl : sort sel ect="../ User Req/ @ort key"
order ="ascendi ng"/ >. In the case shown abowe, the sort criterion would be the sort key
attribute itself, not Pri ce or Dat e (or any other current content of sort key).
Note: The static context includes namespaces, types, and functions—but not variables—
from the calling environment. The base URI and default namespace are inherited.
= More examples
e Static variables: <xs1:value-of select="$%$i3, $i2, $il" />
Outputs the values of three variables.
e Dynamic XPath expression with dynamic variables:
<xsl:variable name="xpath" select="'$p3, $p2, $pl1'" />
<xs1l:value-of select="altova:evaluate($xpath, 10, 20, 30)" />
Outputs "30 20 10"
e Dynamic XPath expression with no dynamic variable:
<xsl:variable name="xpath" select="'$p3, $p2, $pl1'" />
<xsl:value-of select="altova:evaluate($xpath)" />
Outputs error: No variable defined for $p3.
* encode-for-rtf [altova:]
al tova: encode-for-rtf(input as xs:string, preserveallwhitespace as
xs: bool ean, preservenew i nes as xs:bool ean) as xs:string XSLT2 XSLT3
Converts the input string into code for RTF. Whitespace and new lines will be presened
according to the boolean value specified for their respective arguments.
[Top]

XBRL functions
Altova XBRL functions can be used only with editions of Altova products that have XBRL support.

+ Xbrl-footnotes [altova:]

al t ova: xbr| - f oot not es(node()) as node()* XSLT2 XSLT3
Takes a node as its input argument and returns the set of XBRL footnote nodes referenced
by the input node.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

424 Appendices Engine information

+ Xbrl-labels [altova:]

al tova: xbr| -1 abel s(xs: QNane, xs:string) as node()* XSLT2 XSLT3
Takes two input arguments: a node name and the taxonomy file location containing the node.
The function returns the XBRL label nodes associated with the input node.

XPath/XQuery Functions: Date and Time

Altova's date/time extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data held as XML Schema'’s various date and time
datatypes. The functions in this section can be used with Altova's XPath 3.0 and XQuery 3.0
engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://wwmv. al t ova. cont xsl t - ext ensi ons, and are indicated in this section
with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

+ Grouped by functionality

¢ Add a duration to xs:dateTime and return xs:dateTime

¢ Add a duration to xs:date and return xs:date

¢ Add a duration to xs:time and return xs:time

e Format and retrieve durations

e Remowe timezone from functions that generate current date/time

e Return weekday as integer from date

e Return week number as integer from date

e Build date, time, or duration type from lexical components of each type
e Construct date, dateTime, or time type from string input

e Age-related functions

+ Grouped alphabetically

al t ova: add- days-to-date

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information 425

al tova:

add- days-t o- dat eTi ne

al tova:

add- hour s-t o- dat eTi ne

al tova:

add- hours-to-tine

al tova:

add- m nut es-t o- dat eTi ne

al tova:

add- m nutes-to-tine

al tova:

add- nont hs-t o-dat e

al tova:

add- nont hs-t o- dat eTi ne

al tova:

add- seconds-t o- dat eTi ne

al tova:

add- seconds-to-tinme

al tova:

add- years-to-date

al tova:

add- year s-t o-dat eTi ne

al t ova: age

al tova:

age-details

al tova:

bui | d-dat e

al tova:

bui | d-duration

al tova:

bui l d-tine

al tova:

current - dat eTi ne-no-TZ

al tova:

current-date-no-TZ

al tova:

current-tine-no-TZ

al tova:

format -duration

al tova:

par se-dat e

al tova:

par se- dat eTi ne

al tova:

par se-durati on

al tova:

parse-tine

al tova:

weekday-fromdate

al tova:

weekday- from dat eTi ne

al tova:

weeknunber -from dat e

al tova:

weeknunber - from dat eTi ne

Add a duration to xs: dateTinme XP3.1 XQ3.1

[Top]

These functions add a duration to xs: dat eTi me and return xs: dat eTi ne. The xs: dat eTi ne type
has a format of CCYY- MM DDThh: mm ss. sss. This is a concatenation of the xs: dat e and xs: ti me
formats separated by the letter T. A timezone suffix+01: 00 (for exanpl e) is optional.

+ add-years-to-dateTime [altova:]

al t ova: add- year s-to-dat eTi me(Dat eTi ne as xs:dateTine, Years as xs:integer) as
xs: dateTi ne XP3.1 XQ3.1
Adds a duration in years to an xs: dat eTi ne (see examples below). The second argument is
the number of years to be added to the xs: dat eTi me supplied as the first argument. The

result is

of type xs: dat eTi ne.

= Examples
® al tova: add- year s-t o- dat eTi me(xs: dat eTi ne("2014-01-15T14: 00: 00"), 10)
returns 2024- 01- 15T14: 00: 00

® al tova: add- year s-to- dat eTi me(xs: dat eTi ne("2014-01- 15T14: 00: 00"), -4)
returns 2010- 01- 15T14: 00: 00

+ add-months-to-dateTime [altova:]

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

426 Appendices Engine information

al t ova: add- nont hs-t o- dat eTi me(Dat eTi me as xs: dateTi ne, Months as xs:integer)

as xs: dateTine XP3.1 XQ3.1

Adds a duration in months to an xs: dat eTi ne (see examples below). The second argument

is the number of months to be added to the xs: dat eTi me supplied as the first argument. The
result is of type xs: dat eTi ne.

= Examples

® al t ova: add- nont hs-t o- dat eTi ne(xs: dat eTi ne("2014- 01- 15T14: 00: 00"), 10)
returns 2014- 11- 15T14: 00: 00

® al t ova: add- nont hs-t o- dat eTi ne(xs: dat eTi ne("2014- 01- 15T14: 00: 00"), -2)
returns 2013- 11- 15T14: 00: 00

+ add-days-to-dateTime [altova:]

al t ova: add- days-t o-dat eTi ne(Dat eTi ne as xs:dateTine, Days as xs:integer) as
xs: dateTi ne XP3.1 XQ3.1

Adds a duration in days to an xs: dat eTi e (see examples below). The second argument is
the number of days to be added to the xs: dat eTi me supplied as the first argument. The
result is of type xs: dat eTi ne.

= Examples
® al t ova: add- days-t o- dat eTi me(xs: dat eTi ne("2014-01- 15T14: 00: 00"), 10)
returns 2014- 01- 25T14: 00: 00

® al t ova: add- days-t o- dat eTi me(xs: dat eTi ne("2014-01- 15T14: 00: 00"), -8)
returns 2014- 01- 07T14: 00: 00

+ add-hours-to-dateTime [altova:]

al t ova: add- hour s-t o- dat eTi me(Dat eTi ne as xs:dateTine, Hours as xs:integer) as
xs: dateTi mre XP3.1 XQ3.1

Adds a duration in hours to an xs: dat eTi ne (see examples below). The second argument is
the number of hours to be added to the xs: dat eTi me supplied as the first argument. The
result is of type xs: dat eTi ne.

= Examples

® al t ova: add- hour s-t o- dat eTi me(xs: dat eTi ne("2014-01- 15T13: 00: 00"), 10)
returns 2014- 01- 15T23: 00: 00

® al tova: add- hour s-t o- dat eTi me(xs: dat eTi ne("2014-01-15T13: 00: 00"), -8)
returns 2014- 01- 15T05: 00: 00

+ add-minutes-to-dateTime [altova:]

al t ova: add- m nut es-t o-dat eTi me(Dat eTi me as xs:dateTine, Mnutes as
Xs:integer) as xs: dateTi ne XP3.1 XQ3.1

Adds a duration in minutes to an xs: dat eTi ne (see examples below). The second argument
is the number of minutes to be added to the xs: dat eTi ne supplied as the first argument. The
result is of type xs: dat eTi ne.

= Examples

® al tova: add- m nut es-t o- dat eTi me(xs: dat eTi me("2014- 01- 15T14: 10: 00"), 45)
returns 2014- 01- 15T14: 55: 00

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 427

® al tova: add- m nut es-t o- dat eTi ne(xs: dat eTi ne("2014-01- 15T14: 10: 00"), -5)
returns 2014- 01- 15T14: 05: 00

+ add-seconds-to-dateTime [altova:]

al t ova: add- seconds-t o- dat eTi me(Dat eTi ne as xs: dateTi me, Seconds as
Xxs:integer) as xs: dateTime XP3.1 XQ3.1
Adds a duration in seconds to an xs: dat eTi ne (see examples below). The second argument

is the number of seconds to be added to the xs: dat eTi ne supplied as the first argument.
The result is of type xs: dat eTi ne.

=l Examples

® al tova: add- seconds-t o- dat eTi me(xs: dat eTi me("2014- 01- 15T14: 00: 10"), 20)
returns 2014- 01- 15T14: 00: 30

® al tova: add- seconds-t o- dat eTi ne(xs: dat eTi me("2014- 01- 15T14: 00: 10"), -5)
returns 2014-01- 15T14: 00: 05

Add a duration to xs: date Xxp3.1 XQ3.1

These functions add a duration to xs: dat e and return xs: dat e. The xs: dat e type has a format of
CCYY- WM DD.

+ add-years-to-date [altova:]
al tova: add-years-to-date(Date as xs:date, Years as xs:integer) as xs:date
XP3.1 XQ3.1
Adds a duration in years to a date. The second argument is the number of years to be
added to the xs: dat e supplied as the first argument. The result is of type xs: dat e.
= Examples

® al tova: add- year s-t o- dat e(xs: dat e("2014- 01- 15"), 10) returns 2024-01- 15
® al tova: add- year s-t o- dat e(xs: dat e("2014- 01- 15"), -4) returns 2010-01-15

+ add-months-to-date [altova:]
al t ova: add- nont hs-to-date(Date as xs:date, Mnths as xs:integer) as xs: date
XP3.1 XQ3.1
Adds a duration in months to a date. The second argument is the number of months to be
added to the xs: dat e supplied as the first argument. The result is of type xs: dat e.
-1 Examples

® al tova: add- nont hs-t o- dat e(xs: dat e("2014-01-15"), 10) returns 2014- 11- 15
® al t ova: add- nont hs-t o- dat e(xs: dat e("2014- 01-15"), -2) returns 2013-11-15

+ add-days-to-date [altova:]

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

428 Appendices Engine information

al t ova: add- days-to-date(Date as xs:date, Days as xs:integer) as xs:date XP3.1
XQ3.1

Adds a duration in days to a date. The second argument is the number of days to be added
to the xs: dat e supplied as the first argument. The result is of type xs: dat e.

= Examples
® al tova: add- days-t o- dat e(xs: dat e("2014-01- 15"), 10) returns 2014-01- 25
® al tova: add- days-t o-dat e(xs: date("2014-01-15"), -8) returns 2014-01-07

Format and retrieve durations xp3.1 xqQ3.1
These functions add a duration to xs: dat e and return xs: dat e. The xs: dat e type has a format of
CCYY- WM DD.

+ format-duration [altova:]

altova: format-durati on(Duration as xs:duration, Picture as xs:string) as
xs:string XP3.1 XQ3.1

Formats a duration, which is submitted as the first argument, according to a picture string
submitted as the second argument. The output is a text string formatted according to the
picture string.

= Examples

e altova: format-duration(xs:duration("P2DT2H53ML1. 7S"), "Days: [D01]
Hours: [HO1] M nutes:[nD1] Seconds:[sO01] Fractions:[f0]") returns
"Days: 02 Hours: 02 M nutes: 53 Seconds: 11 Fractions: 7"

® altova: format-duration(xs:duration("P3M2DI2H53ML1. 7S"), "Mont hs: [M)1]
Days: [DO1] Hours:[HO1] M nutes:[nD1]") returns "Mont hs: 03 Days: 02
Hours: 02 M nut es: 53"

¥ parse-duration [altova:]

al tova: parse-duration(lnputString as xs:string, Picture as xs:string) as
xs:duration XP3.1 XQ3.1

Takes a patterned string as the first argument, and a picture string as the second argument.
The input string is parsed on the basis of the picture string, and an xs: dur ati on is returned.

= Examples

® al tova: parse-duration("Days: 02 Hours: 02 M nutes: 53 Seconds: 11
Fractions: 7"), "Days:[D01] Hours:[HO1] M nutes:[nDl] Seconds:[s01]
Fractions:[f0]") returns "P2DT2H53ML1. 7S"

® al tova: parse-duration("Mnths: 03 Days: 02 Hours: 02 M nutes: 53
Seconds: 11 Fractions: 7", "Mnths: [M1] Days:[D01] Hours:[HO01] M nutes:
[nD1] ") returns " P3MRDT2H53M'

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 429
Add a durationto xs:tine xp3.1 xQ3.1
These functions add a duration to xs: ti me and return xs: ti me. The xs: ti me type has a lexical
form of hh: mm ss. sss. An optional time zone may be suffixed. The letter Z indicates Coordinated
Universal Time (UTC). All other time zones are represented by their difference from UTC in the
format +hh: nm or - hh: nm If no time zone value is present, it is considered unknown; it is not
assumed to be UTC.
+ add-hours-to-time [altova:]
al tova: add- hours-to-time(Time as xs:time, Hours as xs:integer) as xs:tine
XP3.1 XQ3.1
Adds a duration in hours to a time. The second argument is the number of hours to be added
to the xs: ti ne supplied as the first argument. The result is of type xs: ti ne.
= Examples
® altova: add- hours-to-time(xs:time("11:00:00"), 10) returns 21: 00: 00
® altova: add- hours-to-time(xs:time("11:00:00"), -7) returns 04: 00: 00
+ add-minutes-to-time [altova:]
altova: add-m nutes-to-tinme(Tinme as xs:tine, Mnutes as xs:integer) as xs:tine
XP3.1 XQ3.1
Adds a duration in minutes to a time. The second argument is the number of minutes to be
added to the xs: ti me supplied as the first argument. The result is of type xs: ti ne.
=l Examples
® altova: add-m nutes-to-tine(xs:tine("14:10: 00"), 45) returns 14: 55: 00
® altova: add-m nutes-to-tine(xs:tine("14:10: 00"), -5) returns 14: 05: 00
+ add-seconds-to-time [altova:]
al tova: add- seconds-to-time(Tinme as xs:tine, Mnutes as xs:integer) as xs:tine
XP3.1 XQ3.1
Adds a duration in seconds to a time. The second argument is the number of seconds to be
added to the xs: ti me supplied as the first argument. The result is of type xs: ti ne. The
Seconds component can be in the range of 0 to 59. 999.
= Examples
® altova: add-seconds-to-time(xs:tine("14:00:00"), 20) returns 14: 00: 20
® al tova: add- seconds-to-tine(xs:tine("14:00:00"), 20.895) returns
14: 00: 20. 895
[Top]

Remove the timezone part from date/time datatypes xp3.1 xqQ3.1
These functions remowe the timezone from the current xs: dat eTi ne, xs: dat e, or xs: ti ne values,

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

430 Appendices Engine information

respectively. Note that the difference between xs: dat eTi me and xs: dat eTi neSt anp is that in the
case of the latter the timezone part is required (while it is optional in the case of the former). So
the format of an xs: dat eTi neSt anp value is: CCYY- MM DDThh: mm ss. sssthh: nm or CCYY- M
DDThh: mm ss. sssZ. If the date and time is read from the system clock as xs: dat eTi neSt anp,
the current - dat eTi me- no- TZ() function can be used to remowve the timezone if so required.

* current-dateTime-no-TZ [altova:]

al tova: current-dat eTi me-no-TZ() as xs: dateTi ne XP3.1 XQ3.1

This function takes no argument. It remowves the timezone part of current - dat eTi ne()
(which is the current date-and-time according to the system clock) and returns an

xs: dat eTi ne value.

= Examples
If the current dateTime is 2014- 01- 15T14: 00: 00+01: 00:

® al tova: current-dateTi me-no- TZ() returns 2014-01- 15T14: 00: 00

¥ current-date-no-TZ [altova:]

al tova: current-date-no-TZ() as xs: date XP3.1 XQ3.1
This function takes no argument. It removes the timezone part of current - dat e() (which is
the current date according to the system clock) and returns an xs: dat e value.

= Examples
If the current date is 2014- 01- 15+01: 00:

® al tova: current-date-no-TZ() returns 2014- 01- 15

¥ current-time-no-TZ [altova:]

altova:current-time-no-TZ() as xs:tine XP3.1 XQ3.1

This function takes no argument. It removes the timezone part of current -ti me() (which is
the current time according to the system clock) and returns an xs: ti ne value.

= Examples

If the current time is 14: 00: 00+01: 00:

® altova:current-time-no-TZ() returns 14: 00: 00

Return the weekday from xs: dat eTi ne Or xs: date XP3.1 XQ3.1

These functions return the weekday (as an integer) from xs: dat eTi ne or xs: dat e. The days of
the week are numbered (using the American format) from 1 to 7, with Sunday=1. In the European
format, the week starts with Monday (=1). The American format, where Sunday=1, can be set by
using the integer 0 where an integer is accepted to indicate the format.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 431

+ weekday-from-dateTime [altova:]
al t ova: weekday-from dat eTi ne(Dat eTi ne as xs: dateTi ne) as xs:integer XpP3.1
XQ3.1
Takes a date-with-time as its single argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).
= Examples

* al t ova: weekday-from dat eTi me(xs: dat eTi me("2014- 02- 03T09: 00: 00")) returns
2, which would indicate a Monday.

al t ova: weekday-from dat eTi me(Dat eTi ne as xs:dateTi ne, Format as xs:integer)
as xs:integer XP3.1 XQ3.1

Takes a date-with-time as its first argument and returns the day of the week of this date as
an integer. The weekdays are numbered starting with Monday=1. If the second (integer)
argument is 0, then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second
argument is an integer other than 0, then Monday=1. If there is no second argument, the
function is read as having the other signature of this function (see previous signature).

= Examples

® al tova: weekday-from dat eTi me(xs: dat eTi me("2014- 02- 03T09: 00: 00"), 1)
returns 1, which would indicate a Monday

® al t ova: weekday- f rom dat eTi me(xs: dat eTi me(" 2014- 02- 03T09: 00: 00"), 4)
returns 1, which would indicate a Monday

* al t ova: weekday-from dat eTi me(xs: dat eTi me("2014- 02- 03T09: 00: 00"), 0)
returns 2, which would indicate a Monday.

+ weekday-from-date [altova:]

al t ova: weekday-from dat e(Date as xs:date) as xs:integer XP3.1 XQ3.1
Takes a date as its single argument and returns the day of the week of this date as an
integer. The weekdays are numbered starting with Sunday=1. If the European format is
required (where Monday=1), use the other signature of this function (see next signature
below).

= Examples

e al t ova: weekday- f rom dat e(xs: dat e(" 2014- 02- 03+01: 00")) returns 2, which
would indicate a Monday.

al t ova: weekday-from date(Date as xs:date, Format as xs:integer) as xs:integer
XP3.1 XQ3.1

Takes a date as its first argument and returns the day of the week of this date as an integer.

The weekdays are numbered starting with Monday=1. If the second (For nat) argument is 0,

then the weekdays are numbered 1 to 7 starting with Sunday=1. If the second argument is an

integer other than 0, then Monday=1. If there is no second argument, the function is read as

having the other signature of this function (see previous signature).

= Examples

e al t ova: weekday- f rom dat e(xs: dat e("2014- 02-03"), 1) returns 1, which would
indicate a Monday

e al t ova: weekday- f rom dat e(xs: dat e("2014- 02-03"), 4) returns 1, which would
indicate a Monday

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

432 Appendices Engine information

e al t ova: weekday- f rom dat e(xs: dat e("2014- 02-03"), 0) returns 2, which would
indicate a Monday.

Return the week number from xs: dat eTi me Or xs: date XP2 XQ1 XP3.1 XQ3.1

These functions return the week number (as an integer) from xs: dat eTi ne or xs: dat e. Week-
numbering is available in the US, ISO/European, and Islamic calendar formats. Week-numbering
is different in these calendar formats because the week is considered to start on different days (on
Sunday in the US format, Monday in the ISO/European format, and Saturday in the Islamic
format).

+ weeknumber-from-date [altova:]

al t ova: weeknunber -from date(Date as xs:date, Cal endar as xs:integer) as
XS:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted Dat e argument as an integer. The second
argument (Cal endar) specifies the calendar system to follow.

Supported Cal endar values are:

US cal endar (week starts Sunday)
| SO standard, European cal endar (week starts Monday)
I sl ami ¢ cal endar (week starts Saturday)

[]
N —» O
I

Default is 0.

= Examples
® al t ova: weeknunber - fr om dat e(xs: dat e("2014- 03-23"), 0) returns 13
® al t ova: weeknunber - from dat e(xs: dat e("2014- 03-23"), 1) returns 12
® al tova: weeknunber - from dat e(xs: dat e("2014- 03-23"), 2) returns 13
® al tova: weeknunber - from dat e(xs: dat e("2014- 03-23")) returns 13

The day of the date in the examples above (2014- 03- 23) is Sunday. So the US and
Islamic calendars are one week ahead of the European calendar on this day.

+ weeknumber-from-dateTime [altova:]

al t ova: weeknunber - from dat eTi me(Dat eTi re as xs: dateTi ne, Cal endar as
Xs:integer) as xs:integer XP2 XQ1 XP3.1 XQ3.1

Returns the week number of the submitted Dat eTi ne argument as an integer. The second
argument (Cal endar) specifies the calendar system to follow.

Supported Cal endar values are:

US cal endar (week starts Sunday)
| SO standard, European cal endar (week starts Monday)
I sl am c cal endar (week starts Saturday)

[]
N - O
1

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 433

Default is 0.

= Examples

® al t ova: weeknunber - from dat eTi me(xs: dat eTi ne("2014- 03- 23T00: 00: 00"), 0)
returns 13

® al t ova: weeknunber - from dat eTi ne(xs: dat eTi ne("2014- 03- 23T00: 00: 00"), 1)
returns 12

® al t ova: weeknunber - f r om dat eTi ne(xs: dat eTi ne(" 2014- 03- 23T00: 00: 00"), 2)
returns 13

® al t ova: weeknunber - f r om dat eTi me(xs: dat eTi me(" 2014- 03- 23T00: 00: 00"))
returns 13

The day of the dateTime in the examples abowve (2014- 03- 23T00: 00: 00) is Sunday. So
the US and Islamic calendars are one week ahead of the European calendar on this
day.

Build date, time, and duration datatypes from their lexical components xp3.1
XQ3.1

The functions take the lexical components of the xs: dat e, xs: ti ne, or xs: dur at i on datatype as
input arguments and combine them to build the respective datatype.

 build-date [altova:]

altova: buil d-date(Year as xs:integer, Month as xs:integer, Date as
Xs:integer) as xs:date XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the year, month, and date. They are
combined to build a value of xs: dat e type. The values of the integers must be within the
correct range of that particular date part. For example, the second argument (for the month
part) should not be greater than 12.

= Examples
® al tova: buil d-date(2014, 2, 03) returns 2014-02-03

+ build-time [altova:]
altova: build-tine(Hours as xs:integer, Mnutes as xs:integer, Seconds as
Xs:integer) as xs:tinme XP3.1 XQ3.1
The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. They are combined to build a value of xs: ti nme type. The
values of the integers must be within the correct range of that particular time part. For
example, the second (M nut es) argument should not be greater than 59. To add a timezone
part to the value, use the other signature of this function (see next signature).

= Examples
e altova:build-tine(23, 4, 57) returns 23: 04: 57

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

434 Appendices Engine information

altova: build-tine(Hours as xs:integer, Mnutes as xs:integer, Seconds as
Xs:integer, TineZone as xs:string) as xs:tine XP3.1 XQ3.1

The first, second, and third arguments are, respectively, the hour (0 to 23), minutes (0 to 59),
and seconds (0 to 59) values. The fourth argument is a string that provides the timezone part
of the value. The four arguments are combined to build a value of xs: ti me type. The values of
the integers must be within the correct range of that particular time part. For example, the
second (M nut es) argument should not be greater than 59.

= Examples
® altova: build-tine(23, 4, 57, '+1') retuns 23: 04: 57+01: 00

+ build-duration [altova:]

altova: buil d-duration(Years as xs:integer, Mnths as xs:integer) as

xs: year Mont hDur ati on XP3.1 XQ3.1

Takes two arguments to build a value of type xs: year Mont hDur at i on. The first arguments
provides the Year s part of the duration value, while the second argument provides the Mont hs
part. If the second (Mont hs) argument is greater than or equal to 12, then the integer is
divided by 12; the quotient is added to the first argument to provide the Year s part of the
duration value while the remainder (of the division) provides the Mont hs part. To build a
duration of type xs: dayTi meDur at i on., see the next signature.

-I Examples

® altova: build-duration(2, 10) returns P2Y10M
® altova: build-duration(14, 27) returns P16Y3M
e altova: build-duration(2, 24) returns P4Y

altova: buil d-duration(Days as xs:integer, Hours as xs:integer, Mnutes as
Xs:integer, Seconds as xs:integer) as xs:dayTi neDurati on XP3.1 XQ3.1

Takes four arguments and combines them to build a value of type xs: dayTi neDur ati on. The
first argument provides the Days part of the duration value, the second, third, and fourth
arguments provide, respectively, the Hour s, M nut es, and Seconds parts of the duration
value. Each of the three Time arguments is converted to an equivalent value in terms of the
next higher unit and the result is used for calculation of the total duration value. For example,
72 seconds is converted to 1M+12S (1 minute and 12 seconds), and this value is used for
calculation of the total duration value. To build a duration of type xs: year Mont hDur at i on.,
see the previous signature.

-I Examples
® altova: build-duration(2, 10, 3, 56) returns P2DT10H3M66S
e altova: build-duration(1, 0, 100, 0) returns P1DT1HAOM
® altova: build-duration(1, 0, 0, 3600) returns P1DT1H

Construct date, dateTime, and time datatypes from string input xp2 xqQi xp3.1
XQ3.1

These functions take strings as arguments and construct xs: dat e, xs: dat eTi ne, or xs: ti e
datatypes. The string is analyzed for components of the datatype based on a submitted pattern

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 435

argument.

* parse-date [altova:]
al tova: parse-date(Date as xs:string, DatePattern as xs:string) as xs:date
XP2 XQ1 XP3.1 XQ3.1
Returns the input string Dat e as an xs: dat e value. The second argument Dat ePattern
specifies the pattern (sequence of components) of the input string. Dat ePat t er n is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

D Date
M Month
Y Year

The pattern in Dat ePat t er n must match the pattern in Dat e. Since the output is of type
xs: dat e, the output will always have the lexical format YYYY- Mvt DD.

= Examples

® al tova: parse-date(xs:string("09-12-2014"), "[D-[M-[VY]") returns 2014-
12-09

® altova: parse-date(xs:string("09-12-2014"), "[M-[D]-[Y]") returns 2014-
09-12

® altova: parse-date("06/03/2014", "[M/[D/[Y]") returns 2014- 06- 03

® altova: parse-date("06 03 2014", "[M [D] [Y]") returns 2014- 06- 03

® altova: parse-date("6 3 2014", "[M [D [Y]") returns 2014- 06- 03

« parse-dateTime [altova:]
al t ova: parse-dateTi ne(DateTi ne as xs:string, DateTinePattern as xs:string) as
xs:dateTi ne XP2 XQ1 XP3.1 XQ3.1
Returns the input string Dat eTi ne as an xs: dat eTi ne value.The second argument
Dat eTi nePat t er n specifies the pattern (sequence of components) of the input string.
Dat eTi nePat t er n is described with the component specifiers listed below and with
component separators that can be any character. See the examples below.

Date

Month

Year

Hour

minutes

» 3 T <X 0

seconds

The pattern in Dat eTi nePat t er n must match the pattern in Dat eTi ne. Since the output is of
type xs: dat eTi e, the output will always have the lexical format YYYY- M DDTHH: nm ss.

= Examples

® al tova: parse-dateTi me(xs:string("09-12-2014 13:56:24"), "[M-[D-[YV]
[H:[m:[s]") returns 2014- 09- 12T13: 56: 24
® altova: parse-dateTime("time=13: 56: 24; date=09-12-2014", "time=[H:[ni:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

436 Appendices Engine information

[s]: date=[D]-[M-[Y]") retums 2014- 12- 09T13: 56: 24

¥ parse-time [altova:]
altova: parse-tine(Time as xs:string, TinePattern as xs:string) as xs:tinme
XP2 XQ1 XP3.1 XQ3.1
Returns the input string Ti me as an xs: ti ne value.The second argument Ti nePat t er n
specifies the pattern (sequence of components) of the input string. Ti mePat t er n is described

with the component specifiers listed below and with component separators that can be any
character. See the examples below.

H Hour
m minutes
s seconds

The pattern in Ti nePat t er n must match the pattern in Ti ne. Since the output is of type
xs: ti me, the output will always hawve the lexical format HH nm ss.

= Examples
® altova: parse-tine(xs:string("13:56:24"), "[H:[nj:[s]") returns 13: 56: 24
® altova: parse-tine("13-56-24", "[H-[n]") returns 13: 56: 00
® altova: parse-tine("time=13h56nm24s", "tinme=[H h[njnis]s") returns
13:56: 24
® altova: parse-tine("time=24s56m3h", "tinme=[s]s[njniH h") returns
13:56: 24

Age-related functions xp3.1 xqQ3.1

These functions return the age as calculated (i) between one input argument date and the current

date, or (ii) between two input argument dates. The al t ova: age function returns the age in terms

of years, the al t ova: age- det ai | s function returns the age as a sequence of three integers giving
the years, months, and days of the age.

¥ age [altova:]

altova: age(StartDate as xs:date) as xs:integer XP3.1 XQ3.1
Returns an integer that is the age in years of some object, counting from a start-date
submitted as the argument and ending with the current date (taken from the system clock). If

the input argument is a date anything greater than or equal to one year in the future, the
return value will be negative.

= Examples
If the current date is 2014- 01- 15:

® al tova: age(xs: date("2013-01-15")) returns 1

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information

437

® al tova: age(xs: date("2013-01-16")) returns O
® al tova: age(xs: date("2015-01-15")) returns -1
® al tova: age(xs: date("2015-01-14")) returns 0

altova: age(StartDate as xs:date, EndDate as xs:date) as xs:integer XpP3.1 XQ3.1
Returns an integer that is the age in years of some object, counting from a start-date that is
submitted as the first argument up to an end-date that is the second argument. The return
value will be negative if the first argument is one year or more later than the second
argument.

= Examples

If the current date is 2014- 01- 15:

* al tova: age(xs: dat e("2000-01-15"), xs:date("2010-01-15")) returns 10

e al tova: age(xs: dat e("2000-01-15"), current-date()) returns 14 if the current
date is 2014- 01- 15

® al tova: age(xs: date("2014-01-15"), xs:date("2010-01-15")) returns -4

* age-details [altova:]

al tova: age-detai |l s(I nputDate as xs:date) as (xs:integer)* xp3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the date
that is submitted as the argument and the current date (taken from the system clock). The
sum of the returned year s+nont hs+days together gives the total time difference between the
two dates (the input date and the current date). The input date may hawe a value earlier or
later than the current date, but whether the input date is earlier or later is not indicated by the
sign of the return values; the return values are always positive.

= Examples
If the current date is 2014- 01- 15:

® al tova: age-detail s(xs:date("2014-01-16")) returns (0 0 1)
® al tova: age-detail s(xs:date("2014-01-14")) returns (0 0 1)
® al tova: age-detail s(xs:date("2013-01-16")) returns (1 0 1)
® altova: age-detail s(current-date()) returns (0 0 0)

al tova: age-detai |l s(Date-1 as xs:date, Date-2 as xs:date) as (xs:integer)*
XP3.1 XQ3.1

Returns three integers that are, respectively, the years, months, and days between the two
argument dates. The sum of the returned year s+nont hs+days together gives the total time
difference between the two input dates; it does not matter whether the earlier or later of the
two dates is submitted as the first argument. The return values do not indicate whether the
input date occurs earlier or later than the current date. Return values are always positive.

= Examples
® al tova: age-detail s(xs:date("2014-01-16"), xs:date("2014-01-15")) returns

(0 0 1)
® al tova: age-detail s(xs:date("2014-01-15"), xs:date("2014-01-16")) returns
(0 0 1)
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

438 Appendices Engine information

[Top]

XPath/XQuery Functions: Geolocation

The following geolocation XPath/XQuery extension functions are supported in the current version of
MapForce and can be used in (i) XPath expressions in an XSLT context, or (ii) XQuery
expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://wwv al t ova. con xsl t - ext ensi ons, and are indicated in this section
with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

* parse-geolocation [altova:]

al t ova: par se- geol ocati on(Geol ocati onl nput String as xs:string) as xs: deci mal +
XP3.1 XQ3.1

Parses the supplied Geol ocat i onl nput St ri ng argument and returns the geolocation's
latitude and longitude (in that order) as a sequence two xs: deci mal items. The formats in
which the geolocation input string can be supplied are listed below.

Note: The i mage- exi f - dat a function and the Exif metadata's @zeol ocat i on attribute can
be used to supply the geolocation input string (see example below).

= Examples

e altova: parse-geol ocation("33.33 -22.22") returns the sequence of two
xs: deci mal s (33.33, 22.22)

e al tova: parse-geol ocation("48°51' 29. 6""N 24°17' 40.2""") returns the
sequence of two xs: deci mal s (48. 8582222222222, 24.2945)

e altova: parse-geol ocation('48°51'"'29.6"N 24°17''40.2"") returns the
sequence of two xs: deci mal s (48. 8582222222222, 24.2945)

® al tova: par se-geol ocati on(i mage-exif-data(// M/l mages/
| rage20141130. 01) / @=ol ocati on) returns a sequence of two xs: deci mal s

=l Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to - 90 (Nto S). Longitude values range from +180 to -180 (E to W.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information 439

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

().

e Degrees, minutes, decimal seconds, with suffixed orientation (V' S, W E)
DPMS.SS'NS DM S SS'WE

Example: 33°55' 11. 11"N 22°44' 55. 25" W

e Degrees, minutes, decimal seconds, with prefixed sign (+/ -); the plus sign for
(N W is optional

+/-D°M S. SS"
Example: 33°55' 11. 11"

+/-D°M S. SS'
-22°44' 55. 25"

e Degrees, decimal minutes, with suffixed orientation (N S, W E)
DPMMMNS DPMW WE

Example: 33°55.55' N 22°44. 44' W

e Degrees, decimal minutes, with prefixed sign (+/ -); the plus sign for (N W is
optional

+/-D°M WM
Example: +33°55. 55'

+/-D°M W
-22°44. 44’

e Decimal degrees, with suffixed orientation (V' S, W E)

D.DDNVS D.DDWE

Example: 33.33N 22.22wW

e Decimal degrees, with prefixed sign (+/ -); the plus sign for (N W is optional

+/-D.DD +/-D.DD
-22.22

Example: 33. 33

Examples of format-combinations:

33. 33N

-22°44' 55, 25"

33.33 22°44'55.25"W
33.33 22.45

= Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geol ocat i on from
standard Exif metadata tags. Geol ocat i on is a concatenation of four Exif tags:
GPSLat i t ude, GPSLat i t udeRef , GPSLongi t ude, GPSLongi t udeRef , with units added
(see table below).

GPSLatitu |GPSLatitude |GPSLongitu |GPSLongi t ude|Ceol ocati on
de Ref de Ref
33 51 S 151 13 E 33°51' 21.91"S 151°
21.91 11.73 13'11. 73"E
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

440 Appendices Engine information

= geolocation-distance-km [altova:]

al t ova: geol ocat i on- di st ance- ki Geol ocati onl nput String-1 as xs:string,

Geol ocationl nput String-2 as xs:string) as xs: deci mal XP3.1 XQ3.1

Calculates the distance between two geolocations in kilometers. The formats in which the
geolocation input string can be supplied are listed below. Latitude values range from +90 to -
90 (Nto S). Longitude values range from +180 to -180 (E to W.

Note: The i mage- exi f - dat a function and the Exif metadata's @zol ocat i on attribute can
be used to supply geolocation input strings.

=l Examples

¢ al tova: geol ocati on-di stance-kn("33.33 -22.22", "48°51'29.6""N 24°
17' 40. 2""") returns the xs: deci mal 4183. 08132372392

=l Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to - 90 (Nto S). Longitude values range from +180 to -180 (Eto W.

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (*) while unit indicators that are escaped are highlighted in blue

().

e Degrees, minutes, decimal seconds, with suffixed orientation (N S, W E)
DPMS.SS'NS D’MS.SS'WE
Example: 33°55' 11. 11"N 22°44' 55. 25" W

e Degrees, minutes, decimal seconds, with prefixed sign (+/ -); the plus sign for
(N W is optional
+-D°MS.SS" +/-D°M S. SS'
Example: 33°55' 11. 11" -22°44' 55, 25"

e Degrees, decimal minutes, with suffixed orientation (N S, W E)
DPMMNS DPMMI WE

Example: 33°55.55' N 22°44.44' W

e Degrees, decimal minutes, with prefixed sign (+/ -); the plus sign for (N W is
optional
+-DPMMM +/-D°M MM
Example: +33°55.55" -22°44. 44

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information 441

+ geolocation-distance-mi [altova:]

e Decimal degrees, with suffixed orientation (V' S, W E)

D.DDNVS D.DDWE

Example: 33.33N 22.22wW

e Decimal degrees, with prefixed sign (+/ -); the plus sign for (N W is optional

+/-D.DD +/-D.DD
-22.22

Example: 33. 33

Examples of format-combinations:

33. 33N

-22°44' 55, 25"

33.33 22°44'55.25"W
33.33 22.45

= Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geol ocat i on from
standard Exif metadata tags. Geol ocat i on is a concatenation of four Exif tags:
GPSLat i t ude, GPSLat i t udeRef , GPSLongi t ude, GPSLongi t udeRef , with units added
(see table below).

GPSLatitu |GPSLatitude |GPSLongitu |GPSLongi t ude|Ceol ocati on

de Ref de Ref

33 51 S 151 13 E 33°51' 21. 91" S 1571°
21.91 11.73 13'11. 73"E

al t ova: geol ocat i on-di st ance- m (Geol ocati onl nput String-1 as xs:string,
Geol ocationl nput String-2 as xs:string) as xs: deci mal
Calculates the distance between two geolocations in miles. The formats in which a

geolocation input string can be supplied are listed below. Latitude values range from +90 to -
90 (Nto S). Longitude values range from +180 to -180 (E to W.

XP3.1 XQ3.1

Note: The i mage- exi f - dat a function and the Exif metadata's @z=ol ocat i on attribute can

be used to supply geolocation input strings.

= Examples

® al tova: geol ocati on-di stance-m (" 33. 33

17' 40.2""") returns the xs: deci mal

-1 Geolocation input string formats:

-22.22"
2599. 40652340653

"48°51'29.6""N 24°

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to - 90 (Nto S). Longitude values range from +180 to -180 (Eto W.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

Appendices

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

().

e Degrees, minutes, decimal seconds, with suffixed orientation (V' S, W E)
DPMS.SS'NS DM S SS'WE

Example: 33°55' 11. 11"N 22°44' 55. 25" W

e Degrees, minutes, decimal seconds, with prefixed sign (+/ -); the plus sign for
(N W is optional
+/-D°MS.SS' +/-D°M S. SS"
Example: 33°55' 11. 11" -22°44' 55, 25"

e Degrees, decimal minutes, with suffixed orientation (N S, W E)
DPMMMNS DPMW WE

Example: 33°55.55' N 22°44. 44' W

e Degrees, decimal minutes, with prefixed sign (+/ -); the plus sign for (N W is
optional
+-DPMM +/-DPM WM
Example: +33°55.55' -22°44. 44’

e Decimal degrees, with suffixed orientation (V' S, W E)
D.DDNS D DDWE
Example: 33.33N 22. 22w

e Decimal degrees, with prefixed sign (+/ -); the plus sign for (N W is optional
+/-D.DD +/-D.DD
Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44'55. 25"

33.33 22°44'55.25"W

33.33 22.45

= Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geol ocat i on from
standard Exif metadata tags. Geol ocat i on is a concatenation of four Exif tags:
GPSLat i t ude, GPSLat i t udeRef , GPSLongi t ude, GPSLongi t udeRef , with units added
(see table below).

Engine information

GPSLatitu |GPSLatitude |GPSLongitu |GPSLongi t ude|Ceol ocati on

de Ref de Ref

33 51 S 151 13 E 33°51' 21. 91" S 1571°
21.91 11.73 13'11. 73"E

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Appendices

Engine information

443

+ geolocation-within-polygon [altova:]

al t ova: geol ocat i on-wi t hi n- pol ygon(Geol ocati on as xs:string, ((PolygonPoint

as xs:string)+)) as xs: bool ean XP3.1 XQ3.1

Determines whether Geol ocat i on (the first argument) is within the polygonal area described
by the Pol ygonPoi nt arguments. If the Pol ygonPoi nt arguments do not form a closed figure
(formed when the first point and the last point are the same), then the first point is implicitly
added as the last point in order to close the figure. All the arguments (Geol ocati on and

Pol ygonPoi nt +) are given by geolocation input strings (formats listed below). If the

CGeol ocat i on argument is within the polygonal area, then the function returns t rue() ;
otherwise it returns f al se() . Latitude values range from +90 to - 90 (Nto S). Longitude values
range from +180 to -180 (E to W.

Note: The i mage- exi f - dat a function and the Exif metadata's @zeol ocat i on attribute can
be used to supply geolocation input strings.

= Examples
® al tova: geol ocati on-w t hi n- pol ygon("33 -22", ("58 -32", "-78 -55", "48
24", "58 -32")) returns true()
® al t ova: geol ocati on-w t hi n- pol ygon("33 -22", ("58 -32", "-78 -55", "48
24")) returns true()
® al tova: geol ocati on-w t hi n- pol ygon("33 -22", ("58 -32", "-78 -55",
"48°51'29.6""N 24°17'40.2""")) returns true()

=1 Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to - 90 (Nto S). Longitude values range from +180 to -180 (E to W.

Note: If single quotes or double quotes are used to delimit the input string argument,
this will create a mismatch with the single quotes or double quotes that are used,
respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

().

e Degrees, minutes, decimal seconds, with suffixed orientation (V' S, W E)
DPMS.SS'NS DM S SS'WE

Example: 33°55' 11. 11"N 22°44' 55. 25" W

e Degrees, minutes, decimal seconds, with prefixed sign (+/ -); the plus sign for
(N W is optional
+/-D°MS.SS* +/-D°M S. SS'
Example: 33°55' 11. 11" -22°44' 55. 25"

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

444

Appendices Engine information

e Degrees, decimal minutes, with suffixed orientation (V' S, W E)
DPMMNS DPMMIWE
Example: 33°55.55' N 22°44. 44' W

e Degrees, decimal minutes, with prefixed sign (+/ -); the plus sign for (N W is
optional
+-DPMMW +-DPM W
Example: +33°55.55' -22°44. 44

e Decimal degrees, with suffixed orientation (V' S, W E)
D.DDNS D.DDWE

Example: 33.33N 22. 22w

e Decimal degrees, with prefixed sign (+/ -); the plus sign for (N W is optional
+/-D.DD +/-D. DD
Example: 33.33 -22.22

Examples of format-combinations:
33.33N -22°44' 55, 25"

33.33 22°44'55.25"W

33.33 22.45

=1 Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geol ocat i on from
standard Exif metadata tags. Geol ocat i on is a concatenation of four Exif tags:
GPSLati tude, GPSLat i t udeRef , GPSLongi t ude, GPSLongi t udeRef , with units added
(see table below).

GPSLatitu |[GPSLatitude |GPSLongitu |GPSLongitude|CGeol ocati on

de Ref de Ref

33 51 S 151 13 E 33°51' 21.91"S 151°
21.91 11.73 13'11. 73"E

+ geolocation-within-rectangle [altova:]

al t ova: geol ocati on-wi t hi n-rect angl e(Geol ocation as xs:string, RectCorner-1

as xs:string, RectCorner-2 as xs:string) as xs: bool ean XxP3.1 XQ3.1

Determines whether Geol ocat i on (the first argument) is within the rectangle defined by the
second and third arguments, Rect Cor ner - 1 and Rect Cor ner - 2, which specify opposite
corners of the rectangle. All the arguments (Geol ocat i on, Rect Cor ner - 1 and Rect Cor ner -
2) are given by geolocation input strings (formats listed below). If the Geol ocat i on argument
is within the rectangle, then the function returns t r ue() ; otherwise it returns f al se() .
Latitude values range from +90 to - 90 (Nto S). Longitude values range from +180 to -180 (E to

W.

Note: The i mage- exi f - dat a function and the Exif metadata's @z=ol ocat i on attribute can
be used to supply geolocation input strings.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information

445

-I Examples

® altova: geol ocati on-w thin-rectangl e("33 -22", "58 -32", "-48 24")
returns true()
® al tova: geol ocation-w thin-rectangle("33 -22", "58 -32", "48 24") returns
fal se()
® al tova: geol ocation-w thin-rectangle("33 -22", "58 -32", "48°51'29.6""S
24°17 40.2""") returns true()

=l Geolocation input string formats:

The geolocation input string must contain latitude and longitude (in that order) separated
by whitespace. Each can be in any of the following formats. Combinations are allowed.
So latitude can be in one format and longitude can be in another. Latitude values range
from +90 to - 90 (Nto S). Longitude values range from +180 to -180 (Eto W.

Note: If single quotes or double quotes are used to delimit the input string argument,

this will

create a mismatch with the single quotes or double quotes that are used,

respectively, to indicate minute-values and second-values. In such cases, the quotes
that are used for indicating minute-values and second-values must be escaped by
doubling them. In the examples in this section, quotes used to delimit the input string
are highlighted in yellow (") while unit indicators that are escaped are highlighted in blue

().

Degrees, minutes, decimal seconds, with suffixed orientation (N S, W E)
DPMS.SS'NS DM S SS'WE

Example: 33°55' 11. 11"N 22°44' 55. 25" W

Degrees, minutes, decimal seconds, with prefixed sign (+/ -); the plus sign for
(N W is optional

+/-D°MS.SS' +/-D°M S. SS"

Example: 33°55' 11. 11" -22°44' 55, 25"

Degrees, decimal minutes, with suffixed orientation (N S, W E)
DPMMMNS DPMW WE

Example: 33°55.55' N 22°44.44' W

Degrees, decimal minutes, with prefixed sign (+/ -); the plus sign for (N W is
optional

+-DPMM +/-DPM WM

Example: +33°55.55' -22°44. 44’

Decimal degrees, with suffixed orientation (V' S, W E)
D.DDNS D DDWE
Example: 33.33N 22. 22w

Decimal degrees, with prefixed sign (+/ -); the plus sign for (V W is optional
+/-D.DD +/-D.DD
Example: 33.33 -22.22

Examples of format-combinations:

33. 33N

-22°44' 55, 25"

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

446 Appendices

Engine information

33.33 22°44' 55.25"W
33.33 22.45

= Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geol ocat i on from
standard Exif metadata tags. Geol ocat i on is a concatenation of four Exif tags:
GPSLat i tude, GPSLat i t udeRef , GPSLongi t ude, GPSLongi t udeRef , with units added
(see table below).

GPSLatitu [GPSLatitude |GPSLongitu |GPSLongit ude|Ceol ocati on

de Ref de Ref

33 51 S 151 13 E 33°51' 21.91"S 151°
21.91 11.73 13'11. 73"E

XPath/XQuery Functions: Image-Related

[Top]

The following image-related XPath/XQuery extension functions are supported in the current version
of MapForce and can be used in (i) XPath expressions in an XSLT context, or (i) XQuery

expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://wwv al t ova. con xsl t - ext ensi ons, and are indicated in this section
with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT):

XP1 XP2 XP3.1

XSLT functions (used in XPath expressions in XSLT):

XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery):

XQ1 XQ3.1

* suggested-image-file-extension [altova:]

al t ova: suggest ed-i mage-fil e- ext ensi on(Base64String as string) as string?

XP3.1 XQ3.1

Takes the Base64 encoding of an image file as its argument and returns the file extension of
the image as recorded in the Base64-encoding of the image. The returned value is a
suggestion based on the image type information available in the encoding. If this information

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Appendices

Engine information 447

is not available, then an empty string is returned. This function is useful if you wish to save a
Base64 image as a file and wish to dynamically retrieve an appropriate file extension.

-I Examples

® al tova: suggest ed-i nage-fil e- ext ensi on(/ Myl nages/ Mobi | ePhone/
| rage20141130. 01) returns ' j pg'
® al tova: suggest ed-i mage-fil e- ext ensi on($XM.1/ St af f / Per son/ @hot o) returns

In the examples abowve, the nodes supplied as the argument of the function are assumed to
contain a Base64-encoded image. The first example retrieves j pg as the file's type and
extension. In the second example, the submitted Base64 encoding does not provide usable
file extension information.

+ image-exif-data [altova:]

al tova: i mage- exi f - dat a(Base64Bi naryString as string) as el enment? XpP3.1 XQ3.1
Takes a Base64-encoded JPEG image as its argument and returns an element called Exi f
that contains the Exif metadata of the image. The Exif metadata is created as attribute-value
pairs of the Exi f element. The attribute names are the Exif data tags found in the Base64
encoding. The list of Exif-specification tags is given below. If a vendor-specific tag is present
in the Exif data, this tag and its value will also be returned as an attribute-value pair.
Additional to the standard Exif metadata tags (see list below), Altova-specific attribute-value
pairs are also generated. These Altova Exif attributes are listed below.

= Examples

e To access any one attribute, use the function like this:
i mage-exi f-data(// M/ mages/ | nege20141130. 01) / @PSLat i t ude
i mage- exi f-data(// M/l mages/ | nege20141130. 01) / @ol ocati on

® To access all the attributes, use the function like this:
i mage- exi f-data(// Myl mages/ | nege20141130.01)/ @

® To access the names of all the attributes, use the following expression:
for $i in inage-exif-data(// M/l nages/|mge20141130.01)/ @ return
nane($i)
This is useful to find out the names of the attributes returned by the function.

= Altova Exif Attribute: Geolocation

The Altova XPath/XQuery Engine generates the custom attribute Geol ocat i on from
standard Exif metadata tags. Geol ocat i on is a concatenation of four Exif tags:
GPSLat i tude, GPSLat i t udeRef , GPSLongi t ude, GPSLongi t udeRef , with units added
(see table below).

GPSLatitu |GPSLatitude |GPSLongitu |GPSLongi t ude|Ceol ocati on
de Ref de Ref
33 51 S 151 13 E 33°51' 21.91"S 151°
21.91 11.73 13'11. 73"E
© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

448 Appendices

Engine information

= Altova Exif Attribute: OrientationDegree

The Altova XPath/XQuery Engine generates the custom attribute Ori ent at i onDegr ee
from the Exif metadata tag Ori ent ati on.

Ori ent ati onDegr ee translates the standard Exif tag Ori ent ati on from an integer
value (1, 8, 3, or 6) to the respective degree values of each (0, 90, 180, 270), as shown
in the figure below. Note that there are no translations of the Ori ent at i on values of 2,
4,5, 7. (These orientations are obtained by flipping image 1 across its vertical center
axis to get the image with a value of 2, and then rotating this image in 90-degree jumps
clockwise to get the values of 7, 4, and 5, respectively).

[Exif] Orientation < [Altova] OrientationDegree

1+ 0

F

6+ 270 m =] -0

3+ 180

= Listing of standard Exif meta tags

e | nageW dt h
® | magelLengt h
® BitsPerSanpl e

Conpr essi on

Phot orretriclnterpretation
Orientation

Sanpl esPer Pi xel

Pl anar Confi gurati on
YChCr SubSanpl i ng
YChCr Posi tioni ng
XResol ution

YResol ution

Resol uti onUni t
StripOfsets

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Appendices

Engine information 449

RowsPer Stri p

Stri pByt eCount s

JPEQ nt er changeFor mat
JPEQ nt er changeFor mat Lengt h
Transf er Functi on

Wi t ePoi nt
PrimaryChromaticities
YChCr Coef ficients

Ref er enceBl ackWi t e
Dat eTi ne

| mageDescri pti on

Make

Model

Sof t war e

Arti st

Copyri ght

Exi f Ver si on

FI ashpi xVer si on

Col or Space

Conponent sConf i gurati on
Conpr essedBi t sPer Pi xel
Pi xel XDi mensi on

Pi xel YD nmensi on

Maker Not e

User Conment

Rel at edSoundFi | e

Dat eTi neQri gi nal

Dat eTi meDi gi ti zed
SubSecTi ne

SubSecTi neQri gi nal
SubSecTi meDigi ti zed
Exposur eTi me

FNunber

Exposur ePr ogr am
Spectral Sensitivity

| SCSpeedRat i ngs

CECF

Shut t er SpeedVal ue
Aper t ur eVal ue

Bri ght nessVal ue
Exposur eBi asVal ue
MaxAper t ur eVal ue

Subj ect Di st ance

Met er i nghvbde

Li ght Sour ce

Fl ash

Focal Lengt h

Subj ect Area

FI ashEner gy

Spati al FrequencyResponse
Focal Pl aneXResol uti on
Focal Pl aneYResol uti on
Focal Pl aneResol uti onUni t

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

450 Appendices

Engine information

Subj ect Locati on
Exposur el ndex

Sensi nghvet hod

Fi | eSour ce

SceneType

CFAPattern

Cust onRender ed

Exposur eMbde

Whi t eBal ance

Di gi tal ZoonRati o

Focal Lengt hl n35mFi | m
SceneCapt ur eType

Gai nCont r ol

Cont r ast

Sat urati on

Shar pness

Devi ceSetti ngDescription
Subj ect Di st anceRange

| mageUni quel D

GPSVer si onl D
GPSLat i t udeRef
GPSLat i t ude
GPSLongi t udeRef
GPSLongi t ude

GPSAl ti t udeRef
GPSAl titude

GPSTi neSt anp
GPSSatel lites
GPSSt at us
GPSMeasur eMbde
GPSDOoP

GPSSpeedRef
GPSSpeed

GPSTr ackRef

GPSTr ack

GPSI ngDi r ect i onRef
GPSI ngDi recti on
GPSMapDat um
GPSDest Lat i t udeRef
GPSDest Lat i t ude
GPSDest Longi t udeRef
GPSDest Longi t ude
GPSDest Bear i ngRef
GPSDest Beari ng
GPSDest Di st anceRef
GPSDest Di st ance
GPSPr ocessi nghet hod
GPSAr eal nf ornati on
GPSDat eSt anp

GPShi fferenti al

[Top]

Altova MapForce 2018 Basic Edition

© 2018 Altova GmbH

Appendices Engine information 451

XPath/XQuery Functions: Numeric

Altova's numeric extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data. The functions in this section can be used with
Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://ww. al t ova. coni xsl t - ext ensi ons, and are indicated in this section
with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

Auto-numbering functions
¥ generate-auto-number [altova:]

al t ova: gener at e- aut o- nunmber (1 D as xs:string, StartsWth as xs: doubl e,

I ncrement as xs:doubl e, Reset OnChange as xs:string) as xs:integer XPi XP2 XQi
XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated
the first time the function is called, is specified by the St art sWt h argument. Each
subsequent call to the function generates a new number, this number being incremented over
the previously generated number by the value specified in the | ncr enment argument. In effect,
the al t ova: gener at e- aut o- nunber function creates a counter having a name specified by
the | D argument, with this counter being incremented each time the function is called. If the
value of the Reset OnChange argument changes from that of the previous function call, then
the value of the number to be generated is reset to the St art sWt h value. Auto-numbering
can also be reset by using the al t ova: r eset - aut o- nunber function.

= Examples

e al t ova: gener at e- aut o- nunber (" Chapt er Nunber", 1, 1, "SoneString") will
return one number each time the function is called, starting with 1, and incrementing
by 1 with each call to the function. As long as the fourth argument remains
"SoneString" in each subsequent call, the incrementing will continue. When the
value of the fourth argument changes, the counter (called Chapt er Nunber) will reset
to 1. The value of Chapt er Nunber can also be reset by a call to the al t ova: reset -
aut o- nunber function, like this: al t ova: r eset - aut o- nunber (" Chapt er Nunber ") .

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

452 Appendices

Engine information

¥ reset-auto-number [altova:]

al t ova: reset - aut o- nunber (1 D as xs:string)

XP1 XP2 XQ1 XP3.1 XQ3.1

This function resets the number of the auto-numbering counter named in the | D argument.
The number is reset to the number specified by the St art sWt h argument of the
al t ova: gener at e- aut o- nunber function that created the counter named in the | D

argument.
= Examples

e al tova: reset - aut o- nunber (" Chapt er Nunber ") resets the number of the auto-
numbering counter named Chapt er Nunber that was created by the
al t ova: gener at e- aut o- nunber function. The number is reset to the value of the
St art sWt h argument of the al t ova: gener at e- aut o- nunber function that created

Chapt er Nunber.

[Top]
Numeric functions
+ hex-string-to-integer [altova:]
al tova: hex-string-to-integer(HexString as xs:string) as xs:integer XpP3.1 XQ3.1
Takes a string argument that is the Base-16 equivalent of an integer in the decimal system
(Base-10), and returns the decimal integer.
= Examples
® altova: hex-string-to-integer('1") returns 1
® altova: hex-string-to-integer('9') retuns 9
® altova: hex-string-to-integer('A) retuns 10
® altova: hex-string-to-integer('B) retuns 11
® altova: hex-string-to-integer('F) returns 15
® altova: hex-string-to-integer(' G) returns an error
® altova: hex-string-to-integer('10") returns 16
® altova: hex-string-to-integer('01") returns 1
® altova: hex-string-to-integer('20") returns 32
® altova: hex-string-to-integer('21') returns 33
® altova: hex-string-to-integer('5A) returns 90
® al tova: hex-string-to-integer (' USA') returns an error
* integer-to-hex-string [altova:]
altova:integer-to-hex-string(lnteger as xs:integer) as xs:string XpP3.1 XQ3.1
Takes an integer argument and returns its Base-16 equivalent as a string.
= Examples
® altova:integer-to-hex-string(1) retuns ' 1'
® altova:integer-to-hex-string(9) retuns ' 9
® altova:integer-to-hex-string(10) returns ' A
® altova:integer-to-hex-string(11) returns'B
Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 453

® altova:integer-to-hex-string(15) returns'F

® altova:integer-to-hex-string(16) returns ' 10'
® altova:integer-to-hex-string(32) retuns ' 20’
® altova:integer-to-hex-string(33) returns ' 21’
® altova:integer-to-hex-string(90) returns ' 5A

[Top]

Number-formatting functions
¥ generate-auto-number [altova:]

al t ova: gener at e- aut o- nunber (1 D as xs:string, StartsWth as xs: doubl e,

I ncrenent as xs:doubl e, ResetOnChange as xs:string) as xs:integer XP1 XP2 XQ1
XP3.1 XQ3.1

Generates a number each time the function is called. The first number, which is generated
the first time the function is called, is specified by the St art sWt h argument. Each
subsequent call to the function generates a new number, this number being incremented over
the previously generated number by the value specified in the | ncr enent argument. In effect,
the al t ova: gener at e- aut o- nunber function creates a counter having a name specified by
the | D argument, with this counter being incremented each time the function is called. If the
value of the Reset OnChange argument changes from that of the previous function call, then
the value of the number to be generated is reset to the St art sWt h value. Auto-numbering
can also be reset by using the al t ova: r eset - aut o- nunber function.

=l Examples

e al t ova: gener at e- aut o- nunber (" Chapt er Nunber", 1, 1, "SomeString") will
return one number each time the function is called, starting with 1, and incrementing
by 1 with each call to the function. As long as the fourth argument remains
"SomeString" in each subsequent call, the incrementing will continue. When the
value of the fourth argument changes, the counter (called Chapt er Nunber) will reset
to 1. The value of Chapt er Nunber can also be reset by a call to the al t ova: reset -
aut o- nunber function, like this: al t ova: r eset - aut o- nunber (" Chapt er Nunber ") .

[Top]

XPath/XQuery Functions: Sequence

Altova's sequence extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data. The functions in this section can be used with
Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions

namespace, http://wwmv. al t ova. con xsl t - ext ensi ons, and are indicated in this section

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

454 Appendices Engine information

with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

+ attributes [altova:]

altova:attributes(Attri buteNanme as xs:string) asattribute()* xP3.1 XQ3.1
Returns all attributes that have a local name which is the same as the name supplied in the
input argument, Attri but eName. The search is case-sensitive and conducted along the
attribute:: axis. This means that the context node must be the parent element node.

= Examples
® altova:attributes("M/Attribute”) returns M/Attribute()*

altova:attributes(Attri buteNane as xs:string, SearchOptions as xs:string) as
attribute()* XxP3.1 XQ3.1

Returns all attributes that have a local name which is the same as the name supplied in the
input argument, Attri but eNane. The search is case-sensitive and conducted along the
attribute:: axis. The context node must be the parent element node. The second
argument is a string containing option flags. Available flags are:

r = switches to a regular-expression search; At tri but eNane must then be a regular-
expression search string;

f = If this option is specified, then At t ri but eNane provides a full match; otherwise

At tri but eNanme need only partially match an attribute name to return that attribute. For
example: if f is not specified, then MyAt t will return MyAt t ri but e;

i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; At t ri but eNanme should then contain the
namespace prefix, for example: al t ova: M/Attri but e.

The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed
as the second argument.

=l Examples

® altova:attributes("M/Attribute", "rfip") returns MyAttribute()*
® altova:attributes("M/Attribute", "pri") returns MyAttribute()*

e altova:attributes("M/Att", "rip") returns M/Attribute()*

e altova:attributes("MAttributes", "rfip") returns no match

e altova:attributes("M/Attribute", "") returns MyAttribute()*

e altova:attributes("MAttribute”, "R p") returns an unrecognized-flag error.

e altova:attributes("MAttribute",) returns a missing-second-argument error.

+ elements [altova:]

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information

455

al tova: el ement s(El enent Nane as xs:string) as elenent()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the
input argument, El ement Nane. The search is case-sensitive and conducted along the

chi | d: : axis. The context node must be the parent node of the element/s being searched
for.

= Examples
® al tova: el ement s("M/El enent ") returns M/El enent () *

al t ova: el ement s(El enment Nane as xs:string, SearchQptions as xs:string) as
elenent ()* XP3.1 XQ3.1

Returns all elements that have a local name which is the same as the name supplied in the
input argument, El ement Nane. The search is case-sensitive and conducted along the

chil d:: axis. The context node must be the parent node of the element/s being searched
for. The second argument is a string containing option flags. Available flags are:

r = switches to a regular-expression search; El enent Nare must then be a regular-
expression search string;

f = If this option is specified, then El enent Narre provides a full match; otherwise

El enent Nane need only partially match an element name to return that element. For
example: if f is not specified, then MyEl emwill return M El enent ;

i = switches to a case-insensitive search;

p = includes the namespace prefix in the search; El enent Nane should then contain the
namespace prefix, for example: al t ova: MEl enent .

The flags can be written in any order. Invalid flags will generate errors. One or more flags can
be omitted. The empty string is allowed, and will produce the same effect as the function
having only one argument (previous signature). However, an empty sequence is not allowed.
=l Examples

® altova: el ements("ME enent”, "rip") returns M/El enent () *

* altova: el ements("ME enent”, "pri") returns M/El emrent () *

® altova: el enents("MWE ement”, "") returns MyEl enent () *

® altova:attributes("MEl ent, "rip") returns M/El enent () *

e altova:attributes("MWEl enents", "rfip") returns no match

e altova: el ements("MWE enent", "R p") returns an unrecognized-flag error.

e altova: el ements("MWEl enent"”,) returns a missing-second-argument error.

= find-first [altova:]

altova: find-first((Sequence as iten{()*), (Condition(Sequence-ltem as

xs: bool ean)) asiten()? XP3.1 XQ3.1

This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condi ti on, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is
submitted, in turn, to the function referenced in Condi ti on. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condi ti on to
evaluate to t rue() is returned as the result of al t ova: fi nd-fi rst, and the iteration stops.

=l Examples

e altova:find-first(5 to 10, function($a) {$a nod 2 = 0}) returns
Xs:integer 6

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

456 Appendices Engine information

The Condi ti on argument references the XPath 3.0 inline function, f uncti on(), which
declares an inline function named $a and then defines it. Each item in the Sequence
argument of al tova: fi nd-first is passed, in turn, to $a as its input value. The input
value is tested on the condition in the function definition ($a nod 2 = 0). The first input
value to satisfy this condition is returned as the result of al t ova: fi nd-first (in this
case 6).

e altova:find-first((1 to 10), (function($a) {$a+3=7})) returns xs: i nt eger
4

Further examples
If the file C:\ Tenp\ Cust oners. xm exists:

e altova:find-first(("C\Tenp\Custoners.xm", "http://ww. al tova. com
i ndex. htm "), (doc-avail abl e#l)) returns xs:string C\ Tenp
\ Cust oner s. xm

If the file C:\ Tenp\ Cust oner s. xni does not exist, and htt p: // www. al t ova. conl
i ndex. ht ml exists:

e altova:find-first(("C\Tenp\Custoners.xm", "http://ww. al tova. conl
i ndex. htm "), (doc-avail abl e#l)) returns xs:string http://

www. al t ova. cont i ndex. ht m

If the file C:\ Tenp\ Cust oners. xm does not exist, and ht t p: / / www. al t ova. conml
i ndex. ht M also does not exist:

e altova:find-first(("C\Tenp\Custoners.xm", "http://ww. altova. conl
i ndex. htm "), (doc-avail abl e#1)) returns no result

Notes about the examples given above

e The XPath 3.0 function, doc- avai | abl e, takes a single string argument, which is
used as a URI, and returns t r ue if a document node is found at the submitted URI.
(The document at the submitted URI must therefore be an XML document.)

e The doc- avai | abl e function can be used for Condi ti on, the second argument of
al tova: find-first, because it takes only one argument (arity=1), because it
takes ani ten() as input (a string which is used as a URI), and returns a boolean
value.

¢ Notice that the doc- avai | abl e function is only referenced, not called. The #1 suffix
that is attached to it indicates a function with an arity of 1. In its entirety doc-
avai | abl e#1 simply means: Use the doc-availabe() function that has arity=1,
passing to it as its single argument, in turn, each of the items in the first sequence.
As a result, each of the two strings will be passed to doc- avai | abl e(), which
uses the string as a URI and tests whether a document node exists at the URI. If
one does, the doc- avai | abl e() evaluates to true() and that string is returned as
the result of the al t ova: fi nd-first function. Note about the doc-available()
function: Relative paths are resolved relative to the the current base URI, which is
by default the URI of the XML document from which the function is loaded.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 457

+ find-first-combination [altova:]
altova:find-first-conbination((Seq-01 as iten()*), (Seq-02 as iten()*),
(Condition(Seqg-0l-ltem Seq-02-ltemas xs:boolean)) asiten()* XP3.1 XQ3.1
This function takes three arguments:

e The first two arguments, Seg- 01 and Seg- 02, are sequences of one or more items of
any datatype.

e The third argument, Condi ti on, is a reference to an XPath function that takes two
arguments (has an arity of 2) and returns a boolean.

The items of Seq- 01 and Seq- 02 are passed in ordered pairs (one item from each sequence
making up a pair) as the arguments of the function in Condi ti on. The pairs are ordered as

follows.
If Seg-01 = X1, X2, X3 ... Xn
And Seq-02 = Y1, Y2, Y3 ... Yn
Then (X1 Y1), (X1 Y2), (X1 Y3) ... (X1 Yn), (X2 Y1), (X2 Y2) ... (Xn Yn)

The first ordered pair that causes the Condi ti on function to evaluate to t rue() is returned
as the result of al t ova: fi nd-fi rst-conbi nati on. Note that: (i) If the Condi ti on function
iterates through the submitted argument pairs and does not once evaluate to t rue(), then

al tova: fi nd-first-conbinati on returns No results; (ii) The result of al t ova: fi nd-first-
conbi nat i on will always be a pair of items (of any datatype) or no item at all.

=l Examples

e altova:find-first-conbination(1l to 20, 21 to 30, function($a, $b) {%a
+$b = 32}) returns the sequence of xs: i ntegers (11, 21)

e altova:find-first-conbination(11 to 20, 21 to 30, function($a, $b) {$a
+$b = 33}) returns the sequence of xs:integers (11, 22)

® altova: find-first-conbination(1l to 20, 21 to 30, function($a, $b) {%a
+$b = 34}) returns the sequence of xs:integers (11, 23)

+ find-first-pair [altova:]
altova:find-first-pair((Seg-01 as iten()*), (Seq-02 as iten()*),
(Condition(Seqg-01-ltem Seqg-02-Item as xs:boolean)) asiten()* XP3.1 XQ3.1
This function takes three arguments:

e The first two arguments, Seg- 01 and Seg- 02, are sequences of one or more items of
any datatype.

e The third argument, Condi ti on, is a reference to an XPath function that takes two
arguments (has an arity of 2) and returns a boolean.

The items of Seqg- 01 and Seq- 02 are passed in ordered pairs as the arguments of the
function in Condi ti on. The pairs are ordered as follows.

If Seg-01 = X1, X2, X3 ... Xn
And Seq-02 = Y1, Y2, Y3 ... Yn
Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

458 Appendices Engine information

The first ordered pair that causes the Condi ti on function to evaluate to t r ue() is returned
as the result of al t ova: fi nd-first - pair. Note that: (i) If the Condi ti on function iterates
through the submitted argument pairs and does not once evaluate to t rue(), then

al tova: find-first-pair returns No results; (ii) The result of al t ova: fi nd-first-pair
will always be a pair of items (of any datatype) or no item at all.

= Examples
e altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b
32}) returns the sequence of xs:integers (11, 21)
e altova:find-first-pair(11 to 20, 21 to 30, function($a, $b) {$a+$b
33}) returns No results

Notice from the two examples abowe that the ordering of the pairs is: (11, 21) (12,
22) (13, 23)...(20, 30). This is why the second example returns No results
(because no ordered pair gives a sum of 33).

 find-first-pair-pos [altova:]
altova:find-first-pair-pos((Seq-01 as iten()*), (Seq-02 as iten()*),
(Condition(Seqg-0l-ltem Seqg-02-ltem as xs:bool ean)) as xs:integer XpP3.1 XQ3.1
This function takes three arguments:

e The first two arguments, Seg- 01 and Seg- 02, are sequences of one or more items of

any datatype.
e The third argument, Condi ti on, is a reference to an XPath function that takes two

arguments (has an arity of 2) and returns a boolean.

The items of Seg- 01 and Seq- 02 are passed in ordered pairs as the arguments of the
function in Condi ti on. The pairs are ordered as follows.

If Seg-01 = X1, X2, X3 ... Xn
And Seq-02 = Y1, Y2, Y3 ... Yn
Then (X1 Y1), (X2 Y2), (X3 Y3) ... (Xn Yn)

The index position of the first ordered pair that causes the Condi ti on function to evaluate to
true() is returned as the result of al t ova: fi nd-fi rst - pai r - pos. Note that if the

Condi ti on function iterates through the submitted argument pairs and does not once
evaluate to true(), then al t ova: fi nd-fi rst-pai r-pos returns No results.

= Examples
e altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b
= 32}) returns 1
e altova:find-first-pair-pos(11 to 20, 21 to 30, function($a, $b) {$a+$b
= 33}) returns No results

Notice from the two examples abowe that the ordering of the pairs is: (11, 21) (12,
22) (13, 23)...(20, 30). Inthe first example, the first pair causes the Conditi on
function to evaluate to t rue(), and so its index position in the sequence, 1, is returned.
The second example returns No results because no pair gives a sum of 33.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 459

+ find-first-pos [altova:]
altova: find-first-pos((Sequence as iten()*), (Condition(Sequence-ltem as
xs: bool ean)) as xs:integer XP3.1 XQ3.1
This function takes two arguments. The first argument is a sequence of one or more items of
any datatype. The second argument, Condi ti on, is a reference to an XPath function that
takes one argument (has an arity of 1) and returns a boolean. Each item of Sequence is
submitted, in turn, to the function referenced in Condi ti on. (Remember: This function takes
a single argument.) The first Sequence item that causes the function in Condi ti on to
evaluate to t rue() has its index position in Sequence returned as the result of
al tova: find-first-pos, and the iteration stops.

=l Examples

e altova:find-first-pos(5 to 10, function($a) {$a nod 2 = 0}) returns
Xs:integer 2
The Condi ti on argument references the XPath 3.0 inline function, f uncti on(), which
declares an inline function named $a and then defines it. Each item in the Sequence
argument of al t ova: fi nd-first-pos is passed, in turn, to $a as its input value. The
input value is tested on the condition in the function definition ($a nod 2 = 0). The
index position in the sequence of the first input value to satisfy this condition is returned
as the result of al t ova: fi nd-first - pos (in this case 2, since 6, the first value (in the
sequence) to satisfy the condition, is at index position 2 in the sequence).

e altova:find-first-pos((2 to 10), (function($a) {$a+3=7})) returns

Xs:integer 3

Further examples
If the file C: \ Tenp\ Cust oners. xm exists:

e altova:find-first-pos(("C\Tenp\Custoners.xm", "http://
www. al t ova. cond i ndex. htmi "), (doc-avail abl e#1)) returns 1

If the file C:\ Tenp\ Cust oner s. xni does not exist, and htt p: // www. al t ova. conl
i ndex. ht nl exists:

e altova:find-first-pos(("C \Tenp\Custoners.xm", "http://
www. al t ova. contindex. ht "), (doc-avail abl e#1)) returns 2

If the file C:\ Tenp\ Cust oner s. xnl does not exist, and htt p: // waw. al t ova. conl
i ndex. ht M also does not exist:

e altova:find-first-pos(("C\Tenp\Custoners.xm", "http://
www. al t ova. cond i ndex. ht mi "), (doc-avail abl e#1)) returns no result

Notes about the examples given above

e The XPath 3.0 function, doc- avai | abl e, takes a single string argument, which is
used as a URI, and returns t r ue if a document node is found at the submitted URI.
(The document at the submitted URI must therefore be an XML document.)

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

460 Appendices Engine information

* The doc- avai | abl e function can be used for Condi ti on, the second argument of
al tova: find-first-pos, because it takes only one argument (arity=1), because it
takes ani ten() as input (a string which is used as a URI), and returns a boolean
value.

¢ Notice that the doc- avai | abl e function is only referenced, not called. The #1 suffix
that is attached to it indicates a function with an arity of 1. In its entirety doc-
avai | abl e#1 simply means: Use the doc-availabe() function that has arity=1,
passing to it as its single argument, in turn, each of the items in the first sequence.
As a result, each of the two strings will be passed to doc- avai | abl e(), which
uses the string as a URI and tests whether a document node exists at the URI. If
one does, the doc- avai | abl e() function evaluates to t rue() and the index
position of that string in the sequence is returned as the result of the al t ova: fi nd-
first-pos function. Note about the doc-available() function: Relative paths are
resolved relative to the the current base URI, which is by default the URI of the
XML document from which the function is loaded.

* substitute-empty [altova:]

al t ova: substi tut e-enpt y(First Sequence as iten()*, SecondSequence as iten())
asitem)* XP3.1 XQ3.1
If Fi r st Sequence is empty, returns SecondSequence. If Fi r st Sequence is not empty,
returns Fi r st Sequence.
= Examples

® altova:substitute-enmpty((1,2,3), (4,5,6)) retuns (1, 2, 3)

® altova:substitute-empty((), (4,5,6)) returns (4,5, 6)

XPath/XQuery Functions: String

Altova's string extension functions can be used in XPath and XQuery expressions and provide
additional functionality for the processing of data. The functions in this section can be used with
Altova's XPath 3.0 and XQuery 3.0 engines. They are available in XPath/XQuery contexts.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://wwv. al t ova. con xsl t - ext ensi ons, and are indicated in this section
with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): | XP1 XP2 XP3.1

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 461

XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3

XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

+ camel-case [altova:]

al t ova: canel -case(lnputString as xs:string) as xs:string Xp3.1 XQ3.1

Returns the input string | nput St ri ng in CamelCase. The string is analyzed using the regular
expression ' \'s' (which is a shortcut for the whitespace character). The first non-whitespace
character after a whitespace or sequence of consecutive whitespaces is capitalized. The first
character in the output string is capitalized.

= Examples

® al tova: canel - case(" max") returns Max
® al tova: canel - case(" max nax") returns Max Max
® al tova: canel -case("file0l. xm ") returns Fi | e01. xmi
® altova: canel -case("file0l.xm file02. xm") returns Fi | e0O1. xm File02. xm
® altova: canel -case("file0l. xm file02. xm ") returns Fi | e0O1. xni
Fi | e02. xm
® altova: canel -case("file0l.xm -file02. xm ") returns Fi | e01. xm -
file02. xm

al tova: canel -case(l nput String as xs:string, SplitChars as xs:string, |sRegex
as xs:bool ean) as xs:string XpP3.1 XQ3.1

Converts the input string | nput St ri ng to camel case by using Spl i t Char s to determine the

character/s that trigger the next capitalization. Spl i t Char s is used as a regular expression

when | sRegex = true(), or as plain characters when | sRegex = fal se(). The first

character in the output string is capitalized.

= Examples
® al tova: canel -case("setnane getnane", "set|get", true()) returns set Nane
get Nane
® al tova: canel -case("al t ova\ docunent s\test cases”, "\", false()) retuns

Al t ova\ Docunent s\ Test cases

+ char [altova:]

al tova: char(Position as xs:integer) as xs:string XpP3.1 XQ3.1

Returns a string containing the character at the position specified by the Posi ti on
argument, in the string obtained by converting the value of the context item to xs: stri ng.
The result string will be empty if no character exists at the index submitted by the Posi ti on
argument.

= Examples

If the context item is 1234ABCD:

® al tova: char(2) retuns 2

® al tova: char(5) returns A

e altova: char (9) returns the empty string.
e al tova: char (-2) returns the empty string.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

462 Appendices Engine information

altova: char(InputString as xs:string, Position as xs:integer) as xs:string
XP3.1 XQ3.1

Returns a string containing the character at the position specified by the Posi ti on
argument, in the string submitted as the | nput St ri ng argument. The result string will be
empty if no character exists at the index submitted by the Posi ti on argument.

= Examples

® al tova: char("2014-01-15", 5) returns -

® altova: char ("USA", 1) returns U

¢ al tova: char ("USA", 10) returns the empty string.
¢ al tova: char ("USA", -2) returns the empty string.

« first-chars [altova:]

altova: first-chars(X-Nunber as xs:integer) as xs:string XpP3.1 XQ3.1
Returns a string containing the first X- Nunber of characters of the string obtained by
converting the value of the context item to xs: stri ng.

= Examples

If the context item is 1234ABCD:

® altova: first-chars(2) returns 12
e altova:first-chars(5) returns 1234A
e altova:first-chars(9) returns 1234ABCD

altova:first-chars(lnputString as xs:string, X-Nunber as xs:integer) as
Xs:string XpP3.1 XQ3.1

Returns a string containing the first X- Nunber of characters of the string submitted as the
I nput St ri ng argument.

-I Examples

® altova:first-chars("2014-01-15", 5) returns 2014-
e altova:first-chars("USA", 1) returns U

* last-chars [altova:]

al tova: |l ast-chars(X-Nunber as xs:integer) as xs:string XP3.1 XQ3.1
Returns a string containing the last X- Nunber of characters of the string obtained by
converting the value of the context item to xs: stri ng.

= Examples

If the context item is 1234ABCD:

e altova:l ast-chars(2) returns CD
® al tova:l ast-chars(5) returns 4ABCD
® altova:last-chars(9) returns 1234ABCD

altova:last-chars(lnputString as xs:string, X-Nunber as xs:integer) as
xs:string XP3.1 XQ3.1

Returns a string containing the last X- Nunber of characters of the string submitted as the
| nput St ri ng argument.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 463

-I Examples

® altova:last-chars("2014-01-15", 5) returns 01-15
® altova:last-chars("USA", 10) returns USA

+ pad-string-left [altova:]
al tova: pad-string-left(StringToPad as xs:string, StringlLength as xs:integer,
PadCharacter as xs:string) as xs:string XP3.1 XQ3.1
The PadChar act er argument is a single character. It is padded to the left of the string to
increase the number of characters in St ri ngToPad so that this number equals the integer
value of the St ri ngLengt h argument. The St ri ngLengt h argument can have any integer
value (positive or negative), but padding will occur only if the value of Stri ngLengt h is greater
than the number of characters in St ri ngToPad. If St ri ngToPad. has more characters than
the value of Stri ngLengt h, then St ri ngToPad is left unchanged.

-1 Examples
® altova: pad-string-left(’
® altova: pad-string-left(’
® altova: pad-string-left("
® altova: pad-string-left("
® altova: pad-string-left("
® altova: pad-string-left("

"Z'") returns ' AP

"Z') returns ' AP

"Z') returns ' ZAP

, "Z') returns ' ZZAP

, -3, 'Z') returns ' AP

, 3, 'YZ) returns a pad-character-too-long error

FE3%% %

+ pad-string-right [altova:]
al tova: pad-string-right(StringToPad as xs:string, StringlLength as
xs:integer, PadCharacter as xs:string) as xs:string XP3.1 XQ3.1
The PadChar act er argument is a single character. It is padded to the right of the string to
increase the number of characters in St ri ngToPad so that this number equals the integer
value of the Stri ngLengt h argument. The St ri ngLengt h argument can have any integer
value (positive or negative), but padding will occur only if the value of Stri ngLengt h is greater
than the number of characters in St ri ngToPad. If St ri ngToPad has more characters than the
value of St ri ngLengt h, then Stri ngToPad is left unchanged.

= Examples

® altova:pad-string-right(' AP, 1, 'Z') returns ' AP

® altova: pad-string-right(' AP, 2, 'Z') returns ' AP

® altova: pad-string-right(' AP, 3, 'Z) returns ' APZ

® altova: pad-string-right(' AP, 4, 'Z) returns' APZZ

® altova: pad-string-right('AP, -3, 'Z) returns' AP

® altova:pad-string-right(' AP, 3, 'YZ) returns a pad-character-too-long error

¥ repeat-string [altova:]

altova:repeat-string(lnputString as xs:string, Repeats as xs:integer) as
Xs:string XP2 XQi XP3.1 XQ3.1

Generates a string that is composed of the first | nput St ri ng argument repeated Repeat s
number of times.

-I Examples

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

464 Appendices Engine information

® altova:repeat-string("Altova #", 3) returns "Altova #Al tova #Al tova #"

+ substring-after-last [altova:]

al tova: substring-after-last(MiinString as xs:string, CheckString as
Xs:string) as xs:string Xp3.1 XQ3.1

If CheckString is found in Mai nSt ri ng, then the substring that occurs after CheckSt ri ng in
Mai nStri ng is returned. If CheckSt ri ng is not found in Mai nStri ng, then the empty string is
returned. If CheckStri ng is an empty string, then Mai nStri ng is returned in its entirety. If
there is more than one occurrence of CheckSt ri ng in Mai nSt ri ng, then the substring after
the last occurrence of CheckSt ri ng is returned.

=l Examples

® altova: substring-after-last(' ABCDEFGH , 'B') returns ' COEFGH

® altova: substring-after-Ilast(' ABCDEFGH , 'BC) returns ' DEFGH

® altova:substring-after-Ilast(' ABCOEFGH , 'BD) returns '’

® altova:substring-after-last (' ABCDEFGH , 'Z') returns '’

® altova: substring-after-last (' ABCDEFGH , '') returns ' ABCDEFGH
® altova: substring-after-last (' ABCD-ABCD , 'B') returns ' CD

® altova: substring-after-|ast (' ABCD- ABCD- ABCD , 'BCD) returns '’

+ substring-before-last [altova:]

al t ova: substring-before-last(MinString as xs:string, CheckString as
Xs:string) as xs:string Xp3.1 XQ3.1

If CheckStri ng is found in Mai nSt ri ng, then the substring that occurs before CheckStri ng
in Mai nSt ri ng is returned. If CheckSt ri ng is not found in Mai nSt ri ng, or if CheckStri ng is
an empty string, then the empty string is returned. If there is more than one occurrence of
CheckString in Mai nStri ng, then the substring before the last occurrence of CheckStri ng
is returned.

= Examples

® al tova: substring-before-Ilast (' ABCODEFGH, 'B') returns ' A

® al tova: substring-before-Ilast (' ABCDEFGH , 'BC) returns ' A

® altova: substring-before-1ast (' ABCDEFGH , 'BD) returns '’

® al tova: substring-before-last(' ABCOEFGH , 'Z') returns "'

® al tova: substring-before-last (' ABCODEFGH , '') returns '’

® al tova: substring-before-last (' ABCD-ABCD , 'B') returns ' ABCD- A

® al tova: substring-before-Ilast (' ABCD- ABCD- ABCD , ' ABCD) returns ' ABCD-
ABCD-'

* substring-pos [altova:]

al t ova: substring-pos(StringToCheck as xs:string, StringToFind as xs:string)
as xs:integer XP3.1 XQ3.1

Returns the character position of the first occurrence of St ri ngToFi nd in the string

St ri ngToCheck. The character position is returned as an integer. The first character of

St ri ngToCheck has the position 1. If St ri ngToFi nd does not occur within St ri ngToCheck,
the integer 0 is returned. To check for the second or a later occurrence of St ri ngToCheck,

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information

465

use the next signature of this function.

-I Examples
® altova: substring-pos('Altova', 'to') returns 3
® altova: substring-pos('Altova', 'tov') returns 3
® altova: substring-pos('Altova', 'tv') returns O
® al tova: substring-pos(' AltovaAltova', 'to') returns 3

al t ova: substring-pos(StringToCheck as xs:string, StringToFind as xs:string,
Integer as xs:integer) as xs:integer XP3.1 XQ3.1

Returns the character position of St ri ngToFi nd in the string, St ri ngToCheck. The search
for St ri ngToFi nd starts from the character position given by the | nt eger argument; the

character substring before this position is not searched. The returned integer, howeer, is the

position of the found string within the entire string, St ri ngToCheck. This signature is useful
for finding the second or a later position of a string that occurs multiple times with the

St ri ngToCheck. If Stri ngToFi nd does not occur within St ri ngToCheck, the integer 0 is
returned.

= Examples
® altova: substring-pos('Altova', 'to', 1) returns 3
® altova: substring-pos('Altova', 'to', 3) returns 3
® al tova: substring-pos('Altova', 'to', 4) returns 0
® altova: substring-pos(' Altova-Altova', 'to', 0) returns 3
® altova: substring-pos(' Altova-Altova', 'to', 4) returns 10

+ trim-string [altova:]

altova:trimstring(lnputString as xs:string) as xs:string XpP3.1 XQ3.1

This function takes an xs: st ri ng argument, removes any leading and trailing whitespace,
and returns a "trimmed" xs: stri ng.

= Examples

e altova:trimstring(" Hello Wrld ")) returns "Hel [o Worl d”
e altova:trimstring("Hello Wrld ")) returns "Hel l o Wor | d"

® altova:trimstring(" Hel o World")) returns "Hel |l o Worl d"

® altova:trimstring("Hello Wrld")) returns "Hel |l o Worl d"

® altova:trimstring("Hello Wrld")) returns "Hello Worl d"

* trim-string-left [altova:]

altova:trimstring-left(lnputString as xs:string) as xs:string Xp3.1 XQ3.1

This function takes an xs: st ri ng argument, removes any leading whitespace, and returns a

left-trimmed xs: stri ng.
=-I Examples

® altova:trimstring-left(" Hello World ")) retuns "Hello Wrld "
e altova:trimstring-left("Hello Wrld ")) retuns "Hel l o Worl d "
e altova:trimstring-left(" Hel o World")) returns "Hell o Worl d"

® altova:trimstring-left("Hello Wrld")) returns "Hel l o Wor| d"

e altova:trimstring-left("Hello World")) retuns "Hello World"

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

466 Appendices Engine information

 trim-string-right [altova:]
altova:trimstring-right(lnputString as xs:string) as xs:string XP3.1 XQ3.1

This function takes an xs: st ri ng argument, removes any trailing whitespace, and returns a
right-trimmed xs: stri ng.

= Examples
® altova:trimstring-right(" Hello World ")) returns " Hel l o World"
e altova:trimstring-right("Hello Wrld ")) returns "Hel | o Worl d”
e altova:trimstring-right (" Hel l o World")) returns " Hello World"

e altova:trimstring-right("Hello Wrld")) returns "Hel | o Worl d"
® altova:trimstring-right("Hello Wrld")) returns "Hello Wrld"

XPath/XQuery Functions: Miscellaneous

The following general purpose XPath/XQuery extension functions are supported in the current
version of MapForce and can be used in (i) XPath expressions in an XSLT context, or (i) XQuery
expressions in an XQuery document.

Note about naming of functions and language applicability

Altova extension functions can be used in XPath/XQuery expressions. They provide additional
functionality to the functionality that is available in the standard library of XPath, XQuery, and
XSLT functions. Altova extension functions are in the Altova extension functions
namespace, http://wwv. al t ova. con xsl t - ext ensi ons, and are indicated in this section
with the prefix al t ova: , which is assumed to be bound to this namespace. Note that, in future
versions of your product, support for a function might be discontinued or the behavior of
individual functions might change. Consult the documentation of future releases for information
about support for Altova extension functions in that release.

XPath functions (used in XPath expressions in XSLT): XP1 XP2 XP3.1
XSLT functions (used in XPath expressions in XSLT): XSLT1 XSLT2 XSLT3
XQuery functions (used in XQuery expressions in XQuery): XQ1 XQ3.1

* get-temp-folder [altova:]

altova: get-tenp-folder() as xs:string XpP2 XQ1 XP3.1 XQ3.1
This function takes no argument. It returns the path to the temporary folder of the current
user.

= Examples

e altova: get-tenp-fol der () would return, on a Windows machine, something like
C:\ User s\ <User Nane>\ AppDat a\ Local \ Tenp\ as an xs: stri ng.

¥ generate-guid [altova:]

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 467

al tova: generate-guid() as xs:string XP2 XQ1 XP3.1 XQ3.1
Generates a unique string GUID string.

= Examples

e altova: generate-gui d() returns (for example) 85F971DA- 17F3- 4EAE- 994E-
99137873ACCD

[Top]

11.1.2.2 Miscellaneous Extension Functions

There are several ready-made functions in programming languages such as Java and C# that are
not available as XQuery/XPath functions or as XSLT functions. A good example would be the math
functions available in Java, such as si n() and cos() . If these functions were available to the
designers of XSLT stylesheets and XQuery queries, it would increase the application area of
stylesheets and queries and greatly simplify the tasks of stylesheet creators. The XSLT and
XQuery engines used in a number of Altova products support the use of extension functions in
Java and .NET, as well as MSXSL scripts for XSLT. This section describes how to use extension
functions and MSXSL scripts in your XSLT stylesheets and XQuery documents. The available
extension functions are organized into the following sections:

e Java Extension Functions
e NET Extension Functions
e MSXSL Scripts for XSLT

The two main issues considered in the descriptions are: (i) how functions in the respective
libraries are called; and (ii) what rules are followed for converting arguments in a function call to
the required input format of the function, and what rules are followed for the return conwersion
(function result to XSLT/XQuery data object).

Requirements

For extension functions support, a Java Runtime Environment (for access to Java functions) and
.NET Framework 2.0 (minimum, for access to .NET functions) must be installed on the machine
running the XSLT transformation or XQuery execution, or must be accessible for the
transformations.

Java Extension Functions

A Java extension function can be used within an XPath or XQuery expression to invoke a Java
constructor or call a Java method (static or instance).

A field in a Java class is considered to be a method without any argument. A field can be static or
instance. How to access fields is described in the respective sub-sections, static and instance.

This section is organized into the following sub-sections:

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

468 Appendices Engine information

Java: Constructors

Java: Static Methods and Static Fields
Java: Instance Methods and Instance Fields
Datatypes: XPath/XQuery to Java
Datatypes: Java to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefi x: f nane() .

e The prefix: part identifies the extension function as a Java function. It does so by
associating the extension function with an in-scope namespace declaration, the URI of
which must begin with j ava: (see below for examples). The namespace declaration
should identify a Java class, for example: xm ns: nyns="j ava: j ava. | ang. Mat h".
Howewer, it could also simply be: xm ns: nyns="j ava" (without a colon), with the
identification of the Java class being left to the f nane() part of the extension function.

e The f nane() part identifies the Java method being called, and supplies the arguments for
the method (see below for examples). Howewer, if the namespace URI identified by the
prefix: part does not identify a Java class (see preceding point), then the Java class
should be identified in the f nane() part, before the class and separated from the class by
a period (see the second XSLT example below).

Note: The class being called must be on the classpath of the machine.

XSLT example

Here are two examples of how a static method can be called. In the first example, the class name
(ava. | ang. Mat h) is included in the namespace URI and, therefore, must not be in the f nanme()
part. In the second example, the prefi x: part supplies the prefix j ava: while the f nane() part
identifies the class as well as the method.

<xsl :val ue-of xm ns:j Mat h="j ava:j ava. | ang. Mat h"
sel ect ="j Math: cos(3.14)" />

<xsl :val ue-of xm ns:j nat h="j ava"
sel ect="j mat h: java. | ang. Mat h. cos(3.14)" />

The method named in the extension function (cos() in the example above) must match the name
of a public static method in the named Java class (j ava. | ang. Mat h in the example abowe).

XQuery example
Here is an XQuery example similar to the XSLT example above:

<cosi ne xm ns: | Mat h="j ava: j ava. | ang. Mat h" >
{j Mat h: cos(3.14)}
</ cosi ne>

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 469

User-defined Java classes

If you have created your own Java classes, methods in these classes are called differently
according to: (i) whether the classes are accessed via a JAR file or a class file, and (ii) whether
these files (JAR or class) are located in the current directory (the same directory as the XSLT or
XQuery document) or not. How to locate these files is described in the sections User-Defined
Class Files and User-Defined Jar Files. Note that paths to class files not in the current directory
and to all JAR files must be specified.

User-Defined Class Files

If access is via a class file, then there are two possibilities:

e The class file is in a package. The XSLT or XQuery file is in the same folder as the Java
package. (See example below.)

¢ The class file is not packaged. The XSLT or XQuery file is in the same folder as the class
file. (See example below.)

e The class file is in a package. The XSLT or XQuery file is at some random location. (See

example below.)
¢ The class file is not packaged. The XSLT or XQuery file is at some random location. (See

example below.)

Consider the case where the class file is not packaged and is in the same folder as the XSLT or
XQuery document. In this case, since all classes in the folder are found, the file location does not
need to be specified. The syntax to identify a class is:

j ava: cl assname
where

j ava: indicates that a user-defined Java function is being called; (Java classes in the
current directory will be loaded by default)
cl assnane is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call.

Class file packaged, XSLT/XQuery file in same folder as Java package

The example below calls the get Vehi cl eType() method of the Car class of the

com al t ova. ext f unc package. The com al t ova. ext f unc package is in the folder JavaPr oj ect .
The XSLT file is also in the folder JavaPr oj ect .

<xsl :styl esheet version="2.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf
xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schema"
xm ns: fn="http://wmv w3. or g/ 2005/ xpat h- f unct i ons"
xm ns: car="j ava: com al t ova. extfunc. Car" >

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

470 Appendices Engine information

<xsl :out put exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:tenplate nmatch="/">
<a>
<xsl : val ue- of sel ect="car: get Vehi cl eType()"/>
</ a>

</ xsl :tenpl at e>

</ xsl : styl esheet >

Class file not packaged, XSLT/XQuery file in same folder as class file
The example below calls the get Vehi cl eType() method of the Car class of the

com al t ova. ext f unc package. The Car class file is in the following folder location:
JavaPr oj ect / cond al t ova/ ext f unc. The XSLT file is also in the folder JavaPr oj ect / com
al t ova/ ext f unc.

<xsl :styl esheet version="2.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf
xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schema"
xm ns: fn="http://wmv w3. or g/ 2005/ xpat h- f unct i ons"
xm ns: car="j ava: Car" >

<xsl :output exclude-result-prefixes="fn car xsl fo xs"/>

<xsl:tenpl ate nmatch="/">
<a>
<xsl : val ue- of sel ect="car: get Vehi cl eType()"/>
</ a>

</ xsl :tenpl at e>

</ xsl : styl esheet >

Class file packaged, XSLT/XQuery file at any location

The example below calls the get Car Col or () method of the Car class of the com al t ova. ext f unc
package. The com al t ova. ext f unc package is in the folder JavaPr oj ect . The XSLT file is at any
location. In this case, the location of the package must be specified within the URI as a query
string. The syntax is:

j ava: cl assnane[?pat h=uri - of - package]
where

j ava: indicates that a user-defined Java function is being called
uri - of - package is the URI of the Java package
cl assnane is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices

Engine information

471

<xsl :styl esheet version="2.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf
xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schema"
xm ns: fn="http://wmv w3. or g/ 2005/ xpat h- f unct i ons"
xm ns: car="j ava: com al t ova. extfunc. Car?path=file:///C/

JavaProject/" >

<xsl :output exclude-result-prefixes="fn car xsl xs"/>

<xsl:tenpl ate nmatch="/">
<xsl :variabl e nane="nyCar" select="car:new('red)" />

<a><xsl : val ue- of sel ect ="car: get Car Col or ($nyCar) "/ ></ a>
</ xsl :tenpl at e>

</ xsl : styl esheet >

Class file not packaged, XSLT/XQuery file at any location

The example below calls the get Car Col or () method of the Car class of the com al t ova. ext f unc
package. The com al t ova. ext f unc package is in the folder JavaPr oj ect . The XSLT file is at any
location. The location of the class file is specified within the namespace URI as a query string.

The syntax is:

java: cl assnane[?pat h=uri - of - cl assfil e]
where

j ava: indicates that a user-defined Java function is being called
uri-of -cl assfil e is the URI of the folder containing the class file
cl assnane is the name of the required method's class

The class is identified in a namespace URI, and the namespace is used to prefix a
method call. The example below shows how to access a class file that is located in
another directory than the current directory.

<xsl :styl esheet version="2.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf
xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schema"
xm ns: fn="http://wmv w3. or g/ 2005/ xpat h- f unct i ons"
xm ns: car="j ava: Car?path=file:///C. /JavaProject/com al t oval/

extfunc/" >

Note:

<xsl :output exclude-result-prefixes="fn car xsl xs"/>

<xsl:tenplate nmatch="/">
<xsl :variabl e nane="nyCar" select="car:new('red)" />

<a><xsl : val ue- of sel ect ="car: get Car Col or ($nyCar) "/ ></ a>
</ xsl :tenpl at e>

</ xsl : styl esheet >

When a path is supplied via the extension function, the path is added to the ClassLoader.

© 2018 Altova GmbH

Altova MapForce 2018 Basic Edition

472 Appendices Engine information

User-Defined Jar Files

If access is via a JAR file, the URI of the JAR file must be specified using the following syntax:
xm ns: cl assNS="j ava: cl assnane?path=jar:uri-of-jarfile!/"

The method is then called by using the prefix of the namespace URI that identifies the
class: cl assNS: et hod()

In the above:

j ava: indicates that a Java function is being called

cl assnane is the name of the user-defined class

? is the separator between the classname and the path

pat h=j ar: indicates that a path to a JAR file is being given
uri-of-jarfileis the URI of the jar file

1/ is the end delimiter of the path

cl assNS: net hod() is the call to the method

Alternatively, the classname can be given with the method call. Here are two examples of the
syntax:

xm ns: ns1="j ava: docx. | ayout . pages?path=jar:file:///c:/projects/
docs/docx.jar!/"
nsl: mai n()

xm ns: ns2="java?path=jar:file:///c:/projects/docs/docx.jar!/"
ns2: docx. | ayout . pages. mai n()

Here is a complete XSLT example that uses a JAR file to call a Java extension function:

<xsl:styl esheet version="2.0"

xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{

xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: fn="http://ww. w3. or g/ 2005/ xpat h- f unct i ons"

xm ns: car="java?path=jar:file:///C/test/Carl.jar!/" >
<xsl :output exclude-result-prefixes="fn car xsl xs"/>

<xsl:tenplate natch="/">
<xsl:variabl e nane="nyCar" select="car:Carl.new'red)" />
<a><xsl : val ue-of sel ect="car: Car 1. get Car Col or ($nyCar) "/ ></ a>
</ xsl :tenpl at e>
<xsl:tenpl ate natch="car"/>

</ xsl : styl esheet >

Note: When a path is supplied via the extension function, the path is added to the ClassLoader.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 473

Java: Constructors

An extension function can be used to call a Java constructor. All constructors are called with the
pseudo-function new() .

If the result of a Java constructor call can be implicitly converted to XPath/XQuery datatypes, then
the Java extension function will return a sequence that is an XPath/XQuery datatype. If the result
of a Java constructor call cannot be conwerted to a suitable XPath/XQuery datatype, then the
constructor creates a wrapped Java object with a type that is the name of the class returning that
Java object. For example, if a constructor for the class j ava. uti |l . Dat e is called

(java. util. Date. new()), then an object having a type j ava. util . Dat e is returned. The lexical
format of the returned object may not match the lexical format of an XPath datatype and the value
would therefore need to be conwerted to the lexical format of the required XPath datatype and then
to the required XPath datatype.

There are two things that can be done with a Java object created by a constructor:

e |t can be assigned to a variable:
<xsl :variabl e nanme="currentdate" sel ect="date: new)"
xm ns: date="j ava:java. util.Date" />
® |t can be passed to an extension function (see Instance Method and Instance Fields):
<xsl :val ue-of select="date:toString(date:new())"
xm ns: date="j ava:java. util.Date" />

Java: Static Methods and Static Fields

A static method is called directly by its Java hame and by supplying the arguments for the
method. Static fields (methods that take no arguments), such as the constant-value fields E and
Pl , are accessed without specifying any argument.

XSLT examples
Here are some examples of how static methods and fields can be called:

<xsl :val ue-of xni ns:j Mat h="j ava: j ava. | ang. Mat h"
sel ect="j Mat h: cos(3.14)" />

<xsl :val ue-of xni ns:j Mat h="j ava:java. | ang. Mat h"
sel ect="jMath:cos(jMath:PI ())" />

<xsl :val ue-of xm ns:j Mat h="j ava:j ava. | ang. Mat h"
sel ect="jMath: E() * jMath:cos(3.14)" />

Notice that the extension functions above have the form prefi x: f nane() . The prefix in all three
cases is j Mat h: , which is associated with the namespace URIj ava: j ava. | ang. Mat h. (The
namespace URI must begin with j ava: . In the examples abowe it is extended to contain the class
name (j ava. | ang. Mat h).) The f nane() part of the extension functions must match the name of a
public class (e.g. j ava. | ang. Mat h) followed by the name of a public static method with its

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

474 Appendices Engine information

argument/s (such as cos(3. 14)) or a public static field (such as PI ()).

In the examples abowe, the class name has been included in the namespace URI. If it were not
contained in the namespace URI, then it would have to be included in the f nane() part of the
extension function. For example:

<xsl :val ue-of xm ns:java="java:"
sel ect ="j ava: j ava. |l ang. Mat h. cos(3. 14)" />

XQuery example
A similar example in XQuery would be:

<cosi ne xm ns:j Mat h="j ava: j ava. | ang. Mat h" >
{j Mat h: cos(3.14)}
</ cosi ne>

Java: Instance Methods and Instance Fields

An instance method has a Java object passed to it as the first argument of the method call. Such
a Java object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl :styl esheet version="1.0" exclude-result-prefixes="date"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or m
xm ns: dat e="j ava:java. util . Date"
xm ns:jl ang="j ava:j ava. | ang" >
<xsl : param nane="Current Date" sel ect="date: new()"/>
<xsl:tenplate natch="/">
<enrol I nent institution-id="Altova School"
date="{date:toString($CurrentDate)}"
type="
{jlang: Object.toString(jlang: Cbj ect.get ass(date:new)))}">
</ enrol | rent >
</ xsl :tenpl at e>
</ xsl : styl esheet >

In the example abowe, the value of the node enr ol | ment/ @ ype is created as follows:

1. Anobject is created with a constructor for the class j ava. uti | . Dat e (with the

dat e: new() constructor).
2. This Java object is passed as the argument of the j | ang. Obj ect . get d ass method.
3. The object obtained by the get d ass method is passed as the argument to the

j I ang. Qbj ect . t oSt ri ng method.

The result (the value of @ ype) will be a string having the value: j ava. util . Dat e.

An instance field is theoretically different from an instance method in that it is not a Java object
per se that is passed as an argument to the instance field. Instead, a parameter or variable is
passed as the argument. Howeer, the parameter/variable may itself contain the value returned by
a Java object. For example, the parameter Cur r ent Dat e takes the value returned by a constructor

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 475

for the class j ava. uti | . Dat e. This value is then passed as an argument to the instance method
dat e: t oSt ri ng in order to supply the value of / enr ol | nent / @at e.

Datatypes: XPath/XQuery to Java

When a Java function is called from within an XPath/XQuery expression, the datatype of the
function's arguments is important in determining which of multiple Java classes having the same
name is called.

In Java, the following rules are followed:

e [fthere is more than one Java method with the same name, but each has a different
number of arguments than the other/s, then the Java method that best matches the
number of arguments in the function call is selected.

e The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
converted to a corresponding Java datatype. If the supplied XPath/XQuery type can be
conwverted to more than one Java type (for example, xs: i nt eger), then that Java type is
selected which is declared for the selected method. For example, if the Java method
being called is f x(deci mal) and the supplied XPath/XQuery datatype is xs: i nt eger,
then xs: i nt eger will be converted to Java's deci nal datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to Java datatypes.

Xs:string java.lang. String
Xs: bool ean bool ean (primitive), j ava. | ang. Bool ean
Xs: i nt eger int, long, short, byte, float, double, and the

wrapper classes of these, such as
java. | ang. | nt eger

xs: fl oat fl oat (primitive), j ava. | ang. Fl oat, doubl e
(primitive)

xs: doubl e doubl e (primitive), j ava. | ang. Doubl e

xs: deci nal fl oat (primitive), j ava.l ang. Fl oat,

doubl e(primitive), j ava. | ang. Doubl e

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the Java type/s corresponding to that subtype's ancestor type.

In some cases, it might not be possible to select the correct Java method based on the supplied
information. For example, consider the following case.

e The supplied argument is an xs: unt ypedAt oni ¢ value of 10 and it is intended for the
method nynet hod(fl oat) .

¢ Howewer, there is another method in the class which takes an argument of another
datatype: nynet hod(doubl e) .

e Since the method names are the same and the supplied type (xs: unt ypedAt oni ¢) could
be conwerted correctly to either f1 oat or doubl e, it is possible that xs: unt ypedAt omi c is

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

476 Appendices Engine information

conwverted to doubl e instead of f| oat .

e Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs: dat e) will not be converted and will
generate an error. Howewer, note that in some cases, it might be possible to create the required
Java type by using a Java constructor.

Datatypes: Java to XPath/XQuery

When a Java method returns a value, the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, Java's
j ava. | ang. Bool ean and bool ean datatypes are converted to xsd: bool ean.

One-dimensional arrays returned by functions are expanded to a sequence. Multi-dimensional
arrays will not be conwerted, and should therefore be wrapped.

When a wrapped Java object or a datatype other than string, numeric or boolean is returned, you
can ensure conwersion to the required XPath/XQuery type by first using a Java method (e.g

t oSt ri ng) to convert the Java object to a string. In XPath/XQuery, the string can be modified to fit
the lexical representation of the required type and then conwverted to the required type (for
example, by using the cast as expression).

.NET Extension Functions

If you are working on the .NET platform on a Windows machine, you can use extension functions
written in any of the .NET languages (for example, C#). A .NET extension function can be used
within an XPath or XQuery expression to invoke a constructor, property, or method (static or
instance) within a .NET class.

A property of a .NET class is called using the syntax get _PropertyNane().
This section is organized into the following sub-sections:

e _NET: Constructors

.NET: Static Methods and Static Fields
.NET: Instance Methods and Instance Fields
e Datatypes: XPath/XQuery to .NET

e Datatypes: .NET to XPath/XQuery

Form of the extension function
The extension function in the XPath/XQuery expression must have the form prefi x: f name() .

e The prefix: partis associated with a URI that identifies the .NET class being
addressed.
e The fnane() part identifies the constructor, property, or method (static or instance) within

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 477

the .NET class, and supplies any argument/s, if required.

e The URI must begin with cl i t ype: (which identifies the function as being a .NET
extension function).

e The prefix: fname() form of the extension function can be used with system classes
and with classes in a loaded assembly. However, if a class needs to be loaded, additional
parameters containing the required information will have to be supplied.

Parameters
To load an assembly, the following parameters are used:

asm The name of the assembly to be loaded.

ver The version number (maximum of four integers separated by periods).
sn The key token of the assembly's strong name (16 hex digits).

from A URI that gives the location of the assembly (DLL) to be loaded. If the

URI is relative, it is relative to the XSLT or XQuery document. If this
parameter is present, any other parameter is ignored.

parti al nane The partial name of the assembly. It is supplied to
Assenbl y. LoadWt h. Parti al Name(), which will attempt to load the
assembly. If parti al nane is present, any other parameter is ignored.

| oc The locale, for example, en- US. The default is neutral .
If the assembly is to be loaded from a DLL, use the f romparameter and omit the sn parameter. If

the assembly is to be loaded from the Global Assembly Cache (GAC), use the sn parameter and
omit the f r omparameter.

A question mark must be inserted before the first parameter, and parameters must be separated
by a semi-colon. The parameter name gives its value with an equals sign (see example below).

Examples of namespace declarations
An example of a namespace declaration in XSLT that identifies the system class
Syst em Envi r onnent :

xm ns: nyns="cl i t ype: Syst em Envi r onnent "

An example of a namespace declaration in XSLT that identifies the class to be loaded as
Trade. Forward. Scri p:

xm ns: nyns="cl i type: Trade. Forwar d. Scri p?asn¥f orwar d; ver si on=10. 6. 2. 1"

An example of a namespace declaration in XQuery that identifies the system class
M/ManagedDLL. t est O ass:. Two cases are distinguished:

1. When the assembly is loaded from the GAC:
decl are nanmespace cs="clitype: MyManagedDLL. t est O ass?asm=MyManagedDLL;
ver=1. 2. 3. 4; 1 oc=neut ral ; sn=b9f 091b72dccf ba8";

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

478

Appendices Engine information

2. When the assembly is loaded from the DLL (complete and partial references below):
decl are nanespace cs="clitype: M/ManagedDLL. t est G ass?fronefile:///
C /A tova
Proj ect s/ ext Functi ons/ MyManagedDLL. dl | ;

decl are nanespace cs="clitype: M/ManagedDLL. t est A ass?
fromeMyManagedDLL. dl | ;

XSLT example
Here is a complete XSLT example that calls functions in system class Syst em Mat h:

<xsl:styl esheet version="2.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: fn="http://ww. w3. or g/ 2005/ xpat h- f uncti ons" >
<xsl :out put met hod="xm" omt-xni-decl arati on="yes" />
<xsl:tenplate natch="/">
<math xm ns: mat h="cl i t ype: Syst em Mat h" >
<sqrt><xsl:val ue-of select="math:Sqrt(9)"/></sqrt>
<pi ><xsl : val ue-of select="math: Pl ()"/></pi >
<e><xsl :val ue-of select="math: E()"/></e>
<pow><xsl : val ue-of sel ect="math: Pow(math: Pl (), math: E())"/></ pow>
</ mat h>
</ xsl :tenpl at e>
</ xsl : styl esheet >

The namespace declaration on the element mat h associates the prefix mat h: with the URI
clitype: System Mat h. The cl it ype: beginning of the URI indicates that what follows identifies
either a system class or a loaded class. The mat h: prefix in the XPath expressions associates
the extension functions with the URI (and, by extension, the class) Syst em Mat h. The extension
functions identify methods in the class Syst em Mat h and supply arguments where required.

XQuery example
Here is an XQuery example fragment similar to the XSLT example above:

<mat h xm ns: mat h="cl i t ype: Syst em Mat h" >
{math: Sqrt (9) }

</ mat h>
As with the XSLT example abowe, the namespace declaration identifies the .NET class, in this

case a system class. The XQuery expression identifies the method to be called and supplies the
argument.

.NET: Constructors

An extension function can be used to call a .NET constructor. All constructors are called with the
pseudo-function new() . If there is more than one constructor for a class, then the constructor that

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 479

most closely matches the number of arguments supplied is selected. If no constructor is deemed
to match the supplied argument/s, then a' No constructor found' erroris returned.

Constructors that return XPath/XQuery datatypes
If the result of a .NET constructor call can be implicitly converted to XPath/XQuery datatypes, then
the .NET extension function will return a sequence that is an XPath/XQuery datatype.

Constructors that return .NET objects

If the result of a .NET constructor call cannot be converted to a suitable XPath/XQuery datatype,
then the constructor creates a wrapped .NET object with a type that is the name of the class
returning that object. For example, if a constructor for the class Syst em Dat eTi ne is called (with
Syst em Dat eTi ne. new()), then an object having a type Syst em Dat eTi ne is returned.

The lexical format of the returned object may not match the lexical format of a required XPath
datatype. In such cases, the returned value would need to be: (i) converted to the lexical format of
the required XPath datatype; and (ii) cast to the required XPath datatype.

There are three things that can be done with a .NET object created by a constructor:

¢ |t can be used within a variable:
<xsl :variabl e nane="currentdate" sel ect ="date: new 2008, 4, 29)"
xm ns: dat e="cl i t ype: Syst em Dat eTi ne" />

* |t can be passed to an extension function (see Instance Method and Instance Fields):
<xsl :val ue- of sel ect="date: ToStri ng(date: new(2008, 4, 29))"
xm ns: dat e="cl i t ype: Syst em Dat eTi ne" />

e |t can be conwerted to a string, number, or boolean:

e <xsl:val ue-of sel ect="xs:integer(data:get_Month(date: new(2008, 4, 29)))"
xm ns: date="cl i t ype: Syst em Dat eTi ne" />

.NET: Static Methods and Static Fields

A static method is called directly by its name and by supplying the arguments for the method.
The name used in the call must exactly match a public static method in the class specified. If the
method name and the number of arguments that were given in the function call matches more
than one method in a class, then the types of the supplied arguments are evaluated for the best
match. If a match cannot be found unambiguously, an error is reported.

Note: A field in a .NET class is considered to be a method without any argument. A property is
called using the syntax get _PropertyNane().

Examples
An XSLT example showing a call to a method with one argument (Syst em Mat h. Si n(ar g)):
<xsl :val ue-of select="math: Sin(30)" xm ns: nat h="clitype: System Mat h"/>

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

480 Appendices Engine information

An XSLT example showing a call to a field (considered a method with no argument)
(Syst em Doubl e. MaxVal ue()):
<xsl : val ue- of sel ect ="doubl e: MaxVal ue()" xn ns: doubl e="clitype: Syst em Doubl e"/ >

An XSLT example showing a call to a property (syntax is get _PropertyNane())
(System String()):

<xsl :val ue-of select="string:get_Length('ny string)"

xm ns:string="clitype: System String"/>

An XQuery example showing a call to a method with one argument (Syst em Mat h. Si n(arg)):
<sin xm ns: mat h="cl i type: Syst em Mat h" >

{ math:Sin(30) }
</sin>

.NET: Instance Methods and Instance Fields

An instance method has a .NET object passed to it as the first argument of the method call. This
.NET object typically would be created by using an extension function (for example a constructor
call) or a stylesheet parameter/variable. An XSLT example of this kind would be:

<xsl:styl esheet version="2.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: fn="http://ww. w3. or g/ 2005/ xpat h- f uncti ons" >
<xsl : out put met hod="xm" omt-xni-decl aration="yes"/>
<xsl:tenplate natch="/">
<xsl :vari abl e name="r el easedat e"
sel ect ="dat e: new(2008, 4, 29)"
xm ns: date="cl i t ype: Syst em Dat eTi ne"/ >
<doc>
<dat e>
<xsl : val ue- of sel ect="date: ToStri ng(date: new(2008, 4, 29))"
xm ns: date="cl i type: Syst em Dat eTi ne"/ >
</ dat e>
<dat e>
<xsl : val ue-of sel ect ="date: ToStri ng($rel easedate)"
xm ns: date="clitype: System Dat eTi me"/ >
</ dat e>
</ doc>
</ xsl :tenpl ate>
</ xsl : styl esheet >

In the example abowe, a Syst em Dat eTi ne constructor (new(2008, 4, 29))is used to create a
.NET object of type Syst em Dat eTi me. This object is created twice, once as the value of the
variable r el easedat e, a second time as the first and only argument of the

Syst em Dat eTi ne. ToSt ri ng() method. The instance method Syst em Dat eTi ne. ToStri ng() is
called twice, both times with the Syst em Dat eTi me constructor (new(2008, 4, 29)) as its first
and only argument. In one of these instances, the variable r el easedat e is used to get the .NET
object.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 481

Instance methods and instance fields

The difference between an instance method and an instance field is theoretical. In an instance
method, a .NET object is directly passed as an argument; in an instance field, a parameter or
variable is passed instead—though the parameter or variable may itself contain a .NET object. For
example, in the example abowe, the variable r el easedat e contains a .NET object, and it is this
variable that is passed as the argument of ToSt ri ng() in the second dat e element constructor.
Therefore, the ToSt ri ng() instance in the first dat e element is an instance method while the
second is considered to be an instance field. The result produced in both instances, however, is
the same.

Datatypes: XPath/XQuery to .NET

When a .NET extension function is used within an XPath/XQuery expression, the datatypes of the
function’'s arguments are important for determining which one of multiple .NET methods having the
same name is called.

In .NET, the following rules are followed:

e [fthere is more than one method with the same name in a class, then the methods
available for selection are reduced to those that have the same number of arguments as
the function call.

e The XPath/XQuery string, number, and boolean datatypes (see list below) are implicitly
conwverted to a corresponding .NET datatype. If the supplied XPath/XQuery type can be
converted to more than one .NET type (for example, xs: i nt eger), then that .NET type is
selected which is declared for the selected method. For example, if the .NET method
being called is f x(doubl e) and the supplied XPath/XQuery datatype is xs: i nt eger,
then xs: i nt eger will be converted to .NET's doubl e datatype.

The table below lists the implicit conversions of XPath/XQuery string, number, and boolean types
to .NET datatypes.

Xs:string StringVal ue, string
Xs: bool ean Bool eanVal ue, bool
Xs: i nteger I nt eger Val ue, decimal, |ong, integer,

short, byte, double, float

xs: fl oat Fl oat Val ue, float, double
xs: doubl e Doubl eVal ue, doubl e
xs: deci nal Deci mal Val ue, deci mal, double, fl oat

Subtypes of the XML Schema datatypes listed above (and which are used in XPath and XQuery)
will also be converted to the .NET type/s corresponding to that subtype's ancestor type.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

482 Appendices Engine information

In some cases, it might not be possible to select the correct .NET method based on the supplied
information. For example, consider the following case.

e The supplied argument is an xs: unt ypedAt on c value of 10 and it is intended for the
method nynet hod(fl oat).

e Howeer, there is another method in the class which takes an argument of another
datatype: mynet hod(doubl e) .

e Since the method names are the same and the supplied type (xs: unt ypedAt oni ¢) could
be conwerted correctly to either f | oat or doubl e, it is possible that xs: unt ypedAt omi c is
conwverted to doubl e instead of f | oat .

e Consequently the method selected will not be the required method and might not produce
the expected result. To work around this, you can create a user-defined method with a
different name and use this method.

Types that are not covered in the list above (for example xs: dat e) will not be converted and will
generate an error.

Datatypes: .NET to XPath/XQuery

When a .NET method returns a value and the datatype of the value is a string, numeric or boolean
type, then it is converted to the corresponding XPath/XQuery type. For example, .NET's deci mal
datatype is converted to xsd: deci mal .

When a .NET object or a datatype other than string, numeric or boolean is returned, you can
ensure conversion to the required XPath/XQuery type by first using a .NET method (for example
Syst em Dat eTi ne. ToSt ri ng()) to convert the .NET object to a string. In XPath/XQuery, the
string can be modified to fit the lexical representation of the required type and then converted to
the required type (for example, by using the cast as expression).

MSXSL Scripts for XSLT

The <nsxsl : scri pt > element contains user-defined functions and variables that can be called
from within XPath expressions in the XSLT stylesheet. The <nsxsl : scri pt > is a top-level
element, that is, it must be a child element of <xsl : st yl esheet > or <xsl : t r ansf or n».

The <nsxsl : scri pt > element must be in the namespace ur n: schenmas- ni crosoft - com xsl t
(see example below).

Scripting language and namespace

The scripting language used within the block is specified in the <nsxsl : scri pt > element's

| anguage attribute and the namespace to be used for function calls from XPath expressions is
identified with the i npl enent s- pref i x attribute (see below).

<msxsl :script | anguage="scri pti ng-Ianguage" i npl enent s-prefi x="user - nanespace-
prefix">

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 483

function-1 or variable-1
function-n or variable-n
</ nmsexsl : scri pt>

The <nmsxsl : scri pt > element interacts with the Windows Scripting Runtime, so only languages
that are installed on your machine may be used within the <msxsl : scri pt > element. The .NET
Framework 2.0 platform or higher must be installed for MSXSL scripts to be used.
Consequently, the .NET scripting languages can be used within the <nsxsl : scri pt > element.

The | anguage attribute accepts the same values as the | anguage attribute on the HTML
<scri pt > element. If the | anguage attribute is not specified, then Microsoft JScript is assumed
as the default.

The implements-prefix attribute takes a value that is a prefix of a declared in-scope namespace.
This namespace typically will be a user namespace that has been reserved for a function library.
All functions and variables defined within the <nsxsl : scri pt > element will be in the namespace
identified by the prefix specified in the i npl ement s- pref i x attribute. When a function is called
from within an XPath expression, the fully qualified function name must be in the same
namespace as the function definition.

Example
Here is an example of a complete XSLT stylesheet that uses a function defined within a
<nsxsl : scri pt > element.

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl:styl esheet version="2.0" xmns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: fn="http://ww. w3. or g/ 2005/ xpat h- f uncti ons”
xm ns: mexsl ="urn: schemas-m crosoft-comxslt"”
xm ns: user="http:// myconpany. com nynanespace" >

<msxsl :script | anguage="VBScript" inplenents-prefix="user">
<! [CDATA]
Input: A currency value: the whol esale price
Returns: The retail price: the input value plus 20% nargin,
rounded to the nearest cent
dima as integer = 13
Functi on AddMar gi n(Whol esal ePrice) as integer
AddMargi n = Wol esal ePrice * 1.2 + a
End Function
11>

</ msxsl :script>

<xsl:tenplate natch="/">
<htm >
<body>
<p>
Total Retail Price =
$<xsl : val ue- of sel ect ="user: AddMar gi n(50)"/ >
</ b>

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

484 Appendices Engine information

Tot al Wiol esale Price =
$<xsl : val ue-of sel ect="50"/>
</ b>
</ p>
</ body>
</htm >
</ xsl :tenpl at e>
</ xsl : styl esheet >

Datatypes

The values of parameters passed into and out of the script block are limited to XPath datatypes.
This restriction does not apply to data passed among functions and variables within the script
block.

Assemblies

An assembly can be imported into the script by using the nsxsl : assenbl y element. The
assembly is identified via a name or a URI. The assembly is imported when the stylesheet is
compiled. Here is a simple representation of how the nsxsl : assenbl y element is to be used.

<msxsl : script>

<msxsl : assenbl y nanme="nyAssenbl y. assenbl yNane" />
<msxsl : assenbl y href ="pat hToAssenbl y" />

</ msxsl : script>
The assembly name can be a full name, such as:

"system Mat h, Version=3.1.4500.1 Culture=neutral
Publ i cKeyToken=a46b3f 648229c514"

or a short name, such as "nyAssenbl y. Draw'.

Namespaces

Namespaces can be declared with the nsxsl : usi ng element. This enables assembly classes to
be written in the script without their namespaces, thus saving you some tedious typing. Here is
how the nsxsl : usi ng element is used so as to declare namespaces.

<msxsl : script>
<msxsl : usi ng nanespace="nyAssenbl yNS. NanmespaceNane" />

</ msxsl : script>

The value of the nanespace attribute is the name of the namespace.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Engine information 485

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

486 Appendices Technical Data

11.2 Technical Data

This section contains useful background information on the technical aspects of your software. It
is organized into the following sections:

OS and Memory Requirements
Altova XML Validator

Altova XSLT and XQuery Engines
Unicode Support

Internet Usage

11.2.1 OS and Memory Requirements

Operating System
Altova software applications are available for the following platforms:

e Windows 7 SP1 with Platform Update, Windows 8, Windows 10
e Windows Server 2008 R2 SP1 with Platform Update or newer

Memory

Since the software is written in C++ it does not require the overhead of a Java Runtime
Environment and typically requires less memory than comparable Java-based applications.
However, each document is loaded fully into memory so as to parse it completely and to improve
viewing and editing speed. The memory requirement increases with the size of the document.

Memory requirements are also influenced by the unlimited Undo history. When repeatedly cutting
and pasting large selections in large documents, available memory can rapidly be depleted.

11.2.2 Altova XML Validator

When opening any XML document, the application uses its built-in XML validator to check for well-
formedness, validate the document against a schema (if specified), and build trees and infosets.
The XML validator is also used to provide intelligent editing help while you edit documents and to
dynamically display any validation error that may occur.

The built-in XML validator implements the Final Recommendation of the W3C's XML Schema 1.0
and 1.1 specification. New developments recommended by the W3C's XML Schema Working
Group are continuously being incorporated in the XML validator, so that Altova products give you a
state-of-the-art development environment.

11.2.3 Altova XSLT and XQuery Engines

Altova products use the Altova XSLT 1.0, 2.0, and 3.0 Engines and the Altova XQuery 1.0 and 3.1
Engines. Documentation about implementation-specific behavior for each engine is in the
appendices of the documentation (Engine Information), should that engine be used in the product.

Note: Altova MapForce generates code using the XSLT 1.0, 2.0 and XQuery 1.0 engines.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Appendices Technical Data 487

11.2.4

11.2.5

Unicode Support

Altova's XML products provide full Unicode support. To edit an XML document, you will also need
a font that supports the Unicode characters being used by that document.

Please note that most fonts only contain a very specific subset of the entire Unicode range and
are therefore typically targeted at the corresponding writing system. If some text appears garbled,
the reason could be that the font you have selected does not contain the required glyphs. So it is
useful to have a font that covers the entire Unicode range, especially when editing XML
documents in different languages or writing systems. A typical Unicode font found on Windows
PCs is Arial Unicode MS.

In the / Exanpl es folder of your application folder you will find an XHTML file called Uni codeUTF-
8. ht m that contains the following sentence in a number of different languages and writing
systems:

e When the world wants to talk, it speaks Unicode
e Wenn die Welt miteinander spricht, spricht sie Unicode

o WHEMICFETES ., Uncode Ty

Opening this XHTML file will give you a quick impression of Unicode's possibilities and also
indicate what writing systems are supported by the fonts available on your PC.

Internet Usage

Altova applications will initiate Internet connections on your behalf in the following situations:

e Ifyou click the "Request evaluation key-code" in the Registration dialog (Help | Software
Activation), the three fields in the registration dialog box are transferred to our web server
by means of a regular http (port 80) connection and the free evaluation key-code is sent
back to the customer via regular SMTP e-mail.

¢ In some Altova products, you can open a file over the Internet (File | Open | Switch to
URL). In this case, the document is retrieved using one of the following protocol methods
and connections: HTTP (normally port 80), FTP (normally port 20/21), HTTPS (normally
port 443). You could also run an HTTP server on port 8080. (In the URL dialog, specify the
port after the server name and a colon.)

e If you open an XML document that refers to an XML Schema or DTD and the document is
specified through a URL, the referenced schema document is also retrieved through a
HTTP connection (port 80) or another protocol specified in the URL (see Point 2 abow). A
schema document will also be retrieved when an XML file is validated. Note that validation
might happen automatically upon opening a document if you have instructed the
application to do this (in the File tab of the Options dialog (Tools | Options)).

¢ In Altova applications using WSDL and SOAP, web senice connections are defined by
the WSDL documents.

e [fyou are using the Send by Mail command (File | Send by Mail) in XMLSpy, the
current selection or file is sent by means of any MAPI-compliant mail program installed
on the user's PC.

e As part of Software Activation and LiveUpdate as further described in the Altova Software
License Agreement.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

488 Appendices License Information

11.3 License Information

This section contains:

Information about the distribution of this software product

Information about software activation and license metering

Information about the intellectual property rights related to this software product
The End-User License Agreement governing the use of this software product

Please read this information carefully. It is binding upon you since you agreed to these terms
when you installed this software product.

11.3.1 Electronic Software Distribution

This product is available through electronic software distribution, a distribution method that
provides the following unique benefits:

e You can evaluate the software free-of-charge before making a purchasing decision.

e Once you decide to buy the software, you can place your order online at the Altova
website and immediately get a fully licensed product within minutes.

e When you place an online order, you always get the latest version of our software.

e The product package includes a comprehensive integrated onscreen help system. The
latest version of the user manual is available at www.altova.com (i) in HTML format for
online browsing, and (ii) in PDF format for download (and to print if you prefer to have the
documentation on paper).

30-day evaluation period

After downloading this product, you can evaluate it for a period of up to 30 days free of charge.
About 20 days into this evaluation period, the software will start to remind you that it has not yet
been licensed. The reminder message will be displayed once each time you start the application.
If you would like to continue using the program after the 30-day evaluation period, you have to
purchase an Altova Software License Agreement, which is delivered in the form of a key-code that
you enter into the Software Activation dialog to unlock the product. You can purchase your
license at the online shop at the Altova website.

Helping Others within Your Organization to Evaluate the Software

If you wish to distribute the evaluation version within your company network, or if you plan to use it
on a PC that is not connected to the Internet, you may only distribute the Setup programs,
provided that they are not modified in any way. Any person that accesses the software installer
that you have provided, must request their own 30-day evaluation license key code and after
expiration of their evaluation period, must also purchase a license in order to be able to continue
using the product.

For further details, please refer to the Altova Software License Agreement at the end of this
section.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

https://www.altova.com/
https://www.altova.com/
https://www.altova.com/documentation.html
https://www.altova.com/

Appendices License Information 489

11.3.2 Software Activation and License Metering

As part of Altova’s Software Activation, the software may use your internal network and Internet
connection for the purpose of transmitting license-related data at the time of installation,
registration, use, or update to an Altova-operated license sernver and validating the authenticity of
the license-related data in order to protect Altova against unlicensed or illegal use of the software
and to improve customer senvice. Activation is based on the exchange of license related data
such as operating system, IP address, date/time, software version, and computer name, along
with other information between your computer and an Altova license senver.

Your Altova product has a built-in license metering module that further helps you awid any
unintentional violation of the End User License Agreement. Your product is licensed either as a
single-user or multi-user installation, and the license-metering module makes sure that no more
than the licensed number of users use the application concurrently.

This license-metering technology uses your local area network (LAN) to communicate between
instances of the application running on different computers.

Single license

When the application starts up, as part of the license metering process, the software sends a
short broadcast datagram to find any other instance of the product running on another computer in
the same network segment. If it doesn't get any response, it will open a port for listening to other
instances of the application.

Multi license

If more than one instance of the application is used within the same LAN, these instances will
briefly communicate with each other on startup. These instances exchange key-codes in order to
help you to better determine that the number of concurrent licenses purchased is not accidentally
violated. This is the same kind of license metering technology that is common in the Unix world
and with a number of database dewvelopment tools. It allows Altova customers to purchase
reasonably-priced concurrent-use multi-user licenses.

We hawe also designed the applications so that they send few and small network packets so as
to not put a burden on your network. The TCP/IP ports (2799) used by your Altova product are
officially registered with the IANA (see the IANA website (http://www.iana.org/) for details) and our
license-metering module is tested and proven technology.

If you are using a firewall, you may notice communications on port 2799 between the computers
that are running Altova products. You are, of course, free to block such traffic between different
groups in your organization, as long as you can ensure by other means, that your license
agreement is not violated.

You will also notice that, if you are online, your Altova product contains many useful functions;
these are unrelated to the license-metering technology.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

490 Appendices License Information

11.3.3 Intellectual Property Rights

The Altova Software and any copies that you are authorized by Altova to make are the intellectual
property of and are owned by Altova and its suppliers. The structure, organization and code of the
Software are the valuable trade secrets and confidential information of Altova and its suppliers.
The Software is protected by copyright, including without limitation by United States Copyright
Law, international treaty provisions and applicable laws in the country in which it is being used.
Altova retains the ownership of all patents, copyrights, trade secrets, trademarks and other
intellectual property rights pertaining to the Software, and that Altova’s ownership rights extend to
any images, photographs, animations, videos, audio, music, text and "applets"” incorporated into
the Software and all accompanying printed materials. Notifications of claimed copyright
infringement should be sent to Altova’s copyright agent as further provided on the Altova Web
Site.

Altova software contains certain Third Party Software that is also protected by intellectual property
laws, including without limitation applicable copyright laws as described in detail at http://
www.altova.com/legal 3rdparty.html.

All other names or trademarks are the property of their respective owners.

11.3.4 Altova End User License Agreement

e The Altova End User License Agreement is available here: http://www.altova.com/eula
e Altova's Privacy Policy is available here: http://www.altova.com/privacy

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

http://www.altova.com/legal_3rdparty.html
http://www.altova.com/legal_3rdparty.html
http://www.altova.com/eula
http://www.altova.com/privacy

Chapter 12

Glossary

492 Glossary

12 Glossary

The glossary section includes the list of terms pertaining to MapForce.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Glossary

C 493

12.1

C

Component

In MapForce, the term "component” is what represents visually the structure (schema) of your
data, or how data is to be transformed (functions). Components are the central building pieces of
any mapping. On the mapping area, components appear as rectangles. The following are
examples of MapForce components:

Constants

Filters

Conditions

Function components

EDI documents (UN/EDIFACT, ANSI X12, HL7)
Excel 2007+ files

Simple input components

Simple output components

XML Schemas and DTDs

Connection

A connection is a line that you can draw between two connectors. By drawing connections, you
instruct MapForce to transform data in a specific way (for example, read data from an XML
document and write it to another XML document).

Connector
A connector is a small triangle displayed on the left or right side of a component. The connectors

displayed on the left of a component provide data entry points to that component. The connectors
displayed on the right of a component provide data exit points from that component.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

494 Glossary F

12.2 F

Fixed Length Field (FLF)

A common text format where data is conventionally separated into fields which have a fixed length
(for example, the first 5 characters of every row represent a transaction ID, and the next 20
characters represent a transaction description).

FlexText

FlexText is a module in MapForce Enterprise Edition which enables you to conwert data from non-
standard or legacy text files of high complexity to other formats supported by MapForce, and vice
versa.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Glossary G 495

12.3 G

Global Resources

Altova Global Resources represent a way to refer to files, folders, or databases so as to make
these resources reusable, configurable and available across multiple Altova applications.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

496 Glossary

12.4 |

Input component

An input component is a MapForce component that enables you to pass simple values to a
mapping. Input components are commonly used to pass file names or other string values to a
mapping at runtime. Input components should not be confused with source components.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Glossary J 497

125 J

Join component

A Join component is a MapForce component which enables joining two or more structures on the
mapping based on custom-defined conditions. It returns the association (joined set) of items that
satisfy the condition. Joins are particularly useful to combine data from two structures which
share a common field (such as an identity).

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

498 Glossary M

12.6 M

MapForce

MapForce is a Windows-based, multi-purpose IDE (integrated development environment) that
enables you to transform data from one format to another, or from one schema to another, by
means of a visual, "drag-and-drop” -style graphical user interface that does not require writing any
program code. In fact, MapForce generates for you the program code which performs the actual
data transformation (or data mapping). When you prefer not to generate program code, you can
just run the transformation using the MapForce built-in transformation language (available in the
MapForce Professional or Enterprise Editions).

Mapping

A MapForce mapping design (or simply "mapping") is the visual representation of how data is to
be transformed from one format to another. A mapping consists of components that you add to
the MapForce mapping area in order to create your data transformations (for example, convert
XML documents from one schema to another). A valid mapping consists of one or several source
components connected to one or several target components. You can run a mapping and preview
its result directly in MapForce. You can generate code and execute it externally. You can also
compile a mapping to a MapForce execution file and automate mapping execution using
MapForce Server or FlowForce Server. MapForce saves mappings as files with .mfd extension.

MFF

The file name extension of MapForce function files.

MFD

The file name extension of MapForce design documents (mappings).

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Glossary O 499

12.7 O

Output component

An output component (or "simple output”) is a MapForce component which enables you to return
a string value from the mapping. Output components represent just one possible type of target

components, but should not be confused with the latter.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

500 Glossary

12.8 P

parent-context

parent-context is an optional argument in some MapForce core aggregation functions such as
m n, max, avg, count. In a source component which has multiple hierarchical sequences, the
parent context determines the set of nodes on which the function should operate.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Glossary S 501

129 S

Source component

A source component is a component from which MapForce reads data. When you run the
mapping, MapForce reads the data supplied by the connector of the source component, converts
it to the required type, and sends it to the connector of the target component.

© 2018 Altova GmbH Altova MapForce 2018 Basic Edition

502 Glossary T

12.10T

Target component

A target component is a component to which MapForce writes data. When you run the mapping,
a target component instructs MapForce to either generate a file (or multiple files) or output the
result as a string value for further processing in an external program. A target component is the
opposite of a source component.

Altova MapForce 2018 Basic Edition © 2018 Altova GmbH

Index

503

Index

.NET extension functions,
constructors, 478
dataty pe conversions, .NET to XPath/X Query, 482
dataty pe conversions, X Path/XQuery to .NET, 481
for XSLT and XQuery, 476
instance methods, instance fidds, 480
overview, 476
static methods, stetic fields, 479

A

Ato Z,
sort component, 168
abs,
as M gpForcefunction (in xpath2 | numeric functions), 354
add,
as M apForce function (in core | math functions), 320
Altova Engines,
in Altovaproducts, 486
Altova extensions,
chart functions (see chart functions), 420
Altova XML Parser,
about, 486
Any,
xsany, 234
ATTLIST,
DTD namespace URIs, 226
auto-number,
as M apForce function (in core | generator functions), 314
avg,
as M apForce function (in core | aggregate functions), 301

B

Background Information, 486
base-uri,
as M gpForcefunction (in xpath2 | accessors library), 347

Bool,

output if false, 265
boolean,

as M apForce function (in core | conversion functions), 305
Built-in engine,

definition, 69

using, 69

C

CDATA, 233
ceiling,

as M gpForce function (in core | math functions), 320
char-from-code,

as M apForce function (in core| string functions), 338
Code,

inline functions & code size, 259
Code point,

collation, 168
code-from-char,

as M gpForce function (in core | string functions), 339
Collation,

locde collation, 168

sort component, 168

unicode code point, 168
Comments,

Addingto target files, 231
Complex,

function - inline, 259

User-defined complexinput, 271

User-defined complex output, 276

User-defined function, 270, 276
Complex type,

sorting, 168
Component,

as application menu, 397

definition of, 493

deleted items, 106

sort data, 168
Components,

adding to the mapping, 65

aigning, 89

changing settings, 90

overview, 87

processing sequence, 209

searching, 88

© 2018 Altova GmbH

504

Index

concat,

as M apForce function (in core | string functions), 339
Connection,

as gpplication menu, 398

definition of, 493
Connections,

movingto adifferent component, 101

preserving on root element change, 101
Connector,

definition of, 493
Consolidating data,

mergng XM L files, 238
Constants,

adding to the mapping, 248
contains,

as M gpForcefunction (in core| string functions), 339
Copy all,

mapping method, 119
Copyright information, 488
count,

as M apForce function (in core | agoregate functions), 301
current,

as M apForce function (in xslt | xslt functions library), 359
current-date,

as M apForce function (in xpath2 | context functions), 349
current-dateTime,

as M gpForcefunction (in xpath2 | context functions), 349
current-time,

as M apForce function (in xpath2 | context functions), 349

D

Default,
input value, 265
default-collation,
as M gpForcefunction (in xpath2 | context functions), 349
Delete,
ddetions - missingitems, 106
Derived types,
mappingto/from, 227
Digital signature,
cregtingin XM L output, 222
distinct-values,
as M apForce function (in core | sequence functions), 326
Distribution,
of Altovas software products, 488, 490

divide,

as M gpForcefunction (in core | math functions), 321
document,

as M apForce function (in xslt | xslt functions library), 359
DoTransform.bat,

execute with RaptorXM L Server, 365
DTD,

source and target, 226
Duplicate input, 39

adding, 397

E

Edit,
as application menu, 394
Element,
recursive eement in XM L Schema, 280
element-available,
as M apForce function (in xslt | xslt functions library), 359
Encoding settings,
in XML output, 222
End User License Agreement, 488, 490
equal,
as M gpForcefunction (in core | logica functions), 317
equal-or-greater,
as M gpForce function (in core | logica functions), 317
equal-or-less,
as M apForce function (in core | logica functions), 318
Evaluation period,
of Altovas software products, 488, 490
Example,
recursive user-defined mapping, 280
exists,
as M apForce function (in core | sequence functions), 327
Extension functions for XSLT and XQuery, 467
Extension Functions in .NET for XSLT and XQuery,
see under .NET extension functions, 476
Extension Functions in Java for XSLT and XQuery,
see under Javaextension functions, 467
Extension Functions in MSXSL scripts, 482

F

false,

© 2018 Altova GmbH

Index

505

false,

as M gpForcefunction (in xpath2 | boolean functions), 348
File,

as gpplication menu, 391

as button on acomponent, 90

as button on components, 141
Fle names,

supplying as mappinginput parameters, 145
Fle paths,

fixing broken references, 116

in generated code, 117

relative versus absolute, 114, 117
Fle/String,

as button on acomponent, 90

as button on components, 141
Fle: (default),

as name of root node, 141
Fle: <dynamic>,

as name of root node, 141
Flter,

mergng XM L files, 238
Fltering,

datafrom components, 174

database tables, 174
Flters,

addingto the mapping, 174
first-items,

as M gpForce function (in core | sequence functions), 328
HexText,

definition of, 494
ALF,

definition of, 494
floor,

as M gpForcefunction (in core | math functions), 321
format-date,

as M gpForce function (in core | conversion functions), 305
format-dateTime,

as M gpForce function (in core | conversion functions), 306
format-number,

as M gpForce function (in core | conversion functions), 309
format-time,

as M gpForce function (in core | conversion functions), 311
Function, 259

as gpplication menu, 399

complex - inling, 259

inline, 259

nested user-defined, 265

standard user-defined function, 261

user-defined function, 282

user-defined look-up function, 261
function-available,

as M apForce function (in xslt | xslt functions library), 360
Functions,

adding as mapping components, 247

adding parameters to, 251

deleting parameters from, 251

finding in the Libraries window, 249

finding occurences in active mapping, 249

viewingthe argument datatype of, 250

viewing the description of, 250

G

Generate,

code & inline functions, 259
generate-id,

as M apForce function (in xslt | xslt functions library), 360
generate-sequence,

as M apForce function (in core | sequence functions), 328
get-fileext,

as M apForce function (in core | file path functions), 312
get-folder,

as M gpForcefunction (in core|file path functions), 312
Global Resources,

cregting, 373

examples of usage, 375, 377

introduction to, 373
greater,

as M apForce function (in core | logica functions), 318
group-adjacent,

as M apForce function (in core | sequence functions), 328
group-by,

as M apForce function (in core | sequence functions), 329
group-ending-with,

as M apForce function (in core | sequence functions), 330
group-into-blocks,

as M apForce function (in core | sequence functions), 330
group-starting-with,

as M apForce function (in core | sequence functions), 330

© 2018 Altova GmbH

506

Index

H

Health Level 7,

example, 243
Help,

as gpplication menu, 405
HL7 2.6 to 3.x,

example, 243

If-Else conditions,
addingto the mapping, 174
implicit-timezone,
as M apForce function (in xpath2 | context functions), 349
Inline,
functions and code size, 259
Inline / Standard,
user-defined functions, 259
Input, 265
default value, 265
optiona parameters, 265
Input component,
definition of, 496
Insert,
as gpplication menu, 395
Instance,
changngthe path referenceto, 114
Internet usage,
in Altovaproducts, 487
is-xsi-nil,
as M gpForce function (in core | node functions), 323
Item,
missing, 106
item-at,
as M apForce function (in core | sequence functions), 331
items-from-till,
as M gpForce function (in core | sequence functions), 331

J

Java extension functions,

constructors, 473

dataty pe conversions, Javato X path/XQuery, 476
dataty pe conversions, X Path/X Query to Java, 475
for XSLT and XQuery, 467

instance methods, instance fidds, 474

overview, 467

static methods, static fields, 473

user-defined class files, 469

user-defined JAR files, 472

K

Keeping data,

when using vaue-map, 183
Keeping data unchanged,

passing through avaue-map, 183
Key,

sort key, 168

L

last,

as M apForce function (in xpath2 | context functions), 349
last-items,

as M apForce function (in core | sequence functions), 332
Legal information, 488
less,

as M gpForce function (in core | logica functions), 318
Libraries window,

finding functions in, 249
License, 490

information about, 488
License metering,

in Altovaproducts, 489
Locale collation, 168
local-name-from-QName,

as M gpForcefunction (in lang | QName functions), 326
logical-and,

as M apForce function (in core | logica functions), 318
logical-not,

as M apForce function (in core | logica functions), 319
logical-or,

as M apForce function (in core | logica functions), 319
Lookup table,

© 2018 Altova GmbH

Index

507

Lookup table,
properties, 185
vaue map table, 180

M

main-mfd-filepath,
as M gpForcefunction (in core|file path functions), 312
MapForce,
basic concepts, 18
overview, 12
MapForce samples,
location on disk, 26
Mapping,
cregting, 65
definition of, 498
processing sequence, 209
source driven - mixed content, 119
vdidating, 70
Mapping input,
supplying custom file name as, 145
Supplying multiplefiles as, 141, 143, 144
Mapping methods,
standard, 119
standard / mixed / copy dl, 119
target-driven, 119
Mapping output,
Generating multiplefiles as, 141, 144
Marked items,
missing items, 106
max,
as M apForce function (in core | aggregate functions), 302
max-string,
as M apForce function (in core | agoregete functions), 302
Memory requirements, 486
Merging,
XML files, 238
mfd,
as file extension, 498
mfd-filepath,
as M gpForcefunction (in core | file path functions), 313
mff,
as file extension, 498
mfp,
asfileextension, 498
mft,

as file extrension, 498
Microsoft SharePoint Server,
adding files as components from, 66
min,
as M apForce function (in core | aggregate functions), 303
min-string,
as M apForce function (in core | aggregate functions), 303
Missing items, 106
Mixed, 119
content mapping, 119
content mapping example, 125
content mapping method, 119
source-driven mapping, 119
Mixed content,
M apping, 126
modulus,
as M apForce function (in core | math functions), 321
msxsl:script, 482
Multiple source,
to singetarget, 238
multiply,
as M gpForcefunction (in core | math functions), 322

N

Namespace URI,
DTD, 226
Namespace URIs,
and QNames, 229
Namespaces,
and wildcards (xs:any), 234
declaring custom, 240
namespace-uri-form-QName,
as M gpForce function (in lang | QName functions), 326
Nested,
user-defined functions, 265
nillable,
as attributein XM L schema, 229
Node names,
mapping data fromv/to, 188
node-name,
as M apForce function (in core | node functions), 323
as M apForce function (in xpath2 | accessors library), 347
node-name function,
dternatives to using, 188
normalize-space,

© 2018 Altova GmbH

508

Index

normalize-space,

as M apForce function (in core | string functions), 339
not-equal,

as M gpForcefunction (in core | logica functions), 319
not-exists,

as M apForce function (in core | sequence functions), 332
number,

as M gpForce function (in core | conversion functions), 311

O

Optional,
input parameters, 265
Order,
components are processed, 209
Ordering data,
sort component, 168
0s,
for Altovaproducts, 486
Output, 265
as gpplication menu, 400
parameter, 265
previewing, 72
saving, 72
user-defined if bool = fase, 265
vdidating, 71
Output component,
definition of, 499

P

Parameter, 265
optional, 265
output, 265
parent-context,
definition of, 500
Parser,
built into Altovaproducts, 486
Passing through data,
unchanged through value-map, 183
Paths in generated code,
making absolute, 84
Platforms,
for Altovaproducts, 486

position,
as M apForce function (in core | sequence functions), 333
Priority Context,
settingon functions, 212
Processing Instructions,
Addingto target files, 231
Processing Instructions and Comments,
mapping, 120
Processing sequence,
of components in amapping, 209
Properties,
value map table, 185

Q

QName,

as M gpForce function (in lang | QName functions), 325
QName support, 229
Question mark,

missingitems, 106

R

RaptorXML Server,

executing atransformation, 365
Recursive,

cdlsin functions, 259

user-defined function, 282

user-defined mapping, 280
Reference, 390
Regular expressions,

as parameter to the "match-patern” function, 297

as parameter to the "tokenize-regexp" function, 297
remove-fileext,

as M apForce function (in core| file path functions), 313
remove-folder,

as M apForce function (in core| file path functions), 313
replace-fileext,

as M apForce function (in core| file path functions), 313
replicate-item,

as M apForce function (in core | sequence functions), 336
replicate-sequence,

as M apForce function (in core | sequence functions), 337
resolve-filepath,

© 2018 Altova GmbH

Index

509

resolve-filepath,

as M gpForcefunction (in core|file path functions), 314
resolve-uri,

as M gpForcefunction (in xpath2 | any URI functions), 347
Retaining data,

passing through vliaue-map, 183
round,

as M gpForcefunction (in core | math functions), 322
round-half-to-even,

as M gpForcefunction (in xpath2 | numeric functions), 354
round-precision,

as M gpForce function (in core | math functions), 322

S

Schema,

and XM L mapping, 221

changngthe path referenceto, 114

generatingfor an XM L file, 221

recursive eements, 280
Scripts in XSLT/XQuery,

see under Extension functions, 467
Search,

functions in the Libraries window, 249

items within mapping components, 88
Section,

CDATA, 233
Sequence,

of processing components, 209
set-empty,

as M apForce function (in core | sequence functions), 338
set-xsi-nil,

as M gpForce function (in core | node functions), 324
Simple type,

sorting, 168
Single target,

multiple sources, 238
skip-first-items,

as M apForce function (in core | sequence functions), 338
Software product license, 490
Sort,

sort component, 168
Sort key,

sort component, 168
Sort order,

changng, 168

Source component,

definition of, 501
Source-driven,

- mixed content mapping, 119
Source-driven connections,

as opposed to standard (target-driven) connections, 126
SQLite,

changing database path to absolute in generated code, 117
Standard,

mapping method, 119
starts-with,

as M apForce function (in core | string functions), 340
static-node-annotation,

as M gpForce function (in core | node functions), 324
static-node-name,

as M apForce function (in core | node functions), 325
string,

as M gpForce function (in core | conversion functions), 312

as M gpForcefunction (in xpath2 | accessors library), 347
string-join,

as M apForce function (in core | agregate functions), 304
string-length,

as M apForce function (in core| string functions), 340
substitute-missing,

as M apForce function (in core | sequence functions), 338
substitute-missing-with-xsi-nil,

as M apForce function (in core | node functions), 325
substring,

as M apForce function (in core| string functions), 340
substring-after,

as M apForce function (in core| string functions), 340
substring-before,

as M apForce function (in core | string functions), 341
subtract,

as M gpForce function (in core | math functions), 322
sum,

as M apForce function (in core | agregate functions), 304
system-property,

as M apForce function (in xslt | xslt functions library), 360

T

Table,

lookup - vdue map, 180
Table data,

sorting, 168

© 2018 Altova GmbH

510

Index

Target component,

definition of, 502
Target-driven connections,

as opposed to source-driven connections, 126
Target-driven mapping, 119
Technical Information, 486
tokenize,

as M gpForcefunction (in core| string functions), 341
tokenize-by-length,

as M apForce function (in core | string functions), 343
tokenize-regexp,

as M gpForcefunction (in core| string functions), 345
Tools,

as gpplication menu, 403
Transform,

input data- vaue map, 180
Transformation language,

sdecting, 69
Transformations,

RaptorXM L Server, 365
translate (in core | string functions),

as M gpForcefunction, 346
true,

as M gpForce function (in xpath2 | boolean functions), 348
Types,

derived types - xsi:type, 227

U

Unicode,

code point collation, 168
Unicode support,

in Altovaproducts, 487
unparsed-entity-uri,

as M apForce function (in xslt | xslt functions library), 361
URI,

in DTDs, 226
URIs,

and QNames, 229
URL,

adding files as components from, 66
User defined, 265

complexinput, 271

complex output, 276

function - inline/ standard, 259

function - standard, 261

functions - complex, 270, 276
look-up functions, 261
nested functions, 265
output if bool = fase, 265
user-defined function,
recursive, 282
User-defined functions,
creating, 252
deeting, 252
importing, 252
influencing the parameter order, 252
opening, 252
reusing, 252

V

Validate,
mapping design, 70
mappingoutput, 71
Validator,
in Altovaproducts, 486
Value,
default, 265
Value-Map,
lookup table, 180
lookup table - properties, 185
passing data unchanged, 183
Variables,
adding to the mapping, 160
changing the scope of, 163
examples of use, 165
introduction to, 159
View,
as gpplication menu, 401

W

WebDAYV Server,

adding files as components from, 66
Wildcards,

xs:iany - xs:.any Atrribute, 234
Windows,

support for Altovaproducts, 486

© 2018 Altova GmbH

Index 511

X

XML declaration,
suppressing from output, 222
XML files,
generate from singe XM L source, 146
XML output,
changng enconding settings, 222
changnginstance file name, 222
changing schema, 222
cregting digtd signature, 222
XML Parser,
about, 486
XML to XML, 221
XQuery,
Extension functions, 467
XQuery processor,
in Altovaproducts, 486
Xs:any (xs:anyAttribute), 234
xsi:nil,
as attributein XM L instance, 229
xsitype,
mappingto derived ty pes, 227
XSLT,
adding custom functions, 291
Extension functions, 467
previewing the generated code, 82
removing custom functions, 291
template namespace, 291
XSLT processors,
in Altovaproducts, 486

Z

ZtoA,
sort component, 168

© 2018 Altova GmbH

	Altova MapForce 2018 Basic Edition
	What's new...

	Introduction
	Support Notes
	What Is MapForce?
	Basic Concepts
	User Interface Overview
	Conventions

	Tutorials
	Convert XML to New Schema
	Map Multiple Sources to One Target
	Work with Multiple Target Schemas
	Process and Generate Files Dynamically

	Common Tasks
	Working with Mappings
	Adding Components to the Mapping
	Adding Components from a URL
	Selecting a Transformation Language
	Validating Mappings
	Validating the Mapping Output
	Previewing the Output
	Text View Features
	Searching in Text View
	Previewing the XSLT Code
	Generating XSLT Code
	Working with Multiple Mapping Windows
	Changing the Mapping Settings

	Working with Components
	Searching within Components
	Aligning Components
	Changing the Component Settings
	Duplicating Input

	Working with Connections
	About Mandatory Inputs
	Changing the Connection Display Preferences
	Annotating Connections
	Connection Settings
	Connection Context Menu
	Connecting Matching Children
	Notifications on Missing Parent Connections
	Moving Connections and Child Connections
	Keeping Connections After Deleting Components
	Dealing with Missing Items

	Designing Mappings
	Using Relative and Absolute Paths
	Using Relative Paths on a Component
	Fixing Broken Path References
	Paths in Various Execution Environments
	Copy-Paste and Relative Paths

	Connection Types
	Target-driven connections
	Source-driven connections
	Mapping mixed content
	Mixed content example
	Using standard connections on mixed content items

	Copy-All Connections

	Chained Mappings
	Example: Pass-Through Active
	Example: Pass-Through Inactive

	Processing Multiple Input or Output Files Dynamically
	Mapping Multiple Input Files to a Single Output File
	Mapping Multiple Input Files to Multiple Output Files
	Supplying File Names as Mapping Parameters
	Previewing Multiple Output Files
	Example: Split One XML File into Many

	Supplying Parameters to the Mapping
	Adding Simple Input Components
	Simple Input Component Settings
	Creating a Default Input Value
	Example: Using File Names as Mapping Parameters

	Returning String Values from a Mapping
	Adding Simple Output Components
	Example: Previewing Function Output

	Using Variables
	Adding Variables
	Changing the Context and Scope of Variables
	Example: Grouping and Subgrouping Records

	Sorting Data
	Sorting by Multiple Keys
	Sorting with Variables

	Filters and Conditions
	Example: Filtering Nodes
	Example: Returning a Value Conditionally

	Using Value-Maps
	Passing data through a Value-Map unchanged
	Value-Map component properties

	Mapping Node Names
	Getting Access to Node Names
	Accessing Nodes of Specific Type
	Example: Map Element Names to Attribute Values

	Mapping Rules and Strategies
	Changing the Processing Order of Mapping Components
	Priority Context node/item
	Overriding the Mapping Context

	Data Sources and Targets
	XML and XML schema
	Generating an XML Schema
	XML Component Settings
	Using DTDs as "Schema" Components
	Derived XML Schema Types
	QNames
	Nil Values / Nillable
	Comments and Processing Instructions
	CDATA Sections
	Wildcards - xs:any / xs:anyAttribute
	Merging Data from Multiple Schemas
	Declaring Custom Namespaces

	HL7 Version 3

	Functions
	How To...
	Add a Built-in Function to the Mapping
	Add a Constant to the Mapping
	Search for a Function
	View a Function's Type and Description
	Add or Delete Function Arguments

	User-Defined Functions
	Function parameters
	Inline and regular user-defined functions
	Creating a simple look-up function
	User-defined function - example
	Complex user-defined function - XML node as input
	Defining Complex Input Components

	Complex user-defined function - XML node as output
	Defining Complex Output Components

	Recursive user-defined mapping
	Defining a recursive user-defined function

	Importing Custom XSLT 1.0 or 2.0 Functions
	Example: Adding Custom XSLT Functions
	Example: Summing Node Values

	Regular Expressions
	Function Library Reference
	core | aggregate functions
	avg
	count
	max
	max-string
	min
	min-string
	string-join
	sum

	core | conversion functions
	boolean
	format-date
	format-dateTime
	format-number
	format-time
	number
	string

	core | file path functions
	get-fileext
	get-folder
	main-mfd-filepath
	mfd-filepath
	remove-fileext
	remove-folder
	replace-fileext
	resolve-filepath

	core | generator functions
	auto-number

	core | logical functions
	equal
	equal-or-greater
	equal-or-less
	greater
	less
	logical-and
	logical-not
	logical-or
	not-equal

	core | math functions
	add
	ceiling
	divide
	floor
	modulus
	multiply
	round
	round-precision
	subtract

	core | node functions
	is-xsi-nil
	node-name
	set-xsi-nil
	static-node-annotation
	static-node-name
	substitute-missing-with-xsi-nil

	core | QName functions
	QName
	local-name-from-QName
	namespace-uri-from-QName

	core | sequence functions
	distinct-values
	exists
	first-items
	generate-sequence
	group-adjacent
	group-by
	group-ending-with
	group-into-blocks
	group-starting-with
	item-at
	items-from-till
	last-items
	not-exists
	position
	replicate-item
	replicate-sequence
	set-empty
	skip-first-items
	substitute-missing

	core | string functions
	char-from-code
	code-from-char
	concat
	contains
	normalize-space
	starts-with
	string-length
	substring
	substring-after
	substring-before
	tokenize
	tokenize-by-length
	tokenize-regexp
	translate

	xpath2 | accessors
	base-uri
	node-name
	string

	xpath2 | anyURI functions
	resolve-uri

	xpath2 | boolean functions
	false
	true

	xpath2 | constructors
	xpath2 | context functions
	current-date
	current-dateTime
	current-time
	default-collation
	implicit-timezone
	last

	xpath2 | durations, date and time functions
	xpath2 | node functions
	xpath2 | numeric functions
	xpath2 | string functions
	xslt | xpath functions
	xslt | xslt functions
	currrent
	document
	element-available
	function-available
	generate-id
	system-property
	unparsed-enity-uri

	Automating Mappings and MapForce
	Automation with RaptorXML Server
	MapForce Command Line Interface

	Customizing MapForce
	Changing the MapForce Options
	Altova Global Resources
	Creating Global Resources
	The Global Resources XML File
	Example: Run Mapping with Variable Input Files
	Example: Generate Output to Variable Folders

	Customizing Keyboard Shortcuts
	Catalog Files
	Network Proxy Settings

	Menu Reference
	File
	Edit
	Insert
	Component
	Connection
	Function
	Output
	View
	Tools
	Window
	Help Menu

	Appendices
	Engine information
	XSLT and XQuery Engine Information
	XSLT 1.0
	XSLT 2.0
	XQuery 1.0

	XSLT and XPath/XQuery Functions
	Altova Extension Functions
	XSLT Functions
	XPath/XQuery Functions: Date and Time
	XPath/XQuery Functions: Geolocation
	XPath/XQuery Functions: Image-Related
	XPath/XQuery Functions: Numeric
	XPath/XQuery Functions: Sequence
	XPath/XQuery Functions: String
	XPath/XQuery Functions: Miscellaneous

	Miscellaneous Extension Functions
	Java Extension Functions
	User-Defined Class Files
	User-Defined Jar Files
	Java: Constructors
	Java: Static Methods and Static Fields
	Java: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to Java
	Datatypes: Java to XPath/XQuery

	.NET Extension Functions
	.NET: Constructors
	.NET: Static Methods and Static Fields
	.NET: Instance Methods and Instance Fields
	Datatypes: XPath/XQuery to .NET
	Datatypes: .NET to XPath/XQuery

	MSXSL Scripts for XSLT

	Technical Data
	OS and Memory Requirements
	Altova XML Validator
	Altova XSLT and XQuery Engines
	Unicode Support
	Internet Usage

	License Information
	Electronic Software Distribution
	Software Activation and License Metering
	Intellectual Property Rights
	Altova End User License Agreement

	Glossary
	C
	F
	G
	I
	J
	M
	O
	P
	S
	T

